89cb317dc6c6705effe175a54e98d437727b9c92
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
28
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
32
33 use crate::chain;
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
38 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
39 // construct one themselves.
40 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
41 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
42 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
43 #[cfg(any(feature = "_test_utils", test))]
44 use crate::ln::features::InvoiceFeatures;
45 use crate::routing::gossip::NetworkGraph;
46 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
47 use crate::routing::scoring::ProbabilisticScorer;
48 use crate::ln::msgs;
49 use crate::ln::onion_utils;
50 use crate::ln::onion_utils::HTLCFailReason;
51 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
52 #[cfg(test)]
53 use crate::ln::outbound_payment;
54 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
55 use crate::ln::wire::Encode;
56 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
57 use crate::util::config::{UserConfig, ChannelConfig};
58 use crate::util::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
59 use crate::util::events;
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
63 use crate::util::logger::{Level, Logger};
64 use crate::util::errors::APIError;
65
66 use alloc::collections::BTreeMap;
67
68 use crate::io;
69 use crate::prelude::*;
70 use core::{cmp, mem};
71 use core::cell::RefCell;
72 use crate::io::Read;
73 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
74 use core::sync::atomic::{AtomicUsize, Ordering};
75 use core::time::Duration;
76 use core::ops::Deref;
77
78 // Re-export this for use in the public API.
79 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure};
80
81 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
82 //
83 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
84 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
85 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
86 //
87 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
88 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
89 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
90 // before we forward it.
91 //
92 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
93 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
94 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
95 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
96 // our payment, which we can use to decode errors or inform the user that the payment was sent.
97
98 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
99 pub(super) enum PendingHTLCRouting {
100         Forward {
101                 onion_packet: msgs::OnionPacket,
102                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
103                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
104                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
105         },
106         Receive {
107                 payment_data: msgs::FinalOnionHopData,
108                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
109                 phantom_shared_secret: Option<[u8; 32]>,
110         },
111         ReceiveKeysend {
112                 payment_preimage: PaymentPreimage,
113                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
114         },
115 }
116
117 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
118 pub(super) struct PendingHTLCInfo {
119         pub(super) routing: PendingHTLCRouting,
120         pub(super) incoming_shared_secret: [u8; 32],
121         payment_hash: PaymentHash,
122         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
123         pub(super) outgoing_amt_msat: u64,
124         pub(super) outgoing_cltv_value: u32,
125 }
126
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) enum HTLCFailureMsg {
129         Relay(msgs::UpdateFailHTLC),
130         Malformed(msgs::UpdateFailMalformedHTLC),
131 }
132
133 /// Stores whether we can't forward an HTLC or relevant forwarding info
134 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
135 pub(super) enum PendingHTLCStatus {
136         Forward(PendingHTLCInfo),
137         Fail(HTLCFailureMsg),
138 }
139
140 pub(super) struct PendingAddHTLCInfo {
141         pub(super) forward_info: PendingHTLCInfo,
142
143         // These fields are produced in `forward_htlcs()` and consumed in
144         // `process_pending_htlc_forwards()` for constructing the
145         // `HTLCSource::PreviousHopData` for failed and forwarded
146         // HTLCs.
147         //
148         // Note that this may be an outbound SCID alias for the associated channel.
149         prev_short_channel_id: u64,
150         prev_htlc_id: u64,
151         prev_funding_outpoint: OutPoint,
152         prev_user_channel_id: u128,
153 }
154
155 pub(super) enum HTLCForwardInfo {
156         AddHTLC(PendingAddHTLCInfo),
157         FailHTLC {
158                 htlc_id: u64,
159                 err_packet: msgs::OnionErrorPacket,
160         },
161 }
162
163 /// Tracks the inbound corresponding to an outbound HTLC
164 #[derive(Clone, Hash, PartialEq, Eq)]
165 pub(crate) struct HTLCPreviousHopData {
166         // Note that this may be an outbound SCID alias for the associated channel.
167         short_channel_id: u64,
168         htlc_id: u64,
169         incoming_packet_shared_secret: [u8; 32],
170         phantom_shared_secret: Option<[u8; 32]>,
171
172         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
173         // channel with a preimage provided by the forward channel.
174         outpoint: OutPoint,
175 }
176
177 enum OnionPayload {
178         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
179         Invoice {
180                 /// This is only here for backwards-compatibility in serialization, in the future it can be
181                 /// removed, breaking clients running 0.0.106 and earlier.
182                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
183         },
184         /// Contains the payer-provided preimage.
185         Spontaneous(PaymentPreimage),
186 }
187
188 /// HTLCs that are to us and can be failed/claimed by the user
189 struct ClaimableHTLC {
190         prev_hop: HTLCPreviousHopData,
191         cltv_expiry: u32,
192         /// The amount (in msats) of this MPP part
193         value: u64,
194         onion_payload: OnionPayload,
195         timer_ticks: u8,
196         /// The sum total of all MPP parts
197         total_msat: u64,
198 }
199
200 /// A payment identifier used to uniquely identify a payment to LDK.
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentId(pub [u8; 32]);
204
205 impl Writeable for PaymentId {
206         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
207                 self.0.write(w)
208         }
209 }
210
211 impl Readable for PaymentId {
212         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
213                 let buf: [u8; 32] = Readable::read(r)?;
214                 Ok(PaymentId(buf))
215         }
216 }
217
218 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
219 /// (C-not exported) as we just use [u8; 32] directly
220 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
221 pub struct InterceptId(pub [u8; 32]);
222
223 impl Writeable for InterceptId {
224         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
225                 self.0.write(w)
226         }
227 }
228
229 impl Readable for InterceptId {
230         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
231                 let buf: [u8; 32] = Readable::read(r)?;
232                 Ok(InterceptId(buf))
233         }
234 }
235
236 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
237 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
238 pub(crate) enum SentHTLCId {
239         PreviousHopData { short_channel_id: u64, htlc_id: u64 },
240         OutboundRoute { session_priv: SecretKey },
241 }
242 impl SentHTLCId {
243         pub(crate) fn from_source(source: &HTLCSource) -> Self {
244                 match source {
245                         HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
246                                 short_channel_id: hop_data.short_channel_id,
247                                 htlc_id: hop_data.htlc_id,
248                         },
249                         HTLCSource::OutboundRoute { session_priv, .. } =>
250                                 Self::OutboundRoute { session_priv: *session_priv },
251                 }
252         }
253 }
254 impl_writeable_tlv_based_enum!(SentHTLCId,
255         (0, PreviousHopData) => {
256                 (0, short_channel_id, required),
257                 (2, htlc_id, required),
258         },
259         (2, OutboundRoute) => {
260                 (0, session_priv, required),
261         };
262 );
263
264
265 /// Tracks the inbound corresponding to an outbound HTLC
266 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
267 #[derive(Clone, PartialEq, Eq)]
268 pub(crate) enum HTLCSource {
269         PreviousHopData(HTLCPreviousHopData),
270         OutboundRoute {
271                 path: Vec<RouteHop>,
272                 session_priv: SecretKey,
273                 /// Technically we can recalculate this from the route, but we cache it here to avoid
274                 /// doing a double-pass on route when we get a failure back
275                 first_hop_htlc_msat: u64,
276                 payment_id: PaymentId,
277                 payment_secret: Option<PaymentSecret>,
278         },
279 }
280 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
281 impl core::hash::Hash for HTLCSource {
282         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
283                 match self {
284                         HTLCSource::PreviousHopData(prev_hop_data) => {
285                                 0u8.hash(hasher);
286                                 prev_hop_data.hash(hasher);
287                         },
288                         HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat } => {
289                                 1u8.hash(hasher);
290                                 path.hash(hasher);
291                                 session_priv[..].hash(hasher);
292                                 payment_id.hash(hasher);
293                                 payment_secret.hash(hasher);
294                                 first_hop_htlc_msat.hash(hasher);
295                         },
296                 }
297         }
298 }
299 #[cfg(not(feature = "grind_signatures"))]
300 #[cfg(test)]
301 impl HTLCSource {
302         pub fn dummy() -> Self {
303                 HTLCSource::OutboundRoute {
304                         path: Vec::new(),
305                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
306                         first_hop_htlc_msat: 0,
307                         payment_id: PaymentId([2; 32]),
308                         payment_secret: None,
309                 }
310         }
311 }
312
313 struct ReceiveError {
314         err_code: u16,
315         err_data: Vec<u8>,
316         msg: &'static str,
317 }
318
319 /// This enum is used to specify which error data to send to peers when failing back an HTLC
320 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
321 ///
322 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
323 #[derive(Clone, Copy)]
324 pub enum FailureCode {
325         /// We had a temporary error processing the payment. Useful if no other error codes fit
326         /// and you want to indicate that the payer may want to retry.
327         TemporaryNodeFailure             = 0x2000 | 2,
328         /// We have a required feature which was not in this onion. For example, you may require
329         /// some additional metadata that was not provided with this payment.
330         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
331         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
332         /// the HTLC is too close to the current block height for safe handling.
333         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
334         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
335         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
336 }
337
338 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
339
340 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
341 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
342 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
343 /// peer_state lock. We then return the set of things that need to be done outside the lock in
344 /// this struct and call handle_error!() on it.
345
346 struct MsgHandleErrInternal {
347         err: msgs::LightningError,
348         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
349         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
350 }
351 impl MsgHandleErrInternal {
352         #[inline]
353         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
354                 Self {
355                         err: LightningError {
356                                 err: err.clone(),
357                                 action: msgs::ErrorAction::SendErrorMessage {
358                                         msg: msgs::ErrorMessage {
359                                                 channel_id,
360                                                 data: err
361                                         },
362                                 },
363                         },
364                         chan_id: None,
365                         shutdown_finish: None,
366                 }
367         }
368         #[inline]
369         fn from_no_close(err: msgs::LightningError) -> Self {
370                 Self { err, chan_id: None, shutdown_finish: None }
371         }
372         #[inline]
373         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
374                 Self {
375                         err: LightningError {
376                                 err: err.clone(),
377                                 action: msgs::ErrorAction::SendErrorMessage {
378                                         msg: msgs::ErrorMessage {
379                                                 channel_id,
380                                                 data: err
381                                         },
382                                 },
383                         },
384                         chan_id: Some((channel_id, user_channel_id)),
385                         shutdown_finish: Some((shutdown_res, channel_update)),
386                 }
387         }
388         #[inline]
389         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
390                 Self {
391                         err: match err {
392                                 ChannelError::Warn(msg) =>  LightningError {
393                                         err: msg.clone(),
394                                         action: msgs::ErrorAction::SendWarningMessage {
395                                                 msg: msgs::WarningMessage {
396                                                         channel_id,
397                                                         data: msg
398                                                 },
399                                                 log_level: Level::Warn,
400                                         },
401                                 },
402                                 ChannelError::Ignore(msg) => LightningError {
403                                         err: msg,
404                                         action: msgs::ErrorAction::IgnoreError,
405                                 },
406                                 ChannelError::Close(msg) => LightningError {
407                                         err: msg.clone(),
408                                         action: msgs::ErrorAction::SendErrorMessage {
409                                                 msg: msgs::ErrorMessage {
410                                                         channel_id,
411                                                         data: msg
412                                                 },
413                                         },
414                                 },
415                         },
416                         chan_id: None,
417                         shutdown_finish: None,
418                 }
419         }
420 }
421
422 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
423 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
424 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
425 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
426 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
427
428 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
429 /// be sent in the order they appear in the return value, however sometimes the order needs to be
430 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
431 /// they were originally sent). In those cases, this enum is also returned.
432 #[derive(Clone, PartialEq)]
433 pub(super) enum RAACommitmentOrder {
434         /// Send the CommitmentUpdate messages first
435         CommitmentFirst,
436         /// Send the RevokeAndACK message first
437         RevokeAndACKFirst,
438 }
439
440 /// Information about a payment which is currently being claimed.
441 struct ClaimingPayment {
442         amount_msat: u64,
443         payment_purpose: events::PaymentPurpose,
444         receiver_node_id: PublicKey,
445 }
446 impl_writeable_tlv_based!(ClaimingPayment, {
447         (0, amount_msat, required),
448         (2, payment_purpose, required),
449         (4, receiver_node_id, required),
450 });
451
452 /// Information about claimable or being-claimed payments
453 struct ClaimablePayments {
454         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
455         /// failed/claimed by the user.
456         ///
457         /// Note that, no consistency guarantees are made about the channels given here actually
458         /// existing anymore by the time you go to read them!
459         ///
460         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
461         /// we don't get a duplicate payment.
462         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
463
464         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
465         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
466         /// as an [`events::Event::PaymentClaimed`].
467         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
468 }
469
470 /// Events which we process internally but cannot be procsesed immediately at the generation site
471 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
472 /// quite some time lag.
473 enum BackgroundEvent {
474         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
475         /// commitment transaction.
476         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
477 }
478
479 #[derive(Debug)]
480 pub(crate) enum MonitorUpdateCompletionAction {
481         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
482         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
483         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
484         /// event can be generated.
485         PaymentClaimed { payment_hash: PaymentHash },
486         /// Indicates an [`events::Event`] should be surfaced to the user.
487         EmitEvent { event: events::Event },
488 }
489
490 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
491         (0, PaymentClaimed) => { (0, payment_hash, required) },
492         (2, EmitEvent) => { (0, event, upgradable_required) },
493 );
494
495 /// State we hold per-peer.
496 pub(super) struct PeerState<Signer: ChannelSigner> {
497         /// `temporary_channel_id` or `channel_id` -> `channel`.
498         ///
499         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
500         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
501         /// `channel_id`.
502         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
503         /// The latest `InitFeatures` we heard from the peer.
504         latest_features: InitFeatures,
505         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
506         /// for broadcast messages, where ordering isn't as strict).
507         pub(super) pending_msg_events: Vec<MessageSendEvent>,
508         /// Map from a specific channel to some action(s) that should be taken when all pending
509         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
510         ///
511         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
512         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
513         /// channels with a peer this will just be one allocation and will amount to a linear list of
514         /// channels to walk, avoiding the whole hashing rigmarole.
515         ///
516         /// Note that the channel may no longer exist. For example, if a channel was closed but we
517         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
518         /// for a missing channel. While a malicious peer could construct a second channel with the
519         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
520         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
521         /// duplicates do not occur, so such channels should fail without a monitor update completing.
522         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
523         /// The peer is currently connected (i.e. we've seen a
524         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
525         /// [`ChannelMessageHandler::peer_disconnected`].
526         is_connected: bool,
527 }
528
529 impl <Signer: ChannelSigner> PeerState<Signer> {
530         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
531         /// If true is passed for `require_disconnected`, the function will return false if we haven't
532         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
533         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
534                 if require_disconnected && self.is_connected {
535                         return false
536                 }
537                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
538         }
539 }
540
541 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
542 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
543 ///
544 /// For users who don't want to bother doing their own payment preimage storage, we also store that
545 /// here.
546 ///
547 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
548 /// and instead encoding it in the payment secret.
549 struct PendingInboundPayment {
550         /// The payment secret that the sender must use for us to accept this payment
551         payment_secret: PaymentSecret,
552         /// Time at which this HTLC expires - blocks with a header time above this value will result in
553         /// this payment being removed.
554         expiry_time: u64,
555         /// Arbitrary identifier the user specifies (or not)
556         user_payment_id: u64,
557         // Other required attributes of the payment, optionally enforced:
558         payment_preimage: Option<PaymentPreimage>,
559         min_value_msat: Option<u64>,
560 }
561
562 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
563 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
564 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
565 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
566 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
567 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
568 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
569 /// of [`KeysManager`] and [`DefaultRouter`].
570 ///
571 /// (C-not exported) as Arcs don't make sense in bindings
572 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
573         Arc<M>,
574         Arc<T>,
575         Arc<KeysManager>,
576         Arc<KeysManager>,
577         Arc<KeysManager>,
578         Arc<F>,
579         Arc<DefaultRouter<
580                 Arc<NetworkGraph<Arc<L>>>,
581                 Arc<L>,
582                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
583         >>,
584         Arc<L>
585 >;
586
587 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
588 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
589 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
590 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
591 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
592 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
593 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
594 /// or, respectively, [`Router`]  for its router, but this type alias chooses the concrete types
595 /// of [`KeysManager`] and [`DefaultRouter`].
596 ///
597 /// (C-not exported) as Arcs don't make sense in bindings
598 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
599
600 /// Manager which keeps track of a number of channels and sends messages to the appropriate
601 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
602 ///
603 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
604 /// to individual Channels.
605 ///
606 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
607 /// all peers during write/read (though does not modify this instance, only the instance being
608 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
609 /// called [`funding_transaction_generated`] for outbound channels) being closed.
610 ///
611 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
612 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
613 /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
614 /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
615 /// the serialization process). If the deserialized version is out-of-date compared to the
616 /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
617 /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
618 ///
619 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
620 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
621 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
622 ///
623 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
624 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
625 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
626 /// offline for a full minute. In order to track this, you must call
627 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
628 ///
629 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
630 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
631 /// not have a channel with being unable to connect to us or open new channels with us if we have
632 /// many peers with unfunded channels.
633 ///
634 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
635 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
636 /// never limited. Please ensure you limit the count of such channels yourself.
637 ///
638 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
639 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
640 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
641 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
642 /// you're using lightning-net-tokio.
643 ///
644 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
645 /// [`funding_created`]: msgs::FundingCreated
646 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
647 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
648 /// [`update_channel`]: chain::Watch::update_channel
649 /// [`ChannelUpdate`]: msgs::ChannelUpdate
650 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
651 /// [`read`]: ReadableArgs::read
652 //
653 // Lock order:
654 // The tree structure below illustrates the lock order requirements for the different locks of the
655 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
656 // and should then be taken in the order of the lowest to the highest level in the tree.
657 // Note that locks on different branches shall not be taken at the same time, as doing so will
658 // create a new lock order for those specific locks in the order they were taken.
659 //
660 // Lock order tree:
661 //
662 // `total_consistency_lock`
663 //  |
664 //  |__`forward_htlcs`
665 //  |   |
666 //  |   |__`pending_intercepted_htlcs`
667 //  |
668 //  |__`per_peer_state`
669 //  |   |
670 //  |   |__`pending_inbound_payments`
671 //  |       |
672 //  |       |__`claimable_payments`
673 //  |       |
674 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
675 //  |           |
676 //  |           |__`peer_state`
677 //  |               |
678 //  |               |__`id_to_peer`
679 //  |               |
680 //  |               |__`short_to_chan_info`
681 //  |               |
682 //  |               |__`outbound_scid_aliases`
683 //  |               |
684 //  |               |__`best_block`
685 //  |               |
686 //  |               |__`pending_events`
687 //  |                   |
688 //  |                   |__`pending_background_events`
689 //
690 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
691 where
692         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
693         T::Target: BroadcasterInterface,
694         ES::Target: EntropySource,
695         NS::Target: NodeSigner,
696         SP::Target: SignerProvider,
697         F::Target: FeeEstimator,
698         R::Target: Router,
699         L::Target: Logger,
700 {
701         default_configuration: UserConfig,
702         genesis_hash: BlockHash,
703         fee_estimator: LowerBoundedFeeEstimator<F>,
704         chain_monitor: M,
705         tx_broadcaster: T,
706         #[allow(unused)]
707         router: R,
708
709         /// See `ChannelManager` struct-level documentation for lock order requirements.
710         #[cfg(test)]
711         pub(super) best_block: RwLock<BestBlock>,
712         #[cfg(not(test))]
713         best_block: RwLock<BestBlock>,
714         secp_ctx: Secp256k1<secp256k1::All>,
715
716         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
717         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
718         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
719         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
720         ///
721         /// See `ChannelManager` struct-level documentation for lock order requirements.
722         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
723
724         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
725         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
726         /// (if the channel has been force-closed), however we track them here to prevent duplicative
727         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
728         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
729         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
730         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
731         /// after reloading from disk while replaying blocks against ChannelMonitors.
732         ///
733         /// See `PendingOutboundPayment` documentation for more info.
734         ///
735         /// See `ChannelManager` struct-level documentation for lock order requirements.
736         pending_outbound_payments: OutboundPayments,
737
738         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
739         ///
740         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
741         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
742         /// and via the classic SCID.
743         ///
744         /// Note that no consistency guarantees are made about the existence of a channel with the
745         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
746         ///
747         /// See `ChannelManager` struct-level documentation for lock order requirements.
748         #[cfg(test)]
749         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
750         #[cfg(not(test))]
751         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
752         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
753         /// until the user tells us what we should do with them.
754         ///
755         /// See `ChannelManager` struct-level documentation for lock order requirements.
756         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
757
758         /// The sets of payments which are claimable or currently being claimed. See
759         /// [`ClaimablePayments`]' individual field docs for more info.
760         ///
761         /// See `ChannelManager` struct-level documentation for lock order requirements.
762         claimable_payments: Mutex<ClaimablePayments>,
763
764         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
765         /// and some closed channels which reached a usable state prior to being closed. This is used
766         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
767         /// active channel list on load.
768         ///
769         /// See `ChannelManager` struct-level documentation for lock order requirements.
770         outbound_scid_aliases: Mutex<HashSet<u64>>,
771
772         /// `channel_id` -> `counterparty_node_id`.
773         ///
774         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
775         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
776         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
777         ///
778         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
779         /// the corresponding channel for the event, as we only have access to the `channel_id` during
780         /// the handling of the events.
781         ///
782         /// Note that no consistency guarantees are made about the existence of a peer with the
783         /// `counterparty_node_id` in our other maps.
784         ///
785         /// TODO:
786         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
787         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
788         /// would break backwards compatability.
789         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
790         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
791         /// required to access the channel with the `counterparty_node_id`.
792         ///
793         /// See `ChannelManager` struct-level documentation for lock order requirements.
794         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
795
796         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
797         ///
798         /// Outbound SCID aliases are added here once the channel is available for normal use, with
799         /// SCIDs being added once the funding transaction is confirmed at the channel's required
800         /// confirmation depth.
801         ///
802         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
803         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
804         /// channel with the `channel_id` in our other maps.
805         ///
806         /// See `ChannelManager` struct-level documentation for lock order requirements.
807         #[cfg(test)]
808         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
809         #[cfg(not(test))]
810         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
811
812         our_network_pubkey: PublicKey,
813
814         inbound_payment_key: inbound_payment::ExpandedKey,
815
816         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
817         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
818         /// we encrypt the namespace identifier using these bytes.
819         ///
820         /// [fake scids]: crate::util::scid_utils::fake_scid
821         fake_scid_rand_bytes: [u8; 32],
822
823         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
824         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
825         /// keeping additional state.
826         probing_cookie_secret: [u8; 32],
827
828         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
829         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
830         /// very far in the past, and can only ever be up to two hours in the future.
831         highest_seen_timestamp: AtomicUsize,
832
833         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
834         /// basis, as well as the peer's latest features.
835         ///
836         /// If we are connected to a peer we always at least have an entry here, even if no channels
837         /// are currently open with that peer.
838         ///
839         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
840         /// operate on the inner value freely. This opens up for parallel per-peer operation for
841         /// channels.
842         ///
843         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
844         ///
845         /// See `ChannelManager` struct-level documentation for lock order requirements.
846         #[cfg(not(any(test, feature = "_test_utils")))]
847         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
848         #[cfg(any(test, feature = "_test_utils"))]
849         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
850
851         /// See `ChannelManager` struct-level documentation for lock order requirements.
852         pending_events: Mutex<Vec<events::Event>>,
853         /// See `ChannelManager` struct-level documentation for lock order requirements.
854         pending_background_events: Mutex<Vec<BackgroundEvent>>,
855         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
856         /// Essentially just when we're serializing ourselves out.
857         /// Taken first everywhere where we are making changes before any other locks.
858         /// When acquiring this lock in read mode, rather than acquiring it directly, call
859         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
860         /// Notifier the lock contains sends out a notification when the lock is released.
861         total_consistency_lock: RwLock<()>,
862
863         persistence_notifier: Notifier,
864
865         entropy_source: ES,
866         node_signer: NS,
867         signer_provider: SP,
868
869         logger: L,
870 }
871
872 /// Chain-related parameters used to construct a new `ChannelManager`.
873 ///
874 /// Typically, the block-specific parameters are derived from the best block hash for the network,
875 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
876 /// are not needed when deserializing a previously constructed `ChannelManager`.
877 #[derive(Clone, Copy, PartialEq)]
878 pub struct ChainParameters {
879         /// The network for determining the `chain_hash` in Lightning messages.
880         pub network: Network,
881
882         /// The hash and height of the latest block successfully connected.
883         ///
884         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
885         pub best_block: BestBlock,
886 }
887
888 #[derive(Copy, Clone, PartialEq)]
889 enum NotifyOption {
890         DoPersist,
891         SkipPersist,
892 }
893
894 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
895 /// desirable to notify any listeners on `await_persistable_update_timeout`/
896 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
897 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
898 /// sending the aforementioned notification (since the lock being released indicates that the
899 /// updates are ready for persistence).
900 ///
901 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
902 /// notify or not based on whether relevant changes have been made, providing a closure to
903 /// `optionally_notify` which returns a `NotifyOption`.
904 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
905         persistence_notifier: &'a Notifier,
906         should_persist: F,
907         // We hold onto this result so the lock doesn't get released immediately.
908         _read_guard: RwLockReadGuard<'a, ()>,
909 }
910
911 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
912         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
913                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
914         }
915
916         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
917                 let read_guard = lock.read().unwrap();
918
919                 PersistenceNotifierGuard {
920                         persistence_notifier: notifier,
921                         should_persist: persist_check,
922                         _read_guard: read_guard,
923                 }
924         }
925 }
926
927 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
928         fn drop(&mut self) {
929                 if (self.should_persist)() == NotifyOption::DoPersist {
930                         self.persistence_notifier.notify();
931                 }
932         }
933 }
934
935 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
936 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
937 ///
938 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
939 ///
940 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
941 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
942 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
943 /// the maximum required amount in lnd as of March 2021.
944 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
945
946 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
947 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
948 ///
949 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
950 ///
951 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
952 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
953 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
954 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
955 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
956 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
957 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
958 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
959 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
960 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
961 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
962 // routing failure for any HTLC sender picking up an LDK node among the first hops.
963 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
964
965 /// Minimum CLTV difference between the current block height and received inbound payments.
966 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
967 /// this value.
968 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
969 // any payments to succeed. Further, we don't want payments to fail if a block was found while
970 // a payment was being routed, so we add an extra block to be safe.
971 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
972
973 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
974 // ie that if the next-hop peer fails the HTLC within
975 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
976 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
977 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
978 // LATENCY_GRACE_PERIOD_BLOCKS.
979 #[deny(const_err)]
980 #[allow(dead_code)]
981 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
982
983 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
984 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
985 #[deny(const_err)]
986 #[allow(dead_code)]
987 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
988
989 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
990 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
991
992 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
993 /// idempotency of payments by [`PaymentId`]. See
994 /// [`OutboundPayments::remove_stale_resolved_payments`].
995 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
996
997 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
998 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
999 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1000 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1001
1002 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1003 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1004 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1005
1006 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1007 /// many peers we reject new (inbound) connections.
1008 const MAX_NO_CHANNEL_PEERS: usize = 250;
1009
1010 /// Information needed for constructing an invoice route hint for this channel.
1011 #[derive(Clone, Debug, PartialEq)]
1012 pub struct CounterpartyForwardingInfo {
1013         /// Base routing fee in millisatoshis.
1014         pub fee_base_msat: u32,
1015         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1016         pub fee_proportional_millionths: u32,
1017         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1018         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1019         /// `cltv_expiry_delta` for more details.
1020         pub cltv_expiry_delta: u16,
1021 }
1022
1023 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1024 /// to better separate parameters.
1025 #[derive(Clone, Debug, PartialEq)]
1026 pub struct ChannelCounterparty {
1027         /// The node_id of our counterparty
1028         pub node_id: PublicKey,
1029         /// The Features the channel counterparty provided upon last connection.
1030         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1031         /// many routing-relevant features are present in the init context.
1032         pub features: InitFeatures,
1033         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1034         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1035         /// claiming at least this value on chain.
1036         ///
1037         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1038         ///
1039         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1040         pub unspendable_punishment_reserve: u64,
1041         /// Information on the fees and requirements that the counterparty requires when forwarding
1042         /// payments to us through this channel.
1043         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1044         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1045         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1046         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1047         pub outbound_htlc_minimum_msat: Option<u64>,
1048         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1049         pub outbound_htlc_maximum_msat: Option<u64>,
1050 }
1051
1052 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1053 #[derive(Clone, Debug, PartialEq)]
1054 pub struct ChannelDetails {
1055         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1056         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1057         /// Note that this means this value is *not* persistent - it can change once during the
1058         /// lifetime of the channel.
1059         pub channel_id: [u8; 32],
1060         /// Parameters which apply to our counterparty. See individual fields for more information.
1061         pub counterparty: ChannelCounterparty,
1062         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1063         /// our counterparty already.
1064         ///
1065         /// Note that, if this has been set, `channel_id` will be equivalent to
1066         /// `funding_txo.unwrap().to_channel_id()`.
1067         pub funding_txo: Option<OutPoint>,
1068         /// The features which this channel operates with. See individual features for more info.
1069         ///
1070         /// `None` until negotiation completes and the channel type is finalized.
1071         pub channel_type: Option<ChannelTypeFeatures>,
1072         /// The position of the funding transaction in the chain. None if the funding transaction has
1073         /// not yet been confirmed and the channel fully opened.
1074         ///
1075         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1076         /// payments instead of this. See [`get_inbound_payment_scid`].
1077         ///
1078         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1079         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1080         ///
1081         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1082         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1083         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1084         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1085         /// [`confirmations_required`]: Self::confirmations_required
1086         pub short_channel_id: Option<u64>,
1087         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1088         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1089         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1090         /// `Some(0)`).
1091         ///
1092         /// This will be `None` as long as the channel is not available for routing outbound payments.
1093         ///
1094         /// [`short_channel_id`]: Self::short_channel_id
1095         /// [`confirmations_required`]: Self::confirmations_required
1096         pub outbound_scid_alias: Option<u64>,
1097         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1098         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1099         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1100         /// when they see a payment to be routed to us.
1101         ///
1102         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1103         /// previous values for inbound payment forwarding.
1104         ///
1105         /// [`short_channel_id`]: Self::short_channel_id
1106         pub inbound_scid_alias: Option<u64>,
1107         /// The value, in satoshis, of this channel as appears in the funding output
1108         pub channel_value_satoshis: u64,
1109         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1110         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1111         /// this value on chain.
1112         ///
1113         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1114         ///
1115         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1116         ///
1117         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1118         pub unspendable_punishment_reserve: Option<u64>,
1119         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1120         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1121         /// 0.0.113.
1122         pub user_channel_id: u128,
1123         /// Our total balance.  This is the amount we would get if we close the channel.
1124         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1125         /// amount is not likely to be recoverable on close.
1126         ///
1127         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1128         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1129         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1130         /// This does not consider any on-chain fees.
1131         ///
1132         /// See also [`ChannelDetails::outbound_capacity_msat`]
1133         pub balance_msat: u64,
1134         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1135         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1136         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1137         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1138         ///
1139         /// See also [`ChannelDetails::balance_msat`]
1140         ///
1141         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1142         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1143         /// should be able to spend nearly this amount.
1144         pub outbound_capacity_msat: u64,
1145         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1146         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1147         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1148         /// to use a limit as close as possible to the HTLC limit we can currently send.
1149         ///
1150         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1151         pub next_outbound_htlc_limit_msat: u64,
1152         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1153         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1154         /// available for inclusion in new inbound HTLCs).
1155         /// Note that there are some corner cases not fully handled here, so the actual available
1156         /// inbound capacity may be slightly higher than this.
1157         ///
1158         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1159         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1160         /// However, our counterparty should be able to spend nearly this amount.
1161         pub inbound_capacity_msat: u64,
1162         /// The number of required confirmations on the funding transaction before the funding will be
1163         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1164         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1165         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1166         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1167         ///
1168         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1169         ///
1170         /// [`is_outbound`]: ChannelDetails::is_outbound
1171         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1172         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1173         pub confirmations_required: Option<u32>,
1174         /// The current number of confirmations on the funding transaction.
1175         ///
1176         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1177         pub confirmations: Option<u32>,
1178         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1179         /// until we can claim our funds after we force-close the channel. During this time our
1180         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1181         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1182         /// time to claim our non-HTLC-encumbered funds.
1183         ///
1184         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1185         pub force_close_spend_delay: Option<u16>,
1186         /// True if the channel was initiated (and thus funded) by us.
1187         pub is_outbound: bool,
1188         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1189         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1190         /// required confirmation count has been reached (and we were connected to the peer at some
1191         /// point after the funding transaction received enough confirmations). The required
1192         /// confirmation count is provided in [`confirmations_required`].
1193         ///
1194         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1195         pub is_channel_ready: bool,
1196         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1197         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1198         ///
1199         /// This is a strict superset of `is_channel_ready`.
1200         pub is_usable: bool,
1201         /// True if this channel is (or will be) publicly-announced.
1202         pub is_public: bool,
1203         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1204         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1205         pub inbound_htlc_minimum_msat: Option<u64>,
1206         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1207         pub inbound_htlc_maximum_msat: Option<u64>,
1208         /// Set of configurable parameters that affect channel operation.
1209         ///
1210         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1211         pub config: Option<ChannelConfig>,
1212 }
1213
1214 impl ChannelDetails {
1215         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1216         /// This should be used for providing invoice hints or in any other context where our
1217         /// counterparty will forward a payment to us.
1218         ///
1219         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1220         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1221         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1222                 self.inbound_scid_alias.or(self.short_channel_id)
1223         }
1224
1225         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1226         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1227         /// we're sending or forwarding a payment outbound over this channel.
1228         ///
1229         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1230         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1231         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1232                 self.short_channel_id.or(self.outbound_scid_alias)
1233         }
1234
1235         fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
1236                 best_block_height: u32, latest_features: InitFeatures) -> Self {
1237
1238                 let balance = channel.get_available_balances();
1239                 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1240                         channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1241                 ChannelDetails {
1242                         channel_id: channel.channel_id(),
1243                         counterparty: ChannelCounterparty {
1244                                 node_id: channel.get_counterparty_node_id(),
1245                                 features: latest_features,
1246                                 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1247                                 forwarding_info: channel.counterparty_forwarding_info(),
1248                                 // Ensures that we have actually received the `htlc_minimum_msat` value
1249                                 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1250                                 // message (as they are always the first message from the counterparty).
1251                                 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1252                                 // default `0` value set by `Channel::new_outbound`.
1253                                 outbound_htlc_minimum_msat: if channel.have_received_message() {
1254                                         Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1255                                 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1256                         },
1257                         funding_txo: channel.get_funding_txo(),
1258                         // Note that accept_channel (or open_channel) is always the first message, so
1259                         // `have_received_message` indicates that type negotiation has completed.
1260                         channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1261                         short_channel_id: channel.get_short_channel_id(),
1262                         outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1263                         inbound_scid_alias: channel.latest_inbound_scid_alias(),
1264                         channel_value_satoshis: channel.get_value_satoshis(),
1265                         unspendable_punishment_reserve: to_self_reserve_satoshis,
1266                         balance_msat: balance.balance_msat,
1267                         inbound_capacity_msat: balance.inbound_capacity_msat,
1268                         outbound_capacity_msat: balance.outbound_capacity_msat,
1269                         next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1270                         user_channel_id: channel.get_user_id(),
1271                         confirmations_required: channel.minimum_depth(),
1272                         confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1273                         force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1274                         is_outbound: channel.is_outbound(),
1275                         is_channel_ready: channel.is_usable(),
1276                         is_usable: channel.is_live(),
1277                         is_public: channel.should_announce(),
1278                         inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1279                         inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1280                         config: Some(channel.config()),
1281                 }
1282         }
1283 }
1284
1285 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1286 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1287 #[derive(Debug, PartialEq)]
1288 pub enum RecentPaymentDetails {
1289         /// When a payment is still being sent and awaiting successful delivery.
1290         Pending {
1291                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1292                 /// abandoned.
1293                 payment_hash: PaymentHash,
1294                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1295                 /// not just the amount currently inflight.
1296                 total_msat: u64,
1297         },
1298         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1299         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1300         /// payment is removed from tracking.
1301         Fulfilled {
1302                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1303                 /// made before LDK version 0.0.104.
1304                 payment_hash: Option<PaymentHash>,
1305         },
1306         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1307         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1308         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1309         Abandoned {
1310                 /// Hash of the payment that we have given up trying to send.
1311                 payment_hash: PaymentHash,
1312         },
1313 }
1314
1315 /// Route hints used in constructing invoices for [phantom node payents].
1316 ///
1317 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1318 #[derive(Clone)]
1319 pub struct PhantomRouteHints {
1320         /// The list of channels to be included in the invoice route hints.
1321         pub channels: Vec<ChannelDetails>,
1322         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1323         /// route hints.
1324         pub phantom_scid: u64,
1325         /// The pubkey of the real backing node that would ultimately receive the payment.
1326         pub real_node_pubkey: PublicKey,
1327 }
1328
1329 macro_rules! handle_error {
1330         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1331                 match $internal {
1332                         Ok(msg) => Ok(msg),
1333                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1334                                 // In testing, ensure there are no deadlocks where the lock is already held upon
1335                                 // entering the macro.
1336                                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1337                                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1338
1339                                 let mut msg_events = Vec::with_capacity(2);
1340
1341                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1342                                         $self.finish_force_close_channel(shutdown_res);
1343                                         if let Some(update) = update_option {
1344                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1345                                                         msg: update
1346                                                 });
1347                                         }
1348                                         if let Some((channel_id, user_channel_id)) = chan_id {
1349                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1350                                                         channel_id, user_channel_id,
1351                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1352                                                 });
1353                                         }
1354                                 }
1355
1356                                 log_error!($self.logger, "{}", err.err);
1357                                 if let msgs::ErrorAction::IgnoreError = err.action {
1358                                 } else {
1359                                         msg_events.push(events::MessageSendEvent::HandleError {
1360                                                 node_id: $counterparty_node_id,
1361                                                 action: err.action.clone()
1362                                         });
1363                                 }
1364
1365                                 if !msg_events.is_empty() {
1366                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1367                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1368                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1369                                                 peer_state.pending_msg_events.append(&mut msg_events);
1370                                         }
1371                                 }
1372
1373                                 // Return error in case higher-API need one
1374                                 Err(err)
1375                         },
1376                 }
1377         }
1378 }
1379
1380 macro_rules! update_maps_on_chan_removal {
1381         ($self: expr, $channel: expr) => {{
1382                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1383                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1384                 if let Some(short_id) = $channel.get_short_channel_id() {
1385                         short_to_chan_info.remove(&short_id);
1386                 } else {
1387                         // If the channel was never confirmed on-chain prior to its closure, remove the
1388                         // outbound SCID alias we used for it from the collision-prevention set. While we
1389                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1390                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1391                         // opening a million channels with us which are closed before we ever reach the funding
1392                         // stage.
1393                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1394                         debug_assert!(alias_removed);
1395                 }
1396                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1397         }}
1398 }
1399
1400 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1401 macro_rules! convert_chan_err {
1402         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1403                 match $err {
1404                         ChannelError::Warn(msg) => {
1405                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1406                         },
1407                         ChannelError::Ignore(msg) => {
1408                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1409                         },
1410                         ChannelError::Close(msg) => {
1411                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1412                                 update_maps_on_chan_removal!($self, $channel);
1413                                 let shutdown_res = $channel.force_shutdown(true);
1414                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1415                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1416                         },
1417                 }
1418         }
1419 }
1420
1421 macro_rules! break_chan_entry {
1422         ($self: ident, $res: expr, $entry: expr) => {
1423                 match $res {
1424                         Ok(res) => res,
1425                         Err(e) => {
1426                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1427                                 if drop {
1428                                         $entry.remove_entry();
1429                                 }
1430                                 break Err(res);
1431                         }
1432                 }
1433         }
1434 }
1435
1436 macro_rules! try_chan_entry {
1437         ($self: ident, $res: expr, $entry: expr) => {
1438                 match $res {
1439                         Ok(res) => res,
1440                         Err(e) => {
1441                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1442                                 if drop {
1443                                         $entry.remove_entry();
1444                                 }
1445                                 return Err(res);
1446                         }
1447                 }
1448         }
1449 }
1450
1451 macro_rules! remove_channel {
1452         ($self: expr, $entry: expr) => {
1453                 {
1454                         let channel = $entry.remove_entry().1;
1455                         update_maps_on_chan_removal!($self, channel);
1456                         channel
1457                 }
1458         }
1459 }
1460
1461 macro_rules! send_channel_ready {
1462         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1463                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1464                         node_id: $channel.get_counterparty_node_id(),
1465                         msg: $channel_ready_msg,
1466                 });
1467                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1468                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1469                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1470                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1471                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1472                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1473                 if let Some(real_scid) = $channel.get_short_channel_id() {
1474                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1475                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1476                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1477                 }
1478         }}
1479 }
1480
1481 macro_rules! emit_channel_ready_event {
1482         ($self: expr, $channel: expr) => {
1483                 if $channel.should_emit_channel_ready_event() {
1484                         {
1485                                 let mut pending_events = $self.pending_events.lock().unwrap();
1486                                 pending_events.push(events::Event::ChannelReady {
1487                                         channel_id: $channel.channel_id(),
1488                                         user_channel_id: $channel.get_user_id(),
1489                                         counterparty_node_id: $channel.get_counterparty_node_id(),
1490                                         channel_type: $channel.get_channel_type().clone(),
1491                                 });
1492                         }
1493                         $channel.set_channel_ready_event_emitted();
1494                 }
1495         }
1496 }
1497
1498 macro_rules! handle_monitor_update_completion {
1499         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1500                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1501                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1502                         $self.best_block.read().unwrap().height());
1503                 let counterparty_node_id = $chan.get_counterparty_node_id();
1504                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1505                         // We only send a channel_update in the case where we are just now sending a
1506                         // channel_ready and the channel is in a usable state. We may re-send a
1507                         // channel_update later through the announcement_signatures process for public
1508                         // channels, but there's no reason not to just inform our counterparty of our fees
1509                         // now.
1510                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1511                                 Some(events::MessageSendEvent::SendChannelUpdate {
1512                                         node_id: counterparty_node_id,
1513                                         msg,
1514                                 })
1515                         } else { None }
1516                 } else { None };
1517
1518                 let update_actions = $peer_state.monitor_update_blocked_actions
1519                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1520
1521                 let htlc_forwards = $self.handle_channel_resumption(
1522                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1523                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1524                         updates.funding_broadcastable, updates.channel_ready,
1525                         updates.announcement_sigs);
1526                 if let Some(upd) = channel_update {
1527                         $peer_state.pending_msg_events.push(upd);
1528                 }
1529
1530                 let channel_id = $chan.channel_id();
1531                 core::mem::drop($peer_state_lock);
1532                 core::mem::drop($per_peer_state_lock);
1533
1534                 $self.handle_monitor_update_completion_actions(update_actions);
1535
1536                 if let Some(forwards) = htlc_forwards {
1537                         $self.forward_htlcs(&mut [forwards][..]);
1538                 }
1539                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1540                 for failure in updates.failed_htlcs.drain(..) {
1541                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1542                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1543                 }
1544         } }
1545 }
1546
1547 macro_rules! handle_new_monitor_update {
1548         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1549                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1550                 // any case so that it won't deadlock.
1551                 debug_assert!($self.id_to_peer.try_lock().is_ok());
1552                 match $update_res {
1553                         ChannelMonitorUpdateStatus::InProgress => {
1554                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1555                                         log_bytes!($chan.channel_id()[..]));
1556                                 Ok(())
1557                         },
1558                         ChannelMonitorUpdateStatus::PermanentFailure => {
1559                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1560                                         log_bytes!($chan.channel_id()[..]));
1561                                 update_maps_on_chan_removal!($self, $chan);
1562                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1563                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1564                                         $chan.get_user_id(), $chan.force_shutdown(false),
1565                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1566                                 $remove;
1567                                 res
1568                         },
1569                         ChannelMonitorUpdateStatus::Completed => {
1570                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1571                                         .expect("We can't be processing a monitor update if it isn't queued")
1572                                         .update_id == $update_id) &&
1573                                         $chan.get_latest_monitor_update_id() == $update_id
1574                                 {
1575                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1576                                 }
1577                                 Ok(())
1578                         },
1579                 }
1580         } };
1581         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1582                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1583         }
1584 }
1585
1586 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1587 where
1588         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1589         T::Target: BroadcasterInterface,
1590         ES::Target: EntropySource,
1591         NS::Target: NodeSigner,
1592         SP::Target: SignerProvider,
1593         F::Target: FeeEstimator,
1594         R::Target: Router,
1595         L::Target: Logger,
1596 {
1597         /// Constructs a new `ChannelManager` to hold several channels and route between them.
1598         ///
1599         /// This is the main "logic hub" for all channel-related actions, and implements
1600         /// [`ChannelMessageHandler`].
1601         ///
1602         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1603         ///
1604         /// Users need to notify the new `ChannelManager` when a new block is connected or
1605         /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
1606         /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
1607         /// more details.
1608         ///
1609         /// [`block_connected`]: chain::Listen::block_connected
1610         /// [`block_disconnected`]: chain::Listen::block_disconnected
1611         /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
1612         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1613                 let mut secp_ctx = Secp256k1::new();
1614                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1615                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1616                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1617                 ChannelManager {
1618                         default_configuration: config.clone(),
1619                         genesis_hash: genesis_block(params.network).header.block_hash(),
1620                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1621                         chain_monitor,
1622                         tx_broadcaster,
1623                         router,
1624
1625                         best_block: RwLock::new(params.best_block),
1626
1627                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1628                         pending_inbound_payments: Mutex::new(HashMap::new()),
1629                         pending_outbound_payments: OutboundPayments::new(),
1630                         forward_htlcs: Mutex::new(HashMap::new()),
1631                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1632                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1633                         id_to_peer: Mutex::new(HashMap::new()),
1634                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1635
1636                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1637                         secp_ctx,
1638
1639                         inbound_payment_key: expanded_inbound_key,
1640                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1641
1642                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1643
1644                         highest_seen_timestamp: AtomicUsize::new(0),
1645
1646                         per_peer_state: FairRwLock::new(HashMap::new()),
1647
1648                         pending_events: Mutex::new(Vec::new()),
1649                         pending_background_events: Mutex::new(Vec::new()),
1650                         total_consistency_lock: RwLock::new(()),
1651                         persistence_notifier: Notifier::new(),
1652
1653                         entropy_source,
1654                         node_signer,
1655                         signer_provider,
1656
1657                         logger,
1658                 }
1659         }
1660
1661         /// Gets the current configuration applied to all new channels.
1662         pub fn get_current_default_configuration(&self) -> &UserConfig {
1663                 &self.default_configuration
1664         }
1665
1666         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1667                 let height = self.best_block.read().unwrap().height();
1668                 let mut outbound_scid_alias = 0;
1669                 let mut i = 0;
1670                 loop {
1671                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1672                                 outbound_scid_alias += 1;
1673                         } else {
1674                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1675                         }
1676                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1677                                 break;
1678                         }
1679                         i += 1;
1680                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1681                 }
1682                 outbound_scid_alias
1683         }
1684
1685         /// Creates a new outbound channel to the given remote node and with the given value.
1686         ///
1687         /// `user_channel_id` will be provided back as in
1688         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1689         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1690         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1691         /// is simply copied to events and otherwise ignored.
1692         ///
1693         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1694         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1695         ///
1696         /// Note that we do not check if you are currently connected to the given peer. If no
1697         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1698         /// the channel eventually being silently forgotten (dropped on reload).
1699         ///
1700         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1701         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1702         /// [`ChannelDetails::channel_id`] until after
1703         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1704         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1705         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1706         ///
1707         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1708         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1709         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1710         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1711                 if channel_value_satoshis < 1000 {
1712                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1713                 }
1714
1715                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1716                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1717                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1718
1719                 let per_peer_state = self.per_peer_state.read().unwrap();
1720
1721                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1722                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1723
1724                 let mut peer_state = peer_state_mutex.lock().unwrap();
1725                 let channel = {
1726                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1727                         let their_features = &peer_state.latest_features;
1728                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1729                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1730                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1731                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1732                         {
1733                                 Ok(res) => res,
1734                                 Err(e) => {
1735                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1736                                         return Err(e);
1737                                 },
1738                         }
1739                 };
1740                 let res = channel.get_open_channel(self.genesis_hash.clone());
1741
1742                 let temporary_channel_id = channel.channel_id();
1743                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1744                         hash_map::Entry::Occupied(_) => {
1745                                 if cfg!(fuzzing) {
1746                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1747                                 } else {
1748                                         panic!("RNG is bad???");
1749                                 }
1750                         },
1751                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1752                 }
1753
1754                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1755                         node_id: their_network_key,
1756                         msg: res,
1757                 });
1758                 Ok(temporary_channel_id)
1759         }
1760
1761         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1762                 // Allocate our best estimate of the number of channels we have in the `res`
1763                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1764                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1765                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1766                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1767                 // the same channel.
1768                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1769                 {
1770                         let best_block_height = self.best_block.read().unwrap().height();
1771                         let per_peer_state = self.per_peer_state.read().unwrap();
1772                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1773                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1774                                 let peer_state = &mut *peer_state_lock;
1775                                 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1776                                         let details = ChannelDetails::from_channel(channel, best_block_height,
1777                                                 peer_state.latest_features.clone());
1778                                         res.push(details);
1779                                 }
1780                         }
1781                 }
1782                 res
1783         }
1784
1785         /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
1786         /// more information.
1787         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1788                 self.list_channels_with_filter(|_| true)
1789         }
1790
1791         /// Gets the list of usable channels, in random order. Useful as an argument to
1792         /// [`Router::find_route`] to ensure non-announced channels are used.
1793         ///
1794         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1795         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1796         /// are.
1797         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1798                 // Note we use is_live here instead of usable which leads to somewhat confused
1799                 // internal/external nomenclature, but that's ok cause that's probably what the user
1800                 // really wanted anyway.
1801                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1802         }
1803
1804         /// Gets the list of channels we have with a given counterparty, in random order.
1805         pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
1806                 let best_block_height = self.best_block.read().unwrap().height();
1807                 let per_peer_state = self.per_peer_state.read().unwrap();
1808
1809                 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
1810                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1811                         let peer_state = &mut *peer_state_lock;
1812                         let features = &peer_state.latest_features;
1813                         return peer_state.channel_by_id
1814                                 .iter()
1815                                 .map(|(_, channel)|
1816                                         ChannelDetails::from_channel(channel, best_block_height, features.clone()))
1817                                 .collect();
1818                 }
1819                 vec![]
1820         }
1821
1822         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1823         /// successful path, or have unresolved HTLCs.
1824         ///
1825         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1826         /// result of a crash. If such a payment exists, is not listed here, and an
1827         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1828         ///
1829         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1830         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1831                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1832                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1833                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1834                                         Some(RecentPaymentDetails::Pending {
1835                                                 payment_hash: *payment_hash,
1836                                                 total_msat: *total_msat,
1837                                         })
1838                                 },
1839                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1840                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1841                                 },
1842                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1843                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1844                                 },
1845                                 PendingOutboundPayment::Legacy { .. } => None
1846                         })
1847                         .collect()
1848         }
1849
1850         /// Helper function that issues the channel close events
1851         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1852                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1853                 match channel.unbroadcasted_funding() {
1854                         Some(transaction) => {
1855                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1856                         },
1857                         None => {},
1858                 }
1859                 pending_events_lock.push(events::Event::ChannelClosed {
1860                         channel_id: channel.channel_id(),
1861                         user_channel_id: channel.get_user_id(),
1862                         reason: closure_reason
1863                 });
1864         }
1865
1866         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1867                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1868
1869                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1870                 let result: Result<(), _> = loop {
1871                         let per_peer_state = self.per_peer_state.read().unwrap();
1872
1873                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1874                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
1875
1876                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1877                         let peer_state = &mut *peer_state_lock;
1878                         match peer_state.channel_by_id.entry(channel_id.clone()) {
1879                                 hash_map::Entry::Occupied(mut chan_entry) => {
1880                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
1881                                         let their_features = &peer_state.latest_features;
1882                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
1883                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
1884                                         failed_htlcs = htlcs;
1885
1886                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
1887                                         // here as we don't need the monitor update to complete until we send a
1888                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
1889                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1890                                                 node_id: *counterparty_node_id,
1891                                                 msg: shutdown_msg,
1892                                         });
1893
1894                                         // Update the monitor with the shutdown script if necessary.
1895                                         if let Some(monitor_update) = monitor_update_opt.take() {
1896                                                 let update_id = monitor_update.update_id;
1897                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
1898                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
1899                                         }
1900
1901                                         if chan_entry.get().is_shutdown() {
1902                                                 let channel = remove_channel!(self, chan_entry);
1903                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1904                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1905                                                                 msg: channel_update
1906                                                         });
1907                                                 }
1908                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1909                                         }
1910                                         break Ok(());
1911                                 },
1912                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
1913                         }
1914                 };
1915
1916                 for htlc_source in failed_htlcs.drain(..) {
1917                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1918                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1919                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
1920                 }
1921
1922                 let _ = handle_error!(self, result, *counterparty_node_id);
1923                 Ok(())
1924         }
1925
1926         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1927         /// will be accepted on the given channel, and after additional timeout/the closing of all
1928         /// pending HTLCs, the channel will be closed on chain.
1929         ///
1930         ///  * If we are the channel initiator, we will pay between our [`Background`] and
1931         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1932         ///    estimate.
1933         ///  * If our counterparty is the channel initiator, we will require a channel closing
1934         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
1935         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
1936         ///    counterparty to pay as much fee as they'd like, however.
1937         ///
1938         /// May generate a [`SendShutdown`] message event on success, which should be relayed.
1939         ///
1940         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1941         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1942         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1943         /// [`SendShutdown`]: crate::util::events::MessageSendEvent::SendShutdown
1944         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1945                 self.close_channel_internal(channel_id, counterparty_node_id, None)
1946         }
1947
1948         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1949         /// will be accepted on the given channel, and after additional timeout/the closing of all
1950         /// pending HTLCs, the channel will be closed on chain.
1951         ///
1952         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1953         /// the channel being closed or not:
1954         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
1955         ///    transaction. The upper-bound is set by
1956         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1957         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1958         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1959         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1960         ///    will appear on a force-closure transaction, whichever is lower).
1961         ///
1962         /// May generate a [`SendShutdown`] message event on success, which should be relayed.
1963         ///
1964         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1965         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1966         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1967         /// [`SendShutdown`]: crate::util::events::MessageSendEvent::SendShutdown
1968         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1969                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1970         }
1971
1972         #[inline]
1973         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1974                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1975                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1976                 for htlc_source in failed_htlcs.drain(..) {
1977                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
1978                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1979                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1980                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
1981                 }
1982                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1983                         // There isn't anything we can do if we get an update failure - we're already
1984                         // force-closing. The monitor update on the required in-memory copy should broadcast
1985                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1986                         // ignore the result here.
1987                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
1988                 }
1989         }
1990
1991         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1992         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1993         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
1994         -> Result<PublicKey, APIError> {
1995                 let per_peer_state = self.per_peer_state.read().unwrap();
1996                 let peer_state_mutex = per_peer_state.get(peer_node_id)
1997                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
1998                 let mut chan = {
1999                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2000                         let peer_state = &mut *peer_state_lock;
2001                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
2002                                 if let Some(peer_msg) = peer_msg {
2003                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
2004                                 } else {
2005                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
2006                                 }
2007                                 remove_channel!(self, chan)
2008                         } else {
2009                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2010                         }
2011                 };
2012                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2013                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2014                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2015                         let mut peer_state = peer_state_mutex.lock().unwrap();
2016                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2017                                 msg: update
2018                         });
2019                 }
2020
2021                 Ok(chan.get_counterparty_node_id())
2022         }
2023
2024         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2025                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2026                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2027                         Ok(counterparty_node_id) => {
2028                                 let per_peer_state = self.per_peer_state.read().unwrap();
2029                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2030                                         let mut peer_state = peer_state_mutex.lock().unwrap();
2031                                         peer_state.pending_msg_events.push(
2032                                                 events::MessageSendEvent::HandleError {
2033                                                         node_id: counterparty_node_id,
2034                                                         action: msgs::ErrorAction::SendErrorMessage {
2035                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2036                                                         },
2037                                                 }
2038                                         );
2039                                 }
2040                                 Ok(())
2041                         },
2042                         Err(e) => Err(e)
2043                 }
2044         }
2045
2046         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2047         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2048         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2049         /// channel.
2050         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2051         -> Result<(), APIError> {
2052                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2053         }
2054
2055         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2056         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2057         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2058         ///
2059         /// You can always get the latest local transaction(s) to broadcast from
2060         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2061         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2062         -> Result<(), APIError> {
2063                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2064         }
2065
2066         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2067         /// for each to the chain and rejecting new HTLCs on each.
2068         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2069                 for chan in self.list_channels() {
2070                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2071                 }
2072         }
2073
2074         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2075         /// local transaction(s).
2076         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2077                 for chan in self.list_channels() {
2078                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2079                 }
2080         }
2081
2082         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2083                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2084         {
2085                 // final_incorrect_cltv_expiry
2086                 if hop_data.outgoing_cltv_value != cltv_expiry {
2087                         return Err(ReceiveError {
2088                                 msg: "Upstream node set CLTV to the wrong value",
2089                                 err_code: 18,
2090                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2091                         })
2092                 }
2093                 // final_expiry_too_soon
2094                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2095                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2096                 //
2097                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2098                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2099                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2100                 let current_height: u32 = self.best_block.read().unwrap().height();
2101                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2102                         let mut err_data = Vec::with_capacity(12);
2103                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2104                         err_data.extend_from_slice(&current_height.to_be_bytes());
2105                         return Err(ReceiveError {
2106                                 err_code: 0x4000 | 15, err_data,
2107                                 msg: "The final CLTV expiry is too soon to handle",
2108                         });
2109                 }
2110                 if hop_data.amt_to_forward > amt_msat {
2111                         return Err(ReceiveError {
2112                                 err_code: 19,
2113                                 err_data: amt_msat.to_be_bytes().to_vec(),
2114                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2115                         });
2116                 }
2117
2118                 let routing = match hop_data.format {
2119                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2120                                 return Err(ReceiveError {
2121                                         err_code: 0x4000|22,
2122                                         err_data: Vec::new(),
2123                                         msg: "Got non final data with an HMAC of 0",
2124                                 });
2125                         },
2126                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2127                                 if payment_data.is_some() && keysend_preimage.is_some() {
2128                                         return Err(ReceiveError {
2129                                                 err_code: 0x4000|22,
2130                                                 err_data: Vec::new(),
2131                                                 msg: "We don't support MPP keysend payments",
2132                                         });
2133                                 } else if let Some(data) = payment_data {
2134                                         PendingHTLCRouting::Receive {
2135                                                 payment_data: data,
2136                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2137                                                 phantom_shared_secret,
2138                                         }
2139                                 } else if let Some(payment_preimage) = keysend_preimage {
2140                                         // We need to check that the sender knows the keysend preimage before processing this
2141                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2142                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2143                                         // with a keysend payment of identical payment hash to X and observing the processing
2144                                         // time discrepancies due to a hash collision with X.
2145                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2146                                         if hashed_preimage != payment_hash {
2147                                                 return Err(ReceiveError {
2148                                                         err_code: 0x4000|22,
2149                                                         err_data: Vec::new(),
2150                                                         msg: "Payment preimage didn't match payment hash",
2151                                                 });
2152                                         }
2153
2154                                         PendingHTLCRouting::ReceiveKeysend {
2155                                                 payment_preimage,
2156                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2157                                         }
2158                                 } else {
2159                                         return Err(ReceiveError {
2160                                                 err_code: 0x4000|0x2000|3,
2161                                                 err_data: Vec::new(),
2162                                                 msg: "We require payment_secrets",
2163                                         });
2164                                 }
2165                         },
2166                 };
2167                 Ok(PendingHTLCInfo {
2168                         routing,
2169                         payment_hash,
2170                         incoming_shared_secret: shared_secret,
2171                         incoming_amt_msat: Some(amt_msat),
2172                         outgoing_amt_msat: amt_msat,
2173                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2174                 })
2175         }
2176
2177         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2178                 macro_rules! return_malformed_err {
2179                         ($msg: expr, $err_code: expr) => {
2180                                 {
2181                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2182                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2183                                                 channel_id: msg.channel_id,
2184                                                 htlc_id: msg.htlc_id,
2185                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2186                                                 failure_code: $err_code,
2187                                         }));
2188                                 }
2189                         }
2190                 }
2191
2192                 if let Err(_) = msg.onion_routing_packet.public_key {
2193                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2194                 }
2195
2196                 let shared_secret = self.node_signer.ecdh(
2197                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2198                 ).unwrap().secret_bytes();
2199
2200                 if msg.onion_routing_packet.version != 0 {
2201                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2202                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2203                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2204                         //receiving node would have to brute force to figure out which version was put in the
2205                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2206                         //node knows the HMAC matched, so they already know what is there...
2207                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2208                 }
2209                 macro_rules! return_err {
2210                         ($msg: expr, $err_code: expr, $data: expr) => {
2211                                 {
2212                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2213                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2214                                                 channel_id: msg.channel_id,
2215                                                 htlc_id: msg.htlc_id,
2216                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2217                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2218                                         }));
2219                                 }
2220                         }
2221                 }
2222
2223                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2224                         Ok(res) => res,
2225                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2226                                 return_malformed_err!(err_msg, err_code);
2227                         },
2228                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2229                                 return_err!(err_msg, err_code, &[0; 0]);
2230                         },
2231                 };
2232
2233                 let pending_forward_info = match next_hop {
2234                         onion_utils::Hop::Receive(next_hop_data) => {
2235                                 // OUR PAYMENT!
2236                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2237                                         Ok(info) => {
2238                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2239                                                 // message, however that would leak that we are the recipient of this payment, so
2240                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2241                                                 // delay) once they've send us a commitment_signed!
2242                                                 PendingHTLCStatus::Forward(info)
2243                                         },
2244                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2245                                 }
2246                         },
2247                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2248                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2249                                 let outgoing_packet = msgs::OnionPacket {
2250                                         version: 0,
2251                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2252                                         hop_data: new_packet_bytes,
2253                                         hmac: next_hop_hmac.clone(),
2254                                 };
2255
2256                                 let short_channel_id = match next_hop_data.format {
2257                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2258                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2259                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2260                                         },
2261                                 };
2262
2263                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2264                                         routing: PendingHTLCRouting::Forward {
2265                                                 onion_packet: outgoing_packet,
2266                                                 short_channel_id,
2267                                         },
2268                                         payment_hash: msg.payment_hash.clone(),
2269                                         incoming_shared_secret: shared_secret,
2270                                         incoming_amt_msat: Some(msg.amount_msat),
2271                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2272                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2273                                 })
2274                         }
2275                 };
2276
2277                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2278                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2279                         // with a short_channel_id of 0. This is important as various things later assume
2280                         // short_channel_id is non-0 in any ::Forward.
2281                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2282                                 if let Some((err, mut code, chan_update)) = loop {
2283                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2284                                         let forwarding_chan_info_opt = match id_option {
2285                                                 None => { // unknown_next_peer
2286                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2287                                                         // phantom or an intercept.
2288                                                         if (self.default_configuration.accept_intercept_htlcs &&
2289                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2290                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2291                                                         {
2292                                                                 None
2293                                                         } else {
2294                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2295                                                         }
2296                                                 },
2297                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2298                                         };
2299                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2300                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2301                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2302                                                 if peer_state_mutex_opt.is_none() {
2303                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2304                                                 }
2305                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2306                                                 let peer_state = &mut *peer_state_lock;
2307                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2308                                                         None => {
2309                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2310                                                                 // have no consistency guarantees.
2311                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2312                                                         },
2313                                                         Some(chan) => chan
2314                                                 };
2315                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2316                                                         // Note that the behavior here should be identical to the above block - we
2317                                                         // should NOT reveal the existence or non-existence of a private channel if
2318                                                         // we don't allow forwards outbound over them.
2319                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2320                                                 }
2321                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2322                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2323                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2324                                                         // we don't have the channel here.
2325                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2326                                                 }
2327                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2328
2329                                                 // Note that we could technically not return an error yet here and just hope
2330                                                 // that the connection is reestablished or monitor updated by the time we get
2331                                                 // around to doing the actual forward, but better to fail early if we can and
2332                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2333                                                 // on a small/per-node/per-channel scale.
2334                                                 if !chan.is_live() { // channel_disabled
2335                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2336                                                 }
2337                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2338                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2339                                                 }
2340                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2341                                                         break Some((err, code, chan_update_opt));
2342                                                 }
2343                                                 chan_update_opt
2344                                         } else {
2345                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2346                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2347                                                         // forwarding over a real channel we can't generate a channel_update
2348                                                         // for it. Instead we just return a generic temporary_node_failure.
2349                                                         break Some((
2350                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2351                                                                 0x2000 | 2, None,
2352                                                         ));
2353                                                 }
2354                                                 None
2355                                         };
2356
2357                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2358                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2359                                         // but we want to be robust wrt to counterparty packet sanitization (see
2360                                         // HTLC_FAIL_BACK_BUFFER rationale).
2361                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2362                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2363                                         }
2364                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2365                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2366                                         }
2367                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2368                                         // counterparty. They should fail it anyway, but we don't want to bother with
2369                                         // the round-trips or risk them deciding they definitely want the HTLC and
2370                                         // force-closing to ensure they get it if we're offline.
2371                                         // We previously had a much more aggressive check here which tried to ensure
2372                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2373                                         // but there is no need to do that, and since we're a bit conservative with our
2374                                         // risk threshold it just results in failing to forward payments.
2375                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2376                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2377                                         }
2378
2379                                         break None;
2380                                 }
2381                                 {
2382                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2383                                         if let Some(chan_update) = chan_update {
2384                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2385                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2386                                                 }
2387                                                 else if code == 0x1000 | 13 {
2388                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2389                                                 }
2390                                                 else if code == 0x1000 | 20 {
2391                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2392                                                         0u16.write(&mut res).expect("Writes cannot fail");
2393                                                 }
2394                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2395                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2396                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2397                                         } else if code & 0x1000 == 0x1000 {
2398                                                 // If we're trying to return an error that requires a `channel_update` but
2399                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2400                                                 // generate an update), just use the generic "temporary_node_failure"
2401                                                 // instead.
2402                                                 code = 0x2000 | 2;
2403                                         }
2404                                         return_err!(err, code, &res.0[..]);
2405                                 }
2406                         }
2407                 }
2408
2409                 pending_forward_info
2410         }
2411
2412         /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
2413         /// public, and thus should be called whenever the result is going to be passed out in a
2414         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2415         ///
2416         /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
2417         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2418         /// storage and the `peer_state` lock has been dropped.
2419         ///
2420         /// [`channel_update`]: msgs::ChannelUpdate
2421         /// [`internal_closing_signed`]: Self::internal_closing_signed
2422         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2423                 if !chan.should_announce() {
2424                         return Err(LightningError {
2425                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2426                                 action: msgs::ErrorAction::IgnoreError
2427                         });
2428                 }
2429                 if chan.get_short_channel_id().is_none() {
2430                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2431                 }
2432                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2433                 self.get_channel_update_for_unicast(chan)
2434         }
2435
2436         /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
2437         /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
2438         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2439         /// provided evidence that they know about the existence of the channel.
2440         ///
2441         /// Note that through [`internal_closing_signed`], this function is called without the
2442         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2443         /// removed from the storage and the `peer_state` lock has been dropped.
2444         ///
2445         /// [`channel_update`]: msgs::ChannelUpdate
2446         /// [`internal_closing_signed`]: Self::internal_closing_signed
2447         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2448                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2449                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2450                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2451                         Some(id) => id,
2452                 };
2453
2454                 self.get_channel_update_for_onion(short_channel_id, chan)
2455         }
2456         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2457                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2458                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2459
2460                 let unsigned = msgs::UnsignedChannelUpdate {
2461                         chain_hash: self.genesis_hash,
2462                         short_channel_id,
2463                         timestamp: chan.get_update_time_counter(),
2464                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2465                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2466                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2467                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2468                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2469                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2470                         excess_data: Vec::new(),
2471                 };
2472                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2473                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2474                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2475                 // channel.
2476                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2477
2478                 Ok(msgs::ChannelUpdate {
2479                         signature: sig,
2480                         contents: unsigned
2481                 })
2482         }
2483
2484         #[cfg(test)]
2485         pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2486                 let _lck = self.total_consistency_lock.read().unwrap();
2487                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2488         }
2489
2490         fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2491                 // The top-level caller should hold the total_consistency_lock read lock.
2492                 debug_assert!(self.total_consistency_lock.try_write().is_err());
2493
2494                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2495                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2496                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2497
2498                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2499                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2500                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2501                 if onion_utils::route_size_insane(&onion_payloads) {
2502                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2503                 }
2504                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2505
2506                 let err: Result<(), _> = loop {
2507                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2508                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2509                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2510                         };
2511
2512                         let per_peer_state = self.per_peer_state.read().unwrap();
2513                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2514                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2515                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2516                         let peer_state = &mut *peer_state_lock;
2517                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2518                                 if !chan.get().is_live() {
2519                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2520                                 }
2521                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2522                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2523                                         htlc_cltv, HTLCSource::OutboundRoute {
2524                                                 path: path.clone(),
2525                                                 session_priv: session_priv.clone(),
2526                                                 first_hop_htlc_msat: htlc_msat,
2527                                                 payment_id,
2528                                                 payment_secret: payment_secret.clone(),
2529                                         }, onion_packet, &self.logger);
2530                                 match break_chan_entry!(self, send_res, chan) {
2531                                         Some(monitor_update) => {
2532                                                 let update_id = monitor_update.update_id;
2533                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2534                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2535                                                         break Err(e);
2536                                                 }
2537                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2538                                                         // Note that MonitorUpdateInProgress here indicates (per function
2539                                                         // docs) that we will resend the commitment update once monitor
2540                                                         // updating completes. Therefore, we must return an error
2541                                                         // indicating that it is unsafe to retry the payment wholesale,
2542                                                         // which we do in the send_payment check for
2543                                                         // MonitorUpdateInProgress, below.
2544                                                         return Err(APIError::MonitorUpdateInProgress);
2545                                                 }
2546                                         },
2547                                         None => { },
2548                                 }
2549                         } else {
2550                                 // The channel was likely removed after we fetched the id from the
2551                                 // `short_to_chan_info` map, but before we successfully locked the
2552                                 // `channel_by_id` map.
2553                                 // This can occur as no consistency guarantees exists between the two maps.
2554                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2555                         }
2556                         return Ok(());
2557                 };
2558
2559                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2560                         Ok(_) => unreachable!(),
2561                         Err(e) => {
2562                                 Err(APIError::ChannelUnavailable { err: e.err })
2563                         },
2564                 }
2565         }
2566
2567         /// Sends a payment along a given route.
2568         ///
2569         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2570         /// fields for more info.
2571         ///
2572         /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
2573         /// [`PeerManager::process_events`]).
2574         ///
2575         /// # Avoiding Duplicate Payments
2576         ///
2577         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2578         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2579         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2580         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2581         /// second payment with the same [`PaymentId`].
2582         ///
2583         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2584         /// tracking of payments, including state to indicate once a payment has completed. Because you
2585         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2586         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2587         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2588         ///
2589         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2590         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2591         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2592         /// [`ChannelManager::list_recent_payments`] for more information.
2593         ///
2594         /// # Possible Error States on [`PaymentSendFailure`]
2595         ///
2596         /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
2597         /// each entry matching the corresponding-index entry in the route paths, see
2598         /// [`PaymentSendFailure`] for more info.
2599         ///
2600         /// In general, a path may raise:
2601         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2602         ///    node public key) is specified.
2603         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2604         ///    (including due to previous monitor update failure or new permanent monitor update
2605         ///    failure).
2606         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2607         ///    relevant updates.
2608         ///
2609         /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
2610         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2611         /// different route unless you intend to pay twice!
2612         ///
2613         /// # A caution on `payment_secret`
2614         ///
2615         /// `payment_secret` is unrelated to `payment_hash` (or [`PaymentPreimage`]) and exists to
2616         /// authenticate the sender to the recipient and prevent payment-probing (deanonymization)
2617         /// attacks. For newer nodes, it will be provided to you in the invoice. If you do not have one,
2618         /// the [`Route`] must not contain multiple paths as multi-path payments require a
2619         /// recipient-provided `payment_secret`.
2620         ///
2621         /// If a `payment_secret` *is* provided, we assume that the invoice had the payment_secret
2622         /// feature bit set (either as required or as available). If multiple paths are present in the
2623         /// [`Route`], we assume the invoice had the basic_mpp feature set.
2624         ///
2625         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2626         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2627         /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
2628         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2629         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2630         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2631                 let best_block_height = self.best_block.read().unwrap().height();
2632                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2633                 self.pending_outbound_payments
2634                         .send_payment_with_route(route, payment_hash, payment_secret, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2635                                 |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2636                                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2637         }
2638
2639         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2640         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2641         pub fn send_payment_with_retry(&self, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2642                 let best_block_height = self.best_block.read().unwrap().height();
2643                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2644                 self.pending_outbound_payments
2645                         .send_payment(payment_hash, payment_secret, payment_id, retry_strategy, route_params,
2646                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2647                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2648                                 &self.pending_events,
2649                                 |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2650                                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2651         }
2652
2653         #[cfg(test)]
2654         fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2655                 let best_block_height = self.best_block.read().unwrap().height();
2656                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2657                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, payment_secret, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2658                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2659                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2660         }
2661
2662         #[cfg(test)]
2663         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2664                 let best_block_height = self.best_block.read().unwrap().height();
2665                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, payment_secret, payment_id, route, None, &self.entropy_source, best_block_height)
2666         }
2667
2668
2669         /// Signals that no further retries for the given payment should occur. Useful if you have a
2670         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2671         /// retries are exhausted.
2672         ///
2673         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2674         /// as there are no remaining pending HTLCs for this payment.
2675         ///
2676         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2677         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2678         /// determine the ultimate status of a payment.
2679         ///
2680         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2681         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2682         ///
2683         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2684         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2685         pub fn abandon_payment(&self, payment_id: PaymentId) {
2686                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2687                 self.pending_outbound_payments.abandon_payment(payment_id, &self.pending_events);
2688         }
2689
2690         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2691         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2692         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2693         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2694         /// never reach the recipient.
2695         ///
2696         /// See [`send_payment`] documentation for more details on the return value of this function
2697         /// and idempotency guarantees provided by the [`PaymentId`] key.
2698         ///
2699         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2700         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2701         ///
2702         /// Note that `route` must have exactly one path.
2703         ///
2704         /// [`send_payment`]: Self::send_payment
2705         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2706                 let best_block_height = self.best_block.read().unwrap().height();
2707                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2708                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2709                         route, payment_preimage, payment_id, &self.entropy_source, &self.node_signer,
2710                         best_block_height,
2711                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2712                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2713         }
2714
2715         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2716         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2717         ///
2718         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2719         /// payments.
2720         ///
2721         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2722         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2723                 let best_block_height = self.best_block.read().unwrap().height();
2724                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2725                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, payment_id,
2726                         retry_strategy, route_params, &self.router, self.list_usable_channels(),
2727                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2728                         &self.logger, &self.pending_events,
2729                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2730                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2731         }
2732
2733         /// Send a payment that is probing the given route for liquidity. We calculate the
2734         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2735         /// us to easily discern them from real payments.
2736         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2737                 let best_block_height = self.best_block.read().unwrap().height();
2738                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2739                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2740                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2741                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2742         }
2743
2744         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2745         /// payment probe.
2746         #[cfg(test)]
2747         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2748                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2749         }
2750
2751         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2752         /// which checks the correctness of the funding transaction given the associated channel.
2753         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2754                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2755         ) -> Result<(), APIError> {
2756                 let per_peer_state = self.per_peer_state.read().unwrap();
2757                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2758                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2759
2760                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2761                 let peer_state = &mut *peer_state_lock;
2762                 let (chan, msg) = {
2763                         let (res, chan) = {
2764                                 match peer_state.channel_by_id.remove(temporary_channel_id) {
2765                                         Some(mut chan) => {
2766                                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2767
2768                                                 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2769                                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2770                                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2771                                                         } else { unreachable!(); })
2772                                                 , chan)
2773                                         },
2774                                         None => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }) },
2775                                 }
2776                         };
2777                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
2778                                 Ok(funding_msg) => {
2779                                         (chan, funding_msg)
2780                                 },
2781                                 Err(_) => { return Err(APIError::ChannelUnavailable {
2782                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2783                                 }) },
2784                         }
2785                 };
2786
2787                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2788                         node_id: chan.get_counterparty_node_id(),
2789                         msg,
2790                 });
2791                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2792                         hash_map::Entry::Occupied(_) => {
2793                                 panic!("Generated duplicate funding txid?");
2794                         },
2795                         hash_map::Entry::Vacant(e) => {
2796                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2797                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2798                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2799                                 }
2800                                 e.insert(chan);
2801                         }
2802                 }
2803                 Ok(())
2804         }
2805
2806         #[cfg(test)]
2807         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2808                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2809                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2810                 })
2811         }
2812
2813         /// Call this upon creation of a funding transaction for the given channel.
2814         ///
2815         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2816         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2817         ///
2818         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2819         /// across the p2p network.
2820         ///
2821         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2822         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2823         ///
2824         /// May panic if the output found in the funding transaction is duplicative with some other
2825         /// channel (note that this should be trivially prevented by using unique funding transaction
2826         /// keys per-channel).
2827         ///
2828         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2829         /// counterparty's signature the funding transaction will automatically be broadcast via the
2830         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2831         ///
2832         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2833         /// not currently support replacing a funding transaction on an existing channel. Instead,
2834         /// create a new channel with a conflicting funding transaction.
2835         ///
2836         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2837         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2838         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2839         /// for more details.
2840         ///
2841         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2842         /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2843         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2844                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2845
2846                 for inp in funding_transaction.input.iter() {
2847                         if inp.witness.is_empty() {
2848                                 return Err(APIError::APIMisuseError {
2849                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2850                                 });
2851                         }
2852                 }
2853                 {
2854                         let height = self.best_block.read().unwrap().height();
2855                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2856                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2857                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2858                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2859                                 return Err(APIError::APIMisuseError {
2860                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2861                                 });
2862                         }
2863                 }
2864                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2865                         let mut output_index = None;
2866                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2867                         for (idx, outp) in tx.output.iter().enumerate() {
2868                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2869                                         if output_index.is_some() {
2870                                                 return Err(APIError::APIMisuseError {
2871                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2872                                                 });
2873                                         }
2874                                         if idx > u16::max_value() as usize {
2875                                                 return Err(APIError::APIMisuseError {
2876                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2877                                                 });
2878                                         }
2879                                         output_index = Some(idx as u16);
2880                                 }
2881                         }
2882                         if output_index.is_none() {
2883                                 return Err(APIError::APIMisuseError {
2884                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2885                                 });
2886                         }
2887                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2888                 })
2889         }
2890
2891         /// Atomically updates the [`ChannelConfig`] for the given channels.
2892         ///
2893         /// Once the updates are applied, each eligible channel (advertised with a known short channel
2894         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
2895         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
2896         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
2897         ///
2898         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
2899         /// `counterparty_node_id` is provided.
2900         ///
2901         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
2902         /// below [`MIN_CLTV_EXPIRY_DELTA`].
2903         ///
2904         /// If an error is returned, none of the updates should be considered applied.
2905         ///
2906         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
2907         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
2908         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
2909         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
2910         /// [`ChannelUpdate`]: msgs::ChannelUpdate
2911         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
2912         /// [`APIMisuseError`]: APIError::APIMisuseError
2913         pub fn update_channel_config(
2914                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
2915         ) -> Result<(), APIError> {
2916                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
2917                         return Err(APIError::APIMisuseError {
2918                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
2919                         });
2920                 }
2921
2922                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
2923                         &self.total_consistency_lock, &self.persistence_notifier,
2924                 );
2925                 let per_peer_state = self.per_peer_state.read().unwrap();
2926                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2927                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2928                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2929                 let peer_state = &mut *peer_state_lock;
2930                 for channel_id in channel_ids {
2931                         if !peer_state.channel_by_id.contains_key(channel_id) {
2932                                 return Err(APIError::ChannelUnavailable {
2933                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
2934                                 });
2935                         }
2936                 }
2937                 for channel_id in channel_ids {
2938                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
2939                         if !channel.update_config(config) {
2940                                 continue;
2941                         }
2942                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
2943                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
2944                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
2945                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
2946                                         node_id: channel.get_counterparty_node_id(),
2947                                         msg,
2948                                 });
2949                         }
2950                 }
2951                 Ok(())
2952         }
2953
2954         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
2955         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
2956         ///
2957         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
2958         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
2959         ///
2960         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
2961         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
2962         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
2963         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
2964         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
2965         ///
2966         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
2967         /// you from forwarding more than you received.
2968         ///
2969         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2970         /// backwards.
2971         ///
2972         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
2973         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2974         // TODO: when we move to deciding the best outbound channel at forward time, only take
2975         // `next_node_id` and not `next_hop_channel_id`
2976         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
2977                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2978
2979                 let next_hop_scid = {
2980                         let peer_state_lock = self.per_peer_state.read().unwrap();
2981                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
2982                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
2983                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2984                         let peer_state = &mut *peer_state_lock;
2985                         match peer_state.channel_by_id.get(next_hop_channel_id) {
2986                                 Some(chan) => {
2987                                         if !chan.is_usable() {
2988                                                 return Err(APIError::ChannelUnavailable {
2989                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
2990                                                 })
2991                                         }
2992                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
2993                                 },
2994                                 None => return Err(APIError::ChannelUnavailable {
2995                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
2996                                 })
2997                         }
2998                 };
2999
3000                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3001                         .ok_or_else(|| APIError::APIMisuseError {
3002                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3003                         })?;
3004
3005                 let routing = match payment.forward_info.routing {
3006                         PendingHTLCRouting::Forward { onion_packet, .. } => {
3007                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3008                         },
3009                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3010                 };
3011                 let pending_htlc_info = PendingHTLCInfo {
3012                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3013                 };
3014
3015                 let mut per_source_pending_forward = [(
3016                         payment.prev_short_channel_id,
3017                         payment.prev_funding_outpoint,
3018                         payment.prev_user_channel_id,
3019                         vec![(pending_htlc_info, payment.prev_htlc_id)]
3020                 )];
3021                 self.forward_htlcs(&mut per_source_pending_forward);
3022                 Ok(())
3023         }
3024
3025         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3026         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3027         ///
3028         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3029         /// backwards.
3030         ///
3031         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3032         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3033                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3034
3035                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3036                         .ok_or_else(|| APIError::APIMisuseError {
3037                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3038                         })?;
3039
3040                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3041                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3042                                 short_channel_id: payment.prev_short_channel_id,
3043                                 outpoint: payment.prev_funding_outpoint,
3044                                 htlc_id: payment.prev_htlc_id,
3045                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3046                                 phantom_shared_secret: None,
3047                         });
3048
3049                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3050                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3051                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3052                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3053
3054                 Ok(())
3055         }
3056
3057         /// Processes HTLCs which are pending waiting on random forward delay.
3058         ///
3059         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3060         /// Will likely generate further events.
3061         pub fn process_pending_htlc_forwards(&self) {
3062                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3063
3064                 let mut new_events = Vec::new();
3065                 let mut failed_forwards = Vec::new();
3066                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3067                 {
3068                         let mut forward_htlcs = HashMap::new();
3069                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3070
3071                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
3072                                 if short_chan_id != 0 {
3073                                         macro_rules! forwarding_channel_not_found {
3074                                                 () => {
3075                                                         for forward_info in pending_forwards.drain(..) {
3076                                                                 match forward_info {
3077                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3078                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3079                                                                                 forward_info: PendingHTLCInfo {
3080                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3081                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3082                                                                                 }
3083                                                                         }) => {
3084                                                                                 macro_rules! failure_handler {
3085                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3086                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3087
3088                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3089                                                                                                         short_channel_id: prev_short_channel_id,
3090                                                                                                         outpoint: prev_funding_outpoint,
3091                                                                                                         htlc_id: prev_htlc_id,
3092                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3093                                                                                                         phantom_shared_secret: $phantom_ss,
3094                                                                                                 });
3095
3096                                                                                                 let reason = if $next_hop_unknown {
3097                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3098                                                                                                 } else {
3099                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3100                                                                                                 };
3101
3102                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3103                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3104                                                                                                         reason
3105                                                                                                 ));
3106                                                                                                 continue;
3107                                                                                         }
3108                                                                                 }
3109                                                                                 macro_rules! fail_forward {
3110                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3111                                                                                                 {
3112                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3113                                                                                                 }
3114                                                                                         }
3115                                                                                 }
3116                                                                                 macro_rules! failed_payment {
3117                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3118                                                                                                 {
3119                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3120                                                                                                 }
3121                                                                                         }
3122                                                                                 }
3123                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3124                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3125                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3126                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3127                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3128                                                                                                         Ok(res) => res,
3129                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3130                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3131                                                                                                                 // In this scenario, the phantom would have sent us an
3132                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3133                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3134                                                                                                                 // of the onion.
3135                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3136                                                                                                         },
3137                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3138                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3139                                                                                                         },
3140                                                                                                 };
3141                                                                                                 match next_hop {
3142                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3143                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3144                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3145                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3146                                                                                                                 }
3147                                                                                                         },
3148                                                                                                         _ => panic!(),
3149                                                                                                 }
3150                                                                                         } else {
3151                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3152                                                                                         }
3153                                                                                 } else {
3154                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3155                                                                                 }
3156                                                                         },
3157                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3158                                                                                 // Channel went away before we could fail it. This implies
3159                                                                                 // the channel is now on chain and our counterparty is
3160                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3161                                                                                 // problem, not ours.
3162                                                                         }
3163                                                                 }
3164                                                         }
3165                                                 }
3166                                         }
3167                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3168                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3169                                                 None => {
3170                                                         forwarding_channel_not_found!();
3171                                                         continue;
3172                                                 }
3173                                         };
3174                                         let per_peer_state = self.per_peer_state.read().unwrap();
3175                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3176                                         if peer_state_mutex_opt.is_none() {
3177                                                 forwarding_channel_not_found!();
3178                                                 continue;
3179                                         }
3180                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3181                                         let peer_state = &mut *peer_state_lock;
3182                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3183                                                 hash_map::Entry::Vacant(_) => {
3184                                                         forwarding_channel_not_found!();
3185                                                         continue;
3186                                                 },
3187                                                 hash_map::Entry::Occupied(mut chan) => {
3188                                                         for forward_info in pending_forwards.drain(..) {
3189                                                                 match forward_info {
3190                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3191                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3192                                                                                 forward_info: PendingHTLCInfo {
3193                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3194                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3195                                                                                 },
3196                                                                         }) => {
3197                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3198                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3199                                                                                         short_channel_id: prev_short_channel_id,
3200                                                                                         outpoint: prev_funding_outpoint,
3201                                                                                         htlc_id: prev_htlc_id,
3202                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3203                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3204                                                                                         phantom_shared_secret: None,
3205                                                                                 });
3206                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3207                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3208                                                                                         onion_packet, &self.logger)
3209                                                                                 {
3210                                                                                         if let ChannelError::Ignore(msg) = e {
3211                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3212                                                                                         } else {
3213                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3214                                                                                         }
3215                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3216                                                                                         failed_forwards.push((htlc_source, payment_hash,
3217                                                                                                 HTLCFailReason::reason(failure_code, data),
3218                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3219                                                                                         ));
3220                                                                                         continue;
3221                                                                                 }
3222                                                                         },
3223                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3224                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3225                                                                         },
3226                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3227                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3228                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3229                                                                                         htlc_id, err_packet, &self.logger
3230                                                                                 ) {
3231                                                                                         if let ChannelError::Ignore(msg) = e {
3232                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3233                                                                                         } else {
3234                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3235                                                                                         }
3236                                                                                         // fail-backs are best-effort, we probably already have one
3237                                                                                         // pending, and if not that's OK, if not, the channel is on
3238                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3239                                                                                         continue;
3240                                                                                 }
3241                                                                         },
3242                                                                 }
3243                                                         }
3244                                                 }
3245                                         }
3246                                 } else {
3247                                         for forward_info in pending_forwards.drain(..) {
3248                                                 match forward_info {
3249                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3250                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3251                                                                 forward_info: PendingHTLCInfo {
3252                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat, ..
3253                                                                 }
3254                                                         }) => {
3255                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3256                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3257                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3258                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3259                                                                         },
3260                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3261                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3262                                                                         _ => {
3263                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3264                                                                         }
3265                                                                 };
3266                                                                 let claimable_htlc = ClaimableHTLC {
3267                                                                         prev_hop: HTLCPreviousHopData {
3268                                                                                 short_channel_id: prev_short_channel_id,
3269                                                                                 outpoint: prev_funding_outpoint,
3270                                                                                 htlc_id: prev_htlc_id,
3271                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3272                                                                                 phantom_shared_secret,
3273                                                                         },
3274                                                                         value: outgoing_amt_msat,
3275                                                                         timer_ticks: 0,
3276                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3277                                                                         cltv_expiry,
3278                                                                         onion_payload,
3279                                                                 };
3280
3281                                                                 macro_rules! fail_htlc {
3282                                                                         ($htlc: expr, $payment_hash: expr) => {
3283                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3284                                                                                 htlc_msat_height_data.extend_from_slice(
3285                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3286                                                                                 );
3287                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3288                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3289                                                                                                 outpoint: prev_funding_outpoint,
3290                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3291                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3292                                                                                                 phantom_shared_secret,
3293                                                                                         }), payment_hash,
3294                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3295                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3296                                                                                 ));
3297                                                                         }
3298                                                                 }
3299                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3300                                                                 let mut receiver_node_id = self.our_network_pubkey;
3301                                                                 if phantom_shared_secret.is_some() {
3302                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3303                                                                                 .expect("Failed to get node_id for phantom node recipient");
3304                                                                 }
3305
3306                                                                 macro_rules! check_total_value {
3307                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3308                                                                                 let mut payment_claimable_generated = false;
3309                                                                                 let purpose = || {
3310                                                                                         events::PaymentPurpose::InvoicePayment {
3311                                                                                                 payment_preimage: $payment_preimage,
3312                                                                                                 payment_secret: $payment_data.payment_secret,
3313                                                                                         }
3314                                                                                 };
3315                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3316                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3317                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3318                                                                                         continue
3319                                                                                 }
3320                                                                                 let (_, htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3321                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3322                                                                                 if htlcs.len() == 1 {
3323                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3324                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3325                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3326                                                                                                 continue
3327                                                                                         }
3328                                                                                 }
3329                                                                                 let mut total_value = claimable_htlc.value;
3330                                                                                 for htlc in htlcs.iter() {
3331                                                                                         total_value += htlc.value;
3332                                                                                         match &htlc.onion_payload {
3333                                                                                                 OnionPayload::Invoice { .. } => {
3334                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3335                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3336                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3337                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3338                                                                                                         }
3339                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3340                                                                                                 },
3341                                                                                                 _ => unreachable!(),
3342                                                                                         }
3343                                                                                 }
3344                                                                                 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3345                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3346                                                                                                 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3347                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3348                                                                                 } else if total_value == $payment_data.total_msat {
3349                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3350                                                                                         htlcs.push(claimable_htlc);
3351                                                                                         new_events.push(events::Event::PaymentClaimable {
3352                                                                                                 receiver_node_id: Some(receiver_node_id),
3353                                                                                                 payment_hash,
3354                                                                                                 purpose: purpose(),
3355                                                                                                 amount_msat: total_value,
3356                                                                                                 via_channel_id: Some(prev_channel_id),
3357                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3358                                                                                         });
3359                                                                                         payment_claimable_generated = true;
3360                                                                                 } else {
3361                                                                                         // Nothing to do - we haven't reached the total
3362                                                                                         // payment value yet, wait until we receive more
3363                                                                                         // MPP parts.
3364                                                                                         htlcs.push(claimable_htlc);
3365                                                                                 }
3366                                                                                 payment_claimable_generated
3367                                                                         }}
3368                                                                 }
3369
3370                                                                 // Check that the payment hash and secret are known. Note that we
3371                                                                 // MUST take care to handle the "unknown payment hash" and
3372                                                                 // "incorrect payment secret" cases here identically or we'd expose
3373                                                                 // that we are the ultimate recipient of the given payment hash.
3374                                                                 // Further, we must not expose whether we have any other HTLCs
3375                                                                 // associated with the same payment_hash pending or not.
3376                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3377                                                                 match payment_secrets.entry(payment_hash) {
3378                                                                         hash_map::Entry::Vacant(_) => {
3379                                                                                 match claimable_htlc.onion_payload {
3380                                                                                         OnionPayload::Invoice { .. } => {
3381                                                                                                 let payment_data = payment_data.unwrap();
3382                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3383                                                                                                         Ok(result) => result,
3384                                                                                                         Err(()) => {
3385                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3386                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3387                                                                                                                 continue
3388                                                                                                         }
3389                                                                                                 };
3390                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3391                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3392                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3393                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3394                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3395                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3396                                                                                                                 continue;
3397                                                                                                         }
3398                                                                                                 }
3399                                                                                                 check_total_value!(payment_data, payment_preimage);
3400                                                                                         },
3401                                                                                         OnionPayload::Spontaneous(preimage) => {
3402                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3403                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3404                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3405                                                                                                         continue
3406                                                                                                 }
3407                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3408                                                                                                         hash_map::Entry::Vacant(e) => {
3409                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3410                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3411                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3412                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3413                                                                                                                         receiver_node_id: Some(receiver_node_id),
3414                                                                                                                         payment_hash,
3415                                                                                                                         amount_msat: outgoing_amt_msat,
3416                                                                                                                         purpose,
3417                                                                                                                         via_channel_id: Some(prev_channel_id),
3418                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3419                                                                                                                 });
3420                                                                                                         },
3421                                                                                                         hash_map::Entry::Occupied(_) => {
3422                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3423                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3424                                                                                                         }
3425                                                                                                 }
3426                                                                                         }
3427                                                                                 }
3428                                                                         },
3429                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3430                                                                                 if payment_data.is_none() {
3431                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3432                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3433                                                                                         continue
3434                                                                                 };
3435                                                                                 let payment_data = payment_data.unwrap();
3436                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3437                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3438                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3439                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3440                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3441                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3442                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3443                                                                                 } else {
3444                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3445                                                                                         if payment_claimable_generated {
3446                                                                                                 inbound_payment.remove_entry();
3447                                                                                         }
3448                                                                                 }
3449                                                                         },
3450                                                                 };
3451                                                         },
3452                                                         HTLCForwardInfo::FailHTLC { .. } => {
3453                                                                 panic!("Got pending fail of our own HTLC");
3454                                                         }
3455                                                 }
3456                                         }
3457                                 }
3458                         }
3459                 }
3460
3461                 let best_block_height = self.best_block.read().unwrap().height();
3462                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3463                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3464                         &self.pending_events, &self.logger,
3465                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3466                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3467
3468                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3469                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3470                 }
3471                 self.forward_htlcs(&mut phantom_receives);
3472
3473                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3474                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3475                 // nice to do the work now if we can rather than while we're trying to get messages in the
3476                 // network stack.
3477                 self.check_free_holding_cells();
3478
3479                 if new_events.is_empty() { return }
3480                 let mut events = self.pending_events.lock().unwrap();
3481                 events.append(&mut new_events);
3482         }
3483
3484         /// Free the background events, generally called from timer_tick_occurred.
3485         ///
3486         /// Exposed for testing to allow us to process events quickly without generating accidental
3487         /// BroadcastChannelUpdate events in timer_tick_occurred.
3488         ///
3489         /// Expects the caller to have a total_consistency_lock read lock.
3490         fn process_background_events(&self) -> bool {
3491                 let mut background_events = Vec::new();
3492                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3493                 if background_events.is_empty() {
3494                         return false;
3495                 }
3496
3497                 for event in background_events.drain(..) {
3498                         match event {
3499                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3500                                         // The channel has already been closed, so no use bothering to care about the
3501                                         // monitor updating completing.
3502                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3503                                 },
3504                         }
3505                 }
3506                 true
3507         }
3508
3509         #[cfg(any(test, feature = "_test_utils"))]
3510         /// Process background events, for functional testing
3511         pub fn test_process_background_events(&self) {
3512                 self.process_background_events();
3513         }
3514
3515         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3516                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3517                 // If the feerate has decreased by less than half, don't bother
3518                 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3519                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3520                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3521                         return NotifyOption::SkipPersist;
3522                 }
3523                 if !chan.is_live() {
3524                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3525                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3526                         return NotifyOption::SkipPersist;
3527                 }
3528                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3529                         log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3530
3531                 chan.queue_update_fee(new_feerate, &self.logger);
3532                 NotifyOption::DoPersist
3533         }
3534
3535         #[cfg(fuzzing)]
3536         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3537         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3538         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3539         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3540         pub fn maybe_update_chan_fees(&self) {
3541                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3542                         let mut should_persist = NotifyOption::SkipPersist;
3543
3544                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3545
3546                         let per_peer_state = self.per_peer_state.read().unwrap();
3547                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3548                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3549                                 let peer_state = &mut *peer_state_lock;
3550                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3551                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3552                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3553                                 }
3554                         }
3555
3556                         should_persist
3557                 });
3558         }
3559
3560         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3561         ///
3562         /// This currently includes:
3563         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3564         ///  * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
3565         ///    than a minute, informing the network that they should no longer attempt to route over
3566         ///    the channel.
3567         ///  * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
3568         ///    with the current [`ChannelConfig`].
3569         ///  * Removing peers which have disconnected but and no longer have any channels.
3570         ///
3571         /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
3572         /// estimate fetches.
3573         ///
3574         /// [`ChannelUpdate`]: msgs::ChannelUpdate
3575         /// [`ChannelConfig`]: crate::util::config::ChannelConfig
3576         pub fn timer_tick_occurred(&self) {
3577                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3578                         let mut should_persist = NotifyOption::SkipPersist;
3579                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3580
3581                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3582
3583                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3584                         let mut timed_out_mpp_htlcs = Vec::new();
3585                         let mut pending_peers_awaiting_removal = Vec::new();
3586                         {
3587                                 let per_peer_state = self.per_peer_state.read().unwrap();
3588                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3589                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3590                                         let peer_state = &mut *peer_state_lock;
3591                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3592                                         let counterparty_node_id = *counterparty_node_id;
3593                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3594                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3595                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3596
3597                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3598                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3599                                                         handle_errors.push((Err(err), counterparty_node_id));
3600                                                         if needs_close { return false; }
3601                                                 }
3602
3603                                                 match chan.channel_update_status() {
3604                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3605                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3606                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3607                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3608                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3609                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3610                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3611                                                                                 msg: update
3612                                                                         });
3613                                                                 }
3614                                                                 should_persist = NotifyOption::DoPersist;
3615                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3616                                                         },
3617                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3618                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3619                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3620                                                                                 msg: update
3621                                                                         });
3622                                                                 }
3623                                                                 should_persist = NotifyOption::DoPersist;
3624                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3625                                                         },
3626                                                         _ => {},
3627                                                 }
3628
3629                                                 chan.maybe_expire_prev_config();
3630
3631                                                 true
3632                                         });
3633                                         if peer_state.ok_to_remove(true) {
3634                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3635                                         }
3636                                 }
3637                         }
3638
3639                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3640                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3641                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3642                         // we therefore need to remove the peer from `peer_state` separately.
3643                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3644                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3645                         // negative effects on parallelism as much as possible.
3646                         if pending_peers_awaiting_removal.len() > 0 {
3647                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3648                                 for counterparty_node_id in pending_peers_awaiting_removal {
3649                                         match per_peer_state.entry(counterparty_node_id) {
3650                                                 hash_map::Entry::Occupied(entry) => {
3651                                                         // Remove the entry if the peer is still disconnected and we still
3652                                                         // have no channels to the peer.
3653                                                         let remove_entry = {
3654                                                                 let peer_state = entry.get().lock().unwrap();
3655                                                                 peer_state.ok_to_remove(true)
3656                                                         };
3657                                                         if remove_entry {
3658                                                                 entry.remove_entry();
3659                                                         }
3660                                                 },
3661                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3662                                         }
3663                                 }
3664                         }
3665
3666                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3667                                 if htlcs.is_empty() {
3668                                         // This should be unreachable
3669                                         debug_assert!(false);
3670                                         return false;
3671                                 }
3672                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3673                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3674                                         // In this case we're not going to handle any timeouts of the parts here.
3675                                         if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3676                                                 return true;
3677                                         } else if htlcs.into_iter().any(|htlc| {
3678                                                 htlc.timer_ticks += 1;
3679                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3680                                         }) {
3681                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3682                                                 return false;
3683                                         }
3684                                 }
3685                                 true
3686                         });
3687
3688                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3689                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3690                                 let reason = HTLCFailReason::from_failure_code(23);
3691                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3692                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3693                         }
3694
3695                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3696                                 let _ = handle_error!(self, err, counterparty_node_id);
3697                         }
3698
3699                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3700
3701                         // Technically we don't need to do this here, but if we have holding cell entries in a
3702                         // channel that need freeing, it's better to do that here and block a background task
3703                         // than block the message queueing pipeline.
3704                         if self.check_free_holding_cells() {
3705                                 should_persist = NotifyOption::DoPersist;
3706                         }
3707
3708                         should_persist
3709                 });
3710         }
3711
3712         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3713         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3714         /// along the path (including in our own channel on which we received it).
3715         ///
3716         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3717         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3718         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3719         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3720         ///
3721         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3722         /// [`ChannelManager::claim_funds`]), you should still monitor for
3723         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3724         /// startup during which time claims that were in-progress at shutdown may be replayed.
3725         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3726                 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3727         }
3728
3729         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3730         /// reason for the failure.
3731         ///
3732         /// See [`FailureCode`] for valid failure codes.
3733         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3734                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3735
3736                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3737                 if let Some((_, mut sources)) = removed_source {
3738                         for htlc in sources.drain(..) {
3739                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3740                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3741                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3742                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3743                         }
3744                 }
3745         }
3746
3747         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3748         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3749                 match failure_code {
3750                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3751                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3752                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3753                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3754                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3755                                 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
3756                         }
3757                 }
3758         }
3759
3760         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3761         /// that we want to return and a channel.
3762         ///
3763         /// This is for failures on the channel on which the HTLC was *received*, not failures
3764         /// forwarding
3765         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3766                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3767                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3768                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3769                 // an inbound SCID alias before the real SCID.
3770                 let scid_pref = if chan.should_announce() {
3771                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3772                 } else {
3773                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3774                 };
3775                 if let Some(scid) = scid_pref {
3776                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3777                 } else {
3778                         (0x4000|10, Vec::new())
3779                 }
3780         }
3781
3782
3783         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3784         /// that we want to return and a channel.
3785         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3786                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3787                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3788                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3789                         if desired_err_code == 0x1000 | 20 {
3790                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3791                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3792                                 0u16.write(&mut enc).expect("Writes cannot fail");
3793                         }
3794                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3795                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3796                         upd.write(&mut enc).expect("Writes cannot fail");
3797                         (desired_err_code, enc.0)
3798                 } else {
3799                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3800                         // which means we really shouldn't have gotten a payment to be forwarded over this
3801                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3802                         // PERM|no_such_channel should be fine.
3803                         (0x4000|10, Vec::new())
3804                 }
3805         }
3806
3807         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3808         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3809         // be surfaced to the user.
3810         fn fail_holding_cell_htlcs(
3811                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3812                 counterparty_node_id: &PublicKey
3813         ) {
3814                 let (failure_code, onion_failure_data) = {
3815                         let per_peer_state = self.per_peer_state.read().unwrap();
3816                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3817                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3818                                 let peer_state = &mut *peer_state_lock;
3819                                 match peer_state.channel_by_id.entry(channel_id) {
3820                                         hash_map::Entry::Occupied(chan_entry) => {
3821                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3822                                         },
3823                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3824                                 }
3825                         } else { (0x4000|10, Vec::new()) }
3826                 };
3827
3828                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3829                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3830                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3831                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3832                 }
3833         }
3834
3835         /// Fails an HTLC backwards to the sender of it to us.
3836         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3837         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3838                 // Ensure that no peer state channel storage lock is held when calling this function.
3839                 // This ensures that future code doesn't introduce a lock-order requirement for
3840                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3841                 // this function with any `per_peer_state` peer lock acquired would.
3842                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3843                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3844                 }
3845
3846                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3847                 //identify whether we sent it or not based on the (I presume) very different runtime
3848                 //between the branches here. We should make this async and move it into the forward HTLCs
3849                 //timer handling.
3850
3851                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3852                 // from block_connected which may run during initialization prior to the chain_monitor
3853                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3854                 match source {
3855                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
3856                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3857                                         session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
3858                                         &self.pending_events, &self.logger)
3859                                 { self.push_pending_forwards_ev(); }
3860                         },
3861                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3862                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
3863                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
3864
3865                                 let mut push_forward_ev = false;
3866                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
3867                                 if forward_htlcs.is_empty() {
3868                                         push_forward_ev = true;
3869                                 }
3870                                 match forward_htlcs.entry(*short_channel_id) {
3871                                         hash_map::Entry::Occupied(mut entry) => {
3872                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
3873                                         },
3874                                         hash_map::Entry::Vacant(entry) => {
3875                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
3876                                         }
3877                                 }
3878                                 mem::drop(forward_htlcs);
3879                                 if push_forward_ev { self.push_pending_forwards_ev(); }
3880                                 let mut pending_events = self.pending_events.lock().unwrap();
3881                                 pending_events.push(events::Event::HTLCHandlingFailed {
3882                                         prev_channel_id: outpoint.to_channel_id(),
3883                                         failed_next_destination: destination,
3884                                 });
3885                         },
3886                 }
3887         }
3888
3889         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
3890         /// [`MessageSendEvent`]s needed to claim the payment.
3891         ///
3892         /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3893         /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3894         /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3895         ///
3896         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3897         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
3898         /// event matches your expectation. If you fail to do so and call this method, you may provide
3899         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3900         ///
3901         /// [`Event::PaymentClaimable`]: crate::util::events::Event::PaymentClaimable
3902         /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
3903         /// [`process_pending_events`]: EventsProvider::process_pending_events
3904         /// [`create_inbound_payment`]: Self::create_inbound_payment
3905         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3906         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3907                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3908
3909                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3910
3911                 let mut sources = {
3912                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
3913                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
3914                                 let mut receiver_node_id = self.our_network_pubkey;
3915                                 for htlc in sources.iter() {
3916                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
3917                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
3918                                                         .expect("Failed to get node_id for phantom node recipient");
3919                                                 receiver_node_id = phantom_pubkey;
3920                                                 break;
3921                                         }
3922                                 }
3923
3924                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
3925                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
3926                                         payment_purpose, receiver_node_id,
3927                                 });
3928                                 if dup_purpose.is_some() {
3929                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
3930                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
3931                                                 log_bytes!(payment_hash.0));
3932                                 }
3933                                 sources
3934                         } else { return; }
3935                 };
3936                 debug_assert!(!sources.is_empty());
3937
3938                 // If we are claiming an MPP payment, we check that all channels which contain a claimable
3939                 // HTLC still exist. While this isn't guaranteed to remain true if a channel closes while
3940                 // we're claiming (or even after we claim, before the commitment update dance completes),
3941                 // it should be a relatively rare race, and we'd rather not claim HTLCs that require us to
3942                 // go on-chain (and lose the on-chain fee to do so) than just reject the payment.
3943                 //
3944                 // Note that we'll still always get our funds - as long as the generated
3945                 // `ChannelMonitorUpdate` makes it out to the relevant monitor we can claim on-chain.
3946                 //
3947                 // If we find an HTLC which we would need to claim but for which we do not have a
3948                 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3949                 // the sender retries the already-failed path(s), it should be a pretty rare case where
3950                 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3951                 // provide the preimage, so worrying too much about the optimal handling isn't worth
3952                 // it.
3953                 let mut claimable_amt_msat = 0;
3954                 let mut expected_amt_msat = None;
3955                 let mut valid_mpp = true;
3956                 let mut errs = Vec::new();
3957                 let per_peer_state = self.per_peer_state.read().unwrap();
3958                 for htlc in sources.iter() {
3959                         let (counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&htlc.prev_hop.short_channel_id) {
3960                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3961                                 None => {
3962                                         valid_mpp = false;
3963                                         break;
3964                                 }
3965                         };
3966
3967                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3968                         if peer_state_mutex_opt.is_none() {
3969                                 valid_mpp = false;
3970                                 break;
3971                         }
3972
3973                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3974                         let peer_state = &mut *peer_state_lock;
3975
3976                         if peer_state.channel_by_id.get(&chan_id).is_none() {
3977                                 valid_mpp = false;
3978                                 break;
3979                         }
3980
3981                         if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
3982                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
3983                                 debug_assert!(false);
3984                                 valid_mpp = false;
3985                                 break;
3986                         }
3987
3988                         expected_amt_msat = Some(htlc.total_msat);
3989                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
3990                                 // We don't currently support MPP for spontaneous payments, so just check
3991                                 // that there's one payment here and move on.
3992                                 if sources.len() != 1 {
3993                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
3994                                         debug_assert!(false);
3995                                         valid_mpp = false;
3996                                         break;
3997                                 }
3998                         }
3999
4000                         claimable_amt_msat += htlc.value;
4001                 }
4002                 mem::drop(per_peer_state);
4003                 if sources.is_empty() || expected_amt_msat.is_none() {
4004                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4005                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4006                         return;
4007                 }
4008                 if claimable_amt_msat != expected_amt_msat.unwrap() {
4009                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4010                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4011                                 expected_amt_msat.unwrap(), claimable_amt_msat);
4012                         return;
4013                 }
4014                 if valid_mpp {
4015                         for htlc in sources.drain(..) {
4016                                 if let Err((pk, err)) = self.claim_funds_from_hop(
4017                                         htlc.prev_hop, payment_preimage,
4018                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4019                                 {
4020                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
4021                                                 // We got a temporary failure updating monitor, but will claim the
4022                                                 // HTLC when the monitor updating is restored (or on chain).
4023                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4024                                         } else { errs.push((pk, err)); }
4025                                 }
4026                         }
4027                 }
4028                 if !valid_mpp {
4029                         for htlc in sources.drain(..) {
4030                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4031                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4032                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4033                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4034                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
4035                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4036                         }
4037                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4038                 }
4039
4040                 // Now we can handle any errors which were generated.
4041                 for (counterparty_node_id, err) in errs.drain(..) {
4042                         let res: Result<(), _> = Err(err);
4043                         let _ = handle_error!(self, res, counterparty_node_id);
4044                 }
4045         }
4046
4047         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4048                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4049         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4050                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4051
4052                 let per_peer_state = self.per_peer_state.read().unwrap();
4053                 let chan_id = prev_hop.outpoint.to_channel_id();
4054                 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4055                         Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4056                         None => None
4057                 };
4058
4059                 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4060                         |counterparty_node_id| per_peer_state.get(counterparty_node_id).map(
4061                                 |peer_mutex| peer_mutex.lock().unwrap()
4062                         )
4063                 ).unwrap_or(None);
4064
4065                 if peer_state_opt.is_some() {
4066                         let mut peer_state_lock = peer_state_opt.unwrap();
4067                         let peer_state = &mut *peer_state_lock;
4068                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4069                                 let counterparty_node_id = chan.get().get_counterparty_node_id();
4070                                 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4071
4072                                 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4073                                         if let Some(action) = completion_action(Some(htlc_value_msat)) {
4074                                                 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4075                                                         log_bytes!(chan_id), action);
4076                                                 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4077                                         }
4078                                         let update_id = monitor_update.update_id;
4079                                         let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4080                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4081                                                 peer_state, per_peer_state, chan);
4082                                         if let Err(e) = res {
4083                                                 // TODO: This is a *critical* error - we probably updated the outbound edge
4084                                                 // of the HTLC's monitor with a preimage. We should retry this monitor
4085                                                 // update over and over again until morale improves.
4086                                                 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4087                                                 return Err((counterparty_node_id, e));
4088                                         }
4089                                 }
4090                                 return Ok(());
4091                         }
4092                 }
4093                 let preimage_update = ChannelMonitorUpdate {
4094                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4095                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4096                                 payment_preimage,
4097                         }],
4098                 };
4099                 // We update the ChannelMonitor on the backward link, after
4100                 // receiving an `update_fulfill_htlc` from the forward link.
4101                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4102                 if update_res != ChannelMonitorUpdateStatus::Completed {
4103                         // TODO: This needs to be handled somehow - if we receive a monitor update
4104                         // with a preimage we *must* somehow manage to propagate it to the upstream
4105                         // channel, or we must have an ability to receive the same event and try
4106                         // again on restart.
4107                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4108                                 payment_preimage, update_res);
4109                 }
4110                 // Note that we do process the completion action here. This totally could be a
4111                 // duplicate claim, but we have no way of knowing without interrogating the
4112                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4113                 // generally always allowed to be duplicative (and it's specifically noted in
4114                 // `PaymentForwarded`).
4115                 self.handle_monitor_update_completion_actions(completion_action(None));
4116                 Ok(())
4117         }
4118
4119         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4120                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4121         }
4122
4123         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4124                 match source {
4125                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4126                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4127                         },
4128                         HTLCSource::PreviousHopData(hop_data) => {
4129                                 let prev_outpoint = hop_data.outpoint;
4130                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4131                                         |htlc_claim_value_msat| {
4132                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4133                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4134                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4135                                                         } else { None };
4136
4137                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4138                                                         let next_channel_id = Some(next_channel_id);
4139
4140                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4141                                                                 fee_earned_msat,
4142                                                                 claim_from_onchain_tx: from_onchain,
4143                                                                 prev_channel_id,
4144                                                                 next_channel_id,
4145                                                         }})
4146                                                 } else { None }
4147                                         });
4148                                 if let Err((pk, err)) = res {
4149                                         let result: Result<(), _> = Err(err);
4150                                         let _ = handle_error!(self, result, pk);
4151                                 }
4152                         },
4153                 }
4154         }
4155
4156         /// Gets the node_id held by this ChannelManager
4157         pub fn get_our_node_id(&self) -> PublicKey {
4158                 self.our_network_pubkey.clone()
4159         }
4160
4161         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4162                 for action in actions.into_iter() {
4163                         match action {
4164                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4165                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4166                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4167                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4168                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4169                                                 });
4170                                         }
4171                                 },
4172                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4173                                         self.pending_events.lock().unwrap().push(event);
4174                                 },
4175                         }
4176                 }
4177         }
4178
4179         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4180         /// update completion.
4181         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4182                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4183                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4184                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4185                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4186         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4187                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4188                         log_bytes!(channel.channel_id()),
4189                         if raa.is_some() { "an" } else { "no" },
4190                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4191                         if funding_broadcastable.is_some() { "" } else { "not " },
4192                         if channel_ready.is_some() { "sending" } else { "without" },
4193                         if announcement_sigs.is_some() { "sending" } else { "without" });
4194
4195                 let mut htlc_forwards = None;
4196
4197                 let counterparty_node_id = channel.get_counterparty_node_id();
4198                 if !pending_forwards.is_empty() {
4199                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4200                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4201                 }
4202
4203                 if let Some(msg) = channel_ready {
4204                         send_channel_ready!(self, pending_msg_events, channel, msg);
4205                 }
4206                 if let Some(msg) = announcement_sigs {
4207                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4208                                 node_id: counterparty_node_id,
4209                                 msg,
4210                         });
4211                 }
4212
4213                 emit_channel_ready_event!(self, channel);
4214
4215                 macro_rules! handle_cs { () => {
4216                         if let Some(update) = commitment_update {
4217                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4218                                         node_id: counterparty_node_id,
4219                                         updates: update,
4220                                 });
4221                         }
4222                 } }
4223                 macro_rules! handle_raa { () => {
4224                         if let Some(revoke_and_ack) = raa {
4225                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4226                                         node_id: counterparty_node_id,
4227                                         msg: revoke_and_ack,
4228                                 });
4229                         }
4230                 } }
4231                 match order {
4232                         RAACommitmentOrder::CommitmentFirst => {
4233                                 handle_cs!();
4234                                 handle_raa!();
4235                         },
4236                         RAACommitmentOrder::RevokeAndACKFirst => {
4237                                 handle_raa!();
4238                                 handle_cs!();
4239                         },
4240                 }
4241
4242                 if let Some(tx) = funding_broadcastable {
4243                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4244                         self.tx_broadcaster.broadcast_transaction(&tx);
4245                 }
4246
4247                 htlc_forwards
4248         }
4249
4250         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4251                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4252
4253                 let counterparty_node_id = match counterparty_node_id {
4254                         Some(cp_id) => cp_id.clone(),
4255                         None => {
4256                                 // TODO: Once we can rely on the counterparty_node_id from the
4257                                 // monitor event, this and the id_to_peer map should be removed.
4258                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4259                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4260                                         Some(cp_id) => cp_id.clone(),
4261                                         None => return,
4262                                 }
4263                         }
4264                 };
4265                 let per_peer_state = self.per_peer_state.read().unwrap();
4266                 let mut peer_state_lock;
4267                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4268                 if peer_state_mutex_opt.is_none() { return }
4269                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4270                 let peer_state = &mut *peer_state_lock;
4271                 let mut channel = {
4272                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4273                                 hash_map::Entry::Occupied(chan) => chan,
4274                                 hash_map::Entry::Vacant(_) => return,
4275                         }
4276                 };
4277                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4278                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4279                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4280                         return;
4281                 }
4282                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4283         }
4284
4285         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4286         ///
4287         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4288         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4289         /// the channel.
4290         ///
4291         /// The `user_channel_id` parameter will be provided back in
4292         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4293         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4294         ///
4295         /// Note that this method will return an error and reject the channel, if it requires support
4296         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4297         /// used to accept such channels.
4298         ///
4299         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4300         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4301         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4302                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4303         }
4304
4305         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4306         /// it as confirmed immediately.
4307         ///
4308         /// The `user_channel_id` parameter will be provided back in
4309         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4310         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4311         ///
4312         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4313         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4314         ///
4315         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4316         /// transaction and blindly assumes that it will eventually confirm.
4317         ///
4318         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4319         /// does not pay to the correct script the correct amount, *you will lose funds*.
4320         ///
4321         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4322         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4323         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4324                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4325         }
4326
4327         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4328                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4329
4330                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4331                 let per_peer_state = self.per_peer_state.read().unwrap();
4332                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4333                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4334                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4335                 let peer_state = &mut *peer_state_lock;
4336                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4337                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4338                         hash_map::Entry::Occupied(mut channel) => {
4339                                 if !channel.get().inbound_is_awaiting_accept() {
4340                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4341                                 }
4342                                 if accept_0conf {
4343                                         channel.get_mut().set_0conf();
4344                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4345                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4346                                                 node_id: channel.get().get_counterparty_node_id(),
4347                                                 action: msgs::ErrorAction::SendErrorMessage{
4348                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4349                                                 }
4350                                         };
4351                                         peer_state.pending_msg_events.push(send_msg_err_event);
4352                                         let _ = remove_channel!(self, channel);
4353                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4354                                 } else {
4355                                         // If this peer already has some channels, a new channel won't increase our number of peers
4356                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4357                                         // channels per-peer we can accept channels from a peer with existing ones.
4358                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4359                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4360                                                         node_id: channel.get().get_counterparty_node_id(),
4361                                                         action: msgs::ErrorAction::SendErrorMessage{
4362                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4363                                                         }
4364                                                 };
4365                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4366                                                 let _ = remove_channel!(self, channel);
4367                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4368                                         }
4369                                 }
4370
4371                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4372                                         node_id: channel.get().get_counterparty_node_id(),
4373                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4374                                 });
4375                         }
4376                         hash_map::Entry::Vacant(_) => {
4377                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4378                         }
4379                 }
4380                 Ok(())
4381         }
4382
4383         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4384         /// or 0-conf channels.
4385         ///
4386         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4387         /// non-0-conf channels we have with the peer.
4388         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4389         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4390                 let mut peers_without_funded_channels = 0;
4391                 let best_block_height = self.best_block.read().unwrap().height();
4392                 {
4393                         let peer_state_lock = self.per_peer_state.read().unwrap();
4394                         for (_, peer_mtx) in peer_state_lock.iter() {
4395                                 let peer = peer_mtx.lock().unwrap();
4396                                 if !maybe_count_peer(&*peer) { continue; }
4397                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4398                                 if num_unfunded_channels == peer.channel_by_id.len() {
4399                                         peers_without_funded_channels += 1;
4400                                 }
4401                         }
4402                 }
4403                 return peers_without_funded_channels;
4404         }
4405
4406         fn unfunded_channel_count(
4407                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4408         ) -> usize {
4409                 let mut num_unfunded_channels = 0;
4410                 for (_, chan) in peer.channel_by_id.iter() {
4411                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4412                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4413                         {
4414                                 num_unfunded_channels += 1;
4415                         }
4416                 }
4417                 num_unfunded_channels
4418         }
4419
4420         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4421                 if msg.chain_hash != self.genesis_hash {
4422                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4423                 }
4424
4425                 if !self.default_configuration.accept_inbound_channels {
4426                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4427                 }
4428
4429                 let mut random_bytes = [0u8; 16];
4430                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4431                 let user_channel_id = u128::from_be_bytes(random_bytes);
4432                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4433
4434                 // Get the number of peers with channels, but without funded ones. We don't care too much
4435                 // about peers that never open a channel, so we filter by peers that have at least one
4436                 // channel, and then limit the number of those with unfunded channels.
4437                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4438
4439                 let per_peer_state = self.per_peer_state.read().unwrap();
4440                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4441                     .ok_or_else(|| {
4442                                 debug_assert!(false);
4443                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4444                         })?;
4445                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4446                 let peer_state = &mut *peer_state_lock;
4447
4448                 // If this peer already has some channels, a new channel won't increase our number of peers
4449                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4450                 // channels per-peer we can accept channels from a peer with existing ones.
4451                 if peer_state.channel_by_id.is_empty() &&
4452                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4453                         !self.default_configuration.manually_accept_inbound_channels
4454                 {
4455                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4456                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4457                                 msg.temporary_channel_id.clone()));
4458                 }
4459
4460                 let best_block_height = self.best_block.read().unwrap().height();
4461                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4462                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4463                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4464                                 msg.temporary_channel_id.clone()));
4465                 }
4466
4467                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4468                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4469                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4470                 {
4471                         Err(e) => {
4472                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4473                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4474                         },
4475                         Ok(res) => res
4476                 };
4477                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4478                         hash_map::Entry::Occupied(_) => {
4479                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4480                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4481                         },
4482                         hash_map::Entry::Vacant(entry) => {
4483                                 if !self.default_configuration.manually_accept_inbound_channels {
4484                                         if channel.get_channel_type().requires_zero_conf() {
4485                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4486                                         }
4487                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4488                                                 node_id: counterparty_node_id.clone(),
4489                                                 msg: channel.accept_inbound_channel(user_channel_id),
4490                                         });
4491                                 } else {
4492                                         let mut pending_events = self.pending_events.lock().unwrap();
4493                                         pending_events.push(
4494                                                 events::Event::OpenChannelRequest {
4495                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4496                                                         counterparty_node_id: counterparty_node_id.clone(),
4497                                                         funding_satoshis: msg.funding_satoshis,
4498                                                         push_msat: msg.push_msat,
4499                                                         channel_type: channel.get_channel_type().clone(),
4500                                                 }
4501                                         );
4502                                 }
4503
4504                                 entry.insert(channel);
4505                         }
4506                 }
4507                 Ok(())
4508         }
4509
4510         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4511                 let (value, output_script, user_id) = {
4512                         let per_peer_state = self.per_peer_state.read().unwrap();
4513                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4514                                 .ok_or_else(|| {
4515                                         debug_assert!(false);
4516                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4517                                 })?;
4518                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4519                         let peer_state = &mut *peer_state_lock;
4520                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4521                                 hash_map::Entry::Occupied(mut chan) => {
4522                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4523                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4524                                 },
4525                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4526                         }
4527                 };
4528                 let mut pending_events = self.pending_events.lock().unwrap();
4529                 pending_events.push(events::Event::FundingGenerationReady {
4530                         temporary_channel_id: msg.temporary_channel_id,
4531                         counterparty_node_id: *counterparty_node_id,
4532                         channel_value_satoshis: value,
4533                         output_script,
4534                         user_channel_id: user_id,
4535                 });
4536                 Ok(())
4537         }
4538
4539         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4540                 let best_block = *self.best_block.read().unwrap();
4541
4542                 let per_peer_state = self.per_peer_state.read().unwrap();
4543                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4544                         .ok_or_else(|| {
4545                                 debug_assert!(false);
4546                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4547                         })?;
4548
4549                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4550                 let peer_state = &mut *peer_state_lock;
4551                 let ((funding_msg, monitor), chan) =
4552                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4553                                 hash_map::Entry::Occupied(mut chan) => {
4554                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4555                                 },
4556                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4557                         };
4558
4559                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4560                         hash_map::Entry::Occupied(_) => {
4561                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4562                         },
4563                         hash_map::Entry::Vacant(e) => {
4564                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4565                                         hash_map::Entry::Occupied(_) => {
4566                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4567                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4568                                                         funding_msg.channel_id))
4569                                         },
4570                                         hash_map::Entry::Vacant(i_e) => {
4571                                                 i_e.insert(chan.get_counterparty_node_id());
4572                                         }
4573                                 }
4574
4575                                 // There's no problem signing a counterparty's funding transaction if our monitor
4576                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4577                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4578                                 // until we have persisted our monitor.
4579                                 let new_channel_id = funding_msg.channel_id;
4580                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4581                                         node_id: counterparty_node_id.clone(),
4582                                         msg: funding_msg,
4583                                 });
4584
4585                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4586
4587                                 let chan = e.insert(chan);
4588                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4589                                         per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4590
4591                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4592                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4593                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4594                                 // any messages referencing a previously-closed channel anyway.
4595                                 // We do not propagate the monitor update to the user as it would be for a monitor
4596                                 // that we didn't manage to store (and that we don't care about - we don't respond
4597                                 // with the funding_signed so the channel can never go on chain).
4598                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4599                                         res.0 = None;
4600                                 }
4601                                 res
4602                         }
4603                 }
4604         }
4605
4606         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4607                 let best_block = *self.best_block.read().unwrap();
4608                 let per_peer_state = self.per_peer_state.read().unwrap();
4609                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4610                         .ok_or_else(|| {
4611                                 debug_assert!(false);
4612                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4613                         })?;
4614
4615                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4616                 let peer_state = &mut *peer_state_lock;
4617                 match peer_state.channel_by_id.entry(msg.channel_id) {
4618                         hash_map::Entry::Occupied(mut chan) => {
4619                                 let monitor = try_chan_entry!(self,
4620                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4621                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4622                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4623                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4624                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4625                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4626                                         // monitor update contained within `shutdown_finish` was applied.
4627                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4628                                                 shutdown_finish.0.take();
4629                                         }
4630                                 }
4631                                 res
4632                         },
4633                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4634                 }
4635         }
4636
4637         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4638                 let per_peer_state = self.per_peer_state.read().unwrap();
4639                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4640                         .ok_or_else(|| {
4641                                 debug_assert!(false);
4642                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4643                         })?;
4644                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4645                 let peer_state = &mut *peer_state_lock;
4646                 match peer_state.channel_by_id.entry(msg.channel_id) {
4647                         hash_map::Entry::Occupied(mut chan) => {
4648                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4649                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4650                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4651                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4652                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4653                                                 node_id: counterparty_node_id.clone(),
4654                                                 msg: announcement_sigs,
4655                                         });
4656                                 } else if chan.get().is_usable() {
4657                                         // If we're sending an announcement_signatures, we'll send the (public)
4658                                         // channel_update after sending a channel_announcement when we receive our
4659                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4660                                         // channel_update here if the channel is not public, i.e. we're not sending an
4661                                         // announcement_signatures.
4662                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4663                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4664                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4665                                                         node_id: counterparty_node_id.clone(),
4666                                                         msg,
4667                                                 });
4668                                         }
4669                                 }
4670
4671                                 emit_channel_ready_event!(self, chan.get_mut());
4672
4673                                 Ok(())
4674                         },
4675                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4676                 }
4677         }
4678
4679         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4680                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4681                 let result: Result<(), _> = loop {
4682                         let per_peer_state = self.per_peer_state.read().unwrap();
4683                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4684                                 .ok_or_else(|| {
4685                                         debug_assert!(false);
4686                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4687                                 })?;
4688                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4689                         let peer_state = &mut *peer_state_lock;
4690                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4691                                 hash_map::Entry::Occupied(mut chan_entry) => {
4692
4693                                         if !chan_entry.get().received_shutdown() {
4694                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4695                                                         log_bytes!(msg.channel_id),
4696                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4697                                         }
4698
4699                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4700                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4701                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4702                                         dropped_htlcs = htlcs;
4703
4704                                         if let Some(msg) = shutdown {
4705                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4706                                                 // here as we don't need the monitor update to complete until we send a
4707                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4708                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4709                                                         node_id: *counterparty_node_id,
4710                                                         msg,
4711                                                 });
4712                                         }
4713
4714                                         // Update the monitor with the shutdown script if necessary.
4715                                         if let Some(monitor_update) = monitor_update_opt {
4716                                                 let update_id = monitor_update.update_id;
4717                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4718                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4719                                         }
4720                                         break Ok(());
4721                                 },
4722                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4723                         }
4724                 };
4725                 for htlc_source in dropped_htlcs.drain(..) {
4726                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4727                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4728                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4729                 }
4730
4731                 result
4732         }
4733
4734         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4735                 let per_peer_state = self.per_peer_state.read().unwrap();
4736                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4737                         .ok_or_else(|| {
4738                                 debug_assert!(false);
4739                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4740                         })?;
4741                 let (tx, chan_option) = {
4742                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4743                         let peer_state = &mut *peer_state_lock;
4744                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4745                                 hash_map::Entry::Occupied(mut chan_entry) => {
4746                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4747                                         if let Some(msg) = closing_signed {
4748                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4749                                                         node_id: counterparty_node_id.clone(),
4750                                                         msg,
4751                                                 });
4752                                         }
4753                                         if tx.is_some() {
4754                                                 // We're done with this channel, we've got a signed closing transaction and
4755                                                 // will send the closing_signed back to the remote peer upon return. This
4756                                                 // also implies there are no pending HTLCs left on the channel, so we can
4757                                                 // fully delete it from tracking (the channel monitor is still around to
4758                                                 // watch for old state broadcasts)!
4759                                                 (tx, Some(remove_channel!(self, chan_entry)))
4760                                         } else { (tx, None) }
4761                                 },
4762                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4763                         }
4764                 };
4765                 if let Some(broadcast_tx) = tx {
4766                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4767                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4768                 }
4769                 if let Some(chan) = chan_option {
4770                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4771                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4772                                 let peer_state = &mut *peer_state_lock;
4773                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4774                                         msg: update
4775                                 });
4776                         }
4777                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4778                 }
4779                 Ok(())
4780         }
4781
4782         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4783                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4784                 //determine the state of the payment based on our response/if we forward anything/the time
4785                 //we take to respond. We should take care to avoid allowing such an attack.
4786                 //
4787                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4788                 //us repeatedly garbled in different ways, and compare our error messages, which are
4789                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4790                 //but we should prevent it anyway.
4791
4792                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4793                 let per_peer_state = self.per_peer_state.read().unwrap();
4794                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4795                         .ok_or_else(|| {
4796                                 debug_assert!(false);
4797                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4798                         })?;
4799                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4800                 let peer_state = &mut *peer_state_lock;
4801                 match peer_state.channel_by_id.entry(msg.channel_id) {
4802                         hash_map::Entry::Occupied(mut chan) => {
4803
4804                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4805                                         // If the update_add is completely bogus, the call will Err and we will close,
4806                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4807                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4808                                         match pending_forward_info {
4809                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4810                                                         let reason = if (error_code & 0x1000) != 0 {
4811                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4812                                                                 HTLCFailReason::reason(real_code, error_data)
4813                                                         } else {
4814                                                                 HTLCFailReason::from_failure_code(error_code)
4815                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4816                                                         let msg = msgs::UpdateFailHTLC {
4817                                                                 channel_id: msg.channel_id,
4818                                                                 htlc_id: msg.htlc_id,
4819                                                                 reason
4820                                                         };
4821                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4822                                                 },
4823                                                 _ => pending_forward_info
4824                                         }
4825                                 };
4826                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4827                         },
4828                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4829                 }
4830                 Ok(())
4831         }
4832
4833         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4834                 let (htlc_source, forwarded_htlc_value) = {
4835                         let per_peer_state = self.per_peer_state.read().unwrap();
4836                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4837                                 .ok_or_else(|| {
4838                                         debug_assert!(false);
4839                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4840                                 })?;
4841                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4842                         let peer_state = &mut *peer_state_lock;
4843                         match peer_state.channel_by_id.entry(msg.channel_id) {
4844                                 hash_map::Entry::Occupied(mut chan) => {
4845                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4846                                 },
4847                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4848                         }
4849                 };
4850                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4851                 Ok(())
4852         }
4853
4854         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4855                 let per_peer_state = self.per_peer_state.read().unwrap();
4856                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4857                         .ok_or_else(|| {
4858                                 debug_assert!(false);
4859                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4860                         })?;
4861                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4862                 let peer_state = &mut *peer_state_lock;
4863                 match peer_state.channel_by_id.entry(msg.channel_id) {
4864                         hash_map::Entry::Occupied(mut chan) => {
4865                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4866                         },
4867                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4868                 }
4869                 Ok(())
4870         }
4871
4872         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4873                 let per_peer_state = self.per_peer_state.read().unwrap();
4874                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4875                         .ok_or_else(|| {
4876                                 debug_assert!(false);
4877                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4878                         })?;
4879                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4880                 let peer_state = &mut *peer_state_lock;
4881                 match peer_state.channel_by_id.entry(msg.channel_id) {
4882                         hash_map::Entry::Occupied(mut chan) => {
4883                                 if (msg.failure_code & 0x8000) == 0 {
4884                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4885                                         try_chan_entry!(self, Err(chan_err), chan);
4886                                 }
4887                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
4888                                 Ok(())
4889                         },
4890                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4891                 }
4892         }
4893
4894         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4895                 let per_peer_state = self.per_peer_state.read().unwrap();
4896                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4897                         .ok_or_else(|| {
4898                                 debug_assert!(false);
4899                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4900                         })?;
4901                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4902                 let peer_state = &mut *peer_state_lock;
4903                 match peer_state.channel_by_id.entry(msg.channel_id) {
4904                         hash_map::Entry::Occupied(mut chan) => {
4905                                 let funding_txo = chan.get().get_funding_txo();
4906                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
4907                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4908                                 let update_id = monitor_update.update_id;
4909                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4910                                         peer_state, per_peer_state, chan)
4911                         },
4912                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4913                 }
4914         }
4915
4916         #[inline]
4917         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
4918                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
4919                         let mut push_forward_event = false;
4920                         let mut new_intercept_events = Vec::new();
4921                         let mut failed_intercept_forwards = Vec::new();
4922                         if !pending_forwards.is_empty() {
4923                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4924                                         let scid = match forward_info.routing {
4925                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4926                                                 PendingHTLCRouting::Receive { .. } => 0,
4927                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4928                                         };
4929                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
4930                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
4931
4932                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4933                                         let forward_htlcs_empty = forward_htlcs.is_empty();
4934                                         match forward_htlcs.entry(scid) {
4935                                                 hash_map::Entry::Occupied(mut entry) => {
4936                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4937                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
4938                                                 },
4939                                                 hash_map::Entry::Vacant(entry) => {
4940                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
4941                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
4942                                                         {
4943                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
4944                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
4945                                                                 match pending_intercepts.entry(intercept_id) {
4946                                                                         hash_map::Entry::Vacant(entry) => {
4947                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
4948                                                                                         requested_next_hop_scid: scid,
4949                                                                                         payment_hash: forward_info.payment_hash,
4950                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
4951                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
4952                                                                                         intercept_id
4953                                                                                 });
4954                                                                                 entry.insert(PendingAddHTLCInfo {
4955                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
4956                                                                         },
4957                                                                         hash_map::Entry::Occupied(_) => {
4958                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
4959                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4960                                                                                         short_channel_id: prev_short_channel_id,
4961                                                                                         outpoint: prev_funding_outpoint,
4962                                                                                         htlc_id: prev_htlc_id,
4963                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
4964                                                                                         phantom_shared_secret: None,
4965                                                                                 });
4966
4967                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
4968                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
4969                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
4970                                                                                 ));
4971                                                                         }
4972                                                                 }
4973                                                         } else {
4974                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
4975                                                                 // payments are being processed.
4976                                                                 if forward_htlcs_empty {
4977                                                                         push_forward_event = true;
4978                                                                 }
4979                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4980                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
4981                                                         }
4982                                                 }
4983                                         }
4984                                 }
4985                         }
4986
4987                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
4988                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4989                         }
4990
4991                         if !new_intercept_events.is_empty() {
4992                                 let mut events = self.pending_events.lock().unwrap();
4993                                 events.append(&mut new_intercept_events);
4994                         }
4995                         if push_forward_event { self.push_pending_forwards_ev() }
4996                 }
4997         }
4998
4999         // We only want to push a PendingHTLCsForwardable event if no others are queued.
5000         fn push_pending_forwards_ev(&self) {
5001                 let mut pending_events = self.pending_events.lock().unwrap();
5002                 let forward_ev_exists = pending_events.iter()
5003                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
5004                         .is_some();
5005                 if !forward_ev_exists {
5006                         pending_events.push(events::Event::PendingHTLCsForwardable {
5007                                 time_forwardable:
5008                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
5009                         });
5010                 }
5011         }
5012
5013         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5014                 let (htlcs_to_fail, res) = {
5015                         let per_peer_state = self.per_peer_state.read().unwrap();
5016                         let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
5017                                 .ok_or_else(|| {
5018                                         debug_assert!(false);
5019                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5020                                 }).map(|mtx| mtx.lock().unwrap())?;
5021                         let peer_state = &mut *peer_state_lock;
5022                         match peer_state.channel_by_id.entry(msg.channel_id) {
5023                                 hash_map::Entry::Occupied(mut chan) => {
5024                                         let funding_txo = chan.get().get_funding_txo();
5025                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5026                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5027                                         let update_id = monitor_update.update_id;
5028                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5029                                                 peer_state_lock, peer_state, per_peer_state, chan);
5030                                         (htlcs_to_fail, res)
5031                                 },
5032                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5033                         }
5034                 };
5035                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5036                 res
5037         }
5038
5039         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5040                 let per_peer_state = self.per_peer_state.read().unwrap();
5041                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5042                         .ok_or_else(|| {
5043                                 debug_assert!(false);
5044                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5045                         })?;
5046                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5047                 let peer_state = &mut *peer_state_lock;
5048                 match peer_state.channel_by_id.entry(msg.channel_id) {
5049                         hash_map::Entry::Occupied(mut chan) => {
5050                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5051                         },
5052                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5053                 }
5054                 Ok(())
5055         }
5056
5057         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5058                 let per_peer_state = self.per_peer_state.read().unwrap();
5059                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5060                         .ok_or_else(|| {
5061                                 debug_assert!(false);
5062                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5063                         })?;
5064                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5065                 let peer_state = &mut *peer_state_lock;
5066                 match peer_state.channel_by_id.entry(msg.channel_id) {
5067                         hash_map::Entry::Occupied(mut chan) => {
5068                                 if !chan.get().is_usable() {
5069                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5070                                 }
5071
5072                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5073                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5074                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5075                                                 msg, &self.default_configuration
5076                                         ), chan),
5077                                         // Note that announcement_signatures fails if the channel cannot be announced,
5078                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
5079                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5080                                 });
5081                         },
5082                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5083                 }
5084                 Ok(())
5085         }
5086
5087         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5088         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5089                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5090                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5091                         None => {
5092                                 // It's not a local channel
5093                                 return Ok(NotifyOption::SkipPersist)
5094                         }
5095                 };
5096                 let per_peer_state = self.per_peer_state.read().unwrap();
5097                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5098                 if peer_state_mutex_opt.is_none() {
5099                         return Ok(NotifyOption::SkipPersist)
5100                 }
5101                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5102                 let peer_state = &mut *peer_state_lock;
5103                 match peer_state.channel_by_id.entry(chan_id) {
5104                         hash_map::Entry::Occupied(mut chan) => {
5105                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5106                                         if chan.get().should_announce() {
5107                                                 // If the announcement is about a channel of ours which is public, some
5108                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5109                                                 // a scary-looking error message and return Ok instead.
5110                                                 return Ok(NotifyOption::SkipPersist);
5111                                         }
5112                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5113                                 }
5114                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5115                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5116                                 if were_node_one == msg_from_node_one {
5117                                         return Ok(NotifyOption::SkipPersist);
5118                                 } else {
5119                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5120                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5121                                 }
5122                         },
5123                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5124                 }
5125                 Ok(NotifyOption::DoPersist)
5126         }
5127
5128         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5129                 let htlc_forwards;
5130                 let need_lnd_workaround = {
5131                         let per_peer_state = self.per_peer_state.read().unwrap();
5132
5133                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5134                                 .ok_or_else(|| {
5135                                         debug_assert!(false);
5136                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5137                                 })?;
5138                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5139                         let peer_state = &mut *peer_state_lock;
5140                         match peer_state.channel_by_id.entry(msg.channel_id) {
5141                                 hash_map::Entry::Occupied(mut chan) => {
5142                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5143                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5144                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5145                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5146                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5147                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5148                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5149                                         let mut channel_update = None;
5150                                         if let Some(msg) = responses.shutdown_msg {
5151                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5152                                                         node_id: counterparty_node_id.clone(),
5153                                                         msg,
5154                                                 });
5155                                         } else if chan.get().is_usable() {
5156                                                 // If the channel is in a usable state (ie the channel is not being shut
5157                                                 // down), send a unicast channel_update to our counterparty to make sure
5158                                                 // they have the latest channel parameters.
5159                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5160                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5161                                                                 node_id: chan.get().get_counterparty_node_id(),
5162                                                                 msg,
5163                                                         });
5164                                                 }
5165                                         }
5166                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5167                                         htlc_forwards = self.handle_channel_resumption(
5168                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5169                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5170                                         if let Some(upd) = channel_update {
5171                                                 peer_state.pending_msg_events.push(upd);
5172                                         }
5173                                         need_lnd_workaround
5174                                 },
5175                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5176                         }
5177                 };
5178
5179                 if let Some(forwards) = htlc_forwards {
5180                         self.forward_htlcs(&mut [forwards][..]);
5181                 }
5182
5183                 if let Some(channel_ready_msg) = need_lnd_workaround {
5184                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5185                 }
5186                 Ok(())
5187         }
5188
5189         /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
5190         fn process_pending_monitor_events(&self) -> bool {
5191                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5192
5193                 let mut failed_channels = Vec::new();
5194                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5195                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5196                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5197                         for monitor_event in monitor_events.drain(..) {
5198                                 match monitor_event {
5199                                         MonitorEvent::HTLCEvent(htlc_update) => {
5200                                                 if let Some(preimage) = htlc_update.payment_preimage {
5201                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5202                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5203                                                 } else {
5204                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5205                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5206                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5207                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5208                                                 }
5209                                         },
5210                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5211                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5212                                                 let counterparty_node_id_opt = match counterparty_node_id {
5213                                                         Some(cp_id) => Some(cp_id),
5214                                                         None => {
5215                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5216                                                                 // monitor event, this and the id_to_peer map should be removed.
5217                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5218                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5219                                                         }
5220                                                 };
5221                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5222                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5223                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5224                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5225                                                                 let peer_state = &mut *peer_state_lock;
5226                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5227                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5228                                                                         let mut chan = remove_channel!(self, chan_entry);
5229                                                                         failed_channels.push(chan.force_shutdown(false));
5230                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5231                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5232                                                                                         msg: update
5233                                                                                 });
5234                                                                         }
5235                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5236                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5237                                                                         } else {
5238                                                                                 ClosureReason::CommitmentTxConfirmed
5239                                                                         };
5240                                                                         self.issue_channel_close_events(&chan, reason);
5241                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5242                                                                                 node_id: chan.get_counterparty_node_id(),
5243                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5244                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5245                                                                                 },
5246                                                                         });
5247                                                                 }
5248                                                         }
5249                                                 }
5250                                         },
5251                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5252                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5253                                         },
5254                                 }
5255                         }
5256                 }
5257
5258                 for failure in failed_channels.drain(..) {
5259                         self.finish_force_close_channel(failure);
5260                 }
5261
5262                 has_pending_monitor_events
5263         }
5264
5265         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5266         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5267         /// update events as a separate process method here.
5268         #[cfg(fuzzing)]
5269         pub fn process_monitor_events(&self) {
5270                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5271                         if self.process_pending_monitor_events() {
5272                                 NotifyOption::DoPersist
5273                         } else {
5274                                 NotifyOption::SkipPersist
5275                         }
5276                 });
5277         }
5278
5279         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5280         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5281         /// update was applied.
5282         fn check_free_holding_cells(&self) -> bool {
5283                 let mut has_monitor_update = false;
5284                 let mut failed_htlcs = Vec::new();
5285                 let mut handle_errors = Vec::new();
5286
5287                 // Walk our list of channels and find any that need to update. Note that when we do find an
5288                 // update, if it includes actions that must be taken afterwards, we have to drop the
5289                 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5290                 // manage to go through all our peers without finding a single channel to update.
5291                 'peer_loop: loop {
5292                         let per_peer_state = self.per_peer_state.read().unwrap();
5293                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5294                                 'chan_loop: loop {
5295                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5296                                         let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5297                                         for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5298                                                 let counterparty_node_id = chan.get_counterparty_node_id();
5299                                                 let funding_txo = chan.get_funding_txo();
5300                                                 let (monitor_opt, holding_cell_failed_htlcs) =
5301                                                         chan.maybe_free_holding_cell_htlcs(&self.logger);
5302                                                 if !holding_cell_failed_htlcs.is_empty() {
5303                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5304                                                 }
5305                                                 if let Some(monitor_update) = monitor_opt {
5306                                                         has_monitor_update = true;
5307
5308                                                         let update_res = self.chain_monitor.update_channel(
5309                                                                 funding_txo.expect("channel is live"), monitor_update);
5310                                                         let update_id = monitor_update.update_id;
5311                                                         let channel_id: [u8; 32] = *channel_id;
5312                                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5313                                                                 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5314                                                                 peer_state.channel_by_id.remove(&channel_id));
5315                                                         if res.is_err() {
5316                                                                 handle_errors.push((counterparty_node_id, res));
5317                                                         }
5318                                                         continue 'peer_loop;
5319                                                 }
5320                                         }
5321                                         break 'chan_loop;
5322                                 }
5323                         }
5324                         break 'peer_loop;
5325                 }
5326
5327                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5328                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5329                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5330                 }
5331
5332                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5333                         let _ = handle_error!(self, err, counterparty_node_id);
5334                 }
5335
5336                 has_update
5337         }
5338
5339         /// Check whether any channels have finished removing all pending updates after a shutdown
5340         /// exchange and can now send a closing_signed.
5341         /// Returns whether any closing_signed messages were generated.
5342         fn maybe_generate_initial_closing_signed(&self) -> bool {
5343                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5344                 let mut has_update = false;
5345                 {
5346                         let per_peer_state = self.per_peer_state.read().unwrap();
5347
5348                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5349                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5350                                 let peer_state = &mut *peer_state_lock;
5351                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5352                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5353                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5354                                                 Ok((msg_opt, tx_opt)) => {
5355                                                         if let Some(msg) = msg_opt {
5356                                                                 has_update = true;
5357                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5358                                                                         node_id: chan.get_counterparty_node_id(), msg,
5359                                                                 });
5360                                                         }
5361                                                         if let Some(tx) = tx_opt {
5362                                                                 // We're done with this channel. We got a closing_signed and sent back
5363                                                                 // a closing_signed with a closing transaction to broadcast.
5364                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5365                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5366                                                                                 msg: update
5367                                                                         });
5368                                                                 }
5369
5370                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5371
5372                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5373                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5374                                                                 update_maps_on_chan_removal!(self, chan);
5375                                                                 false
5376                                                         } else { true }
5377                                                 },
5378                                                 Err(e) => {
5379                                                         has_update = true;
5380                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5381                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5382                                                         !close_channel
5383                                                 }
5384                                         }
5385                                 });
5386                         }
5387                 }
5388
5389                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5390                         let _ = handle_error!(self, err, counterparty_node_id);
5391                 }
5392
5393                 has_update
5394         }
5395
5396         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5397         /// pushing the channel monitor update (if any) to the background events queue and removing the
5398         /// Channel object.
5399         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5400                 for mut failure in failed_channels.drain(..) {
5401                         // Either a commitment transactions has been confirmed on-chain or
5402                         // Channel::block_disconnected detected that the funding transaction has been
5403                         // reorganized out of the main chain.
5404                         // We cannot broadcast our latest local state via monitor update (as
5405                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5406                         // so we track the update internally and handle it when the user next calls
5407                         // timer_tick_occurred, guaranteeing we're running normally.
5408                         if let Some((funding_txo, update)) = failure.0.take() {
5409                                 assert_eq!(update.updates.len(), 1);
5410                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5411                                         assert!(should_broadcast);
5412                                 } else { unreachable!(); }
5413                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5414                         }
5415                         self.finish_force_close_channel(failure);
5416                 }
5417         }
5418
5419         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5420                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5421
5422                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5423                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5424                 }
5425
5426                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5427
5428                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5429                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5430                 match payment_secrets.entry(payment_hash) {
5431                         hash_map::Entry::Vacant(e) => {
5432                                 e.insert(PendingInboundPayment {
5433                                         payment_secret, min_value_msat, payment_preimage,
5434                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5435                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5436                                         // it's updated when we receive a new block with the maximum time we've seen in
5437                                         // a header. It should never be more than two hours in the future.
5438                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5439                                         // never fail a payment too early.
5440                                         // Note that we assume that received blocks have reasonably up-to-date
5441                                         // timestamps.
5442                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5443                                 });
5444                         },
5445                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5446                 }
5447                 Ok(payment_secret)
5448         }
5449
5450         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5451         /// to pay us.
5452         ///
5453         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5454         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5455         ///
5456         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5457         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5458         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5459         /// passed directly to [`claim_funds`].
5460         ///
5461         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5462         ///
5463         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5464         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5465         ///
5466         /// # Note
5467         ///
5468         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5469         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5470         ///
5471         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5472         ///
5473         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5474         /// on versions of LDK prior to 0.0.114.
5475         ///
5476         /// [`claim_funds`]: Self::claim_funds
5477         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5478         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5479         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5480         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5481         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5482         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5483                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5484                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5485                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5486                         min_final_cltv_expiry_delta)
5487         }
5488
5489         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5490         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5491         ///
5492         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5493         ///
5494         /// # Note
5495         /// This method is deprecated and will be removed soon.
5496         ///
5497         /// [`create_inbound_payment`]: Self::create_inbound_payment
5498         #[deprecated]
5499         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5500                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5501                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5502                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5503                 Ok((payment_hash, payment_secret))
5504         }
5505
5506         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5507         /// stored external to LDK.
5508         ///
5509         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5510         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5511         /// the `min_value_msat` provided here, if one is provided.
5512         ///
5513         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5514         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5515         /// payments.
5516         ///
5517         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5518         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5519         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5520         /// sender "proof-of-payment" unless they have paid the required amount.
5521         ///
5522         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5523         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5524         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5525         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5526         /// invoices when no timeout is set.
5527         ///
5528         /// Note that we use block header time to time-out pending inbound payments (with some margin
5529         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5530         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5531         /// If you need exact expiry semantics, you should enforce them upon receipt of
5532         /// [`PaymentClaimable`].
5533         ///
5534         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5535         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5536         ///
5537         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5538         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5539         ///
5540         /// # Note
5541         ///
5542         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5543         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5544         ///
5545         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5546         ///
5547         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5548         /// on versions of LDK prior to 0.0.114.
5549         ///
5550         /// [`create_inbound_payment`]: Self::create_inbound_payment
5551         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5552         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5553                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5554                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5555                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5556                         min_final_cltv_expiry)
5557         }
5558
5559         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5560         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5561         ///
5562         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5563         ///
5564         /// # Note
5565         /// This method is deprecated and will be removed soon.
5566         ///
5567         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5568         #[deprecated]
5569         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5570                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5571         }
5572
5573         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5574         /// previously returned from [`create_inbound_payment`].
5575         ///
5576         /// [`create_inbound_payment`]: Self::create_inbound_payment
5577         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5578                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5579         }
5580
5581         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5582         /// are used when constructing the phantom invoice's route hints.
5583         ///
5584         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5585         pub fn get_phantom_scid(&self) -> u64 {
5586                 let best_block_height = self.best_block.read().unwrap().height();
5587                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5588                 loop {
5589                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5590                         // Ensure the generated scid doesn't conflict with a real channel.
5591                         match short_to_chan_info.get(&scid_candidate) {
5592                                 Some(_) => continue,
5593                                 None => return scid_candidate
5594                         }
5595                 }
5596         }
5597
5598         /// Gets route hints for use in receiving [phantom node payments].
5599         ///
5600         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5601         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5602                 PhantomRouteHints {
5603                         channels: self.list_usable_channels(),
5604                         phantom_scid: self.get_phantom_scid(),
5605                         real_node_pubkey: self.get_our_node_id(),
5606                 }
5607         }
5608
5609         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5610         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5611         /// [`ChannelManager::forward_intercepted_htlc`].
5612         ///
5613         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5614         /// times to get a unique scid.
5615         pub fn get_intercept_scid(&self) -> u64 {
5616                 let best_block_height = self.best_block.read().unwrap().height();
5617                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5618                 loop {
5619                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5620                         // Ensure the generated scid doesn't conflict with a real channel.
5621                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5622                         return scid_candidate
5623                 }
5624         }
5625
5626         /// Gets inflight HTLC information by processing pending outbound payments that are in
5627         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5628         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5629                 let mut inflight_htlcs = InFlightHtlcs::new();
5630
5631                 let per_peer_state = self.per_peer_state.read().unwrap();
5632                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5633                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5634                         let peer_state = &mut *peer_state_lock;
5635                         for chan in peer_state.channel_by_id.values() {
5636                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5637                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5638                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5639                                         }
5640                                 }
5641                         }
5642                 }
5643
5644                 inflight_htlcs
5645         }
5646
5647         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5648         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5649                 let events = core::cell::RefCell::new(Vec::new());
5650                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5651                 self.process_pending_events(&event_handler);
5652                 events.into_inner()
5653         }
5654
5655         #[cfg(feature = "_test_utils")]
5656         pub fn push_pending_event(&self, event: events::Event) {
5657                 let mut events = self.pending_events.lock().unwrap();
5658                 events.push(event);
5659         }
5660
5661         #[cfg(test)]
5662         pub fn pop_pending_event(&self) -> Option<events::Event> {
5663                 let mut events = self.pending_events.lock().unwrap();
5664                 if events.is_empty() { None } else { Some(events.remove(0)) }
5665         }
5666
5667         #[cfg(test)]
5668         pub fn has_pending_payments(&self) -> bool {
5669                 self.pending_outbound_payments.has_pending_payments()
5670         }
5671
5672         #[cfg(test)]
5673         pub fn clear_pending_payments(&self) {
5674                 self.pending_outbound_payments.clear_pending_payments()
5675         }
5676
5677         /// Processes any events asynchronously in the order they were generated since the last call
5678         /// using the given event handler.
5679         ///
5680         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5681         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5682                 &self, handler: H
5683         ) {
5684                 // We'll acquire our total consistency lock until the returned future completes so that
5685                 // we can be sure no other persists happen while processing events.
5686                 let _read_guard = self.total_consistency_lock.read().unwrap();
5687
5688                 let mut result = NotifyOption::SkipPersist;
5689
5690                 // TODO: This behavior should be documented. It's unintuitive that we query
5691                 // ChannelMonitors when clearing other events.
5692                 if self.process_pending_monitor_events() {
5693                         result = NotifyOption::DoPersist;
5694                 }
5695
5696                 let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5697                 if !pending_events.is_empty() {
5698                         result = NotifyOption::DoPersist;
5699                 }
5700
5701                 for event in pending_events {
5702                         handler(event).await;
5703                 }
5704
5705                 if result == NotifyOption::DoPersist {
5706                         self.persistence_notifier.notify();
5707                 }
5708         }
5709 }
5710
5711 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5712 where
5713         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5714         T::Target: BroadcasterInterface,
5715         ES::Target: EntropySource,
5716         NS::Target: NodeSigner,
5717         SP::Target: SignerProvider,
5718         F::Target: FeeEstimator,
5719         R::Target: Router,
5720         L::Target: Logger,
5721 {
5722         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5723         /// The returned array will contain `MessageSendEvent`s for different peers if
5724         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5725         /// is always placed next to each other.
5726         ///
5727         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5728         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5729         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5730         /// will randomly be placed first or last in the returned array.
5731         ///
5732         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5733         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5734         /// the `MessageSendEvent`s to the specific peer they were generated under.
5735         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5736                 let events = RefCell::new(Vec::new());
5737                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5738                         let mut result = NotifyOption::SkipPersist;
5739
5740                         // TODO: This behavior should be documented. It's unintuitive that we query
5741                         // ChannelMonitors when clearing other events.
5742                         if self.process_pending_monitor_events() {
5743                                 result = NotifyOption::DoPersist;
5744                         }
5745
5746                         if self.check_free_holding_cells() {
5747                                 result = NotifyOption::DoPersist;
5748                         }
5749                         if self.maybe_generate_initial_closing_signed() {
5750                                 result = NotifyOption::DoPersist;
5751                         }
5752
5753                         let mut pending_events = Vec::new();
5754                         let per_peer_state = self.per_peer_state.read().unwrap();
5755                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5756                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5757                                 let peer_state = &mut *peer_state_lock;
5758                                 if peer_state.pending_msg_events.len() > 0 {
5759                                         pending_events.append(&mut peer_state.pending_msg_events);
5760                                 }
5761                         }
5762
5763                         if !pending_events.is_empty() {
5764                                 events.replace(pending_events);
5765                         }
5766
5767                         result
5768                 });
5769                 events.into_inner()
5770         }
5771 }
5772
5773 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5774 where
5775         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5776         T::Target: BroadcasterInterface,
5777         ES::Target: EntropySource,
5778         NS::Target: NodeSigner,
5779         SP::Target: SignerProvider,
5780         F::Target: FeeEstimator,
5781         R::Target: Router,
5782         L::Target: Logger,
5783 {
5784         /// Processes events that must be periodically handled.
5785         ///
5786         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5787         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5788         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5789                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5790                         let mut result = NotifyOption::SkipPersist;
5791
5792                         // TODO: This behavior should be documented. It's unintuitive that we query
5793                         // ChannelMonitors when clearing other events.
5794                         if self.process_pending_monitor_events() {
5795                                 result = NotifyOption::DoPersist;
5796                         }
5797
5798                         let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5799                         if !pending_events.is_empty() {
5800                                 result = NotifyOption::DoPersist;
5801                         }
5802
5803                         for event in pending_events {
5804                                 handler.handle_event(event);
5805                         }
5806
5807                         result
5808                 });
5809         }
5810 }
5811
5812 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5813 where
5814         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5815         T::Target: BroadcasterInterface,
5816         ES::Target: EntropySource,
5817         NS::Target: NodeSigner,
5818         SP::Target: SignerProvider,
5819         F::Target: FeeEstimator,
5820         R::Target: Router,
5821         L::Target: Logger,
5822 {
5823         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5824                 {
5825                         let best_block = self.best_block.read().unwrap();
5826                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5827                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5828                         assert_eq!(best_block.height(), height - 1,
5829                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5830                 }
5831
5832                 self.transactions_confirmed(header, txdata, height);
5833                 self.best_block_updated(header, height);
5834         }
5835
5836         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5837                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5838                 let new_height = height - 1;
5839                 {
5840                         let mut best_block = self.best_block.write().unwrap();
5841                         assert_eq!(best_block.block_hash(), header.block_hash(),
5842                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5843                         assert_eq!(best_block.height(), height,
5844                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5845                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5846                 }
5847
5848                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5849         }
5850 }
5851
5852 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5853 where
5854         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5855         T::Target: BroadcasterInterface,
5856         ES::Target: EntropySource,
5857         NS::Target: NodeSigner,
5858         SP::Target: SignerProvider,
5859         F::Target: FeeEstimator,
5860         R::Target: Router,
5861         L::Target: Logger,
5862 {
5863         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5864                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5865                 // during initialization prior to the chain_monitor being fully configured in some cases.
5866                 // See the docs for `ChannelManagerReadArgs` for more.
5867
5868                 let block_hash = header.block_hash();
5869                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5870
5871                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5872                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5873                         .map(|(a, b)| (a, Vec::new(), b)));
5874
5875                 let last_best_block_height = self.best_block.read().unwrap().height();
5876                 if height < last_best_block_height {
5877                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5878                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5879                 }
5880         }
5881
5882         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5883                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5884                 // during initialization prior to the chain_monitor being fully configured in some cases.
5885                 // See the docs for `ChannelManagerReadArgs` for more.
5886
5887                 let block_hash = header.block_hash();
5888                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5889
5890                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5891
5892                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5893
5894                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5895
5896                 macro_rules! max_time {
5897                         ($timestamp: expr) => {
5898                                 loop {
5899                                         // Update $timestamp to be the max of its current value and the block
5900                                         // timestamp. This should keep us close to the current time without relying on
5901                                         // having an explicit local time source.
5902                                         // Just in case we end up in a race, we loop until we either successfully
5903                                         // update $timestamp or decide we don't need to.
5904                                         let old_serial = $timestamp.load(Ordering::Acquire);
5905                                         if old_serial >= header.time as usize { break; }
5906                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5907                                                 break;
5908                                         }
5909                                 }
5910                         }
5911                 }
5912                 max_time!(self.highest_seen_timestamp);
5913                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5914                 payment_secrets.retain(|_, inbound_payment| {
5915                         inbound_payment.expiry_time > header.time as u64
5916                 });
5917         }
5918
5919         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
5920                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
5921                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
5922                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5923                         let peer_state = &mut *peer_state_lock;
5924                         for chan in peer_state.channel_by_id.values() {
5925                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
5926                                         res.push((funding_txo.txid, Some(block_hash)));
5927                                 }
5928                         }
5929                 }
5930                 res
5931         }
5932
5933         fn transaction_unconfirmed(&self, txid: &Txid) {
5934                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5935                 self.do_chain_event(None, |channel| {
5936                         if let Some(funding_txo) = channel.get_funding_txo() {
5937                                 if funding_txo.txid == *txid {
5938                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5939                                 } else { Ok((None, Vec::new(), None)) }
5940                         } else { Ok((None, Vec::new(), None)) }
5941                 });
5942         }
5943 }
5944
5945 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
5946 where
5947         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5948         T::Target: BroadcasterInterface,
5949         ES::Target: EntropySource,
5950         NS::Target: NodeSigner,
5951         SP::Target: SignerProvider,
5952         F::Target: FeeEstimator,
5953         R::Target: Router,
5954         L::Target: Logger,
5955 {
5956         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5957         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5958         /// the function.
5959         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5960                         (&self, height_opt: Option<u32>, f: FN) {
5961                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5962                 // during initialization prior to the chain_monitor being fully configured in some cases.
5963                 // See the docs for `ChannelManagerReadArgs` for more.
5964
5965                 let mut failed_channels = Vec::new();
5966                 let mut timed_out_htlcs = Vec::new();
5967                 {
5968                         let per_peer_state = self.per_peer_state.read().unwrap();
5969                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5970                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5971                                 let peer_state = &mut *peer_state_lock;
5972                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5973                                 peer_state.channel_by_id.retain(|_, channel| {
5974                                         let res = f(channel);
5975                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5976                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5977                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5978                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
5979                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
5980                                                 }
5981                                                 if let Some(channel_ready) = channel_ready_opt {
5982                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
5983                                                         if channel.is_usable() {
5984                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5985                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5986                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5987                                                                                 node_id: channel.get_counterparty_node_id(),
5988                                                                                 msg,
5989                                                                         });
5990                                                                 }
5991                                                         } else {
5992                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5993                                                         }
5994                                                 }
5995
5996                                                 emit_channel_ready_event!(self, channel);
5997
5998                                                 if let Some(announcement_sigs) = announcement_sigs {
5999                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
6000                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6001                                                                 node_id: channel.get_counterparty_node_id(),
6002                                                                 msg: announcement_sigs,
6003                                                         });
6004                                                         if let Some(height) = height_opt {
6005                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
6006                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6007                                                                                 msg: announcement,
6008                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
6009                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
6010                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
6011                                                                         });
6012                                                                 }
6013                                                         }
6014                                                 }
6015                                                 if channel.is_our_channel_ready() {
6016                                                         if let Some(real_scid) = channel.get_short_channel_id() {
6017                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
6018                                                                 // to the short_to_chan_info map here. Note that we check whether we
6019                                                                 // can relay using the real SCID at relay-time (i.e.
6020                                                                 // enforce option_scid_alias then), and if the funding tx is ever
6021                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6022                                                                 // is always consistent.
6023                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6024                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
6025                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
6026                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6027                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6028                                                         }
6029                                                 }
6030                                         } else if let Err(reason) = res {
6031                                                 update_maps_on_chan_removal!(self, channel);
6032                                                 // It looks like our counterparty went on-chain or funding transaction was
6033                                                 // reorged out of the main chain. Close the channel.
6034                                                 failed_channels.push(channel.force_shutdown(true));
6035                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6036                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6037                                                                 msg: update
6038                                                         });
6039                                                 }
6040                                                 let reason_message = format!("{}", reason);
6041                                                 self.issue_channel_close_events(channel, reason);
6042                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
6043                                                         node_id: channel.get_counterparty_node_id(),
6044                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6045                                                                 channel_id: channel.channel_id(),
6046                                                                 data: reason_message,
6047                                                         } },
6048                                                 });
6049                                                 return false;
6050                                         }
6051                                         true
6052                                 });
6053                         }
6054                 }
6055
6056                 if let Some(height) = height_opt {
6057                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
6058                                 htlcs.retain(|htlc| {
6059                                         // If height is approaching the number of blocks we think it takes us to get
6060                                         // our commitment transaction confirmed before the HTLC expires, plus the
6061                                         // number of blocks we generally consider it to take to do a commitment update,
6062                                         // just give up on it and fail the HTLC.
6063                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6064                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6065                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6066
6067                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6068                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6069                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6070                                                 false
6071                                         } else { true }
6072                                 });
6073                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6074                         });
6075
6076                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6077                         intercepted_htlcs.retain(|_, htlc| {
6078                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6079                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6080                                                 short_channel_id: htlc.prev_short_channel_id,
6081                                                 htlc_id: htlc.prev_htlc_id,
6082                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6083                                                 phantom_shared_secret: None,
6084                                                 outpoint: htlc.prev_funding_outpoint,
6085                                         });
6086
6087                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6088                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6089                                                 _ => unreachable!(),
6090                                         };
6091                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6092                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
6093                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
6094                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6095                                         false
6096                                 } else { true }
6097                         });
6098                 }
6099
6100                 self.handle_init_event_channel_failures(failed_channels);
6101
6102                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6103                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6104                 }
6105         }
6106
6107         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
6108         /// indicating whether persistence is necessary. Only one listener on
6109         /// [`await_persistable_update`], [`await_persistable_update_timeout`], or a future returned by
6110         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6111         ///
6112         /// Note that this method is not available with the `no-std` feature.
6113         ///
6114         /// [`await_persistable_update`]: Self::await_persistable_update
6115         /// [`await_persistable_update_timeout`]: Self::await_persistable_update_timeout
6116         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6117         #[cfg(any(test, feature = "std"))]
6118         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
6119                 self.persistence_notifier.wait_timeout(max_wait)
6120         }
6121
6122         /// Blocks until ChannelManager needs to be persisted. Only one listener on
6123         /// [`await_persistable_update`], `await_persistable_update_timeout`, or a future returned by
6124         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6125         ///
6126         /// [`await_persistable_update`]: Self::await_persistable_update
6127         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6128         pub fn await_persistable_update(&self) {
6129                 self.persistence_notifier.wait()
6130         }
6131
6132         /// Gets a [`Future`] that completes when a persistable update is available. Note that
6133         /// callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and
6134         /// should instead register actions to be taken later.
6135         pub fn get_persistable_update_future(&self) -> Future {
6136                 self.persistence_notifier.get_future()
6137         }
6138
6139         #[cfg(any(test, feature = "_test_utils"))]
6140         pub fn get_persistence_condvar_value(&self) -> bool {
6141                 self.persistence_notifier.notify_pending()
6142         }
6143
6144         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6145         /// [`chain::Confirm`] interfaces.
6146         pub fn current_best_block(&self) -> BestBlock {
6147                 self.best_block.read().unwrap().clone()
6148         }
6149
6150         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6151         /// [`ChannelManager`].
6152         pub fn node_features(&self) -> NodeFeatures {
6153                 provided_node_features(&self.default_configuration)
6154         }
6155
6156         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6157         /// [`ChannelManager`].
6158         ///
6159         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6160         /// or not. Thus, this method is not public.
6161         #[cfg(any(feature = "_test_utils", test))]
6162         pub fn invoice_features(&self) -> InvoiceFeatures {
6163                 provided_invoice_features(&self.default_configuration)
6164         }
6165
6166         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6167         /// [`ChannelManager`].
6168         pub fn channel_features(&self) -> ChannelFeatures {
6169                 provided_channel_features(&self.default_configuration)
6170         }
6171
6172         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6173         /// [`ChannelManager`].
6174         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6175                 provided_channel_type_features(&self.default_configuration)
6176         }
6177
6178         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6179         /// [`ChannelManager`].
6180         pub fn init_features(&self) -> InitFeatures {
6181                 provided_init_features(&self.default_configuration)
6182         }
6183 }
6184
6185 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6186         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6187 where
6188         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6189         T::Target: BroadcasterInterface,
6190         ES::Target: EntropySource,
6191         NS::Target: NodeSigner,
6192         SP::Target: SignerProvider,
6193         F::Target: FeeEstimator,
6194         R::Target: Router,
6195         L::Target: Logger,
6196 {
6197         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6198                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6199                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6200         }
6201
6202         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6203                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6204                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6205         }
6206
6207         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6208                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6209                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6210         }
6211
6212         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6213                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6214                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6215         }
6216
6217         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6218                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6219                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6220         }
6221
6222         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6223                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6224                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6225         }
6226
6227         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6228                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6229                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6230         }
6231
6232         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6233                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6234                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6235         }
6236
6237         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6238                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6239                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6240         }
6241
6242         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6243                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6244                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6245         }
6246
6247         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6248                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6249                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6250         }
6251
6252         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6253                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6254                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6255         }
6256
6257         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6258                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6259                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6260         }
6261
6262         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6263                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6264                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6265         }
6266
6267         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6268                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6269                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6270         }
6271
6272         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6273                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6274                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6275                                 persist
6276                         } else {
6277                                 NotifyOption::SkipPersist
6278                         }
6279                 });
6280         }
6281
6282         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6283                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6284                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6285         }
6286
6287         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6288                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6289                 let mut failed_channels = Vec::new();
6290                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6291                 let remove_peer = {
6292                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6293                                 log_pubkey!(counterparty_node_id));
6294                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6295                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6296                                 let peer_state = &mut *peer_state_lock;
6297                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6298                                 peer_state.channel_by_id.retain(|_, chan| {
6299                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6300                                         if chan.is_shutdown() {
6301                                                 update_maps_on_chan_removal!(self, chan);
6302                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6303                                                 return false;
6304                                         }
6305                                         true
6306                                 });
6307                                 pending_msg_events.retain(|msg| {
6308                                         match msg {
6309                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6310                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6311                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6312                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6313                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6314                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6315                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6316                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6317                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6318                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6319                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6320                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6321                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6322                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6323                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6324                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6325                                                 &events::MessageSendEvent::HandleError { .. } => false,
6326                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6327                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6328                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6329                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6330                                         }
6331                                 });
6332                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6333                                 peer_state.is_connected = false;
6334                                 peer_state.ok_to_remove(true)
6335                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6336                 };
6337                 if remove_peer {
6338                         per_peer_state.remove(counterparty_node_id);
6339                 }
6340                 mem::drop(per_peer_state);
6341
6342                 for failure in failed_channels.drain(..) {
6343                         self.finish_force_close_channel(failure);
6344                 }
6345         }
6346
6347         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6348                 if !init_msg.features.supports_static_remote_key() {
6349                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6350                         return Err(());
6351                 }
6352
6353                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6354
6355                 // If we have too many peers connected which don't have funded channels, disconnect the
6356                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6357                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6358                 // peers connect, but we'll reject new channels from them.
6359                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6360                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6361
6362                 {
6363                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6364                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6365                                 hash_map::Entry::Vacant(e) => {
6366                                         if inbound_peer_limited {
6367                                                 return Err(());
6368                                         }
6369                                         e.insert(Mutex::new(PeerState {
6370                                                 channel_by_id: HashMap::new(),
6371                                                 latest_features: init_msg.features.clone(),
6372                                                 pending_msg_events: Vec::new(),
6373                                                 monitor_update_blocked_actions: BTreeMap::new(),
6374                                                 is_connected: true,
6375                                         }));
6376                                 },
6377                                 hash_map::Entry::Occupied(e) => {
6378                                         let mut peer_state = e.get().lock().unwrap();
6379                                         peer_state.latest_features = init_msg.features.clone();
6380
6381                                         let best_block_height = self.best_block.read().unwrap().height();
6382                                         if inbound_peer_limited &&
6383                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6384                                                 peer_state.channel_by_id.len()
6385                                         {
6386                                                 return Err(());
6387                                         }
6388
6389                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6390                                         peer_state.is_connected = true;
6391                                 },
6392                         }
6393                 }
6394
6395                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6396
6397                 let per_peer_state = self.per_peer_state.read().unwrap();
6398                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6399                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6400                         let peer_state = &mut *peer_state_lock;
6401                         let pending_msg_events = &mut peer_state.pending_msg_events;
6402                         peer_state.channel_by_id.retain(|_, chan| {
6403                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6404                                         if !chan.have_received_message() {
6405                                                 // If we created this (outbound) channel while we were disconnected from the
6406                                                 // peer we probably failed to send the open_channel message, which is now
6407                                                 // lost. We can't have had anything pending related to this channel, so we just
6408                                                 // drop it.
6409                                                 false
6410                                         } else {
6411                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6412                                                         node_id: chan.get_counterparty_node_id(),
6413                                                         msg: chan.get_channel_reestablish(&self.logger),
6414                                                 });
6415                                                 true
6416                                         }
6417                                 } else { true };
6418                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6419                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6420                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6421                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6422                                                                 node_id: *counterparty_node_id,
6423                                                                 msg, update_msg,
6424                                                         });
6425                                                 }
6426                                         }
6427                                 }
6428                                 retain
6429                         });
6430                 }
6431                 //TODO: Also re-broadcast announcement_signatures
6432                 Ok(())
6433         }
6434
6435         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6436                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6437
6438                 if msg.channel_id == [0; 32] {
6439                         let channel_ids: Vec<[u8; 32]> = {
6440                                 let per_peer_state = self.per_peer_state.read().unwrap();
6441                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6442                                 if peer_state_mutex_opt.is_none() { return; }
6443                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6444                                 let peer_state = &mut *peer_state_lock;
6445                                 peer_state.channel_by_id.keys().cloned().collect()
6446                         };
6447                         for channel_id in channel_ids {
6448                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6449                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6450                         }
6451                 } else {
6452                         {
6453                                 // First check if we can advance the channel type and try again.
6454                                 let per_peer_state = self.per_peer_state.read().unwrap();
6455                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6456                                 if peer_state_mutex_opt.is_none() { return; }
6457                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6458                                 let peer_state = &mut *peer_state_lock;
6459                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6460                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6461                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6462                                                         node_id: *counterparty_node_id,
6463                                                         msg,
6464                                                 });
6465                                                 return;
6466                                         }
6467                                 }
6468                         }
6469
6470                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6471                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6472                 }
6473         }
6474
6475         fn provided_node_features(&self) -> NodeFeatures {
6476                 provided_node_features(&self.default_configuration)
6477         }
6478
6479         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6480                 provided_init_features(&self.default_configuration)
6481         }
6482 }
6483
6484 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6485 /// [`ChannelManager`].
6486 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6487         provided_init_features(config).to_context()
6488 }
6489
6490 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6491 /// [`ChannelManager`].
6492 ///
6493 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6494 /// or not. Thus, this method is not public.
6495 #[cfg(any(feature = "_test_utils", test))]
6496 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6497         provided_init_features(config).to_context()
6498 }
6499
6500 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6501 /// [`ChannelManager`].
6502 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6503         provided_init_features(config).to_context()
6504 }
6505
6506 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6507 /// [`ChannelManager`].
6508 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6509         ChannelTypeFeatures::from_init(&provided_init_features(config))
6510 }
6511
6512 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6513 /// [`ChannelManager`].
6514 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6515         // Note that if new features are added here which other peers may (eventually) require, we
6516         // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
6517         // [`ErroringMessageHandler`].
6518         let mut features = InitFeatures::empty();
6519         features.set_data_loss_protect_optional();
6520         features.set_upfront_shutdown_script_optional();
6521         features.set_variable_length_onion_required();
6522         features.set_static_remote_key_required();
6523         features.set_payment_secret_required();
6524         features.set_basic_mpp_optional();
6525         features.set_wumbo_optional();
6526         features.set_shutdown_any_segwit_optional();
6527         features.set_channel_type_optional();
6528         features.set_scid_privacy_optional();
6529         features.set_zero_conf_optional();
6530         #[cfg(anchors)]
6531         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6532                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6533                         features.set_anchors_zero_fee_htlc_tx_optional();
6534                 }
6535         }
6536         features
6537 }
6538
6539 const SERIALIZATION_VERSION: u8 = 1;
6540 const MIN_SERIALIZATION_VERSION: u8 = 1;
6541
6542 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6543         (2, fee_base_msat, required),
6544         (4, fee_proportional_millionths, required),
6545         (6, cltv_expiry_delta, required),
6546 });
6547
6548 impl_writeable_tlv_based!(ChannelCounterparty, {
6549         (2, node_id, required),
6550         (4, features, required),
6551         (6, unspendable_punishment_reserve, required),
6552         (8, forwarding_info, option),
6553         (9, outbound_htlc_minimum_msat, option),
6554         (11, outbound_htlc_maximum_msat, option),
6555 });
6556
6557 impl Writeable for ChannelDetails {
6558         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6559                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6560                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6561                 let user_channel_id_low = self.user_channel_id as u64;
6562                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6563                 write_tlv_fields!(writer, {
6564                         (1, self.inbound_scid_alias, option),
6565                         (2, self.channel_id, required),
6566                         (3, self.channel_type, option),
6567                         (4, self.counterparty, required),
6568                         (5, self.outbound_scid_alias, option),
6569                         (6, self.funding_txo, option),
6570                         (7, self.config, option),
6571                         (8, self.short_channel_id, option),
6572                         (9, self.confirmations, option),
6573                         (10, self.channel_value_satoshis, required),
6574                         (12, self.unspendable_punishment_reserve, option),
6575                         (14, user_channel_id_low, required),
6576                         (16, self.balance_msat, required),
6577                         (18, self.outbound_capacity_msat, required),
6578                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6579                         // filled in, so we can safely unwrap it here.
6580                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6581                         (20, self.inbound_capacity_msat, required),
6582                         (22, self.confirmations_required, option),
6583                         (24, self.force_close_spend_delay, option),
6584                         (26, self.is_outbound, required),
6585                         (28, self.is_channel_ready, required),
6586                         (30, self.is_usable, required),
6587                         (32, self.is_public, required),
6588                         (33, self.inbound_htlc_minimum_msat, option),
6589                         (35, self.inbound_htlc_maximum_msat, option),
6590                         (37, user_channel_id_high_opt, option),
6591                 });
6592                 Ok(())
6593         }
6594 }
6595
6596 impl Readable for ChannelDetails {
6597         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6598                 _init_and_read_tlv_fields!(reader, {
6599                         (1, inbound_scid_alias, option),
6600                         (2, channel_id, required),
6601                         (3, channel_type, option),
6602                         (4, counterparty, required),
6603                         (5, outbound_scid_alias, option),
6604                         (6, funding_txo, option),
6605                         (7, config, option),
6606                         (8, short_channel_id, option),
6607                         (9, confirmations, option),
6608                         (10, channel_value_satoshis, required),
6609                         (12, unspendable_punishment_reserve, option),
6610                         (14, user_channel_id_low, required),
6611                         (16, balance_msat, required),
6612                         (18, outbound_capacity_msat, required),
6613                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6614                         // filled in, so we can safely unwrap it here.
6615                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6616                         (20, inbound_capacity_msat, required),
6617                         (22, confirmations_required, option),
6618                         (24, force_close_spend_delay, option),
6619                         (26, is_outbound, required),
6620                         (28, is_channel_ready, required),
6621                         (30, is_usable, required),
6622                         (32, is_public, required),
6623                         (33, inbound_htlc_minimum_msat, option),
6624                         (35, inbound_htlc_maximum_msat, option),
6625                         (37, user_channel_id_high_opt, option),
6626                 });
6627
6628                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6629                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6630                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6631                 let user_channel_id = user_channel_id_low as u128 +
6632                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6633
6634                 Ok(Self {
6635                         inbound_scid_alias,
6636                         channel_id: channel_id.0.unwrap(),
6637                         channel_type,
6638                         counterparty: counterparty.0.unwrap(),
6639                         outbound_scid_alias,
6640                         funding_txo,
6641                         config,
6642                         short_channel_id,
6643                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6644                         unspendable_punishment_reserve,
6645                         user_channel_id,
6646                         balance_msat: balance_msat.0.unwrap(),
6647                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6648                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6649                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6650                         confirmations_required,
6651                         confirmations,
6652                         force_close_spend_delay,
6653                         is_outbound: is_outbound.0.unwrap(),
6654                         is_channel_ready: is_channel_ready.0.unwrap(),
6655                         is_usable: is_usable.0.unwrap(),
6656                         is_public: is_public.0.unwrap(),
6657                         inbound_htlc_minimum_msat,
6658                         inbound_htlc_maximum_msat,
6659                 })
6660         }
6661 }
6662
6663 impl_writeable_tlv_based!(PhantomRouteHints, {
6664         (2, channels, vec_type),
6665         (4, phantom_scid, required),
6666         (6, real_node_pubkey, required),
6667 });
6668
6669 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6670         (0, Forward) => {
6671                 (0, onion_packet, required),
6672                 (2, short_channel_id, required),
6673         },
6674         (1, Receive) => {
6675                 (0, payment_data, required),
6676                 (1, phantom_shared_secret, option),
6677                 (2, incoming_cltv_expiry, required),
6678         },
6679         (2, ReceiveKeysend) => {
6680                 (0, payment_preimage, required),
6681                 (2, incoming_cltv_expiry, required),
6682         },
6683 ;);
6684
6685 impl_writeable_tlv_based!(PendingHTLCInfo, {
6686         (0, routing, required),
6687         (2, incoming_shared_secret, required),
6688         (4, payment_hash, required),
6689         (6, outgoing_amt_msat, required),
6690         (8, outgoing_cltv_value, required),
6691         (9, incoming_amt_msat, option),
6692 });
6693
6694
6695 impl Writeable for HTLCFailureMsg {
6696         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6697                 match self {
6698                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6699                                 0u8.write(writer)?;
6700                                 channel_id.write(writer)?;
6701                                 htlc_id.write(writer)?;
6702                                 reason.write(writer)?;
6703                         },
6704                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6705                                 channel_id, htlc_id, sha256_of_onion, failure_code
6706                         }) => {
6707                                 1u8.write(writer)?;
6708                                 channel_id.write(writer)?;
6709                                 htlc_id.write(writer)?;
6710                                 sha256_of_onion.write(writer)?;
6711                                 failure_code.write(writer)?;
6712                         },
6713                 }
6714                 Ok(())
6715         }
6716 }
6717
6718 impl Readable for HTLCFailureMsg {
6719         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6720                 let id: u8 = Readable::read(reader)?;
6721                 match id {
6722                         0 => {
6723                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6724                                         channel_id: Readable::read(reader)?,
6725                                         htlc_id: Readable::read(reader)?,
6726                                         reason: Readable::read(reader)?,
6727                                 }))
6728                         },
6729                         1 => {
6730                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6731                                         channel_id: Readable::read(reader)?,
6732                                         htlc_id: Readable::read(reader)?,
6733                                         sha256_of_onion: Readable::read(reader)?,
6734                                         failure_code: Readable::read(reader)?,
6735                                 }))
6736                         },
6737                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6738                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6739                         // messages contained in the variants.
6740                         // In version 0.0.101, support for reading the variants with these types was added, and
6741                         // we should migrate to writing these variants when UpdateFailHTLC or
6742                         // UpdateFailMalformedHTLC get TLV fields.
6743                         2 => {
6744                                 let length: BigSize = Readable::read(reader)?;
6745                                 let mut s = FixedLengthReader::new(reader, length.0);
6746                                 let res = Readable::read(&mut s)?;
6747                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6748                                 Ok(HTLCFailureMsg::Relay(res))
6749                         },
6750                         3 => {
6751                                 let length: BigSize = Readable::read(reader)?;
6752                                 let mut s = FixedLengthReader::new(reader, length.0);
6753                                 let res = Readable::read(&mut s)?;
6754                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6755                                 Ok(HTLCFailureMsg::Malformed(res))
6756                         },
6757                         _ => Err(DecodeError::UnknownRequiredFeature),
6758                 }
6759         }
6760 }
6761
6762 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6763         (0, Forward),
6764         (1, Fail),
6765 );
6766
6767 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6768         (0, short_channel_id, required),
6769         (1, phantom_shared_secret, option),
6770         (2, outpoint, required),
6771         (4, htlc_id, required),
6772         (6, incoming_packet_shared_secret, required)
6773 });
6774
6775 impl Writeable for ClaimableHTLC {
6776         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6777                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6778                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6779                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6780                 };
6781                 write_tlv_fields!(writer, {
6782                         (0, self.prev_hop, required),
6783                         (1, self.total_msat, required),
6784                         (2, self.value, required),
6785                         (4, payment_data, option),
6786                         (6, self.cltv_expiry, required),
6787                         (8, keysend_preimage, option),
6788                 });
6789                 Ok(())
6790         }
6791 }
6792
6793 impl Readable for ClaimableHTLC {
6794         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6795                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6796                 let mut value = 0;
6797                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6798                 let mut cltv_expiry = 0;
6799                 let mut total_msat = None;
6800                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6801                 read_tlv_fields!(reader, {
6802                         (0, prev_hop, required),
6803                         (1, total_msat, option),
6804                         (2, value, required),
6805                         (4, payment_data, option),
6806                         (6, cltv_expiry, required),
6807                         (8, keysend_preimage, option)
6808                 });
6809                 let onion_payload = match keysend_preimage {
6810                         Some(p) => {
6811                                 if payment_data.is_some() {
6812                                         return Err(DecodeError::InvalidValue)
6813                                 }
6814                                 if total_msat.is_none() {
6815                                         total_msat = Some(value);
6816                                 }
6817                                 OnionPayload::Spontaneous(p)
6818                         },
6819                         None => {
6820                                 if total_msat.is_none() {
6821                                         if payment_data.is_none() {
6822                                                 return Err(DecodeError::InvalidValue)
6823                                         }
6824                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6825                                 }
6826                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6827                         },
6828                 };
6829                 Ok(Self {
6830                         prev_hop: prev_hop.0.unwrap(),
6831                         timer_ticks: 0,
6832                         value,
6833                         total_msat: total_msat.unwrap(),
6834                         onion_payload,
6835                         cltv_expiry,
6836                 })
6837         }
6838 }
6839
6840 impl Readable for HTLCSource {
6841         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6842                 let id: u8 = Readable::read(reader)?;
6843                 match id {
6844                         0 => {
6845                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6846                                 let mut first_hop_htlc_msat: u64 = 0;
6847                                 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6848                                 let mut payment_id = None;
6849                                 let mut payment_secret = None;
6850                                 let mut payment_params: Option<PaymentParameters> = None;
6851                                 read_tlv_fields!(reader, {
6852                                         (0, session_priv, required),
6853                                         (1, payment_id, option),
6854                                         (2, first_hop_htlc_msat, required),
6855                                         (3, payment_secret, option),
6856                                         (4, path, vec_type),
6857                                         (5, payment_params, (option: ReadableArgs, 0)),
6858                                 });
6859                                 if payment_id.is_none() {
6860                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6861                                         // instead.
6862                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6863                                 }
6864                                 if path.is_none() || path.as_ref().unwrap().is_empty() {
6865                                         return Err(DecodeError::InvalidValue);
6866                                 }
6867                                 let path = path.unwrap();
6868                                 if let Some(params) = payment_params.as_mut() {
6869                                         if params.final_cltv_expiry_delta == 0 {
6870                                                 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6871                                         }
6872                                 }
6873                                 Ok(HTLCSource::OutboundRoute {
6874                                         session_priv: session_priv.0.unwrap(),
6875                                         first_hop_htlc_msat,
6876                                         path,
6877                                         payment_id: payment_id.unwrap(),
6878                                         payment_secret,
6879                                 })
6880                         }
6881                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6882                         _ => Err(DecodeError::UnknownRequiredFeature),
6883                 }
6884         }
6885 }
6886
6887 impl Writeable for HTLCSource {
6888         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6889                 match self {
6890                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret } => {
6891                                 0u8.write(writer)?;
6892                                 let payment_id_opt = Some(payment_id);
6893                                 write_tlv_fields!(writer, {
6894                                         (0, session_priv, required),
6895                                         (1, payment_id_opt, option),
6896                                         (2, first_hop_htlc_msat, required),
6897                                         (3, payment_secret, option),
6898                                         (4, *path, vec_type),
6899                                         (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
6900                                  });
6901                         }
6902                         HTLCSource::PreviousHopData(ref field) => {
6903                                 1u8.write(writer)?;
6904                                 field.write(writer)?;
6905                         }
6906                 }
6907                 Ok(())
6908         }
6909 }
6910
6911 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6912         (0, forward_info, required),
6913         (1, prev_user_channel_id, (default_value, 0)),
6914         (2, prev_short_channel_id, required),
6915         (4, prev_htlc_id, required),
6916         (6, prev_funding_outpoint, required),
6917 });
6918
6919 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6920         (1, FailHTLC) => {
6921                 (0, htlc_id, required),
6922                 (2, err_packet, required),
6923         };
6924         (0, AddHTLC)
6925 );
6926
6927 impl_writeable_tlv_based!(PendingInboundPayment, {
6928         (0, payment_secret, required),
6929         (2, expiry_time, required),
6930         (4, user_payment_id, required),
6931         (6, payment_preimage, required),
6932         (8, min_value_msat, required),
6933 });
6934
6935 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
6936 where
6937         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6938         T::Target: BroadcasterInterface,
6939         ES::Target: EntropySource,
6940         NS::Target: NodeSigner,
6941         SP::Target: SignerProvider,
6942         F::Target: FeeEstimator,
6943         R::Target: Router,
6944         L::Target: Logger,
6945 {
6946         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6947                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6948
6949                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6950
6951                 self.genesis_hash.write(writer)?;
6952                 {
6953                         let best_block = self.best_block.read().unwrap();
6954                         best_block.height().write(writer)?;
6955                         best_block.block_hash().write(writer)?;
6956                 }
6957
6958                 let mut serializable_peer_count: u64 = 0;
6959                 {
6960                         let per_peer_state = self.per_peer_state.read().unwrap();
6961                         let mut unfunded_channels = 0;
6962                         let mut number_of_channels = 0;
6963                         for (_, peer_state_mutex) in per_peer_state.iter() {
6964                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6965                                 let peer_state = &mut *peer_state_lock;
6966                                 if !peer_state.ok_to_remove(false) {
6967                                         serializable_peer_count += 1;
6968                                 }
6969                                 number_of_channels += peer_state.channel_by_id.len();
6970                                 for (_, channel) in peer_state.channel_by_id.iter() {
6971                                         if !channel.is_funding_initiated() {
6972                                                 unfunded_channels += 1;
6973                                         }
6974                                 }
6975                         }
6976
6977                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
6978
6979                         for (_, peer_state_mutex) in per_peer_state.iter() {
6980                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6981                                 let peer_state = &mut *peer_state_lock;
6982                                 for (_, channel) in peer_state.channel_by_id.iter() {
6983                                         if channel.is_funding_initiated() {
6984                                                 channel.write(writer)?;
6985                                         }
6986                                 }
6987                         }
6988                 }
6989
6990                 {
6991                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
6992                         (forward_htlcs.len() as u64).write(writer)?;
6993                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
6994                                 short_channel_id.write(writer)?;
6995                                 (pending_forwards.len() as u64).write(writer)?;
6996                                 for forward in pending_forwards {
6997                                         forward.write(writer)?;
6998                                 }
6999                         }
7000                 }
7001
7002                 let per_peer_state = self.per_peer_state.write().unwrap();
7003
7004                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
7005                 let claimable_payments = self.claimable_payments.lock().unwrap();
7006                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
7007
7008                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
7009                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
7010                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
7011                         payment_hash.write(writer)?;
7012                         (previous_hops.len() as u64).write(writer)?;
7013                         for htlc in previous_hops.iter() {
7014                                 htlc.write(writer)?;
7015                         }
7016                         htlc_purposes.push(purpose);
7017                 }
7018
7019                 let mut monitor_update_blocked_actions_per_peer = None;
7020                 let mut peer_states = Vec::new();
7021                 for (_, peer_state_mutex) in per_peer_state.iter() {
7022                         // Because we're holding the owning `per_peer_state` write lock here there's no chance
7023                         // of a lockorder violation deadlock - no other thread can be holding any
7024                         // per_peer_state lock at all.
7025                         peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7026                 }
7027
7028                 (serializable_peer_count).write(writer)?;
7029                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7030                         // Peers which we have no channels to should be dropped once disconnected. As we
7031                         // disconnect all peers when shutting down and serializing the ChannelManager, we
7032                         // consider all peers as disconnected here. There's therefore no need write peers with
7033                         // no channels.
7034                         if !peer_state.ok_to_remove(false) {
7035                                 peer_pubkey.write(writer)?;
7036                                 peer_state.latest_features.write(writer)?;
7037                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
7038                                         monitor_update_blocked_actions_per_peer
7039                                                 .get_or_insert_with(Vec::new)
7040                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7041                                 }
7042                         }
7043                 }
7044
7045                 let events = self.pending_events.lock().unwrap();
7046                 (events.len() as u64).write(writer)?;
7047                 for event in events.iter() {
7048                         event.write(writer)?;
7049                 }
7050
7051                 let background_events = self.pending_background_events.lock().unwrap();
7052                 (background_events.len() as u64).write(writer)?;
7053                 for event in background_events.iter() {
7054                         match event {
7055                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7056                                         0u8.write(writer)?;
7057                                         funding_txo.write(writer)?;
7058                                         monitor_update.write(writer)?;
7059                                 },
7060                         }
7061                 }
7062
7063                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7064                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7065                 // likely to be identical.
7066                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7067                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7068
7069                 (pending_inbound_payments.len() as u64).write(writer)?;
7070                 for (hash, pending_payment) in pending_inbound_payments.iter() {
7071                         hash.write(writer)?;
7072                         pending_payment.write(writer)?;
7073                 }
7074
7075                 // For backwards compat, write the session privs and their total length.
7076                 let mut num_pending_outbounds_compat: u64 = 0;
7077                 for (_, outbound) in pending_outbound_payments.iter() {
7078                         if !outbound.is_fulfilled() && !outbound.abandoned() {
7079                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7080                         }
7081                 }
7082                 num_pending_outbounds_compat.write(writer)?;
7083                 for (_, outbound) in pending_outbound_payments.iter() {
7084                         match outbound {
7085                                 PendingOutboundPayment::Legacy { session_privs } |
7086                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7087                                         for session_priv in session_privs.iter() {
7088                                                 session_priv.write(writer)?;
7089                                         }
7090                                 }
7091                                 PendingOutboundPayment::Fulfilled { .. } => {},
7092                                 PendingOutboundPayment::Abandoned { .. } => {},
7093                         }
7094                 }
7095
7096                 // Encode without retry info for 0.0.101 compatibility.
7097                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7098                 for (id, outbound) in pending_outbound_payments.iter() {
7099                         match outbound {
7100                                 PendingOutboundPayment::Legacy { session_privs } |
7101                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7102                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7103                                 },
7104                                 _ => {},
7105                         }
7106                 }
7107
7108                 let mut pending_intercepted_htlcs = None;
7109                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7110                 if our_pending_intercepts.len() != 0 {
7111                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7112                 }
7113
7114                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7115                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7116                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7117                         // map. Thus, if there are no entries we skip writing a TLV for it.
7118                         pending_claiming_payments = None;
7119                 }
7120
7121                 write_tlv_fields!(writer, {
7122                         (1, pending_outbound_payments_no_retry, required),
7123                         (2, pending_intercepted_htlcs, option),
7124                         (3, pending_outbound_payments, required),
7125                         (4, pending_claiming_payments, option),
7126                         (5, self.our_network_pubkey, required),
7127                         (6, monitor_update_blocked_actions_per_peer, option),
7128                         (7, self.fake_scid_rand_bytes, required),
7129                         (9, htlc_purposes, vec_type),
7130                         (11, self.probing_cookie_secret, required),
7131                 });
7132
7133                 Ok(())
7134         }
7135 }
7136
7137 /// Arguments for the creation of a ChannelManager that are not deserialized.
7138 ///
7139 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7140 /// is:
7141 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7142 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7143 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7144 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7145 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7146 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7147 ///    same way you would handle a [`chain::Filter`] call using
7148 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7149 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7150 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7151 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7152 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7153 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7154 ///    the next step.
7155 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7156 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7157 ///
7158 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7159 /// call any other methods on the newly-deserialized [`ChannelManager`].
7160 ///
7161 /// Note that because some channels may be closed during deserialization, it is critical that you
7162 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7163 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7164 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7165 /// not force-close the same channels but consider them live), you may end up revoking a state for
7166 /// which you've already broadcasted the transaction.
7167 ///
7168 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7169 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7170 where
7171         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7172         T::Target: BroadcasterInterface,
7173         ES::Target: EntropySource,
7174         NS::Target: NodeSigner,
7175         SP::Target: SignerProvider,
7176         F::Target: FeeEstimator,
7177         R::Target: Router,
7178         L::Target: Logger,
7179 {
7180         /// A cryptographically secure source of entropy.
7181         pub entropy_source: ES,
7182
7183         /// A signer that is able to perform node-scoped cryptographic operations.
7184         pub node_signer: NS,
7185
7186         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7187         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7188         /// signing data.
7189         pub signer_provider: SP,
7190
7191         /// The fee_estimator for use in the ChannelManager in the future.
7192         ///
7193         /// No calls to the FeeEstimator will be made during deserialization.
7194         pub fee_estimator: F,
7195         /// The chain::Watch for use in the ChannelManager in the future.
7196         ///
7197         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7198         /// you have deserialized ChannelMonitors separately and will add them to your
7199         /// chain::Watch after deserializing this ChannelManager.
7200         pub chain_monitor: M,
7201
7202         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7203         /// used to broadcast the latest local commitment transactions of channels which must be
7204         /// force-closed during deserialization.
7205         pub tx_broadcaster: T,
7206         /// The router which will be used in the ChannelManager in the future for finding routes
7207         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7208         ///
7209         /// No calls to the router will be made during deserialization.
7210         pub router: R,
7211         /// The Logger for use in the ChannelManager and which may be used to log information during
7212         /// deserialization.
7213         pub logger: L,
7214         /// Default settings used for new channels. Any existing channels will continue to use the
7215         /// runtime settings which were stored when the ChannelManager was serialized.
7216         pub default_config: UserConfig,
7217
7218         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7219         /// value.get_funding_txo() should be the key).
7220         ///
7221         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7222         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7223         /// is true for missing channels as well. If there is a monitor missing for which we find
7224         /// channel data Err(DecodeError::InvalidValue) will be returned.
7225         ///
7226         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7227         /// this struct.
7228         ///
7229         /// (C-not exported) because we have no HashMap bindings
7230         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7231 }
7232
7233 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7234                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7235 where
7236         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7237         T::Target: BroadcasterInterface,
7238         ES::Target: EntropySource,
7239         NS::Target: NodeSigner,
7240         SP::Target: SignerProvider,
7241         F::Target: FeeEstimator,
7242         R::Target: Router,
7243         L::Target: Logger,
7244 {
7245         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7246         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7247         /// populate a HashMap directly from C.
7248         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7249                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7250                 Self {
7251                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7252                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7253                 }
7254         }
7255 }
7256
7257 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7258 // SipmleArcChannelManager type:
7259 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7260         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7261 where
7262         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7263         T::Target: BroadcasterInterface,
7264         ES::Target: EntropySource,
7265         NS::Target: NodeSigner,
7266         SP::Target: SignerProvider,
7267         F::Target: FeeEstimator,
7268         R::Target: Router,
7269         L::Target: Logger,
7270 {
7271         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7272                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7273                 Ok((blockhash, Arc::new(chan_manager)))
7274         }
7275 }
7276
7277 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7278         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7279 where
7280         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7281         T::Target: BroadcasterInterface,
7282         ES::Target: EntropySource,
7283         NS::Target: NodeSigner,
7284         SP::Target: SignerProvider,
7285         F::Target: FeeEstimator,
7286         R::Target: Router,
7287         L::Target: Logger,
7288 {
7289         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7290                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7291
7292                 let genesis_hash: BlockHash = Readable::read(reader)?;
7293                 let best_block_height: u32 = Readable::read(reader)?;
7294                 let best_block_hash: BlockHash = Readable::read(reader)?;
7295
7296                 let mut failed_htlcs = Vec::new();
7297
7298                 let channel_count: u64 = Readable::read(reader)?;
7299                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7300                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7301                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7302                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7303                 let mut channel_closures = Vec::new();
7304                 for _ in 0..channel_count {
7305                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7306                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7307                         ))?;
7308                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7309                         funding_txo_set.insert(funding_txo.clone());
7310                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7311                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7312                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7313                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7314                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7315                                         // If the channel is ahead of the monitor, return InvalidValue:
7316                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7317                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7318                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7319                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7320                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7321                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7322                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7323                                         return Err(DecodeError::InvalidValue);
7324                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7325                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7326                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7327                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7328                                         // But if the channel is behind of the monitor, close the channel:
7329                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7330                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7331                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7332                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7333                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
7334                                         failed_htlcs.append(&mut new_failed_htlcs);
7335                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7336                                         channel_closures.push(events::Event::ChannelClosed {
7337                                                 channel_id: channel.channel_id(),
7338                                                 user_channel_id: channel.get_user_id(),
7339                                                 reason: ClosureReason::OutdatedChannelManager
7340                                         });
7341                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7342                                                 let mut found_htlc = false;
7343                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7344                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7345                                                 }
7346                                                 if !found_htlc {
7347                                                         // If we have some HTLCs in the channel which are not present in the newer
7348                                                         // ChannelMonitor, they have been removed and should be failed back to
7349                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7350                                                         // were actually claimed we'd have generated and ensured the previous-hop
7351                                                         // claim update ChannelMonitor updates were persisted prior to persising
7352                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7353                                                         // backwards leg of the HTLC will simply be rejected.
7354                                                         log_info!(args.logger,
7355                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7356                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7357                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7358                                                 }
7359                                         }
7360                                 } else {
7361                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7362                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7363                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7364                                         }
7365                                         if channel.is_funding_initiated() {
7366                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7367                                         }
7368                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7369                                                 hash_map::Entry::Occupied(mut entry) => {
7370                                                         let by_id_map = entry.get_mut();
7371                                                         by_id_map.insert(channel.channel_id(), channel);
7372                                                 },
7373                                                 hash_map::Entry::Vacant(entry) => {
7374                                                         let mut by_id_map = HashMap::new();
7375                                                         by_id_map.insert(channel.channel_id(), channel);
7376                                                         entry.insert(by_id_map);
7377                                                 }
7378                                         }
7379                                 }
7380                         } else if channel.is_awaiting_initial_mon_persist() {
7381                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7382                                 // was in-progress, we never broadcasted the funding transaction and can still
7383                                 // safely discard the channel.
7384                                 let _ = channel.force_shutdown(false);
7385                                 channel_closures.push(events::Event::ChannelClosed {
7386                                         channel_id: channel.channel_id(),
7387                                         user_channel_id: channel.get_user_id(),
7388                                         reason: ClosureReason::DisconnectedPeer,
7389                                 });
7390                         } else {
7391                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7392                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7393                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7394                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7395                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7396                                 return Err(DecodeError::InvalidValue);
7397                         }
7398                 }
7399
7400                 for (funding_txo, monitor) in args.channel_monitors.iter_mut() {
7401                         if !funding_txo_set.contains(funding_txo) {
7402                                 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
7403                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7404                         }
7405                 }
7406
7407                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7408                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7409                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7410                 for _ in 0..forward_htlcs_count {
7411                         let short_channel_id = Readable::read(reader)?;
7412                         let pending_forwards_count: u64 = Readable::read(reader)?;
7413                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7414                         for _ in 0..pending_forwards_count {
7415                                 pending_forwards.push(Readable::read(reader)?);
7416                         }
7417                         forward_htlcs.insert(short_channel_id, pending_forwards);
7418                 }
7419
7420                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7421                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7422                 for _ in 0..claimable_htlcs_count {
7423                         let payment_hash = Readable::read(reader)?;
7424                         let previous_hops_len: u64 = Readable::read(reader)?;
7425                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7426                         for _ in 0..previous_hops_len {
7427                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7428                         }
7429                         claimable_htlcs_list.push((payment_hash, previous_hops));
7430                 }
7431
7432                 let peer_count: u64 = Readable::read(reader)?;
7433                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7434                 for _ in 0..peer_count {
7435                         let peer_pubkey = Readable::read(reader)?;
7436                         let peer_state = PeerState {
7437                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7438                                 latest_features: Readable::read(reader)?,
7439                                 pending_msg_events: Vec::new(),
7440                                 monitor_update_blocked_actions: BTreeMap::new(),
7441                                 is_connected: false,
7442                         };
7443                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7444                 }
7445
7446                 let event_count: u64 = Readable::read(reader)?;
7447                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7448                 for _ in 0..event_count {
7449                         match MaybeReadable::read(reader)? {
7450                                 Some(event) => pending_events_read.push(event),
7451                                 None => continue,
7452                         }
7453                 }
7454
7455                 let background_event_count: u64 = Readable::read(reader)?;
7456                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
7457                 for _ in 0..background_event_count {
7458                         match <u8 as Readable>::read(reader)? {
7459                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
7460                                 _ => return Err(DecodeError::InvalidValue),
7461                         }
7462                 }
7463
7464                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7465                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7466
7467                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7468                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7469                 for _ in 0..pending_inbound_payment_count {
7470                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7471                                 return Err(DecodeError::InvalidValue);
7472                         }
7473                 }
7474
7475                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7476                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7477                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7478                 for _ in 0..pending_outbound_payments_count_compat {
7479                         let session_priv = Readable::read(reader)?;
7480                         let payment = PendingOutboundPayment::Legacy {
7481                                 session_privs: [session_priv].iter().cloned().collect()
7482                         };
7483                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7484                                 return Err(DecodeError::InvalidValue)
7485                         };
7486                 }
7487
7488                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7489                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7490                 let mut pending_outbound_payments = None;
7491                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7492                 let mut received_network_pubkey: Option<PublicKey> = None;
7493                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7494                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7495                 let mut claimable_htlc_purposes = None;
7496                 let mut pending_claiming_payments = Some(HashMap::new());
7497                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7498                 read_tlv_fields!(reader, {
7499                         (1, pending_outbound_payments_no_retry, option),
7500                         (2, pending_intercepted_htlcs, option),
7501                         (3, pending_outbound_payments, option),
7502                         (4, pending_claiming_payments, option),
7503                         (5, received_network_pubkey, option),
7504                         (6, monitor_update_blocked_actions_per_peer, option),
7505                         (7, fake_scid_rand_bytes, option),
7506                         (9, claimable_htlc_purposes, vec_type),
7507                         (11, probing_cookie_secret, option),
7508                 });
7509                 if fake_scid_rand_bytes.is_none() {
7510                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7511                 }
7512
7513                 if probing_cookie_secret.is_none() {
7514                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7515                 }
7516
7517                 if !channel_closures.is_empty() {
7518                         pending_events_read.append(&mut channel_closures);
7519                 }
7520
7521                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7522                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7523                 } else if pending_outbound_payments.is_none() {
7524                         let mut outbounds = HashMap::new();
7525                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7526                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7527                         }
7528                         pending_outbound_payments = Some(outbounds);
7529                 }
7530                 let pending_outbounds = OutboundPayments {
7531                         pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7532                         retry_lock: Mutex::new(())
7533                 };
7534
7535                 {
7536                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7537                         // ChannelMonitor data for any channels for which we do not have authorative state
7538                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7539                         // corresponding `Channel` at all).
7540                         // This avoids several edge-cases where we would otherwise "forget" about pending
7541                         // payments which are still in-flight via their on-chain state.
7542                         // We only rebuild the pending payments map if we were most recently serialized by
7543                         // 0.0.102+
7544                         for (_, monitor) in args.channel_monitors.iter() {
7545                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7546                                         for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7547                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7548                                                         if path.is_empty() {
7549                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7550                                                                 return Err(DecodeError::InvalidValue);
7551                                                         }
7552
7553                                                         let path_amt = path.last().unwrap().fee_msat;
7554                                                         let mut session_priv_bytes = [0; 32];
7555                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7556                                                         match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7557                                                                 hash_map::Entry::Occupied(mut entry) => {
7558                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7559                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7560                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7561                                                                 },
7562                                                                 hash_map::Entry::Vacant(entry) => {
7563                                                                         let path_fee = path.get_path_fees();
7564                                                                         entry.insert(PendingOutboundPayment::Retryable {
7565                                                                                 retry_strategy: None,
7566                                                                                 attempts: PaymentAttempts::new(),
7567                                                                                 payment_params: None,
7568                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7569                                                                                 payment_hash: htlc.payment_hash,
7570                                                                                 payment_secret,
7571                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7572                                                                                 pending_amt_msat: path_amt,
7573                                                                                 pending_fee_msat: Some(path_fee),
7574                                                                                 total_msat: path_amt,
7575                                                                                 starting_block_height: best_block_height,
7576                                                                         });
7577                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7578                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7579                                                                 }
7580                                                         }
7581                                                 }
7582                                         }
7583                                         for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7584                                                 match htlc_source {
7585                                                         HTLCSource::PreviousHopData(prev_hop_data) => {
7586                                                                 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7587                                                                         info.prev_funding_outpoint == prev_hop_data.outpoint &&
7588                                                                                 info.prev_htlc_id == prev_hop_data.htlc_id
7589                                                                 };
7590                                                                 // The ChannelMonitor is now responsible for this HTLC's
7591                                                                 // failure/success and will let us know what its outcome is. If we
7592                                                                 // still have an entry for this HTLC in `forward_htlcs` or
7593                                                                 // `pending_intercepted_htlcs`, we were apparently not persisted after
7594                                                                 // the monitor was when forwarding the payment.
7595                                                                 forward_htlcs.retain(|_, forwards| {
7596                                                                         forwards.retain(|forward| {
7597                                                                                 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7598                                                                                         if pending_forward_matches_htlc(&htlc_info) {
7599                                                                                                 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7600                                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7601                                                                                                 false
7602                                                                                         } else { true }
7603                                                                                 } else { true }
7604                                                                         });
7605                                                                         !forwards.is_empty()
7606                                                                 });
7607                                                                 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7608                                                                         if pending_forward_matches_htlc(&htlc_info) {
7609                                                                                 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7610                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7611                                                                                 pending_events_read.retain(|event| {
7612                                                                                         if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7613                                                                                                 intercepted_id != ev_id
7614                                                                                         } else { true }
7615                                                                                 });
7616                                                                                 false
7617                                                                         } else { true }
7618                                                                 });
7619                                                         },
7620                                                         HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7621                                                                 if let Some(preimage) = preimage_opt {
7622                                                                         let pending_events = Mutex::new(pending_events_read);
7623                                                                         // Note that we set `from_onchain` to "false" here,
7624                                                                         // deliberately keeping the pending payment around forever.
7625                                                                         // Given it should only occur when we have a channel we're
7626                                                                         // force-closing for being stale that's okay.
7627                                                                         // The alternative would be to wipe the state when claiming,
7628                                                                         // generating a `PaymentPathSuccessful` event but regenerating
7629                                                                         // it and the `PaymentSent` on every restart until the
7630                                                                         // `ChannelMonitor` is removed.
7631                                                                         pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7632                                                                         pending_events_read = pending_events.into_inner().unwrap();
7633                                                                 }
7634                                                         },
7635                                                 }
7636                                         }
7637                                 }
7638                         }
7639                 }
7640
7641                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7642                         // If we have pending HTLCs to forward, assume we either dropped a
7643                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7644                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7645                         // constant as enough time has likely passed that we should simply handle the forwards
7646                         // now, or at least after the user gets a chance to reconnect to our peers.
7647                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7648                                 time_forwardable: Duration::from_secs(2),
7649                         });
7650                 }
7651
7652                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7653                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7654
7655                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7656                 if let Some(mut purposes) = claimable_htlc_purposes {
7657                         if purposes.len() != claimable_htlcs_list.len() {
7658                                 return Err(DecodeError::InvalidValue);
7659                         }
7660                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7661                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7662                         }
7663                 } else {
7664                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7665                         // include a `_legacy_hop_data` in the `OnionPayload`.
7666                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7667                                 if previous_hops.is_empty() {
7668                                         return Err(DecodeError::InvalidValue);
7669                                 }
7670                                 let purpose = match &previous_hops[0].onion_payload {
7671                                         OnionPayload::Invoice { _legacy_hop_data } => {
7672                                                 if let Some(hop_data) = _legacy_hop_data {
7673                                                         events::PaymentPurpose::InvoicePayment {
7674                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7675                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7676                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7677                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7678                                                                                 Err(()) => {
7679                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7680                                                                                         return Err(DecodeError::InvalidValue);
7681                                                                                 }
7682                                                                         }
7683                                                                 },
7684                                                                 payment_secret: hop_data.payment_secret,
7685                                                         }
7686                                                 } else { return Err(DecodeError::InvalidValue); }
7687                                         },
7688                                         OnionPayload::Spontaneous(payment_preimage) =>
7689                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7690                                 };
7691                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7692                         }
7693                 }
7694
7695                 let mut secp_ctx = Secp256k1::new();
7696                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7697
7698                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7699                         Ok(key) => key,
7700                         Err(()) => return Err(DecodeError::InvalidValue)
7701                 };
7702                 if let Some(network_pubkey) = received_network_pubkey {
7703                         if network_pubkey != our_network_pubkey {
7704                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7705                                 return Err(DecodeError::InvalidValue);
7706                         }
7707                 }
7708
7709                 let mut outbound_scid_aliases = HashSet::new();
7710                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7711                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7712                         let peer_state = &mut *peer_state_lock;
7713                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7714                                 if chan.outbound_scid_alias() == 0 {
7715                                         let mut outbound_scid_alias;
7716                                         loop {
7717                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7718                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7719                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7720                                         }
7721                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7722                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7723                                         // Note that in rare cases its possible to hit this while reading an older
7724                                         // channel if we just happened to pick a colliding outbound alias above.
7725                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7726                                         return Err(DecodeError::InvalidValue);
7727                                 }
7728                                 if chan.is_usable() {
7729                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7730                                                 // Note that in rare cases its possible to hit this while reading an older
7731                                                 // channel if we just happened to pick a colliding outbound alias above.
7732                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7733                                                 return Err(DecodeError::InvalidValue);
7734                                         }
7735                                 }
7736                         }
7737                 }
7738
7739                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7740
7741                 for (_, monitor) in args.channel_monitors.iter() {
7742                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7743                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7744                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7745                                         let mut claimable_amt_msat = 0;
7746                                         let mut receiver_node_id = Some(our_network_pubkey);
7747                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7748                                         if phantom_shared_secret.is_some() {
7749                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7750                                                         .expect("Failed to get node_id for phantom node recipient");
7751                                                 receiver_node_id = Some(phantom_pubkey)
7752                                         }
7753                                         for claimable_htlc in claimable_htlcs {
7754                                                 claimable_amt_msat += claimable_htlc.value;
7755
7756                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7757                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7758                                                 // new commitment transaction we can just provide the payment preimage to
7759                                                 // the corresponding ChannelMonitor and nothing else.
7760                                                 //
7761                                                 // We do so directly instead of via the normal ChannelMonitor update
7762                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7763                                                 // we're not allowed to call it directly yet. Further, we do the update
7764                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7765                                                 // reason to.
7766                                                 // If we were to generate a new ChannelMonitor update ID here and then
7767                                                 // crash before the user finishes block connect we'd end up force-closing
7768                                                 // this channel as well. On the flip side, there's no harm in restarting
7769                                                 // without the new monitor persisted - we'll end up right back here on
7770                                                 // restart.
7771                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7772                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7773                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7774                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7775                                                         let peer_state = &mut *peer_state_lock;
7776                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7777                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7778                                                         }
7779                                                 }
7780                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7781                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7782                                                 }
7783                                         }
7784                                         pending_events_read.push(events::Event::PaymentClaimed {
7785                                                 receiver_node_id,
7786                                                 payment_hash,
7787                                                 purpose: payment_purpose,
7788                                                 amount_msat: claimable_amt_msat,
7789                                         });
7790                                 }
7791                         }
7792                 }
7793
7794                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7795                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7796                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7797                         } else {
7798                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7799                                 return Err(DecodeError::InvalidValue);
7800                         }
7801                 }
7802
7803                 let channel_manager = ChannelManager {
7804                         genesis_hash,
7805                         fee_estimator: bounded_fee_estimator,
7806                         chain_monitor: args.chain_monitor,
7807                         tx_broadcaster: args.tx_broadcaster,
7808                         router: args.router,
7809
7810                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7811
7812                         inbound_payment_key: expanded_inbound_key,
7813                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7814                         pending_outbound_payments: pending_outbounds,
7815                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7816
7817                         forward_htlcs: Mutex::new(forward_htlcs),
7818                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7819                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7820                         id_to_peer: Mutex::new(id_to_peer),
7821                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7822                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7823
7824                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7825
7826                         our_network_pubkey,
7827                         secp_ctx,
7828
7829                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7830
7831                         per_peer_state: FairRwLock::new(per_peer_state),
7832
7833                         pending_events: Mutex::new(pending_events_read),
7834                         pending_background_events: Mutex::new(pending_background_events_read),
7835                         total_consistency_lock: RwLock::new(()),
7836                         persistence_notifier: Notifier::new(),
7837
7838                         entropy_source: args.entropy_source,
7839                         node_signer: args.node_signer,
7840                         signer_provider: args.signer_provider,
7841
7842                         logger: args.logger,
7843                         default_configuration: args.default_config,
7844                 };
7845
7846                 for htlc_source in failed_htlcs.drain(..) {
7847                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7848                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7849                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7850                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7851                 }
7852
7853                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7854                 //connection or two.
7855
7856                 Ok((best_block_hash.clone(), channel_manager))
7857         }
7858 }
7859
7860 #[cfg(test)]
7861 mod tests {
7862         use bitcoin::hashes::Hash;
7863         use bitcoin::hashes::sha256::Hash as Sha256;
7864         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7865         use core::time::Duration;
7866         use core::sync::atomic::Ordering;
7867         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7868         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, InterceptId};
7869         use crate::ln::functional_test_utils::*;
7870         use crate::ln::msgs;
7871         use crate::ln::msgs::ChannelMessageHandler;
7872         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7873         use crate::util::errors::APIError;
7874         use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7875         use crate::util::test_utils;
7876         use crate::util::config::ChannelConfig;
7877         use crate::chain::keysinterface::EntropySource;
7878
7879         #[test]
7880         fn test_notify_limits() {
7881                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7882                 // indeed, do not cause the persistence of a new ChannelManager.
7883                 let chanmon_cfgs = create_chanmon_cfgs(3);
7884                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7885                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7886                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7887
7888                 // All nodes start with a persistable update pending as `create_network` connects each node
7889                 // with all other nodes to make most tests simpler.
7890                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7891                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7892                 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7893
7894                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7895
7896                 // We check that the channel info nodes have doesn't change too early, even though we try
7897                 // to connect messages with new values
7898                 chan.0.contents.fee_base_msat *= 2;
7899                 chan.1.contents.fee_base_msat *= 2;
7900                 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
7901                         &nodes[1].node.get_our_node_id()).pop().unwrap();
7902                 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
7903                         &nodes[0].node.get_our_node_id()).pop().unwrap();
7904
7905                 // The first two nodes (which opened a channel) should now require fresh persistence
7906                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7907                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7908                 // ... but the last node should not.
7909                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7910                 // After persisting the first two nodes they should no longer need fresh persistence.
7911                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7912                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7913
7914                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7915                 // about the channel.
7916                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7917                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7918                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7919
7920                 // The nodes which are a party to the channel should also ignore messages from unrelated
7921                 // parties.
7922                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7923                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7924                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7925                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7926                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7927                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7928
7929                 // At this point the channel info given by peers should still be the same.
7930                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7931                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7932
7933                 // An earlier version of handle_channel_update didn't check the directionality of the
7934                 // update message and would always update the local fee info, even if our peer was
7935                 // (spuriously) forwarding us our own channel_update.
7936                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7937                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7938                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7939
7940                 // First deliver each peers' own message, checking that the node doesn't need to be
7941                 // persisted and that its channel info remains the same.
7942                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7943                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7944                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7945                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7946                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7947                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7948
7949                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7950                 // the channel info has updated.
7951                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7952                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7953                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7954                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7955                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7956                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7957         }
7958
7959         #[test]
7960         fn test_keysend_dup_hash_partial_mpp() {
7961                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7962                 // expected.
7963                 let chanmon_cfgs = create_chanmon_cfgs(2);
7964                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7965                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7966                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7967                 create_announced_chan_between_nodes(&nodes, 0, 1);
7968
7969                 // First, send a partial MPP payment.
7970                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7971                 let mut mpp_route = route.clone();
7972                 mpp_route.paths.push(mpp_route.paths[0].clone());
7973
7974                 let payment_id = PaymentId([42; 32]);
7975                 // Use the utility function send_payment_along_path to send the payment with MPP data which
7976                 // indicates there are more HTLCs coming.
7977                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7978                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
7979                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
7980                 check_added_monitors!(nodes[0], 1);
7981                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7982                 assert_eq!(events.len(), 1);
7983                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7984
7985                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7986                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7987                 check_added_monitors!(nodes[0], 1);
7988                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7989                 assert_eq!(events.len(), 1);
7990                 let ev = events.drain(..).next().unwrap();
7991                 let payment_event = SendEvent::from_event(ev);
7992                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7993                 check_added_monitors!(nodes[1], 0);
7994                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7995                 expect_pending_htlcs_forwardable!(nodes[1]);
7996                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
7997                 check_added_monitors!(nodes[1], 1);
7998                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7999                 assert!(updates.update_add_htlcs.is_empty());
8000                 assert!(updates.update_fulfill_htlcs.is_empty());
8001                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8002                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8003                 assert!(updates.update_fee.is_none());
8004                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8005                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8006                 expect_payment_failed!(nodes[0], our_payment_hash, true);
8007
8008                 // Send the second half of the original MPP payment.
8009                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
8010                 check_added_monitors!(nodes[0], 1);
8011                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8012                 assert_eq!(events.len(), 1);
8013                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
8014
8015                 // Claim the full MPP payment. Note that we can't use a test utility like
8016                 // claim_funds_along_route because the ordering of the messages causes the second half of the
8017                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
8018                 // lightning messages manually.
8019                 nodes[1].node.claim_funds(payment_preimage);
8020                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
8021                 check_added_monitors!(nodes[1], 2);
8022
8023                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8024                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
8025                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
8026                 check_added_monitors!(nodes[0], 1);
8027                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8028                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
8029                 check_added_monitors!(nodes[1], 1);
8030                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8031                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
8032                 check_added_monitors!(nodes[1], 1);
8033                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8034                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
8035                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
8036                 check_added_monitors!(nodes[0], 1);
8037                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
8038                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
8039                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8040                 check_added_monitors!(nodes[0], 1);
8041                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8042                 check_added_monitors!(nodes[1], 1);
8043                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8044                 check_added_monitors!(nodes[1], 1);
8045                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8046                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8047                 check_added_monitors!(nodes[0], 1);
8048
8049                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8050                 // path's success and a PaymentPathSuccessful event for each path's success.
8051                 let events = nodes[0].node.get_and_clear_pending_events();
8052                 assert_eq!(events.len(), 3);
8053                 match events[0] {
8054                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8055                                 assert_eq!(Some(payment_id), *id);
8056                                 assert_eq!(payment_preimage, *preimage);
8057                                 assert_eq!(our_payment_hash, *hash);
8058                         },
8059                         _ => panic!("Unexpected event"),
8060                 }
8061                 match events[1] {
8062                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8063                                 assert_eq!(payment_id, *actual_payment_id);
8064                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8065                                 assert_eq!(route.paths[0], *path);
8066                         },
8067                         _ => panic!("Unexpected event"),
8068                 }
8069                 match events[2] {
8070                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8071                                 assert_eq!(payment_id, *actual_payment_id);
8072                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8073                                 assert_eq!(route.paths[0], *path);
8074                         },
8075                         _ => panic!("Unexpected event"),
8076                 }
8077         }
8078
8079         #[test]
8080         fn test_keysend_dup_payment_hash() {
8081                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8082                 //      outbound regular payment fails as expected.
8083                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8084                 //      fails as expected.
8085                 let chanmon_cfgs = create_chanmon_cfgs(2);
8086                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8087                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8088                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8089                 create_announced_chan_between_nodes(&nodes, 0, 1);
8090                 let scorer = test_utils::TestScorer::new();
8091                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8092
8093                 // To start (1), send a regular payment but don't claim it.
8094                 let expected_route = [&nodes[1]];
8095                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8096
8097                 // Next, attempt a keysend payment and make sure it fails.
8098                 let route_params = RouteParameters {
8099                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8100                         final_value_msat: 100_000,
8101                 };
8102                 let route = find_route(
8103                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8104                         None, nodes[0].logger, &scorer, &random_seed_bytes
8105                 ).unwrap();
8106                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8107                 check_added_monitors!(nodes[0], 1);
8108                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8109                 assert_eq!(events.len(), 1);
8110                 let ev = events.drain(..).next().unwrap();
8111                 let payment_event = SendEvent::from_event(ev);
8112                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8113                 check_added_monitors!(nodes[1], 0);
8114                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8115                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8116                 // fails), the second will process the resulting failure and fail the HTLC backward
8117                 expect_pending_htlcs_forwardable!(nodes[1]);
8118                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8119                 check_added_monitors!(nodes[1], 1);
8120                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8121                 assert!(updates.update_add_htlcs.is_empty());
8122                 assert!(updates.update_fulfill_htlcs.is_empty());
8123                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8124                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8125                 assert!(updates.update_fee.is_none());
8126                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8127                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8128                 expect_payment_failed!(nodes[0], payment_hash, true);
8129
8130                 // Finally, claim the original payment.
8131                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8132
8133                 // To start (2), send a keysend payment but don't claim it.
8134                 let payment_preimage = PaymentPreimage([42; 32]);
8135                 let route = find_route(
8136                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8137                         None, nodes[0].logger, &scorer, &random_seed_bytes
8138                 ).unwrap();
8139                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8140                 check_added_monitors!(nodes[0], 1);
8141                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8142                 assert_eq!(events.len(), 1);
8143                 let event = events.pop().unwrap();
8144                 let path = vec![&nodes[1]];
8145                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8146
8147                 // Next, attempt a regular payment and make sure it fails.
8148                 let payment_secret = PaymentSecret([43; 32]);
8149                 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8150                 check_added_monitors!(nodes[0], 1);
8151                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8152                 assert_eq!(events.len(), 1);
8153                 let ev = events.drain(..).next().unwrap();
8154                 let payment_event = SendEvent::from_event(ev);
8155                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8156                 check_added_monitors!(nodes[1], 0);
8157                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8158                 expect_pending_htlcs_forwardable!(nodes[1]);
8159                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8160                 check_added_monitors!(nodes[1], 1);
8161                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8162                 assert!(updates.update_add_htlcs.is_empty());
8163                 assert!(updates.update_fulfill_htlcs.is_empty());
8164                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8165                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8166                 assert!(updates.update_fee.is_none());
8167                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8168                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8169                 expect_payment_failed!(nodes[0], payment_hash, true);
8170
8171                 // Finally, succeed the keysend payment.
8172                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8173         }
8174
8175         #[test]
8176         fn test_keysend_hash_mismatch() {
8177                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8178                 // preimage doesn't match the msg's payment hash.
8179                 let chanmon_cfgs = create_chanmon_cfgs(2);
8180                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8181                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8182                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8183
8184                 let payer_pubkey = nodes[0].node.get_our_node_id();
8185                 let payee_pubkey = nodes[1].node.get_our_node_id();
8186
8187                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8188                 let route_params = RouteParameters {
8189                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8190                         final_value_msat: 10_000,
8191                 };
8192                 let network_graph = nodes[0].network_graph.clone();
8193                 let first_hops = nodes[0].node.list_usable_channels();
8194                 let scorer = test_utils::TestScorer::new();
8195                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8196                 let route = find_route(
8197                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8198                         nodes[0].logger, &scorer, &random_seed_bytes
8199                 ).unwrap();
8200
8201                 let test_preimage = PaymentPreimage([42; 32]);
8202                 let mismatch_payment_hash = PaymentHash([43; 32]);
8203                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
8204                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8205                 check_added_monitors!(nodes[0], 1);
8206
8207                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8208                 assert_eq!(updates.update_add_htlcs.len(), 1);
8209                 assert!(updates.update_fulfill_htlcs.is_empty());
8210                 assert!(updates.update_fail_htlcs.is_empty());
8211                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8212                 assert!(updates.update_fee.is_none());
8213                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8214
8215                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
8216         }
8217
8218         #[test]
8219         fn test_keysend_msg_with_secret_err() {
8220                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8221                 let chanmon_cfgs = create_chanmon_cfgs(2);
8222                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8223                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8224                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8225
8226                 let payer_pubkey = nodes[0].node.get_our_node_id();
8227                 let payee_pubkey = nodes[1].node.get_our_node_id();
8228
8229                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8230                 let route_params = RouteParameters {
8231                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8232                         final_value_msat: 10_000,
8233                 };
8234                 let network_graph = nodes[0].network_graph.clone();
8235                 let first_hops = nodes[0].node.list_usable_channels();
8236                 let scorer = test_utils::TestScorer::new();
8237                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8238                 let route = find_route(
8239                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8240                         nodes[0].logger, &scorer, &random_seed_bytes
8241                 ).unwrap();
8242
8243                 let test_preimage = PaymentPreimage([42; 32]);
8244                 let test_secret = PaymentSecret([43; 32]);
8245                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8246                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8247                 nodes[0].node.test_send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
8248                 check_added_monitors!(nodes[0], 1);
8249
8250                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8251                 assert_eq!(updates.update_add_htlcs.len(), 1);
8252                 assert!(updates.update_fulfill_htlcs.is_empty());
8253                 assert!(updates.update_fail_htlcs.is_empty());
8254                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8255                 assert!(updates.update_fee.is_none());
8256                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8257
8258                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
8259         }
8260
8261         #[test]
8262         fn test_multi_hop_missing_secret() {
8263                 let chanmon_cfgs = create_chanmon_cfgs(4);
8264                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8265                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8266                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8267
8268                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8269                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8270                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8271                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8272
8273                 // Marshall an MPP route.
8274                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8275                 let path = route.paths[0].clone();
8276                 route.paths.push(path);
8277                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8278                 route.paths[0][0].short_channel_id = chan_1_id;
8279                 route.paths[0][1].short_channel_id = chan_3_id;
8280                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8281                 route.paths[1][0].short_channel_id = chan_2_id;
8282                 route.paths[1][1].short_channel_id = chan_4_id;
8283
8284                 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
8285                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8286                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))                        },
8287                         _ => panic!("unexpected error")
8288                 }
8289         }
8290
8291         #[test]
8292         fn test_drop_disconnected_peers_when_removing_channels() {
8293                 let chanmon_cfgs = create_chanmon_cfgs(2);
8294                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8295                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8296                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8297
8298                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8299
8300                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8301                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8302
8303                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8304                 check_closed_broadcast!(nodes[0], true);
8305                 check_added_monitors!(nodes[0], 1);
8306                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8307
8308                 {
8309                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8310                         // disconnected and the channel between has been force closed.
8311                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8312                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8313                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8314                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8315                 }
8316
8317                 nodes[0].node.timer_tick_occurred();
8318
8319                 {
8320                         // Assert that nodes[1] has now been removed.
8321                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8322                 }
8323         }
8324
8325         #[test]
8326         fn bad_inbound_payment_hash() {
8327                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8328                 let chanmon_cfgs = create_chanmon_cfgs(2);
8329                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8330                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8331                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8332
8333                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8334                 let payment_data = msgs::FinalOnionHopData {
8335                         payment_secret,
8336                         total_msat: 100_000,
8337                 };
8338
8339                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8340                 // payment verification fails as expected.
8341                 let mut bad_payment_hash = payment_hash.clone();
8342                 bad_payment_hash.0[0] += 1;
8343                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8344                         Ok(_) => panic!("Unexpected ok"),
8345                         Err(()) => {
8346                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
8347                         }
8348                 }
8349
8350                 // Check that using the original payment hash succeeds.
8351                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8352         }
8353
8354         #[test]
8355         fn test_id_to_peer_coverage() {
8356                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8357                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8358                 // the channel is successfully closed.
8359                 let chanmon_cfgs = create_chanmon_cfgs(2);
8360                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8361                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8362                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8363
8364                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8365                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8366                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8367                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8368                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8369
8370                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8371                 let channel_id = &tx.txid().into_inner();
8372                 {
8373                         // Ensure that the `id_to_peer` map is empty until either party has received the
8374                         // funding transaction, and have the real `channel_id`.
8375                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8376                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8377                 }
8378
8379                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8380                 {
8381                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8382                         // as it has the funding transaction.
8383                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8384                         assert_eq!(nodes_0_lock.len(), 1);
8385                         assert!(nodes_0_lock.contains_key(channel_id));
8386                 }
8387
8388                 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8389
8390                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8391
8392                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8393                 {
8394                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8395                         assert_eq!(nodes_0_lock.len(), 1);
8396                         assert!(nodes_0_lock.contains_key(channel_id));
8397                 }
8398
8399                 {
8400                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8401                         // as it has the funding transaction.
8402                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8403                         assert_eq!(nodes_1_lock.len(), 1);
8404                         assert!(nodes_1_lock.contains_key(channel_id));
8405                 }
8406                 check_added_monitors!(nodes[1], 1);
8407                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8408                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8409                 check_added_monitors!(nodes[0], 1);
8410                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8411                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8412                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8413
8414                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8415                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8416                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8417                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8418
8419                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8420                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8421                 {
8422                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8423                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8424                         // fee for the closing transaction has been negotiated and the parties has the other
8425                         // party's signature for the fee negotiated closing transaction.)
8426                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8427                         assert_eq!(nodes_0_lock.len(), 1);
8428                         assert!(nodes_0_lock.contains_key(channel_id));
8429                 }
8430
8431                 {
8432                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8433                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8434                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8435                         // kept in the `nodes[1]`'s `id_to_peer` map.
8436                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8437                         assert_eq!(nodes_1_lock.len(), 1);
8438                         assert!(nodes_1_lock.contains_key(channel_id));
8439                 }
8440
8441                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8442                 {
8443                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8444                         // therefore has all it needs to fully close the channel (both signatures for the
8445                         // closing transaction).
8446                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8447                         // fully closed by `nodes[0]`.
8448                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8449
8450                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8451                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8452                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8453                         assert_eq!(nodes_1_lock.len(), 1);
8454                         assert!(nodes_1_lock.contains_key(channel_id));
8455                 }
8456
8457                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8458
8459                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8460                 {
8461                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8462                         // they both have everything required to fully close the channel.
8463                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8464                 }
8465                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8466
8467                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8468                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8469         }
8470
8471         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8472                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8473                 check_api_error_message(expected_message, res_err)
8474         }
8475
8476         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8477                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8478                 check_api_error_message(expected_message, res_err)
8479         }
8480
8481         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8482                 match res_err {
8483                         Err(APIError::APIMisuseError { err }) => {
8484                                 assert_eq!(err, expected_err_message);
8485                         },
8486                         Err(APIError::ChannelUnavailable { err }) => {
8487                                 assert_eq!(err, expected_err_message);
8488                         },
8489                         Ok(_) => panic!("Unexpected Ok"),
8490                         Err(_) => panic!("Unexpected Error"),
8491                 }
8492         }
8493
8494         #[test]
8495         fn test_api_calls_with_unkown_counterparty_node() {
8496                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8497                 // expected if the `counterparty_node_id` is an unkown peer in the
8498                 // `ChannelManager::per_peer_state` map.
8499                 let chanmon_cfg = create_chanmon_cfgs(2);
8500                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8501                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8502                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8503
8504                 // Dummy values
8505                 let channel_id = [4; 32];
8506                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8507                 let intercept_id = InterceptId([0; 32]);
8508
8509                 // Test the API functions.
8510                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8511
8512                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8513
8514                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8515
8516                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8517
8518                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8519
8520                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8521
8522                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8523         }
8524
8525         #[test]
8526         fn test_connection_limiting() {
8527                 // Test that we limit un-channel'd peers and un-funded channels properly.
8528                 let chanmon_cfgs = create_chanmon_cfgs(2);
8529                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8530                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8531                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8532
8533                 // Note that create_network connects the nodes together for us
8534
8535                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8536                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8537
8538                 let mut funding_tx = None;
8539                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8540                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8541                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8542
8543                         if idx == 0 {
8544                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8545                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8546                                 funding_tx = Some(tx.clone());
8547                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8548                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8549
8550                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8551                                 check_added_monitors!(nodes[1], 1);
8552                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8553
8554                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8555                                 check_added_monitors!(nodes[0], 1);
8556                         }
8557                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8558                 }
8559
8560                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8561                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8562                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8563                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8564                         open_channel_msg.temporary_channel_id);
8565
8566                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8567                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8568                 // limit.
8569                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8570                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8571                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8572                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8573                         peer_pks.push(random_pk);
8574                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8575                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8576                 }
8577                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8578                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8579                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8580                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8581
8582                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8583                 // them if we have too many un-channel'd peers.
8584                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8585                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8586                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8587                 for ev in chan_closed_events {
8588                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8589                 }
8590                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8591                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8592                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8593                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8594
8595                 // but of course if the connection is outbound its allowed...
8596                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8597                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8598                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8599
8600                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8601                 // Even though we accept one more connection from new peers, we won't actually let them
8602                 // open channels.
8603                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8604                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8605                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8606                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8607                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8608                 }
8609                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8610                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8611                         open_channel_msg.temporary_channel_id);
8612
8613                 // Of course, however, outbound channels are always allowed
8614                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8615                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8616
8617                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8618                 // "protected" and can connect again.
8619                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8620                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8621                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8622                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8623
8624                 // Further, because the first channel was funded, we can open another channel with
8625                 // last_random_pk.
8626                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8627                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8628         }
8629
8630         #[test]
8631         fn test_outbound_chans_unlimited() {
8632                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8633                 let chanmon_cfgs = create_chanmon_cfgs(2);
8634                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8635                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8636                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8637
8638                 // Note that create_network connects the nodes together for us
8639
8640                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8641                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8642
8643                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8644                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8645                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8646                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8647                 }
8648
8649                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8650                 // rejected.
8651                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8652                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8653                         open_channel_msg.temporary_channel_id);
8654
8655                 // but we can still open an outbound channel.
8656                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8657                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8658
8659                 // but even with such an outbound channel, additional inbound channels will still fail.
8660                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8661                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8662                         open_channel_msg.temporary_channel_id);
8663         }
8664
8665         #[test]
8666         fn test_0conf_limiting() {
8667                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8668                 // flag set and (sometimes) accept channels as 0conf.
8669                 let chanmon_cfgs = create_chanmon_cfgs(2);
8670                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8671                 let mut settings = test_default_channel_config();
8672                 settings.manually_accept_inbound_channels = true;
8673                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8674                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8675
8676                 // Note that create_network connects the nodes together for us
8677
8678                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8679                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8680
8681                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8682                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8683                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8684                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8685                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8686                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8687
8688                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8689                         let events = nodes[1].node.get_and_clear_pending_events();
8690                         match events[0] {
8691                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8692                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8693                                 }
8694                                 _ => panic!("Unexpected event"),
8695                         }
8696                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8697                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8698                 }
8699
8700                 // If we try to accept a channel from another peer non-0conf it will fail.
8701                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8702                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8703                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8704                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8705                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8706                 let events = nodes[1].node.get_and_clear_pending_events();
8707                 match events[0] {
8708                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8709                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8710                                         Err(APIError::APIMisuseError { err }) =>
8711                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8712                                         _ => panic!(),
8713                                 }
8714                         }
8715                         _ => panic!("Unexpected event"),
8716                 }
8717                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8718                         open_channel_msg.temporary_channel_id);
8719
8720                 // ...however if we accept the same channel 0conf it should work just fine.
8721                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8722                 let events = nodes[1].node.get_and_clear_pending_events();
8723                 match events[0] {
8724                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8725                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8726                         }
8727                         _ => panic!("Unexpected event"),
8728                 }
8729                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8730         }
8731
8732         #[cfg(anchors)]
8733         #[test]
8734         fn test_anchors_zero_fee_htlc_tx_fallback() {
8735                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8736                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8737                 // the channel without the anchors feature.
8738                 let chanmon_cfgs = create_chanmon_cfgs(2);
8739                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8740                 let mut anchors_config = test_default_channel_config();
8741                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8742                 anchors_config.manually_accept_inbound_channels = true;
8743                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8744                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8745
8746                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8747                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8748                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8749
8750                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8751                 let events = nodes[1].node.get_and_clear_pending_events();
8752                 match events[0] {
8753                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8754                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8755                         }
8756                         _ => panic!("Unexpected event"),
8757                 }
8758
8759                 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
8760                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8761
8762                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8763                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8764
8765                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8766         }
8767 }
8768
8769 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8770 pub mod bench {
8771         use crate::chain::Listen;
8772         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8773         use crate::chain::keysinterface::{EntropySource, KeysManager, InMemorySigner};
8774         use crate::ln::channelmanager::{self, BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
8775         use crate::ln::functional_test_utils::*;
8776         use crate::ln::msgs::{ChannelMessageHandler, Init};
8777         use crate::routing::gossip::NetworkGraph;
8778         use crate::routing::router::{PaymentParameters, get_route};
8779         use crate::util::test_utils;
8780         use crate::util::config::UserConfig;
8781         use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8782
8783         use bitcoin::hashes::Hash;
8784         use bitcoin::hashes::sha256::Hash as Sha256;
8785         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8786
8787         use crate::sync::{Arc, Mutex};
8788
8789         use test::Bencher;
8790
8791         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8792                 node: &'a ChannelManager<
8793                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8794                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8795                                 &'a test_utils::TestLogger, &'a P>,
8796                         &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8797                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8798                         &'a test_utils::TestLogger>,
8799         }
8800
8801         #[cfg(test)]
8802         #[bench]
8803         fn bench_sends(bench: &mut Bencher) {
8804                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8805         }
8806
8807         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8808                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8809                 // Note that this is unrealistic as each payment send will require at least two fsync
8810                 // calls per node.
8811                 let network = bitcoin::Network::Testnet;
8812
8813                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8814                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8815                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8816                 let scorer = Mutex::new(test_utils::TestScorer::new());
8817                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8818
8819                 let mut config: UserConfig = Default::default();
8820                 config.channel_handshake_config.minimum_depth = 1;
8821
8822                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8823                 let seed_a = [1u8; 32];
8824                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8825                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8826                         network,
8827                         best_block: BestBlock::from_network(network),
8828                 });
8829                 let node_a_holder = NodeHolder { node: &node_a };
8830
8831                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8832                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8833                 let seed_b = [2u8; 32];
8834                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8835                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8836                         network,
8837                         best_block: BestBlock::from_network(network),
8838                 });
8839                 let node_b_holder = NodeHolder { node: &node_b };
8840
8841                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8842                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8843                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8844                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8845                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8846
8847                 let tx;
8848                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8849                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8850                                 value: 8_000_000, script_pubkey: output_script,
8851                         }]};
8852                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8853                 } else { panic!(); }
8854
8855                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8856                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8857
8858                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8859
8860                 let block = Block {
8861                         header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8862                         txdata: vec![tx],
8863                 };
8864                 Listen::block_connected(&node_a, &block, 1);
8865                 Listen::block_connected(&node_b, &block, 1);
8866
8867                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8868                 let msg_events = node_a.get_and_clear_pending_msg_events();
8869                 assert_eq!(msg_events.len(), 2);
8870                 match msg_events[0] {
8871                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
8872                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8873                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8874                         },
8875                         _ => panic!(),
8876                 }
8877                 match msg_events[1] {
8878                         MessageSendEvent::SendChannelUpdate { .. } => {},
8879                         _ => panic!(),
8880                 }
8881
8882                 let events_a = node_a.get_and_clear_pending_events();
8883                 assert_eq!(events_a.len(), 1);
8884                 match events_a[0] {
8885                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8886                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8887                         },
8888                         _ => panic!("Unexpected event"),
8889                 }
8890
8891                 let events_b = node_b.get_and_clear_pending_events();
8892                 assert_eq!(events_b.len(), 1);
8893                 match events_b[0] {
8894                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8895                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8896                         },
8897                         _ => panic!("Unexpected event"),
8898                 }
8899
8900                 let dummy_graph = NetworkGraph::new(network, &logger_a);
8901
8902                 let mut payment_count: u64 = 0;
8903                 macro_rules! send_payment {
8904                         ($node_a: expr, $node_b: expr) => {
8905                                 let usable_channels = $node_a.list_usable_channels();
8906                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
8907                                         .with_features($node_b.invoice_features());
8908                                 let scorer = test_utils::TestScorer::new();
8909                                 let seed = [3u8; 32];
8910                                 let keys_manager = KeysManager::new(&seed, 42, 42);
8911                                 let random_seed_bytes = keys_manager.get_secure_random_bytes();
8912                                 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
8913                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
8914
8915                                 let mut payment_preimage = PaymentPreimage([0; 32]);
8916                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
8917                                 payment_count += 1;
8918                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
8919                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
8920
8921                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8922                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
8923                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
8924                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
8925                                 let (raa, cs) = do_get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
8926                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
8927                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
8928                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
8929
8930                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
8931                                 expect_payment_claimable!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
8932                                 $node_b.claim_funds(payment_preimage);
8933                                 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
8934
8935                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
8936                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
8937                                                 assert_eq!(node_id, $node_a.get_our_node_id());
8938                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
8939                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
8940                                         },
8941                                         _ => panic!("Failed to generate claim event"),
8942                                 }
8943
8944                                 let (raa, cs) = do_get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
8945                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
8946                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
8947                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
8948
8949                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
8950                         }
8951                 }
8952
8953                 bench.iter(|| {
8954                         send_payment!(node_a, node_b);
8955                         send_payment!(node_b, node_a);
8956                 });
8957         }
8958 }