Merge pull request #2066 from TheBlueMatt/2023-02-no-enum-refs
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`find_route`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20 //! [`find_route`]: crate::routing::router::find_route
21
22 use bitcoin::blockdata::block::BlockHeader;
23 use bitcoin::blockdata::transaction::Transaction;
24 use bitcoin::blockdata::constants::genesis_block;
25 use bitcoin::network::constants::Network;
26
27 use bitcoin::hashes::Hash;
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hash_types::{BlockHash, Txid};
30
31 use bitcoin::secp256k1::{SecretKey,PublicKey};
32 use bitcoin::secp256k1::Secp256k1;
33 use bitcoin::{LockTime, secp256k1, Sequence};
34
35 use crate::chain;
36 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
37 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
38 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
39 use crate::chain::transaction::{OutPoint, TransactionData};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
49 use crate::routing::scoring::ProbabilisticScorer;
50 use crate::ln::msgs;
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
54 #[cfg(test)]
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
57 use crate::ln::wire::Encode;
58 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig};
60 use crate::util::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
61 use crate::util::events;
62 use crate::util::wakers::{Future, Notifier};
63 use crate::util::scid_utils::fake_scid;
64 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
65 use crate::util::logger::{Level, Logger};
66 use crate::util::errors::APIError;
67
68 use alloc::collections::BTreeMap;
69
70 use crate::io;
71 use crate::prelude::*;
72 use core::{cmp, mem};
73 use core::cell::RefCell;
74 use crate::io::Read;
75 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
76 use core::sync::atomic::{AtomicUsize, Ordering};
77 use core::time::Duration;
78 use core::ops::Deref;
79
80 // Re-export this for use in the public API.
81 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure};
82
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
84 //
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
88 //
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
93 //
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
99
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
102         Forward {
103                 onion_packet: msgs::OnionPacket,
104                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
107         },
108         Receive {
109                 payment_data: msgs::FinalOnionHopData,
110                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
111                 phantom_shared_secret: Option<[u8; 32]>,
112         },
113         ReceiveKeysend {
114                 payment_preimage: PaymentPreimage,
115                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
116         },
117 }
118
119 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
120 pub(super) struct PendingHTLCInfo {
121         pub(super) routing: PendingHTLCRouting,
122         pub(super) incoming_shared_secret: [u8; 32],
123         payment_hash: PaymentHash,
124         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
125         pub(super) outgoing_amt_msat: u64,
126         pub(super) outgoing_cltv_value: u32,
127 }
128
129 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
130 pub(super) enum HTLCFailureMsg {
131         Relay(msgs::UpdateFailHTLC),
132         Malformed(msgs::UpdateFailMalformedHTLC),
133 }
134
135 /// Stores whether we can't forward an HTLC or relevant forwarding info
136 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
137 pub(super) enum PendingHTLCStatus {
138         Forward(PendingHTLCInfo),
139         Fail(HTLCFailureMsg),
140 }
141
142 pub(super) struct PendingAddHTLCInfo {
143         pub(super) forward_info: PendingHTLCInfo,
144
145         // These fields are produced in `forward_htlcs()` and consumed in
146         // `process_pending_htlc_forwards()` for constructing the
147         // `HTLCSource::PreviousHopData` for failed and forwarded
148         // HTLCs.
149         //
150         // Note that this may be an outbound SCID alias for the associated channel.
151         prev_short_channel_id: u64,
152         prev_htlc_id: u64,
153         prev_funding_outpoint: OutPoint,
154         prev_user_channel_id: u128,
155 }
156
157 pub(super) enum HTLCForwardInfo {
158         AddHTLC(PendingAddHTLCInfo),
159         FailHTLC {
160                 htlc_id: u64,
161                 err_packet: msgs::OnionErrorPacket,
162         },
163 }
164
165 /// Tracks the inbound corresponding to an outbound HTLC
166 #[derive(Clone, Hash, PartialEq, Eq)]
167 pub(crate) struct HTLCPreviousHopData {
168         // Note that this may be an outbound SCID alias for the associated channel.
169         short_channel_id: u64,
170         htlc_id: u64,
171         incoming_packet_shared_secret: [u8; 32],
172         phantom_shared_secret: Option<[u8; 32]>,
173
174         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
175         // channel with a preimage provided by the forward channel.
176         outpoint: OutPoint,
177 }
178
179 enum OnionPayload {
180         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
181         Invoice {
182                 /// This is only here for backwards-compatibility in serialization, in the future it can be
183                 /// removed, breaking clients running 0.0.106 and earlier.
184                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
185         },
186         /// Contains the payer-provided preimage.
187         Spontaneous(PaymentPreimage),
188 }
189
190 /// HTLCs that are to us and can be failed/claimed by the user
191 struct ClaimableHTLC {
192         prev_hop: HTLCPreviousHopData,
193         cltv_expiry: u32,
194         /// The amount (in msats) of this MPP part
195         value: u64,
196         onion_payload: OnionPayload,
197         timer_ticks: u8,
198         /// The sum total of all MPP parts
199         total_msat: u64,
200 }
201
202 /// A payment identifier used to uniquely identify a payment to LDK.
203 /// (C-not exported) as we just use [u8; 32] directly
204 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
205 pub struct PaymentId(pub [u8; 32]);
206
207 impl Writeable for PaymentId {
208         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
209                 self.0.write(w)
210         }
211 }
212
213 impl Readable for PaymentId {
214         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
215                 let buf: [u8; 32] = Readable::read(r)?;
216                 Ok(PaymentId(buf))
217         }
218 }
219
220 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
221 /// (C-not exported) as we just use [u8; 32] directly
222 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
223 pub struct InterceptId(pub [u8; 32]);
224
225 impl Writeable for InterceptId {
226         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
227                 self.0.write(w)
228         }
229 }
230
231 impl Readable for InterceptId {
232         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
233                 let buf: [u8; 32] = Readable::read(r)?;
234                 Ok(InterceptId(buf))
235         }
236 }
237
238 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
239 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
240 pub(crate) enum SentHTLCId {
241         PreviousHopData { short_channel_id: u64, htlc_id: u64 },
242         OutboundRoute { session_priv: SecretKey },
243 }
244 impl SentHTLCId {
245         pub(crate) fn from_source(source: &HTLCSource) -> Self {
246                 match source {
247                         HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
248                                 short_channel_id: hop_data.short_channel_id,
249                                 htlc_id: hop_data.htlc_id,
250                         },
251                         HTLCSource::OutboundRoute { session_priv, .. } =>
252                                 Self::OutboundRoute { session_priv: *session_priv },
253                 }
254         }
255 }
256 impl_writeable_tlv_based_enum!(SentHTLCId,
257         (0, PreviousHopData) => {
258                 (0, short_channel_id, required),
259                 (2, htlc_id, required),
260         },
261         (2, OutboundRoute) => {
262                 (0, session_priv, required),
263         };
264 );
265
266
267 /// Tracks the inbound corresponding to an outbound HTLC
268 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
269 #[derive(Clone, PartialEq, Eq)]
270 pub(crate) enum HTLCSource {
271         PreviousHopData(HTLCPreviousHopData),
272         OutboundRoute {
273                 path: Vec<RouteHop>,
274                 session_priv: SecretKey,
275                 /// Technically we can recalculate this from the route, but we cache it here to avoid
276                 /// doing a double-pass on route when we get a failure back
277                 first_hop_htlc_msat: u64,
278                 payment_id: PaymentId,
279                 payment_secret: Option<PaymentSecret>,
280                 /// Note that this is now "deprecated" - we write it for forwards (and read it for
281                 /// backwards) compatibility reasons, but prefer to use the data in the
282                 /// [`super::outbound_payment`] module, which stores per-payment data once instead of in
283                 /// each HTLC.
284                 payment_params: Option<PaymentParameters>,
285         },
286 }
287 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
288 impl core::hash::Hash for HTLCSource {
289         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
290                 match self {
291                         HTLCSource::PreviousHopData(prev_hop_data) => {
292                                 0u8.hash(hasher);
293                                 prev_hop_data.hash(hasher);
294                         },
295                         HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
296                                 1u8.hash(hasher);
297                                 path.hash(hasher);
298                                 session_priv[..].hash(hasher);
299                                 payment_id.hash(hasher);
300                                 payment_secret.hash(hasher);
301                                 first_hop_htlc_msat.hash(hasher);
302                                 payment_params.hash(hasher);
303                         },
304                 }
305         }
306 }
307 #[cfg(not(feature = "grind_signatures"))]
308 #[cfg(test)]
309 impl HTLCSource {
310         pub fn dummy() -> Self {
311                 HTLCSource::OutboundRoute {
312                         path: Vec::new(),
313                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
314                         first_hop_htlc_msat: 0,
315                         payment_id: PaymentId([2; 32]),
316                         payment_secret: None,
317                         payment_params: None,
318                 }
319         }
320 }
321
322 struct ReceiveError {
323         err_code: u16,
324         err_data: Vec<u8>,
325         msg: &'static str,
326 }
327
328 /// This enum is used to specify which error data to send to peers when failing back an HTLC
329 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
330 ///
331 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
332 #[derive(Clone, Copy)]
333 pub enum FailureCode {
334         /// We had a temporary error processing the payment. Useful if no other error codes fit
335         /// and you want to indicate that the payer may want to retry.
336         TemporaryNodeFailure             = 0x2000 | 2,
337         /// We have a required feature which was not in this onion. For example, you may require
338         /// some additional metadata that was not provided with this payment.
339         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
340         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
341         /// the HTLC is too close to the current block height for safe handling.
342         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
343         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
344         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
345 }
346
347 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
348
349 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
350 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
351 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
352 /// peer_state lock. We then return the set of things that need to be done outside the lock in
353 /// this struct and call handle_error!() on it.
354
355 struct MsgHandleErrInternal {
356         err: msgs::LightningError,
357         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
358         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
359 }
360 impl MsgHandleErrInternal {
361         #[inline]
362         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
363                 Self {
364                         err: LightningError {
365                                 err: err.clone(),
366                                 action: msgs::ErrorAction::SendErrorMessage {
367                                         msg: msgs::ErrorMessage {
368                                                 channel_id,
369                                                 data: err
370                                         },
371                                 },
372                         },
373                         chan_id: None,
374                         shutdown_finish: None,
375                 }
376         }
377         #[inline]
378         fn from_no_close(err: msgs::LightningError) -> Self {
379                 Self { err, chan_id: None, shutdown_finish: None }
380         }
381         #[inline]
382         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
383                 Self {
384                         err: LightningError {
385                                 err: err.clone(),
386                                 action: msgs::ErrorAction::SendErrorMessage {
387                                         msg: msgs::ErrorMessage {
388                                                 channel_id,
389                                                 data: err
390                                         },
391                                 },
392                         },
393                         chan_id: Some((channel_id, user_channel_id)),
394                         shutdown_finish: Some((shutdown_res, channel_update)),
395                 }
396         }
397         #[inline]
398         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
399                 Self {
400                         err: match err {
401                                 ChannelError::Warn(msg) =>  LightningError {
402                                         err: msg.clone(),
403                                         action: msgs::ErrorAction::SendWarningMessage {
404                                                 msg: msgs::WarningMessage {
405                                                         channel_id,
406                                                         data: msg
407                                                 },
408                                                 log_level: Level::Warn,
409                                         },
410                                 },
411                                 ChannelError::Ignore(msg) => LightningError {
412                                         err: msg,
413                                         action: msgs::ErrorAction::IgnoreError,
414                                 },
415                                 ChannelError::Close(msg) => LightningError {
416                                         err: msg.clone(),
417                                         action: msgs::ErrorAction::SendErrorMessage {
418                                                 msg: msgs::ErrorMessage {
419                                                         channel_id,
420                                                         data: msg
421                                                 },
422                                         },
423                                 },
424                         },
425                         chan_id: None,
426                         shutdown_finish: None,
427                 }
428         }
429 }
430
431 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
432 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
433 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
434 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
435 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
436
437 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
438 /// be sent in the order they appear in the return value, however sometimes the order needs to be
439 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
440 /// they were originally sent). In those cases, this enum is also returned.
441 #[derive(Clone, PartialEq)]
442 pub(super) enum RAACommitmentOrder {
443         /// Send the CommitmentUpdate messages first
444         CommitmentFirst,
445         /// Send the RevokeAndACK message first
446         RevokeAndACKFirst,
447 }
448
449 /// Information about a payment which is currently being claimed.
450 struct ClaimingPayment {
451         amount_msat: u64,
452         payment_purpose: events::PaymentPurpose,
453         receiver_node_id: PublicKey,
454 }
455 impl_writeable_tlv_based!(ClaimingPayment, {
456         (0, amount_msat, required),
457         (2, payment_purpose, required),
458         (4, receiver_node_id, required),
459 });
460
461 /// Information about claimable or being-claimed payments
462 struct ClaimablePayments {
463         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
464         /// failed/claimed by the user.
465         ///
466         /// Note that, no consistency guarantees are made about the channels given here actually
467         /// existing anymore by the time you go to read them!
468         ///
469         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
470         /// we don't get a duplicate payment.
471         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
472
473         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
474         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
475         /// as an [`events::Event::PaymentClaimed`].
476         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
477 }
478
479 /// Events which we process internally but cannot be procsesed immediately at the generation site
480 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
481 /// quite some time lag.
482 enum BackgroundEvent {
483         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
484         /// commitment transaction.
485         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
486 }
487
488 #[derive(Debug)]
489 pub(crate) enum MonitorUpdateCompletionAction {
490         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
491         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
492         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
493         /// event can be generated.
494         PaymentClaimed { payment_hash: PaymentHash },
495         /// Indicates an [`events::Event`] should be surfaced to the user.
496         EmitEvent { event: events::Event },
497 }
498
499 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
500         (0, PaymentClaimed) => { (0, payment_hash, required) },
501         (2, EmitEvent) => { (0, event, upgradable_required) },
502 );
503
504 /// State we hold per-peer.
505 pub(super) struct PeerState<Signer: ChannelSigner> {
506         /// `temporary_channel_id` or `channel_id` -> `channel`.
507         ///
508         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
509         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
510         /// `channel_id`.
511         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
512         /// The latest `InitFeatures` we heard from the peer.
513         latest_features: InitFeatures,
514         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
515         /// for broadcast messages, where ordering isn't as strict).
516         pub(super) pending_msg_events: Vec<MessageSendEvent>,
517         /// Map from a specific channel to some action(s) that should be taken when all pending
518         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
519         ///
520         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
521         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
522         /// channels with a peer this will just be one allocation and will amount to a linear list of
523         /// channels to walk, avoiding the whole hashing rigmarole.
524         ///
525         /// Note that the channel may no longer exist. For example, if a channel was closed but we
526         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
527         /// for a missing channel. While a malicious peer could construct a second channel with the
528         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
529         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
530         /// duplicates do not occur, so such channels should fail without a monitor update completing.
531         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
532         /// The peer is currently connected (i.e. we've seen a
533         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
534         /// [`ChannelMessageHandler::peer_disconnected`].
535         is_connected: bool,
536 }
537
538 impl <Signer: ChannelSigner> PeerState<Signer> {
539         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
540         /// If true is passed for `require_disconnected`, the function will return false if we haven't
541         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
542         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
543                 if require_disconnected && self.is_connected {
544                         return false
545                 }
546                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
547         }
548 }
549
550 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
551 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
552 ///
553 /// For users who don't want to bother doing their own payment preimage storage, we also store that
554 /// here.
555 ///
556 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
557 /// and instead encoding it in the payment secret.
558 struct PendingInboundPayment {
559         /// The payment secret that the sender must use for us to accept this payment
560         payment_secret: PaymentSecret,
561         /// Time at which this HTLC expires - blocks with a header time above this value will result in
562         /// this payment being removed.
563         expiry_time: u64,
564         /// Arbitrary identifier the user specifies (or not)
565         user_payment_id: u64,
566         // Other required attributes of the payment, optionally enforced:
567         payment_preimage: Option<PaymentPreimage>,
568         min_value_msat: Option<u64>,
569 }
570
571 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
572 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
573 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
574 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
575 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
576 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
577 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
578 ///
579 /// (C-not exported) as Arcs don't make sense in bindings
580 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
581         Arc<M>,
582         Arc<T>,
583         Arc<KeysManager>,
584         Arc<KeysManager>,
585         Arc<KeysManager>,
586         Arc<F>,
587         Arc<DefaultRouter<
588                 Arc<NetworkGraph<Arc<L>>>,
589                 Arc<L>,
590                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
591         >>,
592         Arc<L>
593 >;
594
595 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
596 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
597 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
598 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
599 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
600 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
601 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
602 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
603 ///
604 /// (C-not exported) as Arcs don't make sense in bindings
605 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
606
607 /// Manager which keeps track of a number of channels and sends messages to the appropriate
608 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
609 ///
610 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
611 /// to individual Channels.
612 ///
613 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
614 /// all peers during write/read (though does not modify this instance, only the instance being
615 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
616 /// called funding_transaction_generated for outbound channels).
617 ///
618 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
619 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
620 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
621 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
622 /// the serialization process). If the deserialized version is out-of-date compared to the
623 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
624 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
625 ///
626 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
627 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
628 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
629 /// block_connected() to step towards your best block) upon deserialization before using the
630 /// object!
631 ///
632 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
633 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
634 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
635 /// offline for a full minute. In order to track this, you must call
636 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
637 ///
638 /// To avoid trivial DoS issues, ChannelManager limits the number of inbound connections and
639 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
640 /// not have a channel with being unable to connect to us or open new channels with us if we have
641 /// many peers with unfunded channels.
642 ///
643 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
644 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
645 /// never limited. Please ensure you limit the count of such channels yourself.
646 ///
647 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
648 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
649 /// essentially you should default to using a SimpleRefChannelManager, and use a
650 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
651 /// you're using lightning-net-tokio.
652 //
653 // Lock order:
654 // The tree structure below illustrates the lock order requirements for the different locks of the
655 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
656 // and should then be taken in the order of the lowest to the highest level in the tree.
657 // Note that locks on different branches shall not be taken at the same time, as doing so will
658 // create a new lock order for those specific locks in the order they were taken.
659 //
660 // Lock order tree:
661 //
662 // `total_consistency_lock`
663 //  |
664 //  |__`forward_htlcs`
665 //  |   |
666 //  |   |__`pending_intercepted_htlcs`
667 //  |
668 //  |__`per_peer_state`
669 //  |   |
670 //  |   |__`pending_inbound_payments`
671 //  |       |
672 //  |       |__`claimable_payments`
673 //  |       |
674 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
675 //  |           |
676 //  |           |__`peer_state`
677 //  |               |
678 //  |               |__`id_to_peer`
679 //  |               |
680 //  |               |__`short_to_chan_info`
681 //  |               |
682 //  |               |__`outbound_scid_aliases`
683 //  |               |
684 //  |               |__`best_block`
685 //  |               |
686 //  |               |__`pending_events`
687 //  |                   |
688 //  |                   |__`pending_background_events`
689 //
690 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
691 where
692         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
693         T::Target: BroadcasterInterface,
694         ES::Target: EntropySource,
695         NS::Target: NodeSigner,
696         SP::Target: SignerProvider,
697         F::Target: FeeEstimator,
698         R::Target: Router,
699         L::Target: Logger,
700 {
701         default_configuration: UserConfig,
702         genesis_hash: BlockHash,
703         fee_estimator: LowerBoundedFeeEstimator<F>,
704         chain_monitor: M,
705         tx_broadcaster: T,
706         #[allow(unused)]
707         router: R,
708
709         /// See `ChannelManager` struct-level documentation for lock order requirements.
710         #[cfg(test)]
711         pub(super) best_block: RwLock<BestBlock>,
712         #[cfg(not(test))]
713         best_block: RwLock<BestBlock>,
714         secp_ctx: Secp256k1<secp256k1::All>,
715
716         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
717         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
718         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
719         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
720         ///
721         /// See `ChannelManager` struct-level documentation for lock order requirements.
722         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
723
724         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
725         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
726         /// (if the channel has been force-closed), however we track them here to prevent duplicative
727         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
728         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
729         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
730         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
731         /// after reloading from disk while replaying blocks against ChannelMonitors.
732         ///
733         /// See `PendingOutboundPayment` documentation for more info.
734         ///
735         /// See `ChannelManager` struct-level documentation for lock order requirements.
736         pending_outbound_payments: OutboundPayments,
737
738         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
739         ///
740         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
741         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
742         /// and via the classic SCID.
743         ///
744         /// Note that no consistency guarantees are made about the existence of a channel with the
745         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
746         ///
747         /// See `ChannelManager` struct-level documentation for lock order requirements.
748         #[cfg(test)]
749         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
750         #[cfg(not(test))]
751         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
752         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
753         /// until the user tells us what we should do with them.
754         ///
755         /// See `ChannelManager` struct-level documentation for lock order requirements.
756         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
757
758         /// The sets of payments which are claimable or currently being claimed. See
759         /// [`ClaimablePayments`]' individual field docs for more info.
760         ///
761         /// See `ChannelManager` struct-level documentation for lock order requirements.
762         claimable_payments: Mutex<ClaimablePayments>,
763
764         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
765         /// and some closed channels which reached a usable state prior to being closed. This is used
766         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
767         /// active channel list on load.
768         ///
769         /// See `ChannelManager` struct-level documentation for lock order requirements.
770         outbound_scid_aliases: Mutex<HashSet<u64>>,
771
772         /// `channel_id` -> `counterparty_node_id`.
773         ///
774         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
775         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
776         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
777         ///
778         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
779         /// the corresponding channel for the event, as we only have access to the `channel_id` during
780         /// the handling of the events.
781         ///
782         /// Note that no consistency guarantees are made about the existence of a peer with the
783         /// `counterparty_node_id` in our other maps.
784         ///
785         /// TODO:
786         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
787         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
788         /// would break backwards compatability.
789         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
790         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
791         /// required to access the channel with the `counterparty_node_id`.
792         ///
793         /// See `ChannelManager` struct-level documentation for lock order requirements.
794         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
795
796         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
797         ///
798         /// Outbound SCID aliases are added here once the channel is available for normal use, with
799         /// SCIDs being added once the funding transaction is confirmed at the channel's required
800         /// confirmation depth.
801         ///
802         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
803         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
804         /// channel with the `channel_id` in our other maps.
805         ///
806         /// See `ChannelManager` struct-level documentation for lock order requirements.
807         #[cfg(test)]
808         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
809         #[cfg(not(test))]
810         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
811
812         our_network_pubkey: PublicKey,
813
814         inbound_payment_key: inbound_payment::ExpandedKey,
815
816         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
817         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
818         /// we encrypt the namespace identifier using these bytes.
819         ///
820         /// [fake scids]: crate::util::scid_utils::fake_scid
821         fake_scid_rand_bytes: [u8; 32],
822
823         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
824         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
825         /// keeping additional state.
826         probing_cookie_secret: [u8; 32],
827
828         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
829         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
830         /// very far in the past, and can only ever be up to two hours in the future.
831         highest_seen_timestamp: AtomicUsize,
832
833         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
834         /// basis, as well as the peer's latest features.
835         ///
836         /// If we are connected to a peer we always at least have an entry here, even if no channels
837         /// are currently open with that peer.
838         ///
839         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
840         /// operate on the inner value freely. This opens up for parallel per-peer operation for
841         /// channels.
842         ///
843         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
844         ///
845         /// See `ChannelManager` struct-level documentation for lock order requirements.
846         #[cfg(not(any(test, feature = "_test_utils")))]
847         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
848         #[cfg(any(test, feature = "_test_utils"))]
849         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
850
851         /// See `ChannelManager` struct-level documentation for lock order requirements.
852         pending_events: Mutex<Vec<events::Event>>,
853         /// See `ChannelManager` struct-level documentation for lock order requirements.
854         pending_background_events: Mutex<Vec<BackgroundEvent>>,
855         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
856         /// Essentially just when we're serializing ourselves out.
857         /// Taken first everywhere where we are making changes before any other locks.
858         /// When acquiring this lock in read mode, rather than acquiring it directly, call
859         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
860         /// Notifier the lock contains sends out a notification when the lock is released.
861         total_consistency_lock: RwLock<()>,
862
863         persistence_notifier: Notifier,
864
865         entropy_source: ES,
866         node_signer: NS,
867         signer_provider: SP,
868
869         logger: L,
870 }
871
872 /// Chain-related parameters used to construct a new `ChannelManager`.
873 ///
874 /// Typically, the block-specific parameters are derived from the best block hash for the network,
875 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
876 /// are not needed when deserializing a previously constructed `ChannelManager`.
877 #[derive(Clone, Copy, PartialEq)]
878 pub struct ChainParameters {
879         /// The network for determining the `chain_hash` in Lightning messages.
880         pub network: Network,
881
882         /// The hash and height of the latest block successfully connected.
883         ///
884         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
885         pub best_block: BestBlock,
886 }
887
888 #[derive(Copy, Clone, PartialEq)]
889 enum NotifyOption {
890         DoPersist,
891         SkipPersist,
892 }
893
894 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
895 /// desirable to notify any listeners on `await_persistable_update_timeout`/
896 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
897 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
898 /// sending the aforementioned notification (since the lock being released indicates that the
899 /// updates are ready for persistence).
900 ///
901 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
902 /// notify or not based on whether relevant changes have been made, providing a closure to
903 /// `optionally_notify` which returns a `NotifyOption`.
904 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
905         persistence_notifier: &'a Notifier,
906         should_persist: F,
907         // We hold onto this result so the lock doesn't get released immediately.
908         _read_guard: RwLockReadGuard<'a, ()>,
909 }
910
911 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
912         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
913                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
914         }
915
916         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
917                 let read_guard = lock.read().unwrap();
918
919                 PersistenceNotifierGuard {
920                         persistence_notifier: notifier,
921                         should_persist: persist_check,
922                         _read_guard: read_guard,
923                 }
924         }
925 }
926
927 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
928         fn drop(&mut self) {
929                 if (self.should_persist)() == NotifyOption::DoPersist {
930                         self.persistence_notifier.notify();
931                 }
932         }
933 }
934
935 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
936 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
937 ///
938 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
939 ///
940 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
941 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
942 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
943 /// the maximum required amount in lnd as of March 2021.
944 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
945
946 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
947 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
948 ///
949 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
950 ///
951 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
952 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
953 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
954 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
955 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
956 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
957 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
958 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
959 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
960 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
961 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
962 // routing failure for any HTLC sender picking up an LDK node among the first hops.
963 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
964
965 /// Minimum CLTV difference between the current block height and received inbound payments.
966 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
967 /// this value.
968 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
969 // any payments to succeed. Further, we don't want payments to fail if a block was found while
970 // a payment was being routed, so we add an extra block to be safe.
971 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
972
973 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
974 // ie that if the next-hop peer fails the HTLC within
975 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
976 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
977 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
978 // LATENCY_GRACE_PERIOD_BLOCKS.
979 #[deny(const_err)]
980 #[allow(dead_code)]
981 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
982
983 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
984 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
985 #[deny(const_err)]
986 #[allow(dead_code)]
987 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
988
989 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
990 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
991
992 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
993 /// idempotency of payments by [`PaymentId`]. See
994 /// [`OutboundPayments::remove_stale_resolved_payments`].
995 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
996
997 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
998 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
999 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1000 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1001
1002 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1003 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1004 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1005
1006 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1007 /// many peers we reject new (inbound) connections.
1008 const MAX_NO_CHANNEL_PEERS: usize = 250;
1009
1010 /// Information needed for constructing an invoice route hint for this channel.
1011 #[derive(Clone, Debug, PartialEq)]
1012 pub struct CounterpartyForwardingInfo {
1013         /// Base routing fee in millisatoshis.
1014         pub fee_base_msat: u32,
1015         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1016         pub fee_proportional_millionths: u32,
1017         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1018         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1019         /// `cltv_expiry_delta` for more details.
1020         pub cltv_expiry_delta: u16,
1021 }
1022
1023 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1024 /// to better separate parameters.
1025 #[derive(Clone, Debug, PartialEq)]
1026 pub struct ChannelCounterparty {
1027         /// The node_id of our counterparty
1028         pub node_id: PublicKey,
1029         /// The Features the channel counterparty provided upon last connection.
1030         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1031         /// many routing-relevant features are present in the init context.
1032         pub features: InitFeatures,
1033         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1034         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1035         /// claiming at least this value on chain.
1036         ///
1037         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1038         ///
1039         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1040         pub unspendable_punishment_reserve: u64,
1041         /// Information on the fees and requirements that the counterparty requires when forwarding
1042         /// payments to us through this channel.
1043         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1044         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1045         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1046         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1047         pub outbound_htlc_minimum_msat: Option<u64>,
1048         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1049         pub outbound_htlc_maximum_msat: Option<u64>,
1050 }
1051
1052 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
1053 #[derive(Clone, Debug, PartialEq)]
1054 pub struct ChannelDetails {
1055         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1056         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1057         /// Note that this means this value is *not* persistent - it can change once during the
1058         /// lifetime of the channel.
1059         pub channel_id: [u8; 32],
1060         /// Parameters which apply to our counterparty. See individual fields for more information.
1061         pub counterparty: ChannelCounterparty,
1062         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1063         /// our counterparty already.
1064         ///
1065         /// Note that, if this has been set, `channel_id` will be equivalent to
1066         /// `funding_txo.unwrap().to_channel_id()`.
1067         pub funding_txo: Option<OutPoint>,
1068         /// The features which this channel operates with. See individual features for more info.
1069         ///
1070         /// `None` until negotiation completes and the channel type is finalized.
1071         pub channel_type: Option<ChannelTypeFeatures>,
1072         /// The position of the funding transaction in the chain. None if the funding transaction has
1073         /// not yet been confirmed and the channel fully opened.
1074         ///
1075         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1076         /// payments instead of this. See [`get_inbound_payment_scid`].
1077         ///
1078         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1079         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1080         ///
1081         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1082         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1083         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1084         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1085         /// [`confirmations_required`]: Self::confirmations_required
1086         pub short_channel_id: Option<u64>,
1087         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1088         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1089         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1090         /// `Some(0)`).
1091         ///
1092         /// This will be `None` as long as the channel is not available for routing outbound payments.
1093         ///
1094         /// [`short_channel_id`]: Self::short_channel_id
1095         /// [`confirmations_required`]: Self::confirmations_required
1096         pub outbound_scid_alias: Option<u64>,
1097         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1098         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1099         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1100         /// when they see a payment to be routed to us.
1101         ///
1102         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1103         /// previous values for inbound payment forwarding.
1104         ///
1105         /// [`short_channel_id`]: Self::short_channel_id
1106         pub inbound_scid_alias: Option<u64>,
1107         /// The value, in satoshis, of this channel as appears in the funding output
1108         pub channel_value_satoshis: u64,
1109         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1110         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1111         /// this value on chain.
1112         ///
1113         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1114         ///
1115         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1116         ///
1117         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1118         pub unspendable_punishment_reserve: Option<u64>,
1119         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1120         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1121         /// 0.0.113.
1122         pub user_channel_id: u128,
1123         /// Our total balance.  This is the amount we would get if we close the channel.
1124         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1125         /// amount is not likely to be recoverable on close.
1126         ///
1127         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1128         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1129         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1130         /// This does not consider any on-chain fees.
1131         ///
1132         /// See also [`ChannelDetails::outbound_capacity_msat`]
1133         pub balance_msat: u64,
1134         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1135         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1136         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1137         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1138         ///
1139         /// See also [`ChannelDetails::balance_msat`]
1140         ///
1141         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1142         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1143         /// should be able to spend nearly this amount.
1144         pub outbound_capacity_msat: u64,
1145         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1146         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1147         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1148         /// to use a limit as close as possible to the HTLC limit we can currently send.
1149         ///
1150         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1151         pub next_outbound_htlc_limit_msat: u64,
1152         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1153         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1154         /// available for inclusion in new inbound HTLCs).
1155         /// Note that there are some corner cases not fully handled here, so the actual available
1156         /// inbound capacity may be slightly higher than this.
1157         ///
1158         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1159         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1160         /// However, our counterparty should be able to spend nearly this amount.
1161         pub inbound_capacity_msat: u64,
1162         /// The number of required confirmations on the funding transaction before the funding will be
1163         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1164         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1165         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1166         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1167         ///
1168         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1169         ///
1170         /// [`is_outbound`]: ChannelDetails::is_outbound
1171         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1172         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1173         pub confirmations_required: Option<u32>,
1174         /// The current number of confirmations on the funding transaction.
1175         ///
1176         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1177         pub confirmations: Option<u32>,
1178         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1179         /// until we can claim our funds after we force-close the channel. During this time our
1180         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1181         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1182         /// time to claim our non-HTLC-encumbered funds.
1183         ///
1184         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1185         pub force_close_spend_delay: Option<u16>,
1186         /// True if the channel was initiated (and thus funded) by us.
1187         pub is_outbound: bool,
1188         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1189         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1190         /// required confirmation count has been reached (and we were connected to the peer at some
1191         /// point after the funding transaction received enough confirmations). The required
1192         /// confirmation count is provided in [`confirmations_required`].
1193         ///
1194         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1195         pub is_channel_ready: bool,
1196         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1197         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1198         ///
1199         /// This is a strict superset of `is_channel_ready`.
1200         pub is_usable: bool,
1201         /// True if this channel is (or will be) publicly-announced.
1202         pub is_public: bool,
1203         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1204         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1205         pub inbound_htlc_minimum_msat: Option<u64>,
1206         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1207         pub inbound_htlc_maximum_msat: Option<u64>,
1208         /// Set of configurable parameters that affect channel operation.
1209         ///
1210         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1211         pub config: Option<ChannelConfig>,
1212 }
1213
1214 impl ChannelDetails {
1215         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1216         /// This should be used for providing invoice hints or in any other context where our
1217         /// counterparty will forward a payment to us.
1218         ///
1219         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1220         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1221         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1222                 self.inbound_scid_alias.or(self.short_channel_id)
1223         }
1224
1225         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1226         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1227         /// we're sending or forwarding a payment outbound over this channel.
1228         ///
1229         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1230         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1231         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1232                 self.short_channel_id.or(self.outbound_scid_alias)
1233         }
1234 }
1235
1236 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1237 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1238 #[derive(Debug, PartialEq)]
1239 pub enum RecentPaymentDetails {
1240         /// When a payment is still being sent and awaiting successful delivery.
1241         Pending {
1242                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1243                 /// abandoned.
1244                 payment_hash: PaymentHash,
1245                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1246                 /// not just the amount currently inflight.
1247                 total_msat: u64,
1248         },
1249         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1250         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1251         /// payment is removed from tracking.
1252         Fulfilled {
1253                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1254                 /// made before LDK version 0.0.104.
1255                 payment_hash: Option<PaymentHash>,
1256         },
1257         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1258         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1259         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1260         Abandoned {
1261                 /// Hash of the payment that we have given up trying to send.
1262                 payment_hash: PaymentHash,
1263         },
1264 }
1265
1266 /// Route hints used in constructing invoices for [phantom node payents].
1267 ///
1268 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1269 #[derive(Clone)]
1270 pub struct PhantomRouteHints {
1271         /// The list of channels to be included in the invoice route hints.
1272         pub channels: Vec<ChannelDetails>,
1273         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1274         /// route hints.
1275         pub phantom_scid: u64,
1276         /// The pubkey of the real backing node that would ultimately receive the payment.
1277         pub real_node_pubkey: PublicKey,
1278 }
1279
1280 macro_rules! handle_error {
1281         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1282                 match $internal {
1283                         Ok(msg) => Ok(msg),
1284                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1285                                 // In testing, ensure there are no deadlocks where the lock is already held upon
1286                                 // entering the macro.
1287                                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1288                                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1289
1290                                 let mut msg_events = Vec::with_capacity(2);
1291
1292                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1293                                         $self.finish_force_close_channel(shutdown_res);
1294                                         if let Some(update) = update_option {
1295                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1296                                                         msg: update
1297                                                 });
1298                                         }
1299                                         if let Some((channel_id, user_channel_id)) = chan_id {
1300                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1301                                                         channel_id, user_channel_id,
1302                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1303                                                 });
1304                                         }
1305                                 }
1306
1307                                 log_error!($self.logger, "{}", err.err);
1308                                 if let msgs::ErrorAction::IgnoreError = err.action {
1309                                 } else {
1310                                         msg_events.push(events::MessageSendEvent::HandleError {
1311                                                 node_id: $counterparty_node_id,
1312                                                 action: err.action.clone()
1313                                         });
1314                                 }
1315
1316                                 if !msg_events.is_empty() {
1317                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1318                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1319                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1320                                                 peer_state.pending_msg_events.append(&mut msg_events);
1321                                         }
1322                                 }
1323
1324                                 // Return error in case higher-API need one
1325                                 Err(err)
1326                         },
1327                 }
1328         }
1329 }
1330
1331 macro_rules! update_maps_on_chan_removal {
1332         ($self: expr, $channel: expr) => {{
1333                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1334                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1335                 if let Some(short_id) = $channel.get_short_channel_id() {
1336                         short_to_chan_info.remove(&short_id);
1337                 } else {
1338                         // If the channel was never confirmed on-chain prior to its closure, remove the
1339                         // outbound SCID alias we used for it from the collision-prevention set. While we
1340                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1341                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1342                         // opening a million channels with us which are closed before we ever reach the funding
1343                         // stage.
1344                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1345                         debug_assert!(alias_removed);
1346                 }
1347                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1348         }}
1349 }
1350
1351 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1352 macro_rules! convert_chan_err {
1353         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1354                 match $err {
1355                         ChannelError::Warn(msg) => {
1356                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1357                         },
1358                         ChannelError::Ignore(msg) => {
1359                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1360                         },
1361                         ChannelError::Close(msg) => {
1362                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1363                                 update_maps_on_chan_removal!($self, $channel);
1364                                 let shutdown_res = $channel.force_shutdown(true);
1365                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1366                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1367                         },
1368                 }
1369         }
1370 }
1371
1372 macro_rules! break_chan_entry {
1373         ($self: ident, $res: expr, $entry: expr) => {
1374                 match $res {
1375                         Ok(res) => res,
1376                         Err(e) => {
1377                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1378                                 if drop {
1379                                         $entry.remove_entry();
1380                                 }
1381                                 break Err(res);
1382                         }
1383                 }
1384         }
1385 }
1386
1387 macro_rules! try_chan_entry {
1388         ($self: ident, $res: expr, $entry: expr) => {
1389                 match $res {
1390                         Ok(res) => res,
1391                         Err(e) => {
1392                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1393                                 if drop {
1394                                         $entry.remove_entry();
1395                                 }
1396                                 return Err(res);
1397                         }
1398                 }
1399         }
1400 }
1401
1402 macro_rules! remove_channel {
1403         ($self: expr, $entry: expr) => {
1404                 {
1405                         let channel = $entry.remove_entry().1;
1406                         update_maps_on_chan_removal!($self, channel);
1407                         channel
1408                 }
1409         }
1410 }
1411
1412 macro_rules! send_channel_ready {
1413         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1414                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1415                         node_id: $channel.get_counterparty_node_id(),
1416                         msg: $channel_ready_msg,
1417                 });
1418                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1419                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1420                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1421                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1422                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1423                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1424                 if let Some(real_scid) = $channel.get_short_channel_id() {
1425                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1426                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1427                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1428                 }
1429         }}
1430 }
1431
1432 macro_rules! emit_channel_ready_event {
1433         ($self: expr, $channel: expr) => {
1434                 if $channel.should_emit_channel_ready_event() {
1435                         {
1436                                 let mut pending_events = $self.pending_events.lock().unwrap();
1437                                 pending_events.push(events::Event::ChannelReady {
1438                                         channel_id: $channel.channel_id(),
1439                                         user_channel_id: $channel.get_user_id(),
1440                                         counterparty_node_id: $channel.get_counterparty_node_id(),
1441                                         channel_type: $channel.get_channel_type().clone(),
1442                                 });
1443                         }
1444                         $channel.set_channel_ready_event_emitted();
1445                 }
1446         }
1447 }
1448
1449 macro_rules! handle_monitor_update_completion {
1450         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1451                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1452                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1453                         $self.best_block.read().unwrap().height());
1454                 let counterparty_node_id = $chan.get_counterparty_node_id();
1455                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1456                         // We only send a channel_update in the case where we are just now sending a
1457                         // channel_ready and the channel is in a usable state. We may re-send a
1458                         // channel_update later through the announcement_signatures process for public
1459                         // channels, but there's no reason not to just inform our counterparty of our fees
1460                         // now.
1461                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1462                                 Some(events::MessageSendEvent::SendChannelUpdate {
1463                                         node_id: counterparty_node_id,
1464                                         msg,
1465                                 })
1466                         } else { None }
1467                 } else { None };
1468
1469                 let update_actions = $peer_state.monitor_update_blocked_actions
1470                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1471
1472                 let htlc_forwards = $self.handle_channel_resumption(
1473                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1474                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1475                         updates.funding_broadcastable, updates.channel_ready,
1476                         updates.announcement_sigs);
1477                 if let Some(upd) = channel_update {
1478                         $peer_state.pending_msg_events.push(upd);
1479                 }
1480
1481                 let channel_id = $chan.channel_id();
1482                 core::mem::drop($peer_state_lock);
1483                 core::mem::drop($per_peer_state_lock);
1484
1485                 $self.handle_monitor_update_completion_actions(update_actions);
1486
1487                 if let Some(forwards) = htlc_forwards {
1488                         $self.forward_htlcs(&mut [forwards][..]);
1489                 }
1490                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1491                 for failure in updates.failed_htlcs.drain(..) {
1492                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1493                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1494                 }
1495         } }
1496 }
1497
1498 macro_rules! handle_new_monitor_update {
1499         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1500                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1501                 // any case so that it won't deadlock.
1502                 debug_assert!($self.id_to_peer.try_lock().is_ok());
1503                 match $update_res {
1504                         ChannelMonitorUpdateStatus::InProgress => {
1505                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1506                                         log_bytes!($chan.channel_id()[..]));
1507                                 Ok(())
1508                         },
1509                         ChannelMonitorUpdateStatus::PermanentFailure => {
1510                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1511                                         log_bytes!($chan.channel_id()[..]));
1512                                 update_maps_on_chan_removal!($self, $chan);
1513                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1514                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1515                                         $chan.get_user_id(), $chan.force_shutdown(false),
1516                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1517                                 $remove;
1518                                 res
1519                         },
1520                         ChannelMonitorUpdateStatus::Completed => {
1521                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1522                                         .expect("We can't be processing a monitor update if it isn't queued")
1523                                         .update_id == $update_id) &&
1524                                         $chan.get_latest_monitor_update_id() == $update_id
1525                                 {
1526                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1527                                 }
1528                                 Ok(())
1529                         },
1530                 }
1531         } };
1532         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1533                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1534         }
1535 }
1536
1537 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1538 where
1539         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1540         T::Target: BroadcasterInterface,
1541         ES::Target: EntropySource,
1542         NS::Target: NodeSigner,
1543         SP::Target: SignerProvider,
1544         F::Target: FeeEstimator,
1545         R::Target: Router,
1546         L::Target: Logger,
1547 {
1548         /// Constructs a new ChannelManager to hold several channels and route between them.
1549         ///
1550         /// This is the main "logic hub" for all channel-related actions, and implements
1551         /// ChannelMessageHandler.
1552         ///
1553         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1554         ///
1555         /// Users need to notify the new ChannelManager when a new block is connected or
1556         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1557         /// from after `params.latest_hash`.
1558         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1559                 let mut secp_ctx = Secp256k1::new();
1560                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1561                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1562                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1563                 ChannelManager {
1564                         default_configuration: config.clone(),
1565                         genesis_hash: genesis_block(params.network).header.block_hash(),
1566                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1567                         chain_monitor,
1568                         tx_broadcaster,
1569                         router,
1570
1571                         best_block: RwLock::new(params.best_block),
1572
1573                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1574                         pending_inbound_payments: Mutex::new(HashMap::new()),
1575                         pending_outbound_payments: OutboundPayments::new(),
1576                         forward_htlcs: Mutex::new(HashMap::new()),
1577                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1578                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1579                         id_to_peer: Mutex::new(HashMap::new()),
1580                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1581
1582                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1583                         secp_ctx,
1584
1585                         inbound_payment_key: expanded_inbound_key,
1586                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1587
1588                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1589
1590                         highest_seen_timestamp: AtomicUsize::new(0),
1591
1592                         per_peer_state: FairRwLock::new(HashMap::new()),
1593
1594                         pending_events: Mutex::new(Vec::new()),
1595                         pending_background_events: Mutex::new(Vec::new()),
1596                         total_consistency_lock: RwLock::new(()),
1597                         persistence_notifier: Notifier::new(),
1598
1599                         entropy_source,
1600                         node_signer,
1601                         signer_provider,
1602
1603                         logger,
1604                 }
1605         }
1606
1607         /// Gets the current configuration applied to all new channels.
1608         pub fn get_current_default_configuration(&self) -> &UserConfig {
1609                 &self.default_configuration
1610         }
1611
1612         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1613                 let height = self.best_block.read().unwrap().height();
1614                 let mut outbound_scid_alias = 0;
1615                 let mut i = 0;
1616                 loop {
1617                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1618                                 outbound_scid_alias += 1;
1619                         } else {
1620                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1621                         }
1622                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1623                                 break;
1624                         }
1625                         i += 1;
1626                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1627                 }
1628                 outbound_scid_alias
1629         }
1630
1631         /// Creates a new outbound channel to the given remote node and with the given value.
1632         ///
1633         /// `user_channel_id` will be provided back as in
1634         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1635         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1636         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1637         /// is simply copied to events and otherwise ignored.
1638         ///
1639         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1640         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1641         ///
1642         /// Note that we do not check if you are currently connected to the given peer. If no
1643         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1644         /// the channel eventually being silently forgotten (dropped on reload).
1645         ///
1646         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1647         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1648         /// [`ChannelDetails::channel_id`] until after
1649         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1650         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1651         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1652         ///
1653         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1654         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1655         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1656         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1657                 if channel_value_satoshis < 1000 {
1658                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1659                 }
1660
1661                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1662                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1663                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1664
1665                 let per_peer_state = self.per_peer_state.read().unwrap();
1666
1667                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1668                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1669
1670                 let mut peer_state = peer_state_mutex.lock().unwrap();
1671                 let channel = {
1672                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1673                         let their_features = &peer_state.latest_features;
1674                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1675                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1676                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1677                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1678                         {
1679                                 Ok(res) => res,
1680                                 Err(e) => {
1681                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1682                                         return Err(e);
1683                                 },
1684                         }
1685                 };
1686                 let res = channel.get_open_channel(self.genesis_hash.clone());
1687
1688                 let temporary_channel_id = channel.channel_id();
1689                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1690                         hash_map::Entry::Occupied(_) => {
1691                                 if cfg!(fuzzing) {
1692                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1693                                 } else {
1694                                         panic!("RNG is bad???");
1695                                 }
1696                         },
1697                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1698                 }
1699
1700                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1701                         node_id: their_network_key,
1702                         msg: res,
1703                 });
1704                 Ok(temporary_channel_id)
1705         }
1706
1707         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1708                 // Allocate our best estimate of the number of channels we have in the `res`
1709                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1710                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1711                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1712                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1713                 // the same channel.
1714                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1715                 {
1716                         let best_block_height = self.best_block.read().unwrap().height();
1717                         let per_peer_state = self.per_peer_state.read().unwrap();
1718                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1719                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1720                                 let peer_state = &mut *peer_state_lock;
1721                                 for (channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1722                                         let balance = channel.get_available_balances();
1723                                         let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1724                                                 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1725                                         res.push(ChannelDetails {
1726                                                 channel_id: (*channel_id).clone(),
1727                                                 counterparty: ChannelCounterparty {
1728                                                         node_id: channel.get_counterparty_node_id(),
1729                                                         features: peer_state.latest_features.clone(),
1730                                                         unspendable_punishment_reserve: to_remote_reserve_satoshis,
1731                                                         forwarding_info: channel.counterparty_forwarding_info(),
1732                                                         // Ensures that we have actually received the `htlc_minimum_msat` value
1733                                                         // from the counterparty through the `OpenChannel` or `AcceptChannel`
1734                                                         // message (as they are always the first message from the counterparty).
1735                                                         // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1736                                                         // default `0` value set by `Channel::new_outbound`.
1737                                                         outbound_htlc_minimum_msat: if channel.have_received_message() {
1738                                                                 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1739                                                         outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1740                                                 },
1741                                                 funding_txo: channel.get_funding_txo(),
1742                                                 // Note that accept_channel (or open_channel) is always the first message, so
1743                                                 // `have_received_message` indicates that type negotiation has completed.
1744                                                 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1745                                                 short_channel_id: channel.get_short_channel_id(),
1746                                                 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1747                                                 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1748                                                 channel_value_satoshis: channel.get_value_satoshis(),
1749                                                 unspendable_punishment_reserve: to_self_reserve_satoshis,
1750                                                 balance_msat: balance.balance_msat,
1751                                                 inbound_capacity_msat: balance.inbound_capacity_msat,
1752                                                 outbound_capacity_msat: balance.outbound_capacity_msat,
1753                                                 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1754                                                 user_channel_id: channel.get_user_id(),
1755                                                 confirmations_required: channel.minimum_depth(),
1756                                                 confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1757                                                 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1758                                                 is_outbound: channel.is_outbound(),
1759                                                 is_channel_ready: channel.is_usable(),
1760                                                 is_usable: channel.is_live(),
1761                                                 is_public: channel.should_announce(),
1762                                                 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1763                                                 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1764                                                 config: Some(channel.config()),
1765                                         });
1766                                 }
1767                         }
1768                 }
1769                 res
1770         }
1771
1772         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1773         /// more information.
1774         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1775                 self.list_channels_with_filter(|_| true)
1776         }
1777
1778         /// Gets the list of usable channels, in random order. Useful as an argument to [`find_route`]
1779         /// to ensure non-announced channels are used.
1780         ///
1781         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1782         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1783         /// are.
1784         ///
1785         /// [`find_route`]: crate::routing::router::find_route
1786         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1787                 // Note we use is_live here instead of usable which leads to somewhat confused
1788                 // internal/external nomenclature, but that's ok cause that's probably what the user
1789                 // really wanted anyway.
1790                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1791         }
1792
1793         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1794         /// successful path, or have unresolved HTLCs.
1795         ///
1796         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1797         /// result of a crash. If such a payment exists, is not listed here, and an
1798         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1799         ///
1800         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1801         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1802                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1803                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1804                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1805                                         Some(RecentPaymentDetails::Pending {
1806                                                 payment_hash: *payment_hash,
1807                                                 total_msat: *total_msat,
1808                                         })
1809                                 },
1810                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1811                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1812                                 },
1813                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1814                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1815                                 },
1816                                 PendingOutboundPayment::Legacy { .. } => None
1817                         })
1818                         .collect()
1819         }
1820
1821         /// Helper function that issues the channel close events
1822         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1823                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1824                 match channel.unbroadcasted_funding() {
1825                         Some(transaction) => {
1826                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1827                         },
1828                         None => {},
1829                 }
1830                 pending_events_lock.push(events::Event::ChannelClosed {
1831                         channel_id: channel.channel_id(),
1832                         user_channel_id: channel.get_user_id(),
1833                         reason: closure_reason
1834                 });
1835         }
1836
1837         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1838                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1839
1840                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1841                 let result: Result<(), _> = loop {
1842                         let per_peer_state = self.per_peer_state.read().unwrap();
1843
1844                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1845                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
1846
1847                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1848                         let peer_state = &mut *peer_state_lock;
1849                         match peer_state.channel_by_id.entry(channel_id.clone()) {
1850                                 hash_map::Entry::Occupied(mut chan_entry) => {
1851                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
1852                                         let their_features = &peer_state.latest_features;
1853                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
1854                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
1855                                         failed_htlcs = htlcs;
1856
1857                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
1858                                         // here as we don't need the monitor update to complete until we send a
1859                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
1860                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1861                                                 node_id: *counterparty_node_id,
1862                                                 msg: shutdown_msg,
1863                                         });
1864
1865                                         // Update the monitor with the shutdown script if necessary.
1866                                         if let Some(monitor_update) = monitor_update_opt.take() {
1867                                                 let update_id = monitor_update.update_id;
1868                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
1869                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
1870                                         }
1871
1872                                         if chan_entry.get().is_shutdown() {
1873                                                 let channel = remove_channel!(self, chan_entry);
1874                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1875                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1876                                                                 msg: channel_update
1877                                                         });
1878                                                 }
1879                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1880                                         }
1881                                         break Ok(());
1882                                 },
1883                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
1884                         }
1885                 };
1886
1887                 for htlc_source in failed_htlcs.drain(..) {
1888                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1889                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1890                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
1891                 }
1892
1893                 let _ = handle_error!(self, result, *counterparty_node_id);
1894                 Ok(())
1895         }
1896
1897         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1898         /// will be accepted on the given channel, and after additional timeout/the closing of all
1899         /// pending HTLCs, the channel will be closed on chain.
1900         ///
1901         ///  * If we are the channel initiator, we will pay between our [`Background`] and
1902         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1903         ///    estimate.
1904         ///  * If our counterparty is the channel initiator, we will require a channel closing
1905         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
1906         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
1907         ///    counterparty to pay as much fee as they'd like, however.
1908         ///
1909         /// May generate a SendShutdown message event on success, which should be relayed.
1910         ///
1911         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1912         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1913         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1914         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1915                 self.close_channel_internal(channel_id, counterparty_node_id, None)
1916         }
1917
1918         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1919         /// will be accepted on the given channel, and after additional timeout/the closing of all
1920         /// pending HTLCs, the channel will be closed on chain.
1921         ///
1922         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1923         /// the channel being closed or not:
1924         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
1925         ///    transaction. The upper-bound is set by
1926         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1927         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1928         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1929         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1930         ///    will appear on a force-closure transaction, whichever is lower).
1931         ///
1932         /// May generate a SendShutdown message event on success, which should be relayed.
1933         ///
1934         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1935         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1936         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1937         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1938                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1939         }
1940
1941         #[inline]
1942         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1943                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1944                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1945                 for htlc_source in failed_htlcs.drain(..) {
1946                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
1947                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1948                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1949                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
1950                 }
1951                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1952                         // There isn't anything we can do if we get an update failure - we're already
1953                         // force-closing. The monitor update on the required in-memory copy should broadcast
1954                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1955                         // ignore the result here.
1956                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
1957                 }
1958         }
1959
1960         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1961         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1962         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
1963         -> Result<PublicKey, APIError> {
1964                 let per_peer_state = self.per_peer_state.read().unwrap();
1965                 let peer_state_mutex = per_peer_state.get(peer_node_id)
1966                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
1967                 let mut chan = {
1968                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1969                         let peer_state = &mut *peer_state_lock;
1970                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
1971                                 if let Some(peer_msg) = peer_msg {
1972                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1973                                 } else {
1974                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1975                                 }
1976                                 remove_channel!(self, chan)
1977                         } else {
1978                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
1979                         }
1980                 };
1981                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1982                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
1983                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1984                         let mut peer_state = peer_state_mutex.lock().unwrap();
1985                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1986                                 msg: update
1987                         });
1988                 }
1989
1990                 Ok(chan.get_counterparty_node_id())
1991         }
1992
1993         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
1994                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1995                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
1996                         Ok(counterparty_node_id) => {
1997                                 let per_peer_state = self.per_peer_state.read().unwrap();
1998                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
1999                                         let mut peer_state = peer_state_mutex.lock().unwrap();
2000                                         peer_state.pending_msg_events.push(
2001                                                 events::MessageSendEvent::HandleError {
2002                                                         node_id: counterparty_node_id,
2003                                                         action: msgs::ErrorAction::SendErrorMessage {
2004                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2005                                                         },
2006                                                 }
2007                                         );
2008                                 }
2009                                 Ok(())
2010                         },
2011                         Err(e) => Err(e)
2012                 }
2013         }
2014
2015         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2016         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2017         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2018         /// channel.
2019         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2020         -> Result<(), APIError> {
2021                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2022         }
2023
2024         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2025         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2026         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2027         ///
2028         /// You can always get the latest local transaction(s) to broadcast from
2029         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2030         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2031         -> Result<(), APIError> {
2032                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2033         }
2034
2035         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2036         /// for each to the chain and rejecting new HTLCs on each.
2037         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2038                 for chan in self.list_channels() {
2039                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2040                 }
2041         }
2042
2043         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2044         /// local transaction(s).
2045         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2046                 for chan in self.list_channels() {
2047                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2048                 }
2049         }
2050
2051         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2052                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2053         {
2054                 // final_incorrect_cltv_expiry
2055                 if hop_data.outgoing_cltv_value != cltv_expiry {
2056                         return Err(ReceiveError {
2057                                 msg: "Upstream node set CLTV to the wrong value",
2058                                 err_code: 18,
2059                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2060                         })
2061                 }
2062                 // final_expiry_too_soon
2063                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2064                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2065                 //
2066                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2067                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2068                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2069                 let current_height: u32 = self.best_block.read().unwrap().height();
2070                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2071                         let mut err_data = Vec::with_capacity(12);
2072                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2073                         err_data.extend_from_slice(&current_height.to_be_bytes());
2074                         return Err(ReceiveError {
2075                                 err_code: 0x4000 | 15, err_data,
2076                                 msg: "The final CLTV expiry is too soon to handle",
2077                         });
2078                 }
2079                 if hop_data.amt_to_forward > amt_msat {
2080                         return Err(ReceiveError {
2081                                 err_code: 19,
2082                                 err_data: amt_msat.to_be_bytes().to_vec(),
2083                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2084                         });
2085                 }
2086
2087                 let routing = match hop_data.format {
2088                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2089                                 return Err(ReceiveError {
2090                                         err_code: 0x4000|22,
2091                                         err_data: Vec::new(),
2092                                         msg: "Got non final data with an HMAC of 0",
2093                                 });
2094                         },
2095                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2096                                 if payment_data.is_some() && keysend_preimage.is_some() {
2097                                         return Err(ReceiveError {
2098                                                 err_code: 0x4000|22,
2099                                                 err_data: Vec::new(),
2100                                                 msg: "We don't support MPP keysend payments",
2101                                         });
2102                                 } else if let Some(data) = payment_data {
2103                                         PendingHTLCRouting::Receive {
2104                                                 payment_data: data,
2105                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2106                                                 phantom_shared_secret,
2107                                         }
2108                                 } else if let Some(payment_preimage) = keysend_preimage {
2109                                         // We need to check that the sender knows the keysend preimage before processing this
2110                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2111                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2112                                         // with a keysend payment of identical payment hash to X and observing the processing
2113                                         // time discrepancies due to a hash collision with X.
2114                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2115                                         if hashed_preimage != payment_hash {
2116                                                 return Err(ReceiveError {
2117                                                         err_code: 0x4000|22,
2118                                                         err_data: Vec::new(),
2119                                                         msg: "Payment preimage didn't match payment hash",
2120                                                 });
2121                                         }
2122
2123                                         PendingHTLCRouting::ReceiveKeysend {
2124                                                 payment_preimage,
2125                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2126                                         }
2127                                 } else {
2128                                         return Err(ReceiveError {
2129                                                 err_code: 0x4000|0x2000|3,
2130                                                 err_data: Vec::new(),
2131                                                 msg: "We require payment_secrets",
2132                                         });
2133                                 }
2134                         },
2135                 };
2136                 Ok(PendingHTLCInfo {
2137                         routing,
2138                         payment_hash,
2139                         incoming_shared_secret: shared_secret,
2140                         incoming_amt_msat: Some(amt_msat),
2141                         outgoing_amt_msat: amt_msat,
2142                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2143                 })
2144         }
2145
2146         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2147                 macro_rules! return_malformed_err {
2148                         ($msg: expr, $err_code: expr) => {
2149                                 {
2150                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2151                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2152                                                 channel_id: msg.channel_id,
2153                                                 htlc_id: msg.htlc_id,
2154                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2155                                                 failure_code: $err_code,
2156                                         }));
2157                                 }
2158                         }
2159                 }
2160
2161                 if let Err(_) = msg.onion_routing_packet.public_key {
2162                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2163                 }
2164
2165                 let shared_secret = self.node_signer.ecdh(
2166                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2167                 ).unwrap().secret_bytes();
2168
2169                 if msg.onion_routing_packet.version != 0 {
2170                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2171                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2172                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2173                         //receiving node would have to brute force to figure out which version was put in the
2174                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2175                         //node knows the HMAC matched, so they already know what is there...
2176                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2177                 }
2178                 macro_rules! return_err {
2179                         ($msg: expr, $err_code: expr, $data: expr) => {
2180                                 {
2181                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2182                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2183                                                 channel_id: msg.channel_id,
2184                                                 htlc_id: msg.htlc_id,
2185                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2186                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2187                                         }));
2188                                 }
2189                         }
2190                 }
2191
2192                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2193                         Ok(res) => res,
2194                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2195                                 return_malformed_err!(err_msg, err_code);
2196                         },
2197                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2198                                 return_err!(err_msg, err_code, &[0; 0]);
2199                         },
2200                 };
2201
2202                 let pending_forward_info = match next_hop {
2203                         onion_utils::Hop::Receive(next_hop_data) => {
2204                                 // OUR PAYMENT!
2205                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2206                                         Ok(info) => {
2207                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2208                                                 // message, however that would leak that we are the recipient of this payment, so
2209                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2210                                                 // delay) once they've send us a commitment_signed!
2211                                                 PendingHTLCStatus::Forward(info)
2212                                         },
2213                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2214                                 }
2215                         },
2216                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2217                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2218                                 let outgoing_packet = msgs::OnionPacket {
2219                                         version: 0,
2220                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2221                                         hop_data: new_packet_bytes,
2222                                         hmac: next_hop_hmac.clone(),
2223                                 };
2224
2225                                 let short_channel_id = match next_hop_data.format {
2226                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2227                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2228                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2229                                         },
2230                                 };
2231
2232                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2233                                         routing: PendingHTLCRouting::Forward {
2234                                                 onion_packet: outgoing_packet,
2235                                                 short_channel_id,
2236                                         },
2237                                         payment_hash: msg.payment_hash.clone(),
2238                                         incoming_shared_secret: shared_secret,
2239                                         incoming_amt_msat: Some(msg.amount_msat),
2240                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2241                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2242                                 })
2243                         }
2244                 };
2245
2246                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2247                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2248                         // with a short_channel_id of 0. This is important as various things later assume
2249                         // short_channel_id is non-0 in any ::Forward.
2250                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2251                                 if let Some((err, mut code, chan_update)) = loop {
2252                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2253                                         let forwarding_chan_info_opt = match id_option {
2254                                                 None => { // unknown_next_peer
2255                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2256                                                         // phantom or an intercept.
2257                                                         if (self.default_configuration.accept_intercept_htlcs &&
2258                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2259                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2260                                                         {
2261                                                                 None
2262                                                         } else {
2263                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2264                                                         }
2265                                                 },
2266                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2267                                         };
2268                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2269                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2270                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2271                                                 if peer_state_mutex_opt.is_none() {
2272                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2273                                                 }
2274                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2275                                                 let peer_state = &mut *peer_state_lock;
2276                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2277                                                         None => {
2278                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2279                                                                 // have no consistency guarantees.
2280                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2281                                                         },
2282                                                         Some(chan) => chan
2283                                                 };
2284                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2285                                                         // Note that the behavior here should be identical to the above block - we
2286                                                         // should NOT reveal the existence or non-existence of a private channel if
2287                                                         // we don't allow forwards outbound over them.
2288                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2289                                                 }
2290                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2291                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2292                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2293                                                         // we don't have the channel here.
2294                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2295                                                 }
2296                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2297
2298                                                 // Note that we could technically not return an error yet here and just hope
2299                                                 // that the connection is reestablished or monitor updated by the time we get
2300                                                 // around to doing the actual forward, but better to fail early if we can and
2301                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2302                                                 // on a small/per-node/per-channel scale.
2303                                                 if !chan.is_live() { // channel_disabled
2304                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2305                                                 }
2306                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2307                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2308                                                 }
2309                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2310                                                         break Some((err, code, chan_update_opt));
2311                                                 }
2312                                                 chan_update_opt
2313                                         } else {
2314                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2315                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2316                                                         // forwarding over a real channel we can't generate a channel_update
2317                                                         // for it. Instead we just return a generic temporary_node_failure.
2318                                                         break Some((
2319                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2320                                                                 0x2000 | 2, None,
2321                                                         ));
2322                                                 }
2323                                                 None
2324                                         };
2325
2326                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2327                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2328                                         // but we want to be robust wrt to counterparty packet sanitization (see
2329                                         // HTLC_FAIL_BACK_BUFFER rationale).
2330                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2331                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2332                                         }
2333                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2334                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2335                                         }
2336                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2337                                         // counterparty. They should fail it anyway, but we don't want to bother with
2338                                         // the round-trips or risk them deciding they definitely want the HTLC and
2339                                         // force-closing to ensure they get it if we're offline.
2340                                         // We previously had a much more aggressive check here which tried to ensure
2341                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2342                                         // but there is no need to do that, and since we're a bit conservative with our
2343                                         // risk threshold it just results in failing to forward payments.
2344                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2345                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2346                                         }
2347
2348                                         break None;
2349                                 }
2350                                 {
2351                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2352                                         if let Some(chan_update) = chan_update {
2353                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2354                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2355                                                 }
2356                                                 else if code == 0x1000 | 13 {
2357                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2358                                                 }
2359                                                 else if code == 0x1000 | 20 {
2360                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2361                                                         0u16.write(&mut res).expect("Writes cannot fail");
2362                                                 }
2363                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2364                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2365                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2366                                         } else if code & 0x1000 == 0x1000 {
2367                                                 // If we're trying to return an error that requires a `channel_update` but
2368                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2369                                                 // generate an update), just use the generic "temporary_node_failure"
2370                                                 // instead.
2371                                                 code = 0x2000 | 2;
2372                                         }
2373                                         return_err!(err, code, &res.0[..]);
2374                                 }
2375                         }
2376                 }
2377
2378                 pending_forward_info
2379         }
2380
2381         /// Gets the current channel_update for the given channel. This first checks if the channel is
2382         /// public, and thus should be called whenever the result is going to be passed out in a
2383         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2384         ///
2385         /// Note that in `internal_closing_signed`, this function is called without the `peer_state`
2386         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2387         /// storage and the `peer_state` lock has been dropped.
2388         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2389                 if !chan.should_announce() {
2390                         return Err(LightningError {
2391                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2392                                 action: msgs::ErrorAction::IgnoreError
2393                         });
2394                 }
2395                 if chan.get_short_channel_id().is_none() {
2396                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2397                 }
2398                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2399                 self.get_channel_update_for_unicast(chan)
2400         }
2401
2402         /// Gets the current channel_update for the given channel. This does not check if the channel
2403         /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2404         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2405         /// provided evidence that they know about the existence of the channel.
2406         ///
2407         /// Note that through `internal_closing_signed`, this function is called without the
2408         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2409         /// removed from the storage and the `peer_state` lock has been dropped.
2410         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2411                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2412                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2413                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2414                         Some(id) => id,
2415                 };
2416
2417                 self.get_channel_update_for_onion(short_channel_id, chan)
2418         }
2419         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2420                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2421                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2422
2423                 let unsigned = msgs::UnsignedChannelUpdate {
2424                         chain_hash: self.genesis_hash,
2425                         short_channel_id,
2426                         timestamp: chan.get_update_time_counter(),
2427                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2428                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2429                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2430                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2431                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2432                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2433                         excess_data: Vec::new(),
2434                 };
2435                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2436                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2437                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2438                 // channel.
2439                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2440
2441                 Ok(msgs::ChannelUpdate {
2442                         signature: sig,
2443                         contents: unsigned
2444                 })
2445         }
2446
2447         #[cfg(test)]
2448         pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2449                 let _lck = self.total_consistency_lock.read().unwrap();
2450                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2451         }
2452
2453         fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2454                 // The top-level caller should hold the total_consistency_lock read lock.
2455                 debug_assert!(self.total_consistency_lock.try_write().is_err());
2456
2457                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2458                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2459                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2460
2461                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2462                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2463                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2464                 if onion_utils::route_size_insane(&onion_payloads) {
2465                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2466                 }
2467                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2468
2469                 let err: Result<(), _> = loop {
2470                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2471                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2472                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2473                         };
2474
2475                         let per_peer_state = self.per_peer_state.read().unwrap();
2476                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2477                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2478                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2479                         let peer_state = &mut *peer_state_lock;
2480                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2481                                 if !chan.get().is_live() {
2482                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2483                                 }
2484                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2485                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2486                                         htlc_cltv, HTLCSource::OutboundRoute {
2487                                                 path: path.clone(),
2488                                                 session_priv: session_priv.clone(),
2489                                                 first_hop_htlc_msat: htlc_msat,
2490                                                 payment_id,
2491                                                 payment_secret: payment_secret.clone(),
2492                                                 payment_params: payment_params.clone(),
2493                                         }, onion_packet, &self.logger);
2494                                 match break_chan_entry!(self, send_res, chan) {
2495                                         Some(monitor_update) => {
2496                                                 let update_id = monitor_update.update_id;
2497                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2498                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2499                                                         break Err(e);
2500                                                 }
2501                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2502                                                         // Note that MonitorUpdateInProgress here indicates (per function
2503                                                         // docs) that we will resend the commitment update once monitor
2504                                                         // updating completes. Therefore, we must return an error
2505                                                         // indicating that it is unsafe to retry the payment wholesale,
2506                                                         // which we do in the send_payment check for
2507                                                         // MonitorUpdateInProgress, below.
2508                                                         return Err(APIError::MonitorUpdateInProgress);
2509                                                 }
2510                                         },
2511                                         None => { },
2512                                 }
2513                         } else {
2514                                 // The channel was likely removed after we fetched the id from the
2515                                 // `short_to_chan_info` map, but before we successfully locked the
2516                                 // `channel_by_id` map.
2517                                 // This can occur as no consistency guarantees exists between the two maps.
2518                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2519                         }
2520                         return Ok(());
2521                 };
2522
2523                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2524                         Ok(_) => unreachable!(),
2525                         Err(e) => {
2526                                 Err(APIError::ChannelUnavailable { err: e.err })
2527                         },
2528                 }
2529         }
2530
2531         /// Sends a payment along a given route.
2532         ///
2533         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2534         /// fields for more info.
2535         ///
2536         /// May generate SendHTLCs message(s) event on success, which should be relayed (e.g. via
2537         /// [`PeerManager::process_events`]).
2538         ///
2539         /// # Avoiding Duplicate Payments
2540         ///
2541         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2542         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2543         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2544         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2545         /// second payment with the same [`PaymentId`].
2546         ///
2547         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2548         /// tracking of payments, including state to indicate once a payment has completed. Because you
2549         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2550         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2551         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2552         ///
2553         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2554         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2555         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2556         /// [`ChannelManager::list_recent_payments`] for more information.
2557         ///
2558         /// # Possible Error States on [`PaymentSendFailure`]
2559         ///
2560         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2561         /// each entry matching the corresponding-index entry in the route paths, see
2562         /// [`PaymentSendFailure`] for more info.
2563         ///
2564         /// In general, a path may raise:
2565         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2566         ///    node public key) is specified.
2567         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2568         ///    (including due to previous monitor update failure or new permanent monitor update
2569         ///    failure).
2570         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2571         ///    relevant updates.
2572         ///
2573         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2574         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2575         /// different route unless you intend to pay twice!
2576         ///
2577         /// # A caution on `payment_secret`
2578         ///
2579         /// `payment_secret` is unrelated to `payment_hash` (or [`PaymentPreimage`]) and exists to
2580         /// authenticate the sender to the recipient and prevent payment-probing (deanonymization)
2581         /// attacks. For newer nodes, it will be provided to you in the invoice. If you do not have one,
2582         /// the [`Route`] must not contain multiple paths as multi-path payments require a
2583         /// recipient-provided `payment_secret`.
2584         ///
2585         /// If a `payment_secret` *is* provided, we assume that the invoice had the payment_secret
2586         /// feature bit set (either as required or as available). If multiple paths are present in the
2587         /// [`Route`], we assume the invoice had the basic_mpp feature set.
2588         ///
2589         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2590         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2591         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2592         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2593         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2594                 let best_block_height = self.best_block.read().unwrap().height();
2595                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2596                 self.pending_outbound_payments
2597                         .send_payment_with_route(route, payment_hash, payment_secret, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2598                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2599                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2600         }
2601
2602         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2603         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2604         pub fn send_payment_with_retry(&self, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2605                 let best_block_height = self.best_block.read().unwrap().height();
2606                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2607                 self.pending_outbound_payments
2608                         .send_payment(payment_hash, payment_secret, payment_id, retry_strategy, route_params,
2609                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2610                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2611                                 &self.pending_events,
2612                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2613                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2614         }
2615
2616         #[cfg(test)]
2617         fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2618                 let best_block_height = self.best_block.read().unwrap().height();
2619                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2620                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, payment_secret, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2621                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2622                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2623         }
2624
2625         #[cfg(test)]
2626         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2627                 let best_block_height = self.best_block.read().unwrap().height();
2628                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, payment_secret, payment_id, route, None, &self.entropy_source, best_block_height)
2629         }
2630
2631
2632         /// Signals that no further retries for the given payment should occur. Useful if you have a
2633         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2634         /// retries are exhausted.
2635         ///
2636         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2637         /// as there are no remaining pending HTLCs for this payment.
2638         ///
2639         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2640         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2641         /// determine the ultimate status of a payment.
2642         ///
2643         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2644         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2645         ///
2646         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2647         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2648         pub fn abandon_payment(&self, payment_id: PaymentId) {
2649                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2650                 self.pending_outbound_payments.abandon_payment(payment_id, &self.pending_events);
2651         }
2652
2653         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2654         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2655         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2656         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2657         /// never reach the recipient.
2658         ///
2659         /// See [`send_payment`] documentation for more details on the return value of this function
2660         /// and idempotency guarantees provided by the [`PaymentId`] key.
2661         ///
2662         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2663         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2664         ///
2665         /// Note that `route` must have exactly one path.
2666         ///
2667         /// [`send_payment`]: Self::send_payment
2668         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2669                 let best_block_height = self.best_block.read().unwrap().height();
2670                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2671                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2672                         route, payment_preimage, payment_id, &self.entropy_source, &self.node_signer,
2673                         best_block_height,
2674                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2675                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2676         }
2677
2678         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2679         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2680         ///
2681         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2682         /// payments.
2683         ///
2684         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2685         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2686                 let best_block_height = self.best_block.read().unwrap().height();
2687                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2688                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, payment_id,
2689                         retry_strategy, route_params, &self.router, self.list_usable_channels(),
2690                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2691                         &self.logger, &self.pending_events,
2692                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2693                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2694         }
2695
2696         /// Send a payment that is probing the given route for liquidity. We calculate the
2697         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2698         /// us to easily discern them from real payments.
2699         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2700                 let best_block_height = self.best_block.read().unwrap().height();
2701                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2702                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2703                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2704                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2705         }
2706
2707         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2708         /// payment probe.
2709         #[cfg(test)]
2710         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2711                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2712         }
2713
2714         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2715         /// which checks the correctness of the funding transaction given the associated channel.
2716         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2717                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2718         ) -> Result<(), APIError> {
2719                 let per_peer_state = self.per_peer_state.read().unwrap();
2720                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2721                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2722
2723                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2724                 let peer_state = &mut *peer_state_lock;
2725                 let (chan, msg) = {
2726                         let (res, chan) = {
2727                                 match peer_state.channel_by_id.remove(temporary_channel_id) {
2728                                         Some(mut chan) => {
2729                                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2730
2731                                                 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2732                                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2733                                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2734                                                         } else { unreachable!(); })
2735                                                 , chan)
2736                                         },
2737                                         None => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }) },
2738                                 }
2739                         };
2740                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
2741                                 Ok(funding_msg) => {
2742                                         (chan, funding_msg)
2743                                 },
2744                                 Err(_) => { return Err(APIError::ChannelUnavailable {
2745                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2746                                 }) },
2747                         }
2748                 };
2749
2750                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2751                         node_id: chan.get_counterparty_node_id(),
2752                         msg,
2753                 });
2754                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2755                         hash_map::Entry::Occupied(_) => {
2756                                 panic!("Generated duplicate funding txid?");
2757                         },
2758                         hash_map::Entry::Vacant(e) => {
2759                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2760                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2761                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2762                                 }
2763                                 e.insert(chan);
2764                         }
2765                 }
2766                 Ok(())
2767         }
2768
2769         #[cfg(test)]
2770         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2771                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2772                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2773                 })
2774         }
2775
2776         /// Call this upon creation of a funding transaction for the given channel.
2777         ///
2778         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2779         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2780         ///
2781         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2782         /// across the p2p network.
2783         ///
2784         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2785         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2786         ///
2787         /// May panic if the output found in the funding transaction is duplicative with some other
2788         /// channel (note that this should be trivially prevented by using unique funding transaction
2789         /// keys per-channel).
2790         ///
2791         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2792         /// counterparty's signature the funding transaction will automatically be broadcast via the
2793         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2794         ///
2795         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2796         /// not currently support replacing a funding transaction on an existing channel. Instead,
2797         /// create a new channel with a conflicting funding transaction.
2798         ///
2799         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2800         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2801         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2802         /// for more details.
2803         ///
2804         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2805         /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2806         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2807                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2808
2809                 for inp in funding_transaction.input.iter() {
2810                         if inp.witness.is_empty() {
2811                                 return Err(APIError::APIMisuseError {
2812                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2813                                 });
2814                         }
2815                 }
2816                 {
2817                         let height = self.best_block.read().unwrap().height();
2818                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2819                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2820                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2821                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2822                                 return Err(APIError::APIMisuseError {
2823                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2824                                 });
2825                         }
2826                 }
2827                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2828                         let mut output_index = None;
2829                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2830                         for (idx, outp) in tx.output.iter().enumerate() {
2831                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2832                                         if output_index.is_some() {
2833                                                 return Err(APIError::APIMisuseError {
2834                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2835                                                 });
2836                                         }
2837                                         if idx > u16::max_value() as usize {
2838                                                 return Err(APIError::APIMisuseError {
2839                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2840                                                 });
2841                                         }
2842                                         output_index = Some(idx as u16);
2843                                 }
2844                         }
2845                         if output_index.is_none() {
2846                                 return Err(APIError::APIMisuseError {
2847                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2848                                 });
2849                         }
2850                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2851                 })
2852         }
2853
2854         /// Atomically updates the [`ChannelConfig`] for the given channels.
2855         ///
2856         /// Once the updates are applied, each eligible channel (advertised with a known short channel
2857         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
2858         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
2859         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
2860         ///
2861         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
2862         /// `counterparty_node_id` is provided.
2863         ///
2864         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
2865         /// below [`MIN_CLTV_EXPIRY_DELTA`].
2866         ///
2867         /// If an error is returned, none of the updates should be considered applied.
2868         ///
2869         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
2870         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
2871         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
2872         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
2873         /// [`ChannelUpdate`]: msgs::ChannelUpdate
2874         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
2875         /// [`APIMisuseError`]: APIError::APIMisuseError
2876         pub fn update_channel_config(
2877                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
2878         ) -> Result<(), APIError> {
2879                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
2880                         return Err(APIError::APIMisuseError {
2881                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
2882                         });
2883                 }
2884
2885                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
2886                         &self.total_consistency_lock, &self.persistence_notifier,
2887                 );
2888                 let per_peer_state = self.per_peer_state.read().unwrap();
2889                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2890                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2891                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2892                 let peer_state = &mut *peer_state_lock;
2893                 for channel_id in channel_ids {
2894                         if !peer_state.channel_by_id.contains_key(channel_id) {
2895                                 return Err(APIError::ChannelUnavailable {
2896                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
2897                                 });
2898                         }
2899                 }
2900                 for channel_id in channel_ids {
2901                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
2902                         if !channel.update_config(config) {
2903                                 continue;
2904                         }
2905                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
2906                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
2907                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
2908                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
2909                                         node_id: channel.get_counterparty_node_id(),
2910                                         msg,
2911                                 });
2912                         }
2913                 }
2914                 Ok(())
2915         }
2916
2917         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
2918         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
2919         ///
2920         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
2921         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
2922         ///
2923         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
2924         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
2925         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
2926         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
2927         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
2928         ///
2929         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
2930         /// you from forwarding more than you received.
2931         ///
2932         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2933         /// backwards.
2934         ///
2935         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
2936         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2937         // TODO: when we move to deciding the best outbound channel at forward time, only take
2938         // `next_node_id` and not `next_hop_channel_id`
2939         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
2940                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2941
2942                 let next_hop_scid = {
2943                         let peer_state_lock = self.per_peer_state.read().unwrap();
2944                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
2945                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
2946                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2947                         let peer_state = &mut *peer_state_lock;
2948                         match peer_state.channel_by_id.get(next_hop_channel_id) {
2949                                 Some(chan) => {
2950                                         if !chan.is_usable() {
2951                                                 return Err(APIError::ChannelUnavailable {
2952                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
2953                                                 })
2954                                         }
2955                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
2956                                 },
2957                                 None => return Err(APIError::ChannelUnavailable {
2958                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
2959                                 })
2960                         }
2961                 };
2962
2963                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2964                         .ok_or_else(|| APIError::APIMisuseError {
2965                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2966                         })?;
2967
2968                 let routing = match payment.forward_info.routing {
2969                         PendingHTLCRouting::Forward { onion_packet, .. } => {
2970                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
2971                         },
2972                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
2973                 };
2974                 let pending_htlc_info = PendingHTLCInfo {
2975                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
2976                 };
2977
2978                 let mut per_source_pending_forward = [(
2979                         payment.prev_short_channel_id,
2980                         payment.prev_funding_outpoint,
2981                         payment.prev_user_channel_id,
2982                         vec![(pending_htlc_info, payment.prev_htlc_id)]
2983                 )];
2984                 self.forward_htlcs(&mut per_source_pending_forward);
2985                 Ok(())
2986         }
2987
2988         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
2989         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
2990         ///
2991         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2992         /// backwards.
2993         ///
2994         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2995         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
2996                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2997
2998                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2999                         .ok_or_else(|| APIError::APIMisuseError {
3000                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3001                         })?;
3002
3003                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3004                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3005                                 short_channel_id: payment.prev_short_channel_id,
3006                                 outpoint: payment.prev_funding_outpoint,
3007                                 htlc_id: payment.prev_htlc_id,
3008                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3009                                 phantom_shared_secret: None,
3010                         });
3011
3012                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3013                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3014                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3015                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3016
3017                 Ok(())
3018         }
3019
3020         /// Processes HTLCs which are pending waiting on random forward delay.
3021         ///
3022         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3023         /// Will likely generate further events.
3024         pub fn process_pending_htlc_forwards(&self) {
3025                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3026
3027                 let mut new_events = Vec::new();
3028                 let mut failed_forwards = Vec::new();
3029                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3030                 {
3031                         let mut forward_htlcs = HashMap::new();
3032                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3033
3034                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
3035                                 if short_chan_id != 0 {
3036                                         macro_rules! forwarding_channel_not_found {
3037                                                 () => {
3038                                                         for forward_info in pending_forwards.drain(..) {
3039                                                                 match forward_info {
3040                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3041                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3042                                                                                 forward_info: PendingHTLCInfo {
3043                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3044                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3045                                                                                 }
3046                                                                         }) => {
3047                                                                                 macro_rules! failure_handler {
3048                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3049                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3050
3051                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3052                                                                                                         short_channel_id: prev_short_channel_id,
3053                                                                                                         outpoint: prev_funding_outpoint,
3054                                                                                                         htlc_id: prev_htlc_id,
3055                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3056                                                                                                         phantom_shared_secret: $phantom_ss,
3057                                                                                                 });
3058
3059                                                                                                 let reason = if $next_hop_unknown {
3060                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3061                                                                                                 } else {
3062                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3063                                                                                                 };
3064
3065                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3066                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3067                                                                                                         reason
3068                                                                                                 ));
3069                                                                                                 continue;
3070                                                                                         }
3071                                                                                 }
3072                                                                                 macro_rules! fail_forward {
3073                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3074                                                                                                 {
3075                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3076                                                                                                 }
3077                                                                                         }
3078                                                                                 }
3079                                                                                 macro_rules! failed_payment {
3080                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3081                                                                                                 {
3082                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3083                                                                                                 }
3084                                                                                         }
3085                                                                                 }
3086                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3087                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3088                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3089                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3090                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3091                                                                                                         Ok(res) => res,
3092                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3093                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3094                                                                                                                 // In this scenario, the phantom would have sent us an
3095                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3096                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3097                                                                                                                 // of the onion.
3098                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3099                                                                                                         },
3100                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3101                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3102                                                                                                         },
3103                                                                                                 };
3104                                                                                                 match next_hop {
3105                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3106                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3107                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3108                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3109                                                                                                                 }
3110                                                                                                         },
3111                                                                                                         _ => panic!(),
3112                                                                                                 }
3113                                                                                         } else {
3114                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3115                                                                                         }
3116                                                                                 } else {
3117                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3118                                                                                 }
3119                                                                         },
3120                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3121                                                                                 // Channel went away before we could fail it. This implies
3122                                                                                 // the channel is now on chain and our counterparty is
3123                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3124                                                                                 // problem, not ours.
3125                                                                         }
3126                                                                 }
3127                                                         }
3128                                                 }
3129                                         }
3130                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3131                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3132                                                 None => {
3133                                                         forwarding_channel_not_found!();
3134                                                         continue;
3135                                                 }
3136                                         };
3137                                         let per_peer_state = self.per_peer_state.read().unwrap();
3138                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3139                                         if peer_state_mutex_opt.is_none() {
3140                                                 forwarding_channel_not_found!();
3141                                                 continue;
3142                                         }
3143                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3144                                         let peer_state = &mut *peer_state_lock;
3145                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3146                                                 hash_map::Entry::Vacant(_) => {
3147                                                         forwarding_channel_not_found!();
3148                                                         continue;
3149                                                 },
3150                                                 hash_map::Entry::Occupied(mut chan) => {
3151                                                         for forward_info in pending_forwards.drain(..) {
3152                                                                 match forward_info {
3153                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3154                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3155                                                                                 forward_info: PendingHTLCInfo {
3156                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3157                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3158                                                                                 },
3159                                                                         }) => {
3160                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3161                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3162                                                                                         short_channel_id: prev_short_channel_id,
3163                                                                                         outpoint: prev_funding_outpoint,
3164                                                                                         htlc_id: prev_htlc_id,
3165                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3166                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3167                                                                                         phantom_shared_secret: None,
3168                                                                                 });
3169                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3170                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3171                                                                                         onion_packet, &self.logger)
3172                                                                                 {
3173                                                                                         if let ChannelError::Ignore(msg) = e {
3174                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3175                                                                                         } else {
3176                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3177                                                                                         }
3178                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3179                                                                                         failed_forwards.push((htlc_source, payment_hash,
3180                                                                                                 HTLCFailReason::reason(failure_code, data),
3181                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3182                                                                                         ));
3183                                                                                         continue;
3184                                                                                 }
3185                                                                         },
3186                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3187                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3188                                                                         },
3189                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3190                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3191                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3192                                                                                         htlc_id, err_packet, &self.logger
3193                                                                                 ) {
3194                                                                                         if let ChannelError::Ignore(msg) = e {
3195                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3196                                                                                         } else {
3197                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3198                                                                                         }
3199                                                                                         // fail-backs are best-effort, we probably already have one
3200                                                                                         // pending, and if not that's OK, if not, the channel is on
3201                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3202                                                                                         continue;
3203                                                                                 }
3204                                                                         },
3205                                                                 }
3206                                                         }
3207                                                 }
3208                                         }
3209                                 } else {
3210                                         for forward_info in pending_forwards.drain(..) {
3211                                                 match forward_info {
3212                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3213                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3214                                                                 forward_info: PendingHTLCInfo {
3215                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat, ..
3216                                                                 }
3217                                                         }) => {
3218                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3219                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3220                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3221                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3222                                                                         },
3223                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3224                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3225                                                                         _ => {
3226                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3227                                                                         }
3228                                                                 };
3229                                                                 let claimable_htlc = ClaimableHTLC {
3230                                                                         prev_hop: HTLCPreviousHopData {
3231                                                                                 short_channel_id: prev_short_channel_id,
3232                                                                                 outpoint: prev_funding_outpoint,
3233                                                                                 htlc_id: prev_htlc_id,
3234                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3235                                                                                 phantom_shared_secret,
3236                                                                         },
3237                                                                         value: outgoing_amt_msat,
3238                                                                         timer_ticks: 0,
3239                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3240                                                                         cltv_expiry,
3241                                                                         onion_payload,
3242                                                                 };
3243
3244                                                                 macro_rules! fail_htlc {
3245                                                                         ($htlc: expr, $payment_hash: expr) => {
3246                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3247                                                                                 htlc_msat_height_data.extend_from_slice(
3248                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3249                                                                                 );
3250                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3251                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3252                                                                                                 outpoint: prev_funding_outpoint,
3253                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3254                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3255                                                                                                 phantom_shared_secret,
3256                                                                                         }), payment_hash,
3257                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3258                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3259                                                                                 ));
3260                                                                         }
3261                                                                 }
3262                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3263                                                                 let mut receiver_node_id = self.our_network_pubkey;
3264                                                                 if phantom_shared_secret.is_some() {
3265                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3266                                                                                 .expect("Failed to get node_id for phantom node recipient");
3267                                                                 }
3268
3269                                                                 macro_rules! check_total_value {
3270                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3271                                                                                 let mut payment_claimable_generated = false;
3272                                                                                 let purpose = || {
3273                                                                                         events::PaymentPurpose::InvoicePayment {
3274                                                                                                 payment_preimage: $payment_preimage,
3275                                                                                                 payment_secret: $payment_data.payment_secret,
3276                                                                                         }
3277                                                                                 };
3278                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3279                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3280                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3281                                                                                         continue
3282                                                                                 }
3283                                                                                 let (_, htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3284                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3285                                                                                 if htlcs.len() == 1 {
3286                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3287                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3288                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3289                                                                                                 continue
3290                                                                                         }
3291                                                                                 }
3292                                                                                 let mut total_value = claimable_htlc.value;
3293                                                                                 for htlc in htlcs.iter() {
3294                                                                                         total_value += htlc.value;
3295                                                                                         match &htlc.onion_payload {
3296                                                                                                 OnionPayload::Invoice { .. } => {
3297                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3298                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3299                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3300                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3301                                                                                                         }
3302                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3303                                                                                                 },
3304                                                                                                 _ => unreachable!(),
3305                                                                                         }
3306                                                                                 }
3307                                                                                 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3308                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3309                                                                                                 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3310                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3311                                                                                 } else if total_value == $payment_data.total_msat {
3312                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3313                                                                                         htlcs.push(claimable_htlc);
3314                                                                                         new_events.push(events::Event::PaymentClaimable {
3315                                                                                                 receiver_node_id: Some(receiver_node_id),
3316                                                                                                 payment_hash,
3317                                                                                                 purpose: purpose(),
3318                                                                                                 amount_msat: total_value,
3319                                                                                                 via_channel_id: Some(prev_channel_id),
3320                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3321                                                                                         });
3322                                                                                         payment_claimable_generated = true;
3323                                                                                 } else {
3324                                                                                         // Nothing to do - we haven't reached the total
3325                                                                                         // payment value yet, wait until we receive more
3326                                                                                         // MPP parts.
3327                                                                                         htlcs.push(claimable_htlc);
3328                                                                                 }
3329                                                                                 payment_claimable_generated
3330                                                                         }}
3331                                                                 }
3332
3333                                                                 // Check that the payment hash and secret are known. Note that we
3334                                                                 // MUST take care to handle the "unknown payment hash" and
3335                                                                 // "incorrect payment secret" cases here identically or we'd expose
3336                                                                 // that we are the ultimate recipient of the given payment hash.
3337                                                                 // Further, we must not expose whether we have any other HTLCs
3338                                                                 // associated with the same payment_hash pending or not.
3339                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3340                                                                 match payment_secrets.entry(payment_hash) {
3341                                                                         hash_map::Entry::Vacant(_) => {
3342                                                                                 match claimable_htlc.onion_payload {
3343                                                                                         OnionPayload::Invoice { .. } => {
3344                                                                                                 let payment_data = payment_data.unwrap();
3345                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3346                                                                                                         Ok(result) => result,
3347                                                                                                         Err(()) => {
3348                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3349                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3350                                                                                                                 continue
3351                                                                                                         }
3352                                                                                                 };
3353                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3354                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3355                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3356                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3357                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3358                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3359                                                                                                                 continue;
3360                                                                                                         }
3361                                                                                                 }
3362                                                                                                 check_total_value!(payment_data, payment_preimage);
3363                                                                                         },
3364                                                                                         OnionPayload::Spontaneous(preimage) => {
3365                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3366                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3367                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3368                                                                                                         continue
3369                                                                                                 }
3370                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3371                                                                                                         hash_map::Entry::Vacant(e) => {
3372                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3373                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3374                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3375                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3376                                                                                                                         receiver_node_id: Some(receiver_node_id),
3377                                                                                                                         payment_hash,
3378                                                                                                                         amount_msat: outgoing_amt_msat,
3379                                                                                                                         purpose,
3380                                                                                                                         via_channel_id: Some(prev_channel_id),
3381                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3382                                                                                                                 });
3383                                                                                                         },
3384                                                                                                         hash_map::Entry::Occupied(_) => {
3385                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3386                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3387                                                                                                         }
3388                                                                                                 }
3389                                                                                         }
3390                                                                                 }
3391                                                                         },
3392                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3393                                                                                 if payment_data.is_none() {
3394                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3395                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3396                                                                                         continue
3397                                                                                 };
3398                                                                                 let payment_data = payment_data.unwrap();
3399                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3400                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3401                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3402                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3403                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3404                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3405                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3406                                                                                 } else {
3407                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3408                                                                                         if payment_claimable_generated {
3409                                                                                                 inbound_payment.remove_entry();
3410                                                                                         }
3411                                                                                 }
3412                                                                         },
3413                                                                 };
3414                                                         },
3415                                                         HTLCForwardInfo::FailHTLC { .. } => {
3416                                                                 panic!("Got pending fail of our own HTLC");
3417                                                         }
3418                                                 }
3419                                         }
3420                                 }
3421                         }
3422                 }
3423
3424                 let best_block_height = self.best_block.read().unwrap().height();
3425                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3426                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3427                         &self.pending_events, &self.logger,
3428                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3429                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3430
3431                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3432                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3433                 }
3434                 self.forward_htlcs(&mut phantom_receives);
3435
3436                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3437                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3438                 // nice to do the work now if we can rather than while we're trying to get messages in the
3439                 // network stack.
3440                 self.check_free_holding_cells();
3441
3442                 if new_events.is_empty() { return }
3443                 let mut events = self.pending_events.lock().unwrap();
3444                 events.append(&mut new_events);
3445         }
3446
3447         /// Free the background events, generally called from timer_tick_occurred.
3448         ///
3449         /// Exposed for testing to allow us to process events quickly without generating accidental
3450         /// BroadcastChannelUpdate events in timer_tick_occurred.
3451         ///
3452         /// Expects the caller to have a total_consistency_lock read lock.
3453         fn process_background_events(&self) -> bool {
3454                 let mut background_events = Vec::new();
3455                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3456                 if background_events.is_empty() {
3457                         return false;
3458                 }
3459
3460                 for event in background_events.drain(..) {
3461                         match event {
3462                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3463                                         // The channel has already been closed, so no use bothering to care about the
3464                                         // monitor updating completing.
3465                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3466                                 },
3467                         }
3468                 }
3469                 true
3470         }
3471
3472         #[cfg(any(test, feature = "_test_utils"))]
3473         /// Process background events, for functional testing
3474         pub fn test_process_background_events(&self) {
3475                 self.process_background_events();
3476         }
3477
3478         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3479                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3480                 // If the feerate has decreased by less than half, don't bother
3481                 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3482                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3483                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3484                         return NotifyOption::SkipPersist;
3485                 }
3486                 if !chan.is_live() {
3487                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3488                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3489                         return NotifyOption::SkipPersist;
3490                 }
3491                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3492                         log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3493
3494                 chan.queue_update_fee(new_feerate, &self.logger);
3495                 NotifyOption::DoPersist
3496         }
3497
3498         #[cfg(fuzzing)]
3499         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3500         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3501         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3502         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3503         pub fn maybe_update_chan_fees(&self) {
3504                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3505                         let mut should_persist = NotifyOption::SkipPersist;
3506
3507                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3508
3509                         let per_peer_state = self.per_peer_state.read().unwrap();
3510                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3511                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3512                                 let peer_state = &mut *peer_state_lock;
3513                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3514                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3515                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3516                                 }
3517                         }
3518
3519                         should_persist
3520                 });
3521         }
3522
3523         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3524         ///
3525         /// This currently includes:
3526         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3527         ///  * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3528         ///    than a minute, informing the network that they should no longer attempt to route over
3529         ///    the channel.
3530         ///  * Expiring a channel's previous `ChannelConfig` if necessary to only allow forwarding HTLCs
3531         ///    with the current `ChannelConfig`.
3532         ///  * Removing peers which have disconnected but and no longer have any channels.
3533         ///
3534         /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3535         /// estimate fetches.
3536         pub fn timer_tick_occurred(&self) {
3537                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3538                         let mut should_persist = NotifyOption::SkipPersist;
3539                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3540
3541                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3542
3543                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3544                         let mut timed_out_mpp_htlcs = Vec::new();
3545                         let mut pending_peers_awaiting_removal = Vec::new();
3546                         {
3547                                 let per_peer_state = self.per_peer_state.read().unwrap();
3548                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3549                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3550                                         let peer_state = &mut *peer_state_lock;
3551                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3552                                         let counterparty_node_id = *counterparty_node_id;
3553                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3554                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3555                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3556
3557                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3558                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3559                                                         handle_errors.push((Err(err), counterparty_node_id));
3560                                                         if needs_close { return false; }
3561                                                 }
3562
3563                                                 match chan.channel_update_status() {
3564                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3565                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3566                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3567                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3568                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3569                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3570                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3571                                                                                 msg: update
3572                                                                         });
3573                                                                 }
3574                                                                 should_persist = NotifyOption::DoPersist;
3575                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3576                                                         },
3577                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3578                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3579                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3580                                                                                 msg: update
3581                                                                         });
3582                                                                 }
3583                                                                 should_persist = NotifyOption::DoPersist;
3584                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3585                                                         },
3586                                                         _ => {},
3587                                                 }
3588
3589                                                 chan.maybe_expire_prev_config();
3590
3591                                                 true
3592                                         });
3593                                         if peer_state.ok_to_remove(true) {
3594                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3595                                         }
3596                                 }
3597                         }
3598
3599                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3600                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3601                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3602                         // we therefore need to remove the peer from `peer_state` separately.
3603                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3604                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3605                         // negative effects on parallelism as much as possible.
3606                         if pending_peers_awaiting_removal.len() > 0 {
3607                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3608                                 for counterparty_node_id in pending_peers_awaiting_removal {
3609                                         match per_peer_state.entry(counterparty_node_id) {
3610                                                 hash_map::Entry::Occupied(entry) => {
3611                                                         // Remove the entry if the peer is still disconnected and we still
3612                                                         // have no channels to the peer.
3613                                                         let remove_entry = {
3614                                                                 let peer_state = entry.get().lock().unwrap();
3615                                                                 peer_state.ok_to_remove(true)
3616                                                         };
3617                                                         if remove_entry {
3618                                                                 entry.remove_entry();
3619                                                         }
3620                                                 },
3621                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3622                                         }
3623                                 }
3624                         }
3625
3626                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3627                                 if htlcs.is_empty() {
3628                                         // This should be unreachable
3629                                         debug_assert!(false);
3630                                         return false;
3631                                 }
3632                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3633                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3634                                         // In this case we're not going to handle any timeouts of the parts here.
3635                                         if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3636                                                 return true;
3637                                         } else if htlcs.into_iter().any(|htlc| {
3638                                                 htlc.timer_ticks += 1;
3639                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3640                                         }) {
3641                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3642                                                 return false;
3643                                         }
3644                                 }
3645                                 true
3646                         });
3647
3648                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3649                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3650                                 let reason = HTLCFailReason::from_failure_code(23);
3651                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3652                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3653                         }
3654
3655                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3656                                 let _ = handle_error!(self, err, counterparty_node_id);
3657                         }
3658
3659                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3660
3661                         // Technically we don't need to do this here, but if we have holding cell entries in a
3662                         // channel that need freeing, it's better to do that here and block a background task
3663                         // than block the message queueing pipeline.
3664                         if self.check_free_holding_cells() {
3665                                 should_persist = NotifyOption::DoPersist;
3666                         }
3667
3668                         should_persist
3669                 });
3670         }
3671
3672         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3673         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3674         /// along the path (including in our own channel on which we received it).
3675         ///
3676         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3677         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3678         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3679         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3680         ///
3681         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3682         /// [`ChannelManager::claim_funds`]), you should still monitor for
3683         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3684         /// startup during which time claims that were in-progress at shutdown may be replayed.
3685         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3686                 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3687         }
3688
3689         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3690         /// reason for the failure.
3691         ///
3692         /// See [`FailureCode`] for valid failure codes.
3693         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3694                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3695
3696                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3697                 if let Some((_, mut sources)) = removed_source {
3698                         for htlc in sources.drain(..) {
3699                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3700                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3701                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3702                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3703                         }
3704                 }
3705         }
3706
3707         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3708         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3709                 match failure_code {
3710                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3711                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3712                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3713                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3714                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3715                                 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
3716                         }
3717                 }
3718         }
3719
3720         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3721         /// that we want to return and a channel.
3722         ///
3723         /// This is for failures on the channel on which the HTLC was *received*, not failures
3724         /// forwarding
3725         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3726                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3727                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3728                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3729                 // an inbound SCID alias before the real SCID.
3730                 let scid_pref = if chan.should_announce() {
3731                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3732                 } else {
3733                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3734                 };
3735                 if let Some(scid) = scid_pref {
3736                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3737                 } else {
3738                         (0x4000|10, Vec::new())
3739                 }
3740         }
3741
3742
3743         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3744         /// that we want to return and a channel.
3745         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3746                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3747                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3748                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3749                         if desired_err_code == 0x1000 | 20 {
3750                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3751                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3752                                 0u16.write(&mut enc).expect("Writes cannot fail");
3753                         }
3754                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3755                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3756                         upd.write(&mut enc).expect("Writes cannot fail");
3757                         (desired_err_code, enc.0)
3758                 } else {
3759                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3760                         // which means we really shouldn't have gotten a payment to be forwarded over this
3761                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3762                         // PERM|no_such_channel should be fine.
3763                         (0x4000|10, Vec::new())
3764                 }
3765         }
3766
3767         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3768         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3769         // be surfaced to the user.
3770         fn fail_holding_cell_htlcs(
3771                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3772                 counterparty_node_id: &PublicKey
3773         ) {
3774                 let (failure_code, onion_failure_data) = {
3775                         let per_peer_state = self.per_peer_state.read().unwrap();
3776                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3777                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3778                                 let peer_state = &mut *peer_state_lock;
3779                                 match peer_state.channel_by_id.entry(channel_id) {
3780                                         hash_map::Entry::Occupied(chan_entry) => {
3781                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3782                                         },
3783                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3784                                 }
3785                         } else { (0x4000|10, Vec::new()) }
3786                 };
3787
3788                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3789                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3790                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3791                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3792                 }
3793         }
3794
3795         /// Fails an HTLC backwards to the sender of it to us.
3796         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3797         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3798                 // Ensure that no peer state channel storage lock is held when calling this function.
3799                 // This ensures that future code doesn't introduce a lock-order requirement for
3800                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3801                 // this function with any `per_peer_state` peer lock acquired would.
3802                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3803                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3804                 }
3805
3806                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3807                 //identify whether we sent it or not based on the (I presume) very different runtime
3808                 //between the branches here. We should make this async and move it into the forward HTLCs
3809                 //timer handling.
3810
3811                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3812                 // from block_connected which may run during initialization prior to the chain_monitor
3813                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3814                 match source {
3815                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, ref payment_params, .. } => {
3816                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3817                                         session_priv, payment_id, payment_params, self.probing_cookie_secret, &self.secp_ctx,
3818                                         &self.pending_events, &self.logger)
3819                                 { self.push_pending_forwards_ev(); }
3820                         },
3821                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3822                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
3823                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
3824
3825                                 let mut push_forward_ev = false;
3826                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
3827                                 if forward_htlcs.is_empty() {
3828                                         push_forward_ev = true;
3829                                 }
3830                                 match forward_htlcs.entry(*short_channel_id) {
3831                                         hash_map::Entry::Occupied(mut entry) => {
3832                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
3833                                         },
3834                                         hash_map::Entry::Vacant(entry) => {
3835                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
3836                                         }
3837                                 }
3838                                 mem::drop(forward_htlcs);
3839                                 if push_forward_ev { self.push_pending_forwards_ev(); }
3840                                 let mut pending_events = self.pending_events.lock().unwrap();
3841                                 pending_events.push(events::Event::HTLCHandlingFailed {
3842                                         prev_channel_id: outpoint.to_channel_id(),
3843                                         failed_next_destination: destination,
3844                                 });
3845                         },
3846                 }
3847         }
3848
3849         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
3850         /// [`MessageSendEvent`]s needed to claim the payment.
3851         ///
3852         /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3853         /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3854         /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3855         ///
3856         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3857         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
3858         /// event matches your expectation. If you fail to do so and call this method, you may provide
3859         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3860         ///
3861         /// [`Event::PaymentClaimable`]: crate::util::events::Event::PaymentClaimable
3862         /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
3863         /// [`process_pending_events`]: EventsProvider::process_pending_events
3864         /// [`create_inbound_payment`]: Self::create_inbound_payment
3865         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3866         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3867                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3868
3869                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3870
3871                 let mut sources = {
3872                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
3873                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
3874                                 let mut receiver_node_id = self.our_network_pubkey;
3875                                 for htlc in sources.iter() {
3876                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
3877                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
3878                                                         .expect("Failed to get node_id for phantom node recipient");
3879                                                 receiver_node_id = phantom_pubkey;
3880                                                 break;
3881                                         }
3882                                 }
3883
3884                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
3885                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
3886                                         payment_purpose, receiver_node_id,
3887                                 });
3888                                 if dup_purpose.is_some() {
3889                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
3890                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
3891                                                 log_bytes!(payment_hash.0));
3892                                 }
3893                                 sources
3894                         } else { return; }
3895                 };
3896                 debug_assert!(!sources.is_empty());
3897
3898                 // If we are claiming an MPP payment, we check that all channels which contain a claimable
3899                 // HTLC still exist. While this isn't guaranteed to remain true if a channel closes while
3900                 // we're claiming (or even after we claim, before the commitment update dance completes),
3901                 // it should be a relatively rare race, and we'd rather not claim HTLCs that require us to
3902                 // go on-chain (and lose the on-chain fee to do so) than just reject the payment.
3903                 //
3904                 // Note that we'll still always get our funds - as long as the generated
3905                 // `ChannelMonitorUpdate` makes it out to the relevant monitor we can claim on-chain.
3906                 //
3907                 // If we find an HTLC which we would need to claim but for which we do not have a
3908                 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3909                 // the sender retries the already-failed path(s), it should be a pretty rare case where
3910                 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3911                 // provide the preimage, so worrying too much about the optimal handling isn't worth
3912                 // it.
3913                 let mut claimable_amt_msat = 0;
3914                 let mut expected_amt_msat = None;
3915                 let mut valid_mpp = true;
3916                 let mut errs = Vec::new();
3917                 let per_peer_state = self.per_peer_state.read().unwrap();
3918                 for htlc in sources.iter() {
3919                         let (counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&htlc.prev_hop.short_channel_id) {
3920                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3921                                 None => {
3922                                         valid_mpp = false;
3923                                         break;
3924                                 }
3925                         };
3926
3927                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3928                         if peer_state_mutex_opt.is_none() {
3929                                 valid_mpp = false;
3930                                 break;
3931                         }
3932
3933                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3934                         let peer_state = &mut *peer_state_lock;
3935
3936                         if peer_state.channel_by_id.get(&chan_id).is_none() {
3937                                 valid_mpp = false;
3938                                 break;
3939                         }
3940
3941                         if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
3942                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
3943                                 debug_assert!(false);
3944                                 valid_mpp = false;
3945                                 break;
3946                         }
3947
3948                         expected_amt_msat = Some(htlc.total_msat);
3949                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
3950                                 // We don't currently support MPP for spontaneous payments, so just check
3951                                 // that there's one payment here and move on.
3952                                 if sources.len() != 1 {
3953                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
3954                                         debug_assert!(false);
3955                                         valid_mpp = false;
3956                                         break;
3957                                 }
3958                         }
3959
3960                         claimable_amt_msat += htlc.value;
3961                 }
3962                 mem::drop(per_peer_state);
3963                 if sources.is_empty() || expected_amt_msat.is_none() {
3964                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3965                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
3966                         return;
3967                 }
3968                 if claimable_amt_msat != expected_amt_msat.unwrap() {
3969                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3970                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
3971                                 expected_amt_msat.unwrap(), claimable_amt_msat);
3972                         return;
3973                 }
3974                 if valid_mpp {
3975                         for htlc in sources.drain(..) {
3976                                 if let Err((pk, err)) = self.claim_funds_from_hop(
3977                                         htlc.prev_hop, payment_preimage,
3978                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
3979                                 {
3980                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
3981                                                 // We got a temporary failure updating monitor, but will claim the
3982                                                 // HTLC when the monitor updating is restored (or on chain).
3983                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3984                                         } else { errs.push((pk, err)); }
3985                                 }
3986                         }
3987                 }
3988                 if !valid_mpp {
3989                         for htlc in sources.drain(..) {
3990                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3991                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3992                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3993                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
3994                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
3995                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3996                         }
3997                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3998                 }
3999
4000                 // Now we can handle any errors which were generated.
4001                 for (counterparty_node_id, err) in errs.drain(..) {
4002                         let res: Result<(), _> = Err(err);
4003                         let _ = handle_error!(self, res, counterparty_node_id);
4004                 }
4005         }
4006
4007         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4008                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4009         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4010                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4011
4012                 let per_peer_state = self.per_peer_state.read().unwrap();
4013                 let chan_id = prev_hop.outpoint.to_channel_id();
4014                 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4015                         Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4016                         None => None
4017                 };
4018
4019                 let mut peer_state_opt = counterparty_node_id_opt.as_ref().map(
4020                         |counterparty_node_id| per_peer_state.get(counterparty_node_id).map(
4021                                 |peer_mutex| peer_mutex.lock().unwrap()
4022                         )
4023                 ).unwrap_or(None);
4024
4025                 if peer_state_opt.is_some() {
4026                         let mut peer_state_lock = peer_state_opt.unwrap();
4027                         let peer_state = &mut *peer_state_lock;
4028                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4029                                 let counterparty_node_id = chan.get().get_counterparty_node_id();
4030                                 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4031
4032                                 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4033                                         if let Some(action) = completion_action(Some(htlc_value_msat)) {
4034                                                 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4035                                                         log_bytes!(chan_id), action);
4036                                                 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4037                                         }
4038                                         let update_id = monitor_update.update_id;
4039                                         let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4040                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4041                                                 peer_state, per_peer_state, chan);
4042                                         if let Err(e) = res {
4043                                                 // TODO: This is a *critical* error - we probably updated the outbound edge
4044                                                 // of the HTLC's monitor with a preimage. We should retry this monitor
4045                                                 // update over and over again until morale improves.
4046                                                 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4047                                                 return Err((counterparty_node_id, e));
4048                                         }
4049                                 }
4050                                 return Ok(());
4051                         }
4052                 }
4053                 let preimage_update = ChannelMonitorUpdate {
4054                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4055                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4056                                 payment_preimage,
4057                         }],
4058                 };
4059                 // We update the ChannelMonitor on the backward link, after
4060                 // receiving an `update_fulfill_htlc` from the forward link.
4061                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4062                 if update_res != ChannelMonitorUpdateStatus::Completed {
4063                         // TODO: This needs to be handled somehow - if we receive a monitor update
4064                         // with a preimage we *must* somehow manage to propagate it to the upstream
4065                         // channel, or we must have an ability to receive the same event and try
4066                         // again on restart.
4067                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4068                                 payment_preimage, update_res);
4069                 }
4070                 // Note that we do process the completion action here. This totally could be a
4071                 // duplicate claim, but we have no way of knowing without interrogating the
4072                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4073                 // generally always allowed to be duplicative (and it's specifically noted in
4074                 // `PaymentForwarded`).
4075                 self.handle_monitor_update_completion_actions(completion_action(None));
4076                 Ok(())
4077         }
4078
4079         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4080                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4081         }
4082
4083         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4084                 match source {
4085                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4086                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4087                         },
4088                         HTLCSource::PreviousHopData(hop_data) => {
4089                                 let prev_outpoint = hop_data.outpoint;
4090                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4091                                         |htlc_claim_value_msat| {
4092                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4093                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4094                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4095                                                         } else { None };
4096
4097                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4098                                                         let next_channel_id = Some(next_channel_id);
4099
4100                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4101                                                                 fee_earned_msat,
4102                                                                 claim_from_onchain_tx: from_onchain,
4103                                                                 prev_channel_id,
4104                                                                 next_channel_id,
4105                                                         }})
4106                                                 } else { None }
4107                                         });
4108                                 if let Err((pk, err)) = res {
4109                                         let result: Result<(), _> = Err(err);
4110                                         let _ = handle_error!(self, result, pk);
4111                                 }
4112                         },
4113                 }
4114         }
4115
4116         /// Gets the node_id held by this ChannelManager
4117         pub fn get_our_node_id(&self) -> PublicKey {
4118                 self.our_network_pubkey.clone()
4119         }
4120
4121         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4122                 for action in actions.into_iter() {
4123                         match action {
4124                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4125                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4126                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4127                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4128                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4129                                                 });
4130                                         }
4131                                 },
4132                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4133                                         self.pending_events.lock().unwrap().push(event);
4134                                 },
4135                         }
4136                 }
4137         }
4138
4139         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4140         /// update completion.
4141         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4142                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4143                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4144                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4145                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4146         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4147                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4148                         log_bytes!(channel.channel_id()),
4149                         if raa.is_some() { "an" } else { "no" },
4150                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4151                         if funding_broadcastable.is_some() { "" } else { "not " },
4152                         if channel_ready.is_some() { "sending" } else { "without" },
4153                         if announcement_sigs.is_some() { "sending" } else { "without" });
4154
4155                 let mut htlc_forwards = None;
4156
4157                 let counterparty_node_id = channel.get_counterparty_node_id();
4158                 if !pending_forwards.is_empty() {
4159                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4160                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4161                 }
4162
4163                 if let Some(msg) = channel_ready {
4164                         send_channel_ready!(self, pending_msg_events, channel, msg);
4165                 }
4166                 if let Some(msg) = announcement_sigs {
4167                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4168                                 node_id: counterparty_node_id,
4169                                 msg,
4170                         });
4171                 }
4172
4173                 emit_channel_ready_event!(self, channel);
4174
4175                 macro_rules! handle_cs { () => {
4176                         if let Some(update) = commitment_update {
4177                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4178                                         node_id: counterparty_node_id,
4179                                         updates: update,
4180                                 });
4181                         }
4182                 } }
4183                 macro_rules! handle_raa { () => {
4184                         if let Some(revoke_and_ack) = raa {
4185                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4186                                         node_id: counterparty_node_id,
4187                                         msg: revoke_and_ack,
4188                                 });
4189                         }
4190                 } }
4191                 match order {
4192                         RAACommitmentOrder::CommitmentFirst => {
4193                                 handle_cs!();
4194                                 handle_raa!();
4195                         },
4196                         RAACommitmentOrder::RevokeAndACKFirst => {
4197                                 handle_raa!();
4198                                 handle_cs!();
4199                         },
4200                 }
4201
4202                 if let Some(tx) = funding_broadcastable {
4203                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4204                         self.tx_broadcaster.broadcast_transaction(&tx);
4205                 }
4206
4207                 htlc_forwards
4208         }
4209
4210         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4211                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4212
4213                 let counterparty_node_id = match counterparty_node_id {
4214                         Some(cp_id) => cp_id.clone(),
4215                         None => {
4216                                 // TODO: Once we can rely on the counterparty_node_id from the
4217                                 // monitor event, this and the id_to_peer map should be removed.
4218                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4219                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4220                                         Some(cp_id) => cp_id.clone(),
4221                                         None => return,
4222                                 }
4223                         }
4224                 };
4225                 let per_peer_state = self.per_peer_state.read().unwrap();
4226                 let mut peer_state_lock;
4227                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4228                 if peer_state_mutex_opt.is_none() { return }
4229                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4230                 let peer_state = &mut *peer_state_lock;
4231                 let mut channel = {
4232                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4233                                 hash_map::Entry::Occupied(chan) => chan,
4234                                 hash_map::Entry::Vacant(_) => return,
4235                         }
4236                 };
4237                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4238                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4239                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4240                         return;
4241                 }
4242                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4243         }
4244
4245         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4246         ///
4247         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4248         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4249         /// the channel.
4250         ///
4251         /// The `user_channel_id` parameter will be provided back in
4252         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4253         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4254         ///
4255         /// Note that this method will return an error and reject the channel, if it requires support
4256         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4257         /// used to accept such channels.
4258         ///
4259         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4260         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4261         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4262                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4263         }
4264
4265         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4266         /// it as confirmed immediately.
4267         ///
4268         /// The `user_channel_id` parameter will be provided back in
4269         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4270         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4271         ///
4272         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4273         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4274         ///
4275         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4276         /// transaction and blindly assumes that it will eventually confirm.
4277         ///
4278         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4279         /// does not pay to the correct script the correct amount, *you will lose funds*.
4280         ///
4281         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4282         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4283         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4284                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4285         }
4286
4287         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4288                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4289
4290                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4291                 let per_peer_state = self.per_peer_state.read().unwrap();
4292                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4293                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4294                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4295                 let peer_state = &mut *peer_state_lock;
4296                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4297                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4298                         hash_map::Entry::Occupied(mut channel) => {
4299                                 if !channel.get().inbound_is_awaiting_accept() {
4300                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4301                                 }
4302                                 if accept_0conf {
4303                                         channel.get_mut().set_0conf();
4304                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4305                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4306                                                 node_id: channel.get().get_counterparty_node_id(),
4307                                                 action: msgs::ErrorAction::SendErrorMessage{
4308                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4309                                                 }
4310                                         };
4311                                         peer_state.pending_msg_events.push(send_msg_err_event);
4312                                         let _ = remove_channel!(self, channel);
4313                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4314                                 } else {
4315                                         // If this peer already has some channels, a new channel won't increase our number of peers
4316                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4317                                         // channels per-peer we can accept channels from a peer with existing ones.
4318                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4319                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4320                                                         node_id: channel.get().get_counterparty_node_id(),
4321                                                         action: msgs::ErrorAction::SendErrorMessage{
4322                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4323                                                         }
4324                                                 };
4325                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4326                                                 let _ = remove_channel!(self, channel);
4327                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4328                                         }
4329                                 }
4330
4331                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4332                                         node_id: channel.get().get_counterparty_node_id(),
4333                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4334                                 });
4335                         }
4336                         hash_map::Entry::Vacant(_) => {
4337                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4338                         }
4339                 }
4340                 Ok(())
4341         }
4342
4343         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4344         /// or 0-conf channels.
4345         ///
4346         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4347         /// non-0-conf channels we have with the peer.
4348         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4349         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4350                 let mut peers_without_funded_channels = 0;
4351                 let best_block_height = self.best_block.read().unwrap().height();
4352                 {
4353                         let peer_state_lock = self.per_peer_state.read().unwrap();
4354                         for (_, peer_mtx) in peer_state_lock.iter() {
4355                                 let peer = peer_mtx.lock().unwrap();
4356                                 if !maybe_count_peer(&*peer) { continue; }
4357                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4358                                 if num_unfunded_channels == peer.channel_by_id.len() {
4359                                         peers_without_funded_channels += 1;
4360                                 }
4361                         }
4362                 }
4363                 return peers_without_funded_channels;
4364         }
4365
4366         fn unfunded_channel_count(
4367                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4368         ) -> usize {
4369                 let mut num_unfunded_channels = 0;
4370                 for (_, chan) in peer.channel_by_id.iter() {
4371                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4372                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4373                         {
4374                                 num_unfunded_channels += 1;
4375                         }
4376                 }
4377                 num_unfunded_channels
4378         }
4379
4380         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4381                 if msg.chain_hash != self.genesis_hash {
4382                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4383                 }
4384
4385                 if !self.default_configuration.accept_inbound_channels {
4386                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4387                 }
4388
4389                 let mut random_bytes = [0u8; 16];
4390                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4391                 let user_channel_id = u128::from_be_bytes(random_bytes);
4392                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4393
4394                 // Get the number of peers with channels, but without funded ones. We don't care too much
4395                 // about peers that never open a channel, so we filter by peers that have at least one
4396                 // channel, and then limit the number of those with unfunded channels.
4397                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4398
4399                 let per_peer_state = self.per_peer_state.read().unwrap();
4400                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4401                     .ok_or_else(|| {
4402                                 debug_assert!(false);
4403                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4404                         })?;
4405                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4406                 let peer_state = &mut *peer_state_lock;
4407
4408                 // If this peer already has some channels, a new channel won't increase our number of peers
4409                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4410                 // channels per-peer we can accept channels from a peer with existing ones.
4411                 if peer_state.channel_by_id.is_empty() &&
4412                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4413                         !self.default_configuration.manually_accept_inbound_channels
4414                 {
4415                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4416                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4417                                 msg.temporary_channel_id.clone()));
4418                 }
4419
4420                 let best_block_height = self.best_block.read().unwrap().height();
4421                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4422                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4423                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4424                                 msg.temporary_channel_id.clone()));
4425                 }
4426
4427                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4428                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4429                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4430                 {
4431                         Err(e) => {
4432                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4433                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4434                         },
4435                         Ok(res) => res
4436                 };
4437                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4438                         hash_map::Entry::Occupied(_) => {
4439                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4440                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4441                         },
4442                         hash_map::Entry::Vacant(entry) => {
4443                                 if !self.default_configuration.manually_accept_inbound_channels {
4444                                         if channel.get_channel_type().requires_zero_conf() {
4445                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4446                                         }
4447                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4448                                                 node_id: counterparty_node_id.clone(),
4449                                                 msg: channel.accept_inbound_channel(user_channel_id),
4450                                         });
4451                                 } else {
4452                                         let mut pending_events = self.pending_events.lock().unwrap();
4453                                         pending_events.push(
4454                                                 events::Event::OpenChannelRequest {
4455                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4456                                                         counterparty_node_id: counterparty_node_id.clone(),
4457                                                         funding_satoshis: msg.funding_satoshis,
4458                                                         push_msat: msg.push_msat,
4459                                                         channel_type: channel.get_channel_type().clone(),
4460                                                 }
4461                                         );
4462                                 }
4463
4464                                 entry.insert(channel);
4465                         }
4466                 }
4467                 Ok(())
4468         }
4469
4470         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4471                 let (value, output_script, user_id) = {
4472                         let per_peer_state = self.per_peer_state.read().unwrap();
4473                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4474                                 .ok_or_else(|| {
4475                                         debug_assert!(false);
4476                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4477                                 })?;
4478                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4479                         let peer_state = &mut *peer_state_lock;
4480                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4481                                 hash_map::Entry::Occupied(mut chan) => {
4482                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4483                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4484                                 },
4485                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4486                         }
4487                 };
4488                 let mut pending_events = self.pending_events.lock().unwrap();
4489                 pending_events.push(events::Event::FundingGenerationReady {
4490                         temporary_channel_id: msg.temporary_channel_id,
4491                         counterparty_node_id: *counterparty_node_id,
4492                         channel_value_satoshis: value,
4493                         output_script,
4494                         user_channel_id: user_id,
4495                 });
4496                 Ok(())
4497         }
4498
4499         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4500                 let best_block = *self.best_block.read().unwrap();
4501
4502                 let per_peer_state = self.per_peer_state.read().unwrap();
4503                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4504                         .ok_or_else(|| {
4505                                 debug_assert!(false);
4506                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4507                         })?;
4508
4509                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4510                 let peer_state = &mut *peer_state_lock;
4511                 let ((funding_msg, monitor), chan) =
4512                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4513                                 hash_map::Entry::Occupied(mut chan) => {
4514                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4515                                 },
4516                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4517                         };
4518
4519                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4520                         hash_map::Entry::Occupied(_) => {
4521                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4522                         },
4523                         hash_map::Entry::Vacant(e) => {
4524                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4525                                         hash_map::Entry::Occupied(_) => {
4526                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4527                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4528                                                         funding_msg.channel_id))
4529                                         },
4530                                         hash_map::Entry::Vacant(i_e) => {
4531                                                 i_e.insert(chan.get_counterparty_node_id());
4532                                         }
4533                                 }
4534
4535                                 // There's no problem signing a counterparty's funding transaction if our monitor
4536                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4537                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4538                                 // until we have persisted our monitor.
4539                                 let new_channel_id = funding_msg.channel_id;
4540                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4541                                         node_id: counterparty_node_id.clone(),
4542                                         msg: funding_msg,
4543                                 });
4544
4545                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4546
4547                                 let chan = e.insert(chan);
4548                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4549                                         per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4550
4551                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4552                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4553                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4554                                 // any messages referencing a previously-closed channel anyway.
4555                                 // We do not propagate the monitor update to the user as it would be for a monitor
4556                                 // that we didn't manage to store (and that we don't care about - we don't respond
4557                                 // with the funding_signed so the channel can never go on chain).
4558                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4559                                         res.0 = None;
4560                                 }
4561                                 res
4562                         }
4563                 }
4564         }
4565
4566         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4567                 let best_block = *self.best_block.read().unwrap();
4568                 let per_peer_state = self.per_peer_state.read().unwrap();
4569                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4570                         .ok_or_else(|| {
4571                                 debug_assert!(false);
4572                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4573                         })?;
4574
4575                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4576                 let peer_state = &mut *peer_state_lock;
4577                 match peer_state.channel_by_id.entry(msg.channel_id) {
4578                         hash_map::Entry::Occupied(mut chan) => {
4579                                 let monitor = try_chan_entry!(self,
4580                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4581                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4582                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4583                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4584                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4585                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4586                                         // monitor update contained within `shutdown_finish` was applied.
4587                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4588                                                 shutdown_finish.0.take();
4589                                         }
4590                                 }
4591                                 res
4592                         },
4593                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4594                 }
4595         }
4596
4597         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4598                 let per_peer_state = self.per_peer_state.read().unwrap();
4599                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4600                         .ok_or_else(|| {
4601                                 debug_assert!(false);
4602                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4603                         })?;
4604                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4605                 let peer_state = &mut *peer_state_lock;
4606                 match peer_state.channel_by_id.entry(msg.channel_id) {
4607                         hash_map::Entry::Occupied(mut chan) => {
4608                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4609                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4610                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4611                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4612                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4613                                                 node_id: counterparty_node_id.clone(),
4614                                                 msg: announcement_sigs,
4615                                         });
4616                                 } else if chan.get().is_usable() {
4617                                         // If we're sending an announcement_signatures, we'll send the (public)
4618                                         // channel_update after sending a channel_announcement when we receive our
4619                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4620                                         // channel_update here if the channel is not public, i.e. we're not sending an
4621                                         // announcement_signatures.
4622                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4623                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4624                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4625                                                         node_id: counterparty_node_id.clone(),
4626                                                         msg,
4627                                                 });
4628                                         }
4629                                 }
4630
4631                                 emit_channel_ready_event!(self, chan.get_mut());
4632
4633                                 Ok(())
4634                         },
4635                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4636                 }
4637         }
4638
4639         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4640                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4641                 let result: Result<(), _> = loop {
4642                         let per_peer_state = self.per_peer_state.read().unwrap();
4643                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4644                                 .ok_or_else(|| {
4645                                         debug_assert!(false);
4646                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4647                                 })?;
4648                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4649                         let peer_state = &mut *peer_state_lock;
4650                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4651                                 hash_map::Entry::Occupied(mut chan_entry) => {
4652
4653                                         if !chan_entry.get().received_shutdown() {
4654                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4655                                                         log_bytes!(msg.channel_id),
4656                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4657                                         }
4658
4659                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4660                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4661                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4662                                         dropped_htlcs = htlcs;
4663
4664                                         if let Some(msg) = shutdown {
4665                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4666                                                 // here as we don't need the monitor update to complete until we send a
4667                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4668                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4669                                                         node_id: *counterparty_node_id,
4670                                                         msg,
4671                                                 });
4672                                         }
4673
4674                                         // Update the monitor with the shutdown script if necessary.
4675                                         if let Some(monitor_update) = monitor_update_opt {
4676                                                 let update_id = monitor_update.update_id;
4677                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4678                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4679                                         }
4680                                         break Ok(());
4681                                 },
4682                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4683                         }
4684                 };
4685                 for htlc_source in dropped_htlcs.drain(..) {
4686                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4687                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4688                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4689                 }
4690
4691                 result
4692         }
4693
4694         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4695                 let per_peer_state = self.per_peer_state.read().unwrap();
4696                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4697                         .ok_or_else(|| {
4698                                 debug_assert!(false);
4699                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4700                         })?;
4701                 let (tx, chan_option) = {
4702                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4703                         let peer_state = &mut *peer_state_lock;
4704                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4705                                 hash_map::Entry::Occupied(mut chan_entry) => {
4706                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4707                                         if let Some(msg) = closing_signed {
4708                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4709                                                         node_id: counterparty_node_id.clone(),
4710                                                         msg,
4711                                                 });
4712                                         }
4713                                         if tx.is_some() {
4714                                                 // We're done with this channel, we've got a signed closing transaction and
4715                                                 // will send the closing_signed back to the remote peer upon return. This
4716                                                 // also implies there are no pending HTLCs left on the channel, so we can
4717                                                 // fully delete it from tracking (the channel monitor is still around to
4718                                                 // watch for old state broadcasts)!
4719                                                 (tx, Some(remove_channel!(self, chan_entry)))
4720                                         } else { (tx, None) }
4721                                 },
4722                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4723                         }
4724                 };
4725                 if let Some(broadcast_tx) = tx {
4726                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4727                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4728                 }
4729                 if let Some(chan) = chan_option {
4730                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4731                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4732                                 let peer_state = &mut *peer_state_lock;
4733                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4734                                         msg: update
4735                                 });
4736                         }
4737                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4738                 }
4739                 Ok(())
4740         }
4741
4742         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4743                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4744                 //determine the state of the payment based on our response/if we forward anything/the time
4745                 //we take to respond. We should take care to avoid allowing such an attack.
4746                 //
4747                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4748                 //us repeatedly garbled in different ways, and compare our error messages, which are
4749                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4750                 //but we should prevent it anyway.
4751
4752                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4753                 let per_peer_state = self.per_peer_state.read().unwrap();
4754                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4755                         .ok_or_else(|| {
4756                                 debug_assert!(false);
4757                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4758                         })?;
4759                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4760                 let peer_state = &mut *peer_state_lock;
4761                 match peer_state.channel_by_id.entry(msg.channel_id) {
4762                         hash_map::Entry::Occupied(mut chan) => {
4763
4764                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4765                                         // If the update_add is completely bogus, the call will Err and we will close,
4766                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4767                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4768                                         match pending_forward_info {
4769                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4770                                                         let reason = if (error_code & 0x1000) != 0 {
4771                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4772                                                                 HTLCFailReason::reason(real_code, error_data)
4773                                                         } else {
4774                                                                 HTLCFailReason::from_failure_code(error_code)
4775                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4776                                                         let msg = msgs::UpdateFailHTLC {
4777                                                                 channel_id: msg.channel_id,
4778                                                                 htlc_id: msg.htlc_id,
4779                                                                 reason
4780                                                         };
4781                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4782                                                 },
4783                                                 _ => pending_forward_info
4784                                         }
4785                                 };
4786                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4787                         },
4788                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4789                 }
4790                 Ok(())
4791         }
4792
4793         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4794                 let (htlc_source, forwarded_htlc_value) = {
4795                         let per_peer_state = self.per_peer_state.read().unwrap();
4796                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4797                                 .ok_or_else(|| {
4798                                         debug_assert!(false);
4799                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4800                                 })?;
4801                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4802                         let peer_state = &mut *peer_state_lock;
4803                         match peer_state.channel_by_id.entry(msg.channel_id) {
4804                                 hash_map::Entry::Occupied(mut chan) => {
4805                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4806                                 },
4807                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4808                         }
4809                 };
4810                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4811                 Ok(())
4812         }
4813
4814         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4815                 let per_peer_state = self.per_peer_state.read().unwrap();
4816                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4817                         .ok_or_else(|| {
4818                                 debug_assert!(false);
4819                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4820                         })?;
4821                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4822                 let peer_state = &mut *peer_state_lock;
4823                 match peer_state.channel_by_id.entry(msg.channel_id) {
4824                         hash_map::Entry::Occupied(mut chan) => {
4825                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4826                         },
4827                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4828                 }
4829                 Ok(())
4830         }
4831
4832         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4833                 let per_peer_state = self.per_peer_state.read().unwrap();
4834                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4835                         .ok_or_else(|| {
4836                                 debug_assert!(false);
4837                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4838                         })?;
4839                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4840                 let peer_state = &mut *peer_state_lock;
4841                 match peer_state.channel_by_id.entry(msg.channel_id) {
4842                         hash_map::Entry::Occupied(mut chan) => {
4843                                 if (msg.failure_code & 0x8000) == 0 {
4844                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4845                                         try_chan_entry!(self, Err(chan_err), chan);
4846                                 }
4847                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
4848                                 Ok(())
4849                         },
4850                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4851                 }
4852         }
4853
4854         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4855                 let per_peer_state = self.per_peer_state.read().unwrap();
4856                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4857                         .ok_or_else(|| {
4858                                 debug_assert!(false);
4859                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4860                         })?;
4861                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4862                 let peer_state = &mut *peer_state_lock;
4863                 match peer_state.channel_by_id.entry(msg.channel_id) {
4864                         hash_map::Entry::Occupied(mut chan) => {
4865                                 let funding_txo = chan.get().get_funding_txo();
4866                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
4867                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4868                                 let update_id = monitor_update.update_id;
4869                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4870                                         peer_state, per_peer_state, chan)
4871                         },
4872                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4873                 }
4874         }
4875
4876         #[inline]
4877         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
4878                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
4879                         let mut push_forward_event = false;
4880                         let mut new_intercept_events = Vec::new();
4881                         let mut failed_intercept_forwards = Vec::new();
4882                         if !pending_forwards.is_empty() {
4883                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4884                                         let scid = match forward_info.routing {
4885                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4886                                                 PendingHTLCRouting::Receive { .. } => 0,
4887                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4888                                         };
4889                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
4890                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
4891
4892                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4893                                         let forward_htlcs_empty = forward_htlcs.is_empty();
4894                                         match forward_htlcs.entry(scid) {
4895                                                 hash_map::Entry::Occupied(mut entry) => {
4896                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4897                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
4898                                                 },
4899                                                 hash_map::Entry::Vacant(entry) => {
4900                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
4901                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
4902                                                         {
4903                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
4904                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
4905                                                                 match pending_intercepts.entry(intercept_id) {
4906                                                                         hash_map::Entry::Vacant(entry) => {
4907                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
4908                                                                                         requested_next_hop_scid: scid,
4909                                                                                         payment_hash: forward_info.payment_hash,
4910                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
4911                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
4912                                                                                         intercept_id
4913                                                                                 });
4914                                                                                 entry.insert(PendingAddHTLCInfo {
4915                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
4916                                                                         },
4917                                                                         hash_map::Entry::Occupied(_) => {
4918                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
4919                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4920                                                                                         short_channel_id: prev_short_channel_id,
4921                                                                                         outpoint: prev_funding_outpoint,
4922                                                                                         htlc_id: prev_htlc_id,
4923                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
4924                                                                                         phantom_shared_secret: None,
4925                                                                                 });
4926
4927                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
4928                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
4929                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
4930                                                                                 ));
4931                                                                         }
4932                                                                 }
4933                                                         } else {
4934                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
4935                                                                 // payments are being processed.
4936                                                                 if forward_htlcs_empty {
4937                                                                         push_forward_event = true;
4938                                                                 }
4939                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4940                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
4941                                                         }
4942                                                 }
4943                                         }
4944                                 }
4945                         }
4946
4947                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
4948                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4949                         }
4950
4951                         if !new_intercept_events.is_empty() {
4952                                 let mut events = self.pending_events.lock().unwrap();
4953                                 events.append(&mut new_intercept_events);
4954                         }
4955                         if push_forward_event { self.push_pending_forwards_ev() }
4956                 }
4957         }
4958
4959         // We only want to push a PendingHTLCsForwardable event if no others are queued.
4960         fn push_pending_forwards_ev(&self) {
4961                 let mut pending_events = self.pending_events.lock().unwrap();
4962                 let forward_ev_exists = pending_events.iter()
4963                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
4964                         .is_some();
4965                 if !forward_ev_exists {
4966                         pending_events.push(events::Event::PendingHTLCsForwardable {
4967                                 time_forwardable:
4968                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
4969                         });
4970                 }
4971         }
4972
4973         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4974                 let (htlcs_to_fail, res) = {
4975                         let per_peer_state = self.per_peer_state.read().unwrap();
4976                         let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
4977                                 .ok_or_else(|| {
4978                                         debug_assert!(false);
4979                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4980                                 }).map(|mtx| mtx.lock().unwrap())?;
4981                         let peer_state = &mut *peer_state_lock;
4982                         match peer_state.channel_by_id.entry(msg.channel_id) {
4983                                 hash_map::Entry::Occupied(mut chan) => {
4984                                         let funding_txo = chan.get().get_funding_txo();
4985                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
4986                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4987                                         let update_id = monitor_update.update_id;
4988                                         let res = handle_new_monitor_update!(self, update_res, update_id,
4989                                                 peer_state_lock, peer_state, per_peer_state, chan);
4990                                         (htlcs_to_fail, res)
4991                                 },
4992                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4993                         }
4994                 };
4995                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
4996                 res
4997         }
4998
4999         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5000                 let per_peer_state = self.per_peer_state.read().unwrap();
5001                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5002                         .ok_or_else(|| {
5003                                 debug_assert!(false);
5004                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5005                         })?;
5006                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5007                 let peer_state = &mut *peer_state_lock;
5008                 match peer_state.channel_by_id.entry(msg.channel_id) {
5009                         hash_map::Entry::Occupied(mut chan) => {
5010                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5011                         },
5012                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5013                 }
5014                 Ok(())
5015         }
5016
5017         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5018                 let per_peer_state = self.per_peer_state.read().unwrap();
5019                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5020                         .ok_or_else(|| {
5021                                 debug_assert!(false);
5022                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5023                         })?;
5024                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5025                 let peer_state = &mut *peer_state_lock;
5026                 match peer_state.channel_by_id.entry(msg.channel_id) {
5027                         hash_map::Entry::Occupied(mut chan) => {
5028                                 if !chan.get().is_usable() {
5029                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5030                                 }
5031
5032                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5033                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5034                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5035                                                 msg, &self.default_configuration
5036                                         ), chan),
5037                                         // Note that announcement_signatures fails if the channel cannot be announced,
5038                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
5039                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5040                                 });
5041                         },
5042                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5043                 }
5044                 Ok(())
5045         }
5046
5047         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5048         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5049                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5050                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5051                         None => {
5052                                 // It's not a local channel
5053                                 return Ok(NotifyOption::SkipPersist)
5054                         }
5055                 };
5056                 let per_peer_state = self.per_peer_state.read().unwrap();
5057                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5058                 if peer_state_mutex_opt.is_none() {
5059                         return Ok(NotifyOption::SkipPersist)
5060                 }
5061                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5062                 let peer_state = &mut *peer_state_lock;
5063                 match peer_state.channel_by_id.entry(chan_id) {
5064                         hash_map::Entry::Occupied(mut chan) => {
5065                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5066                                         if chan.get().should_announce() {
5067                                                 // If the announcement is about a channel of ours which is public, some
5068                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5069                                                 // a scary-looking error message and return Ok instead.
5070                                                 return Ok(NotifyOption::SkipPersist);
5071                                         }
5072                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5073                                 }
5074                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5075                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5076                                 if were_node_one == msg_from_node_one {
5077                                         return Ok(NotifyOption::SkipPersist);
5078                                 } else {
5079                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5080                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5081                                 }
5082                         },
5083                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5084                 }
5085                 Ok(NotifyOption::DoPersist)
5086         }
5087
5088         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5089                 let htlc_forwards;
5090                 let need_lnd_workaround = {
5091                         let per_peer_state = self.per_peer_state.read().unwrap();
5092
5093                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5094                                 .ok_or_else(|| {
5095                                         debug_assert!(false);
5096                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5097                                 })?;
5098                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5099                         let peer_state = &mut *peer_state_lock;
5100                         match peer_state.channel_by_id.entry(msg.channel_id) {
5101                                 hash_map::Entry::Occupied(mut chan) => {
5102                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5103                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5104                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5105                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5106                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5107                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5108                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5109                                         let mut channel_update = None;
5110                                         if let Some(msg) = responses.shutdown_msg {
5111                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5112                                                         node_id: counterparty_node_id.clone(),
5113                                                         msg,
5114                                                 });
5115                                         } else if chan.get().is_usable() {
5116                                                 // If the channel is in a usable state (ie the channel is not being shut
5117                                                 // down), send a unicast channel_update to our counterparty to make sure
5118                                                 // they have the latest channel parameters.
5119                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5120                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5121                                                                 node_id: chan.get().get_counterparty_node_id(),
5122                                                                 msg,
5123                                                         });
5124                                                 }
5125                                         }
5126                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5127                                         htlc_forwards = self.handle_channel_resumption(
5128                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5129                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5130                                         if let Some(upd) = channel_update {
5131                                                 peer_state.pending_msg_events.push(upd);
5132                                         }
5133                                         need_lnd_workaround
5134                                 },
5135                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5136                         }
5137                 };
5138
5139                 if let Some(forwards) = htlc_forwards {
5140                         self.forward_htlcs(&mut [forwards][..]);
5141                 }
5142
5143                 if let Some(channel_ready_msg) = need_lnd_workaround {
5144                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5145                 }
5146                 Ok(())
5147         }
5148
5149         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
5150         fn process_pending_monitor_events(&self) -> bool {
5151                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5152
5153                 let mut failed_channels = Vec::new();
5154                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5155                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5156                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5157                         for monitor_event in monitor_events.drain(..) {
5158                                 match monitor_event {
5159                                         MonitorEvent::HTLCEvent(htlc_update) => {
5160                                                 if let Some(preimage) = htlc_update.payment_preimage {
5161                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5162                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5163                                                 } else {
5164                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5165                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5166                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5167                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5168                                                 }
5169                                         },
5170                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5171                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5172                                                 let counterparty_node_id_opt = match counterparty_node_id {
5173                                                         Some(cp_id) => Some(cp_id),
5174                                                         None => {
5175                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5176                                                                 // monitor event, this and the id_to_peer map should be removed.
5177                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5178                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5179                                                         }
5180                                                 };
5181                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5182                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5183                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5184                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5185                                                                 let peer_state = &mut *peer_state_lock;
5186                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5187                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5188                                                                         let mut chan = remove_channel!(self, chan_entry);
5189                                                                         failed_channels.push(chan.force_shutdown(false));
5190                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5191                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5192                                                                                         msg: update
5193                                                                                 });
5194                                                                         }
5195                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5196                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5197                                                                         } else {
5198                                                                                 ClosureReason::CommitmentTxConfirmed
5199                                                                         };
5200                                                                         self.issue_channel_close_events(&chan, reason);
5201                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5202                                                                                 node_id: chan.get_counterparty_node_id(),
5203                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5204                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5205                                                                                 },
5206                                                                         });
5207                                                                 }
5208                                                         }
5209                                                 }
5210                                         },
5211                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5212                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5213                                         },
5214                                 }
5215                         }
5216                 }
5217
5218                 for failure in failed_channels.drain(..) {
5219                         self.finish_force_close_channel(failure);
5220                 }
5221
5222                 has_pending_monitor_events
5223         }
5224
5225         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5226         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5227         /// update events as a separate process method here.
5228         #[cfg(fuzzing)]
5229         pub fn process_monitor_events(&self) {
5230                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5231                         if self.process_pending_monitor_events() {
5232                                 NotifyOption::DoPersist
5233                         } else {
5234                                 NotifyOption::SkipPersist
5235                         }
5236                 });
5237         }
5238
5239         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5240         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5241         /// update was applied.
5242         fn check_free_holding_cells(&self) -> bool {
5243                 let mut has_monitor_update = false;
5244                 let mut failed_htlcs = Vec::new();
5245                 let mut handle_errors = Vec::new();
5246
5247                 // Walk our list of channels and find any that need to update. Note that when we do find an
5248                 // update, if it includes actions that must be taken afterwards, we have to drop the
5249                 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5250                 // manage to go through all our peers without finding a single channel to update.
5251                 'peer_loop: loop {
5252                         let per_peer_state = self.per_peer_state.read().unwrap();
5253                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5254                                 'chan_loop: loop {
5255                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5256                                         let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5257                                         for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5258                                                 let counterparty_node_id = chan.get_counterparty_node_id();
5259                                                 let funding_txo = chan.get_funding_txo();
5260                                                 let (monitor_opt, holding_cell_failed_htlcs) =
5261                                                         chan.maybe_free_holding_cell_htlcs(&self.logger);
5262                                                 if !holding_cell_failed_htlcs.is_empty() {
5263                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5264                                                 }
5265                                                 if let Some(monitor_update) = monitor_opt {
5266                                                         has_monitor_update = true;
5267
5268                                                         let update_res = self.chain_monitor.update_channel(
5269                                                                 funding_txo.expect("channel is live"), monitor_update);
5270                                                         let update_id = monitor_update.update_id;
5271                                                         let channel_id: [u8; 32] = *channel_id;
5272                                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5273                                                                 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5274                                                                 peer_state.channel_by_id.remove(&channel_id));
5275                                                         if res.is_err() {
5276                                                                 handle_errors.push((counterparty_node_id, res));
5277                                                         }
5278                                                         continue 'peer_loop;
5279                                                 }
5280                                         }
5281                                         break 'chan_loop;
5282                                 }
5283                         }
5284                         break 'peer_loop;
5285                 }
5286
5287                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5288                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5289                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5290                 }
5291
5292                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5293                         let _ = handle_error!(self, err, counterparty_node_id);
5294                 }
5295
5296                 has_update
5297         }
5298
5299         /// Check whether any channels have finished removing all pending updates after a shutdown
5300         /// exchange and can now send a closing_signed.
5301         /// Returns whether any closing_signed messages were generated.
5302         fn maybe_generate_initial_closing_signed(&self) -> bool {
5303                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5304                 let mut has_update = false;
5305                 {
5306                         let per_peer_state = self.per_peer_state.read().unwrap();
5307
5308                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5309                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5310                                 let peer_state = &mut *peer_state_lock;
5311                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5312                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5313                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5314                                                 Ok((msg_opt, tx_opt)) => {
5315                                                         if let Some(msg) = msg_opt {
5316                                                                 has_update = true;
5317                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5318                                                                         node_id: chan.get_counterparty_node_id(), msg,
5319                                                                 });
5320                                                         }
5321                                                         if let Some(tx) = tx_opt {
5322                                                                 // We're done with this channel. We got a closing_signed and sent back
5323                                                                 // a closing_signed with a closing transaction to broadcast.
5324                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5325                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5326                                                                                 msg: update
5327                                                                         });
5328                                                                 }
5329
5330                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5331
5332                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5333                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5334                                                                 update_maps_on_chan_removal!(self, chan);
5335                                                                 false
5336                                                         } else { true }
5337                                                 },
5338                                                 Err(e) => {
5339                                                         has_update = true;
5340                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5341                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5342                                                         !close_channel
5343                                                 }
5344                                         }
5345                                 });
5346                         }
5347                 }
5348
5349                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5350                         let _ = handle_error!(self, err, counterparty_node_id);
5351                 }
5352
5353                 has_update
5354         }
5355
5356         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5357         /// pushing the channel monitor update (if any) to the background events queue and removing the
5358         /// Channel object.
5359         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5360                 for mut failure in failed_channels.drain(..) {
5361                         // Either a commitment transactions has been confirmed on-chain or
5362                         // Channel::block_disconnected detected that the funding transaction has been
5363                         // reorganized out of the main chain.
5364                         // We cannot broadcast our latest local state via monitor update (as
5365                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5366                         // so we track the update internally and handle it when the user next calls
5367                         // timer_tick_occurred, guaranteeing we're running normally.
5368                         if let Some((funding_txo, update)) = failure.0.take() {
5369                                 assert_eq!(update.updates.len(), 1);
5370                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5371                                         assert!(should_broadcast);
5372                                 } else { unreachable!(); }
5373                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5374                         }
5375                         self.finish_force_close_channel(failure);
5376                 }
5377         }
5378
5379         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5380                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5381
5382                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5383                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5384                 }
5385
5386                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5387
5388                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5389                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5390                 match payment_secrets.entry(payment_hash) {
5391                         hash_map::Entry::Vacant(e) => {
5392                                 e.insert(PendingInboundPayment {
5393                                         payment_secret, min_value_msat, payment_preimage,
5394                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5395                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5396                                         // it's updated when we receive a new block with the maximum time we've seen in
5397                                         // a header. It should never be more than two hours in the future.
5398                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5399                                         // never fail a payment too early.
5400                                         // Note that we assume that received blocks have reasonably up-to-date
5401                                         // timestamps.
5402                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5403                                 });
5404                         },
5405                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5406                 }
5407                 Ok(payment_secret)
5408         }
5409
5410         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5411         /// to pay us.
5412         ///
5413         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5414         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5415         ///
5416         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5417         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5418         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5419         /// passed directly to [`claim_funds`].
5420         ///
5421         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5422         ///
5423         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5424         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5425         ///
5426         /// # Note
5427         ///
5428         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5429         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5430         ///
5431         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5432         ///
5433         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5434         /// on versions of LDK prior to 0.0.114.
5435         ///
5436         /// [`claim_funds`]: Self::claim_funds
5437         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5438         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5439         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5440         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5441         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5442         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5443                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5444                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5445                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5446                         min_final_cltv_expiry_delta)
5447         }
5448
5449         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5450         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5451         ///
5452         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5453         ///
5454         /// # Note
5455         /// This method is deprecated and will be removed soon.
5456         ///
5457         /// [`create_inbound_payment`]: Self::create_inbound_payment
5458         #[deprecated]
5459         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5460                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5461                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5462                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5463                 Ok((payment_hash, payment_secret))
5464         }
5465
5466         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5467         /// stored external to LDK.
5468         ///
5469         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5470         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5471         /// the `min_value_msat` provided here, if one is provided.
5472         ///
5473         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5474         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5475         /// payments.
5476         ///
5477         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5478         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5479         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5480         /// sender "proof-of-payment" unless they have paid the required amount.
5481         ///
5482         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5483         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5484         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5485         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5486         /// invoices when no timeout is set.
5487         ///
5488         /// Note that we use block header time to time-out pending inbound payments (with some margin
5489         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5490         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5491         /// If you need exact expiry semantics, you should enforce them upon receipt of
5492         /// [`PaymentClaimable`].
5493         ///
5494         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5495         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5496         ///
5497         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5498         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5499         ///
5500         /// # Note
5501         ///
5502         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5503         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5504         ///
5505         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5506         ///
5507         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5508         /// on versions of LDK prior to 0.0.114.
5509         ///
5510         /// [`create_inbound_payment`]: Self::create_inbound_payment
5511         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5512         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5513                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5514                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5515                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5516                         min_final_cltv_expiry)
5517         }
5518
5519         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5520         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5521         ///
5522         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5523         ///
5524         /// # Note
5525         /// This method is deprecated and will be removed soon.
5526         ///
5527         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5528         #[deprecated]
5529         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5530                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5531         }
5532
5533         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5534         /// previously returned from [`create_inbound_payment`].
5535         ///
5536         /// [`create_inbound_payment`]: Self::create_inbound_payment
5537         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5538                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5539         }
5540
5541         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5542         /// are used when constructing the phantom invoice's route hints.
5543         ///
5544         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5545         pub fn get_phantom_scid(&self) -> u64 {
5546                 let best_block_height = self.best_block.read().unwrap().height();
5547                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5548                 loop {
5549                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5550                         // Ensure the generated scid doesn't conflict with a real channel.
5551                         match short_to_chan_info.get(&scid_candidate) {
5552                                 Some(_) => continue,
5553                                 None => return scid_candidate
5554                         }
5555                 }
5556         }
5557
5558         /// Gets route hints for use in receiving [phantom node payments].
5559         ///
5560         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5561         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5562                 PhantomRouteHints {
5563                         channels: self.list_usable_channels(),
5564                         phantom_scid: self.get_phantom_scid(),
5565                         real_node_pubkey: self.get_our_node_id(),
5566                 }
5567         }
5568
5569         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5570         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5571         /// [`ChannelManager::forward_intercepted_htlc`].
5572         ///
5573         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5574         /// times to get a unique scid.
5575         pub fn get_intercept_scid(&self) -> u64 {
5576                 let best_block_height = self.best_block.read().unwrap().height();
5577                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5578                 loop {
5579                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5580                         // Ensure the generated scid doesn't conflict with a real channel.
5581                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5582                         return scid_candidate
5583                 }
5584         }
5585
5586         /// Gets inflight HTLC information by processing pending outbound payments that are in
5587         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5588         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5589                 let mut inflight_htlcs = InFlightHtlcs::new();
5590
5591                 let per_peer_state = self.per_peer_state.read().unwrap();
5592                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5593                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5594                         let peer_state = &mut *peer_state_lock;
5595                         for chan in peer_state.channel_by_id.values() {
5596                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5597                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5598                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5599                                         }
5600                                 }
5601                         }
5602                 }
5603
5604                 inflight_htlcs
5605         }
5606
5607         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5608         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5609                 let events = core::cell::RefCell::new(Vec::new());
5610                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5611                 self.process_pending_events(&event_handler);
5612                 events.into_inner()
5613         }
5614
5615         #[cfg(feature = "_test_utils")]
5616         pub fn push_pending_event(&self, event: events::Event) {
5617                 let mut events = self.pending_events.lock().unwrap();
5618                 events.push(event);
5619         }
5620
5621         #[cfg(test)]
5622         pub fn pop_pending_event(&self) -> Option<events::Event> {
5623                 let mut events = self.pending_events.lock().unwrap();
5624                 if events.is_empty() { None } else { Some(events.remove(0)) }
5625         }
5626
5627         #[cfg(test)]
5628         pub fn has_pending_payments(&self) -> bool {
5629                 self.pending_outbound_payments.has_pending_payments()
5630         }
5631
5632         #[cfg(test)]
5633         pub fn clear_pending_payments(&self) {
5634                 self.pending_outbound_payments.clear_pending_payments()
5635         }
5636
5637         /// Processes any events asynchronously in the order they were generated since the last call
5638         /// using the given event handler.
5639         ///
5640         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5641         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5642                 &self, handler: H
5643         ) {
5644                 // We'll acquire our total consistency lock until the returned future completes so that
5645                 // we can be sure no other persists happen while processing events.
5646                 let _read_guard = self.total_consistency_lock.read().unwrap();
5647
5648                 let mut result = NotifyOption::SkipPersist;
5649
5650                 // TODO: This behavior should be documented. It's unintuitive that we query
5651                 // ChannelMonitors when clearing other events.
5652                 if self.process_pending_monitor_events() {
5653                         result = NotifyOption::DoPersist;
5654                 }
5655
5656                 let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5657                 if !pending_events.is_empty() {
5658                         result = NotifyOption::DoPersist;
5659                 }
5660
5661                 for event in pending_events {
5662                         handler(event).await;
5663                 }
5664
5665                 if result == NotifyOption::DoPersist {
5666                         self.persistence_notifier.notify();
5667                 }
5668         }
5669 }
5670
5671 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5672 where
5673         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5674         T::Target: BroadcasterInterface,
5675         ES::Target: EntropySource,
5676         NS::Target: NodeSigner,
5677         SP::Target: SignerProvider,
5678         F::Target: FeeEstimator,
5679         R::Target: Router,
5680         L::Target: Logger,
5681 {
5682         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5683         /// The returned array will contain `MessageSendEvent`s for different peers if
5684         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5685         /// is always placed next to each other.
5686         ///
5687         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5688         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5689         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5690         /// will randomly be placed first or last in the returned array.
5691         ///
5692         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5693         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5694         /// the `MessageSendEvent`s to the specific peer they were generated under.
5695         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5696                 let events = RefCell::new(Vec::new());
5697                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5698                         let mut result = NotifyOption::SkipPersist;
5699
5700                         // TODO: This behavior should be documented. It's unintuitive that we query
5701                         // ChannelMonitors when clearing other events.
5702                         if self.process_pending_monitor_events() {
5703                                 result = NotifyOption::DoPersist;
5704                         }
5705
5706                         if self.check_free_holding_cells() {
5707                                 result = NotifyOption::DoPersist;
5708                         }
5709                         if self.maybe_generate_initial_closing_signed() {
5710                                 result = NotifyOption::DoPersist;
5711                         }
5712
5713                         let mut pending_events = Vec::new();
5714                         let per_peer_state = self.per_peer_state.read().unwrap();
5715                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5716                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5717                                 let peer_state = &mut *peer_state_lock;
5718                                 if peer_state.pending_msg_events.len() > 0 {
5719                                         pending_events.append(&mut peer_state.pending_msg_events);
5720                                 }
5721                         }
5722
5723                         if !pending_events.is_empty() {
5724                                 events.replace(pending_events);
5725                         }
5726
5727                         result
5728                 });
5729                 events.into_inner()
5730         }
5731 }
5732
5733 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5734 where
5735         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5736         T::Target: BroadcasterInterface,
5737         ES::Target: EntropySource,
5738         NS::Target: NodeSigner,
5739         SP::Target: SignerProvider,
5740         F::Target: FeeEstimator,
5741         R::Target: Router,
5742         L::Target: Logger,
5743 {
5744         /// Processes events that must be periodically handled.
5745         ///
5746         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5747         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5748         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5749                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5750                         let mut result = NotifyOption::SkipPersist;
5751
5752                         // TODO: This behavior should be documented. It's unintuitive that we query
5753                         // ChannelMonitors when clearing other events.
5754                         if self.process_pending_monitor_events() {
5755                                 result = NotifyOption::DoPersist;
5756                         }
5757
5758                         let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5759                         if !pending_events.is_empty() {
5760                                 result = NotifyOption::DoPersist;
5761                         }
5762
5763                         for event in pending_events {
5764                                 handler.handle_event(event);
5765                         }
5766
5767                         result
5768                 });
5769         }
5770 }
5771
5772 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5773 where
5774         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5775         T::Target: BroadcasterInterface,
5776         ES::Target: EntropySource,
5777         NS::Target: NodeSigner,
5778         SP::Target: SignerProvider,
5779         F::Target: FeeEstimator,
5780         R::Target: Router,
5781         L::Target: Logger,
5782 {
5783         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5784                 {
5785                         let best_block = self.best_block.read().unwrap();
5786                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5787                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5788                         assert_eq!(best_block.height(), height - 1,
5789                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5790                 }
5791
5792                 self.transactions_confirmed(header, txdata, height);
5793                 self.best_block_updated(header, height);
5794         }
5795
5796         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5797                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5798                 let new_height = height - 1;
5799                 {
5800                         let mut best_block = self.best_block.write().unwrap();
5801                         assert_eq!(best_block.block_hash(), header.block_hash(),
5802                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5803                         assert_eq!(best_block.height(), height,
5804                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5805                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5806                 }
5807
5808                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5809         }
5810 }
5811
5812 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5813 where
5814         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5815         T::Target: BroadcasterInterface,
5816         ES::Target: EntropySource,
5817         NS::Target: NodeSigner,
5818         SP::Target: SignerProvider,
5819         F::Target: FeeEstimator,
5820         R::Target: Router,
5821         L::Target: Logger,
5822 {
5823         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5824                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5825                 // during initialization prior to the chain_monitor being fully configured in some cases.
5826                 // See the docs for `ChannelManagerReadArgs` for more.
5827
5828                 let block_hash = header.block_hash();
5829                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5830
5831                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5832                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5833                         .map(|(a, b)| (a, Vec::new(), b)));
5834
5835                 let last_best_block_height = self.best_block.read().unwrap().height();
5836                 if height < last_best_block_height {
5837                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5838                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5839                 }
5840         }
5841
5842         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5843                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5844                 // during initialization prior to the chain_monitor being fully configured in some cases.
5845                 // See the docs for `ChannelManagerReadArgs` for more.
5846
5847                 let block_hash = header.block_hash();
5848                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5849
5850                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5851
5852                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5853
5854                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5855
5856                 macro_rules! max_time {
5857                         ($timestamp: expr) => {
5858                                 loop {
5859                                         // Update $timestamp to be the max of its current value and the block
5860                                         // timestamp. This should keep us close to the current time without relying on
5861                                         // having an explicit local time source.
5862                                         // Just in case we end up in a race, we loop until we either successfully
5863                                         // update $timestamp or decide we don't need to.
5864                                         let old_serial = $timestamp.load(Ordering::Acquire);
5865                                         if old_serial >= header.time as usize { break; }
5866                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5867                                                 break;
5868                                         }
5869                                 }
5870                         }
5871                 }
5872                 max_time!(self.highest_seen_timestamp);
5873                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5874                 payment_secrets.retain(|_, inbound_payment| {
5875                         inbound_payment.expiry_time > header.time as u64
5876                 });
5877         }
5878
5879         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
5880                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
5881                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
5882                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5883                         let peer_state = &mut *peer_state_lock;
5884                         for chan in peer_state.channel_by_id.values() {
5885                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
5886                                         res.push((funding_txo.txid, Some(block_hash)));
5887                                 }
5888                         }
5889                 }
5890                 res
5891         }
5892
5893         fn transaction_unconfirmed(&self, txid: &Txid) {
5894                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5895                 self.do_chain_event(None, |channel| {
5896                         if let Some(funding_txo) = channel.get_funding_txo() {
5897                                 if funding_txo.txid == *txid {
5898                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5899                                 } else { Ok((None, Vec::new(), None)) }
5900                         } else { Ok((None, Vec::new(), None)) }
5901                 });
5902         }
5903 }
5904
5905 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
5906 where
5907         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5908         T::Target: BroadcasterInterface,
5909         ES::Target: EntropySource,
5910         NS::Target: NodeSigner,
5911         SP::Target: SignerProvider,
5912         F::Target: FeeEstimator,
5913         R::Target: Router,
5914         L::Target: Logger,
5915 {
5916         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5917         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5918         /// the function.
5919         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5920                         (&self, height_opt: Option<u32>, f: FN) {
5921                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5922                 // during initialization prior to the chain_monitor being fully configured in some cases.
5923                 // See the docs for `ChannelManagerReadArgs` for more.
5924
5925                 let mut failed_channels = Vec::new();
5926                 let mut timed_out_htlcs = Vec::new();
5927                 {
5928                         let per_peer_state = self.per_peer_state.read().unwrap();
5929                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5930                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5931                                 let peer_state = &mut *peer_state_lock;
5932                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5933                                 peer_state.channel_by_id.retain(|_, channel| {
5934                                         let res = f(channel);
5935                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5936                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5937                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5938                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
5939                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
5940                                                 }
5941                                                 if let Some(channel_ready) = channel_ready_opt {
5942                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
5943                                                         if channel.is_usable() {
5944                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5945                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5946                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5947                                                                                 node_id: channel.get_counterparty_node_id(),
5948                                                                                 msg,
5949                                                                         });
5950                                                                 }
5951                                                         } else {
5952                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5953                                                         }
5954                                                 }
5955
5956                                                 emit_channel_ready_event!(self, channel);
5957
5958                                                 if let Some(announcement_sigs) = announcement_sigs {
5959                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5960                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5961                                                                 node_id: channel.get_counterparty_node_id(),
5962                                                                 msg: announcement_sigs,
5963                                                         });
5964                                                         if let Some(height) = height_opt {
5965                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
5966                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5967                                                                                 msg: announcement,
5968                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
5969                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
5970                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
5971                                                                         });
5972                                                                 }
5973                                                         }
5974                                                 }
5975                                                 if channel.is_our_channel_ready() {
5976                                                         if let Some(real_scid) = channel.get_short_channel_id() {
5977                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
5978                                                                 // to the short_to_chan_info map here. Note that we check whether we
5979                                                                 // can relay using the real SCID at relay-time (i.e.
5980                                                                 // enforce option_scid_alias then), and if the funding tx is ever
5981                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
5982                                                                 // is always consistent.
5983                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
5984                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
5985                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
5986                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
5987                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
5988                                                         }
5989                                                 }
5990                                         } else if let Err(reason) = res {
5991                                                 update_maps_on_chan_removal!(self, channel);
5992                                                 // It looks like our counterparty went on-chain or funding transaction was
5993                                                 // reorged out of the main chain. Close the channel.
5994                                                 failed_channels.push(channel.force_shutdown(true));
5995                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
5996                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5997                                                                 msg: update
5998                                                         });
5999                                                 }
6000                                                 let reason_message = format!("{}", reason);
6001                                                 self.issue_channel_close_events(channel, reason);
6002                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
6003                                                         node_id: channel.get_counterparty_node_id(),
6004                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6005                                                                 channel_id: channel.channel_id(),
6006                                                                 data: reason_message,
6007                                                         } },
6008                                                 });
6009                                                 return false;
6010                                         }
6011                                         true
6012                                 });
6013                         }
6014                 }
6015
6016                 if let Some(height) = height_opt {
6017                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
6018                                 htlcs.retain(|htlc| {
6019                                         // If height is approaching the number of blocks we think it takes us to get
6020                                         // our commitment transaction confirmed before the HTLC expires, plus the
6021                                         // number of blocks we generally consider it to take to do a commitment update,
6022                                         // just give up on it and fail the HTLC.
6023                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6024                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6025                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6026
6027                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6028                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6029                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6030                                                 false
6031                                         } else { true }
6032                                 });
6033                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6034                         });
6035
6036                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6037                         intercepted_htlcs.retain(|_, htlc| {
6038                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6039                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6040                                                 short_channel_id: htlc.prev_short_channel_id,
6041                                                 htlc_id: htlc.prev_htlc_id,
6042                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6043                                                 phantom_shared_secret: None,
6044                                                 outpoint: htlc.prev_funding_outpoint,
6045                                         });
6046
6047                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6048                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6049                                                 _ => unreachable!(),
6050                                         };
6051                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6052                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
6053                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
6054                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6055                                         false
6056                                 } else { true }
6057                         });
6058                 }
6059
6060                 self.handle_init_event_channel_failures(failed_channels);
6061
6062                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6063                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6064                 }
6065         }
6066
6067         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
6068         /// indicating whether persistence is necessary. Only one listener on
6069         /// [`await_persistable_update`], [`await_persistable_update_timeout`], or a future returned by
6070         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6071         ///
6072         /// Note that this method is not available with the `no-std` feature.
6073         ///
6074         /// [`await_persistable_update`]: Self::await_persistable_update
6075         /// [`await_persistable_update_timeout`]: Self::await_persistable_update_timeout
6076         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6077         #[cfg(any(test, feature = "std"))]
6078         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
6079                 self.persistence_notifier.wait_timeout(max_wait)
6080         }
6081
6082         /// Blocks until ChannelManager needs to be persisted. Only one listener on
6083         /// [`await_persistable_update`], `await_persistable_update_timeout`, or a future returned by
6084         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6085         ///
6086         /// [`await_persistable_update`]: Self::await_persistable_update
6087         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6088         pub fn await_persistable_update(&self) {
6089                 self.persistence_notifier.wait()
6090         }
6091
6092         /// Gets a [`Future`] that completes when a persistable update is available. Note that
6093         /// callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and
6094         /// should instead register actions to be taken later.
6095         pub fn get_persistable_update_future(&self) -> Future {
6096                 self.persistence_notifier.get_future()
6097         }
6098
6099         #[cfg(any(test, feature = "_test_utils"))]
6100         pub fn get_persistence_condvar_value(&self) -> bool {
6101                 self.persistence_notifier.notify_pending()
6102         }
6103
6104         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6105         /// [`chain::Confirm`] interfaces.
6106         pub fn current_best_block(&self) -> BestBlock {
6107                 self.best_block.read().unwrap().clone()
6108         }
6109
6110         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6111         /// [`ChannelManager`].
6112         pub fn node_features(&self) -> NodeFeatures {
6113                 provided_node_features(&self.default_configuration)
6114         }
6115
6116         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6117         /// [`ChannelManager`].
6118         ///
6119         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6120         /// or not. Thus, this method is not public.
6121         #[cfg(any(feature = "_test_utils", test))]
6122         pub fn invoice_features(&self) -> InvoiceFeatures {
6123                 provided_invoice_features(&self.default_configuration)
6124         }
6125
6126         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6127         /// [`ChannelManager`].
6128         pub fn channel_features(&self) -> ChannelFeatures {
6129                 provided_channel_features(&self.default_configuration)
6130         }
6131
6132         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6133         /// [`ChannelManager`].
6134         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6135                 provided_channel_type_features(&self.default_configuration)
6136         }
6137
6138         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6139         /// [`ChannelManager`].
6140         pub fn init_features(&self) -> InitFeatures {
6141                 provided_init_features(&self.default_configuration)
6142         }
6143 }
6144
6145 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6146         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6147 where
6148         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6149         T::Target: BroadcasterInterface,
6150         ES::Target: EntropySource,
6151         NS::Target: NodeSigner,
6152         SP::Target: SignerProvider,
6153         F::Target: FeeEstimator,
6154         R::Target: Router,
6155         L::Target: Logger,
6156 {
6157         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6158                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6159                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6160         }
6161
6162         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6163                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6164                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6165         }
6166
6167         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6168                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6169                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6170         }
6171
6172         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6173                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6174                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6175         }
6176
6177         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6178                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6179                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6180         }
6181
6182         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6183                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6184                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6185         }
6186
6187         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6188                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6189                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6190         }
6191
6192         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6193                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6194                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6195         }
6196
6197         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6198                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6199                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6200         }
6201
6202         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6203                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6204                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6205         }
6206
6207         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6208                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6209                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6210         }
6211
6212         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6213                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6214                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6215         }
6216
6217         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6218                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6219                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6220         }
6221
6222         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6223                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6224                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6225         }
6226
6227         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6228                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6229                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6230         }
6231
6232         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6233                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6234                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6235                                 persist
6236                         } else {
6237                                 NotifyOption::SkipPersist
6238                         }
6239                 });
6240         }
6241
6242         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6243                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6244                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6245         }
6246
6247         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6248                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6249                 let mut failed_channels = Vec::new();
6250                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6251                 let remove_peer = {
6252                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6253                                 log_pubkey!(counterparty_node_id));
6254                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6255                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6256                                 let peer_state = &mut *peer_state_lock;
6257                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6258                                 peer_state.channel_by_id.retain(|_, chan| {
6259                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6260                                         if chan.is_shutdown() {
6261                                                 update_maps_on_chan_removal!(self, chan);
6262                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6263                                                 return false;
6264                                         }
6265                                         true
6266                                 });
6267                                 pending_msg_events.retain(|msg| {
6268                                         match msg {
6269                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6270                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6271                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6272                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6273                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6274                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6275                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6276                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6277                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6278                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6279                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6280                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6281                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6282                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6283                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6284                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6285                                                 &events::MessageSendEvent::HandleError { .. } => false,
6286                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6287                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6288                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6289                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6290                                         }
6291                                 });
6292                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6293                                 peer_state.is_connected = false;
6294                                 peer_state.ok_to_remove(true)
6295                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6296                 };
6297                 if remove_peer {
6298                         per_peer_state.remove(counterparty_node_id);
6299                 }
6300                 mem::drop(per_peer_state);
6301
6302                 for failure in failed_channels.drain(..) {
6303                         self.finish_force_close_channel(failure);
6304                 }
6305         }
6306
6307         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6308                 if !init_msg.features.supports_static_remote_key() {
6309                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6310                         return Err(());
6311                 }
6312
6313                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6314
6315                 // If we have too many peers connected which don't have funded channels, disconnect the
6316                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6317                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6318                 // peers connect, but we'll reject new channels from them.
6319                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6320                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6321
6322                 {
6323                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6324                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6325                                 hash_map::Entry::Vacant(e) => {
6326                                         if inbound_peer_limited {
6327                                                 return Err(());
6328                                         }
6329                                         e.insert(Mutex::new(PeerState {
6330                                                 channel_by_id: HashMap::new(),
6331                                                 latest_features: init_msg.features.clone(),
6332                                                 pending_msg_events: Vec::new(),
6333                                                 monitor_update_blocked_actions: BTreeMap::new(),
6334                                                 is_connected: true,
6335                                         }));
6336                                 },
6337                                 hash_map::Entry::Occupied(e) => {
6338                                         let mut peer_state = e.get().lock().unwrap();
6339                                         peer_state.latest_features = init_msg.features.clone();
6340
6341                                         let best_block_height = self.best_block.read().unwrap().height();
6342                                         if inbound_peer_limited &&
6343                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6344                                                 peer_state.channel_by_id.len()
6345                                         {
6346                                                 return Err(());
6347                                         }
6348
6349                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6350                                         peer_state.is_connected = true;
6351                                 },
6352                         }
6353                 }
6354
6355                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6356
6357                 let per_peer_state = self.per_peer_state.read().unwrap();
6358                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6359                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6360                         let peer_state = &mut *peer_state_lock;
6361                         let pending_msg_events = &mut peer_state.pending_msg_events;
6362                         peer_state.channel_by_id.retain(|_, chan| {
6363                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6364                                         if !chan.have_received_message() {
6365                                                 // If we created this (outbound) channel while we were disconnected from the
6366                                                 // peer we probably failed to send the open_channel message, which is now
6367                                                 // lost. We can't have had anything pending related to this channel, so we just
6368                                                 // drop it.
6369                                                 false
6370                                         } else {
6371                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6372                                                         node_id: chan.get_counterparty_node_id(),
6373                                                         msg: chan.get_channel_reestablish(&self.logger),
6374                                                 });
6375                                                 true
6376                                         }
6377                                 } else { true };
6378                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6379                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6380                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6381                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6382                                                                 node_id: *counterparty_node_id,
6383                                                                 msg, update_msg,
6384                                                         });
6385                                                 }
6386                                         }
6387                                 }
6388                                 retain
6389                         });
6390                 }
6391                 //TODO: Also re-broadcast announcement_signatures
6392                 Ok(())
6393         }
6394
6395         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6396                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6397
6398                 if msg.channel_id == [0; 32] {
6399                         let channel_ids: Vec<[u8; 32]> = {
6400                                 let per_peer_state = self.per_peer_state.read().unwrap();
6401                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6402                                 if peer_state_mutex_opt.is_none() { return; }
6403                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6404                                 let peer_state = &mut *peer_state_lock;
6405                                 peer_state.channel_by_id.keys().cloned().collect()
6406                         };
6407                         for channel_id in channel_ids {
6408                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6409                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6410                         }
6411                 } else {
6412                         {
6413                                 // First check if we can advance the channel type and try again.
6414                                 let per_peer_state = self.per_peer_state.read().unwrap();
6415                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6416                                 if peer_state_mutex_opt.is_none() { return; }
6417                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6418                                 let peer_state = &mut *peer_state_lock;
6419                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6420                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6421                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6422                                                         node_id: *counterparty_node_id,
6423                                                         msg,
6424                                                 });
6425                                                 return;
6426                                         }
6427                                 }
6428                         }
6429
6430                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6431                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6432                 }
6433         }
6434
6435         fn provided_node_features(&self) -> NodeFeatures {
6436                 provided_node_features(&self.default_configuration)
6437         }
6438
6439         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6440                 provided_init_features(&self.default_configuration)
6441         }
6442 }
6443
6444 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6445 /// [`ChannelManager`].
6446 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6447         provided_init_features(config).to_context()
6448 }
6449
6450 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6451 /// [`ChannelManager`].
6452 ///
6453 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6454 /// or not. Thus, this method is not public.
6455 #[cfg(any(feature = "_test_utils", test))]
6456 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6457         provided_init_features(config).to_context()
6458 }
6459
6460 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6461 /// [`ChannelManager`].
6462 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6463         provided_init_features(config).to_context()
6464 }
6465
6466 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6467 /// [`ChannelManager`].
6468 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6469         ChannelTypeFeatures::from_init(&provided_init_features(config))
6470 }
6471
6472 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6473 /// [`ChannelManager`].
6474 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6475         // Note that if new features are added here which other peers may (eventually) require, we
6476         // should also add the corresponding (optional) bit to the ChannelMessageHandler impl for
6477         // ErroringMessageHandler.
6478         let mut features = InitFeatures::empty();
6479         features.set_data_loss_protect_optional();
6480         features.set_upfront_shutdown_script_optional();
6481         features.set_variable_length_onion_required();
6482         features.set_static_remote_key_required();
6483         features.set_payment_secret_required();
6484         features.set_basic_mpp_optional();
6485         features.set_wumbo_optional();
6486         features.set_shutdown_any_segwit_optional();
6487         features.set_channel_type_optional();
6488         features.set_scid_privacy_optional();
6489         features.set_zero_conf_optional();
6490         #[cfg(anchors)]
6491         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6492                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6493                         features.set_anchors_zero_fee_htlc_tx_optional();
6494                 }
6495         }
6496         features
6497 }
6498
6499 const SERIALIZATION_VERSION: u8 = 1;
6500 const MIN_SERIALIZATION_VERSION: u8 = 1;
6501
6502 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6503         (2, fee_base_msat, required),
6504         (4, fee_proportional_millionths, required),
6505         (6, cltv_expiry_delta, required),
6506 });
6507
6508 impl_writeable_tlv_based!(ChannelCounterparty, {
6509         (2, node_id, required),
6510         (4, features, required),
6511         (6, unspendable_punishment_reserve, required),
6512         (8, forwarding_info, option),
6513         (9, outbound_htlc_minimum_msat, option),
6514         (11, outbound_htlc_maximum_msat, option),
6515 });
6516
6517 impl Writeable for ChannelDetails {
6518         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6519                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6520                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6521                 let user_channel_id_low = self.user_channel_id as u64;
6522                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6523                 write_tlv_fields!(writer, {
6524                         (1, self.inbound_scid_alias, option),
6525                         (2, self.channel_id, required),
6526                         (3, self.channel_type, option),
6527                         (4, self.counterparty, required),
6528                         (5, self.outbound_scid_alias, option),
6529                         (6, self.funding_txo, option),
6530                         (7, self.config, option),
6531                         (8, self.short_channel_id, option),
6532                         (9, self.confirmations, option),
6533                         (10, self.channel_value_satoshis, required),
6534                         (12, self.unspendable_punishment_reserve, option),
6535                         (14, user_channel_id_low, required),
6536                         (16, self.balance_msat, required),
6537                         (18, self.outbound_capacity_msat, required),
6538                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6539                         // filled in, so we can safely unwrap it here.
6540                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6541                         (20, self.inbound_capacity_msat, required),
6542                         (22, self.confirmations_required, option),
6543                         (24, self.force_close_spend_delay, option),
6544                         (26, self.is_outbound, required),
6545                         (28, self.is_channel_ready, required),
6546                         (30, self.is_usable, required),
6547                         (32, self.is_public, required),
6548                         (33, self.inbound_htlc_minimum_msat, option),
6549                         (35, self.inbound_htlc_maximum_msat, option),
6550                         (37, user_channel_id_high_opt, option),
6551                 });
6552                 Ok(())
6553         }
6554 }
6555
6556 impl Readable for ChannelDetails {
6557         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6558                 _init_and_read_tlv_fields!(reader, {
6559                         (1, inbound_scid_alias, option),
6560                         (2, channel_id, required),
6561                         (3, channel_type, option),
6562                         (4, counterparty, required),
6563                         (5, outbound_scid_alias, option),
6564                         (6, funding_txo, option),
6565                         (7, config, option),
6566                         (8, short_channel_id, option),
6567                         (9, confirmations, option),
6568                         (10, channel_value_satoshis, required),
6569                         (12, unspendable_punishment_reserve, option),
6570                         (14, user_channel_id_low, required),
6571                         (16, balance_msat, required),
6572                         (18, outbound_capacity_msat, required),
6573                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6574                         // filled in, so we can safely unwrap it here.
6575                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6576                         (20, inbound_capacity_msat, required),
6577                         (22, confirmations_required, option),
6578                         (24, force_close_spend_delay, option),
6579                         (26, is_outbound, required),
6580                         (28, is_channel_ready, required),
6581                         (30, is_usable, required),
6582                         (32, is_public, required),
6583                         (33, inbound_htlc_minimum_msat, option),
6584                         (35, inbound_htlc_maximum_msat, option),
6585                         (37, user_channel_id_high_opt, option),
6586                 });
6587
6588                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6589                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6590                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6591                 let user_channel_id = user_channel_id_low as u128 +
6592                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6593
6594                 Ok(Self {
6595                         inbound_scid_alias,
6596                         channel_id: channel_id.0.unwrap(),
6597                         channel_type,
6598                         counterparty: counterparty.0.unwrap(),
6599                         outbound_scid_alias,
6600                         funding_txo,
6601                         config,
6602                         short_channel_id,
6603                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6604                         unspendable_punishment_reserve,
6605                         user_channel_id,
6606                         balance_msat: balance_msat.0.unwrap(),
6607                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6608                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6609                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6610                         confirmations_required,
6611                         confirmations,
6612                         force_close_spend_delay,
6613                         is_outbound: is_outbound.0.unwrap(),
6614                         is_channel_ready: is_channel_ready.0.unwrap(),
6615                         is_usable: is_usable.0.unwrap(),
6616                         is_public: is_public.0.unwrap(),
6617                         inbound_htlc_minimum_msat,
6618                         inbound_htlc_maximum_msat,
6619                 })
6620         }
6621 }
6622
6623 impl_writeable_tlv_based!(PhantomRouteHints, {
6624         (2, channels, vec_type),
6625         (4, phantom_scid, required),
6626         (6, real_node_pubkey, required),
6627 });
6628
6629 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6630         (0, Forward) => {
6631                 (0, onion_packet, required),
6632                 (2, short_channel_id, required),
6633         },
6634         (1, Receive) => {
6635                 (0, payment_data, required),
6636                 (1, phantom_shared_secret, option),
6637                 (2, incoming_cltv_expiry, required),
6638         },
6639         (2, ReceiveKeysend) => {
6640                 (0, payment_preimage, required),
6641                 (2, incoming_cltv_expiry, required),
6642         },
6643 ;);
6644
6645 impl_writeable_tlv_based!(PendingHTLCInfo, {
6646         (0, routing, required),
6647         (2, incoming_shared_secret, required),
6648         (4, payment_hash, required),
6649         (6, outgoing_amt_msat, required),
6650         (8, outgoing_cltv_value, required),
6651         (9, incoming_amt_msat, option),
6652 });
6653
6654
6655 impl Writeable for HTLCFailureMsg {
6656         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6657                 match self {
6658                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6659                                 0u8.write(writer)?;
6660                                 channel_id.write(writer)?;
6661                                 htlc_id.write(writer)?;
6662                                 reason.write(writer)?;
6663                         },
6664                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6665                                 channel_id, htlc_id, sha256_of_onion, failure_code
6666                         }) => {
6667                                 1u8.write(writer)?;
6668                                 channel_id.write(writer)?;
6669                                 htlc_id.write(writer)?;
6670                                 sha256_of_onion.write(writer)?;
6671                                 failure_code.write(writer)?;
6672                         },
6673                 }
6674                 Ok(())
6675         }
6676 }
6677
6678 impl Readable for HTLCFailureMsg {
6679         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6680                 let id: u8 = Readable::read(reader)?;
6681                 match id {
6682                         0 => {
6683                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6684                                         channel_id: Readable::read(reader)?,
6685                                         htlc_id: Readable::read(reader)?,
6686                                         reason: Readable::read(reader)?,
6687                                 }))
6688                         },
6689                         1 => {
6690                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6691                                         channel_id: Readable::read(reader)?,
6692                                         htlc_id: Readable::read(reader)?,
6693                                         sha256_of_onion: Readable::read(reader)?,
6694                                         failure_code: Readable::read(reader)?,
6695                                 }))
6696                         },
6697                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6698                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6699                         // messages contained in the variants.
6700                         // In version 0.0.101, support for reading the variants with these types was added, and
6701                         // we should migrate to writing these variants when UpdateFailHTLC or
6702                         // UpdateFailMalformedHTLC get TLV fields.
6703                         2 => {
6704                                 let length: BigSize = Readable::read(reader)?;
6705                                 let mut s = FixedLengthReader::new(reader, length.0);
6706                                 let res = Readable::read(&mut s)?;
6707                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6708                                 Ok(HTLCFailureMsg::Relay(res))
6709                         },
6710                         3 => {
6711                                 let length: BigSize = Readable::read(reader)?;
6712                                 let mut s = FixedLengthReader::new(reader, length.0);
6713                                 let res = Readable::read(&mut s)?;
6714                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6715                                 Ok(HTLCFailureMsg::Malformed(res))
6716                         },
6717                         _ => Err(DecodeError::UnknownRequiredFeature),
6718                 }
6719         }
6720 }
6721
6722 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6723         (0, Forward),
6724         (1, Fail),
6725 );
6726
6727 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6728         (0, short_channel_id, required),
6729         (1, phantom_shared_secret, option),
6730         (2, outpoint, required),
6731         (4, htlc_id, required),
6732         (6, incoming_packet_shared_secret, required)
6733 });
6734
6735 impl Writeable for ClaimableHTLC {
6736         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6737                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6738                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6739                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6740                 };
6741                 write_tlv_fields!(writer, {
6742                         (0, self.prev_hop, required),
6743                         (1, self.total_msat, required),
6744                         (2, self.value, required),
6745                         (4, payment_data, option),
6746                         (6, self.cltv_expiry, required),
6747                         (8, keysend_preimage, option),
6748                 });
6749                 Ok(())
6750         }
6751 }
6752
6753 impl Readable for ClaimableHTLC {
6754         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6755                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6756                 let mut value = 0;
6757                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6758                 let mut cltv_expiry = 0;
6759                 let mut total_msat = None;
6760                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6761                 read_tlv_fields!(reader, {
6762                         (0, prev_hop, required),
6763                         (1, total_msat, option),
6764                         (2, value, required),
6765                         (4, payment_data, option),
6766                         (6, cltv_expiry, required),
6767                         (8, keysend_preimage, option)
6768                 });
6769                 let onion_payload = match keysend_preimage {
6770                         Some(p) => {
6771                                 if payment_data.is_some() {
6772                                         return Err(DecodeError::InvalidValue)
6773                                 }
6774                                 if total_msat.is_none() {
6775                                         total_msat = Some(value);
6776                                 }
6777                                 OnionPayload::Spontaneous(p)
6778                         },
6779                         None => {
6780                                 if total_msat.is_none() {
6781                                         if payment_data.is_none() {
6782                                                 return Err(DecodeError::InvalidValue)
6783                                         }
6784                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6785                                 }
6786                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6787                         },
6788                 };
6789                 Ok(Self {
6790                         prev_hop: prev_hop.0.unwrap(),
6791                         timer_ticks: 0,
6792                         value,
6793                         total_msat: total_msat.unwrap(),
6794                         onion_payload,
6795                         cltv_expiry,
6796                 })
6797         }
6798 }
6799
6800 impl Readable for HTLCSource {
6801         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6802                 let id: u8 = Readable::read(reader)?;
6803                 match id {
6804                         0 => {
6805                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6806                                 let mut first_hop_htlc_msat: u64 = 0;
6807                                 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6808                                 let mut payment_id = None;
6809                                 let mut payment_secret = None;
6810                                 let mut payment_params: Option<PaymentParameters> = None;
6811                                 read_tlv_fields!(reader, {
6812                                         (0, session_priv, required),
6813                                         (1, payment_id, option),
6814                                         (2, first_hop_htlc_msat, required),
6815                                         (3, payment_secret, option),
6816                                         (4, path, vec_type),
6817                                         (5, payment_params, (option: ReadableArgs, 0)),
6818                                 });
6819                                 if payment_id.is_none() {
6820                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6821                                         // instead.
6822                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6823                                 }
6824                                 if path.is_none() || path.as_ref().unwrap().is_empty() {
6825                                         return Err(DecodeError::InvalidValue);
6826                                 }
6827                                 let path = path.unwrap();
6828                                 if let Some(params) = payment_params.as_mut() {
6829                                         if params.final_cltv_expiry_delta == 0 {
6830                                                 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6831                                         }
6832                                 }
6833                                 Ok(HTLCSource::OutboundRoute {
6834                                         session_priv: session_priv.0.unwrap(),
6835                                         first_hop_htlc_msat,
6836                                         path,
6837                                         payment_id: payment_id.unwrap(),
6838                                         payment_secret,
6839                                         payment_params,
6840                                 })
6841                         }
6842                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6843                         _ => Err(DecodeError::UnknownRequiredFeature),
6844                 }
6845         }
6846 }
6847
6848 impl Writeable for HTLCSource {
6849         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6850                 match self {
6851                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6852                                 0u8.write(writer)?;
6853                                 let payment_id_opt = Some(payment_id);
6854                                 write_tlv_fields!(writer, {
6855                                         (0, session_priv, required),
6856                                         (1, payment_id_opt, option),
6857                                         (2, first_hop_htlc_msat, required),
6858                                         (3, payment_secret, option),
6859                                         (4, *path, vec_type),
6860                                         (5, payment_params, option),
6861                                  });
6862                         }
6863                         HTLCSource::PreviousHopData(ref field) => {
6864                                 1u8.write(writer)?;
6865                                 field.write(writer)?;
6866                         }
6867                 }
6868                 Ok(())
6869         }
6870 }
6871
6872 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6873         (0, forward_info, required),
6874         (1, prev_user_channel_id, (default_value, 0)),
6875         (2, prev_short_channel_id, required),
6876         (4, prev_htlc_id, required),
6877         (6, prev_funding_outpoint, required),
6878 });
6879
6880 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6881         (1, FailHTLC) => {
6882                 (0, htlc_id, required),
6883                 (2, err_packet, required),
6884         };
6885         (0, AddHTLC)
6886 );
6887
6888 impl_writeable_tlv_based!(PendingInboundPayment, {
6889         (0, payment_secret, required),
6890         (2, expiry_time, required),
6891         (4, user_payment_id, required),
6892         (6, payment_preimage, required),
6893         (8, min_value_msat, required),
6894 });
6895
6896 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
6897 where
6898         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6899         T::Target: BroadcasterInterface,
6900         ES::Target: EntropySource,
6901         NS::Target: NodeSigner,
6902         SP::Target: SignerProvider,
6903         F::Target: FeeEstimator,
6904         R::Target: Router,
6905         L::Target: Logger,
6906 {
6907         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6908                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6909
6910                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6911
6912                 self.genesis_hash.write(writer)?;
6913                 {
6914                         let best_block = self.best_block.read().unwrap();
6915                         best_block.height().write(writer)?;
6916                         best_block.block_hash().write(writer)?;
6917                 }
6918
6919                 let mut serializable_peer_count: u64 = 0;
6920                 {
6921                         let per_peer_state = self.per_peer_state.read().unwrap();
6922                         let mut unfunded_channels = 0;
6923                         let mut number_of_channels = 0;
6924                         for (_, peer_state_mutex) in per_peer_state.iter() {
6925                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6926                                 let peer_state = &mut *peer_state_lock;
6927                                 if !peer_state.ok_to_remove(false) {
6928                                         serializable_peer_count += 1;
6929                                 }
6930                                 number_of_channels += peer_state.channel_by_id.len();
6931                                 for (_, channel) in peer_state.channel_by_id.iter() {
6932                                         if !channel.is_funding_initiated() {
6933                                                 unfunded_channels += 1;
6934                                         }
6935                                 }
6936                         }
6937
6938                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
6939
6940                         for (_, peer_state_mutex) in per_peer_state.iter() {
6941                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6942                                 let peer_state = &mut *peer_state_lock;
6943                                 for (_, channel) in peer_state.channel_by_id.iter() {
6944                                         if channel.is_funding_initiated() {
6945                                                 channel.write(writer)?;
6946                                         }
6947                                 }
6948                         }
6949                 }
6950
6951                 {
6952                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
6953                         (forward_htlcs.len() as u64).write(writer)?;
6954                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
6955                                 short_channel_id.write(writer)?;
6956                                 (pending_forwards.len() as u64).write(writer)?;
6957                                 for forward in pending_forwards {
6958                                         forward.write(writer)?;
6959                                 }
6960                         }
6961                 }
6962
6963                 let per_peer_state = self.per_peer_state.write().unwrap();
6964
6965                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6966                 let claimable_payments = self.claimable_payments.lock().unwrap();
6967                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
6968
6969                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
6970                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
6971                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
6972                         payment_hash.write(writer)?;
6973                         (previous_hops.len() as u64).write(writer)?;
6974                         for htlc in previous_hops.iter() {
6975                                 htlc.write(writer)?;
6976                         }
6977                         htlc_purposes.push(purpose);
6978                 }
6979
6980                 let mut monitor_update_blocked_actions_per_peer = None;
6981                 let mut peer_states = Vec::new();
6982                 for (_, peer_state_mutex) in per_peer_state.iter() {
6983                         // Because we're holding the owning `per_peer_state` write lock here there's no chance
6984                         // of a lockorder violation deadlock - no other thread can be holding any
6985                         // per_peer_state lock at all.
6986                         peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
6987                 }
6988
6989                 (serializable_peer_count).write(writer)?;
6990                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
6991                         // Peers which we have no channels to should be dropped once disconnected. As we
6992                         // disconnect all peers when shutting down and serializing the ChannelManager, we
6993                         // consider all peers as disconnected here. There's therefore no need write peers with
6994                         // no channels.
6995                         if !peer_state.ok_to_remove(false) {
6996                                 peer_pubkey.write(writer)?;
6997                                 peer_state.latest_features.write(writer)?;
6998                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
6999                                         monitor_update_blocked_actions_per_peer
7000                                                 .get_or_insert_with(Vec::new)
7001                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7002                                 }
7003                         }
7004                 }
7005
7006                 let events = self.pending_events.lock().unwrap();
7007                 (events.len() as u64).write(writer)?;
7008                 for event in events.iter() {
7009                         event.write(writer)?;
7010                 }
7011
7012                 let background_events = self.pending_background_events.lock().unwrap();
7013                 (background_events.len() as u64).write(writer)?;
7014                 for event in background_events.iter() {
7015                         match event {
7016                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7017                                         0u8.write(writer)?;
7018                                         funding_txo.write(writer)?;
7019                                         monitor_update.write(writer)?;
7020                                 },
7021                         }
7022                 }
7023
7024                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7025                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7026                 // likely to be identical.
7027                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7028                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7029
7030                 (pending_inbound_payments.len() as u64).write(writer)?;
7031                 for (hash, pending_payment) in pending_inbound_payments.iter() {
7032                         hash.write(writer)?;
7033                         pending_payment.write(writer)?;
7034                 }
7035
7036                 // For backwards compat, write the session privs and their total length.
7037                 let mut num_pending_outbounds_compat: u64 = 0;
7038                 for (_, outbound) in pending_outbound_payments.iter() {
7039                         if !outbound.is_fulfilled() && !outbound.abandoned() {
7040                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7041                         }
7042                 }
7043                 num_pending_outbounds_compat.write(writer)?;
7044                 for (_, outbound) in pending_outbound_payments.iter() {
7045                         match outbound {
7046                                 PendingOutboundPayment::Legacy { session_privs } |
7047                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7048                                         for session_priv in session_privs.iter() {
7049                                                 session_priv.write(writer)?;
7050                                         }
7051                                 }
7052                                 PendingOutboundPayment::Fulfilled { .. } => {},
7053                                 PendingOutboundPayment::Abandoned { .. } => {},
7054                         }
7055                 }
7056
7057                 // Encode without retry info for 0.0.101 compatibility.
7058                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7059                 for (id, outbound) in pending_outbound_payments.iter() {
7060                         match outbound {
7061                                 PendingOutboundPayment::Legacy { session_privs } |
7062                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7063                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7064                                 },
7065                                 _ => {},
7066                         }
7067                 }
7068
7069                 let mut pending_intercepted_htlcs = None;
7070                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7071                 if our_pending_intercepts.len() != 0 {
7072                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7073                 }
7074
7075                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7076                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7077                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7078                         // map. Thus, if there are no entries we skip writing a TLV for it.
7079                         pending_claiming_payments = None;
7080                 }
7081
7082                 write_tlv_fields!(writer, {
7083                         (1, pending_outbound_payments_no_retry, required),
7084                         (2, pending_intercepted_htlcs, option),
7085                         (3, pending_outbound_payments, required),
7086                         (4, pending_claiming_payments, option),
7087                         (5, self.our_network_pubkey, required),
7088                         (6, monitor_update_blocked_actions_per_peer, option),
7089                         (7, self.fake_scid_rand_bytes, required),
7090                         (9, htlc_purposes, vec_type),
7091                         (11, self.probing_cookie_secret, required),
7092                 });
7093
7094                 Ok(())
7095         }
7096 }
7097
7098 /// Arguments for the creation of a ChannelManager that are not deserialized.
7099 ///
7100 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7101 /// is:
7102 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7103 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7104 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7105 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7106 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7107 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7108 ///    same way you would handle a [`chain::Filter`] call using
7109 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7110 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7111 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7112 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7113 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7114 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7115 ///    the next step.
7116 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7117 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7118 ///
7119 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7120 /// call any other methods on the newly-deserialized [`ChannelManager`].
7121 ///
7122 /// Note that because some channels may be closed during deserialization, it is critical that you
7123 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7124 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7125 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7126 /// not force-close the same channels but consider them live), you may end up revoking a state for
7127 /// which you've already broadcasted the transaction.
7128 ///
7129 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7130 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7131 where
7132         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7133         T::Target: BroadcasterInterface,
7134         ES::Target: EntropySource,
7135         NS::Target: NodeSigner,
7136         SP::Target: SignerProvider,
7137         F::Target: FeeEstimator,
7138         R::Target: Router,
7139         L::Target: Logger,
7140 {
7141         /// A cryptographically secure source of entropy.
7142         pub entropy_source: ES,
7143
7144         /// A signer that is able to perform node-scoped cryptographic operations.
7145         pub node_signer: NS,
7146
7147         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7148         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7149         /// signing data.
7150         pub signer_provider: SP,
7151
7152         /// The fee_estimator for use in the ChannelManager in the future.
7153         ///
7154         /// No calls to the FeeEstimator will be made during deserialization.
7155         pub fee_estimator: F,
7156         /// The chain::Watch for use in the ChannelManager in the future.
7157         ///
7158         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7159         /// you have deserialized ChannelMonitors separately and will add them to your
7160         /// chain::Watch after deserializing this ChannelManager.
7161         pub chain_monitor: M,
7162
7163         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7164         /// used to broadcast the latest local commitment transactions of channels which must be
7165         /// force-closed during deserialization.
7166         pub tx_broadcaster: T,
7167         /// The router which will be used in the ChannelManager in the future for finding routes
7168         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7169         ///
7170         /// No calls to the router will be made during deserialization.
7171         pub router: R,
7172         /// The Logger for use in the ChannelManager and which may be used to log information during
7173         /// deserialization.
7174         pub logger: L,
7175         /// Default settings used for new channels. Any existing channels will continue to use the
7176         /// runtime settings which were stored when the ChannelManager was serialized.
7177         pub default_config: UserConfig,
7178
7179         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7180         /// value.get_funding_txo() should be the key).
7181         ///
7182         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7183         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7184         /// is true for missing channels as well. If there is a monitor missing for which we find
7185         /// channel data Err(DecodeError::InvalidValue) will be returned.
7186         ///
7187         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7188         /// this struct.
7189         ///
7190         /// (C-not exported) because we have no HashMap bindings
7191         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7192 }
7193
7194 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7195                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7196 where
7197         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7198         T::Target: BroadcasterInterface,
7199         ES::Target: EntropySource,
7200         NS::Target: NodeSigner,
7201         SP::Target: SignerProvider,
7202         F::Target: FeeEstimator,
7203         R::Target: Router,
7204         L::Target: Logger,
7205 {
7206         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7207         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7208         /// populate a HashMap directly from C.
7209         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7210                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7211                 Self {
7212                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7213                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7214                 }
7215         }
7216 }
7217
7218 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7219 // SipmleArcChannelManager type:
7220 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7221         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7222 where
7223         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7224         T::Target: BroadcasterInterface,
7225         ES::Target: EntropySource,
7226         NS::Target: NodeSigner,
7227         SP::Target: SignerProvider,
7228         F::Target: FeeEstimator,
7229         R::Target: Router,
7230         L::Target: Logger,
7231 {
7232         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7233                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7234                 Ok((blockhash, Arc::new(chan_manager)))
7235         }
7236 }
7237
7238 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7239         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7240 where
7241         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7242         T::Target: BroadcasterInterface,
7243         ES::Target: EntropySource,
7244         NS::Target: NodeSigner,
7245         SP::Target: SignerProvider,
7246         F::Target: FeeEstimator,
7247         R::Target: Router,
7248         L::Target: Logger,
7249 {
7250         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7251                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7252
7253                 let genesis_hash: BlockHash = Readable::read(reader)?;
7254                 let best_block_height: u32 = Readable::read(reader)?;
7255                 let best_block_hash: BlockHash = Readable::read(reader)?;
7256
7257                 let mut failed_htlcs = Vec::new();
7258
7259                 let channel_count: u64 = Readable::read(reader)?;
7260                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7261                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7262                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7263                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7264                 let mut channel_closures = Vec::new();
7265                 for _ in 0..channel_count {
7266                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7267                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7268                         ))?;
7269                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7270                         funding_txo_set.insert(funding_txo.clone());
7271                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7272                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7273                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7274                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7275                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7276                                         // If the channel is ahead of the monitor, return InvalidValue:
7277                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7278                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7279                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7280                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7281                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7282                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7283                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7284                                         return Err(DecodeError::InvalidValue);
7285                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7286                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7287                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7288                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7289                                         // But if the channel is behind of the monitor, close the channel:
7290                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7291                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7292                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7293                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7294                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
7295                                         failed_htlcs.append(&mut new_failed_htlcs);
7296                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7297                                         channel_closures.push(events::Event::ChannelClosed {
7298                                                 channel_id: channel.channel_id(),
7299                                                 user_channel_id: channel.get_user_id(),
7300                                                 reason: ClosureReason::OutdatedChannelManager
7301                                         });
7302                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7303                                                 let mut found_htlc = false;
7304                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7305                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7306                                                 }
7307                                                 if !found_htlc {
7308                                                         // If we have some HTLCs in the channel which are not present in the newer
7309                                                         // ChannelMonitor, they have been removed and should be failed back to
7310                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7311                                                         // were actually claimed we'd have generated and ensured the previous-hop
7312                                                         // claim update ChannelMonitor updates were persisted prior to persising
7313                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7314                                                         // backwards leg of the HTLC will simply be rejected.
7315                                                         log_info!(args.logger,
7316                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7317                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7318                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7319                                                 }
7320                                         }
7321                                 } else {
7322                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7323                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7324                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7325                                         }
7326                                         if channel.is_funding_initiated() {
7327                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7328                                         }
7329                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7330                                                 hash_map::Entry::Occupied(mut entry) => {
7331                                                         let by_id_map = entry.get_mut();
7332                                                         by_id_map.insert(channel.channel_id(), channel);
7333                                                 },
7334                                                 hash_map::Entry::Vacant(entry) => {
7335                                                         let mut by_id_map = HashMap::new();
7336                                                         by_id_map.insert(channel.channel_id(), channel);
7337                                                         entry.insert(by_id_map);
7338                                                 }
7339                                         }
7340                                 }
7341                         } else if channel.is_awaiting_initial_mon_persist() {
7342                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7343                                 // was in-progress, we never broadcasted the funding transaction and can still
7344                                 // safely discard the channel.
7345                                 let _ = channel.force_shutdown(false);
7346                                 channel_closures.push(events::Event::ChannelClosed {
7347                                         channel_id: channel.channel_id(),
7348                                         user_channel_id: channel.get_user_id(),
7349                                         reason: ClosureReason::DisconnectedPeer,
7350                                 });
7351                         } else {
7352                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7353                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7354                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7355                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7356                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7357                                 return Err(DecodeError::InvalidValue);
7358                         }
7359                 }
7360
7361                 for (funding_txo, monitor) in args.channel_monitors.iter_mut() {
7362                         if !funding_txo_set.contains(funding_txo) {
7363                                 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
7364                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7365                         }
7366                 }
7367
7368                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7369                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7370                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7371                 for _ in 0..forward_htlcs_count {
7372                         let short_channel_id = Readable::read(reader)?;
7373                         let pending_forwards_count: u64 = Readable::read(reader)?;
7374                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7375                         for _ in 0..pending_forwards_count {
7376                                 pending_forwards.push(Readable::read(reader)?);
7377                         }
7378                         forward_htlcs.insert(short_channel_id, pending_forwards);
7379                 }
7380
7381                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7382                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7383                 for _ in 0..claimable_htlcs_count {
7384                         let payment_hash = Readable::read(reader)?;
7385                         let previous_hops_len: u64 = Readable::read(reader)?;
7386                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7387                         for _ in 0..previous_hops_len {
7388                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7389                         }
7390                         claimable_htlcs_list.push((payment_hash, previous_hops));
7391                 }
7392
7393                 let peer_count: u64 = Readable::read(reader)?;
7394                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7395                 for _ in 0..peer_count {
7396                         let peer_pubkey = Readable::read(reader)?;
7397                         let peer_state = PeerState {
7398                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7399                                 latest_features: Readable::read(reader)?,
7400                                 pending_msg_events: Vec::new(),
7401                                 monitor_update_blocked_actions: BTreeMap::new(),
7402                                 is_connected: false,
7403                         };
7404                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7405                 }
7406
7407                 let event_count: u64 = Readable::read(reader)?;
7408                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7409                 for _ in 0..event_count {
7410                         match MaybeReadable::read(reader)? {
7411                                 Some(event) => pending_events_read.push(event),
7412                                 None => continue,
7413                         }
7414                 }
7415
7416                 let background_event_count: u64 = Readable::read(reader)?;
7417                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
7418                 for _ in 0..background_event_count {
7419                         match <u8 as Readable>::read(reader)? {
7420                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
7421                                 _ => return Err(DecodeError::InvalidValue),
7422                         }
7423                 }
7424
7425                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7426                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7427
7428                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7429                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7430                 for _ in 0..pending_inbound_payment_count {
7431                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7432                                 return Err(DecodeError::InvalidValue);
7433                         }
7434                 }
7435
7436                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7437                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7438                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7439                 for _ in 0..pending_outbound_payments_count_compat {
7440                         let session_priv = Readable::read(reader)?;
7441                         let payment = PendingOutboundPayment::Legacy {
7442                                 session_privs: [session_priv].iter().cloned().collect()
7443                         };
7444                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7445                                 return Err(DecodeError::InvalidValue)
7446                         };
7447                 }
7448
7449                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7450                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7451                 let mut pending_outbound_payments = None;
7452                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7453                 let mut received_network_pubkey: Option<PublicKey> = None;
7454                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7455                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7456                 let mut claimable_htlc_purposes = None;
7457                 let mut pending_claiming_payments = Some(HashMap::new());
7458                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7459                 read_tlv_fields!(reader, {
7460                         (1, pending_outbound_payments_no_retry, option),
7461                         (2, pending_intercepted_htlcs, option),
7462                         (3, pending_outbound_payments, option),
7463                         (4, pending_claiming_payments, option),
7464                         (5, received_network_pubkey, option),
7465                         (6, monitor_update_blocked_actions_per_peer, option),
7466                         (7, fake_scid_rand_bytes, option),
7467                         (9, claimable_htlc_purposes, vec_type),
7468                         (11, probing_cookie_secret, option),
7469                 });
7470                 if fake_scid_rand_bytes.is_none() {
7471                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7472                 }
7473
7474                 if probing_cookie_secret.is_none() {
7475                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7476                 }
7477
7478                 if !channel_closures.is_empty() {
7479                         pending_events_read.append(&mut channel_closures);
7480                 }
7481
7482                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7483                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7484                 } else if pending_outbound_payments.is_none() {
7485                         let mut outbounds = HashMap::new();
7486                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7487                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7488                         }
7489                         pending_outbound_payments = Some(outbounds);
7490                 }
7491                 let pending_outbounds = OutboundPayments {
7492                         pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7493                         retry_lock: Mutex::new(())
7494                 };
7495
7496                 {
7497                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7498                         // ChannelMonitor data for any channels for which we do not have authorative state
7499                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7500                         // corresponding `Channel` at all).
7501                         // This avoids several edge-cases where we would otherwise "forget" about pending
7502                         // payments which are still in-flight via their on-chain state.
7503                         // We only rebuild the pending payments map if we were most recently serialized by
7504                         // 0.0.102+
7505                         for (_, monitor) in args.channel_monitors.iter() {
7506                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7507                                         for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7508                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7509                                                         if path.is_empty() {
7510                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7511                                                                 return Err(DecodeError::InvalidValue);
7512                                                         }
7513
7514                                                         let path_amt = path.last().unwrap().fee_msat;
7515                                                         let mut session_priv_bytes = [0; 32];
7516                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7517                                                         match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7518                                                                 hash_map::Entry::Occupied(mut entry) => {
7519                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7520                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7521                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7522                                                                 },
7523                                                                 hash_map::Entry::Vacant(entry) => {
7524                                                                         let path_fee = path.get_path_fees();
7525                                                                         entry.insert(PendingOutboundPayment::Retryable {
7526                                                                                 retry_strategy: None,
7527                                                                                 attempts: PaymentAttempts::new(),
7528                                                                                 payment_params: None,
7529                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7530                                                                                 payment_hash: htlc.payment_hash,
7531                                                                                 payment_secret,
7532                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7533                                                                                 pending_amt_msat: path_amt,
7534                                                                                 pending_fee_msat: Some(path_fee),
7535                                                                                 total_msat: path_amt,
7536                                                                                 starting_block_height: best_block_height,
7537                                                                         });
7538                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7539                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7540                                                                 }
7541                                                         }
7542                                                 }
7543                                         }
7544                                         for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7545                                                 match htlc_source {
7546                                                         HTLCSource::PreviousHopData(prev_hop_data) => {
7547                                                                 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7548                                                                         info.prev_funding_outpoint == prev_hop_data.outpoint &&
7549                                                                                 info.prev_htlc_id == prev_hop_data.htlc_id
7550                                                                 };
7551                                                                 // The ChannelMonitor is now responsible for this HTLC's
7552                                                                 // failure/success and will let us know what its outcome is. If we
7553                                                                 // still have an entry for this HTLC in `forward_htlcs` or
7554                                                                 // `pending_intercepted_htlcs`, we were apparently not persisted after
7555                                                                 // the monitor was when forwarding the payment.
7556                                                                 forward_htlcs.retain(|_, forwards| {
7557                                                                         forwards.retain(|forward| {
7558                                                                                 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7559                                                                                         if pending_forward_matches_htlc(&htlc_info) {
7560                                                                                                 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7561                                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7562                                                                                                 false
7563                                                                                         } else { true }
7564                                                                                 } else { true }
7565                                                                         });
7566                                                                         !forwards.is_empty()
7567                                                                 });
7568                                                                 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7569                                                                         if pending_forward_matches_htlc(&htlc_info) {
7570                                                                                 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7571                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7572                                                                                 pending_events_read.retain(|event| {
7573                                                                                         if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7574                                                                                                 intercepted_id != ev_id
7575                                                                                         } else { true }
7576                                                                                 });
7577                                                                                 false
7578                                                                         } else { true }
7579                                                                 });
7580                                                         },
7581                                                         HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7582                                                                 if let Some(preimage) = preimage_opt {
7583                                                                         let pending_events = Mutex::new(pending_events_read);
7584                                                                         // Note that we set `from_onchain` to "false" here,
7585                                                                         // deliberately keeping the pending payment around forever.
7586                                                                         // Given it should only occur when we have a channel we're
7587                                                                         // force-closing for being stale that's okay.
7588                                                                         // The alternative would be to wipe the state when claiming,
7589                                                                         // generating a `PaymentPathSuccessful` event but regenerating
7590                                                                         // it and the `PaymentSent` on every restart until the
7591                                                                         // `ChannelMonitor` is removed.
7592                                                                         pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7593                                                                         pending_events_read = pending_events.into_inner().unwrap();
7594                                                                 }
7595                                                         },
7596                                                 }
7597                                         }
7598                                 }
7599                         }
7600                 }
7601
7602                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7603                         // If we have pending HTLCs to forward, assume we either dropped a
7604                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7605                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7606                         // constant as enough time has likely passed that we should simply handle the forwards
7607                         // now, or at least after the user gets a chance to reconnect to our peers.
7608                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7609                                 time_forwardable: Duration::from_secs(2),
7610                         });
7611                 }
7612
7613                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7614                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7615
7616                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7617                 if let Some(mut purposes) = claimable_htlc_purposes {
7618                         if purposes.len() != claimable_htlcs_list.len() {
7619                                 return Err(DecodeError::InvalidValue);
7620                         }
7621                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7622                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7623                         }
7624                 } else {
7625                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7626                         // include a `_legacy_hop_data` in the `OnionPayload`.
7627                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7628                                 if previous_hops.is_empty() {
7629                                         return Err(DecodeError::InvalidValue);
7630                                 }
7631                                 let purpose = match &previous_hops[0].onion_payload {
7632                                         OnionPayload::Invoice { _legacy_hop_data } => {
7633                                                 if let Some(hop_data) = _legacy_hop_data {
7634                                                         events::PaymentPurpose::InvoicePayment {
7635                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7636                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7637                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7638                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7639                                                                                 Err(()) => {
7640                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7641                                                                                         return Err(DecodeError::InvalidValue);
7642                                                                                 }
7643                                                                         }
7644                                                                 },
7645                                                                 payment_secret: hop_data.payment_secret,
7646                                                         }
7647                                                 } else { return Err(DecodeError::InvalidValue); }
7648                                         },
7649                                         OnionPayload::Spontaneous(payment_preimage) =>
7650                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7651                                 };
7652                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7653                         }
7654                 }
7655
7656                 let mut secp_ctx = Secp256k1::new();
7657                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7658
7659                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7660                         Ok(key) => key,
7661                         Err(()) => return Err(DecodeError::InvalidValue)
7662                 };
7663                 if let Some(network_pubkey) = received_network_pubkey {
7664                         if network_pubkey != our_network_pubkey {
7665                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7666                                 return Err(DecodeError::InvalidValue);
7667                         }
7668                 }
7669
7670                 let mut outbound_scid_aliases = HashSet::new();
7671                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7672                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7673                         let peer_state = &mut *peer_state_lock;
7674                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7675                                 if chan.outbound_scid_alias() == 0 {
7676                                         let mut outbound_scid_alias;
7677                                         loop {
7678                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7679                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7680                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7681                                         }
7682                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7683                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7684                                         // Note that in rare cases its possible to hit this while reading an older
7685                                         // channel if we just happened to pick a colliding outbound alias above.
7686                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7687                                         return Err(DecodeError::InvalidValue);
7688                                 }
7689                                 if chan.is_usable() {
7690                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7691                                                 // Note that in rare cases its possible to hit this while reading an older
7692                                                 // channel if we just happened to pick a colliding outbound alias above.
7693                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7694                                                 return Err(DecodeError::InvalidValue);
7695                                         }
7696                                 }
7697                         }
7698                 }
7699
7700                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7701
7702                 for (_, monitor) in args.channel_monitors.iter() {
7703                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7704                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7705                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7706                                         let mut claimable_amt_msat = 0;
7707                                         let mut receiver_node_id = Some(our_network_pubkey);
7708                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7709                                         if phantom_shared_secret.is_some() {
7710                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7711                                                         .expect("Failed to get node_id for phantom node recipient");
7712                                                 receiver_node_id = Some(phantom_pubkey)
7713                                         }
7714                                         for claimable_htlc in claimable_htlcs {
7715                                                 claimable_amt_msat += claimable_htlc.value;
7716
7717                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7718                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7719                                                 // new commitment transaction we can just provide the payment preimage to
7720                                                 // the corresponding ChannelMonitor and nothing else.
7721                                                 //
7722                                                 // We do so directly instead of via the normal ChannelMonitor update
7723                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7724                                                 // we're not allowed to call it directly yet. Further, we do the update
7725                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7726                                                 // reason to.
7727                                                 // If we were to generate a new ChannelMonitor update ID here and then
7728                                                 // crash before the user finishes block connect we'd end up force-closing
7729                                                 // this channel as well. On the flip side, there's no harm in restarting
7730                                                 // without the new monitor persisted - we'll end up right back here on
7731                                                 // restart.
7732                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7733                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7734                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7735                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7736                                                         let peer_state = &mut *peer_state_lock;
7737                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7738                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7739                                                         }
7740                                                 }
7741                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7742                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7743                                                 }
7744                                         }
7745                                         pending_events_read.push(events::Event::PaymentClaimed {
7746                                                 receiver_node_id,
7747                                                 payment_hash,
7748                                                 purpose: payment_purpose,
7749                                                 amount_msat: claimable_amt_msat,
7750                                         });
7751                                 }
7752                         }
7753                 }
7754
7755                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7756                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7757                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7758                         } else {
7759                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7760                                 return Err(DecodeError::InvalidValue);
7761                         }
7762                 }
7763
7764                 let channel_manager = ChannelManager {
7765                         genesis_hash,
7766                         fee_estimator: bounded_fee_estimator,
7767                         chain_monitor: args.chain_monitor,
7768                         tx_broadcaster: args.tx_broadcaster,
7769                         router: args.router,
7770
7771                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7772
7773                         inbound_payment_key: expanded_inbound_key,
7774                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7775                         pending_outbound_payments: pending_outbounds,
7776                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7777
7778                         forward_htlcs: Mutex::new(forward_htlcs),
7779                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7780                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7781                         id_to_peer: Mutex::new(id_to_peer),
7782                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7783                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7784
7785                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7786
7787                         our_network_pubkey,
7788                         secp_ctx,
7789
7790                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7791
7792                         per_peer_state: FairRwLock::new(per_peer_state),
7793
7794                         pending_events: Mutex::new(pending_events_read),
7795                         pending_background_events: Mutex::new(pending_background_events_read),
7796                         total_consistency_lock: RwLock::new(()),
7797                         persistence_notifier: Notifier::new(),
7798
7799                         entropy_source: args.entropy_source,
7800                         node_signer: args.node_signer,
7801                         signer_provider: args.signer_provider,
7802
7803                         logger: args.logger,
7804                         default_configuration: args.default_config,
7805                 };
7806
7807                 for htlc_source in failed_htlcs.drain(..) {
7808                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7809                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7810                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7811                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7812                 }
7813
7814                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7815                 //connection or two.
7816
7817                 Ok((best_block_hash.clone(), channel_manager))
7818         }
7819 }
7820
7821 #[cfg(test)]
7822 mod tests {
7823         use bitcoin::hashes::Hash;
7824         use bitcoin::hashes::sha256::Hash as Sha256;
7825         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7826         use core::time::Duration;
7827         use core::sync::atomic::Ordering;
7828         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7829         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, InterceptId};
7830         use crate::ln::functional_test_utils::*;
7831         use crate::ln::msgs;
7832         use crate::ln::msgs::ChannelMessageHandler;
7833         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7834         use crate::util::errors::APIError;
7835         use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7836         use crate::util::test_utils;
7837         use crate::util::config::ChannelConfig;
7838         use crate::chain::keysinterface::EntropySource;
7839
7840         #[test]
7841         fn test_notify_limits() {
7842                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7843                 // indeed, do not cause the persistence of a new ChannelManager.
7844                 let chanmon_cfgs = create_chanmon_cfgs(3);
7845                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7846                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7847                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7848
7849                 // All nodes start with a persistable update pending as `create_network` connects each node
7850                 // with all other nodes to make most tests simpler.
7851                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7852                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7853                 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7854
7855                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7856
7857                 // We check that the channel info nodes have doesn't change too early, even though we try
7858                 // to connect messages with new values
7859                 chan.0.contents.fee_base_msat *= 2;
7860                 chan.1.contents.fee_base_msat *= 2;
7861                 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
7862                 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
7863
7864                 // The first two nodes (which opened a channel) should now require fresh persistence
7865                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7866                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7867                 // ... but the last node should not.
7868                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7869                 // After persisting the first two nodes they should no longer need fresh persistence.
7870                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7871                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7872
7873                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7874                 // about the channel.
7875                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7876                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7877                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7878
7879                 // The nodes which are a party to the channel should also ignore messages from unrelated
7880                 // parties.
7881                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7882                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7883                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7884                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7885                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7886                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7887
7888                 // At this point the channel info given by peers should still be the same.
7889                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7890                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7891
7892                 // An earlier version of handle_channel_update didn't check the directionality of the
7893                 // update message and would always update the local fee info, even if our peer was
7894                 // (spuriously) forwarding us our own channel_update.
7895                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7896                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7897                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7898
7899                 // First deliver each peers' own message, checking that the node doesn't need to be
7900                 // persisted and that its channel info remains the same.
7901                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7902                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7903                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7904                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7905                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7906                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7907
7908                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7909                 // the channel info has updated.
7910                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7911                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7912                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7913                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7914                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7915                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7916         }
7917
7918         #[test]
7919         fn test_keysend_dup_hash_partial_mpp() {
7920                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7921                 // expected.
7922                 let chanmon_cfgs = create_chanmon_cfgs(2);
7923                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7924                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7925                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7926                 create_announced_chan_between_nodes(&nodes, 0, 1);
7927
7928                 // First, send a partial MPP payment.
7929                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7930                 let mut mpp_route = route.clone();
7931                 mpp_route.paths.push(mpp_route.paths[0].clone());
7932
7933                 let payment_id = PaymentId([42; 32]);
7934                 // Use the utility function send_payment_along_path to send the payment with MPP data which
7935                 // indicates there are more HTLCs coming.
7936                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7937                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
7938                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
7939                 check_added_monitors!(nodes[0], 1);
7940                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7941                 assert_eq!(events.len(), 1);
7942                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7943
7944                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7945                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7946                 check_added_monitors!(nodes[0], 1);
7947                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7948                 assert_eq!(events.len(), 1);
7949                 let ev = events.drain(..).next().unwrap();
7950                 let payment_event = SendEvent::from_event(ev);
7951                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7952                 check_added_monitors!(nodes[1], 0);
7953                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7954                 expect_pending_htlcs_forwardable!(nodes[1]);
7955                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
7956                 check_added_monitors!(nodes[1], 1);
7957                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7958                 assert!(updates.update_add_htlcs.is_empty());
7959                 assert!(updates.update_fulfill_htlcs.is_empty());
7960                 assert_eq!(updates.update_fail_htlcs.len(), 1);
7961                 assert!(updates.update_fail_malformed_htlcs.is_empty());
7962                 assert!(updates.update_fee.is_none());
7963                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7964                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7965                 expect_payment_failed!(nodes[0], our_payment_hash, true);
7966
7967                 // Send the second half of the original MPP payment.
7968                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
7969                 check_added_monitors!(nodes[0], 1);
7970                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7971                 assert_eq!(events.len(), 1);
7972                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7973
7974                 // Claim the full MPP payment. Note that we can't use a test utility like
7975                 // claim_funds_along_route because the ordering of the messages causes the second half of the
7976                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
7977                 // lightning messages manually.
7978                 nodes[1].node.claim_funds(payment_preimage);
7979                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
7980                 check_added_monitors!(nodes[1], 2);
7981
7982                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7983                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
7984                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
7985                 check_added_monitors!(nodes[0], 1);
7986                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7987                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
7988                 check_added_monitors!(nodes[1], 1);
7989                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7990                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
7991                 check_added_monitors!(nodes[1], 1);
7992                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7993                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
7994                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
7995                 check_added_monitors!(nodes[0], 1);
7996                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
7997                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
7998                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7999                 check_added_monitors!(nodes[0], 1);
8000                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8001                 check_added_monitors!(nodes[1], 1);
8002                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8003                 check_added_monitors!(nodes[1], 1);
8004                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8005                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8006                 check_added_monitors!(nodes[0], 1);
8007
8008                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8009                 // path's success and a PaymentPathSuccessful event for each path's success.
8010                 let events = nodes[0].node.get_and_clear_pending_events();
8011                 assert_eq!(events.len(), 3);
8012                 match events[0] {
8013                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8014                                 assert_eq!(Some(payment_id), *id);
8015                                 assert_eq!(payment_preimage, *preimage);
8016                                 assert_eq!(our_payment_hash, *hash);
8017                         },
8018                         _ => panic!("Unexpected event"),
8019                 }
8020                 match events[1] {
8021                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8022                                 assert_eq!(payment_id, *actual_payment_id);
8023                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8024                                 assert_eq!(route.paths[0], *path);
8025                         },
8026                         _ => panic!("Unexpected event"),
8027                 }
8028                 match events[2] {
8029                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8030                                 assert_eq!(payment_id, *actual_payment_id);
8031                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8032                                 assert_eq!(route.paths[0], *path);
8033                         },
8034                         _ => panic!("Unexpected event"),
8035                 }
8036         }
8037
8038         #[test]
8039         fn test_keysend_dup_payment_hash() {
8040                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8041                 //      outbound regular payment fails as expected.
8042                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8043                 //      fails as expected.
8044                 let chanmon_cfgs = create_chanmon_cfgs(2);
8045                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8046                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8047                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8048                 create_announced_chan_between_nodes(&nodes, 0, 1);
8049                 let scorer = test_utils::TestScorer::new();
8050                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8051
8052                 // To start (1), send a regular payment but don't claim it.
8053                 let expected_route = [&nodes[1]];
8054                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8055
8056                 // Next, attempt a keysend payment and make sure it fails.
8057                 let route_params = RouteParameters {
8058                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8059                         final_value_msat: 100_000,
8060                 };
8061                 let route = find_route(
8062                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8063                         None, nodes[0].logger, &scorer, &random_seed_bytes
8064                 ).unwrap();
8065                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8066                 check_added_monitors!(nodes[0], 1);
8067                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8068                 assert_eq!(events.len(), 1);
8069                 let ev = events.drain(..).next().unwrap();
8070                 let payment_event = SendEvent::from_event(ev);
8071                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8072                 check_added_monitors!(nodes[1], 0);
8073                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8074                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8075                 // fails), the second will process the resulting failure and fail the HTLC backward
8076                 expect_pending_htlcs_forwardable!(nodes[1]);
8077                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8078                 check_added_monitors!(nodes[1], 1);
8079                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8080                 assert!(updates.update_add_htlcs.is_empty());
8081                 assert!(updates.update_fulfill_htlcs.is_empty());
8082                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8083                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8084                 assert!(updates.update_fee.is_none());
8085                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8086                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8087                 expect_payment_failed!(nodes[0], payment_hash, true);
8088
8089                 // Finally, claim the original payment.
8090                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8091
8092                 // To start (2), send a keysend payment but don't claim it.
8093                 let payment_preimage = PaymentPreimage([42; 32]);
8094                 let route = find_route(
8095                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8096                         None, nodes[0].logger, &scorer, &random_seed_bytes
8097                 ).unwrap();
8098                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8099                 check_added_monitors!(nodes[0], 1);
8100                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8101                 assert_eq!(events.len(), 1);
8102                 let event = events.pop().unwrap();
8103                 let path = vec![&nodes[1]];
8104                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8105
8106                 // Next, attempt a regular payment and make sure it fails.
8107                 let payment_secret = PaymentSecret([43; 32]);
8108                 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8109                 check_added_monitors!(nodes[0], 1);
8110                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8111                 assert_eq!(events.len(), 1);
8112                 let ev = events.drain(..).next().unwrap();
8113                 let payment_event = SendEvent::from_event(ev);
8114                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8115                 check_added_monitors!(nodes[1], 0);
8116                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8117                 expect_pending_htlcs_forwardable!(nodes[1]);
8118                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8119                 check_added_monitors!(nodes[1], 1);
8120                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8121                 assert!(updates.update_add_htlcs.is_empty());
8122                 assert!(updates.update_fulfill_htlcs.is_empty());
8123                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8124                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8125                 assert!(updates.update_fee.is_none());
8126                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8127                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8128                 expect_payment_failed!(nodes[0], payment_hash, true);
8129
8130                 // Finally, succeed the keysend payment.
8131                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8132         }
8133
8134         #[test]
8135         fn test_keysend_hash_mismatch() {
8136                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8137                 // preimage doesn't match the msg's payment hash.
8138                 let chanmon_cfgs = create_chanmon_cfgs(2);
8139                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8140                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8141                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8142
8143                 let payer_pubkey = nodes[0].node.get_our_node_id();
8144                 let payee_pubkey = nodes[1].node.get_our_node_id();
8145
8146                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8147                 let route_params = RouteParameters {
8148                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8149                         final_value_msat: 10_000,
8150                 };
8151                 let network_graph = nodes[0].network_graph.clone();
8152                 let first_hops = nodes[0].node.list_usable_channels();
8153                 let scorer = test_utils::TestScorer::new();
8154                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8155                 let route = find_route(
8156                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8157                         nodes[0].logger, &scorer, &random_seed_bytes
8158                 ).unwrap();
8159
8160                 let test_preimage = PaymentPreimage([42; 32]);
8161                 let mismatch_payment_hash = PaymentHash([43; 32]);
8162                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
8163                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8164                 check_added_monitors!(nodes[0], 1);
8165
8166                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8167                 assert_eq!(updates.update_add_htlcs.len(), 1);
8168                 assert!(updates.update_fulfill_htlcs.is_empty());
8169                 assert!(updates.update_fail_htlcs.is_empty());
8170                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8171                 assert!(updates.update_fee.is_none());
8172                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8173
8174                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
8175         }
8176
8177         #[test]
8178         fn test_keysend_msg_with_secret_err() {
8179                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8180                 let chanmon_cfgs = create_chanmon_cfgs(2);
8181                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8182                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8183                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8184
8185                 let payer_pubkey = nodes[0].node.get_our_node_id();
8186                 let payee_pubkey = nodes[1].node.get_our_node_id();
8187
8188                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8189                 let route_params = RouteParameters {
8190                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8191                         final_value_msat: 10_000,
8192                 };
8193                 let network_graph = nodes[0].network_graph.clone();
8194                 let first_hops = nodes[0].node.list_usable_channels();
8195                 let scorer = test_utils::TestScorer::new();
8196                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8197                 let route = find_route(
8198                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8199                         nodes[0].logger, &scorer, &random_seed_bytes
8200                 ).unwrap();
8201
8202                 let test_preimage = PaymentPreimage([42; 32]);
8203                 let test_secret = PaymentSecret([43; 32]);
8204                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8205                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8206                 nodes[0].node.test_send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
8207                 check_added_monitors!(nodes[0], 1);
8208
8209                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8210                 assert_eq!(updates.update_add_htlcs.len(), 1);
8211                 assert!(updates.update_fulfill_htlcs.is_empty());
8212                 assert!(updates.update_fail_htlcs.is_empty());
8213                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8214                 assert!(updates.update_fee.is_none());
8215                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8216
8217                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
8218         }
8219
8220         #[test]
8221         fn test_multi_hop_missing_secret() {
8222                 let chanmon_cfgs = create_chanmon_cfgs(4);
8223                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8224                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8225                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8226
8227                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8228                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8229                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8230                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8231
8232                 // Marshall an MPP route.
8233                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8234                 let path = route.paths[0].clone();
8235                 route.paths.push(path);
8236                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8237                 route.paths[0][0].short_channel_id = chan_1_id;
8238                 route.paths[0][1].short_channel_id = chan_3_id;
8239                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8240                 route.paths[1][0].short_channel_id = chan_2_id;
8241                 route.paths[1][1].short_channel_id = chan_4_id;
8242
8243                 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
8244                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8245                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))                        },
8246                         _ => panic!("unexpected error")
8247                 }
8248         }
8249
8250         #[test]
8251         fn test_drop_disconnected_peers_when_removing_channels() {
8252                 let chanmon_cfgs = create_chanmon_cfgs(2);
8253                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8254                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8255                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8256
8257                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8258
8259                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8260                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8261
8262                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8263                 check_closed_broadcast!(nodes[0], true);
8264                 check_added_monitors!(nodes[0], 1);
8265                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8266
8267                 {
8268                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8269                         // disconnected and the channel between has been force closed.
8270                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8271                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8272                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8273                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8274                 }
8275
8276                 nodes[0].node.timer_tick_occurred();
8277
8278                 {
8279                         // Assert that nodes[1] has now been removed.
8280                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8281                 }
8282         }
8283
8284         #[test]
8285         fn bad_inbound_payment_hash() {
8286                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8287                 let chanmon_cfgs = create_chanmon_cfgs(2);
8288                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8289                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8290                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8291
8292                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8293                 let payment_data = msgs::FinalOnionHopData {
8294                         payment_secret,
8295                         total_msat: 100_000,
8296                 };
8297
8298                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8299                 // payment verification fails as expected.
8300                 let mut bad_payment_hash = payment_hash.clone();
8301                 bad_payment_hash.0[0] += 1;
8302                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8303                         Ok(_) => panic!("Unexpected ok"),
8304                         Err(()) => {
8305                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
8306                         }
8307                 }
8308
8309                 // Check that using the original payment hash succeeds.
8310                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8311         }
8312
8313         #[test]
8314         fn test_id_to_peer_coverage() {
8315                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8316                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8317                 // the channel is successfully closed.
8318                 let chanmon_cfgs = create_chanmon_cfgs(2);
8319                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8320                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8321                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8322
8323                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8324                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8325                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8326                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8327                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8328
8329                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8330                 let channel_id = &tx.txid().into_inner();
8331                 {
8332                         // Ensure that the `id_to_peer` map is empty until either party has received the
8333                         // funding transaction, and have the real `channel_id`.
8334                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8335                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8336                 }
8337
8338                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8339                 {
8340                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8341                         // as it has the funding transaction.
8342                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8343                         assert_eq!(nodes_0_lock.len(), 1);
8344                         assert!(nodes_0_lock.contains_key(channel_id));
8345                 }
8346
8347                 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8348
8349                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8350
8351                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8352                 {
8353                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8354                         assert_eq!(nodes_0_lock.len(), 1);
8355                         assert!(nodes_0_lock.contains_key(channel_id));
8356                 }
8357
8358                 {
8359                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8360                         // as it has the funding transaction.
8361                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8362                         assert_eq!(nodes_1_lock.len(), 1);
8363                         assert!(nodes_1_lock.contains_key(channel_id));
8364                 }
8365                 check_added_monitors!(nodes[1], 1);
8366                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8367                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8368                 check_added_monitors!(nodes[0], 1);
8369                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8370                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8371                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8372
8373                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8374                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8375                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8376                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8377
8378                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8379                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8380                 {
8381                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8382                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8383                         // fee for the closing transaction has been negotiated and the parties has the other
8384                         // party's signature for the fee negotiated closing transaction.)
8385                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8386                         assert_eq!(nodes_0_lock.len(), 1);
8387                         assert!(nodes_0_lock.contains_key(channel_id));
8388                 }
8389
8390                 {
8391                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8392                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8393                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8394                         // kept in the `nodes[1]`'s `id_to_peer` map.
8395                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8396                         assert_eq!(nodes_1_lock.len(), 1);
8397                         assert!(nodes_1_lock.contains_key(channel_id));
8398                 }
8399
8400                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8401                 {
8402                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8403                         // therefore has all it needs to fully close the channel (both signatures for the
8404                         // closing transaction).
8405                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8406                         // fully closed by `nodes[0]`.
8407                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8408
8409                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8410                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8411                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8412                         assert_eq!(nodes_1_lock.len(), 1);
8413                         assert!(nodes_1_lock.contains_key(channel_id));
8414                 }
8415
8416                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8417
8418                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8419                 {
8420                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8421                         // they both have everything required to fully close the channel.
8422                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8423                 }
8424                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8425
8426                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8427                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8428         }
8429
8430         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8431                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8432                 check_api_error_message(expected_message, res_err)
8433         }
8434
8435         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8436                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8437                 check_api_error_message(expected_message, res_err)
8438         }
8439
8440         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8441                 match res_err {
8442                         Err(APIError::APIMisuseError { err }) => {
8443                                 assert_eq!(err, expected_err_message);
8444                         },
8445                         Err(APIError::ChannelUnavailable { err }) => {
8446                                 assert_eq!(err, expected_err_message);
8447                         },
8448                         Ok(_) => panic!("Unexpected Ok"),
8449                         Err(_) => panic!("Unexpected Error"),
8450                 }
8451         }
8452
8453         #[test]
8454         fn test_api_calls_with_unkown_counterparty_node() {
8455                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8456                 // expected if the `counterparty_node_id` is an unkown peer in the
8457                 // `ChannelManager::per_peer_state` map.
8458                 let chanmon_cfg = create_chanmon_cfgs(2);
8459                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8460                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8461                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8462
8463                 // Dummy values
8464                 let channel_id = [4; 32];
8465                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8466                 let intercept_id = InterceptId([0; 32]);
8467
8468                 // Test the API functions.
8469                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8470
8471                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8472
8473                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8474
8475                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8476
8477                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8478
8479                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8480
8481                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8482         }
8483
8484         #[test]
8485         fn test_connection_limiting() {
8486                 // Test that we limit un-channel'd peers and un-funded channels properly.
8487                 let chanmon_cfgs = create_chanmon_cfgs(2);
8488                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8489                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8490                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8491
8492                 // Note that create_network connects the nodes together for us
8493
8494                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8495                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8496
8497                 let mut funding_tx = None;
8498                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8499                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8500                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8501
8502                         if idx == 0 {
8503                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8504                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8505                                 funding_tx = Some(tx.clone());
8506                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8507                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8508
8509                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8510                                 check_added_monitors!(nodes[1], 1);
8511                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8512
8513                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8514                                 check_added_monitors!(nodes[0], 1);
8515                         }
8516                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8517                 }
8518
8519                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8520                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8521                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8522                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8523                         open_channel_msg.temporary_channel_id);
8524
8525                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8526                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8527                 // limit.
8528                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8529                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8530                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8531                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8532                         peer_pks.push(random_pk);
8533                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8534                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8535                 }
8536                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8537                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8538                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8539                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8540
8541                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8542                 // them if we have too many un-channel'd peers.
8543                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8544                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8545                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8546                 for ev in chan_closed_events {
8547                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8548                 }
8549                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8550                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8551                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8552                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8553
8554                 // but of course if the connection is outbound its allowed...
8555                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8556                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8557                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8558
8559                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8560                 // Even though we accept one more connection from new peers, we won't actually let them
8561                 // open channels.
8562                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8563                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8564                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8565                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8566                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8567                 }
8568                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8569                 assert_eq!(get_err_msg!(nodes[1], last_random_pk).channel_id,
8570                         open_channel_msg.temporary_channel_id);
8571
8572                 // Of course, however, outbound channels are always allowed
8573                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8574                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8575
8576                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8577                 // "protected" and can connect again.
8578                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8579                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8580                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8581                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8582
8583                 // Further, because the first channel was funded, we can open another channel with
8584                 // last_random_pk.
8585                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8586                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8587         }
8588
8589         #[test]
8590         fn test_outbound_chans_unlimited() {
8591                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8592                 let chanmon_cfgs = create_chanmon_cfgs(2);
8593                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8594                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8595                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8596
8597                 // Note that create_network connects the nodes together for us
8598
8599                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8600                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8601
8602                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8603                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8604                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8605                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8606                 }
8607
8608                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8609                 // rejected.
8610                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8611                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8612                         open_channel_msg.temporary_channel_id);
8613
8614                 // but we can still open an outbound channel.
8615                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8616                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8617
8618                 // but even with such an outbound channel, additional inbound channels will still fail.
8619                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8620                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8621                         open_channel_msg.temporary_channel_id);
8622         }
8623
8624         #[test]
8625         fn test_0conf_limiting() {
8626                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8627                 // flag set and (sometimes) accept channels as 0conf.
8628                 let chanmon_cfgs = create_chanmon_cfgs(2);
8629                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8630                 let mut settings = test_default_channel_config();
8631                 settings.manually_accept_inbound_channels = true;
8632                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8633                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8634
8635                 // Note that create_network connects the nodes together for us
8636
8637                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8638                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8639
8640                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8641                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8642                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8643                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8644                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8645                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8646
8647                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8648                         let events = nodes[1].node.get_and_clear_pending_events();
8649                         match events[0] {
8650                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8651                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8652                                 }
8653                                 _ => panic!("Unexpected event"),
8654                         }
8655                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8656                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8657                 }
8658
8659                 // If we try to accept a channel from another peer non-0conf it will fail.
8660                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8661                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8662                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8663                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8664                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8665                 let events = nodes[1].node.get_and_clear_pending_events();
8666                 match events[0] {
8667                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8668                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8669                                         Err(APIError::APIMisuseError { err }) =>
8670                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8671                                         _ => panic!(),
8672                                 }
8673                         }
8674                         _ => panic!("Unexpected event"),
8675                 }
8676                 assert_eq!(get_err_msg!(nodes[1], last_random_pk).channel_id,
8677                         open_channel_msg.temporary_channel_id);
8678
8679                 // ...however if we accept the same channel 0conf it should work just fine.
8680                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8681                 let events = nodes[1].node.get_and_clear_pending_events();
8682                 match events[0] {
8683                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8684                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8685                         }
8686                         _ => panic!("Unexpected event"),
8687                 }
8688                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8689         }
8690
8691         #[cfg(anchors)]
8692         #[test]
8693         fn test_anchors_zero_fee_htlc_tx_fallback() {
8694                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8695                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8696                 // the channel without the anchors feature.
8697                 let chanmon_cfgs = create_chanmon_cfgs(2);
8698                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8699                 let mut anchors_config = test_default_channel_config();
8700                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8701                 anchors_config.manually_accept_inbound_channels = true;
8702                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8703                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8704
8705                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8706                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8707                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8708
8709                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8710                 let events = nodes[1].node.get_and_clear_pending_events();
8711                 match events[0] {
8712                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8713                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8714                         }
8715                         _ => panic!("Unexpected event"),
8716                 }
8717
8718                 let error_msg = get_err_msg!(nodes[1], nodes[0].node.get_our_node_id());
8719                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8720
8721                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8722                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8723
8724                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8725         }
8726 }
8727
8728 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8729 pub mod bench {
8730         use crate::chain::Listen;
8731         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8732         use crate::chain::keysinterface::{EntropySource, KeysManager, InMemorySigner};
8733         use crate::ln::channelmanager::{self, BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
8734         use crate::ln::functional_test_utils::*;
8735         use crate::ln::msgs::{ChannelMessageHandler, Init};
8736         use crate::routing::gossip::NetworkGraph;
8737         use crate::routing::router::{PaymentParameters, get_route};
8738         use crate::util::test_utils;
8739         use crate::util::config::UserConfig;
8740         use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8741
8742         use bitcoin::hashes::Hash;
8743         use bitcoin::hashes::sha256::Hash as Sha256;
8744         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8745
8746         use crate::sync::{Arc, Mutex};
8747
8748         use test::Bencher;
8749
8750         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8751                 node: &'a ChannelManager<
8752                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8753                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8754                                 &'a test_utils::TestLogger, &'a P>,
8755                         &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8756                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8757                         &'a test_utils::TestLogger>,
8758         }
8759
8760         #[cfg(test)]
8761         #[bench]
8762         fn bench_sends(bench: &mut Bencher) {
8763                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8764         }
8765
8766         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8767                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8768                 // Note that this is unrealistic as each payment send will require at least two fsync
8769                 // calls per node.
8770                 let network = bitcoin::Network::Testnet;
8771
8772                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8773                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8774                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8775                 let scorer = Mutex::new(test_utils::TestScorer::new());
8776                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8777
8778                 let mut config: UserConfig = Default::default();
8779                 config.channel_handshake_config.minimum_depth = 1;
8780
8781                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8782                 let seed_a = [1u8; 32];
8783                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8784                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8785                         network,
8786                         best_block: BestBlock::from_network(network),
8787                 });
8788                 let node_a_holder = NodeHolder { node: &node_a };
8789
8790                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8791                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8792                 let seed_b = [2u8; 32];
8793                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8794                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8795                         network,
8796                         best_block: BestBlock::from_network(network),
8797                 });
8798                 let node_b_holder = NodeHolder { node: &node_b };
8799
8800                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8801                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8802                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8803                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8804                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8805
8806                 let tx;
8807                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8808                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8809                                 value: 8_000_000, script_pubkey: output_script,
8810                         }]};
8811                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8812                 } else { panic!(); }
8813
8814                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8815                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8816
8817                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8818
8819                 let block = Block {
8820                         header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8821                         txdata: vec![tx],
8822                 };
8823                 Listen::block_connected(&node_a, &block, 1);
8824                 Listen::block_connected(&node_b, &block, 1);
8825
8826                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8827                 let msg_events = node_a.get_and_clear_pending_msg_events();
8828                 assert_eq!(msg_events.len(), 2);
8829                 match msg_events[0] {
8830                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
8831                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8832                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8833                         },
8834                         _ => panic!(),
8835                 }
8836                 match msg_events[1] {
8837                         MessageSendEvent::SendChannelUpdate { .. } => {},
8838                         _ => panic!(),
8839                 }
8840
8841                 let events_a = node_a.get_and_clear_pending_events();
8842                 assert_eq!(events_a.len(), 1);
8843                 match events_a[0] {
8844                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8845                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8846                         },
8847                         _ => panic!("Unexpected event"),
8848                 }
8849
8850                 let events_b = node_b.get_and_clear_pending_events();
8851                 assert_eq!(events_b.len(), 1);
8852                 match events_b[0] {
8853                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8854                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8855                         },
8856                         _ => panic!("Unexpected event"),
8857                 }
8858
8859                 let dummy_graph = NetworkGraph::new(network, &logger_a);
8860
8861                 let mut payment_count: u64 = 0;
8862                 macro_rules! send_payment {
8863                         ($node_a: expr, $node_b: expr) => {
8864                                 let usable_channels = $node_a.list_usable_channels();
8865                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
8866                                         .with_features($node_b.invoice_features());
8867                                 let scorer = test_utils::TestScorer::new();
8868                                 let seed = [3u8; 32];
8869                                 let keys_manager = KeysManager::new(&seed, 42, 42);
8870                                 let random_seed_bytes = keys_manager.get_secure_random_bytes();
8871                                 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
8872                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
8873
8874                                 let mut payment_preimage = PaymentPreimage([0; 32]);
8875                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
8876                                 payment_count += 1;
8877                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
8878                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
8879
8880                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8881                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
8882                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
8883                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
8884                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
8885                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
8886                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
8887                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
8888
8889                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
8890                                 expect_payment_claimable!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
8891                                 $node_b.claim_funds(payment_preimage);
8892                                 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
8893
8894                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
8895                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
8896                                                 assert_eq!(node_id, $node_a.get_our_node_id());
8897                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
8898                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
8899                                         },
8900                                         _ => panic!("Failed to generate claim event"),
8901                                 }
8902
8903                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
8904                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
8905                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
8906                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
8907
8908                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
8909                         }
8910                 }
8911
8912                 bench.iter(|| {
8913                         send_payment!(node_a, node_b);
8914                         send_payment!(node_b, node_a);
8915                 });
8916         }
8917 }