1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
48 #[cfg(any(feature = "_test_utils", test))]
49 use crate::ln::features::Bolt11InvoiceFeatures;
50 use crate::routing::gossip::NetworkGraph;
51 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
53 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundOnionErr, NextPacketDetails};
55 use crate::ln::onion_utils;
56 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
57 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
59 use crate::ln::outbound_payment;
60 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
61 use crate::ln::wire::Encode;
62 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
63 use crate::offers::invoice_error::InvoiceError;
64 use crate::offers::merkle::SignError;
65 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
66 use crate::offers::parse::Bolt12SemanticError;
67 use crate::offers::refund::{Refund, RefundBuilder};
68 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
69 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
79 use alloc::collections::{btree_map, BTreeMap};
82 use crate::prelude::*;
84 use core::cell::RefCell;
86 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
87 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
88 use core::time::Duration;
91 // Re-export this for use in the public API.
92 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
93 use crate::ln::script::ShutdownScript;
95 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
97 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
98 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
99 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
101 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
102 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
103 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
104 // before we forward it.
106 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
107 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
108 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
109 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
110 // our payment, which we can use to decode errors or inform the user that the payment was sent.
112 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub enum PendingHTLCRouting {
115 /// An HTLC which should be forwarded on to another node.
117 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
118 /// do with the HTLC.
119 onion_packet: msgs::OnionPacket,
120 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
122 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
123 /// to the receiving node, such as one returned from
124 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
125 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
126 /// Set if this HTLC is being forwarded within a blinded path.
127 blinded: Option<BlindedForward>,
129 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
131 /// Note that at this point, we have not checked that the invoice being paid was actually
132 /// generated by us, but rather it's claiming to pay an invoice of ours.
134 /// Information about the amount the sender intended to pay and (potential) proof that this
135 /// is a payment for an invoice we generated. This proof of payment is is also used for
136 /// linking MPP parts of a larger payment.
137 payment_data: msgs::FinalOnionHopData,
138 /// Additional data which we (allegedly) instructed the sender to include in the onion.
140 /// For HTLCs received by LDK, this will ultimately be exposed in
141 /// [`Event::PaymentClaimable::onion_fields`] as
142 /// [`RecipientOnionFields::payment_metadata`].
143 payment_metadata: Option<Vec<u8>>,
144 /// CLTV expiry of the received HTLC.
146 /// Used to track when we should expire pending HTLCs that go unclaimed.
147 incoming_cltv_expiry: u32,
148 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
149 /// provide the onion shared secret used to decrypt the next level of forwarding
151 phantom_shared_secret: Option<[u8; 32]>,
152 /// Custom TLVs which were set by the sender.
154 /// For HTLCs received by LDK, this will ultimately be exposed in
155 /// [`Event::PaymentClaimable::onion_fields`] as
156 /// [`RecipientOnionFields::custom_tlvs`].
157 custom_tlvs: Vec<(u64, Vec<u8>)>,
159 /// The onion indicates that this is for payment to us but which contains the preimage for
160 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
161 /// "keysend" or "spontaneous" payment).
163 /// Information about the amount the sender intended to pay and possibly a token to
164 /// associate MPP parts of a larger payment.
166 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
167 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
168 payment_data: Option<msgs::FinalOnionHopData>,
169 /// Preimage for this onion payment. This preimage is provided by the sender and will be
170 /// used to settle the spontaneous payment.
171 payment_preimage: PaymentPreimage,
172 /// Additional data which we (allegedly) instructed the sender to include in the onion.
174 /// For HTLCs received by LDK, this will ultimately bubble back up as
175 /// [`RecipientOnionFields::payment_metadata`].
176 payment_metadata: Option<Vec<u8>>,
177 /// CLTV expiry of the received HTLC.
179 /// Used to track when we should expire pending HTLCs that go unclaimed.
180 incoming_cltv_expiry: u32,
181 /// Custom TLVs which were set by the sender.
183 /// For HTLCs received by LDK, these will ultimately bubble back up as
184 /// [`RecipientOnionFields::custom_tlvs`].
185 custom_tlvs: Vec<(u64, Vec<u8>)>,
189 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
190 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
191 pub struct BlindedForward {
192 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
193 /// onion payload if we're the introduction node. Useful for calculating the next hop's
194 /// [`msgs::UpdateAddHTLC::blinding_point`].
195 pub inbound_blinding_point: PublicKey,
196 // Another field will be added here when we support forwarding as a non-intro node.
199 impl PendingHTLCRouting {
200 // Used to override the onion failure code and data if the HTLC is blinded.
201 fn blinded_failure(&self) -> Option<BlindedFailure> {
202 // TODO: needs update when we support receiving to multi-hop blinded paths
203 if let Self::Forward { blinded: Some(_), .. } = self {
204 Some(BlindedFailure::FromIntroductionNode)
211 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
213 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
214 pub struct PendingHTLCInfo {
215 /// Further routing details based on whether the HTLC is being forwarded or received.
216 pub routing: PendingHTLCRouting,
217 /// The onion shared secret we build with the sender used to decrypt the onion.
219 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
220 pub incoming_shared_secret: [u8; 32],
221 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
222 pub payment_hash: PaymentHash,
223 /// Amount received in the incoming HTLC.
225 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
227 pub incoming_amt_msat: Option<u64>,
228 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
229 /// intended for us to receive for received payments.
231 /// If the received amount is less than this for received payments, an intermediary hop has
232 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
233 /// it along another path).
235 /// Because nodes can take less than their required fees, and because senders may wish to
236 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
237 /// received payments. In such cases, recipients must handle this HTLC as if it had received
238 /// [`Self::outgoing_amt_msat`].
239 pub outgoing_amt_msat: u64,
240 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
241 /// should have been set on the received HTLC for received payments).
242 pub outgoing_cltv_value: u32,
243 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
245 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
248 /// If this is a received payment, this is the fee that our counterparty took.
250 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
252 pub skimmed_fee_msat: Option<u64>,
255 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
256 pub(super) enum HTLCFailureMsg {
257 Relay(msgs::UpdateFailHTLC),
258 Malformed(msgs::UpdateFailMalformedHTLC),
261 /// Stores whether we can't forward an HTLC or relevant forwarding info
262 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
263 pub(super) enum PendingHTLCStatus {
264 Forward(PendingHTLCInfo),
265 Fail(HTLCFailureMsg),
268 pub(super) struct PendingAddHTLCInfo {
269 pub(super) forward_info: PendingHTLCInfo,
271 // These fields are produced in `forward_htlcs()` and consumed in
272 // `process_pending_htlc_forwards()` for constructing the
273 // `HTLCSource::PreviousHopData` for failed and forwarded
276 // Note that this may be an outbound SCID alias for the associated channel.
277 prev_short_channel_id: u64,
279 prev_funding_outpoint: OutPoint,
280 prev_user_channel_id: u128,
283 pub(super) enum HTLCForwardInfo {
284 AddHTLC(PendingAddHTLCInfo),
287 err_packet: msgs::OnionErrorPacket,
291 // Used for failing blinded HTLCs backwards correctly.
292 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
293 enum BlindedFailure {
294 FromIntroductionNode,
295 // Another variant will be added here for non-intro nodes.
298 /// Tracks the inbound corresponding to an outbound HTLC
299 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
300 pub(crate) struct HTLCPreviousHopData {
301 // Note that this may be an outbound SCID alias for the associated channel.
302 short_channel_id: u64,
303 user_channel_id: Option<u128>,
305 incoming_packet_shared_secret: [u8; 32],
306 phantom_shared_secret: Option<[u8; 32]>,
307 blinded_failure: Option<BlindedFailure>,
309 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
310 // channel with a preimage provided by the forward channel.
315 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
317 /// This is only here for backwards-compatibility in serialization, in the future it can be
318 /// removed, breaking clients running 0.0.106 and earlier.
319 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
321 /// Contains the payer-provided preimage.
322 Spontaneous(PaymentPreimage),
325 /// HTLCs that are to us and can be failed/claimed by the user
326 struct ClaimableHTLC {
327 prev_hop: HTLCPreviousHopData,
329 /// The amount (in msats) of this MPP part
331 /// The amount (in msats) that the sender intended to be sent in this MPP
332 /// part (used for validating total MPP amount)
333 sender_intended_value: u64,
334 onion_payload: OnionPayload,
336 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
337 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
338 total_value_received: Option<u64>,
339 /// The sender intended sum total of all MPP parts specified in the onion
341 /// The extra fee our counterparty skimmed off the top of this HTLC.
342 counterparty_skimmed_fee_msat: Option<u64>,
345 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
346 fn from(val: &ClaimableHTLC) -> Self {
347 events::ClaimedHTLC {
348 channel_id: val.prev_hop.outpoint.to_channel_id(),
349 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
350 cltv_expiry: val.cltv_expiry,
351 value_msat: val.value,
352 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
357 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
358 /// a payment and ensure idempotency in LDK.
360 /// This is not exported to bindings users as we just use [u8; 32] directly
361 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
362 pub struct PaymentId(pub [u8; Self::LENGTH]);
365 /// Number of bytes in the id.
366 pub const LENGTH: usize = 32;
369 impl Writeable for PaymentId {
370 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
375 impl Readable for PaymentId {
376 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
377 let buf: [u8; 32] = Readable::read(r)?;
382 impl core::fmt::Display for PaymentId {
383 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
384 crate::util::logger::DebugBytes(&self.0).fmt(f)
388 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
390 /// This is not exported to bindings users as we just use [u8; 32] directly
391 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
392 pub struct InterceptId(pub [u8; 32]);
394 impl Writeable for InterceptId {
395 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
400 impl Readable for InterceptId {
401 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
402 let buf: [u8; 32] = Readable::read(r)?;
407 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
408 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
409 pub(crate) enum SentHTLCId {
410 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
411 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
414 pub(crate) fn from_source(source: &HTLCSource) -> Self {
416 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
417 short_channel_id: hop_data.short_channel_id,
418 htlc_id: hop_data.htlc_id,
420 HTLCSource::OutboundRoute { session_priv, .. } =>
421 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
425 impl_writeable_tlv_based_enum!(SentHTLCId,
426 (0, PreviousHopData) => {
427 (0, short_channel_id, required),
428 (2, htlc_id, required),
430 (2, OutboundRoute) => {
431 (0, session_priv, required),
436 /// Tracks the inbound corresponding to an outbound HTLC
437 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
438 #[derive(Clone, Debug, PartialEq, Eq)]
439 pub(crate) enum HTLCSource {
440 PreviousHopData(HTLCPreviousHopData),
443 session_priv: SecretKey,
444 /// Technically we can recalculate this from the route, but we cache it here to avoid
445 /// doing a double-pass on route when we get a failure back
446 first_hop_htlc_msat: u64,
447 payment_id: PaymentId,
450 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
451 impl core::hash::Hash for HTLCSource {
452 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
454 HTLCSource::PreviousHopData(prev_hop_data) => {
456 prev_hop_data.hash(hasher);
458 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
461 session_priv[..].hash(hasher);
462 payment_id.hash(hasher);
463 first_hop_htlc_msat.hash(hasher);
469 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
471 pub fn dummy() -> Self {
472 HTLCSource::OutboundRoute {
473 path: Path { hops: Vec::new(), blinded_tail: None },
474 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
475 first_hop_htlc_msat: 0,
476 payment_id: PaymentId([2; 32]),
480 #[cfg(debug_assertions)]
481 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
482 /// transaction. Useful to ensure different datastructures match up.
483 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
484 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
485 *first_hop_htlc_msat == htlc.amount_msat
487 // There's nothing we can check for forwarded HTLCs
493 /// This enum is used to specify which error data to send to peers when failing back an HTLC
494 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
496 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
497 #[derive(Clone, Copy)]
498 pub enum FailureCode {
499 /// We had a temporary error processing the payment. Useful if no other error codes fit
500 /// and you want to indicate that the payer may want to retry.
501 TemporaryNodeFailure,
502 /// We have a required feature which was not in this onion. For example, you may require
503 /// some additional metadata that was not provided with this payment.
504 RequiredNodeFeatureMissing,
505 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
506 /// the HTLC is too close to the current block height for safe handling.
507 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
508 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
509 IncorrectOrUnknownPaymentDetails,
510 /// We failed to process the payload after the onion was decrypted. You may wish to
511 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
513 /// If available, the tuple data may include the type number and byte offset in the
514 /// decrypted byte stream where the failure occurred.
515 InvalidOnionPayload(Option<(u64, u16)>),
518 impl Into<u16> for FailureCode {
519 fn into(self) -> u16 {
521 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
522 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
523 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
524 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
529 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
530 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
531 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
532 /// peer_state lock. We then return the set of things that need to be done outside the lock in
533 /// this struct and call handle_error!() on it.
535 struct MsgHandleErrInternal {
536 err: msgs::LightningError,
537 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
538 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
539 channel_capacity: Option<u64>,
541 impl MsgHandleErrInternal {
543 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
545 err: LightningError {
547 action: msgs::ErrorAction::SendErrorMessage {
548 msg: msgs::ErrorMessage {
555 shutdown_finish: None,
556 channel_capacity: None,
560 fn from_no_close(err: msgs::LightningError) -> Self {
561 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
564 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
565 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
566 let action = if shutdown_res.monitor_update.is_some() {
567 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
568 // should disconnect our peer such that we force them to broadcast their latest
569 // commitment upon reconnecting.
570 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
572 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
575 err: LightningError { err, action },
576 chan_id: Some((channel_id, user_channel_id)),
577 shutdown_finish: Some((shutdown_res, channel_update)),
578 channel_capacity: Some(channel_capacity)
582 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
585 ChannelError::Warn(msg) => LightningError {
587 action: msgs::ErrorAction::SendWarningMessage {
588 msg: msgs::WarningMessage {
592 log_level: Level::Warn,
595 ChannelError::Ignore(msg) => LightningError {
597 action: msgs::ErrorAction::IgnoreError,
599 ChannelError::Close(msg) => LightningError {
601 action: msgs::ErrorAction::SendErrorMessage {
602 msg: msgs::ErrorMessage {
610 shutdown_finish: None,
611 channel_capacity: None,
615 fn closes_channel(&self) -> bool {
616 self.chan_id.is_some()
620 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
621 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
622 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
623 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
624 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
626 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
627 /// be sent in the order they appear in the return value, however sometimes the order needs to be
628 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
629 /// they were originally sent). In those cases, this enum is also returned.
630 #[derive(Clone, PartialEq)]
631 pub(super) enum RAACommitmentOrder {
632 /// Send the CommitmentUpdate messages first
634 /// Send the RevokeAndACK message first
638 /// Information about a payment which is currently being claimed.
639 struct ClaimingPayment {
641 payment_purpose: events::PaymentPurpose,
642 receiver_node_id: PublicKey,
643 htlcs: Vec<events::ClaimedHTLC>,
644 sender_intended_value: Option<u64>,
646 impl_writeable_tlv_based!(ClaimingPayment, {
647 (0, amount_msat, required),
648 (2, payment_purpose, required),
649 (4, receiver_node_id, required),
650 (5, htlcs, optional_vec),
651 (7, sender_intended_value, option),
654 struct ClaimablePayment {
655 purpose: events::PaymentPurpose,
656 onion_fields: Option<RecipientOnionFields>,
657 htlcs: Vec<ClaimableHTLC>,
660 /// Information about claimable or being-claimed payments
661 struct ClaimablePayments {
662 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
663 /// failed/claimed by the user.
665 /// Note that, no consistency guarantees are made about the channels given here actually
666 /// existing anymore by the time you go to read them!
668 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
669 /// we don't get a duplicate payment.
670 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
672 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
673 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
674 /// as an [`events::Event::PaymentClaimed`].
675 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
678 /// Events which we process internally but cannot be processed immediately at the generation site
679 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
680 /// running normally, and specifically must be processed before any other non-background
681 /// [`ChannelMonitorUpdate`]s are applied.
683 enum BackgroundEvent {
684 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
685 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
686 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
687 /// channel has been force-closed we do not need the counterparty node_id.
689 /// Note that any such events are lost on shutdown, so in general they must be updates which
690 /// are regenerated on startup.
691 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
692 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
693 /// channel to continue normal operation.
695 /// In general this should be used rather than
696 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
697 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
698 /// error the other variant is acceptable.
700 /// Note that any such events are lost on shutdown, so in general they must be updates which
701 /// are regenerated on startup.
702 MonitorUpdateRegeneratedOnStartup {
703 counterparty_node_id: PublicKey,
704 funding_txo: OutPoint,
705 update: ChannelMonitorUpdate
707 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
708 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
710 MonitorUpdatesComplete {
711 counterparty_node_id: PublicKey,
712 channel_id: ChannelId,
717 pub(crate) enum MonitorUpdateCompletionAction {
718 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
719 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
720 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
721 /// event can be generated.
722 PaymentClaimed { payment_hash: PaymentHash },
723 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
724 /// operation of another channel.
726 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
727 /// from completing a monitor update which removes the payment preimage until the inbound edge
728 /// completes a monitor update containing the payment preimage. In that case, after the inbound
729 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
731 EmitEventAndFreeOtherChannel {
732 event: events::Event,
733 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
735 /// Indicates we should immediately resume the operation of another channel, unless there is
736 /// some other reason why the channel is blocked. In practice this simply means immediately
737 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
739 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
740 /// from completing a monitor update which removes the payment preimage until the inbound edge
741 /// completes a monitor update containing the payment preimage. However, we use this variant
742 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
743 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
745 /// This variant should thus never be written to disk, as it is processed inline rather than
746 /// stored for later processing.
747 FreeOtherChannelImmediately {
748 downstream_counterparty_node_id: PublicKey,
749 downstream_funding_outpoint: OutPoint,
750 blocking_action: RAAMonitorUpdateBlockingAction,
754 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
755 (0, PaymentClaimed) => { (0, payment_hash, required) },
756 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
757 // *immediately*. However, for simplicity we implement read/write here.
758 (1, FreeOtherChannelImmediately) => {
759 (0, downstream_counterparty_node_id, required),
760 (2, downstream_funding_outpoint, required),
761 (4, blocking_action, required),
763 (2, EmitEventAndFreeOtherChannel) => {
764 (0, event, upgradable_required),
765 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
766 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
767 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
768 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
769 // downgrades to prior versions.
770 (1, downstream_counterparty_and_funding_outpoint, option),
774 #[derive(Clone, Debug, PartialEq, Eq)]
775 pub(crate) enum EventCompletionAction {
776 ReleaseRAAChannelMonitorUpdate {
777 counterparty_node_id: PublicKey,
778 channel_funding_outpoint: OutPoint,
781 impl_writeable_tlv_based_enum!(EventCompletionAction,
782 (0, ReleaseRAAChannelMonitorUpdate) => {
783 (0, channel_funding_outpoint, required),
784 (2, counterparty_node_id, required),
788 #[derive(Clone, PartialEq, Eq, Debug)]
789 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
790 /// the blocked action here. See enum variants for more info.
791 pub(crate) enum RAAMonitorUpdateBlockingAction {
792 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
793 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
795 ForwardedPaymentInboundClaim {
796 /// The upstream channel ID (i.e. the inbound edge).
797 channel_id: ChannelId,
798 /// The HTLC ID on the inbound edge.
803 impl RAAMonitorUpdateBlockingAction {
804 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
805 Self::ForwardedPaymentInboundClaim {
806 channel_id: prev_hop.outpoint.to_channel_id(),
807 htlc_id: prev_hop.htlc_id,
812 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
813 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
817 /// State we hold per-peer.
818 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
819 /// `channel_id` -> `ChannelPhase`
821 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
822 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
823 /// `temporary_channel_id` -> `InboundChannelRequest`.
825 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
826 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
827 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
828 /// the channel is rejected, then the entry is simply removed.
829 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
830 /// The latest `InitFeatures` we heard from the peer.
831 latest_features: InitFeatures,
832 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
833 /// for broadcast messages, where ordering isn't as strict).
834 pub(super) pending_msg_events: Vec<MessageSendEvent>,
835 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
836 /// user but which have not yet completed.
838 /// Note that the channel may no longer exist. For example if the channel was closed but we
839 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
840 /// for a missing channel.
841 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
842 /// Map from a specific channel to some action(s) that should be taken when all pending
843 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
845 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
846 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
847 /// channels with a peer this will just be one allocation and will amount to a linear list of
848 /// channels to walk, avoiding the whole hashing rigmarole.
850 /// Note that the channel may no longer exist. For example, if a channel was closed but we
851 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
852 /// for a missing channel. While a malicious peer could construct a second channel with the
853 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
854 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
855 /// duplicates do not occur, so such channels should fail without a monitor update completing.
856 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
857 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
858 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
859 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
860 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
861 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
862 /// The peer is currently connected (i.e. we've seen a
863 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
864 /// [`ChannelMessageHandler::peer_disconnected`].
868 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
869 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
870 /// If true is passed for `require_disconnected`, the function will return false if we haven't
871 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
872 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
873 if require_disconnected && self.is_connected {
876 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
877 && self.monitor_update_blocked_actions.is_empty()
878 && self.in_flight_monitor_updates.is_empty()
881 // Returns a count of all channels we have with this peer, including unfunded channels.
882 fn total_channel_count(&self) -> usize {
883 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
886 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
887 fn has_channel(&self, channel_id: &ChannelId) -> bool {
888 self.channel_by_id.contains_key(channel_id) ||
889 self.inbound_channel_request_by_id.contains_key(channel_id)
893 /// A not-yet-accepted inbound (from counterparty) channel. Once
894 /// accepted, the parameters will be used to construct a channel.
895 pub(super) struct InboundChannelRequest {
896 /// The original OpenChannel message.
897 pub open_channel_msg: msgs::OpenChannel,
898 /// The number of ticks remaining before the request expires.
899 pub ticks_remaining: i32,
902 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
903 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
904 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
906 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
907 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
909 /// For users who don't want to bother doing their own payment preimage storage, we also store that
912 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
913 /// and instead encoding it in the payment secret.
914 struct PendingInboundPayment {
915 /// The payment secret that the sender must use for us to accept this payment
916 payment_secret: PaymentSecret,
917 /// Time at which this HTLC expires - blocks with a header time above this value will result in
918 /// this payment being removed.
920 /// Arbitrary identifier the user specifies (or not)
921 user_payment_id: u64,
922 // Other required attributes of the payment, optionally enforced:
923 payment_preimage: Option<PaymentPreimage>,
924 min_value_msat: Option<u64>,
927 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
928 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
929 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
930 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
931 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
932 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
933 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
934 /// of [`KeysManager`] and [`DefaultRouter`].
936 /// This is not exported to bindings users as type aliases aren't supported in most languages.
937 #[cfg(not(c_bindings))]
938 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
946 Arc<NetworkGraph<Arc<L>>>,
948 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
949 ProbabilisticScoringFeeParameters,
950 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
955 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
956 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
957 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
958 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
959 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
960 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
961 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
962 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
963 /// of [`KeysManager`] and [`DefaultRouter`].
965 /// This is not exported to bindings users as type aliases aren't supported in most languages.
966 #[cfg(not(c_bindings))]
967 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
976 &'f NetworkGraph<&'g L>,
978 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
979 ProbabilisticScoringFeeParameters,
980 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
985 /// A trivial trait which describes any [`ChannelManager`].
987 /// This is not exported to bindings users as general cover traits aren't useful in other
989 pub trait AChannelManager {
990 /// A type implementing [`chain::Watch`].
991 type Watch: chain::Watch<Self::Signer> + ?Sized;
992 /// A type that may be dereferenced to [`Self::Watch`].
993 type M: Deref<Target = Self::Watch>;
994 /// A type implementing [`BroadcasterInterface`].
995 type Broadcaster: BroadcasterInterface + ?Sized;
996 /// A type that may be dereferenced to [`Self::Broadcaster`].
997 type T: Deref<Target = Self::Broadcaster>;
998 /// A type implementing [`EntropySource`].
999 type EntropySource: EntropySource + ?Sized;
1000 /// A type that may be dereferenced to [`Self::EntropySource`].
1001 type ES: Deref<Target = Self::EntropySource>;
1002 /// A type implementing [`NodeSigner`].
1003 type NodeSigner: NodeSigner + ?Sized;
1004 /// A type that may be dereferenced to [`Self::NodeSigner`].
1005 type NS: Deref<Target = Self::NodeSigner>;
1006 /// A type implementing [`WriteableEcdsaChannelSigner`].
1007 type Signer: WriteableEcdsaChannelSigner + Sized;
1008 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1009 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1010 /// A type that may be dereferenced to [`Self::SignerProvider`].
1011 type SP: Deref<Target = Self::SignerProvider>;
1012 /// A type implementing [`FeeEstimator`].
1013 type FeeEstimator: FeeEstimator + ?Sized;
1014 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1015 type F: Deref<Target = Self::FeeEstimator>;
1016 /// A type implementing [`Router`].
1017 type Router: Router + ?Sized;
1018 /// A type that may be dereferenced to [`Self::Router`].
1019 type R: Deref<Target = Self::Router>;
1020 /// A type implementing [`Logger`].
1021 type Logger: Logger + ?Sized;
1022 /// A type that may be dereferenced to [`Self::Logger`].
1023 type L: Deref<Target = Self::Logger>;
1024 /// Returns a reference to the actual [`ChannelManager`] object.
1025 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1028 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1029 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1031 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1032 T::Target: BroadcasterInterface,
1033 ES::Target: EntropySource,
1034 NS::Target: NodeSigner,
1035 SP::Target: SignerProvider,
1036 F::Target: FeeEstimator,
1040 type Watch = M::Target;
1042 type Broadcaster = T::Target;
1044 type EntropySource = ES::Target;
1046 type NodeSigner = NS::Target;
1048 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1049 type SignerProvider = SP::Target;
1051 type FeeEstimator = F::Target;
1053 type Router = R::Target;
1055 type Logger = L::Target;
1057 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1060 /// Manager which keeps track of a number of channels and sends messages to the appropriate
1061 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
1063 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
1064 /// to individual Channels.
1066 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1067 /// all peers during write/read (though does not modify this instance, only the instance being
1068 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1069 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1071 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1072 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1073 /// [`ChannelMonitorUpdate`] before returning from
1074 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1075 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1076 /// `ChannelManager` operations from occurring during the serialization process). If the
1077 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1078 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1079 /// will be lost (modulo on-chain transaction fees).
1081 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1082 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1083 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1085 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1086 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1087 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1088 /// offline for a full minute. In order to track this, you must call
1089 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1091 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1092 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1093 /// not have a channel with being unable to connect to us or open new channels with us if we have
1094 /// many peers with unfunded channels.
1096 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1097 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1098 /// never limited. Please ensure you limit the count of such channels yourself.
1100 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1101 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1102 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1103 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1104 /// you're using lightning-net-tokio.
1106 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1107 /// [`funding_created`]: msgs::FundingCreated
1108 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1109 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1110 /// [`update_channel`]: chain::Watch::update_channel
1111 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1112 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1113 /// [`read`]: ReadableArgs::read
1116 // The tree structure below illustrates the lock order requirements for the different locks of the
1117 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1118 // and should then be taken in the order of the lowest to the highest level in the tree.
1119 // Note that locks on different branches shall not be taken at the same time, as doing so will
1120 // create a new lock order for those specific locks in the order they were taken.
1124 // `pending_offers_messages`
1126 // `total_consistency_lock`
1128 // |__`forward_htlcs`
1130 // | |__`pending_intercepted_htlcs`
1132 // |__`per_peer_state`
1134 // |__`pending_inbound_payments`
1136 // |__`claimable_payments`
1138 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1142 // |__`outpoint_to_peer`
1144 // |__`short_to_chan_info`
1146 // |__`outbound_scid_aliases`
1150 // |__`pending_events`
1152 // |__`pending_background_events`
1154 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1156 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1157 T::Target: BroadcasterInterface,
1158 ES::Target: EntropySource,
1159 NS::Target: NodeSigner,
1160 SP::Target: SignerProvider,
1161 F::Target: FeeEstimator,
1165 default_configuration: UserConfig,
1166 chain_hash: ChainHash,
1167 fee_estimator: LowerBoundedFeeEstimator<F>,
1173 /// See `ChannelManager` struct-level documentation for lock order requirements.
1175 pub(super) best_block: RwLock<BestBlock>,
1177 best_block: RwLock<BestBlock>,
1178 secp_ctx: Secp256k1<secp256k1::All>,
1180 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1181 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1182 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1183 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1185 /// See `ChannelManager` struct-level documentation for lock order requirements.
1186 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1188 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1189 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1190 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1191 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1192 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1193 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1194 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1195 /// after reloading from disk while replaying blocks against ChannelMonitors.
1197 /// See `PendingOutboundPayment` documentation for more info.
1199 /// See `ChannelManager` struct-level documentation for lock order requirements.
1200 pending_outbound_payments: OutboundPayments,
1202 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1204 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1205 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1206 /// and via the classic SCID.
1208 /// Note that no consistency guarantees are made about the existence of a channel with the
1209 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1211 /// See `ChannelManager` struct-level documentation for lock order requirements.
1213 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1215 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1216 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1217 /// until the user tells us what we should do with them.
1219 /// See `ChannelManager` struct-level documentation for lock order requirements.
1220 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1222 /// The sets of payments which are claimable or currently being claimed. See
1223 /// [`ClaimablePayments`]' individual field docs for more info.
1225 /// See `ChannelManager` struct-level documentation for lock order requirements.
1226 claimable_payments: Mutex<ClaimablePayments>,
1228 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1229 /// and some closed channels which reached a usable state prior to being closed. This is used
1230 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1231 /// active channel list on load.
1233 /// See `ChannelManager` struct-level documentation for lock order requirements.
1234 outbound_scid_aliases: Mutex<HashSet<u64>>,
1236 /// Channel funding outpoint -> `counterparty_node_id`.
1238 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1239 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1240 /// the handling of the events.
1242 /// Note that no consistency guarantees are made about the existence of a peer with the
1243 /// `counterparty_node_id` in our other maps.
1246 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1247 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1248 /// would break backwards compatability.
1249 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1250 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1251 /// required to access the channel with the `counterparty_node_id`.
1253 /// See `ChannelManager` struct-level documentation for lock order requirements.
1254 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1256 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1258 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1259 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1260 /// confirmation depth.
1262 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1263 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1264 /// channel with the `channel_id` in our other maps.
1266 /// See `ChannelManager` struct-level documentation for lock order requirements.
1268 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1270 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1272 our_network_pubkey: PublicKey,
1274 inbound_payment_key: inbound_payment::ExpandedKey,
1276 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1277 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1278 /// we encrypt the namespace identifier using these bytes.
1280 /// [fake scids]: crate::util::scid_utils::fake_scid
1281 fake_scid_rand_bytes: [u8; 32],
1283 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1284 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1285 /// keeping additional state.
1286 probing_cookie_secret: [u8; 32],
1288 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1289 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1290 /// very far in the past, and can only ever be up to two hours in the future.
1291 highest_seen_timestamp: AtomicUsize,
1293 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1294 /// basis, as well as the peer's latest features.
1296 /// If we are connected to a peer we always at least have an entry here, even if no channels
1297 /// are currently open with that peer.
1299 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1300 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1303 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1305 /// See `ChannelManager` struct-level documentation for lock order requirements.
1306 #[cfg(not(any(test, feature = "_test_utils")))]
1307 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1308 #[cfg(any(test, feature = "_test_utils"))]
1309 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1311 /// The set of events which we need to give to the user to handle. In some cases an event may
1312 /// require some further action after the user handles it (currently only blocking a monitor
1313 /// update from being handed to the user to ensure the included changes to the channel state
1314 /// are handled by the user before they're persisted durably to disk). In that case, the second
1315 /// element in the tuple is set to `Some` with further details of the action.
1317 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1318 /// could be in the middle of being processed without the direct mutex held.
1320 /// See `ChannelManager` struct-level documentation for lock order requirements.
1321 #[cfg(not(any(test, feature = "_test_utils")))]
1322 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1323 #[cfg(any(test, feature = "_test_utils"))]
1324 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1326 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1327 pending_events_processor: AtomicBool,
1329 /// If we are running during init (either directly during the deserialization method or in
1330 /// block connection methods which run after deserialization but before normal operation) we
1331 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1332 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1333 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1335 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1337 /// See `ChannelManager` struct-level documentation for lock order requirements.
1339 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1340 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1341 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1342 /// Essentially just when we're serializing ourselves out.
1343 /// Taken first everywhere where we are making changes before any other locks.
1344 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1345 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1346 /// Notifier the lock contains sends out a notification when the lock is released.
1347 total_consistency_lock: RwLock<()>,
1348 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1349 /// received and the monitor has been persisted.
1351 /// This information does not need to be persisted as funding nodes can forget
1352 /// unfunded channels upon disconnection.
1353 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1355 background_events_processed_since_startup: AtomicBool,
1357 event_persist_notifier: Notifier,
1358 needs_persist_flag: AtomicBool,
1360 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1364 signer_provider: SP,
1369 /// Chain-related parameters used to construct a new `ChannelManager`.
1371 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1372 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1373 /// are not needed when deserializing a previously constructed `ChannelManager`.
1374 #[derive(Clone, Copy, PartialEq)]
1375 pub struct ChainParameters {
1376 /// The network for determining the `chain_hash` in Lightning messages.
1377 pub network: Network,
1379 /// The hash and height of the latest block successfully connected.
1381 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1382 pub best_block: BestBlock,
1385 #[derive(Copy, Clone, PartialEq)]
1389 SkipPersistHandleEvents,
1390 SkipPersistNoEvents,
1393 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1394 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1395 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1396 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1397 /// sending the aforementioned notification (since the lock being released indicates that the
1398 /// updates are ready for persistence).
1400 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1401 /// notify or not based on whether relevant changes have been made, providing a closure to
1402 /// `optionally_notify` which returns a `NotifyOption`.
1403 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1404 event_persist_notifier: &'a Notifier,
1405 needs_persist_flag: &'a AtomicBool,
1407 // We hold onto this result so the lock doesn't get released immediately.
1408 _read_guard: RwLockReadGuard<'a, ()>,
1411 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1412 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1413 /// events to handle.
1415 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1416 /// other cases where losing the changes on restart may result in a force-close or otherwise
1418 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1419 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1422 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1423 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1424 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1425 let force_notify = cm.get_cm().process_background_events();
1427 PersistenceNotifierGuard {
1428 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1429 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1430 should_persist: move || {
1431 // Pick the "most" action between `persist_check` and the background events
1432 // processing and return that.
1433 let notify = persist_check();
1434 match (notify, force_notify) {
1435 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1436 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1437 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1438 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1439 _ => NotifyOption::SkipPersistNoEvents,
1442 _read_guard: read_guard,
1446 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1447 /// [`ChannelManager::process_background_events`] MUST be called first (or
1448 /// [`Self::optionally_notify`] used).
1449 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1450 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1451 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1453 PersistenceNotifierGuard {
1454 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1455 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1456 should_persist: persist_check,
1457 _read_guard: read_guard,
1462 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1463 fn drop(&mut self) {
1464 match (self.should_persist)() {
1465 NotifyOption::DoPersist => {
1466 self.needs_persist_flag.store(true, Ordering::Release);
1467 self.event_persist_notifier.notify()
1469 NotifyOption::SkipPersistHandleEvents =>
1470 self.event_persist_notifier.notify(),
1471 NotifyOption::SkipPersistNoEvents => {},
1476 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1477 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1479 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1481 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1482 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1483 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1484 /// the maximum required amount in lnd as of March 2021.
1485 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1487 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1488 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1490 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1492 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1493 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1494 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1495 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1496 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1497 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1498 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1499 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1500 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1501 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1502 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1503 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1504 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1506 /// Minimum CLTV difference between the current block height and received inbound payments.
1507 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1509 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1510 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1511 // a payment was being routed, so we add an extra block to be safe.
1512 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1514 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1515 // ie that if the next-hop peer fails the HTLC within
1516 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1517 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1518 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1519 // LATENCY_GRACE_PERIOD_BLOCKS.
1521 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1523 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1524 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1526 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1528 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1529 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1531 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1532 /// until we mark the channel disabled and gossip the update.
1533 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1535 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1536 /// we mark the channel enabled and gossip the update.
1537 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1539 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1540 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1541 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1542 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1544 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1545 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1546 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1548 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1549 /// many peers we reject new (inbound) connections.
1550 const MAX_NO_CHANNEL_PEERS: usize = 250;
1552 /// Information needed for constructing an invoice route hint for this channel.
1553 #[derive(Clone, Debug, PartialEq)]
1554 pub struct CounterpartyForwardingInfo {
1555 /// Base routing fee in millisatoshis.
1556 pub fee_base_msat: u32,
1557 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1558 pub fee_proportional_millionths: u32,
1559 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1560 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1561 /// `cltv_expiry_delta` for more details.
1562 pub cltv_expiry_delta: u16,
1565 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1566 /// to better separate parameters.
1567 #[derive(Clone, Debug, PartialEq)]
1568 pub struct ChannelCounterparty {
1569 /// The node_id of our counterparty
1570 pub node_id: PublicKey,
1571 /// The Features the channel counterparty provided upon last connection.
1572 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1573 /// many routing-relevant features are present in the init context.
1574 pub features: InitFeatures,
1575 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1576 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1577 /// claiming at least this value on chain.
1579 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1581 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1582 pub unspendable_punishment_reserve: u64,
1583 /// Information on the fees and requirements that the counterparty requires when forwarding
1584 /// payments to us through this channel.
1585 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1586 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1587 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1588 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1589 pub outbound_htlc_minimum_msat: Option<u64>,
1590 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1591 pub outbound_htlc_maximum_msat: Option<u64>,
1594 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1595 #[derive(Clone, Debug, PartialEq)]
1596 pub struct ChannelDetails {
1597 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1598 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1599 /// Note that this means this value is *not* persistent - it can change once during the
1600 /// lifetime of the channel.
1601 pub channel_id: ChannelId,
1602 /// Parameters which apply to our counterparty. See individual fields for more information.
1603 pub counterparty: ChannelCounterparty,
1604 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1605 /// our counterparty already.
1607 /// Note that, if this has been set, `channel_id` will be equivalent to
1608 /// `funding_txo.unwrap().to_channel_id()`.
1609 pub funding_txo: Option<OutPoint>,
1610 /// The features which this channel operates with. See individual features for more info.
1612 /// `None` until negotiation completes and the channel type is finalized.
1613 pub channel_type: Option<ChannelTypeFeatures>,
1614 /// The position of the funding transaction in the chain. None if the funding transaction has
1615 /// not yet been confirmed and the channel fully opened.
1617 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1618 /// payments instead of this. See [`get_inbound_payment_scid`].
1620 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1621 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1623 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1624 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1625 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1626 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1627 /// [`confirmations_required`]: Self::confirmations_required
1628 pub short_channel_id: Option<u64>,
1629 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1630 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1631 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1634 /// This will be `None` as long as the channel is not available for routing outbound payments.
1636 /// [`short_channel_id`]: Self::short_channel_id
1637 /// [`confirmations_required`]: Self::confirmations_required
1638 pub outbound_scid_alias: Option<u64>,
1639 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1640 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1641 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1642 /// when they see a payment to be routed to us.
1644 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1645 /// previous values for inbound payment forwarding.
1647 /// [`short_channel_id`]: Self::short_channel_id
1648 pub inbound_scid_alias: Option<u64>,
1649 /// The value, in satoshis, of this channel as appears in the funding output
1650 pub channel_value_satoshis: u64,
1651 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1652 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1653 /// this value on chain.
1655 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1657 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1659 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1660 pub unspendable_punishment_reserve: Option<u64>,
1661 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1662 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1663 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1664 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1665 /// serialized with LDK versions prior to 0.0.113.
1667 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1668 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1669 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1670 pub user_channel_id: u128,
1671 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1672 /// which is applied to commitment and HTLC transactions.
1674 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1675 pub feerate_sat_per_1000_weight: Option<u32>,
1676 /// Our total balance. This is the amount we would get if we close the channel.
1677 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1678 /// amount is not likely to be recoverable on close.
1680 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1681 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1682 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1683 /// This does not consider any on-chain fees.
1685 /// See also [`ChannelDetails::outbound_capacity_msat`]
1686 pub balance_msat: u64,
1687 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1688 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1689 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1690 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1692 /// See also [`ChannelDetails::balance_msat`]
1694 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1695 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1696 /// should be able to spend nearly this amount.
1697 pub outbound_capacity_msat: u64,
1698 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1699 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1700 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1701 /// to use a limit as close as possible to the HTLC limit we can currently send.
1703 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1704 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1705 pub next_outbound_htlc_limit_msat: u64,
1706 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1707 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1708 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1709 /// route which is valid.
1710 pub next_outbound_htlc_minimum_msat: u64,
1711 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1712 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1713 /// available for inclusion in new inbound HTLCs).
1714 /// Note that there are some corner cases not fully handled here, so the actual available
1715 /// inbound capacity may be slightly higher than this.
1717 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1718 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1719 /// However, our counterparty should be able to spend nearly this amount.
1720 pub inbound_capacity_msat: u64,
1721 /// The number of required confirmations on the funding transaction before the funding will be
1722 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1723 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1724 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1725 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1727 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1729 /// [`is_outbound`]: ChannelDetails::is_outbound
1730 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1731 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1732 pub confirmations_required: Option<u32>,
1733 /// The current number of confirmations on the funding transaction.
1735 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1736 pub confirmations: Option<u32>,
1737 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1738 /// until we can claim our funds after we force-close the channel. During this time our
1739 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1740 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1741 /// time to claim our non-HTLC-encumbered funds.
1743 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1744 pub force_close_spend_delay: Option<u16>,
1745 /// True if the channel was initiated (and thus funded) by us.
1746 pub is_outbound: bool,
1747 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1748 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1749 /// required confirmation count has been reached (and we were connected to the peer at some
1750 /// point after the funding transaction received enough confirmations). The required
1751 /// confirmation count is provided in [`confirmations_required`].
1753 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1754 pub is_channel_ready: bool,
1755 /// The stage of the channel's shutdown.
1756 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1757 pub channel_shutdown_state: Option<ChannelShutdownState>,
1758 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1759 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1761 /// This is a strict superset of `is_channel_ready`.
1762 pub is_usable: bool,
1763 /// True if this channel is (or will be) publicly-announced.
1764 pub is_public: bool,
1765 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1766 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1767 pub inbound_htlc_minimum_msat: Option<u64>,
1768 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1769 pub inbound_htlc_maximum_msat: Option<u64>,
1770 /// Set of configurable parameters that affect channel operation.
1772 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1773 pub config: Option<ChannelConfig>,
1776 impl ChannelDetails {
1777 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1778 /// This should be used for providing invoice hints or in any other context where our
1779 /// counterparty will forward a payment to us.
1781 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1782 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1783 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1784 self.inbound_scid_alias.or(self.short_channel_id)
1787 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1788 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1789 /// we're sending or forwarding a payment outbound over this channel.
1791 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1792 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1793 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1794 self.short_channel_id.or(self.outbound_scid_alias)
1797 fn from_channel_context<SP: Deref, F: Deref>(
1798 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1799 fee_estimator: &LowerBoundedFeeEstimator<F>
1802 SP::Target: SignerProvider,
1803 F::Target: FeeEstimator
1805 let balance = context.get_available_balances(fee_estimator);
1806 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1807 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1809 channel_id: context.channel_id(),
1810 counterparty: ChannelCounterparty {
1811 node_id: context.get_counterparty_node_id(),
1812 features: latest_features,
1813 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1814 forwarding_info: context.counterparty_forwarding_info(),
1815 // Ensures that we have actually received the `htlc_minimum_msat` value
1816 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1817 // message (as they are always the first message from the counterparty).
1818 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1819 // default `0` value set by `Channel::new_outbound`.
1820 outbound_htlc_minimum_msat: if context.have_received_message() {
1821 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1822 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1824 funding_txo: context.get_funding_txo(),
1825 // Note that accept_channel (or open_channel) is always the first message, so
1826 // `have_received_message` indicates that type negotiation has completed.
1827 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1828 short_channel_id: context.get_short_channel_id(),
1829 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1830 inbound_scid_alias: context.latest_inbound_scid_alias(),
1831 channel_value_satoshis: context.get_value_satoshis(),
1832 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1833 unspendable_punishment_reserve: to_self_reserve_satoshis,
1834 balance_msat: balance.balance_msat,
1835 inbound_capacity_msat: balance.inbound_capacity_msat,
1836 outbound_capacity_msat: balance.outbound_capacity_msat,
1837 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1838 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1839 user_channel_id: context.get_user_id(),
1840 confirmations_required: context.minimum_depth(),
1841 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1842 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1843 is_outbound: context.is_outbound(),
1844 is_channel_ready: context.is_usable(),
1845 is_usable: context.is_live(),
1846 is_public: context.should_announce(),
1847 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1848 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1849 config: Some(context.config()),
1850 channel_shutdown_state: Some(context.shutdown_state()),
1855 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1856 /// Further information on the details of the channel shutdown.
1857 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1858 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1859 /// the channel will be removed shortly.
1860 /// Also note, that in normal operation, peers could disconnect at any of these states
1861 /// and require peer re-connection before making progress onto other states
1862 pub enum ChannelShutdownState {
1863 /// Channel has not sent or received a shutdown message.
1865 /// Local node has sent a shutdown message for this channel.
1867 /// Shutdown message exchanges have concluded and the channels are in the midst of
1868 /// resolving all existing open HTLCs before closing can continue.
1870 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1871 NegotiatingClosingFee,
1872 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1873 /// to drop the channel.
1877 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1878 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1879 #[derive(Debug, PartialEq)]
1880 pub enum RecentPaymentDetails {
1881 /// When an invoice was requested and thus a payment has not yet been sent.
1883 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1884 /// a payment and ensure idempotency in LDK.
1885 payment_id: PaymentId,
1887 /// When a payment is still being sent and awaiting successful delivery.
1889 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1890 /// a payment and ensure idempotency in LDK.
1891 payment_id: PaymentId,
1892 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1894 payment_hash: PaymentHash,
1895 /// Total amount (in msat, excluding fees) across all paths for this payment,
1896 /// not just the amount currently inflight.
1899 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1900 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1901 /// payment is removed from tracking.
1903 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1904 /// a payment and ensure idempotency in LDK.
1905 payment_id: PaymentId,
1906 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1907 /// made before LDK version 0.0.104.
1908 payment_hash: Option<PaymentHash>,
1910 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1911 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1912 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1914 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1915 /// a payment and ensure idempotency in LDK.
1916 payment_id: PaymentId,
1917 /// Hash of the payment that we have given up trying to send.
1918 payment_hash: PaymentHash,
1922 /// Route hints used in constructing invoices for [phantom node payents].
1924 /// [phantom node payments]: crate::sign::PhantomKeysManager
1926 pub struct PhantomRouteHints {
1927 /// The list of channels to be included in the invoice route hints.
1928 pub channels: Vec<ChannelDetails>,
1929 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1931 pub phantom_scid: u64,
1932 /// The pubkey of the real backing node that would ultimately receive the payment.
1933 pub real_node_pubkey: PublicKey,
1936 macro_rules! handle_error {
1937 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1938 // In testing, ensure there are no deadlocks where the lock is already held upon
1939 // entering the macro.
1940 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1941 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1945 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1946 let mut msg_events = Vec::with_capacity(2);
1948 if let Some((shutdown_res, update_option)) = shutdown_finish {
1949 $self.finish_close_channel(shutdown_res);
1950 if let Some(update) = update_option {
1951 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1955 if let Some((channel_id, user_channel_id)) = chan_id {
1956 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1957 channel_id, user_channel_id,
1958 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1959 counterparty_node_id: Some($counterparty_node_id),
1960 channel_capacity_sats: channel_capacity,
1965 let logger = WithContext::from(
1966 &$self.logger, Some($counterparty_node_id), chan_id.map(|(chan_id, _)| chan_id)
1968 log_error!(logger, "{}", err.err);
1969 if let msgs::ErrorAction::IgnoreError = err.action {
1971 msg_events.push(events::MessageSendEvent::HandleError {
1972 node_id: $counterparty_node_id,
1973 action: err.action.clone()
1977 if !msg_events.is_empty() {
1978 let per_peer_state = $self.per_peer_state.read().unwrap();
1979 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1980 let mut peer_state = peer_state_mutex.lock().unwrap();
1981 peer_state.pending_msg_events.append(&mut msg_events);
1985 // Return error in case higher-API need one
1992 macro_rules! update_maps_on_chan_removal {
1993 ($self: expr, $channel_context: expr) => {{
1994 if let Some(outpoint) = $channel_context.get_funding_txo() {
1995 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
1997 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1998 if let Some(short_id) = $channel_context.get_short_channel_id() {
1999 short_to_chan_info.remove(&short_id);
2001 // If the channel was never confirmed on-chain prior to its closure, remove the
2002 // outbound SCID alias we used for it from the collision-prevention set. While we
2003 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2004 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2005 // opening a million channels with us which are closed before we ever reach the funding
2007 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2008 debug_assert!(alias_removed);
2010 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2014 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2015 macro_rules! convert_chan_phase_err {
2016 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2018 ChannelError::Warn(msg) => {
2019 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2021 ChannelError::Ignore(msg) => {
2022 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2024 ChannelError::Close(msg) => {
2025 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2026 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2027 update_maps_on_chan_removal!($self, $channel.context);
2028 let shutdown_res = $channel.context.force_shutdown(true);
2029 let user_id = $channel.context.get_user_id();
2030 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
2032 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
2033 shutdown_res, $channel_update, channel_capacity_satoshis))
2037 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2038 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2040 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2041 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2043 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2044 match $channel_phase {
2045 ChannelPhase::Funded(channel) => {
2046 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2048 ChannelPhase::UnfundedOutboundV1(channel) => {
2049 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2051 ChannelPhase::UnfundedInboundV1(channel) => {
2052 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2058 macro_rules! break_chan_phase_entry {
2059 ($self: ident, $res: expr, $entry: expr) => {
2063 let key = *$entry.key();
2064 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2066 $entry.remove_entry();
2074 macro_rules! try_chan_phase_entry {
2075 ($self: ident, $res: expr, $entry: expr) => {
2079 let key = *$entry.key();
2080 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2082 $entry.remove_entry();
2090 macro_rules! remove_channel_phase {
2091 ($self: expr, $entry: expr) => {
2093 let channel = $entry.remove_entry().1;
2094 update_maps_on_chan_removal!($self, &channel.context());
2100 macro_rules! send_channel_ready {
2101 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2102 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2103 node_id: $channel.context.get_counterparty_node_id(),
2104 msg: $channel_ready_msg,
2106 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2107 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2108 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2109 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2110 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2111 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2112 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2113 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2114 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2115 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2120 macro_rules! emit_channel_pending_event {
2121 ($locked_events: expr, $channel: expr) => {
2122 if $channel.context.should_emit_channel_pending_event() {
2123 $locked_events.push_back((events::Event::ChannelPending {
2124 channel_id: $channel.context.channel_id(),
2125 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2126 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2127 user_channel_id: $channel.context.get_user_id(),
2128 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2130 $channel.context.set_channel_pending_event_emitted();
2135 macro_rules! emit_channel_ready_event {
2136 ($locked_events: expr, $channel: expr) => {
2137 if $channel.context.should_emit_channel_ready_event() {
2138 debug_assert!($channel.context.channel_pending_event_emitted());
2139 $locked_events.push_back((events::Event::ChannelReady {
2140 channel_id: $channel.context.channel_id(),
2141 user_channel_id: $channel.context.get_user_id(),
2142 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2143 channel_type: $channel.context.get_channel_type().clone(),
2145 $channel.context.set_channel_ready_event_emitted();
2150 macro_rules! handle_monitor_update_completion {
2151 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2152 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2153 let mut updates = $chan.monitor_updating_restored(&&logger,
2154 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2155 $self.best_block.read().unwrap().height());
2156 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2157 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2158 // We only send a channel_update in the case where we are just now sending a
2159 // channel_ready and the channel is in a usable state. We may re-send a
2160 // channel_update later through the announcement_signatures process for public
2161 // channels, but there's no reason not to just inform our counterparty of our fees
2163 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2164 Some(events::MessageSendEvent::SendChannelUpdate {
2165 node_id: counterparty_node_id,
2171 let update_actions = $peer_state.monitor_update_blocked_actions
2172 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2174 let htlc_forwards = $self.handle_channel_resumption(
2175 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2176 updates.commitment_update, updates.order, updates.accepted_htlcs,
2177 updates.funding_broadcastable, updates.channel_ready,
2178 updates.announcement_sigs);
2179 if let Some(upd) = channel_update {
2180 $peer_state.pending_msg_events.push(upd);
2183 let channel_id = $chan.context.channel_id();
2184 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2185 core::mem::drop($peer_state_lock);
2186 core::mem::drop($per_peer_state_lock);
2188 // If the channel belongs to a batch funding transaction, the progress of the batch
2189 // should be updated as we have received funding_signed and persisted the monitor.
2190 if let Some(txid) = unbroadcasted_batch_funding_txid {
2191 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2192 let mut batch_completed = false;
2193 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2194 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2195 *chan_id == channel_id &&
2196 *pubkey == counterparty_node_id
2198 if let Some(channel_state) = channel_state {
2199 channel_state.2 = true;
2201 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2203 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2205 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2208 // When all channels in a batched funding transaction have become ready, it is not necessary
2209 // to track the progress of the batch anymore and the state of the channels can be updated.
2210 if batch_completed {
2211 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2212 let per_peer_state = $self.per_peer_state.read().unwrap();
2213 let mut batch_funding_tx = None;
2214 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2215 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2216 let mut peer_state = peer_state_mutex.lock().unwrap();
2217 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2218 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2219 chan.set_batch_ready();
2220 let mut pending_events = $self.pending_events.lock().unwrap();
2221 emit_channel_pending_event!(pending_events, chan);
2225 if let Some(tx) = batch_funding_tx {
2226 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2227 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2232 $self.handle_monitor_update_completion_actions(update_actions);
2234 if let Some(forwards) = htlc_forwards {
2235 $self.forward_htlcs(&mut [forwards][..]);
2237 $self.finalize_claims(updates.finalized_claimed_htlcs);
2238 for failure in updates.failed_htlcs.drain(..) {
2239 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2240 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2245 macro_rules! handle_new_monitor_update {
2246 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2247 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2248 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2250 ChannelMonitorUpdateStatus::UnrecoverableError => {
2251 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2252 log_error!(logger, "{}", err_str);
2253 panic!("{}", err_str);
2255 ChannelMonitorUpdateStatus::InProgress => {
2256 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2257 &$chan.context.channel_id());
2260 ChannelMonitorUpdateStatus::Completed => {
2266 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2267 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2268 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2270 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2271 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2272 .or_insert_with(Vec::new);
2273 // During startup, we push monitor updates as background events through to here in
2274 // order to replay updates that were in-flight when we shut down. Thus, we have to
2275 // filter for uniqueness here.
2276 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2277 .unwrap_or_else(|| {
2278 in_flight_updates.push($update);
2279 in_flight_updates.len() - 1
2281 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2282 handle_new_monitor_update!($self, update_res, $chan, _internal,
2284 let _ = in_flight_updates.remove(idx);
2285 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2286 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2292 macro_rules! process_events_body {
2293 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2294 let mut processed_all_events = false;
2295 while !processed_all_events {
2296 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2303 // We'll acquire our total consistency lock so that we can be sure no other
2304 // persists happen while processing monitor events.
2305 let _read_guard = $self.total_consistency_lock.read().unwrap();
2307 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2308 // ensure any startup-generated background events are handled first.
2309 result = $self.process_background_events();
2311 // TODO: This behavior should be documented. It's unintuitive that we query
2312 // ChannelMonitors when clearing other events.
2313 if $self.process_pending_monitor_events() {
2314 result = NotifyOption::DoPersist;
2318 let pending_events = $self.pending_events.lock().unwrap().clone();
2319 let num_events = pending_events.len();
2320 if !pending_events.is_empty() {
2321 result = NotifyOption::DoPersist;
2324 let mut post_event_actions = Vec::new();
2326 for (event, action_opt) in pending_events {
2327 $event_to_handle = event;
2329 if let Some(action) = action_opt {
2330 post_event_actions.push(action);
2335 let mut pending_events = $self.pending_events.lock().unwrap();
2336 pending_events.drain(..num_events);
2337 processed_all_events = pending_events.is_empty();
2338 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2339 // updated here with the `pending_events` lock acquired.
2340 $self.pending_events_processor.store(false, Ordering::Release);
2343 if !post_event_actions.is_empty() {
2344 $self.handle_post_event_actions(post_event_actions);
2345 // If we had some actions, go around again as we may have more events now
2346 processed_all_events = false;
2350 NotifyOption::DoPersist => {
2351 $self.needs_persist_flag.store(true, Ordering::Release);
2352 $self.event_persist_notifier.notify();
2354 NotifyOption::SkipPersistHandleEvents =>
2355 $self.event_persist_notifier.notify(),
2356 NotifyOption::SkipPersistNoEvents => {},
2362 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2364 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
2365 T::Target: BroadcasterInterface,
2366 ES::Target: EntropySource,
2367 NS::Target: NodeSigner,
2368 SP::Target: SignerProvider,
2369 F::Target: FeeEstimator,
2373 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2375 /// The current time or latest block header time can be provided as the `current_timestamp`.
2377 /// This is the main "logic hub" for all channel-related actions, and implements
2378 /// [`ChannelMessageHandler`].
2380 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2382 /// Users need to notify the new `ChannelManager` when a new block is connected or
2383 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2384 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2387 /// [`block_connected`]: chain::Listen::block_connected
2388 /// [`block_disconnected`]: chain::Listen::block_disconnected
2389 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2391 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2392 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2393 current_timestamp: u32,
2395 let mut secp_ctx = Secp256k1::new();
2396 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2397 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2398 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2400 default_configuration: config.clone(),
2401 chain_hash: ChainHash::using_genesis_block(params.network),
2402 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2407 best_block: RwLock::new(params.best_block),
2409 outbound_scid_aliases: Mutex::new(HashSet::new()),
2410 pending_inbound_payments: Mutex::new(HashMap::new()),
2411 pending_outbound_payments: OutboundPayments::new(),
2412 forward_htlcs: Mutex::new(HashMap::new()),
2413 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2414 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2415 outpoint_to_peer: Mutex::new(HashMap::new()),
2416 short_to_chan_info: FairRwLock::new(HashMap::new()),
2418 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2421 inbound_payment_key: expanded_inbound_key,
2422 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2424 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2426 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2428 per_peer_state: FairRwLock::new(HashMap::new()),
2430 pending_events: Mutex::new(VecDeque::new()),
2431 pending_events_processor: AtomicBool::new(false),
2432 pending_background_events: Mutex::new(Vec::new()),
2433 total_consistency_lock: RwLock::new(()),
2434 background_events_processed_since_startup: AtomicBool::new(false),
2435 event_persist_notifier: Notifier::new(),
2436 needs_persist_flag: AtomicBool::new(false),
2437 funding_batch_states: Mutex::new(BTreeMap::new()),
2439 pending_offers_messages: Mutex::new(Vec::new()),
2449 /// Gets the current configuration applied to all new channels.
2450 pub fn get_current_default_configuration(&self) -> &UserConfig {
2451 &self.default_configuration
2454 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2455 let height = self.best_block.read().unwrap().height();
2456 let mut outbound_scid_alias = 0;
2459 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2460 outbound_scid_alias += 1;
2462 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2464 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2468 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2473 /// Creates a new outbound channel to the given remote node and with the given value.
2475 /// `user_channel_id` will be provided back as in
2476 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2477 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2478 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2479 /// is simply copied to events and otherwise ignored.
2481 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2482 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2484 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2485 /// generate a shutdown scriptpubkey or destination script set by
2486 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2488 /// Note that we do not check if you are currently connected to the given peer. If no
2489 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2490 /// the channel eventually being silently forgotten (dropped on reload).
2492 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2493 /// channel. Otherwise, a random one will be generated for you.
2495 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2496 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2497 /// [`ChannelDetails::channel_id`] until after
2498 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2499 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2500 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2502 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2503 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2504 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2505 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2506 if channel_value_satoshis < 1000 {
2507 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2510 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2511 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2512 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2514 let per_peer_state = self.per_peer_state.read().unwrap();
2516 let peer_state_mutex = per_peer_state.get(&their_network_key)
2517 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2519 let mut peer_state = peer_state_mutex.lock().unwrap();
2521 if let Some(temporary_channel_id) = temporary_channel_id {
2522 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2523 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2528 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2529 let their_features = &peer_state.latest_features;
2530 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2531 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2532 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2533 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2537 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2542 let res = channel.get_open_channel(self.chain_hash);
2544 let temporary_channel_id = channel.context.channel_id();
2545 match peer_state.channel_by_id.entry(temporary_channel_id) {
2546 hash_map::Entry::Occupied(_) => {
2548 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2550 panic!("RNG is bad???");
2553 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2556 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2557 node_id: their_network_key,
2560 Ok(temporary_channel_id)
2563 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2564 // Allocate our best estimate of the number of channels we have in the `res`
2565 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2566 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
2567 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2568 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2569 // the same channel.
2570 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2572 let best_block_height = self.best_block.read().unwrap().height();
2573 let per_peer_state = self.per_peer_state.read().unwrap();
2574 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2575 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2576 let peer_state = &mut *peer_state_lock;
2577 res.extend(peer_state.channel_by_id.iter()
2578 .filter_map(|(chan_id, phase)| match phase {
2579 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2580 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2584 .map(|(_channel_id, channel)| {
2585 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2586 peer_state.latest_features.clone(), &self.fee_estimator)
2594 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2595 /// more information.
2596 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2597 // Allocate our best estimate of the number of channels we have in the `res`
2598 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2599 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
2600 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2601 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2602 // the same channel.
2603 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2605 let best_block_height = self.best_block.read().unwrap().height();
2606 let per_peer_state = self.per_peer_state.read().unwrap();
2607 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2608 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2609 let peer_state = &mut *peer_state_lock;
2610 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2611 let details = ChannelDetails::from_channel_context(context, best_block_height,
2612 peer_state.latest_features.clone(), &self.fee_estimator);
2620 /// Gets the list of usable channels, in random order. Useful as an argument to
2621 /// [`Router::find_route`] to ensure non-announced channels are used.
2623 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2624 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2626 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2627 // Note we use is_live here instead of usable which leads to somewhat confused
2628 // internal/external nomenclature, but that's ok cause that's probably what the user
2629 // really wanted anyway.
2630 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2633 /// Gets the list of channels we have with a given counterparty, in random order.
2634 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2635 let best_block_height = self.best_block.read().unwrap().height();
2636 let per_peer_state = self.per_peer_state.read().unwrap();
2638 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2639 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2640 let peer_state = &mut *peer_state_lock;
2641 let features = &peer_state.latest_features;
2642 let context_to_details = |context| {
2643 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2645 return peer_state.channel_by_id
2647 .map(|(_, phase)| phase.context())
2648 .map(context_to_details)
2654 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2655 /// successful path, or have unresolved HTLCs.
2657 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2658 /// result of a crash. If such a payment exists, is not listed here, and an
2659 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2661 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2662 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2663 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2664 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2665 PendingOutboundPayment::AwaitingInvoice { .. } => {
2666 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2668 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2669 PendingOutboundPayment::InvoiceReceived { .. } => {
2670 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2672 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2673 Some(RecentPaymentDetails::Pending {
2674 payment_id: *payment_id,
2675 payment_hash: *payment_hash,
2676 total_msat: *total_msat,
2679 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2680 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2682 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2683 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2685 PendingOutboundPayment::Legacy { .. } => None
2690 /// Helper function that issues the channel close events
2691 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2692 let mut pending_events_lock = self.pending_events.lock().unwrap();
2693 match context.unbroadcasted_funding() {
2694 Some(transaction) => {
2695 pending_events_lock.push_back((events::Event::DiscardFunding {
2696 channel_id: context.channel_id(), transaction
2701 pending_events_lock.push_back((events::Event::ChannelClosed {
2702 channel_id: context.channel_id(),
2703 user_channel_id: context.get_user_id(),
2704 reason: closure_reason,
2705 counterparty_node_id: Some(context.get_counterparty_node_id()),
2706 channel_capacity_sats: Some(context.get_value_satoshis()),
2710 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2711 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2713 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
2714 let mut shutdown_result = None;
2717 let per_peer_state = self.per_peer_state.read().unwrap();
2719 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2720 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2722 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2723 let peer_state = &mut *peer_state_lock;
2725 match peer_state.channel_by_id.entry(channel_id.clone()) {
2726 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2727 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2728 let funding_txo_opt = chan.context.get_funding_txo();
2729 let their_features = &peer_state.latest_features;
2730 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2731 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2732 failed_htlcs = htlcs;
2734 // We can send the `shutdown` message before updating the `ChannelMonitor`
2735 // here as we don't need the monitor update to complete until we send a
2736 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2737 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2738 node_id: *counterparty_node_id,
2742 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2743 "We can't both complete shutdown and generate a monitor update");
2745 // Update the monitor with the shutdown script if necessary.
2746 if let Some(monitor_update) = monitor_update_opt.take() {
2747 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2748 peer_state_lock, peer_state, per_peer_state, chan);
2751 self.issue_channel_close_events(chan_phase_entry.get().context(), ClosureReason::HolderForceClosed);
2752 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2753 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false));
2756 hash_map::Entry::Vacant(_) => {
2757 return Err(APIError::ChannelUnavailable {
2759 "Channel with id {} not found for the passed counterparty node_id {}",
2760 channel_id, counterparty_node_id,
2767 for htlc_source in failed_htlcs.drain(..) {
2768 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2769 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2770 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2773 if let Some(shutdown_result) = shutdown_result {
2774 self.finish_close_channel(shutdown_result);
2780 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2781 /// will be accepted on the given channel, and after additional timeout/the closing of all
2782 /// pending HTLCs, the channel will be closed on chain.
2784 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2785 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2787 /// * If our counterparty is the channel initiator, we will require a channel closing
2788 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2789 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2790 /// counterparty to pay as much fee as they'd like, however.
2792 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2794 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2795 /// generate a shutdown scriptpubkey or destination script set by
2796 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2799 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2800 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2801 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2802 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2803 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2804 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2807 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2808 /// will be accepted on the given channel, and after additional timeout/the closing of all
2809 /// pending HTLCs, the channel will be closed on chain.
2811 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2812 /// the channel being closed or not:
2813 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2814 /// transaction. The upper-bound is set by
2815 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2816 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2817 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2818 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2819 /// will appear on a force-closure transaction, whichever is lower).
2821 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2822 /// Will fail if a shutdown script has already been set for this channel by
2823 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2824 /// also be compatible with our and the counterparty's features.
2826 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2828 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2829 /// generate a shutdown scriptpubkey or destination script set by
2830 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2833 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2834 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2835 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2836 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2837 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2840 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2841 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2842 #[cfg(debug_assertions)]
2843 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2844 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2847 let logger = WithContext::from(
2848 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
2850 log_debug!(logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2851 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2852 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2853 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2854 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2855 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2857 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2858 // There isn't anything we can do if we get an update failure - we're already
2859 // force-closing. The monitor update on the required in-memory copy should broadcast
2860 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2861 // ignore the result here.
2862 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2864 let mut shutdown_results = Vec::new();
2865 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2866 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2867 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2868 let per_peer_state = self.per_peer_state.read().unwrap();
2869 let mut has_uncompleted_channel = None;
2870 for (channel_id, counterparty_node_id, state) in affected_channels {
2871 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2872 let mut peer_state = peer_state_mutex.lock().unwrap();
2873 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2874 update_maps_on_chan_removal!(self, &chan.context());
2875 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2876 shutdown_results.push(chan.context_mut().force_shutdown(false));
2879 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2882 has_uncompleted_channel.unwrap_or(true),
2883 "Closing a batch where all channels have completed initial monitor update",
2886 for shutdown_result in shutdown_results.drain(..) {
2887 self.finish_close_channel(shutdown_result);
2891 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2892 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2893 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2894 -> Result<PublicKey, APIError> {
2895 let per_peer_state = self.per_peer_state.read().unwrap();
2896 let peer_state_mutex = per_peer_state.get(peer_node_id)
2897 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2898 let (update_opt, counterparty_node_id) = {
2899 let mut peer_state = peer_state_mutex.lock().unwrap();
2900 let closure_reason = if let Some(peer_msg) = peer_msg {
2901 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2903 ClosureReason::HolderForceClosed
2905 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
2906 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2907 log_error!(logger, "Force-closing channel {}", channel_id);
2908 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2909 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2910 mem::drop(peer_state);
2911 mem::drop(per_peer_state);
2913 ChannelPhase::Funded(mut chan) => {
2914 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2915 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2917 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2918 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2919 // Unfunded channel has no update
2920 (None, chan_phase.context().get_counterparty_node_id())
2923 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2924 log_error!(logger, "Force-closing channel {}", &channel_id);
2925 // N.B. that we don't send any channel close event here: we
2926 // don't have a user_channel_id, and we never sent any opening
2928 (None, *peer_node_id)
2930 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2933 if let Some(update) = update_opt {
2934 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2935 // not try to broadcast it via whatever peer we have.
2936 let per_peer_state = self.per_peer_state.read().unwrap();
2937 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2938 .ok_or(per_peer_state.values().next());
2939 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2940 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2941 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2947 Ok(counterparty_node_id)
2950 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2951 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2952 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2953 Ok(counterparty_node_id) => {
2954 let per_peer_state = self.per_peer_state.read().unwrap();
2955 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2956 let mut peer_state = peer_state_mutex.lock().unwrap();
2957 peer_state.pending_msg_events.push(
2958 events::MessageSendEvent::HandleError {
2959 node_id: counterparty_node_id,
2960 action: msgs::ErrorAction::DisconnectPeer {
2961 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2972 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2973 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2974 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2976 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2977 -> Result<(), APIError> {
2978 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2981 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2982 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2983 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2985 /// You can always get the latest local transaction(s) to broadcast from
2986 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2987 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2988 -> Result<(), APIError> {
2989 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2992 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2993 /// for each to the chain and rejecting new HTLCs on each.
2994 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2995 for chan in self.list_channels() {
2996 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3000 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3001 /// local transaction(s).
3002 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3003 for chan in self.list_channels() {
3004 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3008 fn decode_update_add_htlc_onion(
3009 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3011 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3013 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3014 msg, &self.node_signer, &self.logger, &self.secp_ctx
3017 let is_blinded = match next_hop {
3018 onion_utils::Hop::Forward {
3019 next_hop_data: msgs::InboundOnionPayload::BlindedForward { .. }, ..
3021 _ => false, // TODO: update this when we support receiving to multi-hop blinded paths
3024 macro_rules! return_err {
3025 ($msg: expr, $err_code: expr, $data: expr) => {
3028 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3029 "Failed to accept/forward incoming HTLC: {}", $msg
3031 let (err_code, err_data) = if is_blinded {
3032 (INVALID_ONION_BLINDING, &[0; 32][..])
3033 } else { ($err_code, $data) };
3034 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3035 channel_id: msg.channel_id,
3036 htlc_id: msg.htlc_id,
3037 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3038 .get_encrypted_failure_packet(&shared_secret, &None),
3044 let NextPacketDetails {
3045 next_packet_pubkey, outgoing_amt_msat, outgoing_scid, outgoing_cltv_value
3046 } = match next_packet_details_opt {
3047 Some(next_packet_details) => next_packet_details,
3048 // it is a receive, so no need for outbound checks
3049 None => return Ok((next_hop, shared_secret, None)),
3052 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3053 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3054 if let Some((err, mut code, chan_update)) = loop {
3055 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3056 let forwarding_chan_info_opt = match id_option {
3057 None => { // unknown_next_peer
3058 // Note that this is likely a timing oracle for detecting whether an scid is a
3059 // phantom or an intercept.
3060 if (self.default_configuration.accept_intercept_htlcs &&
3061 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3062 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3066 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3069 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3071 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3072 let per_peer_state = self.per_peer_state.read().unwrap();
3073 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3074 if peer_state_mutex_opt.is_none() {
3075 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3077 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3078 let peer_state = &mut *peer_state_lock;
3079 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3080 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3083 // Channel was removed. The short_to_chan_info and channel_by_id maps
3084 // have no consistency guarantees.
3085 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3089 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3090 // Note that the behavior here should be identical to the above block - we
3091 // should NOT reveal the existence or non-existence of a private channel if
3092 // we don't allow forwards outbound over them.
3093 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3095 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3096 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3097 // "refuse to forward unless the SCID alias was used", so we pretend
3098 // we don't have the channel here.
3099 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3101 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3103 // Note that we could technically not return an error yet here and just hope
3104 // that the connection is reestablished or monitor updated by the time we get
3105 // around to doing the actual forward, but better to fail early if we can and
3106 // hopefully an attacker trying to path-trace payments cannot make this occur
3107 // on a small/per-node/per-channel scale.
3108 if !chan.context.is_live() { // channel_disabled
3109 // If the channel_update we're going to return is disabled (i.e. the
3110 // peer has been disabled for some time), return `channel_disabled`,
3111 // otherwise return `temporary_channel_failure`.
3112 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3113 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3115 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3118 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3119 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3121 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3122 break Some((err, code, chan_update_opt));
3129 let cur_height = self.best_block.read().unwrap().height() + 1;
3131 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
3132 cur_height, outgoing_cltv_value, msg.cltv_expiry
3134 if code & 0x1000 != 0 && chan_update_opt.is_none() {
3135 // We really should set `incorrect_cltv_expiry` here but as we're not
3136 // forwarding over a real channel we can't generate a channel_update
3137 // for it. Instead we just return a generic temporary_node_failure.
3138 break Some((err_msg, 0x2000 | 2, None))
3140 let chan_update_opt = if code & 0x1000 != 0 { chan_update_opt } else { None };
3141 break Some((err_msg, code, chan_update_opt));
3147 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3148 if let Some(chan_update) = chan_update {
3149 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3150 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3152 else if code == 0x1000 | 13 {
3153 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3155 else if code == 0x1000 | 20 {
3156 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3157 0u16.write(&mut res).expect("Writes cannot fail");
3159 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3160 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3161 chan_update.write(&mut res).expect("Writes cannot fail");
3162 } else if code & 0x1000 == 0x1000 {
3163 // If we're trying to return an error that requires a `channel_update` but
3164 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3165 // generate an update), just use the generic "temporary_node_failure"
3169 return_err!(err, code, &res.0[..]);
3171 Ok((next_hop, shared_secret, Some(next_packet_pubkey)))
3174 fn construct_pending_htlc_status<'a>(
3175 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3176 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3177 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3178 ) -> PendingHTLCStatus {
3179 macro_rules! return_err {
3180 ($msg: expr, $err_code: expr, $data: expr) => {
3182 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3183 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3184 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3185 channel_id: msg.channel_id,
3186 htlc_id: msg.htlc_id,
3187 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3188 .get_encrypted_failure_packet(&shared_secret, &None),
3194 onion_utils::Hop::Receive(next_hop_data) => {
3196 let current_height: u32 = self.best_block.read().unwrap().height();
3197 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3198 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3199 current_height, self.default_configuration.accept_mpp_keysend)
3202 // Note that we could obviously respond immediately with an update_fulfill_htlc
3203 // message, however that would leak that we are the recipient of this payment, so
3204 // instead we stay symmetric with the forwarding case, only responding (after a
3205 // delay) once they've send us a commitment_signed!
3206 PendingHTLCStatus::Forward(info)
3208 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3211 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3212 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3213 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3214 Ok(info) => PendingHTLCStatus::Forward(info),
3215 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3221 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3222 /// public, and thus should be called whenever the result is going to be passed out in a
3223 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3225 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3226 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3227 /// storage and the `peer_state` lock has been dropped.
3229 /// [`channel_update`]: msgs::ChannelUpdate
3230 /// [`internal_closing_signed`]: Self::internal_closing_signed
3231 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3232 if !chan.context.should_announce() {
3233 return Err(LightningError {
3234 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3235 action: msgs::ErrorAction::IgnoreError
3238 if chan.context.get_short_channel_id().is_none() {
3239 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3241 let logger = WithChannelContext::from(&self.logger, &chan.context);
3242 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3243 self.get_channel_update_for_unicast(chan)
3246 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3247 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3248 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3249 /// provided evidence that they know about the existence of the channel.
3251 /// Note that through [`internal_closing_signed`], this function is called without the
3252 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3253 /// removed from the storage and the `peer_state` lock has been dropped.
3255 /// [`channel_update`]: msgs::ChannelUpdate
3256 /// [`internal_closing_signed`]: Self::internal_closing_signed
3257 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3258 let logger = WithChannelContext::from(&self.logger, &chan.context);
3259 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
3260 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3261 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3265 self.get_channel_update_for_onion(short_channel_id, chan)
3268 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3269 let logger = WithChannelContext::from(&self.logger, &chan.context);
3270 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
3271 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3273 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3274 ChannelUpdateStatus::Enabled => true,
3275 ChannelUpdateStatus::DisabledStaged(_) => true,
3276 ChannelUpdateStatus::Disabled => false,
3277 ChannelUpdateStatus::EnabledStaged(_) => false,
3280 let unsigned = msgs::UnsignedChannelUpdate {
3281 chain_hash: self.chain_hash,
3283 timestamp: chan.context.get_update_time_counter(),
3284 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3285 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3286 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3287 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3288 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3289 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3290 excess_data: Vec::new(),
3292 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3293 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3294 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3296 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3298 Ok(msgs::ChannelUpdate {
3305 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3306 let _lck = self.total_consistency_lock.read().unwrap();
3307 self.send_payment_along_path(SendAlongPathArgs {
3308 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3313 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3314 let SendAlongPathArgs {
3315 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3318 // The top-level caller should hold the total_consistency_lock read lock.
3319 debug_assert!(self.total_consistency_lock.try_write().is_err());
3320 let prng_seed = self.entropy_source.get_secure_random_bytes();
3321 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3323 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3324 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3325 payment_hash, keysend_preimage, prng_seed
3327 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3328 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
3332 let err: Result<(), _> = loop {
3333 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3335 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3336 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
3337 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
3339 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3342 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
3344 "Attempting to send payment with payment hash {} along path with next hop {}",
3345 payment_hash, path.hops.first().unwrap().short_channel_id);
3347 let per_peer_state = self.per_peer_state.read().unwrap();
3348 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3349 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3350 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3351 let peer_state = &mut *peer_state_lock;
3352 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3353 match chan_phase_entry.get_mut() {
3354 ChannelPhase::Funded(chan) => {
3355 if !chan.context.is_live() {
3356 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3358 let funding_txo = chan.context.get_funding_txo().unwrap();
3359 let logger = WithChannelContext::from(&self.logger, &chan.context);
3360 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3361 htlc_cltv, HTLCSource::OutboundRoute {
3363 session_priv: session_priv.clone(),
3364 first_hop_htlc_msat: htlc_msat,
3366 }, onion_packet, None, &self.fee_estimator, &&logger);
3367 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3368 Some(monitor_update) => {
3369 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3371 // Note that MonitorUpdateInProgress here indicates (per function
3372 // docs) that we will resend the commitment update once monitor
3373 // updating completes. Therefore, we must return an error
3374 // indicating that it is unsafe to retry the payment wholesale,
3375 // which we do in the send_payment check for
3376 // MonitorUpdateInProgress, below.
3377 return Err(APIError::MonitorUpdateInProgress);
3385 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3388 // The channel was likely removed after we fetched the id from the
3389 // `short_to_chan_info` map, but before we successfully locked the
3390 // `channel_by_id` map.
3391 // This can occur as no consistency guarantees exists between the two maps.
3392 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3396 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3397 Ok(_) => unreachable!(),
3399 Err(APIError::ChannelUnavailable { err: e.err })
3404 /// Sends a payment along a given route.
3406 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3407 /// fields for more info.
3409 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3410 /// [`PeerManager::process_events`]).
3412 /// # Avoiding Duplicate Payments
3414 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3415 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3416 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3417 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3418 /// second payment with the same [`PaymentId`].
3420 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3421 /// tracking of payments, including state to indicate once a payment has completed. Because you
3422 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3423 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3424 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3426 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3427 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3428 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3429 /// [`ChannelManager::list_recent_payments`] for more information.
3431 /// # Possible Error States on [`PaymentSendFailure`]
3433 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3434 /// each entry matching the corresponding-index entry in the route paths, see
3435 /// [`PaymentSendFailure`] for more info.
3437 /// In general, a path may raise:
3438 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3439 /// node public key) is specified.
3440 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3441 /// closed, doesn't exist, or the peer is currently disconnected.
3442 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3443 /// relevant updates.
3445 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3446 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3447 /// different route unless you intend to pay twice!
3449 /// [`RouteHop`]: crate::routing::router::RouteHop
3450 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3451 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3452 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3453 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3454 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3455 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3456 let best_block_height = self.best_block.read().unwrap().height();
3457 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3458 self.pending_outbound_payments
3459 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3460 &self.entropy_source, &self.node_signer, best_block_height,
3461 |args| self.send_payment_along_path(args))
3464 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3465 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3466 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3467 let best_block_height = self.best_block.read().unwrap().height();
3468 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3469 self.pending_outbound_payments
3470 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3471 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3472 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3473 &self.pending_events, |args| self.send_payment_along_path(args))
3477 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3478 let best_block_height = self.best_block.read().unwrap().height();
3479 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3480 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3481 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3482 best_block_height, |args| self.send_payment_along_path(args))
3486 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3487 let best_block_height = self.best_block.read().unwrap().height();
3488 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3492 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3493 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3496 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3497 let best_block_height = self.best_block.read().unwrap().height();
3498 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3499 self.pending_outbound_payments
3500 .send_payment_for_bolt12_invoice(
3501 invoice, payment_id, &self.router, self.list_usable_channels(),
3502 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3503 best_block_height, &self.logger, &self.pending_events,
3504 |args| self.send_payment_along_path(args)
3508 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3509 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3510 /// retries are exhausted.
3512 /// # Event Generation
3514 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3515 /// as there are no remaining pending HTLCs for this payment.
3517 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3518 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3519 /// determine the ultimate status of a payment.
3521 /// # Requested Invoices
3523 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3524 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3525 /// and prevent any attempts at paying it once received. The other events may only be generated
3526 /// once the invoice has been received.
3528 /// # Restart Behavior
3530 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3531 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3532 /// [`Event::InvoiceRequestFailed`].
3534 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3535 pub fn abandon_payment(&self, payment_id: PaymentId) {
3536 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3537 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3540 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3541 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3542 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3543 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3544 /// never reach the recipient.
3546 /// See [`send_payment`] documentation for more details on the return value of this function
3547 /// and idempotency guarantees provided by the [`PaymentId`] key.
3549 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3550 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3552 /// [`send_payment`]: Self::send_payment
3553 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3554 let best_block_height = self.best_block.read().unwrap().height();
3555 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3556 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3557 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3558 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3561 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3562 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3564 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3567 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3568 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3569 let best_block_height = self.best_block.read().unwrap().height();
3570 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3571 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3572 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3573 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3574 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3577 /// Send a payment that is probing the given route for liquidity. We calculate the
3578 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3579 /// us to easily discern them from real payments.
3580 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3581 let best_block_height = self.best_block.read().unwrap().height();
3582 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3583 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3584 &self.entropy_source, &self.node_signer, best_block_height,
3585 |args| self.send_payment_along_path(args))
3588 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3591 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3592 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3595 /// Sends payment probes over all paths of a route that would be used to pay the given
3596 /// amount to the given `node_id`.
3598 /// See [`ChannelManager::send_preflight_probes`] for more information.
3599 pub fn send_spontaneous_preflight_probes(
3600 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3601 liquidity_limit_multiplier: Option<u64>,
3602 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3603 let payment_params =
3604 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3606 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3608 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3611 /// Sends payment probes over all paths of a route that would be used to pay a route found
3612 /// according to the given [`RouteParameters`].
3614 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3615 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3616 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3617 /// confirmation in a wallet UI.
3619 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3620 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3621 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3622 /// payment. To mitigate this issue, channels with available liquidity less than the required
3623 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3624 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3625 pub fn send_preflight_probes(
3626 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3627 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3628 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3630 let payer = self.get_our_node_id();
3631 let usable_channels = self.list_usable_channels();
3632 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3633 let inflight_htlcs = self.compute_inflight_htlcs();
3637 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3639 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3640 ProbeSendFailure::RouteNotFound
3643 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3645 let mut res = Vec::new();
3647 for mut path in route.paths {
3648 // If the last hop is probably an unannounced channel we refrain from probing all the
3649 // way through to the end and instead probe up to the second-to-last channel.
3650 while let Some(last_path_hop) = path.hops.last() {
3651 if last_path_hop.maybe_announced_channel {
3652 // We found a potentially announced last hop.
3655 // Drop the last hop, as it's likely unannounced.
3658 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3659 last_path_hop.short_channel_id
3661 let final_value_msat = path.final_value_msat();
3663 if let Some(new_last) = path.hops.last_mut() {
3664 new_last.fee_msat += final_value_msat;
3669 if path.hops.len() < 2 {
3672 "Skipped sending payment probe over path with less than two hops."
3677 if let Some(first_path_hop) = path.hops.first() {
3678 if let Some(first_hop) = first_hops.iter().find(|h| {
3679 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3681 let path_value = path.final_value_msat() + path.fee_msat();
3682 let used_liquidity =
3683 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3685 if first_hop.next_outbound_htlc_limit_msat
3686 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3688 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3691 *used_liquidity += path_value;
3696 res.push(self.send_probe(path).map_err(|e| {
3697 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3698 ProbeSendFailure::SendingFailed(e)
3705 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3706 /// which checks the correctness of the funding transaction given the associated channel.
3707 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3708 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3709 mut find_funding_output: FundingOutput,
3710 ) -> Result<(), APIError> {
3711 let per_peer_state = self.per_peer_state.read().unwrap();
3712 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3713 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3715 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3716 let peer_state = &mut *peer_state_lock;
3718 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3719 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
3720 funding_txo = find_funding_output(&chan, &funding_transaction)?;
3722 let logger = WithChannelContext::from(&self.logger, &chan.context);
3723 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
3724 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3725 let channel_id = chan.context.channel_id();
3726 let user_id = chan.context.get_user_id();
3727 let shutdown_res = chan.context.force_shutdown(false);
3728 let channel_capacity = chan.context.get_value_satoshis();
3729 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3730 } else { unreachable!(); });
3732 Ok(funding_msg) => (chan, funding_msg),
3733 Err((chan, err)) => {
3734 mem::drop(peer_state_lock);
3735 mem::drop(per_peer_state);
3736 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3737 return Err(APIError::ChannelUnavailable {
3738 err: "Signer refused to sign the initial commitment transaction".to_owned()
3744 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3745 return Err(APIError::APIMisuseError {
3747 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3748 temporary_channel_id, counterparty_node_id),
3751 None => return Err(APIError::ChannelUnavailable {err: format!(
3752 "Channel with id {} not found for the passed counterparty node_id {}",
3753 temporary_channel_id, counterparty_node_id),
3757 if let Some(msg) = msg_opt {
3758 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3759 node_id: chan.context.get_counterparty_node_id(),
3763 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3764 hash_map::Entry::Occupied(_) => {
3765 panic!("Generated duplicate funding txid?");
3767 hash_map::Entry::Vacant(e) => {
3768 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
3769 if outpoint_to_peer.insert(funding_txo, chan.context.get_counterparty_node_id()).is_some() {
3770 panic!("outpoint_to_peer map already contained funding outpoint, which shouldn't be possible");
3772 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
3779 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3780 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3781 Ok(OutPoint { txid: tx.txid(), index: output_index })
3785 /// Call this upon creation of a funding transaction for the given channel.
3787 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3788 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3790 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3791 /// across the p2p network.
3793 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3794 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3796 /// May panic if the output found in the funding transaction is duplicative with some other
3797 /// channel (note that this should be trivially prevented by using unique funding transaction
3798 /// keys per-channel).
3800 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3801 /// counterparty's signature the funding transaction will automatically be broadcast via the
3802 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3804 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3805 /// not currently support replacing a funding transaction on an existing channel. Instead,
3806 /// create a new channel with a conflicting funding transaction.
3808 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3809 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3810 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3811 /// for more details.
3813 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3814 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3815 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3816 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3819 /// Call this upon creation of a batch funding transaction for the given channels.
3821 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3822 /// each individual channel and transaction output.
3824 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3825 /// will only be broadcast when we have safely received and persisted the counterparty's
3826 /// signature for each channel.
3828 /// If there is an error, all channels in the batch are to be considered closed.
3829 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3830 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3831 let mut result = Ok(());
3833 if !funding_transaction.is_coin_base() {
3834 for inp in funding_transaction.input.iter() {
3835 if inp.witness.is_empty() {
3836 result = result.and(Err(APIError::APIMisuseError {
3837 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3842 if funding_transaction.output.len() > u16::max_value() as usize {
3843 result = result.and(Err(APIError::APIMisuseError {
3844 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3848 let height = self.best_block.read().unwrap().height();
3849 // Transactions are evaluated as final by network mempools if their locktime is strictly
3850 // lower than the next block height. However, the modules constituting our Lightning
3851 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3852 // module is ahead of LDK, only allow one more block of headroom.
3853 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
3854 funding_transaction.lock_time.is_block_height() &&
3855 funding_transaction.lock_time.to_consensus_u32() > height + 1
3857 result = result.and(Err(APIError::APIMisuseError {
3858 err: "Funding transaction absolute timelock is non-final".to_owned()
3863 let txid = funding_transaction.txid();
3864 let is_batch_funding = temporary_channels.len() > 1;
3865 let mut funding_batch_states = if is_batch_funding {
3866 Some(self.funding_batch_states.lock().unwrap())
3870 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3871 match states.entry(txid) {
3872 btree_map::Entry::Occupied(_) => {
3873 result = result.clone().and(Err(APIError::APIMisuseError {
3874 err: "Batch funding transaction with the same txid already exists".to_owned()
3878 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3881 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3882 result = result.and_then(|_| self.funding_transaction_generated_intern(
3883 temporary_channel_id,
3884 counterparty_node_id,
3885 funding_transaction.clone(),
3888 let mut output_index = None;
3889 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3890 for (idx, outp) in tx.output.iter().enumerate() {
3891 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3892 if output_index.is_some() {
3893 return Err(APIError::APIMisuseError {
3894 err: "Multiple outputs matched the expected script and value".to_owned()
3897 output_index = Some(idx as u16);
3900 if output_index.is_none() {
3901 return Err(APIError::APIMisuseError {
3902 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3905 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3906 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3907 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3913 if let Err(ref e) = result {
3914 // Remaining channels need to be removed on any error.
3915 let e = format!("Error in transaction funding: {:?}", e);
3916 let mut channels_to_remove = Vec::new();
3917 channels_to_remove.extend(funding_batch_states.as_mut()
3918 .and_then(|states| states.remove(&txid))
3919 .into_iter().flatten()
3920 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3922 channels_to_remove.extend(temporary_channels.iter()
3923 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3925 let mut shutdown_results = Vec::new();
3927 let per_peer_state = self.per_peer_state.read().unwrap();
3928 for (channel_id, counterparty_node_id) in channels_to_remove {
3929 per_peer_state.get(&counterparty_node_id)
3930 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3931 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3933 update_maps_on_chan_removal!(self, &chan.context());
3934 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3935 shutdown_results.push(chan.context_mut().force_shutdown(false));
3939 for shutdown_result in shutdown_results.drain(..) {
3940 self.finish_close_channel(shutdown_result);
3946 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3948 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3949 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3950 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3951 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3953 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3954 /// `counterparty_node_id` is provided.
3956 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3957 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3959 /// If an error is returned, none of the updates should be considered applied.
3961 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3962 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3963 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3964 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3965 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3966 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3967 /// [`APIMisuseError`]: APIError::APIMisuseError
3968 pub fn update_partial_channel_config(
3969 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3970 ) -> Result<(), APIError> {
3971 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3972 return Err(APIError::APIMisuseError {
3973 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3977 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3978 let per_peer_state = self.per_peer_state.read().unwrap();
3979 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3980 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3981 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3982 let peer_state = &mut *peer_state_lock;
3983 for channel_id in channel_ids {
3984 if !peer_state.has_channel(channel_id) {
3985 return Err(APIError::ChannelUnavailable {
3986 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
3990 for channel_id in channel_ids {
3991 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
3992 let mut config = channel_phase.context().config();
3993 config.apply(config_update);
3994 if !channel_phase.context_mut().update_config(&config) {
3997 if let ChannelPhase::Funded(channel) = channel_phase {
3998 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3999 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4000 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4001 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4002 node_id: channel.context.get_counterparty_node_id(),
4009 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4010 debug_assert!(false);
4011 return Err(APIError::ChannelUnavailable {
4013 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4014 channel_id, counterparty_node_id),
4021 /// Atomically updates the [`ChannelConfig`] for the given channels.
4023 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4024 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4025 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4026 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4028 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4029 /// `counterparty_node_id` is provided.
4031 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4032 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4034 /// If an error is returned, none of the updates should be considered applied.
4036 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4037 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4038 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4039 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4040 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4041 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4042 /// [`APIMisuseError`]: APIError::APIMisuseError
4043 pub fn update_channel_config(
4044 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4045 ) -> Result<(), APIError> {
4046 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4049 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4050 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4052 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4053 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4055 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4056 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4057 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4058 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4059 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4061 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4062 /// you from forwarding more than you received. See
4063 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4066 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4069 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4070 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4071 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4072 // TODO: when we move to deciding the best outbound channel at forward time, only take
4073 // `next_node_id` and not `next_hop_channel_id`
4074 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4075 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4077 let next_hop_scid = {
4078 let peer_state_lock = self.per_peer_state.read().unwrap();
4079 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4080 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4081 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4082 let peer_state = &mut *peer_state_lock;
4083 match peer_state.channel_by_id.get(next_hop_channel_id) {
4084 Some(ChannelPhase::Funded(chan)) => {
4085 if !chan.context.is_usable() {
4086 return Err(APIError::ChannelUnavailable {
4087 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4090 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4092 Some(_) => return Err(APIError::ChannelUnavailable {
4093 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4094 next_hop_channel_id, next_node_id)
4097 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4098 next_hop_channel_id, next_node_id);
4099 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4100 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4101 return Err(APIError::ChannelUnavailable {
4108 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4109 .ok_or_else(|| APIError::APIMisuseError {
4110 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4113 let routing = match payment.forward_info.routing {
4114 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4115 PendingHTLCRouting::Forward {
4116 onion_packet, blinded, short_channel_id: next_hop_scid
4119 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4121 let skimmed_fee_msat =
4122 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4123 let pending_htlc_info = PendingHTLCInfo {
4124 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4125 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4128 let mut per_source_pending_forward = [(
4129 payment.prev_short_channel_id,
4130 payment.prev_funding_outpoint,
4131 payment.prev_user_channel_id,
4132 vec![(pending_htlc_info, payment.prev_htlc_id)]
4134 self.forward_htlcs(&mut per_source_pending_forward);
4138 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4139 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4141 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4144 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4145 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4146 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4148 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4149 .ok_or_else(|| APIError::APIMisuseError {
4150 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4153 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4154 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4155 short_channel_id: payment.prev_short_channel_id,
4156 user_channel_id: Some(payment.prev_user_channel_id),
4157 outpoint: payment.prev_funding_outpoint,
4158 htlc_id: payment.prev_htlc_id,
4159 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4160 phantom_shared_secret: None,
4161 blinded_failure: payment.forward_info.routing.blinded_failure(),
4164 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4165 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4166 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4167 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4172 /// Processes HTLCs which are pending waiting on random forward delay.
4174 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4175 /// Will likely generate further events.
4176 pub fn process_pending_htlc_forwards(&self) {
4177 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4179 let mut new_events = VecDeque::new();
4180 let mut failed_forwards = Vec::new();
4181 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4183 let mut forward_htlcs = HashMap::new();
4184 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4186 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4187 if short_chan_id != 0 {
4188 let mut forwarding_counterparty = None;
4189 macro_rules! forwarding_channel_not_found {
4191 for forward_info in pending_forwards.drain(..) {
4192 match forward_info {
4193 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4194 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4195 forward_info: PendingHTLCInfo {
4196 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4197 outgoing_cltv_value, ..
4200 macro_rules! failure_handler {
4201 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4202 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_funding_outpoint.to_channel_id()));
4203 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4205 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4206 short_channel_id: prev_short_channel_id,
4207 user_channel_id: Some(prev_user_channel_id),
4208 outpoint: prev_funding_outpoint,
4209 htlc_id: prev_htlc_id,
4210 incoming_packet_shared_secret: incoming_shared_secret,
4211 phantom_shared_secret: $phantom_ss,
4212 blinded_failure: routing.blinded_failure(),
4215 let reason = if $next_hop_unknown {
4216 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4218 HTLCDestination::FailedPayment{ payment_hash }
4221 failed_forwards.push((htlc_source, payment_hash,
4222 HTLCFailReason::reason($err_code, $err_data),
4228 macro_rules! fail_forward {
4229 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4231 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4235 macro_rules! failed_payment {
4236 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4238 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4242 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
4243 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4244 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4245 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4246 let next_hop = match onion_utils::decode_next_payment_hop(
4247 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4248 payment_hash, &self.node_signer
4251 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4252 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
4253 // In this scenario, the phantom would have sent us an
4254 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4255 // if it came from us (the second-to-last hop) but contains the sha256
4257 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4259 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4260 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4264 onion_utils::Hop::Receive(hop_data) => {
4265 let current_height: u32 = self.best_block.read().unwrap().height();
4266 match create_recv_pending_htlc_info(hop_data,
4267 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4268 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
4269 current_height, self.default_configuration.accept_mpp_keysend)
4271 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4272 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4278 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4281 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4284 HTLCForwardInfo::FailHTLC { .. } => {
4285 // Channel went away before we could fail it. This implies
4286 // the channel is now on chain and our counterparty is
4287 // trying to broadcast the HTLC-Timeout, but that's their
4288 // problem, not ours.
4294 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4295 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4296 Some((cp_id, chan_id)) => (cp_id, chan_id),
4298 forwarding_channel_not_found!();
4302 forwarding_counterparty = Some(counterparty_node_id);
4303 let per_peer_state = self.per_peer_state.read().unwrap();
4304 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4305 if peer_state_mutex_opt.is_none() {
4306 forwarding_channel_not_found!();
4309 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4310 let peer_state = &mut *peer_state_lock;
4311 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4312 let logger = WithChannelContext::from(&self.logger, &chan.context);
4313 for forward_info in pending_forwards.drain(..) {
4314 match forward_info {
4315 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4316 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4317 forward_info: PendingHTLCInfo {
4318 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4319 routing: PendingHTLCRouting::Forward {
4320 onion_packet, blinded, ..
4321 }, skimmed_fee_msat, ..
4324 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4325 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4326 short_channel_id: prev_short_channel_id,
4327 user_channel_id: Some(prev_user_channel_id),
4328 outpoint: prev_funding_outpoint,
4329 htlc_id: prev_htlc_id,
4330 incoming_packet_shared_secret: incoming_shared_secret,
4331 // Phantom payments are only PendingHTLCRouting::Receive.
4332 phantom_shared_secret: None,
4333 blinded_failure: blinded.map(|_| BlindedFailure::FromIntroductionNode),
4335 let next_blinding_point = blinded.and_then(|b| {
4336 let encrypted_tlvs_ss = self.node_signer.ecdh(
4337 Recipient::Node, &b.inbound_blinding_point, None
4338 ).unwrap().secret_bytes();
4339 onion_utils::next_hop_pubkey(
4340 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
4343 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4344 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4345 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
4348 if let ChannelError::Ignore(msg) = e {
4349 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4351 panic!("Stated return value requirements in send_htlc() were not met");
4353 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4354 failed_forwards.push((htlc_source, payment_hash,
4355 HTLCFailReason::reason(failure_code, data),
4356 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4361 HTLCForwardInfo::AddHTLC { .. } => {
4362 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4364 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4365 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4366 if let Err(e) = chan.queue_fail_htlc(
4367 htlc_id, err_packet, &&logger
4369 if let ChannelError::Ignore(msg) = e {
4370 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4372 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4374 // fail-backs are best-effort, we probably already have one
4375 // pending, and if not that's OK, if not, the channel is on
4376 // the chain and sending the HTLC-Timeout is their problem.
4383 forwarding_channel_not_found!();
4387 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4388 match forward_info {
4389 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4390 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4391 forward_info: PendingHTLCInfo {
4392 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4393 skimmed_fee_msat, ..
4396 let blinded_failure = routing.blinded_failure();
4397 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4398 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4399 let _legacy_hop_data = Some(payment_data.clone());
4400 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4401 payment_metadata, custom_tlvs };
4402 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4403 Some(payment_data), phantom_shared_secret, onion_fields)
4405 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4406 let onion_fields = RecipientOnionFields {
4407 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4411 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4412 payment_data, None, onion_fields)
4415 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4418 let claimable_htlc = ClaimableHTLC {
4419 prev_hop: HTLCPreviousHopData {
4420 short_channel_id: prev_short_channel_id,
4421 user_channel_id: Some(prev_user_channel_id),
4422 outpoint: prev_funding_outpoint,
4423 htlc_id: prev_htlc_id,
4424 incoming_packet_shared_secret: incoming_shared_secret,
4425 phantom_shared_secret,
4428 // We differentiate the received value from the sender intended value
4429 // if possible so that we don't prematurely mark MPP payments complete
4430 // if routing nodes overpay
4431 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4432 sender_intended_value: outgoing_amt_msat,
4434 total_value_received: None,
4435 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4438 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4441 let mut committed_to_claimable = false;
4443 macro_rules! fail_htlc {
4444 ($htlc: expr, $payment_hash: expr) => {
4445 debug_assert!(!committed_to_claimable);
4446 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4447 htlc_msat_height_data.extend_from_slice(
4448 &self.best_block.read().unwrap().height().to_be_bytes(),
4450 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4451 short_channel_id: $htlc.prev_hop.short_channel_id,
4452 user_channel_id: $htlc.prev_hop.user_channel_id,
4453 outpoint: prev_funding_outpoint,
4454 htlc_id: $htlc.prev_hop.htlc_id,
4455 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4456 phantom_shared_secret,
4457 blinded_failure: None,
4459 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4460 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4462 continue 'next_forwardable_htlc;
4465 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4466 let mut receiver_node_id = self.our_network_pubkey;
4467 if phantom_shared_secret.is_some() {
4468 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4469 .expect("Failed to get node_id for phantom node recipient");
4472 macro_rules! check_total_value {
4473 ($purpose: expr) => {{
4474 let mut payment_claimable_generated = false;
4475 let is_keysend = match $purpose {
4476 events::PaymentPurpose::SpontaneousPayment(_) => true,
4477 events::PaymentPurpose::InvoicePayment { .. } => false,
4479 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4480 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4481 fail_htlc!(claimable_htlc, payment_hash);
4483 let ref mut claimable_payment = claimable_payments.claimable_payments
4484 .entry(payment_hash)
4485 // Note that if we insert here we MUST NOT fail_htlc!()
4486 .or_insert_with(|| {
4487 committed_to_claimable = true;
4489 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4492 if $purpose != claimable_payment.purpose {
4493 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4494 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4495 fail_htlc!(claimable_htlc, payment_hash);
4497 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4498 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4499 fail_htlc!(claimable_htlc, payment_hash);
4501 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4502 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4503 fail_htlc!(claimable_htlc, payment_hash);
4506 claimable_payment.onion_fields = Some(onion_fields);
4508 let ref mut htlcs = &mut claimable_payment.htlcs;
4509 let mut total_value = claimable_htlc.sender_intended_value;
4510 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4511 for htlc in htlcs.iter() {
4512 total_value += htlc.sender_intended_value;
4513 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4514 if htlc.total_msat != claimable_htlc.total_msat {
4515 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4516 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4517 total_value = msgs::MAX_VALUE_MSAT;
4519 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4521 // The condition determining whether an MPP is complete must
4522 // match exactly the condition used in `timer_tick_occurred`
4523 if total_value >= msgs::MAX_VALUE_MSAT {
4524 fail_htlc!(claimable_htlc, payment_hash);
4525 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4526 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4528 fail_htlc!(claimable_htlc, payment_hash);
4529 } else if total_value >= claimable_htlc.total_msat {
4530 #[allow(unused_assignments)] {
4531 committed_to_claimable = true;
4533 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4534 htlcs.push(claimable_htlc);
4535 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4536 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4537 let counterparty_skimmed_fee_msat = htlcs.iter()
4538 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4539 debug_assert!(total_value.saturating_sub(amount_msat) <=
4540 counterparty_skimmed_fee_msat);
4541 new_events.push_back((events::Event::PaymentClaimable {
4542 receiver_node_id: Some(receiver_node_id),
4546 counterparty_skimmed_fee_msat,
4547 via_channel_id: Some(prev_channel_id),
4548 via_user_channel_id: Some(prev_user_channel_id),
4549 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4550 onion_fields: claimable_payment.onion_fields.clone(),
4552 payment_claimable_generated = true;
4554 // Nothing to do - we haven't reached the total
4555 // payment value yet, wait until we receive more
4557 htlcs.push(claimable_htlc);
4558 #[allow(unused_assignments)] {
4559 committed_to_claimable = true;
4562 payment_claimable_generated
4566 // Check that the payment hash and secret are known. Note that we
4567 // MUST take care to handle the "unknown payment hash" and
4568 // "incorrect payment secret" cases here identically or we'd expose
4569 // that we are the ultimate recipient of the given payment hash.
4570 // Further, we must not expose whether we have any other HTLCs
4571 // associated with the same payment_hash pending or not.
4572 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4573 match payment_secrets.entry(payment_hash) {
4574 hash_map::Entry::Vacant(_) => {
4575 match claimable_htlc.onion_payload {
4576 OnionPayload::Invoice { .. } => {
4577 let payment_data = payment_data.unwrap();
4578 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4579 Ok(result) => result,
4581 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4582 fail_htlc!(claimable_htlc, payment_hash);
4585 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4586 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4587 if (cltv_expiry as u64) < expected_min_expiry_height {
4588 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4589 &payment_hash, cltv_expiry, expected_min_expiry_height);
4590 fail_htlc!(claimable_htlc, payment_hash);
4593 let purpose = events::PaymentPurpose::InvoicePayment {
4594 payment_preimage: payment_preimage.clone(),
4595 payment_secret: payment_data.payment_secret,
4597 check_total_value!(purpose);
4599 OnionPayload::Spontaneous(preimage) => {
4600 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4601 check_total_value!(purpose);
4605 hash_map::Entry::Occupied(inbound_payment) => {
4606 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4607 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4608 fail_htlc!(claimable_htlc, payment_hash);
4610 let payment_data = payment_data.unwrap();
4611 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4612 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4613 fail_htlc!(claimable_htlc, payment_hash);
4614 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4615 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4616 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4617 fail_htlc!(claimable_htlc, payment_hash);
4619 let purpose = events::PaymentPurpose::InvoicePayment {
4620 payment_preimage: inbound_payment.get().payment_preimage,
4621 payment_secret: payment_data.payment_secret,
4623 let payment_claimable_generated = check_total_value!(purpose);
4624 if payment_claimable_generated {
4625 inbound_payment.remove_entry();
4631 HTLCForwardInfo::FailHTLC { .. } => {
4632 panic!("Got pending fail of our own HTLC");
4640 let best_block_height = self.best_block.read().unwrap().height();
4641 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4642 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4643 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4645 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4646 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4648 self.forward_htlcs(&mut phantom_receives);
4650 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4651 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4652 // nice to do the work now if we can rather than while we're trying to get messages in the
4654 self.check_free_holding_cells();
4656 if new_events.is_empty() { return }
4657 let mut events = self.pending_events.lock().unwrap();
4658 events.append(&mut new_events);
4661 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4663 /// Expects the caller to have a total_consistency_lock read lock.
4664 fn process_background_events(&self) -> NotifyOption {
4665 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4667 self.background_events_processed_since_startup.store(true, Ordering::Release);
4669 let mut background_events = Vec::new();
4670 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4671 if background_events.is_empty() {
4672 return NotifyOption::SkipPersistNoEvents;
4675 for event in background_events.drain(..) {
4677 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4678 // The channel has already been closed, so no use bothering to care about the
4679 // monitor updating completing.
4680 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4682 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4683 let mut updated_chan = false;
4685 let per_peer_state = self.per_peer_state.read().unwrap();
4686 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4687 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4688 let peer_state = &mut *peer_state_lock;
4689 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4690 hash_map::Entry::Occupied(mut chan_phase) => {
4691 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4692 updated_chan = true;
4693 handle_new_monitor_update!(self, funding_txo, update.clone(),
4694 peer_state_lock, peer_state, per_peer_state, chan);
4696 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4699 hash_map::Entry::Vacant(_) => {},
4704 // TODO: Track this as in-flight even though the channel is closed.
4705 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4708 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4709 let per_peer_state = self.per_peer_state.read().unwrap();
4710 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4711 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4712 let peer_state = &mut *peer_state_lock;
4713 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4714 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4716 let update_actions = peer_state.monitor_update_blocked_actions
4717 .remove(&channel_id).unwrap_or(Vec::new());
4718 mem::drop(peer_state_lock);
4719 mem::drop(per_peer_state);
4720 self.handle_monitor_update_completion_actions(update_actions);
4726 NotifyOption::DoPersist
4729 #[cfg(any(test, feature = "_test_utils"))]
4730 /// Process background events, for functional testing
4731 pub fn test_process_background_events(&self) {
4732 let _lck = self.total_consistency_lock.read().unwrap();
4733 let _ = self.process_background_events();
4736 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4737 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4739 let logger = WithChannelContext::from(&self.logger, &chan.context);
4741 // If the feerate has decreased by less than half, don't bother
4742 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4743 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4744 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4745 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4747 return NotifyOption::SkipPersistNoEvents;
4749 if !chan.context.is_live() {
4750 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4751 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4752 return NotifyOption::SkipPersistNoEvents;
4754 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
4755 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4757 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
4758 NotifyOption::DoPersist
4762 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4763 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4764 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4765 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4766 pub fn maybe_update_chan_fees(&self) {
4767 PersistenceNotifierGuard::optionally_notify(self, || {
4768 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4770 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4771 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4773 let per_peer_state = self.per_peer_state.read().unwrap();
4774 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4775 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4776 let peer_state = &mut *peer_state_lock;
4777 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4778 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4780 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4785 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4786 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4794 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4796 /// This currently includes:
4797 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4798 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4799 /// than a minute, informing the network that they should no longer attempt to route over
4801 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4802 /// with the current [`ChannelConfig`].
4803 /// * Removing peers which have disconnected but and no longer have any channels.
4804 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4805 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4806 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4807 /// The latter is determined using the system clock in `std` and the highest seen block time
4808 /// minus two hours in `no-std`.
4810 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4811 /// estimate fetches.
4813 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4814 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4815 pub fn timer_tick_occurred(&self) {
4816 PersistenceNotifierGuard::optionally_notify(self, || {
4817 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4819 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4820 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4822 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4823 let mut timed_out_mpp_htlcs = Vec::new();
4824 let mut pending_peers_awaiting_removal = Vec::new();
4825 let mut shutdown_channels = Vec::new();
4827 let mut process_unfunded_channel_tick = |
4828 chan_id: &ChannelId,
4829 context: &mut ChannelContext<SP>,
4830 unfunded_context: &mut UnfundedChannelContext,
4831 pending_msg_events: &mut Vec<MessageSendEvent>,
4832 counterparty_node_id: PublicKey,
4834 context.maybe_expire_prev_config();
4835 if unfunded_context.should_expire_unfunded_channel() {
4836 let logger = WithChannelContext::from(&self.logger, context);
4838 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4839 update_maps_on_chan_removal!(self, &context);
4840 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4841 shutdown_channels.push(context.force_shutdown(false));
4842 pending_msg_events.push(MessageSendEvent::HandleError {
4843 node_id: counterparty_node_id,
4844 action: msgs::ErrorAction::SendErrorMessage {
4845 msg: msgs::ErrorMessage {
4846 channel_id: *chan_id,
4847 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4858 let per_peer_state = self.per_peer_state.read().unwrap();
4859 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4860 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4861 let peer_state = &mut *peer_state_lock;
4862 let pending_msg_events = &mut peer_state.pending_msg_events;
4863 let counterparty_node_id = *counterparty_node_id;
4864 peer_state.channel_by_id.retain(|chan_id, phase| {
4866 ChannelPhase::Funded(chan) => {
4867 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4872 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4873 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4875 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4876 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4877 handle_errors.push((Err(err), counterparty_node_id));
4878 if needs_close { return false; }
4881 match chan.channel_update_status() {
4882 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4883 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4884 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4885 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4886 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4887 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4888 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4890 if n >= DISABLE_GOSSIP_TICKS {
4891 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4892 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4893 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4897 should_persist = NotifyOption::DoPersist;
4899 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4902 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4904 if n >= ENABLE_GOSSIP_TICKS {
4905 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4906 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4907 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4911 should_persist = NotifyOption::DoPersist;
4913 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4919 chan.context.maybe_expire_prev_config();
4921 if chan.should_disconnect_peer_awaiting_response() {
4922 let logger = WithChannelContext::from(&self.logger, &chan.context);
4923 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
4924 counterparty_node_id, chan_id);
4925 pending_msg_events.push(MessageSendEvent::HandleError {
4926 node_id: counterparty_node_id,
4927 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4928 msg: msgs::WarningMessage {
4929 channel_id: *chan_id,
4930 data: "Disconnecting due to timeout awaiting response".to_owned(),
4938 ChannelPhase::UnfundedInboundV1(chan) => {
4939 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4940 pending_msg_events, counterparty_node_id)
4942 ChannelPhase::UnfundedOutboundV1(chan) => {
4943 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4944 pending_msg_events, counterparty_node_id)
4949 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4950 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4951 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
4952 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4953 peer_state.pending_msg_events.push(
4954 events::MessageSendEvent::HandleError {
4955 node_id: counterparty_node_id,
4956 action: msgs::ErrorAction::SendErrorMessage {
4957 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4963 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4965 if peer_state.ok_to_remove(true) {
4966 pending_peers_awaiting_removal.push(counterparty_node_id);
4971 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4972 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4973 // of to that peer is later closed while still being disconnected (i.e. force closed),
4974 // we therefore need to remove the peer from `peer_state` separately.
4975 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4976 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4977 // negative effects on parallelism as much as possible.
4978 if pending_peers_awaiting_removal.len() > 0 {
4979 let mut per_peer_state = self.per_peer_state.write().unwrap();
4980 for counterparty_node_id in pending_peers_awaiting_removal {
4981 match per_peer_state.entry(counterparty_node_id) {
4982 hash_map::Entry::Occupied(entry) => {
4983 // Remove the entry if the peer is still disconnected and we still
4984 // have no channels to the peer.
4985 let remove_entry = {
4986 let peer_state = entry.get().lock().unwrap();
4987 peer_state.ok_to_remove(true)
4990 entry.remove_entry();
4993 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4998 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4999 if payment.htlcs.is_empty() {
5000 // This should be unreachable
5001 debug_assert!(false);
5004 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5005 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5006 // In this case we're not going to handle any timeouts of the parts here.
5007 // This condition determining whether the MPP is complete here must match
5008 // exactly the condition used in `process_pending_htlc_forwards`.
5009 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5010 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5013 } else if payment.htlcs.iter_mut().any(|htlc| {
5014 htlc.timer_ticks += 1;
5015 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5017 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5018 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5025 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5026 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5027 let reason = HTLCFailReason::from_failure_code(23);
5028 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5029 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5032 for (err, counterparty_node_id) in handle_errors.drain(..) {
5033 let _ = handle_error!(self, err, counterparty_node_id);
5036 for shutdown_res in shutdown_channels {
5037 self.finish_close_channel(shutdown_res);
5040 #[cfg(feature = "std")]
5041 let duration_since_epoch = std::time::SystemTime::now()
5042 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5043 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5044 #[cfg(not(feature = "std"))]
5045 let duration_since_epoch = Duration::from_secs(
5046 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5049 self.pending_outbound_payments.remove_stale_payments(
5050 duration_since_epoch, &self.pending_events
5053 // Technically we don't need to do this here, but if we have holding cell entries in a
5054 // channel that need freeing, it's better to do that here and block a background task
5055 // than block the message queueing pipeline.
5056 if self.check_free_holding_cells() {
5057 should_persist = NotifyOption::DoPersist;
5064 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5065 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5066 /// along the path (including in our own channel on which we received it).
5068 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5069 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5070 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5071 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5073 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5074 /// [`ChannelManager::claim_funds`]), you should still monitor for
5075 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5076 /// startup during which time claims that were in-progress at shutdown may be replayed.
5077 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5078 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5081 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5082 /// reason for the failure.
5084 /// See [`FailureCode`] for valid failure codes.
5085 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5086 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5088 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5089 if let Some(payment) = removed_source {
5090 for htlc in payment.htlcs {
5091 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5092 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5093 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5094 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5099 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5100 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5101 match failure_code {
5102 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5103 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5104 FailureCode::IncorrectOrUnknownPaymentDetails => {
5105 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5106 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5107 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5109 FailureCode::InvalidOnionPayload(data) => {
5110 let fail_data = match data {
5111 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5114 HTLCFailReason::reason(failure_code.into(), fail_data)
5119 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5120 /// that we want to return and a channel.
5122 /// This is for failures on the channel on which the HTLC was *received*, not failures
5124 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5125 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5126 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5127 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5128 // an inbound SCID alias before the real SCID.
5129 let scid_pref = if chan.context.should_announce() {
5130 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5132 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5134 if let Some(scid) = scid_pref {
5135 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5137 (0x4000|10, Vec::new())
5142 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5143 /// that we want to return and a channel.
5144 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5145 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5146 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5147 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5148 if desired_err_code == 0x1000 | 20 {
5149 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5150 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5151 0u16.write(&mut enc).expect("Writes cannot fail");
5153 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5154 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5155 upd.write(&mut enc).expect("Writes cannot fail");
5156 (desired_err_code, enc.0)
5158 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5159 // which means we really shouldn't have gotten a payment to be forwarded over this
5160 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5161 // PERM|no_such_channel should be fine.
5162 (0x4000|10, Vec::new())
5166 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5167 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5168 // be surfaced to the user.
5169 fn fail_holding_cell_htlcs(
5170 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5171 counterparty_node_id: &PublicKey
5173 let (failure_code, onion_failure_data) = {
5174 let per_peer_state = self.per_peer_state.read().unwrap();
5175 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5176 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5177 let peer_state = &mut *peer_state_lock;
5178 match peer_state.channel_by_id.entry(channel_id) {
5179 hash_map::Entry::Occupied(chan_phase_entry) => {
5180 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5181 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5183 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5184 debug_assert!(false);
5185 (0x4000|10, Vec::new())
5188 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5190 } else { (0x4000|10, Vec::new()) }
5193 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5194 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5195 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5196 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5200 /// Fails an HTLC backwards to the sender of it to us.
5201 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5202 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5203 // Ensure that no peer state channel storage lock is held when calling this function.
5204 // This ensures that future code doesn't introduce a lock-order requirement for
5205 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5206 // this function with any `per_peer_state` peer lock acquired would.
5207 #[cfg(debug_assertions)]
5208 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5209 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5212 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5213 //identify whether we sent it or not based on the (I presume) very different runtime
5214 //between the branches here. We should make this async and move it into the forward HTLCs
5217 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5218 // from block_connected which may run during initialization prior to the chain_monitor
5219 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5221 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5222 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5223 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5224 &self.pending_events, &self.logger)
5225 { self.push_pending_forwards_ev(); }
5227 HTLCSource::PreviousHopData(HTLCPreviousHopData {
5228 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
5229 ref phantom_shared_secret, ref outpoint, ref blinded_failure, ..
5232 WithContext::from(&self.logger, None, Some(outpoint.to_channel_id())),
5233 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
5234 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
5236 let err_packet = match blinded_failure {
5237 Some(BlindedFailure::FromIntroductionNode) => {
5238 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
5239 blinded_onion_error.get_encrypted_failure_packet(
5240 incoming_packet_shared_secret, phantom_shared_secret
5244 onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret)
5248 let mut push_forward_ev = false;
5249 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5250 if forward_htlcs.is_empty() {
5251 push_forward_ev = true;
5253 match forward_htlcs.entry(*short_channel_id) {
5254 hash_map::Entry::Occupied(mut entry) => {
5255 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5257 hash_map::Entry::Vacant(entry) => {
5258 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5261 mem::drop(forward_htlcs);
5262 if push_forward_ev { self.push_pending_forwards_ev(); }
5263 let mut pending_events = self.pending_events.lock().unwrap();
5264 pending_events.push_back((events::Event::HTLCHandlingFailed {
5265 prev_channel_id: outpoint.to_channel_id(),
5266 failed_next_destination: destination,
5272 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5273 /// [`MessageSendEvent`]s needed to claim the payment.
5275 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5276 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5277 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5278 /// successful. It will generally be available in the next [`process_pending_events`] call.
5280 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5281 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5282 /// event matches your expectation. If you fail to do so and call this method, you may provide
5283 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5285 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5286 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5287 /// [`claim_funds_with_known_custom_tlvs`].
5289 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5290 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5291 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5292 /// [`process_pending_events`]: EventsProvider::process_pending_events
5293 /// [`create_inbound_payment`]: Self::create_inbound_payment
5294 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5295 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5296 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5297 self.claim_payment_internal(payment_preimage, false);
5300 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5301 /// even type numbers.
5305 /// You MUST check you've understood all even TLVs before using this to
5306 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5308 /// [`claim_funds`]: Self::claim_funds
5309 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5310 self.claim_payment_internal(payment_preimage, true);
5313 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5314 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
5316 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5319 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5320 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5321 let mut receiver_node_id = self.our_network_pubkey;
5322 for htlc in payment.htlcs.iter() {
5323 if htlc.prev_hop.phantom_shared_secret.is_some() {
5324 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5325 .expect("Failed to get node_id for phantom node recipient");
5326 receiver_node_id = phantom_pubkey;
5331 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5332 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5333 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5334 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5335 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5337 if dup_purpose.is_some() {
5338 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5339 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5343 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5344 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5345 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5346 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5347 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5348 mem::drop(claimable_payments);
5349 for htlc in payment.htlcs {
5350 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5351 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5352 let receiver = HTLCDestination::FailedPayment { payment_hash };
5353 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5362 debug_assert!(!sources.is_empty());
5364 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5365 // and when we got here we need to check that the amount we're about to claim matches the
5366 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5367 // the MPP parts all have the same `total_msat`.
5368 let mut claimable_amt_msat = 0;
5369 let mut prev_total_msat = None;
5370 let mut expected_amt_msat = None;
5371 let mut valid_mpp = true;
5372 let mut errs = Vec::new();
5373 let per_peer_state = self.per_peer_state.read().unwrap();
5374 for htlc in sources.iter() {
5375 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5376 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5377 debug_assert!(false);
5381 prev_total_msat = Some(htlc.total_msat);
5383 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5384 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5385 debug_assert!(false);
5389 expected_amt_msat = htlc.total_value_received;
5390 claimable_amt_msat += htlc.value;
5392 mem::drop(per_peer_state);
5393 if sources.is_empty() || expected_amt_msat.is_none() {
5394 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5395 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5398 if claimable_amt_msat != expected_amt_msat.unwrap() {
5399 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5400 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5401 expected_amt_msat.unwrap(), claimable_amt_msat);
5405 for htlc in sources.drain(..) {
5406 let prev_hop_chan_id = htlc.prev_hop.outpoint.to_channel_id();
5407 if let Err((pk, err)) = self.claim_funds_from_hop(
5408 htlc.prev_hop, payment_preimage,
5409 |_, definitely_duplicate| {
5410 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5411 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5414 if let msgs::ErrorAction::IgnoreError = err.err.action {
5415 // We got a temporary failure updating monitor, but will claim the
5416 // HTLC when the monitor updating is restored (or on chain).
5417 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
5418 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5419 } else { errs.push((pk, err)); }
5424 for htlc in sources.drain(..) {
5425 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5426 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5427 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5428 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5429 let receiver = HTLCDestination::FailedPayment { payment_hash };
5430 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5432 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5435 // Now we can handle any errors which were generated.
5436 for (counterparty_node_id, err) in errs.drain(..) {
5437 let res: Result<(), _> = Err(err);
5438 let _ = handle_error!(self, res, counterparty_node_id);
5442 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5443 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5444 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5445 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5447 // If we haven't yet run background events assume we're still deserializing and shouldn't
5448 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5449 // `BackgroundEvent`s.
5450 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5452 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5453 // the required mutexes are not held before we start.
5454 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5455 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5458 let per_peer_state = self.per_peer_state.read().unwrap();
5459 let chan_id = prev_hop.outpoint.to_channel_id();
5460 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5461 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5465 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5466 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5467 .map(|peer_mutex| peer_mutex.lock().unwrap())
5470 if peer_state_opt.is_some() {
5471 let mut peer_state_lock = peer_state_opt.unwrap();
5472 let peer_state = &mut *peer_state_lock;
5473 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5474 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5475 let counterparty_node_id = chan.context.get_counterparty_node_id();
5476 let logger = WithChannelContext::from(&self.logger, &chan.context);
5477 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
5480 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5481 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5482 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
5484 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5487 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5488 peer_state, per_peer_state, chan);
5490 // If we're running during init we cannot update a monitor directly -
5491 // they probably haven't actually been loaded yet. Instead, push the
5492 // monitor update as a background event.
5493 self.pending_background_events.lock().unwrap().push(
5494 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5495 counterparty_node_id,
5496 funding_txo: prev_hop.outpoint,
5497 update: monitor_update.clone(),
5501 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5502 let action = if let Some(action) = completion_action(None, true) {
5507 mem::drop(peer_state_lock);
5509 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5511 let (node_id, funding_outpoint, blocker) =
5512 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5513 downstream_counterparty_node_id: node_id,
5514 downstream_funding_outpoint: funding_outpoint,
5515 blocking_action: blocker,
5517 (node_id, funding_outpoint, blocker)
5519 debug_assert!(false,
5520 "Duplicate claims should always free another channel immediately");
5523 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5524 let mut peer_state = peer_state_mtx.lock().unwrap();
5525 if let Some(blockers) = peer_state
5526 .actions_blocking_raa_monitor_updates
5527 .get_mut(&funding_outpoint.to_channel_id())
5529 let mut found_blocker = false;
5530 blockers.retain(|iter| {
5531 // Note that we could actually be blocked, in
5532 // which case we need to only remove the one
5533 // blocker which was added duplicatively.
5534 let first_blocker = !found_blocker;
5535 if *iter == blocker { found_blocker = true; }
5536 *iter != blocker || !first_blocker
5538 debug_assert!(found_blocker);
5541 debug_assert!(false);
5550 let preimage_update = ChannelMonitorUpdate {
5551 update_id: CLOSED_CHANNEL_UPDATE_ID,
5552 counterparty_node_id: None,
5553 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5559 // We update the ChannelMonitor on the backward link, after
5560 // receiving an `update_fulfill_htlc` from the forward link.
5561 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5562 if update_res != ChannelMonitorUpdateStatus::Completed {
5563 // TODO: This needs to be handled somehow - if we receive a monitor update
5564 // with a preimage we *must* somehow manage to propagate it to the upstream
5565 // channel, or we must have an ability to receive the same event and try
5566 // again on restart.
5567 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.outpoint.to_channel_id())), "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5568 payment_preimage, update_res);
5571 // If we're running during init we cannot update a monitor directly - they probably
5572 // haven't actually been loaded yet. Instead, push the monitor update as a background
5574 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5575 // channel is already closed) we need to ultimately handle the monitor update
5576 // completion action only after we've completed the monitor update. This is the only
5577 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5578 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5579 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5580 // complete the monitor update completion action from `completion_action`.
5581 self.pending_background_events.lock().unwrap().push(
5582 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5583 prev_hop.outpoint, preimage_update,
5586 // Note that we do process the completion action here. This totally could be a
5587 // duplicate claim, but we have no way of knowing without interrogating the
5588 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5589 // generally always allowed to be duplicative (and it's specifically noted in
5590 // `PaymentForwarded`).
5591 self.handle_monitor_update_completion_actions(completion_action(None, false));
5595 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5596 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5599 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5600 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5601 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5604 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5605 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5606 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5607 if let Some(pubkey) = next_channel_counterparty_node_id {
5608 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5610 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5611 channel_funding_outpoint: next_channel_outpoint,
5612 counterparty_node_id: path.hops[0].pubkey,
5614 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5615 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5618 HTLCSource::PreviousHopData(hop_data) => {
5619 let prev_outpoint = hop_data.outpoint;
5620 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5621 #[cfg(debug_assertions)]
5622 let claiming_chan_funding_outpoint = hop_data.outpoint;
5623 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5624 |htlc_claim_value_msat, definitely_duplicate| {
5625 let chan_to_release =
5626 if let Some(node_id) = next_channel_counterparty_node_id {
5627 Some((node_id, next_channel_outpoint, completed_blocker))
5629 // We can only get `None` here if we are processing a
5630 // `ChannelMonitor`-originated event, in which case we
5631 // don't care about ensuring we wake the downstream
5632 // channel's monitor updating - the channel is already
5637 if definitely_duplicate && startup_replay {
5638 // On startup we may get redundant claims which are related to
5639 // monitor updates still in flight. In that case, we shouldn't
5640 // immediately free, but instead let that monitor update complete
5641 // in the background.
5642 #[cfg(debug_assertions)] {
5643 let background_events = self.pending_background_events.lock().unwrap();
5644 // There should be a `BackgroundEvent` pending...
5645 assert!(background_events.iter().any(|ev| {
5647 // to apply a monitor update that blocked the claiming channel,
5648 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5649 funding_txo, update, ..
5651 if *funding_txo == claiming_chan_funding_outpoint {
5652 assert!(update.updates.iter().any(|upd|
5653 if let ChannelMonitorUpdateStep::PaymentPreimage {
5654 payment_preimage: update_preimage
5656 payment_preimage == *update_preimage
5662 // or the channel we'd unblock is already closed,
5663 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5664 (funding_txo, monitor_update)
5666 if *funding_txo == next_channel_outpoint {
5667 assert_eq!(monitor_update.updates.len(), 1);
5669 monitor_update.updates[0],
5670 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5675 // or the monitor update has completed and will unblock
5676 // immediately once we get going.
5677 BackgroundEvent::MonitorUpdatesComplete {
5680 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5682 }), "{:?}", *background_events);
5685 } else if definitely_duplicate {
5686 if let Some(other_chan) = chan_to_release {
5687 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5688 downstream_counterparty_node_id: other_chan.0,
5689 downstream_funding_outpoint: other_chan.1,
5690 blocking_action: other_chan.2,
5694 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5695 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5696 Some(claimed_htlc_value - forwarded_htlc_value)
5699 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5700 event: events::Event::PaymentForwarded {
5702 claim_from_onchain_tx: from_onchain,
5703 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5704 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5705 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5707 downstream_counterparty_and_funding_outpoint: chan_to_release,
5711 if let Err((pk, err)) = res {
5712 let result: Result<(), _> = Err(err);
5713 let _ = handle_error!(self, result, pk);
5719 /// Gets the node_id held by this ChannelManager
5720 pub fn get_our_node_id(&self) -> PublicKey {
5721 self.our_network_pubkey.clone()
5724 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5725 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5726 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5727 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5729 for action in actions.into_iter() {
5731 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5732 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5733 if let Some(ClaimingPayment {
5735 payment_purpose: purpose,
5738 sender_intended_value: sender_intended_total_msat,
5740 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5744 receiver_node_id: Some(receiver_node_id),
5746 sender_intended_total_msat,
5750 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5751 event, downstream_counterparty_and_funding_outpoint
5753 self.pending_events.lock().unwrap().push_back((event, None));
5754 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5755 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5758 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5759 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5761 self.handle_monitor_update_release(
5762 downstream_counterparty_node_id,
5763 downstream_funding_outpoint,
5764 Some(blocking_action),
5771 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5772 /// update completion.
5773 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5774 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5775 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5776 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5777 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5778 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5779 let logger = WithChannelContext::from(&self.logger, &channel.context);
5780 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5781 &channel.context.channel_id(),
5782 if raa.is_some() { "an" } else { "no" },
5783 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5784 if funding_broadcastable.is_some() { "" } else { "not " },
5785 if channel_ready.is_some() { "sending" } else { "without" },
5786 if announcement_sigs.is_some() { "sending" } else { "without" });
5788 let mut htlc_forwards = None;
5790 let counterparty_node_id = channel.context.get_counterparty_node_id();
5791 if !pending_forwards.is_empty() {
5792 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5793 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5796 if let Some(msg) = channel_ready {
5797 send_channel_ready!(self, pending_msg_events, channel, msg);
5799 if let Some(msg) = announcement_sigs {
5800 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5801 node_id: counterparty_node_id,
5806 macro_rules! handle_cs { () => {
5807 if let Some(update) = commitment_update {
5808 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5809 node_id: counterparty_node_id,
5814 macro_rules! handle_raa { () => {
5815 if let Some(revoke_and_ack) = raa {
5816 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5817 node_id: counterparty_node_id,
5818 msg: revoke_and_ack,
5823 RAACommitmentOrder::CommitmentFirst => {
5827 RAACommitmentOrder::RevokeAndACKFirst => {
5833 if let Some(tx) = funding_broadcastable {
5834 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
5835 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5839 let mut pending_events = self.pending_events.lock().unwrap();
5840 emit_channel_pending_event!(pending_events, channel);
5841 emit_channel_ready_event!(pending_events, channel);
5847 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5848 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5850 let counterparty_node_id = match counterparty_node_id {
5851 Some(cp_id) => cp_id.clone(),
5853 // TODO: Once we can rely on the counterparty_node_id from the
5854 // monitor event, this and the outpoint_to_peer map should be removed.
5855 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
5856 match outpoint_to_peer.get(&funding_txo) {
5857 Some(cp_id) => cp_id.clone(),
5862 let per_peer_state = self.per_peer_state.read().unwrap();
5863 let mut peer_state_lock;
5864 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5865 if peer_state_mutex_opt.is_none() { return }
5866 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5867 let peer_state = &mut *peer_state_lock;
5869 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5872 let update_actions = peer_state.monitor_update_blocked_actions
5873 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5874 mem::drop(peer_state_lock);
5875 mem::drop(per_peer_state);
5876 self.handle_monitor_update_completion_actions(update_actions);
5879 let remaining_in_flight =
5880 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5881 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5884 let logger = WithChannelContext::from(&self.logger, &channel.context);
5885 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5886 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5887 remaining_in_flight);
5888 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5891 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5894 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5896 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5897 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5900 /// The `user_channel_id` parameter will be provided back in
5901 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5902 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5904 /// Note that this method will return an error and reject the channel, if it requires support
5905 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5906 /// used to accept such channels.
5908 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5909 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5910 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5911 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5914 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5915 /// it as confirmed immediately.
5917 /// The `user_channel_id` parameter will be provided back in
5918 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5919 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5921 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5922 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5924 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5925 /// transaction and blindly assumes that it will eventually confirm.
5927 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5928 /// does not pay to the correct script the correct amount, *you will lose funds*.
5930 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5931 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5932 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5933 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5936 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5937 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5939 let peers_without_funded_channels =
5940 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5941 let per_peer_state = self.per_peer_state.read().unwrap();
5942 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5943 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5944 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5945 let peer_state = &mut *peer_state_lock;
5946 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5948 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5949 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5950 // that we can delay allocating the SCID until after we're sure that the checks below will
5952 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5953 Some(unaccepted_channel) => {
5954 let best_block_height = self.best_block.read().unwrap().height();
5955 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5956 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5957 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5958 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5960 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5964 // This should have been correctly configured by the call to InboundV1Channel::new.
5965 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5966 } else if channel.context.get_channel_type().requires_zero_conf() {
5967 let send_msg_err_event = events::MessageSendEvent::HandleError {
5968 node_id: channel.context.get_counterparty_node_id(),
5969 action: msgs::ErrorAction::SendErrorMessage{
5970 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5973 peer_state.pending_msg_events.push(send_msg_err_event);
5974 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5976 // If this peer already has some channels, a new channel won't increase our number of peers
5977 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5978 // channels per-peer we can accept channels from a peer with existing ones.
5979 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5980 let send_msg_err_event = events::MessageSendEvent::HandleError {
5981 node_id: channel.context.get_counterparty_node_id(),
5982 action: msgs::ErrorAction::SendErrorMessage{
5983 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5986 peer_state.pending_msg_events.push(send_msg_err_event);
5987 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5991 // Now that we know we have a channel, assign an outbound SCID alias.
5992 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5993 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5995 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5996 node_id: channel.context.get_counterparty_node_id(),
5997 msg: channel.accept_inbound_channel(),
6000 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6005 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6006 /// or 0-conf channels.
6008 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6009 /// non-0-conf channels we have with the peer.
6010 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6011 where Filter: Fn(&PeerState<SP>) -> bool {
6012 let mut peers_without_funded_channels = 0;
6013 let best_block_height = self.best_block.read().unwrap().height();
6015 let peer_state_lock = self.per_peer_state.read().unwrap();
6016 for (_, peer_mtx) in peer_state_lock.iter() {
6017 let peer = peer_mtx.lock().unwrap();
6018 if !maybe_count_peer(&*peer) { continue; }
6019 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6020 if num_unfunded_channels == peer.total_channel_count() {
6021 peers_without_funded_channels += 1;
6025 return peers_without_funded_channels;
6028 fn unfunded_channel_count(
6029 peer: &PeerState<SP>, best_block_height: u32
6031 let mut num_unfunded_channels = 0;
6032 for (_, phase) in peer.channel_by_id.iter() {
6034 ChannelPhase::Funded(chan) => {
6035 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6036 // which have not yet had any confirmations on-chain.
6037 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6038 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6040 num_unfunded_channels += 1;
6043 ChannelPhase::UnfundedInboundV1(chan) => {
6044 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6045 num_unfunded_channels += 1;
6048 ChannelPhase::UnfundedOutboundV1(_) => {
6049 // Outbound channels don't contribute to the unfunded count in the DoS context.
6054 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6057 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6058 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6059 // likely to be lost on restart!
6060 if msg.chain_hash != self.chain_hash {
6061 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6064 if !self.default_configuration.accept_inbound_channels {
6065 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6068 // Get the number of peers with channels, but without funded ones. We don't care too much
6069 // about peers that never open a channel, so we filter by peers that have at least one
6070 // channel, and then limit the number of those with unfunded channels.
6071 let channeled_peers_without_funding =
6072 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6074 let per_peer_state = self.per_peer_state.read().unwrap();
6075 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6077 debug_assert!(false);
6078 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6080 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6081 let peer_state = &mut *peer_state_lock;
6083 // If this peer already has some channels, a new channel won't increase our number of peers
6084 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6085 // channels per-peer we can accept channels from a peer with existing ones.
6086 if peer_state.total_channel_count() == 0 &&
6087 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6088 !self.default_configuration.manually_accept_inbound_channels
6090 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6091 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6092 msg.temporary_channel_id.clone()));
6095 let best_block_height = self.best_block.read().unwrap().height();
6096 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6097 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6098 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6099 msg.temporary_channel_id.clone()));
6102 let channel_id = msg.temporary_channel_id;
6103 let channel_exists = peer_state.has_channel(&channel_id);
6105 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6108 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6109 if self.default_configuration.manually_accept_inbound_channels {
6110 let mut pending_events = self.pending_events.lock().unwrap();
6111 pending_events.push_back((events::Event::OpenChannelRequest {
6112 temporary_channel_id: msg.temporary_channel_id.clone(),
6113 counterparty_node_id: counterparty_node_id.clone(),
6114 funding_satoshis: msg.funding_satoshis,
6115 push_msat: msg.push_msat,
6116 channel_type: msg.channel_type.clone().unwrap(),
6118 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6119 open_channel_msg: msg.clone(),
6120 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6125 // Otherwise create the channel right now.
6126 let mut random_bytes = [0u8; 16];
6127 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6128 let user_channel_id = u128::from_be_bytes(random_bytes);
6129 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6130 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6131 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6134 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6139 let channel_type = channel.context.get_channel_type();
6140 if channel_type.requires_zero_conf() {
6141 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6143 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6144 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6147 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6148 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6150 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6151 node_id: counterparty_node_id.clone(),
6152 msg: channel.accept_inbound_channel(),
6154 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6158 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6159 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6160 // likely to be lost on restart!
6161 let (value, output_script, user_id) = {
6162 let per_peer_state = self.per_peer_state.read().unwrap();
6163 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6165 debug_assert!(false);
6166 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6168 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6169 let peer_state = &mut *peer_state_lock;
6170 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6171 hash_map::Entry::Occupied(mut phase) => {
6172 match phase.get_mut() {
6173 ChannelPhase::UnfundedOutboundV1(chan) => {
6174 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6175 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6178 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6182 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6185 let mut pending_events = self.pending_events.lock().unwrap();
6186 pending_events.push_back((events::Event::FundingGenerationReady {
6187 temporary_channel_id: msg.temporary_channel_id,
6188 counterparty_node_id: *counterparty_node_id,
6189 channel_value_satoshis: value,
6191 user_channel_id: user_id,
6196 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6197 let best_block = *self.best_block.read().unwrap();
6199 let per_peer_state = self.per_peer_state.read().unwrap();
6200 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6202 debug_assert!(false);
6203 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6206 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6207 let peer_state = &mut *peer_state_lock;
6208 let (chan, funding_msg_opt, monitor) =
6209 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6210 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6211 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
6212 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
6214 Err((mut inbound_chan, err)) => {
6215 // We've already removed this inbound channel from the map in `PeerState`
6216 // above so at this point we just need to clean up any lingering entries
6217 // concerning this channel as it is safe to do so.
6218 update_maps_on_chan_removal!(self, &inbound_chan.context);
6219 let user_id = inbound_chan.context.get_user_id();
6220 let shutdown_res = inbound_chan.context.force_shutdown(false);
6221 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6222 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6226 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6227 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6229 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6232 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6233 hash_map::Entry::Occupied(_) => {
6234 Err(MsgHandleErrInternal::send_err_msg_no_close(
6235 "Already had channel with the new channel_id".to_owned(),
6236 chan.context.channel_id()
6239 hash_map::Entry::Vacant(e) => {
6240 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
6241 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
6242 hash_map::Entry::Occupied(_) => {
6243 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6244 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6245 chan.context.channel_id()))
6247 hash_map::Entry::Vacant(i_e) => {
6248 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6249 if let Ok(persist_state) = monitor_res {
6250 i_e.insert(chan.context.get_counterparty_node_id());
6251 mem::drop(outpoint_to_peer_lock);
6253 // There's no problem signing a counterparty's funding transaction if our monitor
6254 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6255 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6256 // until we have persisted our monitor.
6257 if let Some(msg) = funding_msg_opt {
6258 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6259 node_id: counterparty_node_id.clone(),
6264 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6265 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6266 per_peer_state, chan, INITIAL_MONITOR);
6268 unreachable!("This must be a funded channel as we just inserted it.");
6272 let logger = WithChannelContext::from(&self.logger, &chan.context);
6273 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6274 let channel_id = match funding_msg_opt {
6275 Some(msg) => msg.channel_id,
6276 None => chan.context.channel_id(),
6278 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6279 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6288 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6289 let best_block = *self.best_block.read().unwrap();
6290 let per_peer_state = self.per_peer_state.read().unwrap();
6291 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6293 debug_assert!(false);
6294 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6297 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6298 let peer_state = &mut *peer_state_lock;
6299 match peer_state.channel_by_id.entry(msg.channel_id) {
6300 hash_map::Entry::Occupied(chan_phase_entry) => {
6301 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
6302 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
6303 let logger = WithContext::from(
6305 Some(chan.context.get_counterparty_node_id()),
6306 Some(chan.context.channel_id())
6309 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
6311 Ok((chan, monitor)) => {
6312 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6313 // We really should be able to insert here without doing a second
6314 // lookup, but sadly rust stdlib doesn't currently allow keeping
6315 // the original Entry around with the value removed.
6316 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
6317 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
6318 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6319 } else { unreachable!(); }
6322 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
6323 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
6327 debug_assert!(matches!(e, ChannelError::Close(_)),
6328 "We don't have a channel anymore, so the error better have expected close");
6329 // We've already removed this outbound channel from the map in
6330 // `PeerState` above so at this point we just need to clean up any
6331 // lingering entries concerning this channel as it is safe to do so.
6332 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
6336 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6339 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6343 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6344 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6345 // closing a channel), so any changes are likely to be lost on restart!
6346 let per_peer_state = self.per_peer_state.read().unwrap();
6347 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6349 debug_assert!(false);
6350 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6352 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6353 let peer_state = &mut *peer_state_lock;
6354 match peer_state.channel_by_id.entry(msg.channel_id) {
6355 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6356 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6357 let logger = WithChannelContext::from(&self.logger, &chan.context);
6358 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6359 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
6360 if let Some(announcement_sigs) = announcement_sigs_opt {
6361 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6362 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6363 node_id: counterparty_node_id.clone(),
6364 msg: announcement_sigs,
6366 } else if chan.context.is_usable() {
6367 // If we're sending an announcement_signatures, we'll send the (public)
6368 // channel_update after sending a channel_announcement when we receive our
6369 // counterparty's announcement_signatures. Thus, we only bother to send a
6370 // channel_update here if the channel is not public, i.e. we're not sending an
6371 // announcement_signatures.
6372 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6373 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6374 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6375 node_id: counterparty_node_id.clone(),
6382 let mut pending_events = self.pending_events.lock().unwrap();
6383 emit_channel_ready_event!(pending_events, chan);
6388 try_chan_phase_entry!(self, Err(ChannelError::Close(
6389 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6392 hash_map::Entry::Vacant(_) => {
6393 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6398 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6399 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6400 let mut finish_shutdown = None;
6402 let per_peer_state = self.per_peer_state.read().unwrap();
6403 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6405 debug_assert!(false);
6406 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6408 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6409 let peer_state = &mut *peer_state_lock;
6410 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6411 let phase = chan_phase_entry.get_mut();
6413 ChannelPhase::Funded(chan) => {
6414 if !chan.received_shutdown() {
6415 let logger = WithChannelContext::from(&self.logger, &chan.context);
6416 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
6418 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6421 let funding_txo_opt = chan.context.get_funding_txo();
6422 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6423 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6424 dropped_htlcs = htlcs;
6426 if let Some(msg) = shutdown {
6427 // We can send the `shutdown` message before updating the `ChannelMonitor`
6428 // here as we don't need the monitor update to complete until we send a
6429 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6430 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6431 node_id: *counterparty_node_id,
6435 // Update the monitor with the shutdown script if necessary.
6436 if let Some(monitor_update) = monitor_update_opt {
6437 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6438 peer_state_lock, peer_state, per_peer_state, chan);
6441 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6442 let context = phase.context_mut();
6443 let logger = WithChannelContext::from(&self.logger, context);
6444 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6445 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6446 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6447 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6451 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6454 for htlc_source in dropped_htlcs.drain(..) {
6455 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6456 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6457 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6459 if let Some(shutdown_res) = finish_shutdown {
6460 self.finish_close_channel(shutdown_res);
6466 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6467 let per_peer_state = self.per_peer_state.read().unwrap();
6468 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6470 debug_assert!(false);
6471 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6473 let (tx, chan_option, shutdown_result) = {
6474 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6475 let peer_state = &mut *peer_state_lock;
6476 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6477 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6478 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6479 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6480 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6481 if let Some(msg) = closing_signed {
6482 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6483 node_id: counterparty_node_id.clone(),
6488 // We're done with this channel, we've got a signed closing transaction and
6489 // will send the closing_signed back to the remote peer upon return. This
6490 // also implies there are no pending HTLCs left on the channel, so we can
6491 // fully delete it from tracking (the channel monitor is still around to
6492 // watch for old state broadcasts)!
6493 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6494 } else { (tx, None, shutdown_result) }
6496 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6497 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6500 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6503 if let Some(broadcast_tx) = tx {
6504 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
6505 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
6506 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6508 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6509 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6510 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6511 let peer_state = &mut *peer_state_lock;
6512 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6516 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6518 mem::drop(per_peer_state);
6519 if let Some(shutdown_result) = shutdown_result {
6520 self.finish_close_channel(shutdown_result);
6525 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6526 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6527 //determine the state of the payment based on our response/if we forward anything/the time
6528 //we take to respond. We should take care to avoid allowing such an attack.
6530 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6531 //us repeatedly garbled in different ways, and compare our error messages, which are
6532 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6533 //but we should prevent it anyway.
6535 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6536 // closing a channel), so any changes are likely to be lost on restart!
6538 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
6539 let per_peer_state = self.per_peer_state.read().unwrap();
6540 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6542 debug_assert!(false);
6543 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6545 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6546 let peer_state = &mut *peer_state_lock;
6547 match peer_state.channel_by_id.entry(msg.channel_id) {
6548 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6549 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6550 let pending_forward_info = match decoded_hop_res {
6551 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6552 self.construct_pending_htlc_status(
6553 msg, counterparty_node_id, shared_secret, next_hop,
6554 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
6556 Err(e) => PendingHTLCStatus::Fail(e)
6558 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6559 // If the update_add is completely bogus, the call will Err and we will close,
6560 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6561 // want to reject the new HTLC and fail it backwards instead of forwarding.
6562 match pending_forward_info {
6563 PendingHTLCStatus::Forward(PendingHTLCInfo {
6564 ref incoming_shared_secret, ref routing, ..
6566 let reason = if routing.blinded_failure().is_some() {
6567 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
6568 } else if (error_code & 0x1000) != 0 {
6569 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6570 HTLCFailReason::reason(real_code, error_data)
6572 HTLCFailReason::from_failure_code(error_code)
6573 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6574 let msg = msgs::UpdateFailHTLC {
6575 channel_id: msg.channel_id,
6576 htlc_id: msg.htlc_id,
6579 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6581 _ => pending_forward_info
6584 let logger = WithChannelContext::from(&self.logger, &chan.context);
6585 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &&logger), chan_phase_entry);
6587 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6588 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6591 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6596 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6598 let (htlc_source, forwarded_htlc_value) = {
6599 let per_peer_state = self.per_peer_state.read().unwrap();
6600 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6602 debug_assert!(false);
6603 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6605 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6606 let peer_state = &mut *peer_state_lock;
6607 match peer_state.channel_by_id.entry(msg.channel_id) {
6608 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6609 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6610 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6611 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6612 let logger = WithChannelContext::from(&self.logger, &chan.context);
6614 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6616 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6617 .or_insert_with(Vec::new)
6618 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6620 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6621 // entry here, even though we *do* need to block the next RAA monitor update.
6622 // We do this instead in the `claim_funds_internal` by attaching a
6623 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6624 // outbound HTLC is claimed. This is guaranteed to all complete before we
6625 // process the RAA as messages are processed from single peers serially.
6626 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6629 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6630 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6633 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6636 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6640 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6641 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6642 // closing a channel), so any changes are likely to be lost on restart!
6643 let per_peer_state = self.per_peer_state.read().unwrap();
6644 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6646 debug_assert!(false);
6647 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6649 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6650 let peer_state = &mut *peer_state_lock;
6651 match peer_state.channel_by_id.entry(msg.channel_id) {
6652 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6653 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6654 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6656 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6657 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6660 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6665 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6666 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6667 // closing a channel), so any changes are likely to be lost on restart!
6668 let per_peer_state = self.per_peer_state.read().unwrap();
6669 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6671 debug_assert!(false);
6672 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6674 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6675 let peer_state = &mut *peer_state_lock;
6676 match peer_state.channel_by_id.entry(msg.channel_id) {
6677 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6678 if (msg.failure_code & 0x8000) == 0 {
6679 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6680 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6682 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6683 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6685 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6686 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6690 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6694 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6695 let per_peer_state = self.per_peer_state.read().unwrap();
6696 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6698 debug_assert!(false);
6699 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6701 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6702 let peer_state = &mut *peer_state_lock;
6703 match peer_state.channel_by_id.entry(msg.channel_id) {
6704 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6705 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6706 let logger = WithChannelContext::from(&self.logger, &chan.context);
6707 let funding_txo = chan.context.get_funding_txo();
6708 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
6709 if let Some(monitor_update) = monitor_update_opt {
6710 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6711 peer_state, per_peer_state, chan);
6715 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6716 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6719 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6724 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6725 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6726 let mut push_forward_event = false;
6727 let mut new_intercept_events = VecDeque::new();
6728 let mut failed_intercept_forwards = Vec::new();
6729 if !pending_forwards.is_empty() {
6730 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6731 let scid = match forward_info.routing {
6732 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6733 PendingHTLCRouting::Receive { .. } => 0,
6734 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6736 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6737 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6739 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6740 let forward_htlcs_empty = forward_htlcs.is_empty();
6741 match forward_htlcs.entry(scid) {
6742 hash_map::Entry::Occupied(mut entry) => {
6743 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6744 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6746 hash_map::Entry::Vacant(entry) => {
6747 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6748 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6750 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
6751 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6752 match pending_intercepts.entry(intercept_id) {
6753 hash_map::Entry::Vacant(entry) => {
6754 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6755 requested_next_hop_scid: scid,
6756 payment_hash: forward_info.payment_hash,
6757 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6758 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6761 entry.insert(PendingAddHTLCInfo {
6762 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6764 hash_map::Entry::Occupied(_) => {
6765 let logger = WithContext::from(&self.logger, None, Some(prev_funding_outpoint.to_channel_id()));
6766 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6767 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6768 short_channel_id: prev_short_channel_id,
6769 user_channel_id: Some(prev_user_channel_id),
6770 outpoint: prev_funding_outpoint,
6771 htlc_id: prev_htlc_id,
6772 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6773 phantom_shared_secret: None,
6774 blinded_failure: forward_info.routing.blinded_failure(),
6777 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6778 HTLCFailReason::from_failure_code(0x4000 | 10),
6779 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6784 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6785 // payments are being processed.
6786 if forward_htlcs_empty {
6787 push_forward_event = true;
6789 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6790 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6797 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6798 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6801 if !new_intercept_events.is_empty() {
6802 let mut events = self.pending_events.lock().unwrap();
6803 events.append(&mut new_intercept_events);
6805 if push_forward_event { self.push_pending_forwards_ev() }
6809 fn push_pending_forwards_ev(&self) {
6810 let mut pending_events = self.pending_events.lock().unwrap();
6811 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6812 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6813 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6815 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6816 // events is done in batches and they are not removed until we're done processing each
6817 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6818 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6819 // payments will need an additional forwarding event before being claimed to make them look
6820 // real by taking more time.
6821 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6822 pending_events.push_back((Event::PendingHTLCsForwardable {
6823 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6828 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6829 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6830 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6831 /// the [`ChannelMonitorUpdate`] in question.
6832 fn raa_monitor_updates_held(&self,
6833 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6834 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6836 actions_blocking_raa_monitor_updates
6837 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6838 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6839 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6840 channel_funding_outpoint,
6841 counterparty_node_id,
6846 #[cfg(any(test, feature = "_test_utils"))]
6847 pub(crate) fn test_raa_monitor_updates_held(&self,
6848 counterparty_node_id: PublicKey, channel_id: ChannelId
6850 let per_peer_state = self.per_peer_state.read().unwrap();
6851 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6852 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6853 let peer_state = &mut *peer_state_lck;
6855 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6856 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6857 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6863 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6864 let htlcs_to_fail = {
6865 let per_peer_state = self.per_peer_state.read().unwrap();
6866 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6868 debug_assert!(false);
6869 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6870 }).map(|mtx| mtx.lock().unwrap())?;
6871 let peer_state = &mut *peer_state_lock;
6872 match peer_state.channel_by_id.entry(msg.channel_id) {
6873 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6874 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6875 let logger = WithChannelContext::from(&self.logger, &chan.context);
6876 let funding_txo_opt = chan.context.get_funding_txo();
6877 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6878 self.raa_monitor_updates_held(
6879 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6880 *counterparty_node_id)
6882 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6883 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
6884 if let Some(monitor_update) = monitor_update_opt {
6885 let funding_txo = funding_txo_opt
6886 .expect("Funding outpoint must have been set for RAA handling to succeed");
6887 handle_new_monitor_update!(self, funding_txo, monitor_update,
6888 peer_state_lock, peer_state, per_peer_state, chan);
6892 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6893 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6896 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6899 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6903 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6904 let per_peer_state = self.per_peer_state.read().unwrap();
6905 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6907 debug_assert!(false);
6908 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6910 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6911 let peer_state = &mut *peer_state_lock;
6912 match peer_state.channel_by_id.entry(msg.channel_id) {
6913 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6914 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6915 let logger = WithChannelContext::from(&self.logger, &chan.context);
6916 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
6918 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6919 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6922 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6927 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6928 let per_peer_state = self.per_peer_state.read().unwrap();
6929 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6931 debug_assert!(false);
6932 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6934 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6935 let peer_state = &mut *peer_state_lock;
6936 match peer_state.channel_by_id.entry(msg.channel_id) {
6937 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6938 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6939 if !chan.context.is_usable() {
6940 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6943 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6944 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6945 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6946 msg, &self.default_configuration
6947 ), chan_phase_entry),
6948 // Note that announcement_signatures fails if the channel cannot be announced,
6949 // so get_channel_update_for_broadcast will never fail by the time we get here.
6950 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6953 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6954 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6957 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6962 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6963 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6964 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6965 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6967 // It's not a local channel
6968 return Ok(NotifyOption::SkipPersistNoEvents)
6971 let per_peer_state = self.per_peer_state.read().unwrap();
6972 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6973 if peer_state_mutex_opt.is_none() {
6974 return Ok(NotifyOption::SkipPersistNoEvents)
6976 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6977 let peer_state = &mut *peer_state_lock;
6978 match peer_state.channel_by_id.entry(chan_id) {
6979 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6980 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6981 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6982 if chan.context.should_announce() {
6983 // If the announcement is about a channel of ours which is public, some
6984 // other peer may simply be forwarding all its gossip to us. Don't provide
6985 // a scary-looking error message and return Ok instead.
6986 return Ok(NotifyOption::SkipPersistNoEvents);
6988 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6990 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6991 let msg_from_node_one = msg.contents.flags & 1 == 0;
6992 if were_node_one == msg_from_node_one {
6993 return Ok(NotifyOption::SkipPersistNoEvents);
6995 let logger = WithChannelContext::from(&self.logger, &chan.context);
6996 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6997 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6998 // If nothing changed after applying their update, we don't need to bother
7001 return Ok(NotifyOption::SkipPersistNoEvents);
7005 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7006 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7009 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7011 Ok(NotifyOption::DoPersist)
7014 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7016 let need_lnd_workaround = {
7017 let per_peer_state = self.per_peer_state.read().unwrap();
7019 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7021 debug_assert!(false);
7022 MsgHandleErrInternal::send_err_msg_no_close(
7023 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7027 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
7028 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7029 let peer_state = &mut *peer_state_lock;
7030 match peer_state.channel_by_id.entry(msg.channel_id) {
7031 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7032 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7033 // Currently, we expect all holding cell update_adds to be dropped on peer
7034 // disconnect, so Channel's reestablish will never hand us any holding cell
7035 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7036 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7037 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7038 msg, &&logger, &self.node_signer, self.chain_hash,
7039 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7040 let mut channel_update = None;
7041 if let Some(msg) = responses.shutdown_msg {
7042 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7043 node_id: counterparty_node_id.clone(),
7046 } else if chan.context.is_usable() {
7047 // If the channel is in a usable state (ie the channel is not being shut
7048 // down), send a unicast channel_update to our counterparty to make sure
7049 // they have the latest channel parameters.
7050 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7051 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7052 node_id: chan.context.get_counterparty_node_id(),
7057 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7058 htlc_forwards = self.handle_channel_resumption(
7059 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7060 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7061 if let Some(upd) = channel_update {
7062 peer_state.pending_msg_events.push(upd);
7066 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7067 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7070 hash_map::Entry::Vacant(_) => {
7071 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7073 // Unfortunately, lnd doesn't force close on errors
7074 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7075 // One of the few ways to get an lnd counterparty to force close is by
7076 // replicating what they do when restoring static channel backups (SCBs). They
7077 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7078 // invalid `your_last_per_commitment_secret`.
7080 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7081 // can assume it's likely the channel closed from our point of view, but it
7082 // remains open on the counterparty's side. By sending this bogus
7083 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7084 // force close broadcasting their latest state. If the closing transaction from
7085 // our point of view remains unconfirmed, it'll enter a race with the
7086 // counterparty's to-be-broadcast latest commitment transaction.
7087 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7088 node_id: *counterparty_node_id,
7089 msg: msgs::ChannelReestablish {
7090 channel_id: msg.channel_id,
7091 next_local_commitment_number: 0,
7092 next_remote_commitment_number: 0,
7093 your_last_per_commitment_secret: [1u8; 32],
7094 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7095 next_funding_txid: None,
7098 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7099 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7100 counterparty_node_id), msg.channel_id)
7106 let mut persist = NotifyOption::SkipPersistHandleEvents;
7107 if let Some(forwards) = htlc_forwards {
7108 self.forward_htlcs(&mut [forwards][..]);
7109 persist = NotifyOption::DoPersist;
7112 if let Some(channel_ready_msg) = need_lnd_workaround {
7113 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7118 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7119 fn process_pending_monitor_events(&self) -> bool {
7120 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7122 let mut failed_channels = Vec::new();
7123 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7124 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7125 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7126 for monitor_event in monitor_events.drain(..) {
7127 match monitor_event {
7128 MonitorEvent::HTLCEvent(htlc_update) => {
7129 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(funding_outpoint.to_channel_id()));
7130 if let Some(preimage) = htlc_update.payment_preimage {
7131 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7132 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7134 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7135 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7136 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7137 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7140 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7141 let counterparty_node_id_opt = match counterparty_node_id {
7142 Some(cp_id) => Some(cp_id),
7144 // TODO: Once we can rely on the counterparty_node_id from the
7145 // monitor event, this and the outpoint_to_peer map should be removed.
7146 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
7147 outpoint_to_peer.get(&funding_outpoint).cloned()
7150 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7151 let per_peer_state = self.per_peer_state.read().unwrap();
7152 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7153 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7154 let peer_state = &mut *peer_state_lock;
7155 let pending_msg_events = &mut peer_state.pending_msg_events;
7156 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7157 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7158 failed_channels.push(chan.context.force_shutdown(false));
7159 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7160 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7164 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
7165 pending_msg_events.push(events::MessageSendEvent::HandleError {
7166 node_id: chan.context.get_counterparty_node_id(),
7167 action: msgs::ErrorAction::DisconnectPeer {
7168 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7176 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7177 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7183 for failure in failed_channels.drain(..) {
7184 self.finish_close_channel(failure);
7187 has_pending_monitor_events
7190 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7191 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7192 /// update events as a separate process method here.
7194 pub fn process_monitor_events(&self) {
7195 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7196 self.process_pending_monitor_events();
7199 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7200 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7201 /// update was applied.
7202 fn check_free_holding_cells(&self) -> bool {
7203 let mut has_monitor_update = false;
7204 let mut failed_htlcs = Vec::new();
7206 // Walk our list of channels and find any that need to update. Note that when we do find an
7207 // update, if it includes actions that must be taken afterwards, we have to drop the
7208 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7209 // manage to go through all our peers without finding a single channel to update.
7211 let per_peer_state = self.per_peer_state.read().unwrap();
7212 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7214 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7215 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7216 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7217 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7219 let counterparty_node_id = chan.context.get_counterparty_node_id();
7220 let funding_txo = chan.context.get_funding_txo();
7221 let (monitor_opt, holding_cell_failed_htlcs) =
7222 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
7223 if !holding_cell_failed_htlcs.is_empty() {
7224 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7226 if let Some(monitor_update) = monitor_opt {
7227 has_monitor_update = true;
7229 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7230 peer_state_lock, peer_state, per_peer_state, chan);
7231 continue 'peer_loop;
7240 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7241 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7242 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7248 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7249 /// is (temporarily) unavailable, and the operation should be retried later.
7251 /// This method allows for that retry - either checking for any signer-pending messages to be
7252 /// attempted in every channel, or in the specifically provided channel.
7254 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7255 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7256 // actually finish implementing it fully.
7257 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7258 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7260 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7261 let node_id = phase.context().get_counterparty_node_id();
7263 ChannelPhase::Funded(chan) => {
7264 let msgs = chan.signer_maybe_unblocked(&self.logger);
7265 if let Some(updates) = msgs.commitment_update {
7266 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7271 if let Some(msg) = msgs.funding_signed {
7272 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7277 if let Some(msg) = msgs.channel_ready {
7278 send_channel_ready!(self, pending_msg_events, chan, msg);
7281 ChannelPhase::UnfundedOutboundV1(chan) => {
7282 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
7283 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7289 ChannelPhase::UnfundedInboundV1(_) => {},
7293 let per_peer_state = self.per_peer_state.read().unwrap();
7294 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7295 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7296 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7297 let peer_state = &mut *peer_state_lock;
7298 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7299 unblock_chan(chan, &mut peer_state.pending_msg_events);
7303 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7304 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7305 let peer_state = &mut *peer_state_lock;
7306 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7307 unblock_chan(chan, &mut peer_state.pending_msg_events);
7313 /// Check whether any channels have finished removing all pending updates after a shutdown
7314 /// exchange and can now send a closing_signed.
7315 /// Returns whether any closing_signed messages were generated.
7316 fn maybe_generate_initial_closing_signed(&self) -> bool {
7317 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7318 let mut has_update = false;
7319 let mut shutdown_results = Vec::new();
7321 let per_peer_state = self.per_peer_state.read().unwrap();
7323 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7324 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7325 let peer_state = &mut *peer_state_lock;
7326 let pending_msg_events = &mut peer_state.pending_msg_events;
7327 peer_state.channel_by_id.retain(|channel_id, phase| {
7329 ChannelPhase::Funded(chan) => {
7330 let logger = WithChannelContext::from(&self.logger, &chan.context);
7331 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
7332 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7333 if let Some(msg) = msg_opt {
7335 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7336 node_id: chan.context.get_counterparty_node_id(), msg,
7339 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7340 if let Some(shutdown_result) = shutdown_result_opt {
7341 shutdown_results.push(shutdown_result);
7343 if let Some(tx) = tx_opt {
7344 // We're done with this channel. We got a closing_signed and sent back
7345 // a closing_signed with a closing transaction to broadcast.
7346 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7347 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7352 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7354 log_info!(logger, "Broadcasting {}", log_tx!(tx));
7355 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7356 update_maps_on_chan_removal!(self, &chan.context);
7362 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7363 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7368 _ => true, // Retain unfunded channels if present.
7374 for (counterparty_node_id, err) in handle_errors.drain(..) {
7375 let _ = handle_error!(self, err, counterparty_node_id);
7378 for shutdown_result in shutdown_results.drain(..) {
7379 self.finish_close_channel(shutdown_result);
7385 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7386 /// pushing the channel monitor update (if any) to the background events queue and removing the
7388 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7389 for mut failure in failed_channels.drain(..) {
7390 // Either a commitment transactions has been confirmed on-chain or
7391 // Channel::block_disconnected detected that the funding transaction has been
7392 // reorganized out of the main chain.
7393 // We cannot broadcast our latest local state via monitor update (as
7394 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7395 // so we track the update internally and handle it when the user next calls
7396 // timer_tick_occurred, guaranteeing we're running normally.
7397 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7398 assert_eq!(update.updates.len(), 1);
7399 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7400 assert!(should_broadcast);
7401 } else { unreachable!(); }
7402 self.pending_background_events.lock().unwrap().push(
7403 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7404 counterparty_node_id, funding_txo, update
7407 self.finish_close_channel(failure);
7411 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7412 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7413 /// not have an expiration unless otherwise set on the builder.
7417 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7418 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7419 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7420 /// node in order to send the [`InvoiceRequest`].
7424 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7427 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7429 /// [`Offer`]: crate::offers::offer::Offer
7430 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7431 pub fn create_offer_builder(
7432 &self, description: String
7433 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7434 let node_id = self.get_our_node_id();
7435 let expanded_key = &self.inbound_payment_key;
7436 let entropy = &*self.entropy_source;
7437 let secp_ctx = &self.secp_ctx;
7438 let path = self.create_one_hop_blinded_path();
7440 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7441 .chain_hash(self.chain_hash)
7445 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7446 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7450 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7451 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7453 /// The builder will have the provided expiration set. Any changes to the expiration on the
7454 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7455 /// block time minus two hours is used for the current time when determining if the refund has
7458 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7459 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7460 /// with an [`Event::InvoiceRequestFailed`].
7462 /// If `max_total_routing_fee_msat` is not specified, The default from
7463 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7467 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7468 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7469 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7470 /// in order to send the [`Bolt12Invoice`].
7474 /// Requires a direct connection to an introduction node in the responding
7475 /// [`Bolt12Invoice::payment_paths`].
7479 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7480 /// or if `amount_msats` is invalid.
7482 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7484 /// [`Refund`]: crate::offers::refund::Refund
7485 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7486 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7487 pub fn create_refund_builder(
7488 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7489 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7490 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7491 let node_id = self.get_our_node_id();
7492 let expanded_key = &self.inbound_payment_key;
7493 let entropy = &*self.entropy_source;
7494 let secp_ctx = &self.secp_ctx;
7495 let path = self.create_one_hop_blinded_path();
7497 let builder = RefundBuilder::deriving_payer_id(
7498 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7500 .chain_hash(self.chain_hash)
7501 .absolute_expiry(absolute_expiry)
7504 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7505 self.pending_outbound_payments
7506 .add_new_awaiting_invoice(
7507 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7509 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7514 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7515 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7516 /// [`Bolt12Invoice`] once it is received.
7518 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7519 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7520 /// The optional parameters are used in the builder, if `Some`:
7521 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7522 /// [`Offer::expects_quantity`] is `true`.
7523 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7524 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7526 /// If `max_total_routing_fee_msat` is not specified, The default from
7527 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7531 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7532 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7535 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7536 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7537 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7541 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7542 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7543 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7544 /// in order to send the [`Bolt12Invoice`].
7548 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7549 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7550 /// [`Bolt12Invoice::payment_paths`].
7554 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7555 /// or if the provided parameters are invalid for the offer.
7557 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7558 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7559 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7560 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7561 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7562 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7563 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7564 pub fn pay_for_offer(
7565 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7566 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7567 max_total_routing_fee_msat: Option<u64>
7568 ) -> Result<(), Bolt12SemanticError> {
7569 let expanded_key = &self.inbound_payment_key;
7570 let entropy = &*self.entropy_source;
7571 let secp_ctx = &self.secp_ctx;
7574 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7575 .chain_hash(self.chain_hash)?;
7576 let builder = match quantity {
7578 Some(quantity) => builder.quantity(quantity)?,
7580 let builder = match amount_msats {
7582 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7584 let builder = match payer_note {
7586 Some(payer_note) => builder.payer_note(payer_note),
7589 let invoice_request = builder.build_and_sign()?;
7590 let reply_path = self.create_one_hop_blinded_path();
7592 let expiration = StaleExpiration::TimerTicks(1);
7593 self.pending_outbound_payments
7594 .add_new_awaiting_invoice(
7595 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7597 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7599 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7600 if offer.paths().is_empty() {
7601 let message = new_pending_onion_message(
7602 OffersMessage::InvoiceRequest(invoice_request),
7603 Destination::Node(offer.signing_pubkey()),
7606 pending_offers_messages.push(message);
7608 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7609 // Using only one path could result in a failure if the path no longer exists. But only
7610 // one invoice for a given payment id will be paid, even if more than one is received.
7611 const REQUEST_LIMIT: usize = 10;
7612 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7613 let message = new_pending_onion_message(
7614 OffersMessage::InvoiceRequest(invoice_request.clone()),
7615 Destination::BlindedPath(path.clone()),
7616 Some(reply_path.clone()),
7618 pending_offers_messages.push(message);
7625 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7628 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7629 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7630 /// [`PaymentPreimage`].
7634 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7635 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7636 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7637 /// received and no retries will be made.
7639 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7640 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7641 let expanded_key = &self.inbound_payment_key;
7642 let entropy = &*self.entropy_source;
7643 let secp_ctx = &self.secp_ctx;
7645 let amount_msats = refund.amount_msats();
7646 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7648 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7649 Ok((payment_hash, payment_secret)) => {
7650 let payment_paths = vec![
7651 self.create_one_hop_blinded_payment_path(payment_secret),
7653 #[cfg(not(feature = "no-std"))]
7654 let builder = refund.respond_using_derived_keys(
7655 payment_paths, payment_hash, expanded_key, entropy
7657 #[cfg(feature = "no-std")]
7658 let created_at = Duration::from_secs(
7659 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7661 #[cfg(feature = "no-std")]
7662 let builder = refund.respond_using_derived_keys_no_std(
7663 payment_paths, payment_hash, created_at, expanded_key, entropy
7665 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7666 let reply_path = self.create_one_hop_blinded_path();
7668 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7669 if refund.paths().is_empty() {
7670 let message = new_pending_onion_message(
7671 OffersMessage::Invoice(invoice),
7672 Destination::Node(refund.payer_id()),
7675 pending_offers_messages.push(message);
7677 for path in refund.paths() {
7678 let message = new_pending_onion_message(
7679 OffersMessage::Invoice(invoice.clone()),
7680 Destination::BlindedPath(path.clone()),
7681 Some(reply_path.clone()),
7683 pending_offers_messages.push(message);
7689 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7693 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7696 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7697 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7699 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7700 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7701 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7702 /// passed directly to [`claim_funds`].
7704 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7706 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7707 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7711 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7712 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7714 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7716 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7717 /// on versions of LDK prior to 0.0.114.
7719 /// [`claim_funds`]: Self::claim_funds
7720 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7721 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7722 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7723 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7724 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7725 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7726 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7727 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7728 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7729 min_final_cltv_expiry_delta)
7732 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7733 /// stored external to LDK.
7735 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7736 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7737 /// the `min_value_msat` provided here, if one is provided.
7739 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7740 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7743 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7744 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7745 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7746 /// sender "proof-of-payment" unless they have paid the required amount.
7748 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7749 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7750 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7751 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7752 /// invoices when no timeout is set.
7754 /// Note that we use block header time to time-out pending inbound payments (with some margin
7755 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7756 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7757 /// If you need exact expiry semantics, you should enforce them upon receipt of
7758 /// [`PaymentClaimable`].
7760 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7761 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7763 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7764 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7768 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7769 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7771 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7773 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7774 /// on versions of LDK prior to 0.0.114.
7776 /// [`create_inbound_payment`]: Self::create_inbound_payment
7777 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7778 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7779 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7780 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7781 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7782 min_final_cltv_expiry)
7785 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7786 /// previously returned from [`create_inbound_payment`].
7788 /// [`create_inbound_payment`]: Self::create_inbound_payment
7789 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7790 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7793 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7795 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7796 let entropy_source = self.entropy_source.deref();
7797 let secp_ctx = &self.secp_ctx;
7798 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7801 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7803 fn create_one_hop_blinded_payment_path(
7804 &self, payment_secret: PaymentSecret
7805 ) -> (BlindedPayInfo, BlindedPath) {
7806 let entropy_source = self.entropy_source.deref();
7807 let secp_ctx = &self.secp_ctx;
7809 let payee_node_id = self.get_our_node_id();
7810 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7811 let payee_tlvs = ReceiveTlvs {
7813 payment_constraints: PaymentConstraints {
7815 htlc_minimum_msat: 1,
7818 // TODO: Err for overflow?
7819 BlindedPath::one_hop_for_payment(
7820 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7824 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7825 /// are used when constructing the phantom invoice's route hints.
7827 /// [phantom node payments]: crate::sign::PhantomKeysManager
7828 pub fn get_phantom_scid(&self) -> u64 {
7829 let best_block_height = self.best_block.read().unwrap().height();
7830 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7832 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7833 // Ensure the generated scid doesn't conflict with a real channel.
7834 match short_to_chan_info.get(&scid_candidate) {
7835 Some(_) => continue,
7836 None => return scid_candidate
7841 /// Gets route hints for use in receiving [phantom node payments].
7843 /// [phantom node payments]: crate::sign::PhantomKeysManager
7844 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7846 channels: self.list_usable_channels(),
7847 phantom_scid: self.get_phantom_scid(),
7848 real_node_pubkey: self.get_our_node_id(),
7852 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7853 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7854 /// [`ChannelManager::forward_intercepted_htlc`].
7856 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7857 /// times to get a unique scid.
7858 pub fn get_intercept_scid(&self) -> u64 {
7859 let best_block_height = self.best_block.read().unwrap().height();
7860 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7862 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7863 // Ensure the generated scid doesn't conflict with a real channel.
7864 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7865 return scid_candidate
7869 /// Gets inflight HTLC information by processing pending outbound payments that are in
7870 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7871 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7872 let mut inflight_htlcs = InFlightHtlcs::new();
7874 let per_peer_state = self.per_peer_state.read().unwrap();
7875 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7876 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7877 let peer_state = &mut *peer_state_lock;
7878 for chan in peer_state.channel_by_id.values().filter_map(
7879 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7881 for (htlc_source, _) in chan.inflight_htlc_sources() {
7882 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7883 inflight_htlcs.process_path(path, self.get_our_node_id());
7892 #[cfg(any(test, feature = "_test_utils"))]
7893 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7894 let events = core::cell::RefCell::new(Vec::new());
7895 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7896 self.process_pending_events(&event_handler);
7900 #[cfg(feature = "_test_utils")]
7901 pub fn push_pending_event(&self, event: events::Event) {
7902 let mut events = self.pending_events.lock().unwrap();
7903 events.push_back((event, None));
7907 pub fn pop_pending_event(&self) -> Option<events::Event> {
7908 let mut events = self.pending_events.lock().unwrap();
7909 events.pop_front().map(|(e, _)| e)
7913 pub fn has_pending_payments(&self) -> bool {
7914 self.pending_outbound_payments.has_pending_payments()
7918 pub fn clear_pending_payments(&self) {
7919 self.pending_outbound_payments.clear_pending_payments()
7922 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7923 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7924 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7925 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7926 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7927 let logger = WithContext::from(
7928 &self.logger, Some(counterparty_node_id), Some(channel_funding_outpoint.to_channel_id())
7931 let per_peer_state = self.per_peer_state.read().unwrap();
7932 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7933 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7934 let peer_state = &mut *peer_state_lck;
7935 if let Some(blocker) = completed_blocker.take() {
7936 // Only do this on the first iteration of the loop.
7937 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7938 .get_mut(&channel_funding_outpoint.to_channel_id())
7940 blockers.retain(|iter| iter != &blocker);
7944 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7945 channel_funding_outpoint, counterparty_node_id) {
7946 // Check that, while holding the peer lock, we don't have anything else
7947 // blocking monitor updates for this channel. If we do, release the monitor
7948 // update(s) when those blockers complete.
7949 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7950 &channel_funding_outpoint.to_channel_id());
7954 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7955 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7956 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7957 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7958 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
7959 channel_funding_outpoint.to_channel_id());
7960 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7961 peer_state_lck, peer_state, per_peer_state, chan);
7962 if further_update_exists {
7963 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7968 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
7969 channel_funding_outpoint.to_channel_id());
7975 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7976 log_pubkey!(counterparty_node_id));
7982 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7983 for action in actions {
7985 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7986 channel_funding_outpoint, counterparty_node_id
7988 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7994 /// Processes any events asynchronously in the order they were generated since the last call
7995 /// using the given event handler.
7997 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7998 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
8002 process_events_body!(self, ev, { handler(ev).await });
8006 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8008 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8009 T::Target: BroadcasterInterface,
8010 ES::Target: EntropySource,
8011 NS::Target: NodeSigner,
8012 SP::Target: SignerProvider,
8013 F::Target: FeeEstimator,
8017 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8018 /// The returned array will contain `MessageSendEvent`s for different peers if
8019 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8020 /// is always placed next to each other.
8022 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8023 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8024 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8025 /// will randomly be placed first or last in the returned array.
8027 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8028 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8029 /// the `MessageSendEvent`s to the specific peer they were generated under.
8030 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8031 let events = RefCell::new(Vec::new());
8032 PersistenceNotifierGuard::optionally_notify(self, || {
8033 let mut result = NotifyOption::SkipPersistNoEvents;
8035 // TODO: This behavior should be documented. It's unintuitive that we query
8036 // ChannelMonitors when clearing other events.
8037 if self.process_pending_monitor_events() {
8038 result = NotifyOption::DoPersist;
8041 if self.check_free_holding_cells() {
8042 result = NotifyOption::DoPersist;
8044 if self.maybe_generate_initial_closing_signed() {
8045 result = NotifyOption::DoPersist;
8048 let mut pending_events = Vec::new();
8049 let per_peer_state = self.per_peer_state.read().unwrap();
8050 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8051 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8052 let peer_state = &mut *peer_state_lock;
8053 if peer_state.pending_msg_events.len() > 0 {
8054 pending_events.append(&mut peer_state.pending_msg_events);
8058 if !pending_events.is_empty() {
8059 events.replace(pending_events);
8068 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8070 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8071 T::Target: BroadcasterInterface,
8072 ES::Target: EntropySource,
8073 NS::Target: NodeSigner,
8074 SP::Target: SignerProvider,
8075 F::Target: FeeEstimator,
8079 /// Processes events that must be periodically handled.
8081 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8082 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8083 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8085 process_events_body!(self, ev, handler.handle_event(ev));
8089 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8091 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8092 T::Target: BroadcasterInterface,
8093 ES::Target: EntropySource,
8094 NS::Target: NodeSigner,
8095 SP::Target: SignerProvider,
8096 F::Target: FeeEstimator,
8100 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
8102 let best_block = self.best_block.read().unwrap();
8103 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8104 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8105 assert_eq!(best_block.height(), height - 1,
8106 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8109 self.transactions_confirmed(header, txdata, height);
8110 self.best_block_updated(header, height);
8113 fn block_disconnected(&self, header: &Header, height: u32) {
8114 let _persistence_guard =
8115 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8116 self, || -> NotifyOption { NotifyOption::DoPersist });
8117 let new_height = height - 1;
8119 let mut best_block = self.best_block.write().unwrap();
8120 assert_eq!(best_block.block_hash(), header.block_hash(),
8121 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8122 assert_eq!(best_block.height(), height,
8123 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8124 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8127 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8131 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8133 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8134 T::Target: BroadcasterInterface,
8135 ES::Target: EntropySource,
8136 NS::Target: NodeSigner,
8137 SP::Target: SignerProvider,
8138 F::Target: FeeEstimator,
8142 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
8143 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8144 // during initialization prior to the chain_monitor being fully configured in some cases.
8145 // See the docs for `ChannelManagerReadArgs` for more.
8147 let block_hash = header.block_hash();
8148 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8150 let _persistence_guard =
8151 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8152 self, || -> NotifyOption { NotifyOption::DoPersist });
8153 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
8154 .map(|(a, b)| (a, Vec::new(), b)));
8156 let last_best_block_height = self.best_block.read().unwrap().height();
8157 if height < last_best_block_height {
8158 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8159 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8163 fn best_block_updated(&self, header: &Header, height: u32) {
8164 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8165 // during initialization prior to the chain_monitor being fully configured in some cases.
8166 // See the docs for `ChannelManagerReadArgs` for more.
8168 let block_hash = header.block_hash();
8169 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8171 let _persistence_guard =
8172 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8173 self, || -> NotifyOption { NotifyOption::DoPersist });
8174 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8176 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8178 macro_rules! max_time {
8179 ($timestamp: expr) => {
8181 // Update $timestamp to be the max of its current value and the block
8182 // timestamp. This should keep us close to the current time without relying on
8183 // having an explicit local time source.
8184 // Just in case we end up in a race, we loop until we either successfully
8185 // update $timestamp or decide we don't need to.
8186 let old_serial = $timestamp.load(Ordering::Acquire);
8187 if old_serial >= header.time as usize { break; }
8188 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8194 max_time!(self.highest_seen_timestamp);
8195 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8196 payment_secrets.retain(|_, inbound_payment| {
8197 inbound_payment.expiry_time > header.time as u64
8201 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
8202 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8203 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8204 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8205 let peer_state = &mut *peer_state_lock;
8206 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8207 let txid_opt = chan.context.get_funding_txo();
8208 let height_opt = chan.context.get_funding_tx_confirmation_height();
8209 let hash_opt = chan.context.get_funding_tx_confirmed_in();
8210 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
8211 res.push((funding_txo.txid, conf_height, Some(block_hash)));
8218 fn transaction_unconfirmed(&self, txid: &Txid) {
8219 let _persistence_guard =
8220 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8221 self, || -> NotifyOption { NotifyOption::DoPersist });
8222 self.do_chain_event(None, |channel| {
8223 if let Some(funding_txo) = channel.context.get_funding_txo() {
8224 if funding_txo.txid == *txid {
8225 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
8226 } else { Ok((None, Vec::new(), None)) }
8227 } else { Ok((None, Vec::new(), None)) }
8232 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8234 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8235 T::Target: BroadcasterInterface,
8236 ES::Target: EntropySource,
8237 NS::Target: NodeSigner,
8238 SP::Target: SignerProvider,
8239 F::Target: FeeEstimator,
8243 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8244 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8246 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8247 (&self, height_opt: Option<u32>, f: FN) {
8248 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8249 // during initialization prior to the chain_monitor being fully configured in some cases.
8250 // See the docs for `ChannelManagerReadArgs` for more.
8252 let mut failed_channels = Vec::new();
8253 let mut timed_out_htlcs = Vec::new();
8255 let per_peer_state = self.per_peer_state.read().unwrap();
8256 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8257 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8258 let peer_state = &mut *peer_state_lock;
8259 let pending_msg_events = &mut peer_state.pending_msg_events;
8260 peer_state.channel_by_id.retain(|_, phase| {
8262 // Retain unfunded channels.
8263 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8264 ChannelPhase::Funded(channel) => {
8265 let res = f(channel);
8266 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8267 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8268 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8269 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8270 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8272 let logger = WithChannelContext::from(&self.logger, &channel.context);
8273 if let Some(channel_ready) = channel_ready_opt {
8274 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8275 if channel.context.is_usable() {
8276 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8277 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8278 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8279 node_id: channel.context.get_counterparty_node_id(),
8284 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8289 let mut pending_events = self.pending_events.lock().unwrap();
8290 emit_channel_ready_event!(pending_events, channel);
8293 if let Some(announcement_sigs) = announcement_sigs {
8294 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8295 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8296 node_id: channel.context.get_counterparty_node_id(),
8297 msg: announcement_sigs,
8299 if let Some(height) = height_opt {
8300 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8301 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8303 // Note that announcement_signatures fails if the channel cannot be announced,
8304 // so get_channel_update_for_broadcast will never fail by the time we get here.
8305 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8310 if channel.is_our_channel_ready() {
8311 if let Some(real_scid) = channel.context.get_short_channel_id() {
8312 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8313 // to the short_to_chan_info map here. Note that we check whether we
8314 // can relay using the real SCID at relay-time (i.e.
8315 // enforce option_scid_alias then), and if the funding tx is ever
8316 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8317 // is always consistent.
8318 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8319 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8320 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8321 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8322 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8325 } else if let Err(reason) = res {
8326 update_maps_on_chan_removal!(self, &channel.context);
8327 // It looks like our counterparty went on-chain or funding transaction was
8328 // reorged out of the main chain. Close the channel.
8329 failed_channels.push(channel.context.force_shutdown(true));
8330 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8331 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8335 let reason_message = format!("{}", reason);
8336 self.issue_channel_close_events(&channel.context, reason);
8337 pending_msg_events.push(events::MessageSendEvent::HandleError {
8338 node_id: channel.context.get_counterparty_node_id(),
8339 action: msgs::ErrorAction::DisconnectPeer {
8340 msg: Some(msgs::ErrorMessage {
8341 channel_id: channel.context.channel_id(),
8342 data: reason_message,
8355 if let Some(height) = height_opt {
8356 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8357 payment.htlcs.retain(|htlc| {
8358 // If height is approaching the number of blocks we think it takes us to get
8359 // our commitment transaction confirmed before the HTLC expires, plus the
8360 // number of blocks we generally consider it to take to do a commitment update,
8361 // just give up on it and fail the HTLC.
8362 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8363 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8364 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8366 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8367 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8368 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8372 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8375 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8376 intercepted_htlcs.retain(|_, htlc| {
8377 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8378 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8379 short_channel_id: htlc.prev_short_channel_id,
8380 user_channel_id: Some(htlc.prev_user_channel_id),
8381 htlc_id: htlc.prev_htlc_id,
8382 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8383 phantom_shared_secret: None,
8384 outpoint: htlc.prev_funding_outpoint,
8385 blinded_failure: htlc.forward_info.routing.blinded_failure(),
8388 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8389 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8390 _ => unreachable!(),
8392 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8393 HTLCFailReason::from_failure_code(0x2000 | 2),
8394 HTLCDestination::InvalidForward { requested_forward_scid }));
8395 let logger = WithContext::from(
8396 &self.logger, None, Some(htlc.prev_funding_outpoint.to_channel_id())
8398 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8404 self.handle_init_event_channel_failures(failed_channels);
8406 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8407 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8411 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8412 /// may have events that need processing.
8414 /// In order to check if this [`ChannelManager`] needs persisting, call
8415 /// [`Self::get_and_clear_needs_persistence`].
8417 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8418 /// [`ChannelManager`] and should instead register actions to be taken later.
8419 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8420 self.event_persist_notifier.get_future()
8423 /// Returns true if this [`ChannelManager`] needs to be persisted.
8424 pub fn get_and_clear_needs_persistence(&self) -> bool {
8425 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8428 #[cfg(any(test, feature = "_test_utils"))]
8429 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8430 self.event_persist_notifier.notify_pending()
8433 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8434 /// [`chain::Confirm`] interfaces.
8435 pub fn current_best_block(&self) -> BestBlock {
8436 self.best_block.read().unwrap().clone()
8439 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8440 /// [`ChannelManager`].
8441 pub fn node_features(&self) -> NodeFeatures {
8442 provided_node_features(&self.default_configuration)
8445 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8446 /// [`ChannelManager`].
8448 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8449 /// or not. Thus, this method is not public.
8450 #[cfg(any(feature = "_test_utils", test))]
8451 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8452 provided_bolt11_invoice_features(&self.default_configuration)
8455 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8456 /// [`ChannelManager`].
8457 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8458 provided_bolt12_invoice_features(&self.default_configuration)
8461 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8462 /// [`ChannelManager`].
8463 pub fn channel_features(&self) -> ChannelFeatures {
8464 provided_channel_features(&self.default_configuration)
8467 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8468 /// [`ChannelManager`].
8469 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8470 provided_channel_type_features(&self.default_configuration)
8473 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8474 /// [`ChannelManager`].
8475 pub fn init_features(&self) -> InitFeatures {
8476 provided_init_features(&self.default_configuration)
8480 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8481 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8483 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8484 T::Target: BroadcasterInterface,
8485 ES::Target: EntropySource,
8486 NS::Target: NodeSigner,
8487 SP::Target: SignerProvider,
8488 F::Target: FeeEstimator,
8492 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8493 // Note that we never need to persist the updated ChannelManager for an inbound
8494 // open_channel message - pre-funded channels are never written so there should be no
8495 // change to the contents.
8496 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8497 let res = self.internal_open_channel(counterparty_node_id, msg);
8498 let persist = match &res {
8499 Err(e) if e.closes_channel() => {
8500 debug_assert!(false, "We shouldn't close a new channel");
8501 NotifyOption::DoPersist
8503 _ => NotifyOption::SkipPersistHandleEvents,
8505 let _ = handle_error!(self, res, *counterparty_node_id);
8510 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8511 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8512 "Dual-funded channels not supported".to_owned(),
8513 msg.temporary_channel_id.clone())), *counterparty_node_id);
8516 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8517 // Note that we never need to persist the updated ChannelManager for an inbound
8518 // accept_channel message - pre-funded channels are never written so there should be no
8519 // change to the contents.
8520 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8521 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8522 NotifyOption::SkipPersistHandleEvents
8526 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8527 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8528 "Dual-funded channels not supported".to_owned(),
8529 msg.temporary_channel_id.clone())), *counterparty_node_id);
8532 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8533 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8534 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8537 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8538 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8539 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8542 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8543 // Note that we never need to persist the updated ChannelManager for an inbound
8544 // channel_ready message - while the channel's state will change, any channel_ready message
8545 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8546 // will not force-close the channel on startup.
8547 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8548 let res = self.internal_channel_ready(counterparty_node_id, msg);
8549 let persist = match &res {
8550 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8551 _ => NotifyOption::SkipPersistHandleEvents,
8553 let _ = handle_error!(self, res, *counterparty_node_id);
8558 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8559 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8560 "Quiescence not supported".to_owned(),
8561 msg.channel_id.clone())), *counterparty_node_id);
8564 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8565 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8566 "Splicing not supported".to_owned(),
8567 msg.channel_id.clone())), *counterparty_node_id);
8570 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8571 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8572 "Splicing not supported (splice_ack)".to_owned(),
8573 msg.channel_id.clone())), *counterparty_node_id);
8576 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8577 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8578 "Splicing not supported (splice_locked)".to_owned(),
8579 msg.channel_id.clone())), *counterparty_node_id);
8582 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8583 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8584 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8587 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8588 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8589 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8592 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8593 // Note that we never need to persist the updated ChannelManager for an inbound
8594 // update_add_htlc message - the message itself doesn't change our channel state only the
8595 // `commitment_signed` message afterwards will.
8596 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8597 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8598 let persist = match &res {
8599 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8600 Err(_) => NotifyOption::SkipPersistHandleEvents,
8601 Ok(()) => NotifyOption::SkipPersistNoEvents,
8603 let _ = handle_error!(self, res, *counterparty_node_id);
8608 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8609 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8610 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8613 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8614 // Note that we never need to persist the updated ChannelManager for an inbound
8615 // update_fail_htlc message - the message itself doesn't change our channel state only the
8616 // `commitment_signed` message afterwards will.
8617 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8618 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8619 let persist = match &res {
8620 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8621 Err(_) => NotifyOption::SkipPersistHandleEvents,
8622 Ok(()) => NotifyOption::SkipPersistNoEvents,
8624 let _ = handle_error!(self, res, *counterparty_node_id);
8629 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8630 // Note that we never need to persist the updated ChannelManager for an inbound
8631 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8632 // only the `commitment_signed` message afterwards will.
8633 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8634 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8635 let persist = match &res {
8636 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8637 Err(_) => NotifyOption::SkipPersistHandleEvents,
8638 Ok(()) => NotifyOption::SkipPersistNoEvents,
8640 let _ = handle_error!(self, res, *counterparty_node_id);
8645 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8646 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8647 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8650 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8651 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8652 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8655 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8656 // Note that we never need to persist the updated ChannelManager for an inbound
8657 // update_fee message - the message itself doesn't change our channel state only the
8658 // `commitment_signed` message afterwards will.
8659 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8660 let res = self.internal_update_fee(counterparty_node_id, msg);
8661 let persist = match &res {
8662 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8663 Err(_) => NotifyOption::SkipPersistHandleEvents,
8664 Ok(()) => NotifyOption::SkipPersistNoEvents,
8666 let _ = handle_error!(self, res, *counterparty_node_id);
8671 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8672 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8673 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8676 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8677 PersistenceNotifierGuard::optionally_notify(self, || {
8678 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8681 NotifyOption::DoPersist
8686 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8687 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8688 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8689 let persist = match &res {
8690 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8691 Err(_) => NotifyOption::SkipPersistHandleEvents,
8692 Ok(persist) => *persist,
8694 let _ = handle_error!(self, res, *counterparty_node_id);
8699 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8700 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8701 self, || NotifyOption::SkipPersistHandleEvents);
8702 let mut failed_channels = Vec::new();
8703 let mut per_peer_state = self.per_peer_state.write().unwrap();
8706 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
8707 "Marking channels with {} disconnected and generating channel_updates.",
8708 log_pubkey!(counterparty_node_id)
8710 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8711 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8712 let peer_state = &mut *peer_state_lock;
8713 let pending_msg_events = &mut peer_state.pending_msg_events;
8714 peer_state.channel_by_id.retain(|_, phase| {
8715 let context = match phase {
8716 ChannelPhase::Funded(chan) => {
8717 let logger = WithChannelContext::from(&self.logger, &chan.context);
8718 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
8719 // We only retain funded channels that are not shutdown.
8724 // Unfunded channels will always be removed.
8725 ChannelPhase::UnfundedOutboundV1(chan) => {
8728 ChannelPhase::UnfundedInboundV1(chan) => {
8732 // Clean up for removal.
8733 update_maps_on_chan_removal!(self, &context);
8734 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8735 failed_channels.push(context.force_shutdown(false));
8738 // Note that we don't bother generating any events for pre-accept channels -
8739 // they're not considered "channels" yet from the PoV of our events interface.
8740 peer_state.inbound_channel_request_by_id.clear();
8741 pending_msg_events.retain(|msg| {
8743 // V1 Channel Establishment
8744 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8745 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8746 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8747 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8748 // V2 Channel Establishment
8749 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8750 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8751 // Common Channel Establishment
8752 &events::MessageSendEvent::SendChannelReady { .. } => false,
8753 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8755 &events::MessageSendEvent::SendStfu { .. } => false,
8757 &events::MessageSendEvent::SendSplice { .. } => false,
8758 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8759 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8760 // Interactive Transaction Construction
8761 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8762 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8763 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8764 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8765 &events::MessageSendEvent::SendTxComplete { .. } => false,
8766 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8767 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8768 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8769 &events::MessageSendEvent::SendTxAbort { .. } => false,
8770 // Channel Operations
8771 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8772 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8773 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8774 &events::MessageSendEvent::SendShutdown { .. } => false,
8775 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8776 &events::MessageSendEvent::HandleError { .. } => false,
8778 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8779 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8780 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8781 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8782 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8783 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8784 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8785 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8786 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8789 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8790 peer_state.is_connected = false;
8791 peer_state.ok_to_remove(true)
8792 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8795 per_peer_state.remove(counterparty_node_id);
8797 mem::drop(per_peer_state);
8799 for failure in failed_channels.drain(..) {
8800 self.finish_close_channel(failure);
8804 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8805 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
8806 if !init_msg.features.supports_static_remote_key() {
8807 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8811 let mut res = Ok(());
8813 PersistenceNotifierGuard::optionally_notify(self, || {
8814 // If we have too many peers connected which don't have funded channels, disconnect the
8815 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8816 // unfunded channels taking up space in memory for disconnected peers, we still let new
8817 // peers connect, but we'll reject new channels from them.
8818 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8819 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8822 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8823 match peer_state_lock.entry(counterparty_node_id.clone()) {
8824 hash_map::Entry::Vacant(e) => {
8825 if inbound_peer_limited {
8827 return NotifyOption::SkipPersistNoEvents;
8829 e.insert(Mutex::new(PeerState {
8830 channel_by_id: HashMap::new(),
8831 inbound_channel_request_by_id: HashMap::new(),
8832 latest_features: init_msg.features.clone(),
8833 pending_msg_events: Vec::new(),
8834 in_flight_monitor_updates: BTreeMap::new(),
8835 monitor_update_blocked_actions: BTreeMap::new(),
8836 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8840 hash_map::Entry::Occupied(e) => {
8841 let mut peer_state = e.get().lock().unwrap();
8842 peer_state.latest_features = init_msg.features.clone();
8844 let best_block_height = self.best_block.read().unwrap().height();
8845 if inbound_peer_limited &&
8846 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8847 peer_state.channel_by_id.len()
8850 return NotifyOption::SkipPersistNoEvents;
8853 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8854 peer_state.is_connected = true;
8859 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8861 let per_peer_state = self.per_peer_state.read().unwrap();
8862 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8863 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8864 let peer_state = &mut *peer_state_lock;
8865 let pending_msg_events = &mut peer_state.pending_msg_events;
8867 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8868 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8869 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8870 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8871 // worry about closing and removing them.
8872 debug_assert!(false);
8876 let logger = WithChannelContext::from(&self.logger, &chan.context);
8877 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8878 node_id: chan.context.get_counterparty_node_id(),
8879 msg: chan.get_channel_reestablish(&&logger),
8884 return NotifyOption::SkipPersistHandleEvents;
8885 //TODO: Also re-broadcast announcement_signatures
8890 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8891 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8893 match &msg.data as &str {
8894 "cannot co-op close channel w/ active htlcs"|
8895 "link failed to shutdown" =>
8897 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8898 // send one while HTLCs are still present. The issue is tracked at
8899 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8900 // to fix it but none so far have managed to land upstream. The issue appears to be
8901 // very low priority for the LND team despite being marked "P1".
8902 // We're not going to bother handling this in a sensible way, instead simply
8903 // repeating the Shutdown message on repeat until morale improves.
8904 if !msg.channel_id.is_zero() {
8905 let per_peer_state = self.per_peer_state.read().unwrap();
8906 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8907 if peer_state_mutex_opt.is_none() { return; }
8908 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8909 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8910 if let Some(msg) = chan.get_outbound_shutdown() {
8911 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8912 node_id: *counterparty_node_id,
8916 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8917 node_id: *counterparty_node_id,
8918 action: msgs::ErrorAction::SendWarningMessage {
8919 msg: msgs::WarningMessage {
8920 channel_id: msg.channel_id,
8921 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8923 log_level: Level::Trace,
8933 if msg.channel_id.is_zero() {
8934 let channel_ids: Vec<ChannelId> = {
8935 let per_peer_state = self.per_peer_state.read().unwrap();
8936 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8937 if peer_state_mutex_opt.is_none() { return; }
8938 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8939 let peer_state = &mut *peer_state_lock;
8940 // Note that we don't bother generating any events for pre-accept channels -
8941 // they're not considered "channels" yet from the PoV of our events interface.
8942 peer_state.inbound_channel_request_by_id.clear();
8943 peer_state.channel_by_id.keys().cloned().collect()
8945 for channel_id in channel_ids {
8946 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8947 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8951 // First check if we can advance the channel type and try again.
8952 let per_peer_state = self.per_peer_state.read().unwrap();
8953 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8954 if peer_state_mutex_opt.is_none() { return; }
8955 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8956 let peer_state = &mut *peer_state_lock;
8957 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8958 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8959 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8960 node_id: *counterparty_node_id,
8968 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8969 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8973 fn provided_node_features(&self) -> NodeFeatures {
8974 provided_node_features(&self.default_configuration)
8977 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8978 provided_init_features(&self.default_configuration)
8981 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
8982 Some(vec![self.chain_hash])
8985 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8986 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8987 "Dual-funded channels not supported".to_owned(),
8988 msg.channel_id.clone())), *counterparty_node_id);
8991 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8992 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8993 "Dual-funded channels not supported".to_owned(),
8994 msg.channel_id.clone())), *counterparty_node_id);
8997 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8998 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8999 "Dual-funded channels not supported".to_owned(),
9000 msg.channel_id.clone())), *counterparty_node_id);
9003 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
9004 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9005 "Dual-funded channels not supported".to_owned(),
9006 msg.channel_id.clone())), *counterparty_node_id);
9009 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
9010 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9011 "Dual-funded channels not supported".to_owned(),
9012 msg.channel_id.clone())), *counterparty_node_id);
9015 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
9016 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9017 "Dual-funded channels not supported".to_owned(),
9018 msg.channel_id.clone())), *counterparty_node_id);
9021 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
9022 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9023 "Dual-funded channels not supported".to_owned(),
9024 msg.channel_id.clone())), *counterparty_node_id);
9027 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
9028 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9029 "Dual-funded channels not supported".to_owned(),
9030 msg.channel_id.clone())), *counterparty_node_id);
9033 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9034 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9035 "Dual-funded channels not supported".to_owned(),
9036 msg.channel_id.clone())), *counterparty_node_id);
9040 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9041 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9043 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9044 T::Target: BroadcasterInterface,
9045 ES::Target: EntropySource,
9046 NS::Target: NodeSigner,
9047 SP::Target: SignerProvider,
9048 F::Target: FeeEstimator,
9052 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9053 let secp_ctx = &self.secp_ctx;
9054 let expanded_key = &self.inbound_payment_key;
9057 OffersMessage::InvoiceRequest(invoice_request) => {
9058 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9061 Ok(amount_msats) => Some(amount_msats),
9062 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9064 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9065 Ok(invoice_request) => invoice_request,
9067 let error = Bolt12SemanticError::InvalidMetadata;
9068 return Some(OffersMessage::InvoiceError(error.into()));
9071 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9073 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9074 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9075 let payment_paths = vec![
9076 self.create_one_hop_blinded_payment_path(payment_secret),
9078 #[cfg(not(feature = "no-std"))]
9079 let builder = invoice_request.respond_using_derived_keys(
9080 payment_paths, payment_hash
9082 #[cfg(feature = "no-std")]
9083 let created_at = Duration::from_secs(
9084 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9086 #[cfg(feature = "no-std")]
9087 let builder = invoice_request.respond_using_derived_keys_no_std(
9088 payment_paths, payment_hash, created_at
9090 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9091 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9092 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9095 Ok((payment_hash, payment_secret)) => {
9096 let payment_paths = vec![
9097 self.create_one_hop_blinded_payment_path(payment_secret),
9099 #[cfg(not(feature = "no-std"))]
9100 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9101 #[cfg(feature = "no-std")]
9102 let created_at = Duration::from_secs(
9103 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9105 #[cfg(feature = "no-std")]
9106 let builder = invoice_request.respond_with_no_std(
9107 payment_paths, payment_hash, created_at
9109 let response = builder.and_then(|builder| builder.allow_mpp().build())
9110 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9112 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9113 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9114 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9115 InvoiceError::from_string("Failed signing invoice".to_string())
9117 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9118 InvoiceError::from_string("Failed invoice signature verification".to_string())
9122 Ok(invoice) => Some(invoice),
9123 Err(error) => Some(error),
9127 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9131 OffersMessage::Invoice(invoice) => {
9132 match invoice.verify(expanded_key, secp_ctx) {
9134 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9136 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9137 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9140 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9141 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9142 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9149 OffersMessage::InvoiceError(invoice_error) => {
9150 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9156 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9157 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9161 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9162 /// [`ChannelManager`].
9163 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9164 let mut node_features = provided_init_features(config).to_context();
9165 node_features.set_keysend_optional();
9169 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9170 /// [`ChannelManager`].
9172 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9173 /// or not. Thus, this method is not public.
9174 #[cfg(any(feature = "_test_utils", test))]
9175 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9176 provided_init_features(config).to_context()
9179 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9180 /// [`ChannelManager`].
9181 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9182 provided_init_features(config).to_context()
9185 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9186 /// [`ChannelManager`].
9187 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9188 provided_init_features(config).to_context()
9191 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9192 /// [`ChannelManager`].
9193 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9194 ChannelTypeFeatures::from_init(&provided_init_features(config))
9197 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9198 /// [`ChannelManager`].
9199 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9200 // Note that if new features are added here which other peers may (eventually) require, we
9201 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9202 // [`ErroringMessageHandler`].
9203 let mut features = InitFeatures::empty();
9204 features.set_data_loss_protect_required();
9205 features.set_upfront_shutdown_script_optional();
9206 features.set_variable_length_onion_required();
9207 features.set_static_remote_key_required();
9208 features.set_payment_secret_required();
9209 features.set_basic_mpp_optional();
9210 features.set_wumbo_optional();
9211 features.set_shutdown_any_segwit_optional();
9212 features.set_channel_type_optional();
9213 features.set_scid_privacy_optional();
9214 features.set_zero_conf_optional();
9215 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9216 features.set_anchors_zero_fee_htlc_tx_optional();
9221 const SERIALIZATION_VERSION: u8 = 1;
9222 const MIN_SERIALIZATION_VERSION: u8 = 1;
9224 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9225 (2, fee_base_msat, required),
9226 (4, fee_proportional_millionths, required),
9227 (6, cltv_expiry_delta, required),
9230 impl_writeable_tlv_based!(ChannelCounterparty, {
9231 (2, node_id, required),
9232 (4, features, required),
9233 (6, unspendable_punishment_reserve, required),
9234 (8, forwarding_info, option),
9235 (9, outbound_htlc_minimum_msat, option),
9236 (11, outbound_htlc_maximum_msat, option),
9239 impl Writeable for ChannelDetails {
9240 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9241 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9242 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9243 let user_channel_id_low = self.user_channel_id as u64;
9244 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9245 write_tlv_fields!(writer, {
9246 (1, self.inbound_scid_alias, option),
9247 (2, self.channel_id, required),
9248 (3, self.channel_type, option),
9249 (4, self.counterparty, required),
9250 (5, self.outbound_scid_alias, option),
9251 (6, self.funding_txo, option),
9252 (7, self.config, option),
9253 (8, self.short_channel_id, option),
9254 (9, self.confirmations, option),
9255 (10, self.channel_value_satoshis, required),
9256 (12, self.unspendable_punishment_reserve, option),
9257 (14, user_channel_id_low, required),
9258 (16, self.balance_msat, required),
9259 (18, self.outbound_capacity_msat, required),
9260 (19, self.next_outbound_htlc_limit_msat, required),
9261 (20, self.inbound_capacity_msat, required),
9262 (21, self.next_outbound_htlc_minimum_msat, required),
9263 (22, self.confirmations_required, option),
9264 (24, self.force_close_spend_delay, option),
9265 (26, self.is_outbound, required),
9266 (28, self.is_channel_ready, required),
9267 (30, self.is_usable, required),
9268 (32, self.is_public, required),
9269 (33, self.inbound_htlc_minimum_msat, option),
9270 (35, self.inbound_htlc_maximum_msat, option),
9271 (37, user_channel_id_high_opt, option),
9272 (39, self.feerate_sat_per_1000_weight, option),
9273 (41, self.channel_shutdown_state, option),
9279 impl Readable for ChannelDetails {
9280 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9281 _init_and_read_len_prefixed_tlv_fields!(reader, {
9282 (1, inbound_scid_alias, option),
9283 (2, channel_id, required),
9284 (3, channel_type, option),
9285 (4, counterparty, required),
9286 (5, outbound_scid_alias, option),
9287 (6, funding_txo, option),
9288 (7, config, option),
9289 (8, short_channel_id, option),
9290 (9, confirmations, option),
9291 (10, channel_value_satoshis, required),
9292 (12, unspendable_punishment_reserve, option),
9293 (14, user_channel_id_low, required),
9294 (16, balance_msat, required),
9295 (18, outbound_capacity_msat, required),
9296 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9297 // filled in, so we can safely unwrap it here.
9298 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9299 (20, inbound_capacity_msat, required),
9300 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9301 (22, confirmations_required, option),
9302 (24, force_close_spend_delay, option),
9303 (26, is_outbound, required),
9304 (28, is_channel_ready, required),
9305 (30, is_usable, required),
9306 (32, is_public, required),
9307 (33, inbound_htlc_minimum_msat, option),
9308 (35, inbound_htlc_maximum_msat, option),
9309 (37, user_channel_id_high_opt, option),
9310 (39, feerate_sat_per_1000_weight, option),
9311 (41, channel_shutdown_state, option),
9314 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9315 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9316 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9317 let user_channel_id = user_channel_id_low as u128 +
9318 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9322 channel_id: channel_id.0.unwrap(),
9324 counterparty: counterparty.0.unwrap(),
9325 outbound_scid_alias,
9329 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9330 unspendable_punishment_reserve,
9332 balance_msat: balance_msat.0.unwrap(),
9333 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9334 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9335 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9336 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9337 confirmations_required,
9339 force_close_spend_delay,
9340 is_outbound: is_outbound.0.unwrap(),
9341 is_channel_ready: is_channel_ready.0.unwrap(),
9342 is_usable: is_usable.0.unwrap(),
9343 is_public: is_public.0.unwrap(),
9344 inbound_htlc_minimum_msat,
9345 inbound_htlc_maximum_msat,
9346 feerate_sat_per_1000_weight,
9347 channel_shutdown_state,
9352 impl_writeable_tlv_based!(PhantomRouteHints, {
9353 (2, channels, required_vec),
9354 (4, phantom_scid, required),
9355 (6, real_node_pubkey, required),
9358 impl_writeable_tlv_based!(BlindedForward, {
9359 (0, inbound_blinding_point, required),
9362 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9364 (0, onion_packet, required),
9365 (1, blinded, option),
9366 (2, short_channel_id, required),
9369 (0, payment_data, required),
9370 (1, phantom_shared_secret, option),
9371 (2, incoming_cltv_expiry, required),
9372 (3, payment_metadata, option),
9373 (5, custom_tlvs, optional_vec),
9375 (2, ReceiveKeysend) => {
9376 (0, payment_preimage, required),
9377 (2, incoming_cltv_expiry, required),
9378 (3, payment_metadata, option),
9379 (4, payment_data, option), // Added in 0.0.116
9380 (5, custom_tlvs, optional_vec),
9384 impl_writeable_tlv_based!(PendingHTLCInfo, {
9385 (0, routing, required),
9386 (2, incoming_shared_secret, required),
9387 (4, payment_hash, required),
9388 (6, outgoing_amt_msat, required),
9389 (8, outgoing_cltv_value, required),
9390 (9, incoming_amt_msat, option),
9391 (10, skimmed_fee_msat, option),
9395 impl Writeable for HTLCFailureMsg {
9396 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9398 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9400 channel_id.write(writer)?;
9401 htlc_id.write(writer)?;
9402 reason.write(writer)?;
9404 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9405 channel_id, htlc_id, sha256_of_onion, failure_code
9408 channel_id.write(writer)?;
9409 htlc_id.write(writer)?;
9410 sha256_of_onion.write(writer)?;
9411 failure_code.write(writer)?;
9418 impl Readable for HTLCFailureMsg {
9419 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9420 let id: u8 = Readable::read(reader)?;
9423 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9424 channel_id: Readable::read(reader)?,
9425 htlc_id: Readable::read(reader)?,
9426 reason: Readable::read(reader)?,
9430 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9431 channel_id: Readable::read(reader)?,
9432 htlc_id: Readable::read(reader)?,
9433 sha256_of_onion: Readable::read(reader)?,
9434 failure_code: Readable::read(reader)?,
9437 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9438 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9439 // messages contained in the variants.
9440 // In version 0.0.101, support for reading the variants with these types was added, and
9441 // we should migrate to writing these variants when UpdateFailHTLC or
9442 // UpdateFailMalformedHTLC get TLV fields.
9444 let length: BigSize = Readable::read(reader)?;
9445 let mut s = FixedLengthReader::new(reader, length.0);
9446 let res = Readable::read(&mut s)?;
9447 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9448 Ok(HTLCFailureMsg::Relay(res))
9451 let length: BigSize = Readable::read(reader)?;
9452 let mut s = FixedLengthReader::new(reader, length.0);
9453 let res = Readable::read(&mut s)?;
9454 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9455 Ok(HTLCFailureMsg::Malformed(res))
9457 _ => Err(DecodeError::UnknownRequiredFeature),
9462 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9467 impl_writeable_tlv_based_enum!(BlindedFailure,
9468 (0, FromIntroductionNode) => {}, ;
9471 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9472 (0, short_channel_id, required),
9473 (1, phantom_shared_secret, option),
9474 (2, outpoint, required),
9475 (3, blinded_failure, option),
9476 (4, htlc_id, required),
9477 (6, incoming_packet_shared_secret, required),
9478 (7, user_channel_id, option),
9481 impl Writeable for ClaimableHTLC {
9482 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9483 let (payment_data, keysend_preimage) = match &self.onion_payload {
9484 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9485 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9487 write_tlv_fields!(writer, {
9488 (0, self.prev_hop, required),
9489 (1, self.total_msat, required),
9490 (2, self.value, required),
9491 (3, self.sender_intended_value, required),
9492 (4, payment_data, option),
9493 (5, self.total_value_received, option),
9494 (6, self.cltv_expiry, required),
9495 (8, keysend_preimage, option),
9496 (10, self.counterparty_skimmed_fee_msat, option),
9502 impl Readable for ClaimableHTLC {
9503 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9504 _init_and_read_len_prefixed_tlv_fields!(reader, {
9505 (0, prev_hop, required),
9506 (1, total_msat, option),
9507 (2, value_ser, required),
9508 (3, sender_intended_value, option),
9509 (4, payment_data_opt, option),
9510 (5, total_value_received, option),
9511 (6, cltv_expiry, required),
9512 (8, keysend_preimage, option),
9513 (10, counterparty_skimmed_fee_msat, option),
9515 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9516 let value = value_ser.0.unwrap();
9517 let onion_payload = match keysend_preimage {
9519 if payment_data.is_some() {
9520 return Err(DecodeError::InvalidValue)
9522 if total_msat.is_none() {
9523 total_msat = Some(value);
9525 OnionPayload::Spontaneous(p)
9528 if total_msat.is_none() {
9529 if payment_data.is_none() {
9530 return Err(DecodeError::InvalidValue)
9532 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9534 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9538 prev_hop: prev_hop.0.unwrap(),
9541 sender_intended_value: sender_intended_value.unwrap_or(value),
9542 total_value_received,
9543 total_msat: total_msat.unwrap(),
9545 cltv_expiry: cltv_expiry.0.unwrap(),
9546 counterparty_skimmed_fee_msat,
9551 impl Readable for HTLCSource {
9552 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9553 let id: u8 = Readable::read(reader)?;
9556 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9557 let mut first_hop_htlc_msat: u64 = 0;
9558 let mut path_hops = Vec::new();
9559 let mut payment_id = None;
9560 let mut payment_params: Option<PaymentParameters> = None;
9561 let mut blinded_tail: Option<BlindedTail> = None;
9562 read_tlv_fields!(reader, {
9563 (0, session_priv, required),
9564 (1, payment_id, option),
9565 (2, first_hop_htlc_msat, required),
9566 (4, path_hops, required_vec),
9567 (5, payment_params, (option: ReadableArgs, 0)),
9568 (6, blinded_tail, option),
9570 if payment_id.is_none() {
9571 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9573 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9575 let path = Path { hops: path_hops, blinded_tail };
9576 if path.hops.len() == 0 {
9577 return Err(DecodeError::InvalidValue);
9579 if let Some(params) = payment_params.as_mut() {
9580 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9581 if final_cltv_expiry_delta == &0 {
9582 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9586 Ok(HTLCSource::OutboundRoute {
9587 session_priv: session_priv.0.unwrap(),
9588 first_hop_htlc_msat,
9590 payment_id: payment_id.unwrap(),
9593 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9594 _ => Err(DecodeError::UnknownRequiredFeature),
9599 impl Writeable for HTLCSource {
9600 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9602 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9604 let payment_id_opt = Some(payment_id);
9605 write_tlv_fields!(writer, {
9606 (0, session_priv, required),
9607 (1, payment_id_opt, option),
9608 (2, first_hop_htlc_msat, required),
9609 // 3 was previously used to write a PaymentSecret for the payment.
9610 (4, path.hops, required_vec),
9611 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9612 (6, path.blinded_tail, option),
9615 HTLCSource::PreviousHopData(ref field) => {
9617 field.write(writer)?;
9624 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9625 (0, forward_info, required),
9626 (1, prev_user_channel_id, (default_value, 0)),
9627 (2, prev_short_channel_id, required),
9628 (4, prev_htlc_id, required),
9629 (6, prev_funding_outpoint, required),
9632 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9634 (0, htlc_id, required),
9635 (2, err_packet, required),
9640 impl_writeable_tlv_based!(PendingInboundPayment, {
9641 (0, payment_secret, required),
9642 (2, expiry_time, required),
9643 (4, user_payment_id, required),
9644 (6, payment_preimage, required),
9645 (8, min_value_msat, required),
9648 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9650 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9651 T::Target: BroadcasterInterface,
9652 ES::Target: EntropySource,
9653 NS::Target: NodeSigner,
9654 SP::Target: SignerProvider,
9655 F::Target: FeeEstimator,
9659 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9660 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9662 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9664 self.chain_hash.write(writer)?;
9666 let best_block = self.best_block.read().unwrap();
9667 best_block.height().write(writer)?;
9668 best_block.block_hash().write(writer)?;
9671 let mut serializable_peer_count: u64 = 0;
9673 let per_peer_state = self.per_peer_state.read().unwrap();
9674 let mut number_of_funded_channels = 0;
9675 for (_, peer_state_mutex) in per_peer_state.iter() {
9676 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9677 let peer_state = &mut *peer_state_lock;
9678 if !peer_state.ok_to_remove(false) {
9679 serializable_peer_count += 1;
9682 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9683 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9687 (number_of_funded_channels as u64).write(writer)?;
9689 for (_, peer_state_mutex) in per_peer_state.iter() {
9690 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9691 let peer_state = &mut *peer_state_lock;
9692 for channel in peer_state.channel_by_id.iter().filter_map(
9693 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9694 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9697 channel.write(writer)?;
9703 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9704 (forward_htlcs.len() as u64).write(writer)?;
9705 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9706 short_channel_id.write(writer)?;
9707 (pending_forwards.len() as u64).write(writer)?;
9708 for forward in pending_forwards {
9709 forward.write(writer)?;
9714 let per_peer_state = self.per_peer_state.write().unwrap();
9716 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9717 let claimable_payments = self.claimable_payments.lock().unwrap();
9718 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9720 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9721 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9722 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9723 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9724 payment_hash.write(writer)?;
9725 (payment.htlcs.len() as u64).write(writer)?;
9726 for htlc in payment.htlcs.iter() {
9727 htlc.write(writer)?;
9729 htlc_purposes.push(&payment.purpose);
9730 htlc_onion_fields.push(&payment.onion_fields);
9733 let mut monitor_update_blocked_actions_per_peer = None;
9734 let mut peer_states = Vec::new();
9735 for (_, peer_state_mutex) in per_peer_state.iter() {
9736 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9737 // of a lockorder violation deadlock - no other thread can be holding any
9738 // per_peer_state lock at all.
9739 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9742 (serializable_peer_count).write(writer)?;
9743 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9744 // Peers which we have no channels to should be dropped once disconnected. As we
9745 // disconnect all peers when shutting down and serializing the ChannelManager, we
9746 // consider all peers as disconnected here. There's therefore no need write peers with
9748 if !peer_state.ok_to_remove(false) {
9749 peer_pubkey.write(writer)?;
9750 peer_state.latest_features.write(writer)?;
9751 if !peer_state.monitor_update_blocked_actions.is_empty() {
9752 monitor_update_blocked_actions_per_peer
9753 .get_or_insert_with(Vec::new)
9754 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9759 let events = self.pending_events.lock().unwrap();
9760 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9761 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9762 // refuse to read the new ChannelManager.
9763 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9764 if events_not_backwards_compatible {
9765 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9766 // well save the space and not write any events here.
9767 0u64.write(writer)?;
9769 (events.len() as u64).write(writer)?;
9770 for (event, _) in events.iter() {
9771 event.write(writer)?;
9775 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9776 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9777 // the closing monitor updates were always effectively replayed on startup (either directly
9778 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9779 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9780 0u64.write(writer)?;
9782 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9783 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9784 // likely to be identical.
9785 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9786 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9788 (pending_inbound_payments.len() as u64).write(writer)?;
9789 for (hash, pending_payment) in pending_inbound_payments.iter() {
9790 hash.write(writer)?;
9791 pending_payment.write(writer)?;
9794 // For backwards compat, write the session privs and their total length.
9795 let mut num_pending_outbounds_compat: u64 = 0;
9796 for (_, outbound) in pending_outbound_payments.iter() {
9797 if !outbound.is_fulfilled() && !outbound.abandoned() {
9798 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9801 num_pending_outbounds_compat.write(writer)?;
9802 for (_, outbound) in pending_outbound_payments.iter() {
9804 PendingOutboundPayment::Legacy { session_privs } |
9805 PendingOutboundPayment::Retryable { session_privs, .. } => {
9806 for session_priv in session_privs.iter() {
9807 session_priv.write(writer)?;
9810 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9811 PendingOutboundPayment::InvoiceReceived { .. } => {},
9812 PendingOutboundPayment::Fulfilled { .. } => {},
9813 PendingOutboundPayment::Abandoned { .. } => {},
9817 // Encode without retry info for 0.0.101 compatibility.
9818 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9819 for (id, outbound) in pending_outbound_payments.iter() {
9821 PendingOutboundPayment::Legacy { session_privs } |
9822 PendingOutboundPayment::Retryable { session_privs, .. } => {
9823 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9829 let mut pending_intercepted_htlcs = None;
9830 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9831 if our_pending_intercepts.len() != 0 {
9832 pending_intercepted_htlcs = Some(our_pending_intercepts);
9835 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9836 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9837 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9838 // map. Thus, if there are no entries we skip writing a TLV for it.
9839 pending_claiming_payments = None;
9842 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9843 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9844 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9845 if !updates.is_empty() {
9846 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9847 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9852 write_tlv_fields!(writer, {
9853 (1, pending_outbound_payments_no_retry, required),
9854 (2, pending_intercepted_htlcs, option),
9855 (3, pending_outbound_payments, required),
9856 (4, pending_claiming_payments, option),
9857 (5, self.our_network_pubkey, required),
9858 (6, monitor_update_blocked_actions_per_peer, option),
9859 (7, self.fake_scid_rand_bytes, required),
9860 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9861 (9, htlc_purposes, required_vec),
9862 (10, in_flight_monitor_updates, option),
9863 (11, self.probing_cookie_secret, required),
9864 (13, htlc_onion_fields, optional_vec),
9871 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9872 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9873 (self.len() as u64).write(w)?;
9874 for (event, action) in self.iter() {
9877 #[cfg(debug_assertions)] {
9878 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9879 // be persisted and are regenerated on restart. However, if such an event has a
9880 // post-event-handling action we'll write nothing for the event and would have to
9881 // either forget the action or fail on deserialization (which we do below). Thus,
9882 // check that the event is sane here.
9883 let event_encoded = event.encode();
9884 let event_read: Option<Event> =
9885 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9886 if action.is_some() { assert!(event_read.is_some()); }
9892 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9893 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9894 let len: u64 = Readable::read(reader)?;
9895 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9896 let mut events: Self = VecDeque::with_capacity(cmp::min(
9897 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9900 let ev_opt = MaybeReadable::read(reader)?;
9901 let action = Readable::read(reader)?;
9902 if let Some(ev) = ev_opt {
9903 events.push_back((ev, action));
9904 } else if action.is_some() {
9905 return Err(DecodeError::InvalidValue);
9912 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9913 (0, NotShuttingDown) => {},
9914 (2, ShutdownInitiated) => {},
9915 (4, ResolvingHTLCs) => {},
9916 (6, NegotiatingClosingFee) => {},
9917 (8, ShutdownComplete) => {}, ;
9920 /// Arguments for the creation of a ChannelManager that are not deserialized.
9922 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9924 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9925 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9926 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9927 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9928 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9929 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9930 /// same way you would handle a [`chain::Filter`] call using
9931 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9932 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9933 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9934 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9935 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9936 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9938 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9939 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9941 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9942 /// call any other methods on the newly-deserialized [`ChannelManager`].
9944 /// Note that because some channels may be closed during deserialization, it is critical that you
9945 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9946 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9947 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9948 /// not force-close the same channels but consider them live), you may end up revoking a state for
9949 /// which you've already broadcasted the transaction.
9951 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9952 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9954 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9955 T::Target: BroadcasterInterface,
9956 ES::Target: EntropySource,
9957 NS::Target: NodeSigner,
9958 SP::Target: SignerProvider,
9959 F::Target: FeeEstimator,
9963 /// A cryptographically secure source of entropy.
9964 pub entropy_source: ES,
9966 /// A signer that is able to perform node-scoped cryptographic operations.
9967 pub node_signer: NS,
9969 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9970 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9972 pub signer_provider: SP,
9974 /// The fee_estimator for use in the ChannelManager in the future.
9976 /// No calls to the FeeEstimator will be made during deserialization.
9977 pub fee_estimator: F,
9978 /// The chain::Watch for use in the ChannelManager in the future.
9980 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9981 /// you have deserialized ChannelMonitors separately and will add them to your
9982 /// chain::Watch after deserializing this ChannelManager.
9983 pub chain_monitor: M,
9985 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9986 /// used to broadcast the latest local commitment transactions of channels which must be
9987 /// force-closed during deserialization.
9988 pub tx_broadcaster: T,
9989 /// The router which will be used in the ChannelManager in the future for finding routes
9990 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9992 /// No calls to the router will be made during deserialization.
9994 /// The Logger for use in the ChannelManager and which may be used to log information during
9995 /// deserialization.
9997 /// Default settings used for new channels. Any existing channels will continue to use the
9998 /// runtime settings which were stored when the ChannelManager was serialized.
9999 pub default_config: UserConfig,
10001 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
10002 /// value.context.get_funding_txo() should be the key).
10004 /// If a monitor is inconsistent with the channel state during deserialization the channel will
10005 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
10006 /// is true for missing channels as well. If there is a monitor missing for which we find
10007 /// channel data Err(DecodeError::InvalidValue) will be returned.
10009 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
10012 /// This is not exported to bindings users because we have no HashMap bindings
10013 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
10016 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10017 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
10019 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10020 T::Target: BroadcasterInterface,
10021 ES::Target: EntropySource,
10022 NS::Target: NodeSigner,
10023 SP::Target: SignerProvider,
10024 F::Target: FeeEstimator,
10028 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
10029 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
10030 /// populate a HashMap directly from C.
10031 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
10032 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
10034 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
10035 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
10040 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10041 // SipmleArcChannelManager type:
10042 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10043 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10045 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10046 T::Target: BroadcasterInterface,
10047 ES::Target: EntropySource,
10048 NS::Target: NodeSigner,
10049 SP::Target: SignerProvider,
10050 F::Target: FeeEstimator,
10054 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10055 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10056 Ok((blockhash, Arc::new(chan_manager)))
10060 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10061 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10063 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10064 T::Target: BroadcasterInterface,
10065 ES::Target: EntropySource,
10066 NS::Target: NodeSigner,
10067 SP::Target: SignerProvider,
10068 F::Target: FeeEstimator,
10072 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10073 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10075 let chain_hash: ChainHash = Readable::read(reader)?;
10076 let best_block_height: u32 = Readable::read(reader)?;
10077 let best_block_hash: BlockHash = Readable::read(reader)?;
10079 let mut failed_htlcs = Vec::new();
10081 let channel_count: u64 = Readable::read(reader)?;
10082 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10083 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10084 let mut outpoint_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10085 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10086 let mut channel_closures = VecDeque::new();
10087 let mut close_background_events = Vec::new();
10088 for _ in 0..channel_count {
10089 let mut channel: Channel<SP> = Channel::read(reader, (
10090 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10092 let logger = WithChannelContext::from(&args.logger, &channel.context);
10093 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10094 funding_txo_set.insert(funding_txo.clone());
10095 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10096 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10097 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10098 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10099 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10100 // But if the channel is behind of the monitor, close the channel:
10101 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10102 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10103 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10104 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10105 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10107 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10108 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10109 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10111 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10112 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10113 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10115 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10116 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10117 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10119 let mut shutdown_result = channel.context.force_shutdown(true);
10120 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10121 return Err(DecodeError::InvalidValue);
10123 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10124 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10125 counterparty_node_id, funding_txo, update
10128 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10129 channel_closures.push_back((events::Event::ChannelClosed {
10130 channel_id: channel.context.channel_id(),
10131 user_channel_id: channel.context.get_user_id(),
10132 reason: ClosureReason::OutdatedChannelManager,
10133 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10134 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10136 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10137 let mut found_htlc = false;
10138 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10139 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10142 // If we have some HTLCs in the channel which are not present in the newer
10143 // ChannelMonitor, they have been removed and should be failed back to
10144 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10145 // were actually claimed we'd have generated and ensured the previous-hop
10146 // claim update ChannelMonitor updates were persisted prior to persising
10147 // the ChannelMonitor update for the forward leg, so attempting to fail the
10148 // backwards leg of the HTLC will simply be rejected.
10150 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10151 &channel.context.channel_id(), &payment_hash);
10152 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10156 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10157 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10158 monitor.get_latest_update_id());
10159 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10160 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10162 if let Some(funding_txo) = channel.context.get_funding_txo() {
10163 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
10165 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10166 hash_map::Entry::Occupied(mut entry) => {
10167 let by_id_map = entry.get_mut();
10168 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10170 hash_map::Entry::Vacant(entry) => {
10171 let mut by_id_map = HashMap::new();
10172 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10173 entry.insert(by_id_map);
10177 } else if channel.is_awaiting_initial_mon_persist() {
10178 // If we were persisted and shut down while the initial ChannelMonitor persistence
10179 // was in-progress, we never broadcasted the funding transaction and can still
10180 // safely discard the channel.
10181 let _ = channel.context.force_shutdown(false);
10182 channel_closures.push_back((events::Event::ChannelClosed {
10183 channel_id: channel.context.channel_id(),
10184 user_channel_id: channel.context.get_user_id(),
10185 reason: ClosureReason::DisconnectedPeer,
10186 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10187 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10190 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10191 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10192 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10193 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10194 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10195 return Err(DecodeError::InvalidValue);
10199 for (funding_txo, monitor) in args.channel_monitors.iter() {
10200 if !funding_txo_set.contains(funding_txo) {
10201 let logger = WithChannelMonitor::from(&args.logger, monitor);
10202 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
10203 &funding_txo.to_channel_id());
10204 let monitor_update = ChannelMonitorUpdate {
10205 update_id: CLOSED_CHANNEL_UPDATE_ID,
10206 counterparty_node_id: None,
10207 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10209 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10213 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10214 let forward_htlcs_count: u64 = Readable::read(reader)?;
10215 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10216 for _ in 0..forward_htlcs_count {
10217 let short_channel_id = Readable::read(reader)?;
10218 let pending_forwards_count: u64 = Readable::read(reader)?;
10219 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10220 for _ in 0..pending_forwards_count {
10221 pending_forwards.push(Readable::read(reader)?);
10223 forward_htlcs.insert(short_channel_id, pending_forwards);
10226 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10227 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10228 for _ in 0..claimable_htlcs_count {
10229 let payment_hash = Readable::read(reader)?;
10230 let previous_hops_len: u64 = Readable::read(reader)?;
10231 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10232 for _ in 0..previous_hops_len {
10233 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10235 claimable_htlcs_list.push((payment_hash, previous_hops));
10238 let peer_state_from_chans = |channel_by_id| {
10241 inbound_channel_request_by_id: HashMap::new(),
10242 latest_features: InitFeatures::empty(),
10243 pending_msg_events: Vec::new(),
10244 in_flight_monitor_updates: BTreeMap::new(),
10245 monitor_update_blocked_actions: BTreeMap::new(),
10246 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10247 is_connected: false,
10251 let peer_count: u64 = Readable::read(reader)?;
10252 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10253 for _ in 0..peer_count {
10254 let peer_pubkey = Readable::read(reader)?;
10255 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10256 let mut peer_state = peer_state_from_chans(peer_chans);
10257 peer_state.latest_features = Readable::read(reader)?;
10258 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10261 let event_count: u64 = Readable::read(reader)?;
10262 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10263 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10264 for _ in 0..event_count {
10265 match MaybeReadable::read(reader)? {
10266 Some(event) => pending_events_read.push_back((event, None)),
10271 let background_event_count: u64 = Readable::read(reader)?;
10272 for _ in 0..background_event_count {
10273 match <u8 as Readable>::read(reader)? {
10275 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10276 // however we really don't (and never did) need them - we regenerate all
10277 // on-startup monitor updates.
10278 let _: OutPoint = Readable::read(reader)?;
10279 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10281 _ => return Err(DecodeError::InvalidValue),
10285 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10286 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10288 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10289 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10290 for _ in 0..pending_inbound_payment_count {
10291 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10292 return Err(DecodeError::InvalidValue);
10296 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10297 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10298 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10299 for _ in 0..pending_outbound_payments_count_compat {
10300 let session_priv = Readable::read(reader)?;
10301 let payment = PendingOutboundPayment::Legacy {
10302 session_privs: [session_priv].iter().cloned().collect()
10304 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10305 return Err(DecodeError::InvalidValue)
10309 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10310 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10311 let mut pending_outbound_payments = None;
10312 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10313 let mut received_network_pubkey: Option<PublicKey> = None;
10314 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10315 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10316 let mut claimable_htlc_purposes = None;
10317 let mut claimable_htlc_onion_fields = None;
10318 let mut pending_claiming_payments = Some(HashMap::new());
10319 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10320 let mut events_override = None;
10321 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10322 read_tlv_fields!(reader, {
10323 (1, pending_outbound_payments_no_retry, option),
10324 (2, pending_intercepted_htlcs, option),
10325 (3, pending_outbound_payments, option),
10326 (4, pending_claiming_payments, option),
10327 (5, received_network_pubkey, option),
10328 (6, monitor_update_blocked_actions_per_peer, option),
10329 (7, fake_scid_rand_bytes, option),
10330 (8, events_override, option),
10331 (9, claimable_htlc_purposes, optional_vec),
10332 (10, in_flight_monitor_updates, option),
10333 (11, probing_cookie_secret, option),
10334 (13, claimable_htlc_onion_fields, optional_vec),
10336 if fake_scid_rand_bytes.is_none() {
10337 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10340 if probing_cookie_secret.is_none() {
10341 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10344 if let Some(events) = events_override {
10345 pending_events_read = events;
10348 if !channel_closures.is_empty() {
10349 pending_events_read.append(&mut channel_closures);
10352 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10353 pending_outbound_payments = Some(pending_outbound_payments_compat);
10354 } else if pending_outbound_payments.is_none() {
10355 let mut outbounds = HashMap::new();
10356 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10357 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10359 pending_outbound_payments = Some(outbounds);
10361 let pending_outbounds = OutboundPayments {
10362 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10363 retry_lock: Mutex::new(())
10366 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10367 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10368 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10369 // replayed, and for each monitor update we have to replay we have to ensure there's a
10370 // `ChannelMonitor` for it.
10372 // In order to do so we first walk all of our live channels (so that we can check their
10373 // state immediately after doing the update replays, when we have the `update_id`s
10374 // available) and then walk any remaining in-flight updates.
10376 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10377 let mut pending_background_events = Vec::new();
10378 macro_rules! handle_in_flight_updates {
10379 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10380 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
10382 let mut max_in_flight_update_id = 0;
10383 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10384 for update in $chan_in_flight_upds.iter() {
10385 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10386 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10387 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10388 pending_background_events.push(
10389 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10390 counterparty_node_id: $counterparty_node_id,
10391 funding_txo: $funding_txo,
10392 update: update.clone(),
10395 if $chan_in_flight_upds.is_empty() {
10396 // We had some updates to apply, but it turns out they had completed before we
10397 // were serialized, we just weren't notified of that. Thus, we may have to run
10398 // the completion actions for any monitor updates, but otherwise are done.
10399 pending_background_events.push(
10400 BackgroundEvent::MonitorUpdatesComplete {
10401 counterparty_node_id: $counterparty_node_id,
10402 channel_id: $funding_txo.to_channel_id(),
10405 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10406 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
10407 return Err(DecodeError::InvalidValue);
10409 max_in_flight_update_id
10413 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10414 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10415 let peer_state = &mut *peer_state_lock;
10416 for phase in peer_state.channel_by_id.values() {
10417 if let ChannelPhase::Funded(chan) = phase {
10418 let logger = WithChannelContext::from(&args.logger, &chan.context);
10420 // Channels that were persisted have to be funded, otherwise they should have been
10422 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10423 let monitor = args.channel_monitors.get(&funding_txo)
10424 .expect("We already checked for monitor presence when loading channels");
10425 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10426 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10427 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10428 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10429 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10430 funding_txo, monitor, peer_state, logger, ""));
10433 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10434 // If the channel is ahead of the monitor, return InvalidValue:
10435 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10436 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10437 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10438 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10439 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10440 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10441 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10442 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10443 return Err(DecodeError::InvalidValue);
10446 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10447 // created in this `channel_by_id` map.
10448 debug_assert!(false);
10449 return Err(DecodeError::InvalidValue);
10454 if let Some(in_flight_upds) = in_flight_monitor_updates {
10455 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10456 let logger = WithContext::from(&args.logger, Some(counterparty_id), Some(funding_txo.to_channel_id()));
10457 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10458 // Now that we've removed all the in-flight monitor updates for channels that are
10459 // still open, we need to replay any monitor updates that are for closed channels,
10460 // creating the neccessary peer_state entries as we go.
10461 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10462 Mutex::new(peer_state_from_chans(HashMap::new()))
10464 let mut peer_state = peer_state_mutex.lock().unwrap();
10465 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10466 funding_txo, monitor, peer_state, logger, "closed ");
10468 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10469 log_error!(logger, " The ChannelMonitor for channel {} is missing.",
10470 &funding_txo.to_channel_id());
10471 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10472 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10473 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10474 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10475 return Err(DecodeError::InvalidValue);
10480 // Note that we have to do the above replays before we push new monitor updates.
10481 pending_background_events.append(&mut close_background_events);
10483 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10484 // should ensure we try them again on the inbound edge. We put them here and do so after we
10485 // have a fully-constructed `ChannelManager` at the end.
10486 let mut pending_claims_to_replay = Vec::new();
10489 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10490 // ChannelMonitor data for any channels for which we do not have authorative state
10491 // (i.e. those for which we just force-closed above or we otherwise don't have a
10492 // corresponding `Channel` at all).
10493 // This avoids several edge-cases where we would otherwise "forget" about pending
10494 // payments which are still in-flight via their on-chain state.
10495 // We only rebuild the pending payments map if we were most recently serialized by
10497 for (_, monitor) in args.channel_monitors.iter() {
10498 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
10499 if counterparty_opt.is_none() {
10500 let logger = WithChannelMonitor::from(&args.logger, monitor);
10501 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10502 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10503 if path.hops.is_empty() {
10504 log_error!(logger, "Got an empty path for a pending payment");
10505 return Err(DecodeError::InvalidValue);
10508 let path_amt = path.final_value_msat();
10509 let mut session_priv_bytes = [0; 32];
10510 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10511 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10512 hash_map::Entry::Occupied(mut entry) => {
10513 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10514 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10515 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
10517 hash_map::Entry::Vacant(entry) => {
10518 let path_fee = path.fee_msat();
10519 entry.insert(PendingOutboundPayment::Retryable {
10520 retry_strategy: None,
10521 attempts: PaymentAttempts::new(),
10522 payment_params: None,
10523 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10524 payment_hash: htlc.payment_hash,
10525 payment_secret: None, // only used for retries, and we'll never retry on startup
10526 payment_metadata: None, // only used for retries, and we'll never retry on startup
10527 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10528 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10529 pending_amt_msat: path_amt,
10530 pending_fee_msat: Some(path_fee),
10531 total_msat: path_amt,
10532 starting_block_height: best_block_height,
10533 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10535 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10536 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10541 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10542 match htlc_source {
10543 HTLCSource::PreviousHopData(prev_hop_data) => {
10544 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10545 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10546 info.prev_htlc_id == prev_hop_data.htlc_id
10548 // The ChannelMonitor is now responsible for this HTLC's
10549 // failure/success and will let us know what its outcome is. If we
10550 // still have an entry for this HTLC in `forward_htlcs` or
10551 // `pending_intercepted_htlcs`, we were apparently not persisted after
10552 // the monitor was when forwarding the payment.
10553 forward_htlcs.retain(|_, forwards| {
10554 forwards.retain(|forward| {
10555 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10556 if pending_forward_matches_htlc(&htlc_info) {
10557 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10558 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10563 !forwards.is_empty()
10565 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10566 if pending_forward_matches_htlc(&htlc_info) {
10567 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10568 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10569 pending_events_read.retain(|(event, _)| {
10570 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10571 intercepted_id != ev_id
10578 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10579 if let Some(preimage) = preimage_opt {
10580 let pending_events = Mutex::new(pending_events_read);
10581 // Note that we set `from_onchain` to "false" here,
10582 // deliberately keeping the pending payment around forever.
10583 // Given it should only occur when we have a channel we're
10584 // force-closing for being stale that's okay.
10585 // The alternative would be to wipe the state when claiming,
10586 // generating a `PaymentPathSuccessful` event but regenerating
10587 // it and the `PaymentSent` on every restart until the
10588 // `ChannelMonitor` is removed.
10590 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10591 channel_funding_outpoint: monitor.get_funding_txo().0,
10592 counterparty_node_id: path.hops[0].pubkey,
10594 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10595 path, false, compl_action, &pending_events, &&logger);
10596 pending_events_read = pending_events.into_inner().unwrap();
10603 // Whether the downstream channel was closed or not, try to re-apply any payment
10604 // preimages from it which may be needed in upstream channels for forwarded
10606 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10608 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10609 if let HTLCSource::PreviousHopData(_) = htlc_source {
10610 if let Some(payment_preimage) = preimage_opt {
10611 Some((htlc_source, payment_preimage, htlc.amount_msat,
10612 // Check if `counterparty_opt.is_none()` to see if the
10613 // downstream chan is closed (because we don't have a
10614 // channel_id -> peer map entry).
10615 counterparty_opt.is_none(),
10616 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10617 monitor.get_funding_txo().0))
10620 // If it was an outbound payment, we've handled it above - if a preimage
10621 // came in and we persisted the `ChannelManager` we either handled it and
10622 // are good to go or the channel force-closed - we don't have to handle the
10623 // channel still live case here.
10627 for tuple in outbound_claimed_htlcs_iter {
10628 pending_claims_to_replay.push(tuple);
10633 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10634 // If we have pending HTLCs to forward, assume we either dropped a
10635 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10636 // shut down before the timer hit. Either way, set the time_forwardable to a small
10637 // constant as enough time has likely passed that we should simply handle the forwards
10638 // now, or at least after the user gets a chance to reconnect to our peers.
10639 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10640 time_forwardable: Duration::from_secs(2),
10644 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10645 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10647 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10648 if let Some(purposes) = claimable_htlc_purposes {
10649 if purposes.len() != claimable_htlcs_list.len() {
10650 return Err(DecodeError::InvalidValue);
10652 if let Some(onion_fields) = claimable_htlc_onion_fields {
10653 if onion_fields.len() != claimable_htlcs_list.len() {
10654 return Err(DecodeError::InvalidValue);
10656 for (purpose, (onion, (payment_hash, htlcs))) in
10657 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10659 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10660 purpose, htlcs, onion_fields: onion,
10662 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10665 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10666 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10667 purpose, htlcs, onion_fields: None,
10669 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10673 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10674 // include a `_legacy_hop_data` in the `OnionPayload`.
10675 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10676 if htlcs.is_empty() {
10677 return Err(DecodeError::InvalidValue);
10679 let purpose = match &htlcs[0].onion_payload {
10680 OnionPayload::Invoice { _legacy_hop_data } => {
10681 if let Some(hop_data) = _legacy_hop_data {
10682 events::PaymentPurpose::InvoicePayment {
10683 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10684 Some(inbound_payment) => inbound_payment.payment_preimage,
10685 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10686 Ok((payment_preimage, _)) => payment_preimage,
10688 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10689 return Err(DecodeError::InvalidValue);
10693 payment_secret: hop_data.payment_secret,
10695 } else { return Err(DecodeError::InvalidValue); }
10697 OnionPayload::Spontaneous(payment_preimage) =>
10698 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10700 claimable_payments.insert(payment_hash, ClaimablePayment {
10701 purpose, htlcs, onion_fields: None,
10706 let mut secp_ctx = Secp256k1::new();
10707 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10709 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10711 Err(()) => return Err(DecodeError::InvalidValue)
10713 if let Some(network_pubkey) = received_network_pubkey {
10714 if network_pubkey != our_network_pubkey {
10715 log_error!(args.logger, "Key that was generated does not match the existing key.");
10716 return Err(DecodeError::InvalidValue);
10720 let mut outbound_scid_aliases = HashSet::new();
10721 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10722 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10723 let peer_state = &mut *peer_state_lock;
10724 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10725 if let ChannelPhase::Funded(chan) = phase {
10726 let logger = WithChannelContext::from(&args.logger, &chan.context);
10727 if chan.context.outbound_scid_alias() == 0 {
10728 let mut outbound_scid_alias;
10730 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10731 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10732 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10734 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10735 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10736 // Note that in rare cases its possible to hit this while reading an older
10737 // channel if we just happened to pick a colliding outbound alias above.
10738 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10739 return Err(DecodeError::InvalidValue);
10741 if chan.context.is_usable() {
10742 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10743 // Note that in rare cases its possible to hit this while reading an older
10744 // channel if we just happened to pick a colliding outbound alias above.
10745 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10746 return Err(DecodeError::InvalidValue);
10750 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10751 // created in this `channel_by_id` map.
10752 debug_assert!(false);
10753 return Err(DecodeError::InvalidValue);
10758 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10760 for (_, monitor) in args.channel_monitors.iter() {
10761 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10762 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10763 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10764 let mut claimable_amt_msat = 0;
10765 let mut receiver_node_id = Some(our_network_pubkey);
10766 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10767 if phantom_shared_secret.is_some() {
10768 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10769 .expect("Failed to get node_id for phantom node recipient");
10770 receiver_node_id = Some(phantom_pubkey)
10772 for claimable_htlc in &payment.htlcs {
10773 claimable_amt_msat += claimable_htlc.value;
10775 // Add a holding-cell claim of the payment to the Channel, which should be
10776 // applied ~immediately on peer reconnection. Because it won't generate a
10777 // new commitment transaction we can just provide the payment preimage to
10778 // the corresponding ChannelMonitor and nothing else.
10780 // We do so directly instead of via the normal ChannelMonitor update
10781 // procedure as the ChainMonitor hasn't yet been initialized, implying
10782 // we're not allowed to call it directly yet. Further, we do the update
10783 // without incrementing the ChannelMonitor update ID as there isn't any
10785 // If we were to generate a new ChannelMonitor update ID here and then
10786 // crash before the user finishes block connect we'd end up force-closing
10787 // this channel as well. On the flip side, there's no harm in restarting
10788 // without the new monitor persisted - we'll end up right back here on
10790 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10791 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
10792 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10793 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10794 let peer_state = &mut *peer_state_lock;
10795 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10796 let logger = WithChannelContext::from(&args.logger, &channel.context);
10797 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
10800 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10801 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10804 pending_events_read.push_back((events::Event::PaymentClaimed {
10807 purpose: payment.purpose,
10808 amount_msat: claimable_amt_msat,
10809 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10810 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10816 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10817 if let Some(peer_state) = per_peer_state.get(&node_id) {
10818 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
10819 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
10820 for action in actions.iter() {
10821 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10822 downstream_counterparty_and_funding_outpoint:
10823 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10825 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10827 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10828 blocked_channel_outpoint.to_channel_id());
10829 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10830 .entry(blocked_channel_outpoint.to_channel_id())
10831 .or_insert_with(Vec::new).push(blocking_action.clone());
10833 // If the channel we were blocking has closed, we don't need to
10834 // worry about it - the blocked monitor update should never have
10835 // been released from the `Channel` object so it can't have
10836 // completed, and if the channel closed there's no reason to bother
10840 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10841 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10845 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10847 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
10848 return Err(DecodeError::InvalidValue);
10852 let channel_manager = ChannelManager {
10854 fee_estimator: bounded_fee_estimator,
10855 chain_monitor: args.chain_monitor,
10856 tx_broadcaster: args.tx_broadcaster,
10857 router: args.router,
10859 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10861 inbound_payment_key: expanded_inbound_key,
10862 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10863 pending_outbound_payments: pending_outbounds,
10864 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10866 forward_htlcs: Mutex::new(forward_htlcs),
10867 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10868 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10869 outpoint_to_peer: Mutex::new(outpoint_to_peer),
10870 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10871 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10873 probing_cookie_secret: probing_cookie_secret.unwrap(),
10875 our_network_pubkey,
10878 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10880 per_peer_state: FairRwLock::new(per_peer_state),
10882 pending_events: Mutex::new(pending_events_read),
10883 pending_events_processor: AtomicBool::new(false),
10884 pending_background_events: Mutex::new(pending_background_events),
10885 total_consistency_lock: RwLock::new(()),
10886 background_events_processed_since_startup: AtomicBool::new(false),
10888 event_persist_notifier: Notifier::new(),
10889 needs_persist_flag: AtomicBool::new(false),
10891 funding_batch_states: Mutex::new(BTreeMap::new()),
10893 pending_offers_messages: Mutex::new(Vec::new()),
10895 entropy_source: args.entropy_source,
10896 node_signer: args.node_signer,
10897 signer_provider: args.signer_provider,
10899 logger: args.logger,
10900 default_configuration: args.default_config,
10903 for htlc_source in failed_htlcs.drain(..) {
10904 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10905 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10906 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10907 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10910 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10911 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10912 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10913 // channel is closed we just assume that it probably came from an on-chain claim.
10914 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10915 downstream_closed, true, downstream_node_id, downstream_funding);
10918 //TODO: Broadcast channel update for closed channels, but only after we've made a
10919 //connection or two.
10921 Ok((best_block_hash.clone(), channel_manager))
10927 use bitcoin::hashes::Hash;
10928 use bitcoin::hashes::sha256::Hash as Sha256;
10929 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10930 use core::sync::atomic::Ordering;
10931 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10932 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10933 use crate::ln::ChannelId;
10934 use crate::ln::channelmanager::{create_recv_pending_htlc_info, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10935 use crate::ln::functional_test_utils::*;
10936 use crate::ln::msgs::{self, ErrorAction};
10937 use crate::ln::msgs::ChannelMessageHandler;
10938 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10939 use crate::util::errors::APIError;
10940 use crate::util::test_utils;
10941 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10942 use crate::sign::EntropySource;
10945 fn test_notify_limits() {
10946 // Check that a few cases which don't require the persistence of a new ChannelManager,
10947 // indeed, do not cause the persistence of a new ChannelManager.
10948 let chanmon_cfgs = create_chanmon_cfgs(3);
10949 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10950 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10951 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10953 // All nodes start with a persistable update pending as `create_network` connects each node
10954 // with all other nodes to make most tests simpler.
10955 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10956 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10957 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10959 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10961 // We check that the channel info nodes have doesn't change too early, even though we try
10962 // to connect messages with new values
10963 chan.0.contents.fee_base_msat *= 2;
10964 chan.1.contents.fee_base_msat *= 2;
10965 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10966 &nodes[1].node.get_our_node_id()).pop().unwrap();
10967 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10968 &nodes[0].node.get_our_node_id()).pop().unwrap();
10970 // The first two nodes (which opened a channel) should now require fresh persistence
10971 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10972 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10973 // ... but the last node should not.
10974 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10975 // After persisting the first two nodes they should no longer need fresh persistence.
10976 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10977 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10979 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10980 // about the channel.
10981 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10982 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10983 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10985 // The nodes which are a party to the channel should also ignore messages from unrelated
10987 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10988 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10989 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10990 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10991 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10992 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10994 // At this point the channel info given by peers should still be the same.
10995 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10996 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10998 // An earlier version of handle_channel_update didn't check the directionality of the
10999 // update message and would always update the local fee info, even if our peer was
11000 // (spuriously) forwarding us our own channel_update.
11001 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
11002 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
11003 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
11005 // First deliver each peers' own message, checking that the node doesn't need to be
11006 // persisted and that its channel info remains the same.
11007 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
11008 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
11009 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11010 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11011 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11012 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11014 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
11015 // the channel info has updated.
11016 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
11017 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
11018 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11019 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11020 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
11021 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
11025 fn test_keysend_dup_hash_partial_mpp() {
11026 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
11028 let chanmon_cfgs = create_chanmon_cfgs(2);
11029 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11030 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11031 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11032 create_announced_chan_between_nodes(&nodes, 0, 1);
11034 // First, send a partial MPP payment.
11035 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
11036 let mut mpp_route = route.clone();
11037 mpp_route.paths.push(mpp_route.paths[0].clone());
11039 let payment_id = PaymentId([42; 32]);
11040 // Use the utility function send_payment_along_path to send the payment with MPP data which
11041 // indicates there are more HTLCs coming.
11042 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
11043 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
11044 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
11045 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
11046 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
11047 check_added_monitors!(nodes[0], 1);
11048 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11049 assert_eq!(events.len(), 1);
11050 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11052 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11053 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11054 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11055 check_added_monitors!(nodes[0], 1);
11056 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11057 assert_eq!(events.len(), 1);
11058 let ev = events.drain(..).next().unwrap();
11059 let payment_event = SendEvent::from_event(ev);
11060 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11061 check_added_monitors!(nodes[1], 0);
11062 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11063 expect_pending_htlcs_forwardable!(nodes[1]);
11064 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11065 check_added_monitors!(nodes[1], 1);
11066 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11067 assert!(updates.update_add_htlcs.is_empty());
11068 assert!(updates.update_fulfill_htlcs.is_empty());
11069 assert_eq!(updates.update_fail_htlcs.len(), 1);
11070 assert!(updates.update_fail_malformed_htlcs.is_empty());
11071 assert!(updates.update_fee.is_none());
11072 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11073 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11074 expect_payment_failed!(nodes[0], our_payment_hash, true);
11076 // Send the second half of the original MPP payment.
11077 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11078 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11079 check_added_monitors!(nodes[0], 1);
11080 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11081 assert_eq!(events.len(), 1);
11082 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11084 // Claim the full MPP payment. Note that we can't use a test utility like
11085 // claim_funds_along_route because the ordering of the messages causes the second half of the
11086 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11087 // lightning messages manually.
11088 nodes[1].node.claim_funds(payment_preimage);
11089 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11090 check_added_monitors!(nodes[1], 2);
11092 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11093 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11094 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11095 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11096 check_added_monitors!(nodes[0], 1);
11097 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11098 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11099 check_added_monitors!(nodes[1], 1);
11100 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11101 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11102 check_added_monitors!(nodes[1], 1);
11103 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11104 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11105 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11106 check_added_monitors!(nodes[0], 1);
11107 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11108 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11109 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11110 check_added_monitors!(nodes[0], 1);
11111 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11112 check_added_monitors!(nodes[1], 1);
11113 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11114 check_added_monitors!(nodes[1], 1);
11115 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11116 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11117 check_added_monitors!(nodes[0], 1);
11119 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11120 // path's success and a PaymentPathSuccessful event for each path's success.
11121 let events = nodes[0].node.get_and_clear_pending_events();
11122 assert_eq!(events.len(), 2);
11124 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11125 assert_eq!(payment_id, *actual_payment_id);
11126 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11127 assert_eq!(route.paths[0], *path);
11129 _ => panic!("Unexpected event"),
11132 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11133 assert_eq!(payment_id, *actual_payment_id);
11134 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11135 assert_eq!(route.paths[0], *path);
11137 _ => panic!("Unexpected event"),
11142 fn test_keysend_dup_payment_hash() {
11143 do_test_keysend_dup_payment_hash(false);
11144 do_test_keysend_dup_payment_hash(true);
11147 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11148 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11149 // outbound regular payment fails as expected.
11150 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11151 // fails as expected.
11152 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11153 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11154 // reject MPP keysend payments, since in this case where the payment has no payment
11155 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11156 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11157 // payment secrets and reject otherwise.
11158 let chanmon_cfgs = create_chanmon_cfgs(2);
11159 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11160 let mut mpp_keysend_cfg = test_default_channel_config();
11161 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11162 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11163 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11164 create_announced_chan_between_nodes(&nodes, 0, 1);
11165 let scorer = test_utils::TestScorer::new();
11166 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11168 // To start (1), send a regular payment but don't claim it.
11169 let expected_route = [&nodes[1]];
11170 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11172 // Next, attempt a keysend payment and make sure it fails.
11173 let route_params = RouteParameters::from_payment_params_and_value(
11174 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11175 TEST_FINAL_CLTV, false), 100_000);
11176 let route = find_route(
11177 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11178 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11180 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11181 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11182 check_added_monitors!(nodes[0], 1);
11183 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11184 assert_eq!(events.len(), 1);
11185 let ev = events.drain(..).next().unwrap();
11186 let payment_event = SendEvent::from_event(ev);
11187 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11188 check_added_monitors!(nodes[1], 0);
11189 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11190 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11191 // fails), the second will process the resulting failure and fail the HTLC backward
11192 expect_pending_htlcs_forwardable!(nodes[1]);
11193 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11194 check_added_monitors!(nodes[1], 1);
11195 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11196 assert!(updates.update_add_htlcs.is_empty());
11197 assert!(updates.update_fulfill_htlcs.is_empty());
11198 assert_eq!(updates.update_fail_htlcs.len(), 1);
11199 assert!(updates.update_fail_malformed_htlcs.is_empty());
11200 assert!(updates.update_fee.is_none());
11201 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11202 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11203 expect_payment_failed!(nodes[0], payment_hash, true);
11205 // Finally, claim the original payment.
11206 claim_payment(&nodes[0], &expected_route, payment_preimage);
11208 // To start (2), send a keysend payment but don't claim it.
11209 let payment_preimage = PaymentPreimage([42; 32]);
11210 let route = find_route(
11211 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11212 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11214 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11215 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11216 check_added_monitors!(nodes[0], 1);
11217 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11218 assert_eq!(events.len(), 1);
11219 let event = events.pop().unwrap();
11220 let path = vec![&nodes[1]];
11221 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11223 // Next, attempt a regular payment and make sure it fails.
11224 let payment_secret = PaymentSecret([43; 32]);
11225 nodes[0].node.send_payment_with_route(&route, payment_hash,
11226 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11227 check_added_monitors!(nodes[0], 1);
11228 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11229 assert_eq!(events.len(), 1);
11230 let ev = events.drain(..).next().unwrap();
11231 let payment_event = SendEvent::from_event(ev);
11232 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11233 check_added_monitors!(nodes[1], 0);
11234 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11235 expect_pending_htlcs_forwardable!(nodes[1]);
11236 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11237 check_added_monitors!(nodes[1], 1);
11238 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11239 assert!(updates.update_add_htlcs.is_empty());
11240 assert!(updates.update_fulfill_htlcs.is_empty());
11241 assert_eq!(updates.update_fail_htlcs.len(), 1);
11242 assert!(updates.update_fail_malformed_htlcs.is_empty());
11243 assert!(updates.update_fee.is_none());
11244 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11245 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11246 expect_payment_failed!(nodes[0], payment_hash, true);
11248 // Finally, succeed the keysend payment.
11249 claim_payment(&nodes[0], &expected_route, payment_preimage);
11251 // To start (3), send a keysend payment but don't claim it.
11252 let payment_id_1 = PaymentId([44; 32]);
11253 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11254 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11255 check_added_monitors!(nodes[0], 1);
11256 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11257 assert_eq!(events.len(), 1);
11258 let event = events.pop().unwrap();
11259 let path = vec![&nodes[1]];
11260 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11262 // Next, attempt a keysend payment and make sure it fails.
11263 let route_params = RouteParameters::from_payment_params_and_value(
11264 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11267 let route = find_route(
11268 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11269 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11271 let payment_id_2 = PaymentId([45; 32]);
11272 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11273 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11274 check_added_monitors!(nodes[0], 1);
11275 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11276 assert_eq!(events.len(), 1);
11277 let ev = events.drain(..).next().unwrap();
11278 let payment_event = SendEvent::from_event(ev);
11279 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11280 check_added_monitors!(nodes[1], 0);
11281 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11282 expect_pending_htlcs_forwardable!(nodes[1]);
11283 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11284 check_added_monitors!(nodes[1], 1);
11285 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11286 assert!(updates.update_add_htlcs.is_empty());
11287 assert!(updates.update_fulfill_htlcs.is_empty());
11288 assert_eq!(updates.update_fail_htlcs.len(), 1);
11289 assert!(updates.update_fail_malformed_htlcs.is_empty());
11290 assert!(updates.update_fee.is_none());
11291 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11292 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11293 expect_payment_failed!(nodes[0], payment_hash, true);
11295 // Finally, claim the original payment.
11296 claim_payment(&nodes[0], &expected_route, payment_preimage);
11300 fn test_keysend_hash_mismatch() {
11301 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11302 // preimage doesn't match the msg's payment hash.
11303 let chanmon_cfgs = create_chanmon_cfgs(2);
11304 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11305 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11306 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11308 let payer_pubkey = nodes[0].node.get_our_node_id();
11309 let payee_pubkey = nodes[1].node.get_our_node_id();
11311 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11312 let route_params = RouteParameters::from_payment_params_and_value(
11313 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11314 let network_graph = nodes[0].network_graph;
11315 let first_hops = nodes[0].node.list_usable_channels();
11316 let scorer = test_utils::TestScorer::new();
11317 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11318 let route = find_route(
11319 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11320 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11323 let test_preimage = PaymentPreimage([42; 32]);
11324 let mismatch_payment_hash = PaymentHash([43; 32]);
11325 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11326 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11327 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11328 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11329 check_added_monitors!(nodes[0], 1);
11331 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11332 assert_eq!(updates.update_add_htlcs.len(), 1);
11333 assert!(updates.update_fulfill_htlcs.is_empty());
11334 assert!(updates.update_fail_htlcs.is_empty());
11335 assert!(updates.update_fail_malformed_htlcs.is_empty());
11336 assert!(updates.update_fee.is_none());
11337 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11339 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11343 fn test_keysend_msg_with_secret_err() {
11344 // Test that we error as expected if we receive a keysend payment that includes a payment
11345 // secret when we don't support MPP keysend.
11346 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11347 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11348 let chanmon_cfgs = create_chanmon_cfgs(2);
11349 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11350 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11351 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11353 let payer_pubkey = nodes[0].node.get_our_node_id();
11354 let payee_pubkey = nodes[1].node.get_our_node_id();
11356 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11357 let route_params = RouteParameters::from_payment_params_and_value(
11358 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11359 let network_graph = nodes[0].network_graph;
11360 let first_hops = nodes[0].node.list_usable_channels();
11361 let scorer = test_utils::TestScorer::new();
11362 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11363 let route = find_route(
11364 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11365 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11368 let test_preimage = PaymentPreimage([42; 32]);
11369 let test_secret = PaymentSecret([43; 32]);
11370 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
11371 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11372 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11373 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11374 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11375 PaymentId(payment_hash.0), None, session_privs).unwrap();
11376 check_added_monitors!(nodes[0], 1);
11378 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11379 assert_eq!(updates.update_add_htlcs.len(), 1);
11380 assert!(updates.update_fulfill_htlcs.is_empty());
11381 assert!(updates.update_fail_htlcs.is_empty());
11382 assert!(updates.update_fail_malformed_htlcs.is_empty());
11383 assert!(updates.update_fee.is_none());
11384 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11386 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11390 fn test_multi_hop_missing_secret() {
11391 let chanmon_cfgs = create_chanmon_cfgs(4);
11392 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11393 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11394 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11396 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11397 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11398 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11399 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11401 // Marshall an MPP route.
11402 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11403 let path = route.paths[0].clone();
11404 route.paths.push(path);
11405 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11406 route.paths[0].hops[0].short_channel_id = chan_1_id;
11407 route.paths[0].hops[1].short_channel_id = chan_3_id;
11408 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11409 route.paths[1].hops[0].short_channel_id = chan_2_id;
11410 route.paths[1].hops[1].short_channel_id = chan_4_id;
11412 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11413 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11415 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11416 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11418 _ => panic!("unexpected error")
11423 fn test_drop_disconnected_peers_when_removing_channels() {
11424 let chanmon_cfgs = create_chanmon_cfgs(2);
11425 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11426 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11427 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11429 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11431 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11432 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11434 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11435 check_closed_broadcast!(nodes[0], true);
11436 check_added_monitors!(nodes[0], 1);
11437 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11440 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11441 // disconnected and the channel between has been force closed.
11442 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11443 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11444 assert_eq!(nodes_0_per_peer_state.len(), 1);
11445 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11448 nodes[0].node.timer_tick_occurred();
11451 // Assert that nodes[1] has now been removed.
11452 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11457 fn bad_inbound_payment_hash() {
11458 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11459 let chanmon_cfgs = create_chanmon_cfgs(2);
11460 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11461 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11462 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11464 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11465 let payment_data = msgs::FinalOnionHopData {
11467 total_msat: 100_000,
11470 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11471 // payment verification fails as expected.
11472 let mut bad_payment_hash = payment_hash.clone();
11473 bad_payment_hash.0[0] += 1;
11474 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11475 Ok(_) => panic!("Unexpected ok"),
11477 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11481 // Check that using the original payment hash succeeds.
11482 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11486 fn test_outpoint_to_peer_coverage() {
11487 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
11488 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11489 // the channel is successfully closed.
11490 let chanmon_cfgs = create_chanmon_cfgs(2);
11491 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11492 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11493 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11495 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11496 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11497 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11498 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11499 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11501 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11502 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
11504 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
11505 // funding transaction, and have the real `channel_id`.
11506 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
11507 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
11510 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11512 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
11513 // as it has the funding transaction.
11514 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11515 assert_eq!(nodes_0_lock.len(), 1);
11516 assert!(nodes_0_lock.contains_key(&funding_output));
11519 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
11521 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11523 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11525 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11526 assert_eq!(nodes_0_lock.len(), 1);
11527 assert!(nodes_0_lock.contains_key(&funding_output));
11529 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11532 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
11533 // soon as it has the funding transaction.
11534 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11535 assert_eq!(nodes_1_lock.len(), 1);
11536 assert!(nodes_1_lock.contains_key(&funding_output));
11538 check_added_monitors!(nodes[1], 1);
11539 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11540 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11541 check_added_monitors!(nodes[0], 1);
11542 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11543 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11544 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11545 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11547 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11548 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11549 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11550 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11552 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11553 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11555 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
11556 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11557 // fee for the closing transaction has been negotiated and the parties has the other
11558 // party's signature for the fee negotiated closing transaction.)
11559 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11560 assert_eq!(nodes_0_lock.len(), 1);
11561 assert!(nodes_0_lock.contains_key(&funding_output));
11565 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11566 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11567 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11568 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
11569 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11570 assert_eq!(nodes_1_lock.len(), 1);
11571 assert!(nodes_1_lock.contains_key(&funding_output));
11574 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11576 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11577 // therefore has all it needs to fully close the channel (both signatures for the
11578 // closing transaction).
11579 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
11580 // fully closed by `nodes[0]`.
11581 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
11583 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
11584 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11585 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11586 assert_eq!(nodes_1_lock.len(), 1);
11587 assert!(nodes_1_lock.contains_key(&funding_output));
11590 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11592 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11594 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
11595 // they both have everything required to fully close the channel.
11596 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
11598 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11600 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11601 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11604 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11605 let expected_message = format!("Not connected to node: {}", expected_public_key);
11606 check_api_error_message(expected_message, res_err)
11609 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11610 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11611 check_api_error_message(expected_message, res_err)
11614 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11615 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11616 check_api_error_message(expected_message, res_err)
11619 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11620 let expected_message = "No such channel awaiting to be accepted.".to_string();
11621 check_api_error_message(expected_message, res_err)
11624 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11626 Err(APIError::APIMisuseError { err }) => {
11627 assert_eq!(err, expected_err_message);
11629 Err(APIError::ChannelUnavailable { err }) => {
11630 assert_eq!(err, expected_err_message);
11632 Ok(_) => panic!("Unexpected Ok"),
11633 Err(_) => panic!("Unexpected Error"),
11638 fn test_api_calls_with_unkown_counterparty_node() {
11639 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11640 // expected if the `counterparty_node_id` is an unkown peer in the
11641 // `ChannelManager::per_peer_state` map.
11642 let chanmon_cfg = create_chanmon_cfgs(2);
11643 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11644 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11645 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11648 let channel_id = ChannelId::from_bytes([4; 32]);
11649 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11650 let intercept_id = InterceptId([0; 32]);
11652 // Test the API functions.
11653 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11655 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11657 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11659 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11661 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11663 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11665 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11669 fn test_api_calls_with_unavailable_channel() {
11670 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11671 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11672 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11673 // the given `channel_id`.
11674 let chanmon_cfg = create_chanmon_cfgs(2);
11675 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11676 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11677 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11679 let counterparty_node_id = nodes[1].node.get_our_node_id();
11682 let channel_id = ChannelId::from_bytes([4; 32]);
11684 // Test the API functions.
11685 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11687 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11689 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11691 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11693 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11695 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11699 fn test_connection_limiting() {
11700 // Test that we limit un-channel'd peers and un-funded channels properly.
11701 let chanmon_cfgs = create_chanmon_cfgs(2);
11702 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11703 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11704 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11706 // Note that create_network connects the nodes together for us
11708 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11709 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11711 let mut funding_tx = None;
11712 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11713 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11714 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11717 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11718 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11719 funding_tx = Some(tx.clone());
11720 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11721 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11723 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11724 check_added_monitors!(nodes[1], 1);
11725 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11727 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11729 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11730 check_added_monitors!(nodes[0], 1);
11731 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11733 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11736 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11737 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11738 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11739 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11740 open_channel_msg.temporary_channel_id);
11742 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11743 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11745 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11746 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11747 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11748 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11749 peer_pks.push(random_pk);
11750 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11751 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11754 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11755 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11756 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11757 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11758 }, true).unwrap_err();
11760 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11761 // them if we have too many un-channel'd peers.
11762 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11763 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11764 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11765 for ev in chan_closed_events {
11766 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11768 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11769 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11771 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11772 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11773 }, true).unwrap_err();
11775 // but of course if the connection is outbound its allowed...
11776 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11777 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11778 }, false).unwrap();
11779 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11781 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11782 // Even though we accept one more connection from new peers, we won't actually let them
11784 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11785 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11786 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11787 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11788 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11790 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11791 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11792 open_channel_msg.temporary_channel_id);
11794 // Of course, however, outbound channels are always allowed
11795 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11796 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11798 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11799 // "protected" and can connect again.
11800 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11801 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11802 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11804 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11806 // Further, because the first channel was funded, we can open another channel with
11808 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11809 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11813 fn test_outbound_chans_unlimited() {
11814 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11815 let chanmon_cfgs = create_chanmon_cfgs(2);
11816 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11817 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11818 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11820 // Note that create_network connects the nodes together for us
11822 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11823 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11825 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11826 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11827 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11828 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11831 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11833 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11834 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11835 open_channel_msg.temporary_channel_id);
11837 // but we can still open an outbound channel.
11838 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11839 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11841 // but even with such an outbound channel, additional inbound channels will still fail.
11842 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11843 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11844 open_channel_msg.temporary_channel_id);
11848 fn test_0conf_limiting() {
11849 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11850 // flag set and (sometimes) accept channels as 0conf.
11851 let chanmon_cfgs = create_chanmon_cfgs(2);
11852 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11853 let mut settings = test_default_channel_config();
11854 settings.manually_accept_inbound_channels = true;
11855 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11856 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11858 // Note that create_network connects the nodes together for us
11860 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11861 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11863 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11864 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11865 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11866 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11867 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11868 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11871 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11872 let events = nodes[1].node.get_and_clear_pending_events();
11874 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11875 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11877 _ => panic!("Unexpected event"),
11879 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11880 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11883 // If we try to accept a channel from another peer non-0conf it will fail.
11884 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11885 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11886 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11887 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11889 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11890 let events = nodes[1].node.get_and_clear_pending_events();
11892 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11893 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11894 Err(APIError::APIMisuseError { err }) =>
11895 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11899 _ => panic!("Unexpected event"),
11901 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11902 open_channel_msg.temporary_channel_id);
11904 // ...however if we accept the same channel 0conf it should work just fine.
11905 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11906 let events = nodes[1].node.get_and_clear_pending_events();
11908 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11909 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11911 _ => panic!("Unexpected event"),
11913 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11917 fn reject_excessively_underpaying_htlcs() {
11918 let chanmon_cfg = create_chanmon_cfgs(1);
11919 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11920 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11921 let node = create_network(1, &node_cfg, &node_chanmgr);
11922 let sender_intended_amt_msat = 100;
11923 let extra_fee_msat = 10;
11924 let hop_data = msgs::InboundOnionPayload::Receive {
11926 outgoing_cltv_value: 42,
11927 payment_metadata: None,
11928 keysend_preimage: None,
11929 payment_data: Some(msgs::FinalOnionHopData {
11930 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11932 custom_tlvs: Vec::new(),
11934 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11935 // intended amount, we fail the payment.
11936 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11937 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11938 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11939 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
11940 current_height, node[0].node.default_configuration.accept_mpp_keysend)
11942 assert_eq!(err_code, 19);
11943 } else { panic!(); }
11945 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11946 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11948 outgoing_cltv_value: 42,
11949 payment_metadata: None,
11950 keysend_preimage: None,
11951 payment_data: Some(msgs::FinalOnionHopData {
11952 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11954 custom_tlvs: Vec::new(),
11956 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11957 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11958 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
11959 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
11963 fn test_final_incorrect_cltv(){
11964 let chanmon_cfg = create_chanmon_cfgs(1);
11965 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11966 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11967 let node = create_network(1, &node_cfg, &node_chanmgr);
11969 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11970 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
11972 outgoing_cltv_value: 22,
11973 payment_metadata: None,
11974 keysend_preimage: None,
11975 payment_data: Some(msgs::FinalOnionHopData {
11976 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
11978 custom_tlvs: Vec::new(),
11979 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
11980 node[0].node.default_configuration.accept_mpp_keysend);
11982 // Should not return an error as this condition:
11983 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
11984 // is not satisfied.
11985 assert!(result.is_ok());
11989 fn test_inbound_anchors_manual_acceptance() {
11990 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11991 // flag set and (sometimes) accept channels as 0conf.
11992 let mut anchors_cfg = test_default_channel_config();
11993 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11995 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11996 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11998 let chanmon_cfgs = create_chanmon_cfgs(3);
11999 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12000 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
12001 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
12002 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12004 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12005 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12007 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12008 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12009 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
12010 match &msg_events[0] {
12011 MessageSendEvent::HandleError { node_id, action } => {
12012 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
12014 ErrorAction::SendErrorMessage { msg } =>
12015 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
12016 _ => panic!("Unexpected error action"),
12019 _ => panic!("Unexpected event"),
12022 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12023 let events = nodes[2].node.get_and_clear_pending_events();
12025 Event::OpenChannelRequest { temporary_channel_id, .. } =>
12026 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
12027 _ => panic!("Unexpected event"),
12029 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12033 fn test_anchors_zero_fee_htlc_tx_fallback() {
12034 // Tests that if both nodes support anchors, but the remote node does not want to accept
12035 // anchor channels at the moment, an error it sent to the local node such that it can retry
12036 // the channel without the anchors feature.
12037 let chanmon_cfgs = create_chanmon_cfgs(2);
12038 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12039 let mut anchors_config = test_default_channel_config();
12040 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12041 anchors_config.manually_accept_inbound_channels = true;
12042 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
12043 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12045 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
12046 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12047 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
12049 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12050 let events = nodes[1].node.get_and_clear_pending_events();
12052 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12053 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
12055 _ => panic!("Unexpected event"),
12058 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12059 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12061 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12062 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12064 // Since nodes[1] should not have accepted the channel, it should
12065 // not have generated any events.
12066 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12070 fn test_update_channel_config() {
12071 let chanmon_cfg = create_chanmon_cfgs(2);
12072 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12073 let mut user_config = test_default_channel_config();
12074 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12075 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12076 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12077 let channel = &nodes[0].node.list_channels()[0];
12079 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12080 let events = nodes[0].node.get_and_clear_pending_msg_events();
12081 assert_eq!(events.len(), 0);
12083 user_config.channel_config.forwarding_fee_base_msat += 10;
12084 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12085 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12086 let events = nodes[0].node.get_and_clear_pending_msg_events();
12087 assert_eq!(events.len(), 1);
12089 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12090 _ => panic!("expected BroadcastChannelUpdate event"),
12093 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12094 let events = nodes[0].node.get_and_clear_pending_msg_events();
12095 assert_eq!(events.len(), 0);
12097 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12098 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12099 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12100 ..Default::default()
12102 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12103 let events = nodes[0].node.get_and_clear_pending_msg_events();
12104 assert_eq!(events.len(), 1);
12106 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12107 _ => panic!("expected BroadcastChannelUpdate event"),
12110 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12111 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12112 forwarding_fee_proportional_millionths: Some(new_fee),
12113 ..Default::default()
12115 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12116 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12117 let events = nodes[0].node.get_and_clear_pending_msg_events();
12118 assert_eq!(events.len(), 1);
12120 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12121 _ => panic!("expected BroadcastChannelUpdate event"),
12124 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12125 // should be applied to ensure update atomicity as specified in the API docs.
12126 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12127 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12128 let new_fee = current_fee + 100;
12131 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12132 forwarding_fee_proportional_millionths: Some(new_fee),
12133 ..Default::default()
12135 Err(APIError::ChannelUnavailable { err: _ }),
12138 // Check that the fee hasn't changed for the channel that exists.
12139 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12140 let events = nodes[0].node.get_and_clear_pending_msg_events();
12141 assert_eq!(events.len(), 0);
12145 fn test_payment_display() {
12146 let payment_id = PaymentId([42; 32]);
12147 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12148 let payment_hash = PaymentHash([42; 32]);
12149 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12150 let payment_preimage = PaymentPreimage([42; 32]);
12151 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12155 fn test_trigger_lnd_force_close() {
12156 let chanmon_cfg = create_chanmon_cfgs(2);
12157 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12158 let user_config = test_default_channel_config();
12159 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12160 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12162 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12163 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12164 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12165 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12166 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12167 check_closed_broadcast(&nodes[0], 1, true);
12168 check_added_monitors(&nodes[0], 1);
12169 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12171 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12172 assert_eq!(txn.len(), 1);
12173 check_spends!(txn[0], funding_tx);
12176 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12177 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12179 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12180 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12182 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12183 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12184 }, false).unwrap();
12185 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12186 let channel_reestablish = get_event_msg!(
12187 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12189 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12191 // Alice should respond with an error since the channel isn't known, but a bogus
12192 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12193 // close even if it was an lnd node.
12194 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12195 assert_eq!(msg_events.len(), 2);
12196 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12197 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12198 assert_eq!(msg.next_local_commitment_number, 0);
12199 assert_eq!(msg.next_remote_commitment_number, 0);
12200 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12201 } else { panic!() };
12202 check_closed_broadcast(&nodes[1], 1, true);
12203 check_added_monitors(&nodes[1], 1);
12204 let expected_close_reason = ClosureReason::ProcessingError {
12205 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12207 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12209 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12210 assert_eq!(txn.len(), 1);
12211 check_spends!(txn[0], funding_tx);
12218 use crate::chain::Listen;
12219 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12220 use crate::sign::{KeysManager, InMemorySigner};
12221 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12222 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12223 use crate::ln::functional_test_utils::*;
12224 use crate::ln::msgs::{ChannelMessageHandler, Init};
12225 use crate::routing::gossip::NetworkGraph;
12226 use crate::routing::router::{PaymentParameters, RouteParameters};
12227 use crate::util::test_utils;
12228 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12230 use bitcoin::blockdata::locktime::absolute::LockTime;
12231 use bitcoin::hashes::Hash;
12232 use bitcoin::hashes::sha256::Hash as Sha256;
12233 use bitcoin::{Block, Transaction, TxOut};
12235 use crate::sync::{Arc, Mutex, RwLock};
12237 use criterion::Criterion;
12239 type Manager<'a, P> = ChannelManager<
12240 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12241 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12242 &'a test_utils::TestLogger, &'a P>,
12243 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12244 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12245 &'a test_utils::TestLogger>;
12247 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12248 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12250 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12251 type CM = Manager<'chan_mon_cfg, P>;
12253 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12255 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12258 pub fn bench_sends(bench: &mut Criterion) {
12259 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12262 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12263 // Do a simple benchmark of sending a payment back and forth between two nodes.
12264 // Note that this is unrealistic as each payment send will require at least two fsync
12266 let network = bitcoin::Network::Testnet;
12267 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12269 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12270 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12271 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12272 let scorer = RwLock::new(test_utils::TestScorer::new());
12273 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12275 let mut config: UserConfig = Default::default();
12276 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12277 config.channel_handshake_config.minimum_depth = 1;
12279 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12280 let seed_a = [1u8; 32];
12281 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12282 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12284 best_block: BestBlock::from_network(network),
12285 }, genesis_block.header.time);
12286 let node_a_holder = ANodeHolder { node: &node_a };
12288 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12289 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12290 let seed_b = [2u8; 32];
12291 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12292 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12294 best_block: BestBlock::from_network(network),
12295 }, genesis_block.header.time);
12296 let node_b_holder = ANodeHolder { node: &node_b };
12298 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12299 features: node_b.init_features(), networks: None, remote_network_address: None
12301 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12302 features: node_a.init_features(), networks: None, remote_network_address: None
12303 }, false).unwrap();
12304 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12305 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12306 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12309 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12310 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12311 value: 8_000_000, script_pubkey: output_script,
12313 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12314 } else { panic!(); }
12316 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12317 let events_b = node_b.get_and_clear_pending_events();
12318 assert_eq!(events_b.len(), 1);
12319 match events_b[0] {
12320 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12321 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12323 _ => panic!("Unexpected event"),
12326 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12327 let events_a = node_a.get_and_clear_pending_events();
12328 assert_eq!(events_a.len(), 1);
12329 match events_a[0] {
12330 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12331 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12333 _ => panic!("Unexpected event"),
12336 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12338 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12339 Listen::block_connected(&node_a, &block, 1);
12340 Listen::block_connected(&node_b, &block, 1);
12342 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12343 let msg_events = node_a.get_and_clear_pending_msg_events();
12344 assert_eq!(msg_events.len(), 2);
12345 match msg_events[0] {
12346 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12347 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12348 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12352 match msg_events[1] {
12353 MessageSendEvent::SendChannelUpdate { .. } => {},
12357 let events_a = node_a.get_and_clear_pending_events();
12358 assert_eq!(events_a.len(), 1);
12359 match events_a[0] {
12360 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12361 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12363 _ => panic!("Unexpected event"),
12366 let events_b = node_b.get_and_clear_pending_events();
12367 assert_eq!(events_b.len(), 1);
12368 match events_b[0] {
12369 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12370 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12372 _ => panic!("Unexpected event"),
12375 let mut payment_count: u64 = 0;
12376 macro_rules! send_payment {
12377 ($node_a: expr, $node_b: expr) => {
12378 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12379 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12380 let mut payment_preimage = PaymentPreimage([0; 32]);
12381 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12382 payment_count += 1;
12383 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
12384 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12386 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12387 PaymentId(payment_hash.0),
12388 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12389 Retry::Attempts(0)).unwrap();
12390 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12391 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12392 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12393 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12394 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12395 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12396 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12398 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12399 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12400 $node_b.claim_funds(payment_preimage);
12401 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12403 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12404 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12405 assert_eq!(node_id, $node_a.get_our_node_id());
12406 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12407 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12409 _ => panic!("Failed to generate claim event"),
12412 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12413 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12414 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12415 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12417 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12421 bench.bench_function(bench_name, |b| b.iter(|| {
12422 send_payment!(node_a, node_b);
12423 send_payment!(node_b, node_a);