9f403f85b2f0aec6b841961fa47fd7e6bce424e7
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
28
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
32
33 use crate::chain;
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
38 use crate::events;
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
49 use crate::routing::scoring::ProbabilisticScorer;
50 use crate::ln::msgs;
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
54 #[cfg(test)]
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
57 use crate::ln::wire::Encode;
58 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
66
67 use alloc::collections::BTreeMap;
68
69 use crate::io;
70 use crate::prelude::*;
71 use core::{cmp, mem};
72 use core::cell::RefCell;
73 use crate::io::Read;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, Ordering};
76 use core::time::Duration;
77 use core::ops::Deref;
78
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
81
82 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
83 //
84 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
85 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
86 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
87 //
88 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
89 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
90 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
91 // before we forward it.
92 //
93 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
94 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
95 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
96 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
97 // our payment, which we can use to decode errors or inform the user that the payment was sent.
98
99 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
100 pub(super) enum PendingHTLCRouting {
101         Forward {
102                 onion_packet: msgs::OnionPacket,
103                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
104                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
105                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
106         },
107         Receive {
108                 payment_data: msgs::FinalOnionHopData,
109                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
110                 phantom_shared_secret: Option<[u8; 32]>,
111         },
112         ReceiveKeysend {
113                 payment_preimage: PaymentPreimage,
114                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
115         },
116 }
117
118 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
119 pub(super) struct PendingHTLCInfo {
120         pub(super) routing: PendingHTLCRouting,
121         pub(super) incoming_shared_secret: [u8; 32],
122         payment_hash: PaymentHash,
123         /// Amount received
124         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
125         /// Sender intended amount to forward or receive (actual amount received
126         /// may overshoot this in either case)
127         pub(super) outgoing_amt_msat: u64,
128         pub(super) outgoing_cltv_value: u32,
129 }
130
131 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
132 pub(super) enum HTLCFailureMsg {
133         Relay(msgs::UpdateFailHTLC),
134         Malformed(msgs::UpdateFailMalformedHTLC),
135 }
136
137 /// Stores whether we can't forward an HTLC or relevant forwarding info
138 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
139 pub(super) enum PendingHTLCStatus {
140         Forward(PendingHTLCInfo),
141         Fail(HTLCFailureMsg),
142 }
143
144 pub(super) struct PendingAddHTLCInfo {
145         pub(super) forward_info: PendingHTLCInfo,
146
147         // These fields are produced in `forward_htlcs()` and consumed in
148         // `process_pending_htlc_forwards()` for constructing the
149         // `HTLCSource::PreviousHopData` for failed and forwarded
150         // HTLCs.
151         //
152         // Note that this may be an outbound SCID alias for the associated channel.
153         prev_short_channel_id: u64,
154         prev_htlc_id: u64,
155         prev_funding_outpoint: OutPoint,
156         prev_user_channel_id: u128,
157 }
158
159 pub(super) enum HTLCForwardInfo {
160         AddHTLC(PendingAddHTLCInfo),
161         FailHTLC {
162                 htlc_id: u64,
163                 err_packet: msgs::OnionErrorPacket,
164         },
165 }
166
167 /// Tracks the inbound corresponding to an outbound HTLC
168 #[derive(Clone, Hash, PartialEq, Eq)]
169 pub(crate) struct HTLCPreviousHopData {
170         // Note that this may be an outbound SCID alias for the associated channel.
171         short_channel_id: u64,
172         htlc_id: u64,
173         incoming_packet_shared_secret: [u8; 32],
174         phantom_shared_secret: Option<[u8; 32]>,
175
176         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
177         // channel with a preimage provided by the forward channel.
178         outpoint: OutPoint,
179 }
180
181 enum OnionPayload {
182         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
183         Invoice {
184                 /// This is only here for backwards-compatibility in serialization, in the future it can be
185                 /// removed, breaking clients running 0.0.106 and earlier.
186                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
187         },
188         /// Contains the payer-provided preimage.
189         Spontaneous(PaymentPreimage),
190 }
191
192 /// HTLCs that are to us and can be failed/claimed by the user
193 struct ClaimableHTLC {
194         prev_hop: HTLCPreviousHopData,
195         cltv_expiry: u32,
196         /// The amount (in msats) of this MPP part
197         value: u64,
198         /// The amount (in msats) that the sender intended to be sent in this MPP
199         /// part (used for validating total MPP amount)
200         sender_intended_value: u64,
201         onion_payload: OnionPayload,
202         timer_ticks: u8,
203         /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
204         /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
205         total_value_received: Option<u64>,
206         /// The sender intended sum total of all MPP parts specified in the onion
207         total_msat: u64,
208 }
209
210 /// A payment identifier used to uniquely identify a payment to LDK.
211 ///
212 /// This is not exported to bindings users as we just use [u8; 32] directly
213 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
214 pub struct PaymentId(pub [u8; 32]);
215
216 impl Writeable for PaymentId {
217         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
218                 self.0.write(w)
219         }
220 }
221
222 impl Readable for PaymentId {
223         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
224                 let buf: [u8; 32] = Readable::read(r)?;
225                 Ok(PaymentId(buf))
226         }
227 }
228
229 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
230 ///
231 /// This is not exported to bindings users as we just use [u8; 32] directly
232 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
233 pub struct InterceptId(pub [u8; 32]);
234
235 impl Writeable for InterceptId {
236         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
237                 self.0.write(w)
238         }
239 }
240
241 impl Readable for InterceptId {
242         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
243                 let buf: [u8; 32] = Readable::read(r)?;
244                 Ok(InterceptId(buf))
245         }
246 }
247
248 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
249 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
250 pub(crate) enum SentHTLCId {
251         PreviousHopData { short_channel_id: u64, htlc_id: u64 },
252         OutboundRoute { session_priv: SecretKey },
253 }
254 impl SentHTLCId {
255         pub(crate) fn from_source(source: &HTLCSource) -> Self {
256                 match source {
257                         HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
258                                 short_channel_id: hop_data.short_channel_id,
259                                 htlc_id: hop_data.htlc_id,
260                         },
261                         HTLCSource::OutboundRoute { session_priv, .. } =>
262                                 Self::OutboundRoute { session_priv: *session_priv },
263                 }
264         }
265 }
266 impl_writeable_tlv_based_enum!(SentHTLCId,
267         (0, PreviousHopData) => {
268                 (0, short_channel_id, required),
269                 (2, htlc_id, required),
270         },
271         (2, OutboundRoute) => {
272                 (0, session_priv, required),
273         };
274 );
275
276
277 /// Tracks the inbound corresponding to an outbound HTLC
278 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
279 #[derive(Clone, PartialEq, Eq)]
280 pub(crate) enum HTLCSource {
281         PreviousHopData(HTLCPreviousHopData),
282         OutboundRoute {
283                 path: Vec<RouteHop>,
284                 session_priv: SecretKey,
285                 /// Technically we can recalculate this from the route, but we cache it here to avoid
286                 /// doing a double-pass on route when we get a failure back
287                 first_hop_htlc_msat: u64,
288                 payment_id: PaymentId,
289         },
290 }
291 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
292 impl core::hash::Hash for HTLCSource {
293         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
294                 match self {
295                         HTLCSource::PreviousHopData(prev_hop_data) => {
296                                 0u8.hash(hasher);
297                                 prev_hop_data.hash(hasher);
298                         },
299                         HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
300                                 1u8.hash(hasher);
301                                 path.hash(hasher);
302                                 session_priv[..].hash(hasher);
303                                 payment_id.hash(hasher);
304                                 first_hop_htlc_msat.hash(hasher);
305                         },
306                 }
307         }
308 }
309 impl HTLCSource {
310         #[cfg(not(feature = "grind_signatures"))]
311         #[cfg(test)]
312         pub fn dummy() -> Self {
313                 HTLCSource::OutboundRoute {
314                         path: Vec::new(),
315                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
316                         first_hop_htlc_msat: 0,
317                         payment_id: PaymentId([2; 32]),
318                 }
319         }
320
321         #[cfg(debug_assertions)]
322         /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
323         /// transaction. Useful to ensure different datastructures match up.
324         pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
325                 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
326                         *first_hop_htlc_msat == htlc.amount_msat
327                 } else {
328                         // There's nothing we can check for forwarded HTLCs
329                         true
330                 }
331         }
332 }
333
334 struct ReceiveError {
335         err_code: u16,
336         err_data: Vec<u8>,
337         msg: &'static str,
338 }
339
340 /// This enum is used to specify which error data to send to peers when failing back an HTLC
341 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
342 ///
343 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
344 #[derive(Clone, Copy)]
345 pub enum FailureCode {
346         /// We had a temporary error processing the payment. Useful if no other error codes fit
347         /// and you want to indicate that the payer may want to retry.
348         TemporaryNodeFailure             = 0x2000 | 2,
349         /// We have a required feature which was not in this onion. For example, you may require
350         /// some additional metadata that was not provided with this payment.
351         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
352         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
353         /// the HTLC is too close to the current block height for safe handling.
354         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
355         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
356         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
357 }
358
359 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
360
361 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
362 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
363 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
364 /// peer_state lock. We then return the set of things that need to be done outside the lock in
365 /// this struct and call handle_error!() on it.
366
367 struct MsgHandleErrInternal {
368         err: msgs::LightningError,
369         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
370         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
371 }
372 impl MsgHandleErrInternal {
373         #[inline]
374         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
375                 Self {
376                         err: LightningError {
377                                 err: err.clone(),
378                                 action: msgs::ErrorAction::SendErrorMessage {
379                                         msg: msgs::ErrorMessage {
380                                                 channel_id,
381                                                 data: err
382                                         },
383                                 },
384                         },
385                         chan_id: None,
386                         shutdown_finish: None,
387                 }
388         }
389         #[inline]
390         fn from_no_close(err: msgs::LightningError) -> Self {
391                 Self { err, chan_id: None, shutdown_finish: None }
392         }
393         #[inline]
394         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
395                 Self {
396                         err: LightningError {
397                                 err: err.clone(),
398                                 action: msgs::ErrorAction::SendErrorMessage {
399                                         msg: msgs::ErrorMessage {
400                                                 channel_id,
401                                                 data: err
402                                         },
403                                 },
404                         },
405                         chan_id: Some((channel_id, user_channel_id)),
406                         shutdown_finish: Some((shutdown_res, channel_update)),
407                 }
408         }
409         #[inline]
410         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
411                 Self {
412                         err: match err {
413                                 ChannelError::Warn(msg) =>  LightningError {
414                                         err: msg.clone(),
415                                         action: msgs::ErrorAction::SendWarningMessage {
416                                                 msg: msgs::WarningMessage {
417                                                         channel_id,
418                                                         data: msg
419                                                 },
420                                                 log_level: Level::Warn,
421                                         },
422                                 },
423                                 ChannelError::Ignore(msg) => LightningError {
424                                         err: msg,
425                                         action: msgs::ErrorAction::IgnoreError,
426                                 },
427                                 ChannelError::Close(msg) => LightningError {
428                                         err: msg.clone(),
429                                         action: msgs::ErrorAction::SendErrorMessage {
430                                                 msg: msgs::ErrorMessage {
431                                                         channel_id,
432                                                         data: msg
433                                                 },
434                                         },
435                                 },
436                         },
437                         chan_id: None,
438                         shutdown_finish: None,
439                 }
440         }
441 }
442
443 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
444 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
445 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
446 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
447 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
448
449 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
450 /// be sent in the order they appear in the return value, however sometimes the order needs to be
451 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
452 /// they were originally sent). In those cases, this enum is also returned.
453 #[derive(Clone, PartialEq)]
454 pub(super) enum RAACommitmentOrder {
455         /// Send the CommitmentUpdate messages first
456         CommitmentFirst,
457         /// Send the RevokeAndACK message first
458         RevokeAndACKFirst,
459 }
460
461 /// Information about a payment which is currently being claimed.
462 struct ClaimingPayment {
463         amount_msat: u64,
464         payment_purpose: events::PaymentPurpose,
465         receiver_node_id: PublicKey,
466 }
467 impl_writeable_tlv_based!(ClaimingPayment, {
468         (0, amount_msat, required),
469         (2, payment_purpose, required),
470         (4, receiver_node_id, required),
471 });
472
473 /// Information about claimable or being-claimed payments
474 struct ClaimablePayments {
475         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
476         /// failed/claimed by the user.
477         ///
478         /// Note that, no consistency guarantees are made about the channels given here actually
479         /// existing anymore by the time you go to read them!
480         ///
481         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
482         /// we don't get a duplicate payment.
483         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
484
485         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
486         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
487         /// as an [`events::Event::PaymentClaimed`].
488         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
489 }
490
491 /// Events which we process internally but cannot be procsesed immediately at the generation site
492 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
493 /// quite some time lag.
494 enum BackgroundEvent {
495         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
496         /// commitment transaction.
497         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
498 }
499
500 #[derive(Debug)]
501 pub(crate) enum MonitorUpdateCompletionAction {
502         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
503         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
504         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
505         /// event can be generated.
506         PaymentClaimed { payment_hash: PaymentHash },
507         /// Indicates an [`events::Event`] should be surfaced to the user.
508         EmitEvent { event: events::Event },
509 }
510
511 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
512         (0, PaymentClaimed) => { (0, payment_hash, required) },
513         (2, EmitEvent) => { (0, event, upgradable_required) },
514 );
515
516 /// State we hold per-peer.
517 pub(super) struct PeerState<Signer: ChannelSigner> {
518         /// `temporary_channel_id` or `channel_id` -> `channel`.
519         ///
520         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
521         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
522         /// `channel_id`.
523         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
524         /// The latest `InitFeatures` we heard from the peer.
525         latest_features: InitFeatures,
526         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
527         /// for broadcast messages, where ordering isn't as strict).
528         pub(super) pending_msg_events: Vec<MessageSendEvent>,
529         /// Map from a specific channel to some action(s) that should be taken when all pending
530         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
531         ///
532         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
533         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
534         /// channels with a peer this will just be one allocation and will amount to a linear list of
535         /// channels to walk, avoiding the whole hashing rigmarole.
536         ///
537         /// Note that the channel may no longer exist. For example, if a channel was closed but we
538         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
539         /// for a missing channel. While a malicious peer could construct a second channel with the
540         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
541         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
542         /// duplicates do not occur, so such channels should fail without a monitor update completing.
543         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
544         /// The peer is currently connected (i.e. we've seen a
545         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
546         /// [`ChannelMessageHandler::peer_disconnected`].
547         is_connected: bool,
548 }
549
550 impl <Signer: ChannelSigner> PeerState<Signer> {
551         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
552         /// If true is passed for `require_disconnected`, the function will return false if we haven't
553         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
554         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
555                 if require_disconnected && self.is_connected {
556                         return false
557                 }
558                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
559         }
560 }
561
562 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
563 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
564 ///
565 /// For users who don't want to bother doing their own payment preimage storage, we also store that
566 /// here.
567 ///
568 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
569 /// and instead encoding it in the payment secret.
570 struct PendingInboundPayment {
571         /// The payment secret that the sender must use for us to accept this payment
572         payment_secret: PaymentSecret,
573         /// Time at which this HTLC expires - blocks with a header time above this value will result in
574         /// this payment being removed.
575         expiry_time: u64,
576         /// Arbitrary identifier the user specifies (or not)
577         user_payment_id: u64,
578         // Other required attributes of the payment, optionally enforced:
579         payment_preimage: Option<PaymentPreimage>,
580         min_value_msat: Option<u64>,
581 }
582
583 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
584 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
585 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
586 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
587 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
588 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
589 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
590 /// of [`KeysManager`] and [`DefaultRouter`].
591 ///
592 /// This is not exported to bindings users as Arcs don't make sense in bindings
593 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
594         Arc<M>,
595         Arc<T>,
596         Arc<KeysManager>,
597         Arc<KeysManager>,
598         Arc<KeysManager>,
599         Arc<F>,
600         Arc<DefaultRouter<
601                 Arc<NetworkGraph<Arc<L>>>,
602                 Arc<L>,
603                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
604         >>,
605         Arc<L>
606 >;
607
608 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
609 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
610 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
611 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
612 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
613 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
614 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
615 /// or, respectively, [`Router`]  for its router, but this type alias chooses the concrete types
616 /// of [`KeysManager`] and [`DefaultRouter`].
617 ///
618 /// This is not exported to bindings users as Arcs don't make sense in bindings
619 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
620
621 /// A trivial trait which describes any [`ChannelManager`] used in testing.
622 #[cfg(any(test, feature = "_test_utils"))]
623 pub trait AChannelManager {
624         type Watch: chain::Watch<Self::Signer>;
625         type M: Deref<Target = Self::Watch>;
626         type Broadcaster: BroadcasterInterface;
627         type T: Deref<Target = Self::Broadcaster>;
628         type EntropySource: EntropySource;
629         type ES: Deref<Target = Self::EntropySource>;
630         type NodeSigner: NodeSigner;
631         type NS: Deref<Target = Self::NodeSigner>;
632         type Signer: WriteableEcdsaChannelSigner;
633         type SignerProvider: SignerProvider<Signer = Self::Signer>;
634         type SP: Deref<Target = Self::SignerProvider>;
635         type FeeEstimator: FeeEstimator;
636         type F: Deref<Target = Self::FeeEstimator>;
637         type Router: Router;
638         type R: Deref<Target = Self::Router>;
639         type Logger: Logger;
640         type L: Deref<Target = Self::Logger>;
641         fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
642 }
643 #[cfg(any(test, feature = "_test_utils"))]
644 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
645 for ChannelManager<M, T, ES, NS, SP, F, R, L>
646 where
647         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer> + Sized,
648         T::Target: BroadcasterInterface + Sized,
649         ES::Target: EntropySource + Sized,
650         NS::Target: NodeSigner + Sized,
651         SP::Target: SignerProvider + Sized,
652         F::Target: FeeEstimator + Sized,
653         R::Target: Router + Sized,
654         L::Target: Logger + Sized,
655 {
656         type Watch = M::Target;
657         type M = M;
658         type Broadcaster = T::Target;
659         type T = T;
660         type EntropySource = ES::Target;
661         type ES = ES;
662         type NodeSigner = NS::Target;
663         type NS = NS;
664         type Signer = <SP::Target as SignerProvider>::Signer;
665         type SignerProvider = SP::Target;
666         type SP = SP;
667         type FeeEstimator = F::Target;
668         type F = F;
669         type Router = R::Target;
670         type R = R;
671         type Logger = L::Target;
672         type L = L;
673         fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
674 }
675
676 /// Manager which keeps track of a number of channels and sends messages to the appropriate
677 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
678 ///
679 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
680 /// to individual Channels.
681 ///
682 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
683 /// all peers during write/read (though does not modify this instance, only the instance being
684 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
685 /// called [`funding_transaction_generated`] for outbound channels) being closed.
686 ///
687 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
688 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
689 /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
690 /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
691 /// the serialization process). If the deserialized version is out-of-date compared to the
692 /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
693 /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
694 ///
695 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
696 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
697 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
698 ///
699 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
700 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
701 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
702 /// offline for a full minute. In order to track this, you must call
703 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
704 ///
705 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
706 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
707 /// not have a channel with being unable to connect to us or open new channels with us if we have
708 /// many peers with unfunded channels.
709 ///
710 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
711 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
712 /// never limited. Please ensure you limit the count of such channels yourself.
713 ///
714 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
715 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
716 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
717 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
718 /// you're using lightning-net-tokio.
719 ///
720 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
721 /// [`funding_created`]: msgs::FundingCreated
722 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
723 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
724 /// [`update_channel`]: chain::Watch::update_channel
725 /// [`ChannelUpdate`]: msgs::ChannelUpdate
726 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
727 /// [`read`]: ReadableArgs::read
728 //
729 // Lock order:
730 // The tree structure below illustrates the lock order requirements for the different locks of the
731 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
732 // and should then be taken in the order of the lowest to the highest level in the tree.
733 // Note that locks on different branches shall not be taken at the same time, as doing so will
734 // create a new lock order for those specific locks in the order they were taken.
735 //
736 // Lock order tree:
737 //
738 // `total_consistency_lock`
739 //  |
740 //  |__`forward_htlcs`
741 //  |   |
742 //  |   |__`pending_intercepted_htlcs`
743 //  |
744 //  |__`per_peer_state`
745 //  |   |
746 //  |   |__`pending_inbound_payments`
747 //  |       |
748 //  |       |__`claimable_payments`
749 //  |       |
750 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
751 //  |           |
752 //  |           |__`peer_state`
753 //  |               |
754 //  |               |__`id_to_peer`
755 //  |               |
756 //  |               |__`short_to_chan_info`
757 //  |               |
758 //  |               |__`outbound_scid_aliases`
759 //  |               |
760 //  |               |__`best_block`
761 //  |               |
762 //  |               |__`pending_events`
763 //  |                   |
764 //  |                   |__`pending_background_events`
765 //
766 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
767 where
768         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
769         T::Target: BroadcasterInterface,
770         ES::Target: EntropySource,
771         NS::Target: NodeSigner,
772         SP::Target: SignerProvider,
773         F::Target: FeeEstimator,
774         R::Target: Router,
775         L::Target: Logger,
776 {
777         default_configuration: UserConfig,
778         genesis_hash: BlockHash,
779         fee_estimator: LowerBoundedFeeEstimator<F>,
780         chain_monitor: M,
781         tx_broadcaster: T,
782         #[allow(unused)]
783         router: R,
784
785         /// See `ChannelManager` struct-level documentation for lock order requirements.
786         #[cfg(test)]
787         pub(super) best_block: RwLock<BestBlock>,
788         #[cfg(not(test))]
789         best_block: RwLock<BestBlock>,
790         secp_ctx: Secp256k1<secp256k1::All>,
791
792         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
793         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
794         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
795         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
796         ///
797         /// See `ChannelManager` struct-level documentation for lock order requirements.
798         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
799
800         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
801         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
802         /// (if the channel has been force-closed), however we track them here to prevent duplicative
803         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
804         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
805         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
806         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
807         /// after reloading from disk while replaying blocks against ChannelMonitors.
808         ///
809         /// See `PendingOutboundPayment` documentation for more info.
810         ///
811         /// See `ChannelManager` struct-level documentation for lock order requirements.
812         pending_outbound_payments: OutboundPayments,
813
814         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
815         ///
816         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
817         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
818         /// and via the classic SCID.
819         ///
820         /// Note that no consistency guarantees are made about the existence of a channel with the
821         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
822         ///
823         /// See `ChannelManager` struct-level documentation for lock order requirements.
824         #[cfg(test)]
825         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
826         #[cfg(not(test))]
827         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
828         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
829         /// until the user tells us what we should do with them.
830         ///
831         /// See `ChannelManager` struct-level documentation for lock order requirements.
832         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
833
834         /// The sets of payments which are claimable or currently being claimed. See
835         /// [`ClaimablePayments`]' individual field docs for more info.
836         ///
837         /// See `ChannelManager` struct-level documentation for lock order requirements.
838         claimable_payments: Mutex<ClaimablePayments>,
839
840         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
841         /// and some closed channels which reached a usable state prior to being closed. This is used
842         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
843         /// active channel list on load.
844         ///
845         /// See `ChannelManager` struct-level documentation for lock order requirements.
846         outbound_scid_aliases: Mutex<HashSet<u64>>,
847
848         /// `channel_id` -> `counterparty_node_id`.
849         ///
850         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
851         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
852         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
853         ///
854         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
855         /// the corresponding channel for the event, as we only have access to the `channel_id` during
856         /// the handling of the events.
857         ///
858         /// Note that no consistency guarantees are made about the existence of a peer with the
859         /// `counterparty_node_id` in our other maps.
860         ///
861         /// TODO:
862         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
863         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
864         /// would break backwards compatability.
865         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
866         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
867         /// required to access the channel with the `counterparty_node_id`.
868         ///
869         /// See `ChannelManager` struct-level documentation for lock order requirements.
870         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
871
872         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
873         ///
874         /// Outbound SCID aliases are added here once the channel is available for normal use, with
875         /// SCIDs being added once the funding transaction is confirmed at the channel's required
876         /// confirmation depth.
877         ///
878         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
879         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
880         /// channel with the `channel_id` in our other maps.
881         ///
882         /// See `ChannelManager` struct-level documentation for lock order requirements.
883         #[cfg(test)]
884         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
885         #[cfg(not(test))]
886         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
887
888         our_network_pubkey: PublicKey,
889
890         inbound_payment_key: inbound_payment::ExpandedKey,
891
892         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
893         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
894         /// we encrypt the namespace identifier using these bytes.
895         ///
896         /// [fake scids]: crate::util::scid_utils::fake_scid
897         fake_scid_rand_bytes: [u8; 32],
898
899         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
900         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
901         /// keeping additional state.
902         probing_cookie_secret: [u8; 32],
903
904         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
905         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
906         /// very far in the past, and can only ever be up to two hours in the future.
907         highest_seen_timestamp: AtomicUsize,
908
909         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
910         /// basis, as well as the peer's latest features.
911         ///
912         /// If we are connected to a peer we always at least have an entry here, even if no channels
913         /// are currently open with that peer.
914         ///
915         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
916         /// operate on the inner value freely. This opens up for parallel per-peer operation for
917         /// channels.
918         ///
919         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
920         ///
921         /// See `ChannelManager` struct-level documentation for lock order requirements.
922         #[cfg(not(any(test, feature = "_test_utils")))]
923         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
924         #[cfg(any(test, feature = "_test_utils"))]
925         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
926
927         /// See `ChannelManager` struct-level documentation for lock order requirements.
928         pending_events: Mutex<Vec<events::Event>>,
929         /// See `ChannelManager` struct-level documentation for lock order requirements.
930         pending_background_events: Mutex<Vec<BackgroundEvent>>,
931         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
932         /// Essentially just when we're serializing ourselves out.
933         /// Taken first everywhere where we are making changes before any other locks.
934         /// When acquiring this lock in read mode, rather than acquiring it directly, call
935         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
936         /// Notifier the lock contains sends out a notification when the lock is released.
937         total_consistency_lock: RwLock<()>,
938
939         persistence_notifier: Notifier,
940
941         entropy_source: ES,
942         node_signer: NS,
943         signer_provider: SP,
944
945         logger: L,
946 }
947
948 /// Chain-related parameters used to construct a new `ChannelManager`.
949 ///
950 /// Typically, the block-specific parameters are derived from the best block hash for the network,
951 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
952 /// are not needed when deserializing a previously constructed `ChannelManager`.
953 #[derive(Clone, Copy, PartialEq)]
954 pub struct ChainParameters {
955         /// The network for determining the `chain_hash` in Lightning messages.
956         pub network: Network,
957
958         /// The hash and height of the latest block successfully connected.
959         ///
960         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
961         pub best_block: BestBlock,
962 }
963
964 #[derive(Copy, Clone, PartialEq)]
965 enum NotifyOption {
966         DoPersist,
967         SkipPersist,
968 }
969
970 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
971 /// desirable to notify any listeners on `await_persistable_update_timeout`/
972 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
973 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
974 /// sending the aforementioned notification (since the lock being released indicates that the
975 /// updates are ready for persistence).
976 ///
977 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
978 /// notify or not based on whether relevant changes have been made, providing a closure to
979 /// `optionally_notify` which returns a `NotifyOption`.
980 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
981         persistence_notifier: &'a Notifier,
982         should_persist: F,
983         // We hold onto this result so the lock doesn't get released immediately.
984         _read_guard: RwLockReadGuard<'a, ()>,
985 }
986
987 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
988         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
989                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
990         }
991
992         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
993                 let read_guard = lock.read().unwrap();
994
995                 PersistenceNotifierGuard {
996                         persistence_notifier: notifier,
997                         should_persist: persist_check,
998                         _read_guard: read_guard,
999                 }
1000         }
1001 }
1002
1003 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1004         fn drop(&mut self) {
1005                 if (self.should_persist)() == NotifyOption::DoPersist {
1006                         self.persistence_notifier.notify();
1007                 }
1008         }
1009 }
1010
1011 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1012 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1013 ///
1014 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1015 ///
1016 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1017 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1018 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1019 /// the maximum required amount in lnd as of March 2021.
1020 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1021
1022 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1023 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1024 ///
1025 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1026 ///
1027 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1028 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1029 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1030 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1031 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1032 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1033 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1034 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1035 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1036 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1037 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1038 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1039 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1040
1041 /// Minimum CLTV difference between the current block height and received inbound payments.
1042 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1043 /// this value.
1044 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1045 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1046 // a payment was being routed, so we add an extra block to be safe.
1047 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1048
1049 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1050 // ie that if the next-hop peer fails the HTLC within
1051 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1052 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1053 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1054 // LATENCY_GRACE_PERIOD_BLOCKS.
1055 #[deny(const_err)]
1056 #[allow(dead_code)]
1057 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1058
1059 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1060 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1061 #[deny(const_err)]
1062 #[allow(dead_code)]
1063 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1064
1065 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1066 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1067
1068 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
1069 /// idempotency of payments by [`PaymentId`]. See
1070 /// [`OutboundPayments::remove_stale_resolved_payments`].
1071 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
1072
1073 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1074 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1075 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1076 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1077
1078 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1079 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1080 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1081
1082 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1083 /// many peers we reject new (inbound) connections.
1084 const MAX_NO_CHANNEL_PEERS: usize = 250;
1085
1086 /// Information needed for constructing an invoice route hint for this channel.
1087 #[derive(Clone, Debug, PartialEq)]
1088 pub struct CounterpartyForwardingInfo {
1089         /// Base routing fee in millisatoshis.
1090         pub fee_base_msat: u32,
1091         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1092         pub fee_proportional_millionths: u32,
1093         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1094         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1095         /// `cltv_expiry_delta` for more details.
1096         pub cltv_expiry_delta: u16,
1097 }
1098
1099 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1100 /// to better separate parameters.
1101 #[derive(Clone, Debug, PartialEq)]
1102 pub struct ChannelCounterparty {
1103         /// The node_id of our counterparty
1104         pub node_id: PublicKey,
1105         /// The Features the channel counterparty provided upon last connection.
1106         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1107         /// many routing-relevant features are present in the init context.
1108         pub features: InitFeatures,
1109         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1110         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1111         /// claiming at least this value on chain.
1112         ///
1113         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1114         ///
1115         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1116         pub unspendable_punishment_reserve: u64,
1117         /// Information on the fees and requirements that the counterparty requires when forwarding
1118         /// payments to us through this channel.
1119         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1120         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1121         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1122         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1123         pub outbound_htlc_minimum_msat: Option<u64>,
1124         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1125         pub outbound_htlc_maximum_msat: Option<u64>,
1126 }
1127
1128 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1129 #[derive(Clone, Debug, PartialEq)]
1130 pub struct ChannelDetails {
1131         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1132         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1133         /// Note that this means this value is *not* persistent - it can change once during the
1134         /// lifetime of the channel.
1135         pub channel_id: [u8; 32],
1136         /// Parameters which apply to our counterparty. See individual fields for more information.
1137         pub counterparty: ChannelCounterparty,
1138         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1139         /// our counterparty already.
1140         ///
1141         /// Note that, if this has been set, `channel_id` will be equivalent to
1142         /// `funding_txo.unwrap().to_channel_id()`.
1143         pub funding_txo: Option<OutPoint>,
1144         /// The features which this channel operates with. See individual features for more info.
1145         ///
1146         /// `None` until negotiation completes and the channel type is finalized.
1147         pub channel_type: Option<ChannelTypeFeatures>,
1148         /// The position of the funding transaction in the chain. None if the funding transaction has
1149         /// not yet been confirmed and the channel fully opened.
1150         ///
1151         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1152         /// payments instead of this. See [`get_inbound_payment_scid`].
1153         ///
1154         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1155         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1156         ///
1157         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1158         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1159         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1160         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1161         /// [`confirmations_required`]: Self::confirmations_required
1162         pub short_channel_id: Option<u64>,
1163         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1164         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1165         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1166         /// `Some(0)`).
1167         ///
1168         /// This will be `None` as long as the channel is not available for routing outbound payments.
1169         ///
1170         /// [`short_channel_id`]: Self::short_channel_id
1171         /// [`confirmations_required`]: Self::confirmations_required
1172         pub outbound_scid_alias: Option<u64>,
1173         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1174         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1175         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1176         /// when they see a payment to be routed to us.
1177         ///
1178         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1179         /// previous values for inbound payment forwarding.
1180         ///
1181         /// [`short_channel_id`]: Self::short_channel_id
1182         pub inbound_scid_alias: Option<u64>,
1183         /// The value, in satoshis, of this channel as appears in the funding output
1184         pub channel_value_satoshis: u64,
1185         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1186         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1187         /// this value on chain.
1188         ///
1189         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1190         ///
1191         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1192         ///
1193         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1194         pub unspendable_punishment_reserve: Option<u64>,
1195         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1196         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1197         /// 0.0.113.
1198         pub user_channel_id: u128,
1199         /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1200         /// which is applied to commitment and HTLC transactions.
1201         ///
1202         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1203         pub feerate_sat_per_1000_weight: Option<u32>,
1204         /// Our total balance.  This is the amount we would get if we close the channel.
1205         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1206         /// amount is not likely to be recoverable on close.
1207         ///
1208         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1209         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1210         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1211         /// This does not consider any on-chain fees.
1212         ///
1213         /// See also [`ChannelDetails::outbound_capacity_msat`]
1214         pub balance_msat: u64,
1215         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1216         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1217         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1218         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1219         ///
1220         /// See also [`ChannelDetails::balance_msat`]
1221         ///
1222         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1223         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1224         /// should be able to spend nearly this amount.
1225         pub outbound_capacity_msat: u64,
1226         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1227         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1228         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1229         /// to use a limit as close as possible to the HTLC limit we can currently send.
1230         ///
1231         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1232         pub next_outbound_htlc_limit_msat: u64,
1233         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1234         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1235         /// available for inclusion in new inbound HTLCs).
1236         /// Note that there are some corner cases not fully handled here, so the actual available
1237         /// inbound capacity may be slightly higher than this.
1238         ///
1239         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1240         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1241         /// However, our counterparty should be able to spend nearly this amount.
1242         pub inbound_capacity_msat: u64,
1243         /// The number of required confirmations on the funding transaction before the funding will be
1244         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1245         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1246         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1247         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1248         ///
1249         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1250         ///
1251         /// [`is_outbound`]: ChannelDetails::is_outbound
1252         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1253         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1254         pub confirmations_required: Option<u32>,
1255         /// The current number of confirmations on the funding transaction.
1256         ///
1257         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1258         pub confirmations: Option<u32>,
1259         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1260         /// until we can claim our funds after we force-close the channel. During this time our
1261         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1262         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1263         /// time to claim our non-HTLC-encumbered funds.
1264         ///
1265         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1266         pub force_close_spend_delay: Option<u16>,
1267         /// True if the channel was initiated (and thus funded) by us.
1268         pub is_outbound: bool,
1269         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1270         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1271         /// required confirmation count has been reached (and we were connected to the peer at some
1272         /// point after the funding transaction received enough confirmations). The required
1273         /// confirmation count is provided in [`confirmations_required`].
1274         ///
1275         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1276         pub is_channel_ready: bool,
1277         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1278         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1279         ///
1280         /// This is a strict superset of `is_channel_ready`.
1281         pub is_usable: bool,
1282         /// True if this channel is (or will be) publicly-announced.
1283         pub is_public: bool,
1284         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1285         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1286         pub inbound_htlc_minimum_msat: Option<u64>,
1287         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1288         pub inbound_htlc_maximum_msat: Option<u64>,
1289         /// Set of configurable parameters that affect channel operation.
1290         ///
1291         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1292         pub config: Option<ChannelConfig>,
1293 }
1294
1295 impl ChannelDetails {
1296         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1297         /// This should be used for providing invoice hints or in any other context where our
1298         /// counterparty will forward a payment to us.
1299         ///
1300         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1301         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1302         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1303                 self.inbound_scid_alias.or(self.short_channel_id)
1304         }
1305
1306         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1307         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1308         /// we're sending or forwarding a payment outbound over this channel.
1309         ///
1310         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1311         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1312         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1313                 self.short_channel_id.or(self.outbound_scid_alias)
1314         }
1315
1316         fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
1317                 best_block_height: u32, latest_features: InitFeatures) -> Self {
1318
1319                 let balance = channel.get_available_balances();
1320                 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1321                         channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1322                 ChannelDetails {
1323                         channel_id: channel.channel_id(),
1324                         counterparty: ChannelCounterparty {
1325                                 node_id: channel.get_counterparty_node_id(),
1326                                 features: latest_features,
1327                                 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1328                                 forwarding_info: channel.counterparty_forwarding_info(),
1329                                 // Ensures that we have actually received the `htlc_minimum_msat` value
1330                                 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1331                                 // message (as they are always the first message from the counterparty).
1332                                 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1333                                 // default `0` value set by `Channel::new_outbound`.
1334                                 outbound_htlc_minimum_msat: if channel.have_received_message() {
1335                                         Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1336                                 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1337                         },
1338                         funding_txo: channel.get_funding_txo(),
1339                         // Note that accept_channel (or open_channel) is always the first message, so
1340                         // `have_received_message` indicates that type negotiation has completed.
1341                         channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1342                         short_channel_id: channel.get_short_channel_id(),
1343                         outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1344                         inbound_scid_alias: channel.latest_inbound_scid_alias(),
1345                         channel_value_satoshis: channel.get_value_satoshis(),
1346                         feerate_sat_per_1000_weight: Some(channel.get_feerate_sat_per_1000_weight()),
1347                         unspendable_punishment_reserve: to_self_reserve_satoshis,
1348                         balance_msat: balance.balance_msat,
1349                         inbound_capacity_msat: balance.inbound_capacity_msat,
1350                         outbound_capacity_msat: balance.outbound_capacity_msat,
1351                         next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1352                         user_channel_id: channel.get_user_id(),
1353                         confirmations_required: channel.minimum_depth(),
1354                         confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1355                         force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1356                         is_outbound: channel.is_outbound(),
1357                         is_channel_ready: channel.is_usable(),
1358                         is_usable: channel.is_live(),
1359                         is_public: channel.should_announce(),
1360                         inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1361                         inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1362                         config: Some(channel.config()),
1363                 }
1364         }
1365 }
1366
1367 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1368 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1369 #[derive(Debug, PartialEq)]
1370 pub enum RecentPaymentDetails {
1371         /// When a payment is still being sent and awaiting successful delivery.
1372         Pending {
1373                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1374                 /// abandoned.
1375                 payment_hash: PaymentHash,
1376                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1377                 /// not just the amount currently inflight.
1378                 total_msat: u64,
1379         },
1380         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1381         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1382         /// payment is removed from tracking.
1383         Fulfilled {
1384                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1385                 /// made before LDK version 0.0.104.
1386                 payment_hash: Option<PaymentHash>,
1387         },
1388         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1389         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1390         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1391         Abandoned {
1392                 /// Hash of the payment that we have given up trying to send.
1393                 payment_hash: PaymentHash,
1394         },
1395 }
1396
1397 /// Route hints used in constructing invoices for [phantom node payents].
1398 ///
1399 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1400 #[derive(Clone)]
1401 pub struct PhantomRouteHints {
1402         /// The list of channels to be included in the invoice route hints.
1403         pub channels: Vec<ChannelDetails>,
1404         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1405         /// route hints.
1406         pub phantom_scid: u64,
1407         /// The pubkey of the real backing node that would ultimately receive the payment.
1408         pub real_node_pubkey: PublicKey,
1409 }
1410
1411 macro_rules! handle_error {
1412         ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1413                 // In testing, ensure there are no deadlocks where the lock is already held upon
1414                 // entering the macro.
1415                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1416                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1417
1418                 match $internal {
1419                         Ok(msg) => Ok(msg),
1420                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1421                                 let mut msg_events = Vec::with_capacity(2);
1422
1423                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1424                                         $self.finish_force_close_channel(shutdown_res);
1425                                         if let Some(update) = update_option {
1426                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1427                                                         msg: update
1428                                                 });
1429                                         }
1430                                         if let Some((channel_id, user_channel_id)) = chan_id {
1431                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1432                                                         channel_id, user_channel_id,
1433                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1434                                                 });
1435                                         }
1436                                 }
1437
1438                                 log_error!($self.logger, "{}", err.err);
1439                                 if let msgs::ErrorAction::IgnoreError = err.action {
1440                                 } else {
1441                                         msg_events.push(events::MessageSendEvent::HandleError {
1442                                                 node_id: $counterparty_node_id,
1443                                                 action: err.action.clone()
1444                                         });
1445                                 }
1446
1447                                 if !msg_events.is_empty() {
1448                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1449                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1450                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1451                                                 peer_state.pending_msg_events.append(&mut msg_events);
1452                                         }
1453                                 }
1454
1455                                 // Return error in case higher-API need one
1456                                 Err(err)
1457                         },
1458                 }
1459         } }
1460 }
1461
1462 macro_rules! update_maps_on_chan_removal {
1463         ($self: expr, $channel: expr) => {{
1464                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1465                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1466                 if let Some(short_id) = $channel.get_short_channel_id() {
1467                         short_to_chan_info.remove(&short_id);
1468                 } else {
1469                         // If the channel was never confirmed on-chain prior to its closure, remove the
1470                         // outbound SCID alias we used for it from the collision-prevention set. While we
1471                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1472                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1473                         // opening a million channels with us which are closed before we ever reach the funding
1474                         // stage.
1475                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1476                         debug_assert!(alias_removed);
1477                 }
1478                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1479         }}
1480 }
1481
1482 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1483 macro_rules! convert_chan_err {
1484         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1485                 match $err {
1486                         ChannelError::Warn(msg) => {
1487                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1488                         },
1489                         ChannelError::Ignore(msg) => {
1490                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1491                         },
1492                         ChannelError::Close(msg) => {
1493                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1494                                 update_maps_on_chan_removal!($self, $channel);
1495                                 let shutdown_res = $channel.force_shutdown(true);
1496                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1497                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1498                         },
1499                 }
1500         }
1501 }
1502
1503 macro_rules! break_chan_entry {
1504         ($self: ident, $res: expr, $entry: expr) => {
1505                 match $res {
1506                         Ok(res) => res,
1507                         Err(e) => {
1508                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1509                                 if drop {
1510                                         $entry.remove_entry();
1511                                 }
1512                                 break Err(res);
1513                         }
1514                 }
1515         }
1516 }
1517
1518 macro_rules! try_chan_entry {
1519         ($self: ident, $res: expr, $entry: expr) => {
1520                 match $res {
1521                         Ok(res) => res,
1522                         Err(e) => {
1523                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1524                                 if drop {
1525                                         $entry.remove_entry();
1526                                 }
1527                                 return Err(res);
1528                         }
1529                 }
1530         }
1531 }
1532
1533 macro_rules! remove_channel {
1534         ($self: expr, $entry: expr) => {
1535                 {
1536                         let channel = $entry.remove_entry().1;
1537                         update_maps_on_chan_removal!($self, channel);
1538                         channel
1539                 }
1540         }
1541 }
1542
1543 macro_rules! send_channel_ready {
1544         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1545                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1546                         node_id: $channel.get_counterparty_node_id(),
1547                         msg: $channel_ready_msg,
1548                 });
1549                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1550                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1551                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1552                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1553                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1554                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1555                 if let Some(real_scid) = $channel.get_short_channel_id() {
1556                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1557                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1558                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1559                 }
1560         }}
1561 }
1562
1563 macro_rules! emit_channel_pending_event {
1564         ($locked_events: expr, $channel: expr) => {
1565                 if $channel.should_emit_channel_pending_event() {
1566                         $locked_events.push(events::Event::ChannelPending {
1567                                 channel_id: $channel.channel_id(),
1568                                 former_temporary_channel_id: $channel.temporary_channel_id(),
1569                                 counterparty_node_id: $channel.get_counterparty_node_id(),
1570                                 user_channel_id: $channel.get_user_id(),
1571                                 funding_txo: $channel.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1572                         });
1573                         $channel.set_channel_pending_event_emitted();
1574                 }
1575         }
1576 }
1577
1578 macro_rules! emit_channel_ready_event {
1579         ($locked_events: expr, $channel: expr) => {
1580                 if $channel.should_emit_channel_ready_event() {
1581                         debug_assert!($channel.channel_pending_event_emitted());
1582                         $locked_events.push(events::Event::ChannelReady {
1583                                 channel_id: $channel.channel_id(),
1584                                 user_channel_id: $channel.get_user_id(),
1585                                 counterparty_node_id: $channel.get_counterparty_node_id(),
1586                                 channel_type: $channel.get_channel_type().clone(),
1587                         });
1588                         $channel.set_channel_ready_event_emitted();
1589                 }
1590         }
1591 }
1592
1593 macro_rules! handle_monitor_update_completion {
1594         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1595                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1596                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1597                         $self.best_block.read().unwrap().height());
1598                 let counterparty_node_id = $chan.get_counterparty_node_id();
1599                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1600                         // We only send a channel_update in the case where we are just now sending a
1601                         // channel_ready and the channel is in a usable state. We may re-send a
1602                         // channel_update later through the announcement_signatures process for public
1603                         // channels, but there's no reason not to just inform our counterparty of our fees
1604                         // now.
1605                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1606                                 Some(events::MessageSendEvent::SendChannelUpdate {
1607                                         node_id: counterparty_node_id,
1608                                         msg,
1609                                 })
1610                         } else { None }
1611                 } else { None };
1612
1613                 let update_actions = $peer_state.monitor_update_blocked_actions
1614                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1615
1616                 let htlc_forwards = $self.handle_channel_resumption(
1617                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1618                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1619                         updates.funding_broadcastable, updates.channel_ready,
1620                         updates.announcement_sigs);
1621                 if let Some(upd) = channel_update {
1622                         $peer_state.pending_msg_events.push(upd);
1623                 }
1624
1625                 let channel_id = $chan.channel_id();
1626                 core::mem::drop($peer_state_lock);
1627                 core::mem::drop($per_peer_state_lock);
1628
1629                 $self.handle_monitor_update_completion_actions(update_actions);
1630
1631                 if let Some(forwards) = htlc_forwards {
1632                         $self.forward_htlcs(&mut [forwards][..]);
1633                 }
1634                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1635                 for failure in updates.failed_htlcs.drain(..) {
1636                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1637                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1638                 }
1639         } }
1640 }
1641
1642 macro_rules! handle_new_monitor_update {
1643         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1644                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1645                 // any case so that it won't deadlock.
1646                 debug_assert_ne!($self.id_to_peer.held_by_thread(), LockHeldState::HeldByThread);
1647                 match $update_res {
1648                         ChannelMonitorUpdateStatus::InProgress => {
1649                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1650                                         log_bytes!($chan.channel_id()[..]));
1651                                 Ok(())
1652                         },
1653                         ChannelMonitorUpdateStatus::PermanentFailure => {
1654                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1655                                         log_bytes!($chan.channel_id()[..]));
1656                                 update_maps_on_chan_removal!($self, $chan);
1657                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1658                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1659                                         $chan.get_user_id(), $chan.force_shutdown(false),
1660                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1661                                 $remove;
1662                                 res
1663                         },
1664                         ChannelMonitorUpdateStatus::Completed => {
1665                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1666                                         .expect("We can't be processing a monitor update if it isn't queued")
1667                                         .update_id == $update_id) &&
1668                                         $chan.get_latest_monitor_update_id() == $update_id
1669                                 {
1670                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1671                                 }
1672                                 Ok(())
1673                         },
1674                 }
1675         } };
1676         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1677                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1678         }
1679 }
1680
1681 macro_rules! process_events_body {
1682         ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
1683                 // We'll acquire our total consistency lock until the returned future completes so that
1684                 // we can be sure no other persists happen while processing events.
1685                 let _read_guard = $self.total_consistency_lock.read().unwrap();
1686
1687                 let mut result = NotifyOption::SkipPersist;
1688
1689                 // TODO: This behavior should be documented. It's unintuitive that we query
1690                 // ChannelMonitors when clearing other events.
1691                 if $self.process_pending_monitor_events() {
1692                         result = NotifyOption::DoPersist;
1693                 }
1694
1695                 let pending_events = mem::replace(&mut *$self.pending_events.lock().unwrap(), vec![]);
1696                 if !pending_events.is_empty() {
1697                         result = NotifyOption::DoPersist;
1698                 }
1699
1700                 for event in pending_events {
1701                         $event_to_handle = event;
1702                         $handle_event;
1703                 }
1704
1705                 if result == NotifyOption::DoPersist {
1706                         $self.persistence_notifier.notify();
1707                 }
1708         }
1709 }
1710
1711 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1712 where
1713         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1714         T::Target: BroadcasterInterface,
1715         ES::Target: EntropySource,
1716         NS::Target: NodeSigner,
1717         SP::Target: SignerProvider,
1718         F::Target: FeeEstimator,
1719         R::Target: Router,
1720         L::Target: Logger,
1721 {
1722         /// Constructs a new `ChannelManager` to hold several channels and route between them.
1723         ///
1724         /// This is the main "logic hub" for all channel-related actions, and implements
1725         /// [`ChannelMessageHandler`].
1726         ///
1727         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1728         ///
1729         /// Users need to notify the new `ChannelManager` when a new block is connected or
1730         /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
1731         /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
1732         /// more details.
1733         ///
1734         /// [`block_connected`]: chain::Listen::block_connected
1735         /// [`block_disconnected`]: chain::Listen::block_disconnected
1736         /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
1737         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1738                 let mut secp_ctx = Secp256k1::new();
1739                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1740                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1741                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1742                 ChannelManager {
1743                         default_configuration: config.clone(),
1744                         genesis_hash: genesis_block(params.network).header.block_hash(),
1745                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1746                         chain_monitor,
1747                         tx_broadcaster,
1748                         router,
1749
1750                         best_block: RwLock::new(params.best_block),
1751
1752                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1753                         pending_inbound_payments: Mutex::new(HashMap::new()),
1754                         pending_outbound_payments: OutboundPayments::new(),
1755                         forward_htlcs: Mutex::new(HashMap::new()),
1756                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1757                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1758                         id_to_peer: Mutex::new(HashMap::new()),
1759                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1760
1761                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1762                         secp_ctx,
1763
1764                         inbound_payment_key: expanded_inbound_key,
1765                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1766
1767                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1768
1769                         highest_seen_timestamp: AtomicUsize::new(0),
1770
1771                         per_peer_state: FairRwLock::new(HashMap::new()),
1772
1773                         pending_events: Mutex::new(Vec::new()),
1774                         pending_background_events: Mutex::new(Vec::new()),
1775                         total_consistency_lock: RwLock::new(()),
1776                         persistence_notifier: Notifier::new(),
1777
1778                         entropy_source,
1779                         node_signer,
1780                         signer_provider,
1781
1782                         logger,
1783                 }
1784         }
1785
1786         /// Gets the current configuration applied to all new channels.
1787         pub fn get_current_default_configuration(&self) -> &UserConfig {
1788                 &self.default_configuration
1789         }
1790
1791         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1792                 let height = self.best_block.read().unwrap().height();
1793                 let mut outbound_scid_alias = 0;
1794                 let mut i = 0;
1795                 loop {
1796                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1797                                 outbound_scid_alias += 1;
1798                         } else {
1799                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1800                         }
1801                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1802                                 break;
1803                         }
1804                         i += 1;
1805                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1806                 }
1807                 outbound_scid_alias
1808         }
1809
1810         /// Creates a new outbound channel to the given remote node and with the given value.
1811         ///
1812         /// `user_channel_id` will be provided back as in
1813         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1814         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1815         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1816         /// is simply copied to events and otherwise ignored.
1817         ///
1818         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1819         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1820         ///
1821         /// Note that we do not check if you are currently connected to the given peer. If no
1822         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1823         /// the channel eventually being silently forgotten (dropped on reload).
1824         ///
1825         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1826         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1827         /// [`ChannelDetails::channel_id`] until after
1828         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1829         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1830         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1831         ///
1832         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1833         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1834         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1835         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1836                 if channel_value_satoshis < 1000 {
1837                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1838                 }
1839
1840                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1841                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1842                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1843
1844                 let per_peer_state = self.per_peer_state.read().unwrap();
1845
1846                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1847                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1848
1849                 let mut peer_state = peer_state_mutex.lock().unwrap();
1850                 let channel = {
1851                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1852                         let their_features = &peer_state.latest_features;
1853                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1854                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1855                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1856                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1857                         {
1858                                 Ok(res) => res,
1859                                 Err(e) => {
1860                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1861                                         return Err(e);
1862                                 },
1863                         }
1864                 };
1865                 let res = channel.get_open_channel(self.genesis_hash.clone());
1866
1867                 let temporary_channel_id = channel.channel_id();
1868                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1869                         hash_map::Entry::Occupied(_) => {
1870                                 if cfg!(fuzzing) {
1871                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1872                                 } else {
1873                                         panic!("RNG is bad???");
1874                                 }
1875                         },
1876                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1877                 }
1878
1879                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1880                         node_id: their_network_key,
1881                         msg: res,
1882                 });
1883                 Ok(temporary_channel_id)
1884         }
1885
1886         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1887                 // Allocate our best estimate of the number of channels we have in the `res`
1888                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1889                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1890                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1891                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1892                 // the same channel.
1893                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1894                 {
1895                         let best_block_height = self.best_block.read().unwrap().height();
1896                         let per_peer_state = self.per_peer_state.read().unwrap();
1897                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1898                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1899                                 let peer_state = &mut *peer_state_lock;
1900                                 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1901                                         let details = ChannelDetails::from_channel(channel, best_block_height,
1902                                                 peer_state.latest_features.clone());
1903                                         res.push(details);
1904                                 }
1905                         }
1906                 }
1907                 res
1908         }
1909
1910         /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
1911         /// more information.
1912         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1913                 self.list_channels_with_filter(|_| true)
1914         }
1915
1916         /// Gets the list of usable channels, in random order. Useful as an argument to
1917         /// [`Router::find_route`] to ensure non-announced channels are used.
1918         ///
1919         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1920         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1921         /// are.
1922         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1923                 // Note we use is_live here instead of usable which leads to somewhat confused
1924                 // internal/external nomenclature, but that's ok cause that's probably what the user
1925                 // really wanted anyway.
1926                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1927         }
1928
1929         /// Gets the list of channels we have with a given counterparty, in random order.
1930         pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
1931                 let best_block_height = self.best_block.read().unwrap().height();
1932                 let per_peer_state = self.per_peer_state.read().unwrap();
1933
1934                 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
1935                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1936                         let peer_state = &mut *peer_state_lock;
1937                         let features = &peer_state.latest_features;
1938                         return peer_state.channel_by_id
1939                                 .iter()
1940                                 .map(|(_, channel)|
1941                                         ChannelDetails::from_channel(channel, best_block_height, features.clone()))
1942                                 .collect();
1943                 }
1944                 vec![]
1945         }
1946
1947         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1948         /// successful path, or have unresolved HTLCs.
1949         ///
1950         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1951         /// result of a crash. If such a payment exists, is not listed here, and an
1952         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1953         ///
1954         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1955         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1956                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1957                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1958                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1959                                         Some(RecentPaymentDetails::Pending {
1960                                                 payment_hash: *payment_hash,
1961                                                 total_msat: *total_msat,
1962                                         })
1963                                 },
1964                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1965                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1966                                 },
1967                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1968                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1969                                 },
1970                                 PendingOutboundPayment::Legacy { .. } => None
1971                         })
1972                         .collect()
1973         }
1974
1975         /// Helper function that issues the channel close events
1976         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1977                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1978                 match channel.unbroadcasted_funding() {
1979                         Some(transaction) => {
1980                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1981                         },
1982                         None => {},
1983                 }
1984                 pending_events_lock.push(events::Event::ChannelClosed {
1985                         channel_id: channel.channel_id(),
1986                         user_channel_id: channel.get_user_id(),
1987                         reason: closure_reason
1988                 });
1989         }
1990
1991         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1992                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1993
1994                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1995                 let result: Result<(), _> = loop {
1996                         let per_peer_state = self.per_peer_state.read().unwrap();
1997
1998                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1999                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2000
2001                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2002                         let peer_state = &mut *peer_state_lock;
2003                         match peer_state.channel_by_id.entry(channel_id.clone()) {
2004                                 hash_map::Entry::Occupied(mut chan_entry) => {
2005                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
2006                                         let their_features = &peer_state.latest_features;
2007                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
2008                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
2009                                         failed_htlcs = htlcs;
2010
2011                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
2012                                         // here as we don't need the monitor update to complete until we send a
2013                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2014                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2015                                                 node_id: *counterparty_node_id,
2016                                                 msg: shutdown_msg,
2017                                         });
2018
2019                                         // Update the monitor with the shutdown script if necessary.
2020                                         if let Some(monitor_update) = monitor_update_opt.take() {
2021                                                 let update_id = monitor_update.update_id;
2022                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
2023                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
2024                                         }
2025
2026                                         if chan_entry.get().is_shutdown() {
2027                                                 let channel = remove_channel!(self, chan_entry);
2028                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
2029                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2030                                                                 msg: channel_update
2031                                                         });
2032                                                 }
2033                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
2034                                         }
2035                                         break Ok(());
2036                                 },
2037                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
2038                         }
2039                 };
2040
2041                 for htlc_source in failed_htlcs.drain(..) {
2042                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2043                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2044                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2045                 }
2046
2047                 let _ = handle_error!(self, result, *counterparty_node_id);
2048                 Ok(())
2049         }
2050
2051         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2052         /// will be accepted on the given channel, and after additional timeout/the closing of all
2053         /// pending HTLCs, the channel will be closed on chain.
2054         ///
2055         ///  * If we are the channel initiator, we will pay between our [`Background`] and
2056         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2057         ///    estimate.
2058         ///  * If our counterparty is the channel initiator, we will require a channel closing
2059         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
2060         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
2061         ///    counterparty to pay as much fee as they'd like, however.
2062         ///
2063         /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2064         ///
2065         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2066         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2067         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2068         /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2069         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2070                 self.close_channel_internal(channel_id, counterparty_node_id, None)
2071         }
2072
2073         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2074         /// will be accepted on the given channel, and after additional timeout/the closing of all
2075         /// pending HTLCs, the channel will be closed on chain.
2076         ///
2077         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2078         /// the channel being closed or not:
2079         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
2080         ///    transaction. The upper-bound is set by
2081         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2082         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2083         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2084         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2085         ///    will appear on a force-closure transaction, whichever is lower).
2086         ///
2087         /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2088         ///
2089         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2090         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2091         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2092         /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2093         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
2094                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
2095         }
2096
2097         #[inline]
2098         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2099                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2100                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2101                 for htlc_source in failed_htlcs.drain(..) {
2102                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2103                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2104                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2105                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2106                 }
2107                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
2108                         // There isn't anything we can do if we get an update failure - we're already
2109                         // force-closing. The monitor update on the required in-memory copy should broadcast
2110                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
2111                         // ignore the result here.
2112                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2113                 }
2114         }
2115
2116         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2117         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2118         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2119         -> Result<PublicKey, APIError> {
2120                 let per_peer_state = self.per_peer_state.read().unwrap();
2121                 let peer_state_mutex = per_peer_state.get(peer_node_id)
2122                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2123                 let mut chan = {
2124                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2125                         let peer_state = &mut *peer_state_lock;
2126                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
2127                                 if let Some(peer_msg) = peer_msg {
2128                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) });
2129                                 } else {
2130                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
2131                                 }
2132                                 remove_channel!(self, chan)
2133                         } else {
2134                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2135                         }
2136                 };
2137                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2138                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2139                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2140                         let mut peer_state = peer_state_mutex.lock().unwrap();
2141                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2142                                 msg: update
2143                         });
2144                 }
2145
2146                 Ok(chan.get_counterparty_node_id())
2147         }
2148
2149         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2150                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2151                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2152                         Ok(counterparty_node_id) => {
2153                                 let per_peer_state = self.per_peer_state.read().unwrap();
2154                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2155                                         let mut peer_state = peer_state_mutex.lock().unwrap();
2156                                         peer_state.pending_msg_events.push(
2157                                                 events::MessageSendEvent::HandleError {
2158                                                         node_id: counterparty_node_id,
2159                                                         action: msgs::ErrorAction::SendErrorMessage {
2160                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2161                                                         },
2162                                                 }
2163                                         );
2164                                 }
2165                                 Ok(())
2166                         },
2167                         Err(e) => Err(e)
2168                 }
2169         }
2170
2171         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2172         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2173         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2174         /// channel.
2175         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2176         -> Result<(), APIError> {
2177                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2178         }
2179
2180         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2181         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2182         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2183         ///
2184         /// You can always get the latest local transaction(s) to broadcast from
2185         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2186         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2187         -> Result<(), APIError> {
2188                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2189         }
2190
2191         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2192         /// for each to the chain and rejecting new HTLCs on each.
2193         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2194                 for chan in self.list_channels() {
2195                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2196                 }
2197         }
2198
2199         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2200         /// local transaction(s).
2201         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2202                 for chan in self.list_channels() {
2203                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2204                 }
2205         }
2206
2207         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2208                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2209         {
2210                 // final_incorrect_cltv_expiry
2211                 if hop_data.outgoing_cltv_value > cltv_expiry {
2212                         return Err(ReceiveError {
2213                                 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2214                                 err_code: 18,
2215                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2216                         })
2217                 }
2218                 // final_expiry_too_soon
2219                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2220                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2221                 //
2222                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2223                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2224                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2225                 let current_height: u32 = self.best_block.read().unwrap().height();
2226                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2227                         let mut err_data = Vec::with_capacity(12);
2228                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2229                         err_data.extend_from_slice(&current_height.to_be_bytes());
2230                         return Err(ReceiveError {
2231                                 err_code: 0x4000 | 15, err_data,
2232                                 msg: "The final CLTV expiry is too soon to handle",
2233                         });
2234                 }
2235                 if hop_data.amt_to_forward > amt_msat {
2236                         return Err(ReceiveError {
2237                                 err_code: 19,
2238                                 err_data: amt_msat.to_be_bytes().to_vec(),
2239                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2240                         });
2241                 }
2242
2243                 let routing = match hop_data.format {
2244                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2245                                 return Err(ReceiveError {
2246                                         err_code: 0x4000|22,
2247                                         err_data: Vec::new(),
2248                                         msg: "Got non final data with an HMAC of 0",
2249                                 });
2250                         },
2251                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2252                                 if payment_data.is_some() && keysend_preimage.is_some() {
2253                                         return Err(ReceiveError {
2254                                                 err_code: 0x4000|22,
2255                                                 err_data: Vec::new(),
2256                                                 msg: "We don't support MPP keysend payments",
2257                                         });
2258                                 } else if let Some(data) = payment_data {
2259                                         PendingHTLCRouting::Receive {
2260                                                 payment_data: data,
2261                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2262                                                 phantom_shared_secret,
2263                                         }
2264                                 } else if let Some(payment_preimage) = keysend_preimage {
2265                                         // We need to check that the sender knows the keysend preimage before processing this
2266                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2267                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2268                                         // with a keysend payment of identical payment hash to X and observing the processing
2269                                         // time discrepancies due to a hash collision with X.
2270                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2271                                         if hashed_preimage != payment_hash {
2272                                                 return Err(ReceiveError {
2273                                                         err_code: 0x4000|22,
2274                                                         err_data: Vec::new(),
2275                                                         msg: "Payment preimage didn't match payment hash",
2276                                                 });
2277                                         }
2278
2279                                         PendingHTLCRouting::ReceiveKeysend {
2280                                                 payment_preimage,
2281                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2282                                         }
2283                                 } else {
2284                                         return Err(ReceiveError {
2285                                                 err_code: 0x4000|0x2000|3,
2286                                                 err_data: Vec::new(),
2287                                                 msg: "We require payment_secrets",
2288                                         });
2289                                 }
2290                         },
2291                 };
2292                 Ok(PendingHTLCInfo {
2293                         routing,
2294                         payment_hash,
2295                         incoming_shared_secret: shared_secret,
2296                         incoming_amt_msat: Some(amt_msat),
2297                         outgoing_amt_msat: hop_data.amt_to_forward,
2298                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2299                 })
2300         }
2301
2302         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2303                 macro_rules! return_malformed_err {
2304                         ($msg: expr, $err_code: expr) => {
2305                                 {
2306                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2307                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2308                                                 channel_id: msg.channel_id,
2309                                                 htlc_id: msg.htlc_id,
2310                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2311                                                 failure_code: $err_code,
2312                                         }));
2313                                 }
2314                         }
2315                 }
2316
2317                 if let Err(_) = msg.onion_routing_packet.public_key {
2318                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2319                 }
2320
2321                 let shared_secret = self.node_signer.ecdh(
2322                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2323                 ).unwrap().secret_bytes();
2324
2325                 if msg.onion_routing_packet.version != 0 {
2326                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2327                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2328                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2329                         //receiving node would have to brute force to figure out which version was put in the
2330                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2331                         //node knows the HMAC matched, so they already know what is there...
2332                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2333                 }
2334                 macro_rules! return_err {
2335                         ($msg: expr, $err_code: expr, $data: expr) => {
2336                                 {
2337                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2338                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2339                                                 channel_id: msg.channel_id,
2340                                                 htlc_id: msg.htlc_id,
2341                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2342                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2343                                         }));
2344                                 }
2345                         }
2346                 }
2347
2348                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2349                         Ok(res) => res,
2350                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2351                                 return_malformed_err!(err_msg, err_code);
2352                         },
2353                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2354                                 return_err!(err_msg, err_code, &[0; 0]);
2355                         },
2356                 };
2357
2358                 let pending_forward_info = match next_hop {
2359                         onion_utils::Hop::Receive(next_hop_data) => {
2360                                 // OUR PAYMENT!
2361                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2362                                         Ok(info) => {
2363                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2364                                                 // message, however that would leak that we are the recipient of this payment, so
2365                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2366                                                 // delay) once they've send us a commitment_signed!
2367                                                 PendingHTLCStatus::Forward(info)
2368                                         },
2369                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2370                                 }
2371                         },
2372                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2373                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2374                                 let outgoing_packet = msgs::OnionPacket {
2375                                         version: 0,
2376                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2377                                         hop_data: new_packet_bytes,
2378                                         hmac: next_hop_hmac.clone(),
2379                                 };
2380
2381                                 let short_channel_id = match next_hop_data.format {
2382                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2383                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2384                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2385                                         },
2386                                 };
2387
2388                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2389                                         routing: PendingHTLCRouting::Forward {
2390                                                 onion_packet: outgoing_packet,
2391                                                 short_channel_id,
2392                                         },
2393                                         payment_hash: msg.payment_hash.clone(),
2394                                         incoming_shared_secret: shared_secret,
2395                                         incoming_amt_msat: Some(msg.amount_msat),
2396                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2397                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2398                                 })
2399                         }
2400                 };
2401
2402                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2403                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2404                         // with a short_channel_id of 0. This is important as various things later assume
2405                         // short_channel_id is non-0 in any ::Forward.
2406                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2407                                 if let Some((err, mut code, chan_update)) = loop {
2408                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2409                                         let forwarding_chan_info_opt = match id_option {
2410                                                 None => { // unknown_next_peer
2411                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2412                                                         // phantom or an intercept.
2413                                                         if (self.default_configuration.accept_intercept_htlcs &&
2414                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2415                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2416                                                         {
2417                                                                 None
2418                                                         } else {
2419                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2420                                                         }
2421                                                 },
2422                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2423                                         };
2424                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2425                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2426                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2427                                                 if peer_state_mutex_opt.is_none() {
2428                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2429                                                 }
2430                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2431                                                 let peer_state = &mut *peer_state_lock;
2432                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2433                                                         None => {
2434                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2435                                                                 // have no consistency guarantees.
2436                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2437                                                         },
2438                                                         Some(chan) => chan
2439                                                 };
2440                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2441                                                         // Note that the behavior here should be identical to the above block - we
2442                                                         // should NOT reveal the existence or non-existence of a private channel if
2443                                                         // we don't allow forwards outbound over them.
2444                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2445                                                 }
2446                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2447                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2448                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2449                                                         // we don't have the channel here.
2450                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2451                                                 }
2452                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2453
2454                                                 // Note that we could technically not return an error yet here and just hope
2455                                                 // that the connection is reestablished or monitor updated by the time we get
2456                                                 // around to doing the actual forward, but better to fail early if we can and
2457                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2458                                                 // on a small/per-node/per-channel scale.
2459                                                 if !chan.is_live() { // channel_disabled
2460                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2461                                                 }
2462                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2463                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2464                                                 }
2465                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2466                                                         break Some((err, code, chan_update_opt));
2467                                                 }
2468                                                 chan_update_opt
2469                                         } else {
2470                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2471                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2472                                                         // forwarding over a real channel we can't generate a channel_update
2473                                                         // for it. Instead we just return a generic temporary_node_failure.
2474                                                         break Some((
2475                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2476                                                                 0x2000 | 2, None,
2477                                                         ));
2478                                                 }
2479                                                 None
2480                                         };
2481
2482                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2483                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2484                                         // but we want to be robust wrt to counterparty packet sanitization (see
2485                                         // HTLC_FAIL_BACK_BUFFER rationale).
2486                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2487                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2488                                         }
2489                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2490                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2491                                         }
2492                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2493                                         // counterparty. They should fail it anyway, but we don't want to bother with
2494                                         // the round-trips or risk them deciding they definitely want the HTLC and
2495                                         // force-closing to ensure they get it if we're offline.
2496                                         // We previously had a much more aggressive check here which tried to ensure
2497                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2498                                         // but there is no need to do that, and since we're a bit conservative with our
2499                                         // risk threshold it just results in failing to forward payments.
2500                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2501                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2502                                         }
2503
2504                                         break None;
2505                                 }
2506                                 {
2507                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2508                                         if let Some(chan_update) = chan_update {
2509                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2510                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2511                                                 }
2512                                                 else if code == 0x1000 | 13 {
2513                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2514                                                 }
2515                                                 else if code == 0x1000 | 20 {
2516                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2517                                                         0u16.write(&mut res).expect("Writes cannot fail");
2518                                                 }
2519                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2520                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2521                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2522                                         } else if code & 0x1000 == 0x1000 {
2523                                                 // If we're trying to return an error that requires a `channel_update` but
2524                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2525                                                 // generate an update), just use the generic "temporary_node_failure"
2526                                                 // instead.
2527                                                 code = 0x2000 | 2;
2528                                         }
2529                                         return_err!(err, code, &res.0[..]);
2530                                 }
2531                         }
2532                 }
2533
2534                 pending_forward_info
2535         }
2536
2537         /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
2538         /// public, and thus should be called whenever the result is going to be passed out in a
2539         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2540         ///
2541         /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
2542         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2543         /// storage and the `peer_state` lock has been dropped.
2544         ///
2545         /// [`channel_update`]: msgs::ChannelUpdate
2546         /// [`internal_closing_signed`]: Self::internal_closing_signed
2547         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2548                 if !chan.should_announce() {
2549                         return Err(LightningError {
2550                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2551                                 action: msgs::ErrorAction::IgnoreError
2552                         });
2553                 }
2554                 if chan.get_short_channel_id().is_none() {
2555                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2556                 }
2557                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2558                 self.get_channel_update_for_unicast(chan)
2559         }
2560
2561         /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
2562         /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
2563         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2564         /// provided evidence that they know about the existence of the channel.
2565         ///
2566         /// Note that through [`internal_closing_signed`], this function is called without the
2567         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2568         /// removed from the storage and the `peer_state` lock has been dropped.
2569         ///
2570         /// [`channel_update`]: msgs::ChannelUpdate
2571         /// [`internal_closing_signed`]: Self::internal_closing_signed
2572         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2573                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2574                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2575                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2576                         Some(id) => id,
2577                 };
2578
2579                 self.get_channel_update_for_onion(short_channel_id, chan)
2580         }
2581         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2582                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2583                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2584
2585                 let unsigned = msgs::UnsignedChannelUpdate {
2586                         chain_hash: self.genesis_hash,
2587                         short_channel_id,
2588                         timestamp: chan.get_update_time_counter(),
2589                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2590                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2591                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2592                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2593                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2594                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2595                         excess_data: Vec::new(),
2596                 };
2597                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2598                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2599                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2600                 // channel.
2601                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2602
2603                 Ok(msgs::ChannelUpdate {
2604                         signature: sig,
2605                         contents: unsigned
2606                 })
2607         }
2608
2609         #[cfg(test)]
2610         pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2611                 let _lck = self.total_consistency_lock.read().unwrap();
2612                 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2613         }
2614
2615         fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2616                 // The top-level caller should hold the total_consistency_lock read lock.
2617                 debug_assert!(self.total_consistency_lock.try_write().is_err());
2618
2619                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2620                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2621                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2622
2623                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2624                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2625                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
2626                 if onion_utils::route_size_insane(&onion_payloads) {
2627                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2628                 }
2629                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2630
2631                 let err: Result<(), _> = loop {
2632                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2633                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2634                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2635                         };
2636
2637                         let per_peer_state = self.per_peer_state.read().unwrap();
2638                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2639                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2640                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2641                         let peer_state = &mut *peer_state_lock;
2642                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2643                                 if !chan.get().is_live() {
2644                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2645                                 }
2646                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2647                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2648                                         htlc_cltv, HTLCSource::OutboundRoute {
2649                                                 path: path.clone(),
2650                                                 session_priv: session_priv.clone(),
2651                                                 first_hop_htlc_msat: htlc_msat,
2652                                                 payment_id,
2653                                         }, onion_packet, &self.logger);
2654                                 match break_chan_entry!(self, send_res, chan) {
2655                                         Some(monitor_update) => {
2656                                                 let update_id = monitor_update.update_id;
2657                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2658                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2659                                                         break Err(e);
2660                                                 }
2661                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2662                                                         // Note that MonitorUpdateInProgress here indicates (per function
2663                                                         // docs) that we will resend the commitment update once monitor
2664                                                         // updating completes. Therefore, we must return an error
2665                                                         // indicating that it is unsafe to retry the payment wholesale,
2666                                                         // which we do in the send_payment check for
2667                                                         // MonitorUpdateInProgress, below.
2668                                                         return Err(APIError::MonitorUpdateInProgress);
2669                                                 }
2670                                         },
2671                                         None => { },
2672                                 }
2673                         } else {
2674                                 // The channel was likely removed after we fetched the id from the
2675                                 // `short_to_chan_info` map, but before we successfully locked the
2676                                 // `channel_by_id` map.
2677                                 // This can occur as no consistency guarantees exists between the two maps.
2678                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2679                         }
2680                         return Ok(());
2681                 };
2682
2683                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2684                         Ok(_) => unreachable!(),
2685                         Err(e) => {
2686                                 Err(APIError::ChannelUnavailable { err: e.err })
2687                         },
2688                 }
2689         }
2690
2691         /// Sends a payment along a given route.
2692         ///
2693         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2694         /// fields for more info.
2695         ///
2696         /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
2697         /// [`PeerManager::process_events`]).
2698         ///
2699         /// # Avoiding Duplicate Payments
2700         ///
2701         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2702         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2703         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2704         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2705         /// second payment with the same [`PaymentId`].
2706         ///
2707         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2708         /// tracking of payments, including state to indicate once a payment has completed. Because you
2709         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2710         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2711         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2712         ///
2713         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2714         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2715         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2716         /// [`ChannelManager::list_recent_payments`] for more information.
2717         ///
2718         /// # Possible Error States on [`PaymentSendFailure`]
2719         ///
2720         /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
2721         /// each entry matching the corresponding-index entry in the route paths, see
2722         /// [`PaymentSendFailure`] for more info.
2723         ///
2724         /// In general, a path may raise:
2725         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2726         ///    node public key) is specified.
2727         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2728         ///    (including due to previous monitor update failure or new permanent monitor update
2729         ///    failure).
2730         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2731         ///    relevant updates.
2732         ///
2733         /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
2734         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2735         /// different route unless you intend to pay twice!
2736         ///
2737         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2738         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2739         /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
2740         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2741         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2742         pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2743                 let best_block_height = self.best_block.read().unwrap().height();
2744                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2745                 self.pending_outbound_payments
2746                         .send_payment_with_route(route, payment_hash, recipient_onion, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2747                                 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2748                                 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2749         }
2750
2751         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2752         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2753         pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2754                 let best_block_height = self.best_block.read().unwrap().height();
2755                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2756                 self.pending_outbound_payments
2757                         .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
2758                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2759                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2760                                 &self.pending_events,
2761                                 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2762                                 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2763         }
2764
2765         #[cfg(test)]
2766         pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2767                 let best_block_height = self.best_block.read().unwrap().height();
2768                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2769                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2770                         |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2771                         self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2772         }
2773
2774         #[cfg(test)]
2775         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2776                 let best_block_height = self.best_block.read().unwrap().height();
2777                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
2778         }
2779
2780
2781         /// Signals that no further retries for the given payment should occur. Useful if you have a
2782         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2783         /// retries are exhausted.
2784         ///
2785         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2786         /// as there are no remaining pending HTLCs for this payment.
2787         ///
2788         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2789         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2790         /// determine the ultimate status of a payment.
2791         ///
2792         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2793         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2794         ///
2795         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2796         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2797         pub fn abandon_payment(&self, payment_id: PaymentId) {
2798                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2799                 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
2800         }
2801
2802         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2803         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2804         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2805         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2806         /// never reach the recipient.
2807         ///
2808         /// See [`send_payment`] documentation for more details on the return value of this function
2809         /// and idempotency guarantees provided by the [`PaymentId`] key.
2810         ///
2811         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2812         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2813         ///
2814         /// Note that `route` must have exactly one path.
2815         ///
2816         /// [`send_payment`]: Self::send_payment
2817         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2818                 let best_block_height = self.best_block.read().unwrap().height();
2819                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2820                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2821                         route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
2822                         &self.node_signer, best_block_height,
2823                         |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2824                         self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2825         }
2826
2827         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2828         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2829         ///
2830         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2831         /// payments.
2832         ///
2833         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2834         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2835                 let best_block_height = self.best_block.read().unwrap().height();
2836                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2837                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
2838                         payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
2839                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2840                         &self.logger, &self.pending_events,
2841                         |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2842                         self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2843         }
2844
2845         /// Send a payment that is probing the given route for liquidity. We calculate the
2846         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2847         /// us to easily discern them from real payments.
2848         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2849                 let best_block_height = self.best_block.read().unwrap().height();
2850                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2851                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2852                         |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2853                         self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2854         }
2855
2856         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2857         /// payment probe.
2858         #[cfg(test)]
2859         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2860                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2861         }
2862
2863         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2864         /// which checks the correctness of the funding transaction given the associated channel.
2865         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2866                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2867         ) -> Result<(), APIError> {
2868                 let per_peer_state = self.per_peer_state.read().unwrap();
2869                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2870                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2871
2872                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2873                 let peer_state = &mut *peer_state_lock;
2874                 let (msg, chan) = match peer_state.channel_by_id.remove(temporary_channel_id) {
2875                         Some(mut chan) => {
2876                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2877
2878                                 let funding_res = chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2879                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2880                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2881                                         } else { unreachable!(); });
2882                                 match funding_res {
2883                                         Ok(funding_msg) => (funding_msg, chan),
2884                                         Err(_) => {
2885                                                 mem::drop(peer_state_lock);
2886                                                 mem::drop(per_peer_state);
2887
2888                                                 let _ = handle_error!(self, funding_res, chan.get_counterparty_node_id());
2889                                                 return Err(APIError::ChannelUnavailable {
2890                                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2891                                                 });
2892                                         },
2893                                 }
2894                         },
2895                         None => {
2896                                 return Err(APIError::ChannelUnavailable {
2897                                         err: format!(
2898                                                 "Channel with id {} not found for the passed counterparty node_id {}",
2899                                                 log_bytes!(*temporary_channel_id), counterparty_node_id),
2900                                 })
2901                         },
2902                 };
2903
2904                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2905                         node_id: chan.get_counterparty_node_id(),
2906                         msg,
2907                 });
2908                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2909                         hash_map::Entry::Occupied(_) => {
2910                                 panic!("Generated duplicate funding txid?");
2911                         },
2912                         hash_map::Entry::Vacant(e) => {
2913                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2914                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2915                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2916                                 }
2917                                 e.insert(chan);
2918                         }
2919                 }
2920                 Ok(())
2921         }
2922
2923         #[cfg(test)]
2924         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2925                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2926                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2927                 })
2928         }
2929
2930         /// Call this upon creation of a funding transaction for the given channel.
2931         ///
2932         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2933         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2934         ///
2935         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2936         /// across the p2p network.
2937         ///
2938         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2939         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2940         ///
2941         /// May panic if the output found in the funding transaction is duplicative with some other
2942         /// channel (note that this should be trivially prevented by using unique funding transaction
2943         /// keys per-channel).
2944         ///
2945         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2946         /// counterparty's signature the funding transaction will automatically be broadcast via the
2947         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2948         ///
2949         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2950         /// not currently support replacing a funding transaction on an existing channel. Instead,
2951         /// create a new channel with a conflicting funding transaction.
2952         ///
2953         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2954         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2955         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2956         /// for more details.
2957         ///
2958         /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
2959         /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
2960         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2961                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2962
2963                 for inp in funding_transaction.input.iter() {
2964                         if inp.witness.is_empty() {
2965                                 return Err(APIError::APIMisuseError {
2966                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2967                                 });
2968                         }
2969                 }
2970                 {
2971                         let height = self.best_block.read().unwrap().height();
2972                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2973                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2974                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2975                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2976                                 return Err(APIError::APIMisuseError {
2977                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2978                                 });
2979                         }
2980                 }
2981                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2982                         let mut output_index = None;
2983                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2984                         for (idx, outp) in tx.output.iter().enumerate() {
2985                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2986                                         if output_index.is_some() {
2987                                                 return Err(APIError::APIMisuseError {
2988                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2989                                                 });
2990                                         }
2991                                         if idx > u16::max_value() as usize {
2992                                                 return Err(APIError::APIMisuseError {
2993                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2994                                                 });
2995                                         }
2996                                         output_index = Some(idx as u16);
2997                                 }
2998                         }
2999                         if output_index.is_none() {
3000                                 return Err(APIError::APIMisuseError {
3001                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3002                                 });
3003                         }
3004                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3005                 })
3006         }
3007
3008         /// Atomically updates the [`ChannelConfig`] for the given channels.
3009         ///
3010         /// Once the updates are applied, each eligible channel (advertised with a known short channel
3011         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3012         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3013         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3014         ///
3015         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3016         /// `counterparty_node_id` is provided.
3017         ///
3018         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3019         /// below [`MIN_CLTV_EXPIRY_DELTA`].
3020         ///
3021         /// If an error is returned, none of the updates should be considered applied.
3022         ///
3023         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3024         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3025         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3026         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3027         /// [`ChannelUpdate`]: msgs::ChannelUpdate
3028         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3029         /// [`APIMisuseError`]: APIError::APIMisuseError
3030         pub fn update_channel_config(
3031                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
3032         ) -> Result<(), APIError> {
3033                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
3034                         return Err(APIError::APIMisuseError {
3035                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3036                         });
3037                 }
3038
3039                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
3040                         &self.total_consistency_lock, &self.persistence_notifier,
3041                 );
3042                 let per_peer_state = self.per_peer_state.read().unwrap();
3043                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3044                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3045                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3046                 let peer_state = &mut *peer_state_lock;
3047                 for channel_id in channel_ids {
3048                         if !peer_state.channel_by_id.contains_key(channel_id) {
3049                                 return Err(APIError::ChannelUnavailable {
3050                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
3051                                 });
3052                         }
3053                 }
3054                 for channel_id in channel_ids {
3055                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
3056                         if !channel.update_config(config) {
3057                                 continue;
3058                         }
3059                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3060                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3061                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3062                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3063                                         node_id: channel.get_counterparty_node_id(),
3064                                         msg,
3065                                 });
3066                         }
3067                 }
3068                 Ok(())
3069         }
3070
3071         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3072         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3073         ///
3074         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3075         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3076         ///
3077         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3078         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3079         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3080         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3081         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3082         ///
3083         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3084         /// you from forwarding more than you received.
3085         ///
3086         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3087         /// backwards.
3088         ///
3089         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3090         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3091         // TODO: when we move to deciding the best outbound channel at forward time, only take
3092         // `next_node_id` and not `next_hop_channel_id`
3093         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3094                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3095
3096                 let next_hop_scid = {
3097                         let peer_state_lock = self.per_peer_state.read().unwrap();
3098                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
3099                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3100                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3101                         let peer_state = &mut *peer_state_lock;
3102                         match peer_state.channel_by_id.get(next_hop_channel_id) {
3103                                 Some(chan) => {
3104                                         if !chan.is_usable() {
3105                                                 return Err(APIError::ChannelUnavailable {
3106                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
3107                                                 })
3108                                         }
3109                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
3110                                 },
3111                                 None => return Err(APIError::ChannelUnavailable {
3112                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
3113                                 })
3114                         }
3115                 };
3116
3117                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3118                         .ok_or_else(|| APIError::APIMisuseError {
3119                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3120                         })?;
3121
3122                 let routing = match payment.forward_info.routing {
3123                         PendingHTLCRouting::Forward { onion_packet, .. } => {
3124                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3125                         },
3126                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3127                 };
3128                 let pending_htlc_info = PendingHTLCInfo {
3129                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3130                 };
3131
3132                 let mut per_source_pending_forward = [(
3133                         payment.prev_short_channel_id,
3134                         payment.prev_funding_outpoint,
3135                         payment.prev_user_channel_id,
3136                         vec![(pending_htlc_info, payment.prev_htlc_id)]
3137                 )];
3138                 self.forward_htlcs(&mut per_source_pending_forward);
3139                 Ok(())
3140         }
3141
3142         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3143         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3144         ///
3145         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3146         /// backwards.
3147         ///
3148         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3149         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3150                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3151
3152                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3153                         .ok_or_else(|| APIError::APIMisuseError {
3154                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3155                         })?;
3156
3157                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3158                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3159                                 short_channel_id: payment.prev_short_channel_id,
3160                                 outpoint: payment.prev_funding_outpoint,
3161                                 htlc_id: payment.prev_htlc_id,
3162                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3163                                 phantom_shared_secret: None,
3164                         });
3165
3166                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3167                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3168                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3169                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3170
3171                 Ok(())
3172         }
3173
3174         /// Processes HTLCs which are pending waiting on random forward delay.
3175         ///
3176         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3177         /// Will likely generate further events.
3178         pub fn process_pending_htlc_forwards(&self) {
3179                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3180
3181                 let mut new_events = Vec::new();
3182                 let mut failed_forwards = Vec::new();
3183                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3184                 {
3185                         let mut forward_htlcs = HashMap::new();
3186                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3187
3188                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
3189                                 if short_chan_id != 0 {
3190                                         macro_rules! forwarding_channel_not_found {
3191                                                 () => {
3192                                                         for forward_info in pending_forwards.drain(..) {
3193                                                                 match forward_info {
3194                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3195                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3196                                                                                 forward_info: PendingHTLCInfo {
3197                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3198                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3199                                                                                 }
3200                                                                         }) => {
3201                                                                                 macro_rules! failure_handler {
3202                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3203                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3204
3205                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3206                                                                                                         short_channel_id: prev_short_channel_id,
3207                                                                                                         outpoint: prev_funding_outpoint,
3208                                                                                                         htlc_id: prev_htlc_id,
3209                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3210                                                                                                         phantom_shared_secret: $phantom_ss,
3211                                                                                                 });
3212
3213                                                                                                 let reason = if $next_hop_unknown {
3214                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3215                                                                                                 } else {
3216                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3217                                                                                                 };
3218
3219                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3220                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3221                                                                                                         reason
3222                                                                                                 ));
3223                                                                                                 continue;
3224                                                                                         }
3225                                                                                 }
3226                                                                                 macro_rules! fail_forward {
3227                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3228                                                                                                 {
3229                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3230                                                                                                 }
3231                                                                                         }
3232                                                                                 }
3233                                                                                 macro_rules! failed_payment {
3234                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3235                                                                                                 {
3236                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3237                                                                                                 }
3238                                                                                         }
3239                                                                                 }
3240                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3241                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3242                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3243                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3244                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3245                                                                                                         Ok(res) => res,
3246                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3247                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3248                                                                                                                 // In this scenario, the phantom would have sent us an
3249                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3250                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3251                                                                                                                 // of the onion.
3252                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3253                                                                                                         },
3254                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3255                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3256                                                                                                         },
3257                                                                                                 };
3258                                                                                                 match next_hop {
3259                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3260                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3261                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3262                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3263                                                                                                                 }
3264                                                                                                         },
3265                                                                                                         _ => panic!(),
3266                                                                                                 }
3267                                                                                         } else {
3268                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3269                                                                                         }
3270                                                                                 } else {
3271                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3272                                                                                 }
3273                                                                         },
3274                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3275                                                                                 // Channel went away before we could fail it. This implies
3276                                                                                 // the channel is now on chain and our counterparty is
3277                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3278                                                                                 // problem, not ours.
3279                                                                         }
3280                                                                 }
3281                                                         }
3282                                                 }
3283                                         }
3284                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3285                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3286                                                 None => {
3287                                                         forwarding_channel_not_found!();
3288                                                         continue;
3289                                                 }
3290                                         };
3291                                         let per_peer_state = self.per_peer_state.read().unwrap();
3292                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3293                                         if peer_state_mutex_opt.is_none() {
3294                                                 forwarding_channel_not_found!();
3295                                                 continue;
3296                                         }
3297                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3298                                         let peer_state = &mut *peer_state_lock;
3299                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3300                                                 hash_map::Entry::Vacant(_) => {
3301                                                         forwarding_channel_not_found!();
3302                                                         continue;
3303                                                 },
3304                                                 hash_map::Entry::Occupied(mut chan) => {
3305                                                         for forward_info in pending_forwards.drain(..) {
3306                                                                 match forward_info {
3307                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3308                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3309                                                                                 forward_info: PendingHTLCInfo {
3310                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3311                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3312                                                                                 },
3313                                                                         }) => {
3314                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3315                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3316                                                                                         short_channel_id: prev_short_channel_id,
3317                                                                                         outpoint: prev_funding_outpoint,
3318                                                                                         htlc_id: prev_htlc_id,
3319                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3320                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3321                                                                                         phantom_shared_secret: None,
3322                                                                                 });
3323                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3324                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3325                                                                                         onion_packet, &self.logger)
3326                                                                                 {
3327                                                                                         if let ChannelError::Ignore(msg) = e {
3328                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3329                                                                                         } else {
3330                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3331                                                                                         }
3332                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3333                                                                                         failed_forwards.push((htlc_source, payment_hash,
3334                                                                                                 HTLCFailReason::reason(failure_code, data),
3335                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3336                                                                                         ));
3337                                                                                         continue;
3338                                                                                 }
3339                                                                         },
3340                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3341                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3342                                                                         },
3343                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3344                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3345                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3346                                                                                         htlc_id, err_packet, &self.logger
3347                                                                                 ) {
3348                                                                                         if let ChannelError::Ignore(msg) = e {
3349                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3350                                                                                         } else {
3351                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3352                                                                                         }
3353                                                                                         // fail-backs are best-effort, we probably already have one
3354                                                                                         // pending, and if not that's OK, if not, the channel is on
3355                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3356                                                                                         continue;
3357                                                                                 }
3358                                                                         },
3359                                                                 }
3360                                                         }
3361                                                 }
3362                                         }
3363                                 } else {
3364                                         for forward_info in pending_forwards.drain(..) {
3365                                                 match forward_info {
3366                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3367                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3368                                                                 forward_info: PendingHTLCInfo {
3369                                                                         routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat, ..
3370                                                                 }
3371                                                         }) => {
3372                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3373                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3374                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3375                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3376                                                                         },
3377                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3378                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3379                                                                         _ => {
3380                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3381                                                                         }
3382                                                                 };
3383                                                                 let mut claimable_htlc = ClaimableHTLC {
3384                                                                         prev_hop: HTLCPreviousHopData {
3385                                                                                 short_channel_id: prev_short_channel_id,
3386                                                                                 outpoint: prev_funding_outpoint,
3387                                                                                 htlc_id: prev_htlc_id,
3388                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3389                                                                                 phantom_shared_secret,
3390                                                                         },
3391                                                                         // We differentiate the received value from the sender intended value
3392                                                                         // if possible so that we don't prematurely mark MPP payments complete
3393                                                                         // if routing nodes overpay
3394                                                                         value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
3395                                                                         sender_intended_value: outgoing_amt_msat,
3396                                                                         timer_ticks: 0,
3397                                                                         total_value_received: None,
3398                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3399                                                                         cltv_expiry,
3400                                                                         onion_payload,
3401                                                                 };
3402
3403                                                                 macro_rules! fail_htlc {
3404                                                                         ($htlc: expr, $payment_hash: expr) => {
3405                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3406                                                                                 htlc_msat_height_data.extend_from_slice(
3407                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3408                                                                                 );
3409                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3410                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3411                                                                                                 outpoint: prev_funding_outpoint,
3412                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3413                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3414                                                                                                 phantom_shared_secret,
3415                                                                                         }), payment_hash,
3416                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3417                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3418                                                                                 ));
3419                                                                         }
3420                                                                 }
3421                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3422                                                                 let mut receiver_node_id = self.our_network_pubkey;
3423                                                                 if phantom_shared_secret.is_some() {
3424                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3425                                                                                 .expect("Failed to get node_id for phantom node recipient");
3426                                                                 }
3427
3428                                                                 macro_rules! check_total_value {
3429                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3430                                                                                 let mut payment_claimable_generated = false;
3431                                                                                 let purpose = || {
3432                                                                                         events::PaymentPurpose::InvoicePayment {
3433                                                                                                 payment_preimage: $payment_preimage,
3434                                                                                                 payment_secret: $payment_data.payment_secret,
3435                                                                                         }
3436                                                                                 };
3437                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3438                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3439                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3440                                                                                         continue
3441                                                                                 }
3442                                                                                 let (_, ref mut htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3443                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3444                                                                                 if htlcs.len() == 1 {
3445                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3446                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3447                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3448                                                                                                 continue
3449                                                                                         }
3450                                                                                 }
3451                                                                                 let mut total_value = claimable_htlc.sender_intended_value;
3452                                                                                 let mut earliest_expiry = claimable_htlc.cltv_expiry;
3453                                                                                 for htlc in htlcs.iter() {
3454                                                                                         total_value += htlc.sender_intended_value;
3455                                                                                         earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
3456                                                                                         match &htlc.onion_payload {
3457                                                                                                 OnionPayload::Invoice { .. } => {
3458                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3459                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3460                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3461                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3462                                                                                                         }
3463                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3464                                                                                                 },
3465                                                                                                 _ => unreachable!(),
3466                                                                                         }
3467                                                                                 }
3468                                                                                 // The condition determining whether an MPP is complete must
3469                                                                                 // match exactly the condition used in `timer_tick_occurred`
3470                                                                                 if total_value >= msgs::MAX_VALUE_MSAT {
3471                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3472                                                                                 } else if total_value - claimable_htlc.sender_intended_value >= $payment_data.total_msat {
3473                                                                                         log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
3474                                                                                                 log_bytes!(payment_hash.0));
3475                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3476                                                                                 } else if total_value >= $payment_data.total_msat {
3477                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3478                                                                                         htlcs.push(claimable_htlc);
3479                                                                                         let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
3480                                                                                         htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
3481                                                                                         new_events.push(events::Event::PaymentClaimable {
3482                                                                                                 receiver_node_id: Some(receiver_node_id),
3483                                                                                                 payment_hash,
3484                                                                                                 purpose: purpose(),
3485                                                                                                 amount_msat,
3486                                                                                                 via_channel_id: Some(prev_channel_id),
3487                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3488                                                                                                 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
3489                                                                                         });
3490                                                                                         payment_claimable_generated = true;
3491                                                                                 } else {
3492                                                                                         // Nothing to do - we haven't reached the total
3493                                                                                         // payment value yet, wait until we receive more
3494                                                                                         // MPP parts.
3495                                                                                         htlcs.push(claimable_htlc);
3496                                                                                 }
3497                                                                                 payment_claimable_generated
3498                                                                         }}
3499                                                                 }
3500
3501                                                                 // Check that the payment hash and secret are known. Note that we
3502                                                                 // MUST take care to handle the "unknown payment hash" and
3503                                                                 // "incorrect payment secret" cases here identically or we'd expose
3504                                                                 // that we are the ultimate recipient of the given payment hash.
3505                                                                 // Further, we must not expose whether we have any other HTLCs
3506                                                                 // associated with the same payment_hash pending or not.
3507                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3508                                                                 match payment_secrets.entry(payment_hash) {
3509                                                                         hash_map::Entry::Vacant(_) => {
3510                                                                                 match claimable_htlc.onion_payload {
3511                                                                                         OnionPayload::Invoice { .. } => {
3512                                                                                                 let payment_data = payment_data.unwrap();
3513                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3514                                                                                                         Ok(result) => result,
3515                                                                                                         Err(()) => {
3516                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3517                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3518                                                                                                                 continue
3519                                                                                                         }
3520                                                                                                 };
3521                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3522                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3523                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3524                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3525                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3526                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3527                                                                                                                 continue;
3528                                                                                                         }
3529                                                                                                 }
3530                                                                                                 check_total_value!(payment_data, payment_preimage);
3531                                                                                         },
3532                                                                                         OnionPayload::Spontaneous(preimage) => {
3533                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3534                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3535                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3536                                                                                                         continue
3537                                                                                                 }
3538                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3539                                                                                                         hash_map::Entry::Vacant(e) => {
3540                                                                                                                 let amount_msat = claimable_htlc.value;
3541                                                                                                                 claimable_htlc.total_value_received = Some(amount_msat);
3542                                                                                                                 let claim_deadline = Some(claimable_htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER);
3543                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3544                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3545                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3546                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3547                                                                                                                         receiver_node_id: Some(receiver_node_id),
3548                                                                                                                         payment_hash,
3549                                                                                                                         amount_msat,
3550                                                                                                                         purpose,
3551                                                                                                                         via_channel_id: Some(prev_channel_id),
3552                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3553                                                                                                                         claim_deadline,
3554                                                                                                                 });
3555                                                                                                         },
3556                                                                                                         hash_map::Entry::Occupied(_) => {
3557                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3558                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3559                                                                                                         }
3560                                                                                                 }
3561                                                                                         }
3562                                                                                 }
3563                                                                         },
3564                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3565                                                                                 if payment_data.is_none() {
3566                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3567                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3568                                                                                         continue
3569                                                                                 };
3570                                                                                 let payment_data = payment_data.unwrap();
3571                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3572                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3573                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3574                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3575                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3576                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3577                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3578                                                                                 } else {
3579                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3580                                                                                         if payment_claimable_generated {
3581                                                                                                 inbound_payment.remove_entry();
3582                                                                                         }
3583                                                                                 }
3584                                                                         },
3585                                                                 };
3586                                                         },
3587                                                         HTLCForwardInfo::FailHTLC { .. } => {
3588                                                                 panic!("Got pending fail of our own HTLC");
3589                                                         }
3590                                                 }
3591                                         }
3592                                 }
3593                         }
3594                 }
3595
3596                 let best_block_height = self.best_block.read().unwrap().height();
3597                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3598                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3599                         &self.pending_events, &self.logger,
3600                         |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3601                         self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3602
3603                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3604                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3605                 }
3606                 self.forward_htlcs(&mut phantom_receives);
3607
3608                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3609                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3610                 // nice to do the work now if we can rather than while we're trying to get messages in the
3611                 // network stack.
3612                 self.check_free_holding_cells();
3613
3614                 if new_events.is_empty() { return }
3615                 let mut events = self.pending_events.lock().unwrap();
3616                 events.append(&mut new_events);
3617         }
3618
3619         /// Free the background events, generally called from timer_tick_occurred.
3620         ///
3621         /// Exposed for testing to allow us to process events quickly without generating accidental
3622         /// BroadcastChannelUpdate events in timer_tick_occurred.
3623         ///
3624         /// Expects the caller to have a total_consistency_lock read lock.
3625         fn process_background_events(&self) -> bool {
3626                 let mut background_events = Vec::new();
3627                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3628                 if background_events.is_empty() {
3629                         return false;
3630                 }
3631
3632                 for event in background_events.drain(..) {
3633                         match event {
3634                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3635                                         // The channel has already been closed, so no use bothering to care about the
3636                                         // monitor updating completing.
3637                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3638                                 },
3639                         }
3640                 }
3641                 true
3642         }
3643
3644         #[cfg(any(test, feature = "_test_utils"))]
3645         /// Process background events, for functional testing
3646         pub fn test_process_background_events(&self) {
3647                 self.process_background_events();
3648         }
3649
3650         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3651                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3652                 // If the feerate has decreased by less than half, don't bother
3653                 if new_feerate <= chan.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.get_feerate_sat_per_1000_weight() {
3654                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3655                                 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3656                         return NotifyOption::SkipPersist;
3657                 }
3658                 if !chan.is_live() {
3659                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3660                                 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3661                         return NotifyOption::SkipPersist;
3662                 }
3663                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3664                         log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3665
3666                 chan.queue_update_fee(new_feerate, &self.logger);
3667                 NotifyOption::DoPersist
3668         }
3669
3670         #[cfg(fuzzing)]
3671         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3672         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3673         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3674         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3675         pub fn maybe_update_chan_fees(&self) {
3676                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3677                         let mut should_persist = NotifyOption::SkipPersist;
3678
3679                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3680
3681                         let per_peer_state = self.per_peer_state.read().unwrap();
3682                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3683                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3684                                 let peer_state = &mut *peer_state_lock;
3685                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3686                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3687                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3688                                 }
3689                         }
3690
3691                         should_persist
3692                 });
3693         }
3694
3695         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3696         ///
3697         /// This currently includes:
3698         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3699         ///  * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
3700         ///    than a minute, informing the network that they should no longer attempt to route over
3701         ///    the channel.
3702         ///  * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
3703         ///    with the current [`ChannelConfig`].
3704         ///  * Removing peers which have disconnected but and no longer have any channels.
3705         ///
3706         /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
3707         /// estimate fetches.
3708         ///
3709         /// [`ChannelUpdate`]: msgs::ChannelUpdate
3710         /// [`ChannelConfig`]: crate::util::config::ChannelConfig
3711         pub fn timer_tick_occurred(&self) {
3712                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3713                         let mut should_persist = NotifyOption::SkipPersist;
3714                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3715
3716                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3717
3718                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3719                         let mut timed_out_mpp_htlcs = Vec::new();
3720                         let mut pending_peers_awaiting_removal = Vec::new();
3721                         {
3722                                 let per_peer_state = self.per_peer_state.read().unwrap();
3723                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3724                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3725                                         let peer_state = &mut *peer_state_lock;
3726                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3727                                         let counterparty_node_id = *counterparty_node_id;
3728                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3729                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3730                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3731
3732                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3733                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3734                                                         handle_errors.push((Err(err), counterparty_node_id));
3735                                                         if needs_close { return false; }
3736                                                 }
3737
3738                                                 match chan.channel_update_status() {
3739                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3740                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3741                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3742                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3743                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3744                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3745                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3746                                                                                 msg: update
3747                                                                         });
3748                                                                 }
3749                                                                 should_persist = NotifyOption::DoPersist;
3750                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3751                                                         },
3752                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3753                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3754                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3755                                                                                 msg: update
3756                                                                         });
3757                                                                 }
3758                                                                 should_persist = NotifyOption::DoPersist;
3759                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3760                                                         },
3761                                                         _ => {},
3762                                                 }
3763
3764                                                 chan.maybe_expire_prev_config();
3765
3766                                                 true
3767                                         });
3768                                         if peer_state.ok_to_remove(true) {
3769                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3770                                         }
3771                                 }
3772                         }
3773
3774                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3775                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3776                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3777                         // we therefore need to remove the peer from `peer_state` separately.
3778                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3779                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3780                         // negative effects on parallelism as much as possible.
3781                         if pending_peers_awaiting_removal.len() > 0 {
3782                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3783                                 for counterparty_node_id in pending_peers_awaiting_removal {
3784                                         match per_peer_state.entry(counterparty_node_id) {
3785                                                 hash_map::Entry::Occupied(entry) => {
3786                                                         // Remove the entry if the peer is still disconnected and we still
3787                                                         // have no channels to the peer.
3788                                                         let remove_entry = {
3789                                                                 let peer_state = entry.get().lock().unwrap();
3790                                                                 peer_state.ok_to_remove(true)
3791                                                         };
3792                                                         if remove_entry {
3793                                                                 entry.remove_entry();
3794                                                         }
3795                                                 },
3796                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3797                                         }
3798                                 }
3799                         }
3800
3801                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3802                                 if htlcs.is_empty() {
3803                                         // This should be unreachable
3804                                         debug_assert!(false);
3805                                         return false;
3806                                 }
3807                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3808                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3809                                         // In this case we're not going to handle any timeouts of the parts here.
3810                                         // This condition determining whether the MPP is complete here must match
3811                                         // exactly the condition used in `process_pending_htlc_forwards`.
3812                                         if htlcs[0].total_msat <= htlcs.iter().fold(0, |total, htlc| total + htlc.sender_intended_value) {
3813                                                 return true;
3814                                         } else if htlcs.into_iter().any(|htlc| {
3815                                                 htlc.timer_ticks += 1;
3816                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3817                                         }) {
3818                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3819                                                 return false;
3820                                         }
3821                                 }
3822                                 true
3823                         });
3824
3825                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3826                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3827                                 let reason = HTLCFailReason::from_failure_code(23);
3828                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3829                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3830                         }
3831
3832                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3833                                 let _ = handle_error!(self, err, counterparty_node_id);
3834                         }
3835
3836                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3837
3838                         // Technically we don't need to do this here, but if we have holding cell entries in a
3839                         // channel that need freeing, it's better to do that here and block a background task
3840                         // than block the message queueing pipeline.
3841                         if self.check_free_holding_cells() {
3842                                 should_persist = NotifyOption::DoPersist;
3843                         }
3844
3845                         should_persist
3846                 });
3847         }
3848
3849         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3850         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3851         /// along the path (including in our own channel on which we received it).
3852         ///
3853         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3854         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3855         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3856         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3857         ///
3858         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3859         /// [`ChannelManager::claim_funds`]), you should still monitor for
3860         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3861         /// startup during which time claims that were in-progress at shutdown may be replayed.
3862         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3863                 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3864         }
3865
3866         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3867         /// reason for the failure.
3868         ///
3869         /// See [`FailureCode`] for valid failure codes.
3870         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3871                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3872
3873                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3874                 if let Some((_, mut sources)) = removed_source {
3875                         for htlc in sources.drain(..) {
3876                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3877                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3878                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3879                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3880                         }
3881                 }
3882         }
3883
3884         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3885         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3886                 match failure_code {
3887                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3888                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3889                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3890                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3891                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3892                                 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
3893                         }
3894                 }
3895         }
3896
3897         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3898         /// that we want to return and a channel.
3899         ///
3900         /// This is for failures on the channel on which the HTLC was *received*, not failures
3901         /// forwarding
3902         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3903                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3904                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3905                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3906                 // an inbound SCID alias before the real SCID.
3907                 let scid_pref = if chan.should_announce() {
3908                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3909                 } else {
3910                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3911                 };
3912                 if let Some(scid) = scid_pref {
3913                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3914                 } else {
3915                         (0x4000|10, Vec::new())
3916                 }
3917         }
3918
3919
3920         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3921         /// that we want to return and a channel.
3922         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3923                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3924                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3925                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3926                         if desired_err_code == 0x1000 | 20 {
3927                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3928                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3929                                 0u16.write(&mut enc).expect("Writes cannot fail");
3930                         }
3931                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3932                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3933                         upd.write(&mut enc).expect("Writes cannot fail");
3934                         (desired_err_code, enc.0)
3935                 } else {
3936                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3937                         // which means we really shouldn't have gotten a payment to be forwarded over this
3938                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3939                         // PERM|no_such_channel should be fine.
3940                         (0x4000|10, Vec::new())
3941                 }
3942         }
3943
3944         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3945         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3946         // be surfaced to the user.
3947         fn fail_holding_cell_htlcs(
3948                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3949                 counterparty_node_id: &PublicKey
3950         ) {
3951                 let (failure_code, onion_failure_data) = {
3952                         let per_peer_state = self.per_peer_state.read().unwrap();
3953                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3954                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3955                                 let peer_state = &mut *peer_state_lock;
3956                                 match peer_state.channel_by_id.entry(channel_id) {
3957                                         hash_map::Entry::Occupied(chan_entry) => {
3958                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3959                                         },
3960                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3961                                 }
3962                         } else { (0x4000|10, Vec::new()) }
3963                 };
3964
3965                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3966                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3967                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3968                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3969                 }
3970         }
3971
3972         /// Fails an HTLC backwards to the sender of it to us.
3973         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3974         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3975                 // Ensure that no peer state channel storage lock is held when calling this function.
3976                 // This ensures that future code doesn't introduce a lock-order requirement for
3977                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3978                 // this function with any `per_peer_state` peer lock acquired would.
3979                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3980                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3981                 }
3982
3983                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3984                 //identify whether we sent it or not based on the (I presume) very different runtime
3985                 //between the branches here. We should make this async and move it into the forward HTLCs
3986                 //timer handling.
3987
3988                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3989                 // from block_connected which may run during initialization prior to the chain_monitor
3990                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3991                 match source {
3992                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
3993                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3994                                         session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
3995                                         &self.pending_events, &self.logger)
3996                                 { self.push_pending_forwards_ev(); }
3997                         },
3998                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3999                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
4000                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
4001
4002                                 let mut push_forward_ev = false;
4003                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4004                                 if forward_htlcs.is_empty() {
4005                                         push_forward_ev = true;
4006                                 }
4007                                 match forward_htlcs.entry(*short_channel_id) {
4008                                         hash_map::Entry::Occupied(mut entry) => {
4009                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
4010                                         },
4011                                         hash_map::Entry::Vacant(entry) => {
4012                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
4013                                         }
4014                                 }
4015                                 mem::drop(forward_htlcs);
4016                                 if push_forward_ev { self.push_pending_forwards_ev(); }
4017                                 let mut pending_events = self.pending_events.lock().unwrap();
4018                                 pending_events.push(events::Event::HTLCHandlingFailed {
4019                                         prev_channel_id: outpoint.to_channel_id(),
4020                                         failed_next_destination: destination,
4021                                 });
4022                         },
4023                 }
4024         }
4025
4026         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
4027         /// [`MessageSendEvent`]s needed to claim the payment.
4028         ///
4029         /// This method is guaranteed to ensure the payment has been claimed but only if the current
4030         /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
4031         /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
4032         /// successful. It will generally be available in the next [`process_pending_events`] call.
4033         ///
4034         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
4035         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
4036         /// event matches your expectation. If you fail to do so and call this method, you may provide
4037         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
4038         ///
4039         /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
4040         /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
4041         /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
4042         /// [`process_pending_events`]: EventsProvider::process_pending_events
4043         /// [`create_inbound_payment`]: Self::create_inbound_payment
4044         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4045         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
4046                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4047
4048                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4049
4050                 let mut sources = {
4051                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
4052                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
4053                                 let mut receiver_node_id = self.our_network_pubkey;
4054                                 for htlc in sources.iter() {
4055                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
4056                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
4057                                                         .expect("Failed to get node_id for phantom node recipient");
4058                                                 receiver_node_id = phantom_pubkey;
4059                                                 break;
4060                                         }
4061                                 }
4062
4063                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
4064                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
4065                                         payment_purpose, receiver_node_id,
4066                                 });
4067                                 if dup_purpose.is_some() {
4068                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
4069                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
4070                                                 log_bytes!(payment_hash.0));
4071                                 }
4072                                 sources
4073                         } else { return; }
4074                 };
4075                 debug_assert!(!sources.is_empty());
4076
4077                 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
4078                 // and when we got here we need to check that the amount we're about to claim matches the
4079                 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
4080                 // the MPP parts all have the same `total_msat`.
4081                 let mut claimable_amt_msat = 0;
4082                 let mut prev_total_msat = None;
4083                 let mut expected_amt_msat = None;
4084                 let mut valid_mpp = true;
4085                 let mut errs = Vec::new();
4086                 let per_peer_state = self.per_peer_state.read().unwrap();
4087                 for htlc in sources.iter() {
4088                         if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
4089                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
4090                                 debug_assert!(false);
4091                                 valid_mpp = false;
4092                                 break;
4093                         }
4094                         prev_total_msat = Some(htlc.total_msat);
4095
4096                         if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
4097                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
4098                                 debug_assert!(false);
4099                                 valid_mpp = false;
4100                                 break;
4101                         }
4102                         expected_amt_msat = htlc.total_value_received;
4103
4104                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
4105                                 // We don't currently support MPP for spontaneous payments, so just check
4106                                 // that there's one payment here and move on.
4107                                 if sources.len() != 1 {
4108                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
4109                                         debug_assert!(false);
4110                                         valid_mpp = false;
4111                                         break;
4112                                 }
4113                         }
4114
4115                         claimable_amt_msat += htlc.value;
4116                 }
4117                 mem::drop(per_peer_state);
4118                 if sources.is_empty() || expected_amt_msat.is_none() {
4119                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4120                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4121                         return;
4122                 }
4123                 if claimable_amt_msat != expected_amt_msat.unwrap() {
4124                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4125                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4126                                 expected_amt_msat.unwrap(), claimable_amt_msat);
4127                         return;
4128                 }
4129                 if valid_mpp {
4130                         for htlc in sources.drain(..) {
4131                                 if let Err((pk, err)) = self.claim_funds_from_hop(
4132                                         htlc.prev_hop, payment_preimage,
4133                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4134                                 {
4135                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
4136                                                 // We got a temporary failure updating monitor, but will claim the
4137                                                 // HTLC when the monitor updating is restored (or on chain).
4138                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4139                                         } else { errs.push((pk, err)); }
4140                                 }
4141                         }
4142                 }
4143                 if !valid_mpp {
4144                         for htlc in sources.drain(..) {
4145                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4146                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4147                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4148                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4149                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
4150                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4151                         }
4152                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4153                 }
4154
4155                 // Now we can handle any errors which were generated.
4156                 for (counterparty_node_id, err) in errs.drain(..) {
4157                         let res: Result<(), _> = Err(err);
4158                         let _ = handle_error!(self, res, counterparty_node_id);
4159                 }
4160         }
4161
4162         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4163                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4164         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4165                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4166
4167                 {
4168                         let per_peer_state = self.per_peer_state.read().unwrap();
4169                         let chan_id = prev_hop.outpoint.to_channel_id();
4170                         let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4171                                 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4172                                 None => None
4173                         };
4174
4175                         let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4176                                 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
4177                                         .map(|peer_mutex| peer_mutex.lock().unwrap())
4178                         ).unwrap_or(None);
4179
4180                         if peer_state_opt.is_some() {
4181                                 let mut peer_state_lock = peer_state_opt.unwrap();
4182                                 let peer_state = &mut *peer_state_lock;
4183                                 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4184                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
4185                                         let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4186
4187                                         if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4188                                                 if let Some(action) = completion_action(Some(htlc_value_msat)) {
4189                                                         log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4190                                                                 log_bytes!(chan_id), action);
4191                                                         peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4192                                                 }
4193                                                 let update_id = monitor_update.update_id;
4194                                                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4195                                                 let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4196                                                         peer_state, per_peer_state, chan);
4197                                                 if let Err(e) = res {
4198                                                         // TODO: This is a *critical* error - we probably updated the outbound edge
4199                                                         // of the HTLC's monitor with a preimage. We should retry this monitor
4200                                                         // update over and over again until morale improves.
4201                                                         log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4202                                                         return Err((counterparty_node_id, e));
4203                                                 }
4204                                         }
4205                                         return Ok(());
4206                                 }
4207                         }
4208                 }
4209                 let preimage_update = ChannelMonitorUpdate {
4210                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4211                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4212                                 payment_preimage,
4213                         }],
4214                 };
4215                 // We update the ChannelMonitor on the backward link, after
4216                 // receiving an `update_fulfill_htlc` from the forward link.
4217                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4218                 if update_res != ChannelMonitorUpdateStatus::Completed {
4219                         // TODO: This needs to be handled somehow - if we receive a monitor update
4220                         // with a preimage we *must* somehow manage to propagate it to the upstream
4221                         // channel, or we must have an ability to receive the same event and try
4222                         // again on restart.
4223                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4224                                 payment_preimage, update_res);
4225                 }
4226                 // Note that we do process the completion action here. This totally could be a
4227                 // duplicate claim, but we have no way of knowing without interrogating the
4228                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4229                 // generally always allowed to be duplicative (and it's specifically noted in
4230                 // `PaymentForwarded`).
4231                 self.handle_monitor_update_completion_actions(completion_action(None));
4232                 Ok(())
4233         }
4234
4235         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4236                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4237         }
4238
4239         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4240                 match source {
4241                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4242                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4243                         },
4244                         HTLCSource::PreviousHopData(hop_data) => {
4245                                 let prev_outpoint = hop_data.outpoint;
4246                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4247                                         |htlc_claim_value_msat| {
4248                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4249                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4250                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4251                                                         } else { None };
4252
4253                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4254                                                         let next_channel_id = Some(next_channel_id);
4255
4256                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4257                                                                 fee_earned_msat,
4258                                                                 claim_from_onchain_tx: from_onchain,
4259                                                                 prev_channel_id,
4260                                                                 next_channel_id,
4261                                                                 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
4262                                                         }})
4263                                                 } else { None }
4264                                         });
4265                                 if let Err((pk, err)) = res {
4266                                         let result: Result<(), _> = Err(err);
4267                                         let _ = handle_error!(self, result, pk);
4268                                 }
4269                         },
4270                 }
4271         }
4272
4273         /// Gets the node_id held by this ChannelManager
4274         pub fn get_our_node_id(&self) -> PublicKey {
4275                 self.our_network_pubkey.clone()
4276         }
4277
4278         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4279                 for action in actions.into_iter() {
4280                         match action {
4281                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4282                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4283                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4284                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4285                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4286                                                 });
4287                                         }
4288                                 },
4289                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4290                                         self.pending_events.lock().unwrap().push(event);
4291                                 },
4292                         }
4293                 }
4294         }
4295
4296         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4297         /// update completion.
4298         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4299                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4300                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4301                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4302                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4303         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4304                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4305                         log_bytes!(channel.channel_id()),
4306                         if raa.is_some() { "an" } else { "no" },
4307                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4308                         if funding_broadcastable.is_some() { "" } else { "not " },
4309                         if channel_ready.is_some() { "sending" } else { "without" },
4310                         if announcement_sigs.is_some() { "sending" } else { "without" });
4311
4312                 let mut htlc_forwards = None;
4313
4314                 let counterparty_node_id = channel.get_counterparty_node_id();
4315                 if !pending_forwards.is_empty() {
4316                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4317                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4318                 }
4319
4320                 if let Some(msg) = channel_ready {
4321                         send_channel_ready!(self, pending_msg_events, channel, msg);
4322                 }
4323                 if let Some(msg) = announcement_sigs {
4324                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4325                                 node_id: counterparty_node_id,
4326                                 msg,
4327                         });
4328                 }
4329
4330                 macro_rules! handle_cs { () => {
4331                         if let Some(update) = commitment_update {
4332                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4333                                         node_id: counterparty_node_id,
4334                                         updates: update,
4335                                 });
4336                         }
4337                 } }
4338                 macro_rules! handle_raa { () => {
4339                         if let Some(revoke_and_ack) = raa {
4340                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4341                                         node_id: counterparty_node_id,
4342                                         msg: revoke_and_ack,
4343                                 });
4344                         }
4345                 } }
4346                 match order {
4347                         RAACommitmentOrder::CommitmentFirst => {
4348                                 handle_cs!();
4349                                 handle_raa!();
4350                         },
4351                         RAACommitmentOrder::RevokeAndACKFirst => {
4352                                 handle_raa!();
4353                                 handle_cs!();
4354                         },
4355                 }
4356
4357                 if let Some(tx) = funding_broadcastable {
4358                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4359                         self.tx_broadcaster.broadcast_transaction(&tx);
4360                 }
4361
4362                 {
4363                         let mut pending_events = self.pending_events.lock().unwrap();
4364                         emit_channel_pending_event!(pending_events, channel);
4365                         emit_channel_ready_event!(pending_events, channel);
4366                 }
4367
4368                 htlc_forwards
4369         }
4370
4371         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4372                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4373
4374                 let counterparty_node_id = match counterparty_node_id {
4375                         Some(cp_id) => cp_id.clone(),
4376                         None => {
4377                                 // TODO: Once we can rely on the counterparty_node_id from the
4378                                 // monitor event, this and the id_to_peer map should be removed.
4379                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4380                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4381                                         Some(cp_id) => cp_id.clone(),
4382                                         None => return,
4383                                 }
4384                         }
4385                 };
4386                 let per_peer_state = self.per_peer_state.read().unwrap();
4387                 let mut peer_state_lock;
4388                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4389                 if peer_state_mutex_opt.is_none() { return }
4390                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4391                 let peer_state = &mut *peer_state_lock;
4392                 let mut channel = {
4393                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4394                                 hash_map::Entry::Occupied(chan) => chan,
4395                                 hash_map::Entry::Vacant(_) => return,
4396                         }
4397                 };
4398                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4399                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4400                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4401                         return;
4402                 }
4403                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4404         }
4405
4406         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4407         ///
4408         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4409         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4410         /// the channel.
4411         ///
4412         /// The `user_channel_id` parameter will be provided back in
4413         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4414         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4415         ///
4416         /// Note that this method will return an error and reject the channel, if it requires support
4417         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4418         /// used to accept such channels.
4419         ///
4420         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4421         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4422         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4423                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4424         }
4425
4426         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4427         /// it as confirmed immediately.
4428         ///
4429         /// The `user_channel_id` parameter will be provided back in
4430         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4431         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4432         ///
4433         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4434         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4435         ///
4436         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4437         /// transaction and blindly assumes that it will eventually confirm.
4438         ///
4439         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4440         /// does not pay to the correct script the correct amount, *you will lose funds*.
4441         ///
4442         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4443         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4444         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4445                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4446         }
4447
4448         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4449                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4450
4451                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4452                 let per_peer_state = self.per_peer_state.read().unwrap();
4453                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4454                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4455                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4456                 let peer_state = &mut *peer_state_lock;
4457                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4458                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4459                         hash_map::Entry::Occupied(mut channel) => {
4460                                 if !channel.get().inbound_is_awaiting_accept() {
4461                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4462                                 }
4463                                 if accept_0conf {
4464                                         channel.get_mut().set_0conf();
4465                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4466                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4467                                                 node_id: channel.get().get_counterparty_node_id(),
4468                                                 action: msgs::ErrorAction::SendErrorMessage{
4469                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4470                                                 }
4471                                         };
4472                                         peer_state.pending_msg_events.push(send_msg_err_event);
4473                                         let _ = remove_channel!(self, channel);
4474                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4475                                 } else {
4476                                         // If this peer already has some channels, a new channel won't increase our number of peers
4477                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4478                                         // channels per-peer we can accept channels from a peer with existing ones.
4479                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4480                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4481                                                         node_id: channel.get().get_counterparty_node_id(),
4482                                                         action: msgs::ErrorAction::SendErrorMessage{
4483                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4484                                                         }
4485                                                 };
4486                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4487                                                 let _ = remove_channel!(self, channel);
4488                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4489                                         }
4490                                 }
4491
4492                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4493                                         node_id: channel.get().get_counterparty_node_id(),
4494                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4495                                 });
4496                         }
4497                         hash_map::Entry::Vacant(_) => {
4498                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4499                         }
4500                 }
4501                 Ok(())
4502         }
4503
4504         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4505         /// or 0-conf channels.
4506         ///
4507         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4508         /// non-0-conf channels we have with the peer.
4509         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4510         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4511                 let mut peers_without_funded_channels = 0;
4512                 let best_block_height = self.best_block.read().unwrap().height();
4513                 {
4514                         let peer_state_lock = self.per_peer_state.read().unwrap();
4515                         for (_, peer_mtx) in peer_state_lock.iter() {
4516                                 let peer = peer_mtx.lock().unwrap();
4517                                 if !maybe_count_peer(&*peer) { continue; }
4518                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4519                                 if num_unfunded_channels == peer.channel_by_id.len() {
4520                                         peers_without_funded_channels += 1;
4521                                 }
4522                         }
4523                 }
4524                 return peers_without_funded_channels;
4525         }
4526
4527         fn unfunded_channel_count(
4528                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4529         ) -> usize {
4530                 let mut num_unfunded_channels = 0;
4531                 for (_, chan) in peer.channel_by_id.iter() {
4532                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4533                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4534                         {
4535                                 num_unfunded_channels += 1;
4536                         }
4537                 }
4538                 num_unfunded_channels
4539         }
4540
4541         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4542                 if msg.chain_hash != self.genesis_hash {
4543                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4544                 }
4545
4546                 if !self.default_configuration.accept_inbound_channels {
4547                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4548                 }
4549
4550                 let mut random_bytes = [0u8; 16];
4551                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4552                 let user_channel_id = u128::from_be_bytes(random_bytes);
4553                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4554
4555                 // Get the number of peers with channels, but without funded ones. We don't care too much
4556                 // about peers that never open a channel, so we filter by peers that have at least one
4557                 // channel, and then limit the number of those with unfunded channels.
4558                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4559
4560                 let per_peer_state = self.per_peer_state.read().unwrap();
4561                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4562                     .ok_or_else(|| {
4563                                 debug_assert!(false);
4564                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4565                         })?;
4566                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4567                 let peer_state = &mut *peer_state_lock;
4568
4569                 // If this peer already has some channels, a new channel won't increase our number of peers
4570                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4571                 // channels per-peer we can accept channels from a peer with existing ones.
4572                 if peer_state.channel_by_id.is_empty() &&
4573                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4574                         !self.default_configuration.manually_accept_inbound_channels
4575                 {
4576                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4577                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4578                                 msg.temporary_channel_id.clone()));
4579                 }
4580
4581                 let best_block_height = self.best_block.read().unwrap().height();
4582                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4583                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4584                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4585                                 msg.temporary_channel_id.clone()));
4586                 }
4587
4588                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4589                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4590                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4591                 {
4592                         Err(e) => {
4593                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4594                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4595                         },
4596                         Ok(res) => res
4597                 };
4598                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4599                         hash_map::Entry::Occupied(_) => {
4600                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4601                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4602                         },
4603                         hash_map::Entry::Vacant(entry) => {
4604                                 if !self.default_configuration.manually_accept_inbound_channels {
4605                                         if channel.get_channel_type().requires_zero_conf() {
4606                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4607                                         }
4608                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4609                                                 node_id: counterparty_node_id.clone(),
4610                                                 msg: channel.accept_inbound_channel(user_channel_id),
4611                                         });
4612                                 } else {
4613                                         let mut pending_events = self.pending_events.lock().unwrap();
4614                                         pending_events.push(
4615                                                 events::Event::OpenChannelRequest {
4616                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4617                                                         counterparty_node_id: counterparty_node_id.clone(),
4618                                                         funding_satoshis: msg.funding_satoshis,
4619                                                         push_msat: msg.push_msat,
4620                                                         channel_type: channel.get_channel_type().clone(),
4621                                                 }
4622                                         );
4623                                 }
4624
4625                                 entry.insert(channel);
4626                         }
4627                 }
4628                 Ok(())
4629         }
4630
4631         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4632                 let (value, output_script, user_id) = {
4633                         let per_peer_state = self.per_peer_state.read().unwrap();
4634                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4635                                 .ok_or_else(|| {
4636                                         debug_assert!(false);
4637                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4638                                 })?;
4639                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4640                         let peer_state = &mut *peer_state_lock;
4641                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4642                                 hash_map::Entry::Occupied(mut chan) => {
4643                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4644                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4645                                 },
4646                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4647                         }
4648                 };
4649                 let mut pending_events = self.pending_events.lock().unwrap();
4650                 pending_events.push(events::Event::FundingGenerationReady {
4651                         temporary_channel_id: msg.temporary_channel_id,
4652                         counterparty_node_id: *counterparty_node_id,
4653                         channel_value_satoshis: value,
4654                         output_script,
4655                         user_channel_id: user_id,
4656                 });
4657                 Ok(())
4658         }
4659
4660         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4661                 let best_block = *self.best_block.read().unwrap();
4662
4663                 let per_peer_state = self.per_peer_state.read().unwrap();
4664                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4665                         .ok_or_else(|| {
4666                                 debug_assert!(false);
4667                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4668                         })?;
4669
4670                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4671                 let peer_state = &mut *peer_state_lock;
4672                 let ((funding_msg, monitor), chan) =
4673                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4674                                 hash_map::Entry::Occupied(mut chan) => {
4675                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4676                                 },
4677                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4678                         };
4679
4680                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4681                         hash_map::Entry::Occupied(_) => {
4682                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4683                         },
4684                         hash_map::Entry::Vacant(e) => {
4685                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4686                                         hash_map::Entry::Occupied(_) => {
4687                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4688                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4689                                                         funding_msg.channel_id))
4690                                         },
4691                                         hash_map::Entry::Vacant(i_e) => {
4692                                                 i_e.insert(chan.get_counterparty_node_id());
4693                                         }
4694                                 }
4695
4696                                 // There's no problem signing a counterparty's funding transaction if our monitor
4697                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4698                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4699                                 // until we have persisted our monitor.
4700                                 let new_channel_id = funding_msg.channel_id;
4701                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4702                                         node_id: counterparty_node_id.clone(),
4703                                         msg: funding_msg,
4704                                 });
4705
4706                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4707
4708                                 let chan = e.insert(chan);
4709                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4710                                         per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4711
4712                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4713                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4714                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4715                                 // any messages referencing a previously-closed channel anyway.
4716                                 // We do not propagate the monitor update to the user as it would be for a monitor
4717                                 // that we didn't manage to store (and that we don't care about - we don't respond
4718                                 // with the funding_signed so the channel can never go on chain).
4719                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4720                                         res.0 = None;
4721                                 }
4722                                 res
4723                         }
4724                 }
4725         }
4726
4727         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4728                 let best_block = *self.best_block.read().unwrap();
4729                 let per_peer_state = self.per_peer_state.read().unwrap();
4730                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4731                         .ok_or_else(|| {
4732                                 debug_assert!(false);
4733                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4734                         })?;
4735
4736                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4737                 let peer_state = &mut *peer_state_lock;
4738                 match peer_state.channel_by_id.entry(msg.channel_id) {
4739                         hash_map::Entry::Occupied(mut chan) => {
4740                                 let monitor = try_chan_entry!(self,
4741                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4742                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4743                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4744                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4745                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4746                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4747                                         // monitor update contained within `shutdown_finish` was applied.
4748                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4749                                                 shutdown_finish.0.take();
4750                                         }
4751                                 }
4752                                 res
4753                         },
4754                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4755                 }
4756         }
4757
4758         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4759                 let per_peer_state = self.per_peer_state.read().unwrap();
4760                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4761                         .ok_or_else(|| {
4762                                 debug_assert!(false);
4763                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4764                         })?;
4765                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4766                 let peer_state = &mut *peer_state_lock;
4767                 match peer_state.channel_by_id.entry(msg.channel_id) {
4768                         hash_map::Entry::Occupied(mut chan) => {
4769                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4770                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4771                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4772                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4773                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4774                                                 node_id: counterparty_node_id.clone(),
4775                                                 msg: announcement_sigs,
4776                                         });
4777                                 } else if chan.get().is_usable() {
4778                                         // If we're sending an announcement_signatures, we'll send the (public)
4779                                         // channel_update after sending a channel_announcement when we receive our
4780                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4781                                         // channel_update here if the channel is not public, i.e. we're not sending an
4782                                         // announcement_signatures.
4783                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4784                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4785                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4786                                                         node_id: counterparty_node_id.clone(),
4787                                                         msg,
4788                                                 });
4789                                         }
4790                                 }
4791
4792                                 {
4793                                         let mut pending_events = self.pending_events.lock().unwrap();
4794                                         emit_channel_ready_event!(pending_events, chan.get_mut());
4795                                 }
4796
4797                                 Ok(())
4798                         },
4799                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4800                 }
4801         }
4802
4803         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4804                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4805                 let result: Result<(), _> = loop {
4806                         let per_peer_state = self.per_peer_state.read().unwrap();
4807                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4808                                 .ok_or_else(|| {
4809                                         debug_assert!(false);
4810                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4811                                 })?;
4812                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4813                         let peer_state = &mut *peer_state_lock;
4814                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4815                                 hash_map::Entry::Occupied(mut chan_entry) => {
4816
4817                                         if !chan_entry.get().received_shutdown() {
4818                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4819                                                         log_bytes!(msg.channel_id),
4820                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4821                                         }
4822
4823                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4824                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4825                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4826                                         dropped_htlcs = htlcs;
4827
4828                                         if let Some(msg) = shutdown {
4829                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4830                                                 // here as we don't need the monitor update to complete until we send a
4831                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4832                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4833                                                         node_id: *counterparty_node_id,
4834                                                         msg,
4835                                                 });
4836                                         }
4837
4838                                         // Update the monitor with the shutdown script if necessary.
4839                                         if let Some(monitor_update) = monitor_update_opt {
4840                                                 let update_id = monitor_update.update_id;
4841                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4842                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4843                                         }
4844                                         break Ok(());
4845                                 },
4846                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4847                         }
4848                 };
4849                 for htlc_source in dropped_htlcs.drain(..) {
4850                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4851                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4852                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4853                 }
4854
4855                 result
4856         }
4857
4858         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4859                 let per_peer_state = self.per_peer_state.read().unwrap();
4860                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4861                         .ok_or_else(|| {
4862                                 debug_assert!(false);
4863                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4864                         })?;
4865                 let (tx, chan_option) = {
4866                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4867                         let peer_state = &mut *peer_state_lock;
4868                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4869                                 hash_map::Entry::Occupied(mut chan_entry) => {
4870                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4871                                         if let Some(msg) = closing_signed {
4872                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4873                                                         node_id: counterparty_node_id.clone(),
4874                                                         msg,
4875                                                 });
4876                                         }
4877                                         if tx.is_some() {
4878                                                 // We're done with this channel, we've got a signed closing transaction and
4879                                                 // will send the closing_signed back to the remote peer upon return. This
4880                                                 // also implies there are no pending HTLCs left on the channel, so we can
4881                                                 // fully delete it from tracking (the channel monitor is still around to
4882                                                 // watch for old state broadcasts)!
4883                                                 (tx, Some(remove_channel!(self, chan_entry)))
4884                                         } else { (tx, None) }
4885                                 },
4886                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4887                         }
4888                 };
4889                 if let Some(broadcast_tx) = tx {
4890                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4891                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4892                 }
4893                 if let Some(chan) = chan_option {
4894                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4895                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4896                                 let peer_state = &mut *peer_state_lock;
4897                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4898                                         msg: update
4899                                 });
4900                         }
4901                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4902                 }
4903                 Ok(())
4904         }
4905
4906         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4907                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4908                 //determine the state of the payment based on our response/if we forward anything/the time
4909                 //we take to respond. We should take care to avoid allowing such an attack.
4910                 //
4911                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4912                 //us repeatedly garbled in different ways, and compare our error messages, which are
4913                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4914                 //but we should prevent it anyway.
4915
4916                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4917                 let per_peer_state = self.per_peer_state.read().unwrap();
4918                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4919                         .ok_or_else(|| {
4920                                 debug_assert!(false);
4921                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4922                         })?;
4923                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4924                 let peer_state = &mut *peer_state_lock;
4925                 match peer_state.channel_by_id.entry(msg.channel_id) {
4926                         hash_map::Entry::Occupied(mut chan) => {
4927
4928                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4929                                         // If the update_add is completely bogus, the call will Err and we will close,
4930                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4931                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4932                                         match pending_forward_info {
4933                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4934                                                         let reason = if (error_code & 0x1000) != 0 {
4935                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4936                                                                 HTLCFailReason::reason(real_code, error_data)
4937                                                         } else {
4938                                                                 HTLCFailReason::from_failure_code(error_code)
4939                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4940                                                         let msg = msgs::UpdateFailHTLC {
4941                                                                 channel_id: msg.channel_id,
4942                                                                 htlc_id: msg.htlc_id,
4943                                                                 reason
4944                                                         };
4945                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4946                                                 },
4947                                                 _ => pending_forward_info
4948                                         }
4949                                 };
4950                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4951                         },
4952                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4953                 }
4954                 Ok(())
4955         }
4956
4957         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4958                 let (htlc_source, forwarded_htlc_value) = {
4959                         let per_peer_state = self.per_peer_state.read().unwrap();
4960                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4961                                 .ok_or_else(|| {
4962                                         debug_assert!(false);
4963                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4964                                 })?;
4965                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4966                         let peer_state = &mut *peer_state_lock;
4967                         match peer_state.channel_by_id.entry(msg.channel_id) {
4968                                 hash_map::Entry::Occupied(mut chan) => {
4969                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4970                                 },
4971                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4972                         }
4973                 };
4974                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4975                 Ok(())
4976         }
4977
4978         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4979                 let per_peer_state = self.per_peer_state.read().unwrap();
4980                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4981                         .ok_or_else(|| {
4982                                 debug_assert!(false);
4983                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4984                         })?;
4985                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4986                 let peer_state = &mut *peer_state_lock;
4987                 match peer_state.channel_by_id.entry(msg.channel_id) {
4988                         hash_map::Entry::Occupied(mut chan) => {
4989                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4990                         },
4991                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4992                 }
4993                 Ok(())
4994         }
4995
4996         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4997                 let per_peer_state = self.per_peer_state.read().unwrap();
4998                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4999                         .ok_or_else(|| {
5000                                 debug_assert!(false);
5001                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5002                         })?;
5003                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5004                 let peer_state = &mut *peer_state_lock;
5005                 match peer_state.channel_by_id.entry(msg.channel_id) {
5006                         hash_map::Entry::Occupied(mut chan) => {
5007                                 if (msg.failure_code & 0x8000) == 0 {
5008                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
5009                                         try_chan_entry!(self, Err(chan_err), chan);
5010                                 }
5011                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
5012                                 Ok(())
5013                         },
5014                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5015                 }
5016         }
5017
5018         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
5019                 let per_peer_state = self.per_peer_state.read().unwrap();
5020                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5021                         .ok_or_else(|| {
5022                                 debug_assert!(false);
5023                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5024                         })?;
5025                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5026                 let peer_state = &mut *peer_state_lock;
5027                 match peer_state.channel_by_id.entry(msg.channel_id) {
5028                         hash_map::Entry::Occupied(mut chan) => {
5029                                 let funding_txo = chan.get().get_funding_txo();
5030                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
5031                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5032                                 let update_id = monitor_update.update_id;
5033                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
5034                                         peer_state, per_peer_state, chan)
5035                         },
5036                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5037                 }
5038         }
5039
5040         #[inline]
5041         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
5042                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
5043                         let mut push_forward_event = false;
5044                         let mut new_intercept_events = Vec::new();
5045                         let mut failed_intercept_forwards = Vec::new();
5046                         if !pending_forwards.is_empty() {
5047                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
5048                                         let scid = match forward_info.routing {
5049                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
5050                                                 PendingHTLCRouting::Receive { .. } => 0,
5051                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
5052                                         };
5053                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
5054                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
5055
5056                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5057                                         let forward_htlcs_empty = forward_htlcs.is_empty();
5058                                         match forward_htlcs.entry(scid) {
5059                                                 hash_map::Entry::Occupied(mut entry) => {
5060                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5061                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
5062                                                 },
5063                                                 hash_map::Entry::Vacant(entry) => {
5064                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
5065                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
5066                                                         {
5067                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
5068                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
5069                                                                 match pending_intercepts.entry(intercept_id) {
5070                                                                         hash_map::Entry::Vacant(entry) => {
5071                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
5072                                                                                         requested_next_hop_scid: scid,
5073                                                                                         payment_hash: forward_info.payment_hash,
5074                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
5075                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
5076                                                                                         intercept_id
5077                                                                                 });
5078                                                                                 entry.insert(PendingAddHTLCInfo {
5079                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
5080                                                                         },
5081                                                                         hash_map::Entry::Occupied(_) => {
5082                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
5083                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5084                                                                                         short_channel_id: prev_short_channel_id,
5085                                                                                         outpoint: prev_funding_outpoint,
5086                                                                                         htlc_id: prev_htlc_id,
5087                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
5088                                                                                         phantom_shared_secret: None,
5089                                                                                 });
5090
5091                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
5092                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
5093                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
5094                                                                                 ));
5095                                                                         }
5096                                                                 }
5097                                                         } else {
5098                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
5099                                                                 // payments are being processed.
5100                                                                 if forward_htlcs_empty {
5101                                                                         push_forward_event = true;
5102                                                                 }
5103                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5104                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
5105                                                         }
5106                                                 }
5107                                         }
5108                                 }
5109                         }
5110
5111                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
5112                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5113                         }
5114
5115                         if !new_intercept_events.is_empty() {
5116                                 let mut events = self.pending_events.lock().unwrap();
5117                                 events.append(&mut new_intercept_events);
5118                         }
5119                         if push_forward_event { self.push_pending_forwards_ev() }
5120                 }
5121         }
5122
5123         // We only want to push a PendingHTLCsForwardable event if no others are queued.
5124         fn push_pending_forwards_ev(&self) {
5125                 let mut pending_events = self.pending_events.lock().unwrap();
5126                 let forward_ev_exists = pending_events.iter()
5127                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
5128                         .is_some();
5129                 if !forward_ev_exists {
5130                         pending_events.push(events::Event::PendingHTLCsForwardable {
5131                                 time_forwardable:
5132                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
5133                         });
5134                 }
5135         }
5136
5137         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5138                 let (htlcs_to_fail, res) = {
5139                         let per_peer_state = self.per_peer_state.read().unwrap();
5140                         let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
5141                                 .ok_or_else(|| {
5142                                         debug_assert!(false);
5143                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5144                                 }).map(|mtx| mtx.lock().unwrap())?;
5145                         let peer_state = &mut *peer_state_lock;
5146                         match peer_state.channel_by_id.entry(msg.channel_id) {
5147                                 hash_map::Entry::Occupied(mut chan) => {
5148                                         let funding_txo = chan.get().get_funding_txo();
5149                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5150                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5151                                         let update_id = monitor_update.update_id;
5152                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5153                                                 peer_state_lock, peer_state, per_peer_state, chan);
5154                                         (htlcs_to_fail, res)
5155                                 },
5156                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5157                         }
5158                 };
5159                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5160                 res
5161         }
5162
5163         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5164                 let per_peer_state = self.per_peer_state.read().unwrap();
5165                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5166                         .ok_or_else(|| {
5167                                 debug_assert!(false);
5168                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5169                         })?;
5170                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5171                 let peer_state = &mut *peer_state_lock;
5172                 match peer_state.channel_by_id.entry(msg.channel_id) {
5173                         hash_map::Entry::Occupied(mut chan) => {
5174                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5175                         },
5176                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5177                 }
5178                 Ok(())
5179         }
5180
5181         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5182                 let per_peer_state = self.per_peer_state.read().unwrap();
5183                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5184                         .ok_or_else(|| {
5185                                 debug_assert!(false);
5186                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5187                         })?;
5188                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5189                 let peer_state = &mut *peer_state_lock;
5190                 match peer_state.channel_by_id.entry(msg.channel_id) {
5191                         hash_map::Entry::Occupied(mut chan) => {
5192                                 if !chan.get().is_usable() {
5193                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5194                                 }
5195
5196                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5197                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5198                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5199                                                 msg, &self.default_configuration
5200                                         ), chan),
5201                                         // Note that announcement_signatures fails if the channel cannot be announced,
5202                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
5203                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5204                                 });
5205                         },
5206                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5207                 }
5208                 Ok(())
5209         }
5210
5211         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5212         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5213                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5214                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5215                         None => {
5216                                 // It's not a local channel
5217                                 return Ok(NotifyOption::SkipPersist)
5218                         }
5219                 };
5220                 let per_peer_state = self.per_peer_state.read().unwrap();
5221                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5222                 if peer_state_mutex_opt.is_none() {
5223                         return Ok(NotifyOption::SkipPersist)
5224                 }
5225                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5226                 let peer_state = &mut *peer_state_lock;
5227                 match peer_state.channel_by_id.entry(chan_id) {
5228                         hash_map::Entry::Occupied(mut chan) => {
5229                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5230                                         if chan.get().should_announce() {
5231                                                 // If the announcement is about a channel of ours which is public, some
5232                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5233                                                 // a scary-looking error message and return Ok instead.
5234                                                 return Ok(NotifyOption::SkipPersist);
5235                                         }
5236                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5237                                 }
5238                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5239                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5240                                 if were_node_one == msg_from_node_one {
5241                                         return Ok(NotifyOption::SkipPersist);
5242                                 } else {
5243                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5244                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5245                                 }
5246                         },
5247                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5248                 }
5249                 Ok(NotifyOption::DoPersist)
5250         }
5251
5252         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5253                 let htlc_forwards;
5254                 let need_lnd_workaround = {
5255                         let per_peer_state = self.per_peer_state.read().unwrap();
5256
5257                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5258                                 .ok_or_else(|| {
5259                                         debug_assert!(false);
5260                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5261                                 })?;
5262                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5263                         let peer_state = &mut *peer_state_lock;
5264                         match peer_state.channel_by_id.entry(msg.channel_id) {
5265                                 hash_map::Entry::Occupied(mut chan) => {
5266                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5267                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5268                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5269                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5270                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5271                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5272                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5273                                         let mut channel_update = None;
5274                                         if let Some(msg) = responses.shutdown_msg {
5275                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5276                                                         node_id: counterparty_node_id.clone(),
5277                                                         msg,
5278                                                 });
5279                                         } else if chan.get().is_usable() {
5280                                                 // If the channel is in a usable state (ie the channel is not being shut
5281                                                 // down), send a unicast channel_update to our counterparty to make sure
5282                                                 // they have the latest channel parameters.
5283                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5284                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5285                                                                 node_id: chan.get().get_counterparty_node_id(),
5286                                                                 msg,
5287                                                         });
5288                                                 }
5289                                         }
5290                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5291                                         htlc_forwards = self.handle_channel_resumption(
5292                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5293                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5294                                         if let Some(upd) = channel_update {
5295                                                 peer_state.pending_msg_events.push(upd);
5296                                         }
5297                                         need_lnd_workaround
5298                                 },
5299                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5300                         }
5301                 };
5302
5303                 if let Some(forwards) = htlc_forwards {
5304                         self.forward_htlcs(&mut [forwards][..]);
5305                 }
5306
5307                 if let Some(channel_ready_msg) = need_lnd_workaround {
5308                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5309                 }
5310                 Ok(())
5311         }
5312
5313         /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
5314         fn process_pending_monitor_events(&self) -> bool {
5315                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5316
5317                 let mut failed_channels = Vec::new();
5318                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5319                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5320                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5321                         for monitor_event in monitor_events.drain(..) {
5322                                 match monitor_event {
5323                                         MonitorEvent::HTLCEvent(htlc_update) => {
5324                                                 if let Some(preimage) = htlc_update.payment_preimage {
5325                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5326                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5327                                                 } else {
5328                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5329                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5330                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5331                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5332                                                 }
5333                                         },
5334                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5335                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5336                                                 let counterparty_node_id_opt = match counterparty_node_id {
5337                                                         Some(cp_id) => Some(cp_id),
5338                                                         None => {
5339                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5340                                                                 // monitor event, this and the id_to_peer map should be removed.
5341                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5342                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5343                                                         }
5344                                                 };
5345                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5346                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5347                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5348                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5349                                                                 let peer_state = &mut *peer_state_lock;
5350                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5351                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5352                                                                         let mut chan = remove_channel!(self, chan_entry);
5353                                                                         failed_channels.push(chan.force_shutdown(false));
5354                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5355                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5356                                                                                         msg: update
5357                                                                                 });
5358                                                                         }
5359                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5360                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5361                                                                         } else {
5362                                                                                 ClosureReason::CommitmentTxConfirmed
5363                                                                         };
5364                                                                         self.issue_channel_close_events(&chan, reason);
5365                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5366                                                                                 node_id: chan.get_counterparty_node_id(),
5367                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5368                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5369                                                                                 },
5370                                                                         });
5371                                                                 }
5372                                                         }
5373                                                 }
5374                                         },
5375                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5376                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5377                                         },
5378                                 }
5379                         }
5380                 }
5381
5382                 for failure in failed_channels.drain(..) {
5383                         self.finish_force_close_channel(failure);
5384                 }
5385
5386                 has_pending_monitor_events
5387         }
5388
5389         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5390         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5391         /// update events as a separate process method here.
5392         #[cfg(fuzzing)]
5393         pub fn process_monitor_events(&self) {
5394                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5395                         if self.process_pending_monitor_events() {
5396                                 NotifyOption::DoPersist
5397                         } else {
5398                                 NotifyOption::SkipPersist
5399                         }
5400                 });
5401         }
5402
5403         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5404         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5405         /// update was applied.
5406         fn check_free_holding_cells(&self) -> bool {
5407                 let mut has_monitor_update = false;
5408                 let mut failed_htlcs = Vec::new();
5409                 let mut handle_errors = Vec::new();
5410
5411                 // Walk our list of channels and find any that need to update. Note that when we do find an
5412                 // update, if it includes actions that must be taken afterwards, we have to drop the
5413                 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5414                 // manage to go through all our peers without finding a single channel to update.
5415                 'peer_loop: loop {
5416                         let per_peer_state = self.per_peer_state.read().unwrap();
5417                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5418                                 'chan_loop: loop {
5419                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5420                                         let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5421                                         for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5422                                                 let counterparty_node_id = chan.get_counterparty_node_id();
5423                                                 let funding_txo = chan.get_funding_txo();
5424                                                 let (monitor_opt, holding_cell_failed_htlcs) =
5425                                                         chan.maybe_free_holding_cell_htlcs(&self.logger);
5426                                                 if !holding_cell_failed_htlcs.is_empty() {
5427                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5428                                                 }
5429                                                 if let Some(monitor_update) = monitor_opt {
5430                                                         has_monitor_update = true;
5431
5432                                                         let update_res = self.chain_monitor.update_channel(
5433                                                                 funding_txo.expect("channel is live"), monitor_update);
5434                                                         let update_id = monitor_update.update_id;
5435                                                         let channel_id: [u8; 32] = *channel_id;
5436                                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5437                                                                 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5438                                                                 peer_state.channel_by_id.remove(&channel_id));
5439                                                         if res.is_err() {
5440                                                                 handle_errors.push((counterparty_node_id, res));
5441                                                         }
5442                                                         continue 'peer_loop;
5443                                                 }
5444                                         }
5445                                         break 'chan_loop;
5446                                 }
5447                         }
5448                         break 'peer_loop;
5449                 }
5450
5451                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5452                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5453                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5454                 }
5455
5456                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5457                         let _ = handle_error!(self, err, counterparty_node_id);
5458                 }
5459
5460                 has_update
5461         }
5462
5463         /// Check whether any channels have finished removing all pending updates after a shutdown
5464         /// exchange and can now send a closing_signed.
5465         /// Returns whether any closing_signed messages were generated.
5466         fn maybe_generate_initial_closing_signed(&self) -> bool {
5467                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5468                 let mut has_update = false;
5469                 {
5470                         let per_peer_state = self.per_peer_state.read().unwrap();
5471
5472                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5473                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5474                                 let peer_state = &mut *peer_state_lock;
5475                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5476                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5477                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5478                                                 Ok((msg_opt, tx_opt)) => {
5479                                                         if let Some(msg) = msg_opt {
5480                                                                 has_update = true;
5481                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5482                                                                         node_id: chan.get_counterparty_node_id(), msg,
5483                                                                 });
5484                                                         }
5485                                                         if let Some(tx) = tx_opt {
5486                                                                 // We're done with this channel. We got a closing_signed and sent back
5487                                                                 // a closing_signed with a closing transaction to broadcast.
5488                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5489                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5490                                                                                 msg: update
5491                                                                         });
5492                                                                 }
5493
5494                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5495
5496                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5497                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5498                                                                 update_maps_on_chan_removal!(self, chan);
5499                                                                 false
5500                                                         } else { true }
5501                                                 },
5502                                                 Err(e) => {
5503                                                         has_update = true;
5504                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5505                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5506                                                         !close_channel
5507                                                 }
5508                                         }
5509                                 });
5510                         }
5511                 }
5512
5513                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5514                         let _ = handle_error!(self, err, counterparty_node_id);
5515                 }
5516
5517                 has_update
5518         }
5519
5520         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5521         /// pushing the channel monitor update (if any) to the background events queue and removing the
5522         /// Channel object.
5523         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5524                 for mut failure in failed_channels.drain(..) {
5525                         // Either a commitment transactions has been confirmed on-chain or
5526                         // Channel::block_disconnected detected that the funding transaction has been
5527                         // reorganized out of the main chain.
5528                         // We cannot broadcast our latest local state via monitor update (as
5529                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5530                         // so we track the update internally and handle it when the user next calls
5531                         // timer_tick_occurred, guaranteeing we're running normally.
5532                         if let Some((funding_txo, update)) = failure.0.take() {
5533                                 assert_eq!(update.updates.len(), 1);
5534                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5535                                         assert!(should_broadcast);
5536                                 } else { unreachable!(); }
5537                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5538                         }
5539                         self.finish_force_close_channel(failure);
5540                 }
5541         }
5542
5543         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5544                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5545
5546                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5547                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5548                 }
5549
5550                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5551
5552                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5553                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5554                 match payment_secrets.entry(payment_hash) {
5555                         hash_map::Entry::Vacant(e) => {
5556                                 e.insert(PendingInboundPayment {
5557                                         payment_secret, min_value_msat, payment_preimage,
5558                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5559                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5560                                         // it's updated when we receive a new block with the maximum time we've seen in
5561                                         // a header. It should never be more than two hours in the future.
5562                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5563                                         // never fail a payment too early.
5564                                         // Note that we assume that received blocks have reasonably up-to-date
5565                                         // timestamps.
5566                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5567                                 });
5568                         },
5569                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5570                 }
5571                 Ok(payment_secret)
5572         }
5573
5574         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5575         /// to pay us.
5576         ///
5577         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5578         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5579         ///
5580         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5581         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5582         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5583         /// passed directly to [`claim_funds`].
5584         ///
5585         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5586         ///
5587         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5588         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5589         ///
5590         /// # Note
5591         ///
5592         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5593         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5594         ///
5595         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5596         ///
5597         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5598         /// on versions of LDK prior to 0.0.114.
5599         ///
5600         /// [`claim_funds`]: Self::claim_funds
5601         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5602         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5603         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5604         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5605         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5606         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5607                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5608                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5609                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5610                         min_final_cltv_expiry_delta)
5611         }
5612
5613         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5614         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5615         ///
5616         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5617         ///
5618         /// # Note
5619         /// This method is deprecated and will be removed soon.
5620         ///
5621         /// [`create_inbound_payment`]: Self::create_inbound_payment
5622         #[deprecated]
5623         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5624                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5625                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5626                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5627                 Ok((payment_hash, payment_secret))
5628         }
5629
5630         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5631         /// stored external to LDK.
5632         ///
5633         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5634         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5635         /// the `min_value_msat` provided here, if one is provided.
5636         ///
5637         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5638         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5639         /// payments.
5640         ///
5641         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5642         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5643         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5644         /// sender "proof-of-payment" unless they have paid the required amount.
5645         ///
5646         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5647         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5648         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5649         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5650         /// invoices when no timeout is set.
5651         ///
5652         /// Note that we use block header time to time-out pending inbound payments (with some margin
5653         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5654         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5655         /// If you need exact expiry semantics, you should enforce them upon receipt of
5656         /// [`PaymentClaimable`].
5657         ///
5658         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5659         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5660         ///
5661         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5662         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5663         ///
5664         /// # Note
5665         ///
5666         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5667         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5668         ///
5669         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5670         ///
5671         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5672         /// on versions of LDK prior to 0.0.114.
5673         ///
5674         /// [`create_inbound_payment`]: Self::create_inbound_payment
5675         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5676         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5677                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5678                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5679                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5680                         min_final_cltv_expiry)
5681         }
5682
5683         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5684         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5685         ///
5686         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5687         ///
5688         /// # Note
5689         /// This method is deprecated and will be removed soon.
5690         ///
5691         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5692         #[deprecated]
5693         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5694                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5695         }
5696
5697         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5698         /// previously returned from [`create_inbound_payment`].
5699         ///
5700         /// [`create_inbound_payment`]: Self::create_inbound_payment
5701         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5702                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5703         }
5704
5705         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5706         /// are used when constructing the phantom invoice's route hints.
5707         ///
5708         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5709         pub fn get_phantom_scid(&self) -> u64 {
5710                 let best_block_height = self.best_block.read().unwrap().height();
5711                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5712                 loop {
5713                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5714                         // Ensure the generated scid doesn't conflict with a real channel.
5715                         match short_to_chan_info.get(&scid_candidate) {
5716                                 Some(_) => continue,
5717                                 None => return scid_candidate
5718                         }
5719                 }
5720         }
5721
5722         /// Gets route hints for use in receiving [phantom node payments].
5723         ///
5724         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5725         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5726                 PhantomRouteHints {
5727                         channels: self.list_usable_channels(),
5728                         phantom_scid: self.get_phantom_scid(),
5729                         real_node_pubkey: self.get_our_node_id(),
5730                 }
5731         }
5732
5733         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5734         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5735         /// [`ChannelManager::forward_intercepted_htlc`].
5736         ///
5737         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5738         /// times to get a unique scid.
5739         pub fn get_intercept_scid(&self) -> u64 {
5740                 let best_block_height = self.best_block.read().unwrap().height();
5741                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5742                 loop {
5743                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5744                         // Ensure the generated scid doesn't conflict with a real channel.
5745                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5746                         return scid_candidate
5747                 }
5748         }
5749
5750         /// Gets inflight HTLC information by processing pending outbound payments that are in
5751         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5752         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5753                 let mut inflight_htlcs = InFlightHtlcs::new();
5754
5755                 let per_peer_state = self.per_peer_state.read().unwrap();
5756                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5757                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5758                         let peer_state = &mut *peer_state_lock;
5759                         for chan in peer_state.channel_by_id.values() {
5760                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5761                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5762                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5763                                         }
5764                                 }
5765                         }
5766                 }
5767
5768                 inflight_htlcs
5769         }
5770
5771         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5772         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5773                 let events = core::cell::RefCell::new(Vec::new());
5774                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5775                 self.process_pending_events(&event_handler);
5776                 events.into_inner()
5777         }
5778
5779         #[cfg(feature = "_test_utils")]
5780         pub fn push_pending_event(&self, event: events::Event) {
5781                 let mut events = self.pending_events.lock().unwrap();
5782                 events.push(event);
5783         }
5784
5785         #[cfg(test)]
5786         pub fn pop_pending_event(&self) -> Option<events::Event> {
5787                 let mut events = self.pending_events.lock().unwrap();
5788                 if events.is_empty() { None } else { Some(events.remove(0)) }
5789         }
5790
5791         #[cfg(test)]
5792         pub fn has_pending_payments(&self) -> bool {
5793                 self.pending_outbound_payments.has_pending_payments()
5794         }
5795
5796         #[cfg(test)]
5797         pub fn clear_pending_payments(&self) {
5798                 self.pending_outbound_payments.clear_pending_payments()
5799         }
5800
5801         /// Processes any events asynchronously in the order they were generated since the last call
5802         /// using the given event handler.
5803         ///
5804         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5805         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5806                 &self, handler: H
5807         ) {
5808                 let mut ev;
5809                 process_events_body!(self, ev, { handler(ev).await });
5810         }
5811 }
5812
5813 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5814 where
5815         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5816         T::Target: BroadcasterInterface,
5817         ES::Target: EntropySource,
5818         NS::Target: NodeSigner,
5819         SP::Target: SignerProvider,
5820         F::Target: FeeEstimator,
5821         R::Target: Router,
5822         L::Target: Logger,
5823 {
5824         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5825         /// The returned array will contain `MessageSendEvent`s for different peers if
5826         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5827         /// is always placed next to each other.
5828         ///
5829         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5830         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5831         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5832         /// will randomly be placed first or last in the returned array.
5833         ///
5834         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5835         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5836         /// the `MessageSendEvent`s to the specific peer they were generated under.
5837         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5838                 let events = RefCell::new(Vec::new());
5839                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5840                         let mut result = NotifyOption::SkipPersist;
5841
5842                         // TODO: This behavior should be documented. It's unintuitive that we query
5843                         // ChannelMonitors when clearing other events.
5844                         if self.process_pending_monitor_events() {
5845                                 result = NotifyOption::DoPersist;
5846                         }
5847
5848                         if self.check_free_holding_cells() {
5849                                 result = NotifyOption::DoPersist;
5850                         }
5851                         if self.maybe_generate_initial_closing_signed() {
5852                                 result = NotifyOption::DoPersist;
5853                         }
5854
5855                         let mut pending_events = Vec::new();
5856                         let per_peer_state = self.per_peer_state.read().unwrap();
5857                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5858                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5859                                 let peer_state = &mut *peer_state_lock;
5860                                 if peer_state.pending_msg_events.len() > 0 {
5861                                         pending_events.append(&mut peer_state.pending_msg_events);
5862                                 }
5863                         }
5864
5865                         if !pending_events.is_empty() {
5866                                 events.replace(pending_events);
5867                         }
5868
5869                         result
5870                 });
5871                 events.into_inner()
5872         }
5873 }
5874
5875 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5876 where
5877         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5878         T::Target: BroadcasterInterface,
5879         ES::Target: EntropySource,
5880         NS::Target: NodeSigner,
5881         SP::Target: SignerProvider,
5882         F::Target: FeeEstimator,
5883         R::Target: Router,
5884         L::Target: Logger,
5885 {
5886         /// Processes events that must be periodically handled.
5887         ///
5888         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5889         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5890         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5891                 let mut ev;
5892                 process_events_body!(self, ev, handler.handle_event(ev));
5893         }
5894 }
5895
5896 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5897 where
5898         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5899         T::Target: BroadcasterInterface,
5900         ES::Target: EntropySource,
5901         NS::Target: NodeSigner,
5902         SP::Target: SignerProvider,
5903         F::Target: FeeEstimator,
5904         R::Target: Router,
5905         L::Target: Logger,
5906 {
5907         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5908                 {
5909                         let best_block = self.best_block.read().unwrap();
5910                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5911                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5912                         assert_eq!(best_block.height(), height - 1,
5913                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5914                 }
5915
5916                 self.transactions_confirmed(header, txdata, height);
5917                 self.best_block_updated(header, height);
5918         }
5919
5920         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5921                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5922                 let new_height = height - 1;
5923                 {
5924                         let mut best_block = self.best_block.write().unwrap();
5925                         assert_eq!(best_block.block_hash(), header.block_hash(),
5926                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5927                         assert_eq!(best_block.height(), height,
5928                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5929                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5930                 }
5931
5932                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5933         }
5934 }
5935
5936 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5937 where
5938         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5939         T::Target: BroadcasterInterface,
5940         ES::Target: EntropySource,
5941         NS::Target: NodeSigner,
5942         SP::Target: SignerProvider,
5943         F::Target: FeeEstimator,
5944         R::Target: Router,
5945         L::Target: Logger,
5946 {
5947         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5948                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5949                 // during initialization prior to the chain_monitor being fully configured in some cases.
5950                 // See the docs for `ChannelManagerReadArgs` for more.
5951
5952                 let block_hash = header.block_hash();
5953                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5954
5955                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5956                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5957                         .map(|(a, b)| (a, Vec::new(), b)));
5958
5959                 let last_best_block_height = self.best_block.read().unwrap().height();
5960                 if height < last_best_block_height {
5961                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5962                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5963                 }
5964         }
5965
5966         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5967                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5968                 // during initialization prior to the chain_monitor being fully configured in some cases.
5969                 // See the docs for `ChannelManagerReadArgs` for more.
5970
5971                 let block_hash = header.block_hash();
5972                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5973
5974                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5975
5976                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5977
5978                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5979
5980                 macro_rules! max_time {
5981                         ($timestamp: expr) => {
5982                                 loop {
5983                                         // Update $timestamp to be the max of its current value and the block
5984                                         // timestamp. This should keep us close to the current time without relying on
5985                                         // having an explicit local time source.
5986                                         // Just in case we end up in a race, we loop until we either successfully
5987                                         // update $timestamp or decide we don't need to.
5988                                         let old_serial = $timestamp.load(Ordering::Acquire);
5989                                         if old_serial >= header.time as usize { break; }
5990                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5991                                                 break;
5992                                         }
5993                                 }
5994                         }
5995                 }
5996                 max_time!(self.highest_seen_timestamp);
5997                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5998                 payment_secrets.retain(|_, inbound_payment| {
5999                         inbound_payment.expiry_time > header.time as u64
6000                 });
6001         }
6002
6003         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
6004                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
6005                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
6006                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6007                         let peer_state = &mut *peer_state_lock;
6008                         for chan in peer_state.channel_by_id.values() {
6009                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
6010                                         res.push((funding_txo.txid, Some(block_hash)));
6011                                 }
6012                         }
6013                 }
6014                 res
6015         }
6016
6017         fn transaction_unconfirmed(&self, txid: &Txid) {
6018                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6019                 self.do_chain_event(None, |channel| {
6020                         if let Some(funding_txo) = channel.get_funding_txo() {
6021                                 if funding_txo.txid == *txid {
6022                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
6023                                 } else { Ok((None, Vec::new(), None)) }
6024                         } else { Ok((None, Vec::new(), None)) }
6025                 });
6026         }
6027 }
6028
6029 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
6030 where
6031         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6032         T::Target: BroadcasterInterface,
6033         ES::Target: EntropySource,
6034         NS::Target: NodeSigner,
6035         SP::Target: SignerProvider,
6036         F::Target: FeeEstimator,
6037         R::Target: Router,
6038         L::Target: Logger,
6039 {
6040         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
6041         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
6042         /// the function.
6043         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
6044                         (&self, height_opt: Option<u32>, f: FN) {
6045                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6046                 // during initialization prior to the chain_monitor being fully configured in some cases.
6047                 // See the docs for `ChannelManagerReadArgs` for more.
6048
6049                 let mut failed_channels = Vec::new();
6050                 let mut timed_out_htlcs = Vec::new();
6051                 {
6052                         let per_peer_state = self.per_peer_state.read().unwrap();
6053                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6054                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6055                                 let peer_state = &mut *peer_state_lock;
6056                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6057                                 peer_state.channel_by_id.retain(|_, channel| {
6058                                         let res = f(channel);
6059                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
6060                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
6061                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
6062                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
6063                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
6064                                                 }
6065                                                 if let Some(channel_ready) = channel_ready_opt {
6066                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
6067                                                         if channel.is_usable() {
6068                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
6069                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
6070                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6071                                                                                 node_id: channel.get_counterparty_node_id(),
6072                                                                                 msg,
6073                                                                         });
6074                                                                 }
6075                                                         } else {
6076                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
6077                                                         }
6078                                                 }
6079
6080                                                 {
6081                                                         let mut pending_events = self.pending_events.lock().unwrap();
6082                                                         emit_channel_ready_event!(pending_events, channel);
6083                                                 }
6084
6085                                                 if let Some(announcement_sigs) = announcement_sigs {
6086                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
6087                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6088                                                                 node_id: channel.get_counterparty_node_id(),
6089                                                                 msg: announcement_sigs,
6090                                                         });
6091                                                         if let Some(height) = height_opt {
6092                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
6093                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6094                                                                                 msg: announcement,
6095                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
6096                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
6097                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
6098                                                                         });
6099                                                                 }
6100                                                         }
6101                                                 }
6102                                                 if channel.is_our_channel_ready() {
6103                                                         if let Some(real_scid) = channel.get_short_channel_id() {
6104                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
6105                                                                 // to the short_to_chan_info map here. Note that we check whether we
6106                                                                 // can relay using the real SCID at relay-time (i.e.
6107                                                                 // enforce option_scid_alias then), and if the funding tx is ever
6108                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6109                                                                 // is always consistent.
6110                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6111                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
6112                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
6113                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6114                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6115                                                         }
6116                                                 }
6117                                         } else if let Err(reason) = res {
6118                                                 update_maps_on_chan_removal!(self, channel);
6119                                                 // It looks like our counterparty went on-chain or funding transaction was
6120                                                 // reorged out of the main chain. Close the channel.
6121                                                 failed_channels.push(channel.force_shutdown(true));
6122                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6123                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6124                                                                 msg: update
6125                                                         });
6126                                                 }
6127                                                 let reason_message = format!("{}", reason);
6128                                                 self.issue_channel_close_events(channel, reason);
6129                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
6130                                                         node_id: channel.get_counterparty_node_id(),
6131                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6132                                                                 channel_id: channel.channel_id(),
6133                                                                 data: reason_message,
6134                                                         } },
6135                                                 });
6136                                                 return false;
6137                                         }
6138                                         true
6139                                 });
6140                         }
6141                 }
6142
6143                 if let Some(height) = height_opt {
6144                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
6145                                 htlcs.retain(|htlc| {
6146                                         // If height is approaching the number of blocks we think it takes us to get
6147                                         // our commitment transaction confirmed before the HTLC expires, plus the
6148                                         // number of blocks we generally consider it to take to do a commitment update,
6149                                         // just give up on it and fail the HTLC.
6150                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6151                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6152                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6153
6154                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6155                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6156                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6157                                                 false
6158                                         } else { true }
6159                                 });
6160                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6161                         });
6162
6163                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6164                         intercepted_htlcs.retain(|_, htlc| {
6165                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6166                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6167                                                 short_channel_id: htlc.prev_short_channel_id,
6168                                                 htlc_id: htlc.prev_htlc_id,
6169                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6170                                                 phantom_shared_secret: None,
6171                                                 outpoint: htlc.prev_funding_outpoint,
6172                                         });
6173
6174                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6175                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6176                                                 _ => unreachable!(),
6177                                         };
6178                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6179                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
6180                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
6181                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6182                                         false
6183                                 } else { true }
6184                         });
6185                 }
6186
6187                 self.handle_init_event_channel_failures(failed_channels);
6188
6189                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6190                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6191                 }
6192         }
6193
6194         /// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted.
6195         ///
6196         /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
6197         /// [`ChannelManager`] and should instead register actions to be taken later.
6198         ///
6199         pub fn get_persistable_update_future(&self) -> Future {
6200                 self.persistence_notifier.get_future()
6201         }
6202
6203         #[cfg(any(test, feature = "_test_utils"))]
6204         pub fn get_persistence_condvar_value(&self) -> bool {
6205                 self.persistence_notifier.notify_pending()
6206         }
6207
6208         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6209         /// [`chain::Confirm`] interfaces.
6210         pub fn current_best_block(&self) -> BestBlock {
6211                 self.best_block.read().unwrap().clone()
6212         }
6213
6214         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6215         /// [`ChannelManager`].
6216         pub fn node_features(&self) -> NodeFeatures {
6217                 provided_node_features(&self.default_configuration)
6218         }
6219
6220         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6221         /// [`ChannelManager`].
6222         ///
6223         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6224         /// or not. Thus, this method is not public.
6225         #[cfg(any(feature = "_test_utils", test))]
6226         pub fn invoice_features(&self) -> InvoiceFeatures {
6227                 provided_invoice_features(&self.default_configuration)
6228         }
6229
6230         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6231         /// [`ChannelManager`].
6232         pub fn channel_features(&self) -> ChannelFeatures {
6233                 provided_channel_features(&self.default_configuration)
6234         }
6235
6236         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6237         /// [`ChannelManager`].
6238         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6239                 provided_channel_type_features(&self.default_configuration)
6240         }
6241
6242         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6243         /// [`ChannelManager`].
6244         pub fn init_features(&self) -> InitFeatures {
6245                 provided_init_features(&self.default_configuration)
6246         }
6247 }
6248
6249 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6250         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6251 where
6252         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6253         T::Target: BroadcasterInterface,
6254         ES::Target: EntropySource,
6255         NS::Target: NodeSigner,
6256         SP::Target: SignerProvider,
6257         F::Target: FeeEstimator,
6258         R::Target: Router,
6259         L::Target: Logger,
6260 {
6261         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6262                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6263                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6264         }
6265
6266         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6267                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6268                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6269         }
6270
6271         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6272                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6273                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6274         }
6275
6276         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6277                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6278                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6279         }
6280
6281         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6282                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6283                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6284         }
6285
6286         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6287                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6288                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6289         }
6290
6291         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6292                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6293                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6294         }
6295
6296         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6297                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6298                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6299         }
6300
6301         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6302                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6303                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6304         }
6305
6306         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6307                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6308                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6309         }
6310
6311         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6312                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6313                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6314         }
6315
6316         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6317                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6318                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6319         }
6320
6321         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6322                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6323                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6324         }
6325
6326         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6327                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6328                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6329         }
6330
6331         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6332                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6333                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6334         }
6335
6336         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6337                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6338                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6339                                 persist
6340                         } else {
6341                                 NotifyOption::SkipPersist
6342                         }
6343                 });
6344         }
6345
6346         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6347                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6348                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6349         }
6350
6351         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6352                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6353                 let mut failed_channels = Vec::new();
6354                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6355                 let remove_peer = {
6356                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6357                                 log_pubkey!(counterparty_node_id));
6358                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6359                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6360                                 let peer_state = &mut *peer_state_lock;
6361                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6362                                 peer_state.channel_by_id.retain(|_, chan| {
6363                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6364                                         if chan.is_shutdown() {
6365                                                 update_maps_on_chan_removal!(self, chan);
6366                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6367                                                 return false;
6368                                         }
6369                                         true
6370                                 });
6371                                 pending_msg_events.retain(|msg| {
6372                                         match msg {
6373                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6374                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6375                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6376                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6377                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6378                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6379                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6380                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6381                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6382                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6383                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6384                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6385                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6386                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6387                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6388                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6389                                                 &events::MessageSendEvent::HandleError { .. } => false,
6390                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6391                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6392                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6393                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6394                                         }
6395                                 });
6396                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6397                                 peer_state.is_connected = false;
6398                                 peer_state.ok_to_remove(true)
6399                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6400                 };
6401                 if remove_peer {
6402                         per_peer_state.remove(counterparty_node_id);
6403                 }
6404                 mem::drop(per_peer_state);
6405
6406                 for failure in failed_channels.drain(..) {
6407                         self.finish_force_close_channel(failure);
6408                 }
6409         }
6410
6411         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6412                 if !init_msg.features.supports_static_remote_key() {
6413                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6414                         return Err(());
6415                 }
6416
6417                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6418
6419                 // If we have too many peers connected which don't have funded channels, disconnect the
6420                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6421                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6422                 // peers connect, but we'll reject new channels from them.
6423                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6424                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6425
6426                 {
6427                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6428                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6429                                 hash_map::Entry::Vacant(e) => {
6430                                         if inbound_peer_limited {
6431                                                 return Err(());
6432                                         }
6433                                         e.insert(Mutex::new(PeerState {
6434                                                 channel_by_id: HashMap::new(),
6435                                                 latest_features: init_msg.features.clone(),
6436                                                 pending_msg_events: Vec::new(),
6437                                                 monitor_update_blocked_actions: BTreeMap::new(),
6438                                                 is_connected: true,
6439                                         }));
6440                                 },
6441                                 hash_map::Entry::Occupied(e) => {
6442                                         let mut peer_state = e.get().lock().unwrap();
6443                                         peer_state.latest_features = init_msg.features.clone();
6444
6445                                         let best_block_height = self.best_block.read().unwrap().height();
6446                                         if inbound_peer_limited &&
6447                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6448                                                 peer_state.channel_by_id.len()
6449                                         {
6450                                                 return Err(());
6451                                         }
6452
6453                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6454                                         peer_state.is_connected = true;
6455                                 },
6456                         }
6457                 }
6458
6459                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6460
6461                 let per_peer_state = self.per_peer_state.read().unwrap();
6462                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6463                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6464                         let peer_state = &mut *peer_state_lock;
6465                         let pending_msg_events = &mut peer_state.pending_msg_events;
6466                         peer_state.channel_by_id.retain(|_, chan| {
6467                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6468                                         if !chan.have_received_message() {
6469                                                 // If we created this (outbound) channel while we were disconnected from the
6470                                                 // peer we probably failed to send the open_channel message, which is now
6471                                                 // lost. We can't have had anything pending related to this channel, so we just
6472                                                 // drop it.
6473                                                 false
6474                                         } else {
6475                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6476                                                         node_id: chan.get_counterparty_node_id(),
6477                                                         msg: chan.get_channel_reestablish(&self.logger),
6478                                                 });
6479                                                 true
6480                                         }
6481                                 } else { true };
6482                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6483                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6484                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6485                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6486                                                                 node_id: *counterparty_node_id,
6487                                                                 msg, update_msg,
6488                                                         });
6489                                                 }
6490                                         }
6491                                 }
6492                                 retain
6493                         });
6494                 }
6495                 //TODO: Also re-broadcast announcement_signatures
6496                 Ok(())
6497         }
6498
6499         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6500                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6501
6502                 if msg.channel_id == [0; 32] {
6503                         let channel_ids: Vec<[u8; 32]> = {
6504                                 let per_peer_state = self.per_peer_state.read().unwrap();
6505                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6506                                 if peer_state_mutex_opt.is_none() { return; }
6507                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6508                                 let peer_state = &mut *peer_state_lock;
6509                                 peer_state.channel_by_id.keys().cloned().collect()
6510                         };
6511                         for channel_id in channel_ids {
6512                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6513                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6514                         }
6515                 } else {
6516                         {
6517                                 // First check if we can advance the channel type and try again.
6518                                 let per_peer_state = self.per_peer_state.read().unwrap();
6519                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6520                                 if peer_state_mutex_opt.is_none() { return; }
6521                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6522                                 let peer_state = &mut *peer_state_lock;
6523                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6524                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6525                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6526                                                         node_id: *counterparty_node_id,
6527                                                         msg,
6528                                                 });
6529                                                 return;
6530                                         }
6531                                 }
6532                         }
6533
6534                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6535                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6536                 }
6537         }
6538
6539         fn provided_node_features(&self) -> NodeFeatures {
6540                 provided_node_features(&self.default_configuration)
6541         }
6542
6543         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6544                 provided_init_features(&self.default_configuration)
6545         }
6546 }
6547
6548 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6549 /// [`ChannelManager`].
6550 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6551         provided_init_features(config).to_context()
6552 }
6553
6554 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6555 /// [`ChannelManager`].
6556 ///
6557 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6558 /// or not. Thus, this method is not public.
6559 #[cfg(any(feature = "_test_utils", test))]
6560 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6561         provided_init_features(config).to_context()
6562 }
6563
6564 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6565 /// [`ChannelManager`].
6566 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6567         provided_init_features(config).to_context()
6568 }
6569
6570 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6571 /// [`ChannelManager`].
6572 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6573         ChannelTypeFeatures::from_init(&provided_init_features(config))
6574 }
6575
6576 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6577 /// [`ChannelManager`].
6578 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6579         // Note that if new features are added here which other peers may (eventually) require, we
6580         // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
6581         // [`ErroringMessageHandler`].
6582         let mut features = InitFeatures::empty();
6583         features.set_data_loss_protect_optional();
6584         features.set_upfront_shutdown_script_optional();
6585         features.set_variable_length_onion_required();
6586         features.set_static_remote_key_required();
6587         features.set_payment_secret_required();
6588         features.set_basic_mpp_optional();
6589         features.set_wumbo_optional();
6590         features.set_shutdown_any_segwit_optional();
6591         features.set_channel_type_optional();
6592         features.set_scid_privacy_optional();
6593         features.set_zero_conf_optional();
6594         #[cfg(anchors)]
6595         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6596                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6597                         features.set_anchors_zero_fee_htlc_tx_optional();
6598                 }
6599         }
6600         features
6601 }
6602
6603 const SERIALIZATION_VERSION: u8 = 1;
6604 const MIN_SERIALIZATION_VERSION: u8 = 1;
6605
6606 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6607         (2, fee_base_msat, required),
6608         (4, fee_proportional_millionths, required),
6609         (6, cltv_expiry_delta, required),
6610 });
6611
6612 impl_writeable_tlv_based!(ChannelCounterparty, {
6613         (2, node_id, required),
6614         (4, features, required),
6615         (6, unspendable_punishment_reserve, required),
6616         (8, forwarding_info, option),
6617         (9, outbound_htlc_minimum_msat, option),
6618         (11, outbound_htlc_maximum_msat, option),
6619 });
6620
6621 impl Writeable for ChannelDetails {
6622         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6623                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6624                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6625                 let user_channel_id_low = self.user_channel_id as u64;
6626                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6627                 write_tlv_fields!(writer, {
6628                         (1, self.inbound_scid_alias, option),
6629                         (2, self.channel_id, required),
6630                         (3, self.channel_type, option),
6631                         (4, self.counterparty, required),
6632                         (5, self.outbound_scid_alias, option),
6633                         (6, self.funding_txo, option),
6634                         (7, self.config, option),
6635                         (8, self.short_channel_id, option),
6636                         (9, self.confirmations, option),
6637                         (10, self.channel_value_satoshis, required),
6638                         (12, self.unspendable_punishment_reserve, option),
6639                         (14, user_channel_id_low, required),
6640                         (16, self.balance_msat, required),
6641                         (18, self.outbound_capacity_msat, required),
6642                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6643                         // filled in, so we can safely unwrap it here.
6644                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6645                         (20, self.inbound_capacity_msat, required),
6646                         (22, self.confirmations_required, option),
6647                         (24, self.force_close_spend_delay, option),
6648                         (26, self.is_outbound, required),
6649                         (28, self.is_channel_ready, required),
6650                         (30, self.is_usable, required),
6651                         (32, self.is_public, required),
6652                         (33, self.inbound_htlc_minimum_msat, option),
6653                         (35, self.inbound_htlc_maximum_msat, option),
6654                         (37, user_channel_id_high_opt, option),
6655                         (39, self.feerate_sat_per_1000_weight, option),
6656                 });
6657                 Ok(())
6658         }
6659 }
6660
6661 impl Readable for ChannelDetails {
6662         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6663                 _init_and_read_tlv_fields!(reader, {
6664                         (1, inbound_scid_alias, option),
6665                         (2, channel_id, required),
6666                         (3, channel_type, option),
6667                         (4, counterparty, required),
6668                         (5, outbound_scid_alias, option),
6669                         (6, funding_txo, option),
6670                         (7, config, option),
6671                         (8, short_channel_id, option),
6672                         (9, confirmations, option),
6673                         (10, channel_value_satoshis, required),
6674                         (12, unspendable_punishment_reserve, option),
6675                         (14, user_channel_id_low, required),
6676                         (16, balance_msat, required),
6677                         (18, outbound_capacity_msat, required),
6678                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6679                         // filled in, so we can safely unwrap it here.
6680                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6681                         (20, inbound_capacity_msat, required),
6682                         (22, confirmations_required, option),
6683                         (24, force_close_spend_delay, option),
6684                         (26, is_outbound, required),
6685                         (28, is_channel_ready, required),
6686                         (30, is_usable, required),
6687                         (32, is_public, required),
6688                         (33, inbound_htlc_minimum_msat, option),
6689                         (35, inbound_htlc_maximum_msat, option),
6690                         (37, user_channel_id_high_opt, option),
6691                         (39, feerate_sat_per_1000_weight, option),
6692                 });
6693
6694                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6695                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6696                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6697                 let user_channel_id = user_channel_id_low as u128 +
6698                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6699
6700                 Ok(Self {
6701                         inbound_scid_alias,
6702                         channel_id: channel_id.0.unwrap(),
6703                         channel_type,
6704                         counterparty: counterparty.0.unwrap(),
6705                         outbound_scid_alias,
6706                         funding_txo,
6707                         config,
6708                         short_channel_id,
6709                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6710                         unspendable_punishment_reserve,
6711                         user_channel_id,
6712                         balance_msat: balance_msat.0.unwrap(),
6713                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6714                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6715                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6716                         confirmations_required,
6717                         confirmations,
6718                         force_close_spend_delay,
6719                         is_outbound: is_outbound.0.unwrap(),
6720                         is_channel_ready: is_channel_ready.0.unwrap(),
6721                         is_usable: is_usable.0.unwrap(),
6722                         is_public: is_public.0.unwrap(),
6723                         inbound_htlc_minimum_msat,
6724                         inbound_htlc_maximum_msat,
6725                         feerate_sat_per_1000_weight,
6726                 })
6727         }
6728 }
6729
6730 impl_writeable_tlv_based!(PhantomRouteHints, {
6731         (2, channels, vec_type),
6732         (4, phantom_scid, required),
6733         (6, real_node_pubkey, required),
6734 });
6735
6736 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6737         (0, Forward) => {
6738                 (0, onion_packet, required),
6739                 (2, short_channel_id, required),
6740         },
6741         (1, Receive) => {
6742                 (0, payment_data, required),
6743                 (1, phantom_shared_secret, option),
6744                 (2, incoming_cltv_expiry, required),
6745         },
6746         (2, ReceiveKeysend) => {
6747                 (0, payment_preimage, required),
6748                 (2, incoming_cltv_expiry, required),
6749         },
6750 ;);
6751
6752 impl_writeable_tlv_based!(PendingHTLCInfo, {
6753         (0, routing, required),
6754         (2, incoming_shared_secret, required),
6755         (4, payment_hash, required),
6756         (6, outgoing_amt_msat, required),
6757         (8, outgoing_cltv_value, required),
6758         (9, incoming_amt_msat, option),
6759 });
6760
6761
6762 impl Writeable for HTLCFailureMsg {
6763         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6764                 match self {
6765                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6766                                 0u8.write(writer)?;
6767                                 channel_id.write(writer)?;
6768                                 htlc_id.write(writer)?;
6769                                 reason.write(writer)?;
6770                         },
6771                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6772                                 channel_id, htlc_id, sha256_of_onion, failure_code
6773                         }) => {
6774                                 1u8.write(writer)?;
6775                                 channel_id.write(writer)?;
6776                                 htlc_id.write(writer)?;
6777                                 sha256_of_onion.write(writer)?;
6778                                 failure_code.write(writer)?;
6779                         },
6780                 }
6781                 Ok(())
6782         }
6783 }
6784
6785 impl Readable for HTLCFailureMsg {
6786         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6787                 let id: u8 = Readable::read(reader)?;
6788                 match id {
6789                         0 => {
6790                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6791                                         channel_id: Readable::read(reader)?,
6792                                         htlc_id: Readable::read(reader)?,
6793                                         reason: Readable::read(reader)?,
6794                                 }))
6795                         },
6796                         1 => {
6797                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6798                                         channel_id: Readable::read(reader)?,
6799                                         htlc_id: Readable::read(reader)?,
6800                                         sha256_of_onion: Readable::read(reader)?,
6801                                         failure_code: Readable::read(reader)?,
6802                                 }))
6803                         },
6804                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6805                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6806                         // messages contained in the variants.
6807                         // In version 0.0.101, support for reading the variants with these types was added, and
6808                         // we should migrate to writing these variants when UpdateFailHTLC or
6809                         // UpdateFailMalformedHTLC get TLV fields.
6810                         2 => {
6811                                 let length: BigSize = Readable::read(reader)?;
6812                                 let mut s = FixedLengthReader::new(reader, length.0);
6813                                 let res = Readable::read(&mut s)?;
6814                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6815                                 Ok(HTLCFailureMsg::Relay(res))
6816                         },
6817                         3 => {
6818                                 let length: BigSize = Readable::read(reader)?;
6819                                 let mut s = FixedLengthReader::new(reader, length.0);
6820                                 let res = Readable::read(&mut s)?;
6821                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6822                                 Ok(HTLCFailureMsg::Malformed(res))
6823                         },
6824                         _ => Err(DecodeError::UnknownRequiredFeature),
6825                 }
6826         }
6827 }
6828
6829 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6830         (0, Forward),
6831         (1, Fail),
6832 );
6833
6834 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6835         (0, short_channel_id, required),
6836         (1, phantom_shared_secret, option),
6837         (2, outpoint, required),
6838         (4, htlc_id, required),
6839         (6, incoming_packet_shared_secret, required)
6840 });
6841
6842 impl Writeable for ClaimableHTLC {
6843         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6844                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6845                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6846                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6847                 };
6848                 write_tlv_fields!(writer, {
6849                         (0, self.prev_hop, required),
6850                         (1, self.total_msat, required),
6851                         (2, self.value, required),
6852                         (3, self.sender_intended_value, required),
6853                         (4, payment_data, option),
6854                         (5, self.total_value_received, option),
6855                         (6, self.cltv_expiry, required),
6856                         (8, keysend_preimage, option),
6857                 });
6858                 Ok(())
6859         }
6860 }
6861
6862 impl Readable for ClaimableHTLC {
6863         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6864                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6865                 let mut value = 0;
6866                 let mut sender_intended_value = None;
6867                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6868                 let mut cltv_expiry = 0;
6869                 let mut total_value_received = None;
6870                 let mut total_msat = None;
6871                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6872                 read_tlv_fields!(reader, {
6873                         (0, prev_hop, required),
6874                         (1, total_msat, option),
6875                         (2, value, required),
6876                         (3, sender_intended_value, option),
6877                         (4, payment_data, option),
6878                         (5, total_value_received, option),
6879                         (6, cltv_expiry, required),
6880                         (8, keysend_preimage, option)
6881                 });
6882                 let onion_payload = match keysend_preimage {
6883                         Some(p) => {
6884                                 if payment_data.is_some() {
6885                                         return Err(DecodeError::InvalidValue)
6886                                 }
6887                                 if total_msat.is_none() {
6888                                         total_msat = Some(value);
6889                                 }
6890                                 OnionPayload::Spontaneous(p)
6891                         },
6892                         None => {
6893                                 if total_msat.is_none() {
6894                                         if payment_data.is_none() {
6895                                                 return Err(DecodeError::InvalidValue)
6896                                         }
6897                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6898                                 }
6899                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6900                         },
6901                 };
6902                 Ok(Self {
6903                         prev_hop: prev_hop.0.unwrap(),
6904                         timer_ticks: 0,
6905                         value,
6906                         sender_intended_value: sender_intended_value.unwrap_or(value),
6907                         total_value_received,
6908                         total_msat: total_msat.unwrap(),
6909                         onion_payload,
6910                         cltv_expiry,
6911                 })
6912         }
6913 }
6914
6915 impl Readable for HTLCSource {
6916         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6917                 let id: u8 = Readable::read(reader)?;
6918                 match id {
6919                         0 => {
6920                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6921                                 let mut first_hop_htlc_msat: u64 = 0;
6922                                 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6923                                 let mut payment_id = None;
6924                                 let mut payment_params: Option<PaymentParameters> = None;
6925                                 read_tlv_fields!(reader, {
6926                                         (0, session_priv, required),
6927                                         (1, payment_id, option),
6928                                         (2, first_hop_htlc_msat, required),
6929                                         (4, path, vec_type),
6930                                         (5, payment_params, (option: ReadableArgs, 0)),
6931                                 });
6932                                 if payment_id.is_none() {
6933                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6934                                         // instead.
6935                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6936                                 }
6937                                 if path.is_none() || path.as_ref().unwrap().is_empty() {
6938                                         return Err(DecodeError::InvalidValue);
6939                                 }
6940                                 let path = path.unwrap();
6941                                 if let Some(params) = payment_params.as_mut() {
6942                                         if params.final_cltv_expiry_delta == 0 {
6943                                                 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6944                                         }
6945                                 }
6946                                 Ok(HTLCSource::OutboundRoute {
6947                                         session_priv: session_priv.0.unwrap(),
6948                                         first_hop_htlc_msat,
6949                                         path,
6950                                         payment_id: payment_id.unwrap(),
6951                                 })
6952                         }
6953                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6954                         _ => Err(DecodeError::UnknownRequiredFeature),
6955                 }
6956         }
6957 }
6958
6959 impl Writeable for HTLCSource {
6960         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6961                 match self {
6962                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
6963                                 0u8.write(writer)?;
6964                                 let payment_id_opt = Some(payment_id);
6965                                 write_tlv_fields!(writer, {
6966                                         (0, session_priv, required),
6967                                         (1, payment_id_opt, option),
6968                                         (2, first_hop_htlc_msat, required),
6969                                         // 3 was previously used to write a PaymentSecret for the payment.
6970                                         (4, *path, vec_type),
6971                                         (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
6972                                  });
6973                         }
6974                         HTLCSource::PreviousHopData(ref field) => {
6975                                 1u8.write(writer)?;
6976                                 field.write(writer)?;
6977                         }
6978                 }
6979                 Ok(())
6980         }
6981 }
6982
6983 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6984         (0, forward_info, required),
6985         (1, prev_user_channel_id, (default_value, 0)),
6986         (2, prev_short_channel_id, required),
6987         (4, prev_htlc_id, required),
6988         (6, prev_funding_outpoint, required),
6989 });
6990
6991 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6992         (1, FailHTLC) => {
6993                 (0, htlc_id, required),
6994                 (2, err_packet, required),
6995         };
6996         (0, AddHTLC)
6997 );
6998
6999 impl_writeable_tlv_based!(PendingInboundPayment, {
7000         (0, payment_secret, required),
7001         (2, expiry_time, required),
7002         (4, user_payment_id, required),
7003         (6, payment_preimage, required),
7004         (8, min_value_msat, required),
7005 });
7006
7007 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
7008 where
7009         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7010         T::Target: BroadcasterInterface,
7011         ES::Target: EntropySource,
7012         NS::Target: NodeSigner,
7013         SP::Target: SignerProvider,
7014         F::Target: FeeEstimator,
7015         R::Target: Router,
7016         L::Target: Logger,
7017 {
7018         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7019                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
7020
7021                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
7022
7023                 self.genesis_hash.write(writer)?;
7024                 {
7025                         let best_block = self.best_block.read().unwrap();
7026                         best_block.height().write(writer)?;
7027                         best_block.block_hash().write(writer)?;
7028                 }
7029
7030                 let mut serializable_peer_count: u64 = 0;
7031                 {
7032                         let per_peer_state = self.per_peer_state.read().unwrap();
7033                         let mut unfunded_channels = 0;
7034                         let mut number_of_channels = 0;
7035                         for (_, peer_state_mutex) in per_peer_state.iter() {
7036                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7037                                 let peer_state = &mut *peer_state_lock;
7038                                 if !peer_state.ok_to_remove(false) {
7039                                         serializable_peer_count += 1;
7040                                 }
7041                                 number_of_channels += peer_state.channel_by_id.len();
7042                                 for (_, channel) in peer_state.channel_by_id.iter() {
7043                                         if !channel.is_funding_initiated() {
7044                                                 unfunded_channels += 1;
7045                                         }
7046                                 }
7047                         }
7048
7049                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
7050
7051                         for (_, peer_state_mutex) in per_peer_state.iter() {
7052                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7053                                 let peer_state = &mut *peer_state_lock;
7054                                 for (_, channel) in peer_state.channel_by_id.iter() {
7055                                         if channel.is_funding_initiated() {
7056                                                 channel.write(writer)?;
7057                                         }
7058                                 }
7059                         }
7060                 }
7061
7062                 {
7063                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
7064                         (forward_htlcs.len() as u64).write(writer)?;
7065                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
7066                                 short_channel_id.write(writer)?;
7067                                 (pending_forwards.len() as u64).write(writer)?;
7068                                 for forward in pending_forwards {
7069                                         forward.write(writer)?;
7070                                 }
7071                         }
7072                 }
7073
7074                 let per_peer_state = self.per_peer_state.write().unwrap();
7075
7076                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
7077                 let claimable_payments = self.claimable_payments.lock().unwrap();
7078                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
7079
7080                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
7081                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
7082                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
7083                         payment_hash.write(writer)?;
7084                         (previous_hops.len() as u64).write(writer)?;
7085                         for htlc in previous_hops.iter() {
7086                                 htlc.write(writer)?;
7087                         }
7088                         htlc_purposes.push(purpose);
7089                 }
7090
7091                 let mut monitor_update_blocked_actions_per_peer = None;
7092                 let mut peer_states = Vec::new();
7093                 for (_, peer_state_mutex) in per_peer_state.iter() {
7094                         // Because we're holding the owning `per_peer_state` write lock here there's no chance
7095                         // of a lockorder violation deadlock - no other thread can be holding any
7096                         // per_peer_state lock at all.
7097                         peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7098                 }
7099
7100                 (serializable_peer_count).write(writer)?;
7101                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7102                         // Peers which we have no channels to should be dropped once disconnected. As we
7103                         // disconnect all peers when shutting down and serializing the ChannelManager, we
7104                         // consider all peers as disconnected here. There's therefore no need write peers with
7105                         // no channels.
7106                         if !peer_state.ok_to_remove(false) {
7107                                 peer_pubkey.write(writer)?;
7108                                 peer_state.latest_features.write(writer)?;
7109                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
7110                                         monitor_update_blocked_actions_per_peer
7111                                                 .get_or_insert_with(Vec::new)
7112                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7113                                 }
7114                         }
7115                 }
7116
7117                 let events = self.pending_events.lock().unwrap();
7118                 (events.len() as u64).write(writer)?;
7119                 for event in events.iter() {
7120                         event.write(writer)?;
7121                 }
7122
7123                 let background_events = self.pending_background_events.lock().unwrap();
7124                 (background_events.len() as u64).write(writer)?;
7125                 for event in background_events.iter() {
7126                         match event {
7127                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7128                                         0u8.write(writer)?;
7129                                         funding_txo.write(writer)?;
7130                                         monitor_update.write(writer)?;
7131                                 },
7132                         }
7133                 }
7134
7135                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7136                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7137                 // likely to be identical.
7138                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7139                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7140
7141                 (pending_inbound_payments.len() as u64).write(writer)?;
7142                 for (hash, pending_payment) in pending_inbound_payments.iter() {
7143                         hash.write(writer)?;
7144                         pending_payment.write(writer)?;
7145                 }
7146
7147                 // For backwards compat, write the session privs and their total length.
7148                 let mut num_pending_outbounds_compat: u64 = 0;
7149                 for (_, outbound) in pending_outbound_payments.iter() {
7150                         if !outbound.is_fulfilled() && !outbound.abandoned() {
7151                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7152                         }
7153                 }
7154                 num_pending_outbounds_compat.write(writer)?;
7155                 for (_, outbound) in pending_outbound_payments.iter() {
7156                         match outbound {
7157                                 PendingOutboundPayment::Legacy { session_privs } |
7158                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7159                                         for session_priv in session_privs.iter() {
7160                                                 session_priv.write(writer)?;
7161                                         }
7162                                 }
7163                                 PendingOutboundPayment::Fulfilled { .. } => {},
7164                                 PendingOutboundPayment::Abandoned { .. } => {},
7165                         }
7166                 }
7167
7168                 // Encode without retry info for 0.0.101 compatibility.
7169                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7170                 for (id, outbound) in pending_outbound_payments.iter() {
7171                         match outbound {
7172                                 PendingOutboundPayment::Legacy { session_privs } |
7173                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7174                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7175                                 },
7176                                 _ => {},
7177                         }
7178                 }
7179
7180                 let mut pending_intercepted_htlcs = None;
7181                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7182                 if our_pending_intercepts.len() != 0 {
7183                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7184                 }
7185
7186                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7187                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7188                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7189                         // map. Thus, if there are no entries we skip writing a TLV for it.
7190                         pending_claiming_payments = None;
7191                 }
7192
7193                 write_tlv_fields!(writer, {
7194                         (1, pending_outbound_payments_no_retry, required),
7195                         (2, pending_intercepted_htlcs, option),
7196                         (3, pending_outbound_payments, required),
7197                         (4, pending_claiming_payments, option),
7198                         (5, self.our_network_pubkey, required),
7199                         (6, monitor_update_blocked_actions_per_peer, option),
7200                         (7, self.fake_scid_rand_bytes, required),
7201                         (9, htlc_purposes, vec_type),
7202                         (11, self.probing_cookie_secret, required),
7203                 });
7204
7205                 Ok(())
7206         }
7207 }
7208
7209 /// Arguments for the creation of a ChannelManager that are not deserialized.
7210 ///
7211 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7212 /// is:
7213 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7214 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7215 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7216 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7217 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7218 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7219 ///    same way you would handle a [`chain::Filter`] call using
7220 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7221 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7222 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7223 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7224 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7225 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7226 ///    the next step.
7227 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7228 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7229 ///
7230 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7231 /// call any other methods on the newly-deserialized [`ChannelManager`].
7232 ///
7233 /// Note that because some channels may be closed during deserialization, it is critical that you
7234 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7235 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7236 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7237 /// not force-close the same channels but consider them live), you may end up revoking a state for
7238 /// which you've already broadcasted the transaction.
7239 ///
7240 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7241 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7242 where
7243         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7244         T::Target: BroadcasterInterface,
7245         ES::Target: EntropySource,
7246         NS::Target: NodeSigner,
7247         SP::Target: SignerProvider,
7248         F::Target: FeeEstimator,
7249         R::Target: Router,
7250         L::Target: Logger,
7251 {
7252         /// A cryptographically secure source of entropy.
7253         pub entropy_source: ES,
7254
7255         /// A signer that is able to perform node-scoped cryptographic operations.
7256         pub node_signer: NS,
7257
7258         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7259         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7260         /// signing data.
7261         pub signer_provider: SP,
7262
7263         /// The fee_estimator for use in the ChannelManager in the future.
7264         ///
7265         /// No calls to the FeeEstimator will be made during deserialization.
7266         pub fee_estimator: F,
7267         /// The chain::Watch for use in the ChannelManager in the future.
7268         ///
7269         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7270         /// you have deserialized ChannelMonitors separately and will add them to your
7271         /// chain::Watch after deserializing this ChannelManager.
7272         pub chain_monitor: M,
7273
7274         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7275         /// used to broadcast the latest local commitment transactions of channels which must be
7276         /// force-closed during deserialization.
7277         pub tx_broadcaster: T,
7278         /// The router which will be used in the ChannelManager in the future for finding routes
7279         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7280         ///
7281         /// No calls to the router will be made during deserialization.
7282         pub router: R,
7283         /// The Logger for use in the ChannelManager and which may be used to log information during
7284         /// deserialization.
7285         pub logger: L,
7286         /// Default settings used for new channels. Any existing channels will continue to use the
7287         /// runtime settings which were stored when the ChannelManager was serialized.
7288         pub default_config: UserConfig,
7289
7290         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7291         /// value.get_funding_txo() should be the key).
7292         ///
7293         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7294         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7295         /// is true for missing channels as well. If there is a monitor missing for which we find
7296         /// channel data Err(DecodeError::InvalidValue) will be returned.
7297         ///
7298         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7299         /// this struct.
7300         ///
7301         /// This is not exported to bindings users because we have no HashMap bindings
7302         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7303 }
7304
7305 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7306                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7307 where
7308         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7309         T::Target: BroadcasterInterface,
7310         ES::Target: EntropySource,
7311         NS::Target: NodeSigner,
7312         SP::Target: SignerProvider,
7313         F::Target: FeeEstimator,
7314         R::Target: Router,
7315         L::Target: Logger,
7316 {
7317         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7318         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7319         /// populate a HashMap directly from C.
7320         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7321                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7322                 Self {
7323                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7324                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7325                 }
7326         }
7327 }
7328
7329 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7330 // SipmleArcChannelManager type:
7331 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7332         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7333 where
7334         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7335         T::Target: BroadcasterInterface,
7336         ES::Target: EntropySource,
7337         NS::Target: NodeSigner,
7338         SP::Target: SignerProvider,
7339         F::Target: FeeEstimator,
7340         R::Target: Router,
7341         L::Target: Logger,
7342 {
7343         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7344                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7345                 Ok((blockhash, Arc::new(chan_manager)))
7346         }
7347 }
7348
7349 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7350         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7351 where
7352         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7353         T::Target: BroadcasterInterface,
7354         ES::Target: EntropySource,
7355         NS::Target: NodeSigner,
7356         SP::Target: SignerProvider,
7357         F::Target: FeeEstimator,
7358         R::Target: Router,
7359         L::Target: Logger,
7360 {
7361         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7362                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7363
7364                 let genesis_hash: BlockHash = Readable::read(reader)?;
7365                 let best_block_height: u32 = Readable::read(reader)?;
7366                 let best_block_hash: BlockHash = Readable::read(reader)?;
7367
7368                 let mut failed_htlcs = Vec::new();
7369
7370                 let channel_count: u64 = Readable::read(reader)?;
7371                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7372                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7373                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7374                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7375                 let mut channel_closures = Vec::new();
7376                 let mut pending_background_events = Vec::new();
7377                 for _ in 0..channel_count {
7378                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7379                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7380                         ))?;
7381                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7382                         funding_txo_set.insert(funding_txo.clone());
7383                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7384                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7385                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7386                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7387                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7388                                         // If the channel is ahead of the monitor, return InvalidValue:
7389                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7390                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7391                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7392                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7393                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7394                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7395                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7396                                         return Err(DecodeError::InvalidValue);
7397                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7398                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7399                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7400                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7401                                         // But if the channel is behind of the monitor, close the channel:
7402                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7403                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7404                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7405                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7406                                         let (monitor_update, mut new_failed_htlcs) = channel.force_shutdown(true);
7407                                         if let Some(monitor_update) = monitor_update {
7408                                                 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate(monitor_update));
7409                                         }
7410                                         failed_htlcs.append(&mut new_failed_htlcs);
7411                                         channel_closures.push(events::Event::ChannelClosed {
7412                                                 channel_id: channel.channel_id(),
7413                                                 user_channel_id: channel.get_user_id(),
7414                                                 reason: ClosureReason::OutdatedChannelManager
7415                                         });
7416                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7417                                                 let mut found_htlc = false;
7418                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7419                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7420                                                 }
7421                                                 if !found_htlc {
7422                                                         // If we have some HTLCs in the channel which are not present in the newer
7423                                                         // ChannelMonitor, they have been removed and should be failed back to
7424                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7425                                                         // were actually claimed we'd have generated and ensured the previous-hop
7426                                                         // claim update ChannelMonitor updates were persisted prior to persising
7427                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7428                                                         // backwards leg of the HTLC will simply be rejected.
7429                                                         log_info!(args.logger,
7430                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7431                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7432                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7433                                                 }
7434                                         }
7435                                 } else {
7436                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7437                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7438                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7439                                         }
7440                                         if channel.is_funding_initiated() {
7441                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7442                                         }
7443                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7444                                                 hash_map::Entry::Occupied(mut entry) => {
7445                                                         let by_id_map = entry.get_mut();
7446                                                         by_id_map.insert(channel.channel_id(), channel);
7447                                                 },
7448                                                 hash_map::Entry::Vacant(entry) => {
7449                                                         let mut by_id_map = HashMap::new();
7450                                                         by_id_map.insert(channel.channel_id(), channel);
7451                                                         entry.insert(by_id_map);
7452                                                 }
7453                                         }
7454                                 }
7455                         } else if channel.is_awaiting_initial_mon_persist() {
7456                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7457                                 // was in-progress, we never broadcasted the funding transaction and can still
7458                                 // safely discard the channel.
7459                                 let _ = channel.force_shutdown(false);
7460                                 channel_closures.push(events::Event::ChannelClosed {
7461                                         channel_id: channel.channel_id(),
7462                                         user_channel_id: channel.get_user_id(),
7463                                         reason: ClosureReason::DisconnectedPeer,
7464                                 });
7465                         } else {
7466                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7467                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7468                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7469                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7470                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7471                                 return Err(DecodeError::InvalidValue);
7472                         }
7473                 }
7474
7475                 for (funding_txo, _) in args.channel_monitors.iter() {
7476                         if !funding_txo_set.contains(funding_txo) {
7477                                 let monitor_update = ChannelMonitorUpdate {
7478                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
7479                                         updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
7480                                 };
7481                                 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((*funding_txo, monitor_update)));
7482                         }
7483                 }
7484
7485                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7486                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7487                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7488                 for _ in 0..forward_htlcs_count {
7489                         let short_channel_id = Readable::read(reader)?;
7490                         let pending_forwards_count: u64 = Readable::read(reader)?;
7491                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7492                         for _ in 0..pending_forwards_count {
7493                                 pending_forwards.push(Readable::read(reader)?);
7494                         }
7495                         forward_htlcs.insert(short_channel_id, pending_forwards);
7496                 }
7497
7498                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7499                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7500                 for _ in 0..claimable_htlcs_count {
7501                         let payment_hash = Readable::read(reader)?;
7502                         let previous_hops_len: u64 = Readable::read(reader)?;
7503                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7504                         for _ in 0..previous_hops_len {
7505                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7506                         }
7507                         claimable_htlcs_list.push((payment_hash, previous_hops));
7508                 }
7509
7510                 let peer_count: u64 = Readable::read(reader)?;
7511                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7512                 for _ in 0..peer_count {
7513                         let peer_pubkey = Readable::read(reader)?;
7514                         let peer_state = PeerState {
7515                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7516                                 latest_features: Readable::read(reader)?,
7517                                 pending_msg_events: Vec::new(),
7518                                 monitor_update_blocked_actions: BTreeMap::new(),
7519                                 is_connected: false,
7520                         };
7521                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7522                 }
7523
7524                 let event_count: u64 = Readable::read(reader)?;
7525                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7526                 for _ in 0..event_count {
7527                         match MaybeReadable::read(reader)? {
7528                                 Some(event) => pending_events_read.push(event),
7529                                 None => continue,
7530                         }
7531                 }
7532
7533                 let background_event_count: u64 = Readable::read(reader)?;
7534                 for _ in 0..background_event_count {
7535                         match <u8 as Readable>::read(reader)? {
7536                                 0 => {
7537                                         let (funding_txo, monitor_update): (OutPoint, ChannelMonitorUpdate) = (Readable::read(reader)?, Readable::read(reader)?);
7538                                         if pending_background_events.iter().find(|e| {
7539                                                 let BackgroundEvent::ClosingMonitorUpdate((pending_funding_txo, pending_monitor_update)) = e;
7540                                                 *pending_funding_txo == funding_txo && *pending_monitor_update == monitor_update
7541                                         }).is_none() {
7542                                                 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)));
7543                                         }
7544                                 }
7545                                 _ => return Err(DecodeError::InvalidValue),
7546                         }
7547                 }
7548
7549                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7550                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7551
7552                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7553                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7554                 for _ in 0..pending_inbound_payment_count {
7555                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7556                                 return Err(DecodeError::InvalidValue);
7557                         }
7558                 }
7559
7560                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7561                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7562                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7563                 for _ in 0..pending_outbound_payments_count_compat {
7564                         let session_priv = Readable::read(reader)?;
7565                         let payment = PendingOutboundPayment::Legacy {
7566                                 session_privs: [session_priv].iter().cloned().collect()
7567                         };
7568                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7569                                 return Err(DecodeError::InvalidValue)
7570                         };
7571                 }
7572
7573                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7574                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7575                 let mut pending_outbound_payments = None;
7576                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7577                 let mut received_network_pubkey: Option<PublicKey> = None;
7578                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7579                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7580                 let mut claimable_htlc_purposes = None;
7581                 let mut pending_claiming_payments = Some(HashMap::new());
7582                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7583                 read_tlv_fields!(reader, {
7584                         (1, pending_outbound_payments_no_retry, option),
7585                         (2, pending_intercepted_htlcs, option),
7586                         (3, pending_outbound_payments, option),
7587                         (4, pending_claiming_payments, option),
7588                         (5, received_network_pubkey, option),
7589                         (6, monitor_update_blocked_actions_per_peer, option),
7590                         (7, fake_scid_rand_bytes, option),
7591                         (9, claimable_htlc_purposes, vec_type),
7592                         (11, probing_cookie_secret, option),
7593                 });
7594                 if fake_scid_rand_bytes.is_none() {
7595                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7596                 }
7597
7598                 if probing_cookie_secret.is_none() {
7599                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7600                 }
7601
7602                 if !channel_closures.is_empty() {
7603                         pending_events_read.append(&mut channel_closures);
7604                 }
7605
7606                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7607                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7608                 } else if pending_outbound_payments.is_none() {
7609                         let mut outbounds = HashMap::new();
7610                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7611                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7612                         }
7613                         pending_outbound_payments = Some(outbounds);
7614                 }
7615                 let pending_outbounds = OutboundPayments {
7616                         pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7617                         retry_lock: Mutex::new(())
7618                 };
7619
7620                 {
7621                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7622                         // ChannelMonitor data for any channels for which we do not have authorative state
7623                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7624                         // corresponding `Channel` at all).
7625                         // This avoids several edge-cases where we would otherwise "forget" about pending
7626                         // payments which are still in-flight via their on-chain state.
7627                         // We only rebuild the pending payments map if we were most recently serialized by
7628                         // 0.0.102+
7629                         for (_, monitor) in args.channel_monitors.iter() {
7630                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7631                                         for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7632                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
7633                                                         if path.is_empty() {
7634                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7635                                                                 return Err(DecodeError::InvalidValue);
7636                                                         }
7637
7638                                                         let path_amt = path.last().unwrap().fee_msat;
7639                                                         let mut session_priv_bytes = [0; 32];
7640                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7641                                                         match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7642                                                                 hash_map::Entry::Occupied(mut entry) => {
7643                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7644                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7645                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7646                                                                 },
7647                                                                 hash_map::Entry::Vacant(entry) => {
7648                                                                         let path_fee = path.get_path_fees();
7649                                                                         entry.insert(PendingOutboundPayment::Retryable {
7650                                                                                 retry_strategy: None,
7651                                                                                 attempts: PaymentAttempts::new(),
7652                                                                                 payment_params: None,
7653                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7654                                                                                 payment_hash: htlc.payment_hash,
7655                                                                                 payment_secret: None, // only used for retries, and we'll never retry on startup
7656                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7657                                                                                 pending_amt_msat: path_amt,
7658                                                                                 pending_fee_msat: Some(path_fee),
7659                                                                                 total_msat: path_amt,
7660                                                                                 starting_block_height: best_block_height,
7661                                                                         });
7662                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7663                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7664                                                                 }
7665                                                         }
7666                                                 }
7667                                         }
7668                                         for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7669                                                 match htlc_source {
7670                                                         HTLCSource::PreviousHopData(prev_hop_data) => {
7671                                                                 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7672                                                                         info.prev_funding_outpoint == prev_hop_data.outpoint &&
7673                                                                                 info.prev_htlc_id == prev_hop_data.htlc_id
7674                                                                 };
7675                                                                 // The ChannelMonitor is now responsible for this HTLC's
7676                                                                 // failure/success and will let us know what its outcome is. If we
7677                                                                 // still have an entry for this HTLC in `forward_htlcs` or
7678                                                                 // `pending_intercepted_htlcs`, we were apparently not persisted after
7679                                                                 // the monitor was when forwarding the payment.
7680                                                                 forward_htlcs.retain(|_, forwards| {
7681                                                                         forwards.retain(|forward| {
7682                                                                                 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7683                                                                                         if pending_forward_matches_htlc(&htlc_info) {
7684                                                                                                 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7685                                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7686                                                                                                 false
7687                                                                                         } else { true }
7688                                                                                 } else { true }
7689                                                                         });
7690                                                                         !forwards.is_empty()
7691                                                                 });
7692                                                                 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7693                                                                         if pending_forward_matches_htlc(&htlc_info) {
7694                                                                                 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7695                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7696                                                                                 pending_events_read.retain(|event| {
7697                                                                                         if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7698                                                                                                 intercepted_id != ev_id
7699                                                                                         } else { true }
7700                                                                                 });
7701                                                                                 false
7702                                                                         } else { true }
7703                                                                 });
7704                                                         },
7705                                                         HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7706                                                                 if let Some(preimage) = preimage_opt {
7707                                                                         let pending_events = Mutex::new(pending_events_read);
7708                                                                         // Note that we set `from_onchain` to "false" here,
7709                                                                         // deliberately keeping the pending payment around forever.
7710                                                                         // Given it should only occur when we have a channel we're
7711                                                                         // force-closing for being stale that's okay.
7712                                                                         // The alternative would be to wipe the state when claiming,
7713                                                                         // generating a `PaymentPathSuccessful` event but regenerating
7714                                                                         // it and the `PaymentSent` on every restart until the
7715                                                                         // `ChannelMonitor` is removed.
7716                                                                         pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7717                                                                         pending_events_read = pending_events.into_inner().unwrap();
7718                                                                 }
7719                                                         },
7720                                                 }
7721                                         }
7722                                 }
7723                         }
7724                 }
7725
7726                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7727                         // If we have pending HTLCs to forward, assume we either dropped a
7728                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7729                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7730                         // constant as enough time has likely passed that we should simply handle the forwards
7731                         // now, or at least after the user gets a chance to reconnect to our peers.
7732                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7733                                 time_forwardable: Duration::from_secs(2),
7734                         });
7735                 }
7736
7737                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7738                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7739
7740                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7741                 if let Some(mut purposes) = claimable_htlc_purposes {
7742                         if purposes.len() != claimable_htlcs_list.len() {
7743                                 return Err(DecodeError::InvalidValue);
7744                         }
7745                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7746                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7747                         }
7748                 } else {
7749                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7750                         // include a `_legacy_hop_data` in the `OnionPayload`.
7751                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7752                                 if previous_hops.is_empty() {
7753                                         return Err(DecodeError::InvalidValue);
7754                                 }
7755                                 let purpose = match &previous_hops[0].onion_payload {
7756                                         OnionPayload::Invoice { _legacy_hop_data } => {
7757                                                 if let Some(hop_data) = _legacy_hop_data {
7758                                                         events::PaymentPurpose::InvoicePayment {
7759                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7760                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7761                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7762                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7763                                                                                 Err(()) => {
7764                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7765                                                                                         return Err(DecodeError::InvalidValue);
7766                                                                                 }
7767                                                                         }
7768                                                                 },
7769                                                                 payment_secret: hop_data.payment_secret,
7770                                                         }
7771                                                 } else { return Err(DecodeError::InvalidValue); }
7772                                         },
7773                                         OnionPayload::Spontaneous(payment_preimage) =>
7774                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7775                                 };
7776                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7777                         }
7778                 }
7779
7780                 let mut secp_ctx = Secp256k1::new();
7781                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7782
7783                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7784                         Ok(key) => key,
7785                         Err(()) => return Err(DecodeError::InvalidValue)
7786                 };
7787                 if let Some(network_pubkey) = received_network_pubkey {
7788                         if network_pubkey != our_network_pubkey {
7789                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7790                                 return Err(DecodeError::InvalidValue);
7791                         }
7792                 }
7793
7794                 let mut outbound_scid_aliases = HashSet::new();
7795                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7796                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7797                         let peer_state = &mut *peer_state_lock;
7798                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7799                                 if chan.outbound_scid_alias() == 0 {
7800                                         let mut outbound_scid_alias;
7801                                         loop {
7802                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7803                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7804                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7805                                         }
7806                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7807                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7808                                         // Note that in rare cases its possible to hit this while reading an older
7809                                         // channel if we just happened to pick a colliding outbound alias above.
7810                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7811                                         return Err(DecodeError::InvalidValue);
7812                                 }
7813                                 if chan.is_usable() {
7814                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7815                                                 // Note that in rare cases its possible to hit this while reading an older
7816                                                 // channel if we just happened to pick a colliding outbound alias above.
7817                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7818                                                 return Err(DecodeError::InvalidValue);
7819                                         }
7820                                 }
7821                         }
7822                 }
7823
7824                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7825
7826                 for (_, monitor) in args.channel_monitors.iter() {
7827                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7828                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7829                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7830                                         let mut claimable_amt_msat = 0;
7831                                         let mut receiver_node_id = Some(our_network_pubkey);
7832                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7833                                         if phantom_shared_secret.is_some() {
7834                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7835                                                         .expect("Failed to get node_id for phantom node recipient");
7836                                                 receiver_node_id = Some(phantom_pubkey)
7837                                         }
7838                                         for claimable_htlc in claimable_htlcs {
7839                                                 claimable_amt_msat += claimable_htlc.value;
7840
7841                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7842                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7843                                                 // new commitment transaction we can just provide the payment preimage to
7844                                                 // the corresponding ChannelMonitor and nothing else.
7845                                                 //
7846                                                 // We do so directly instead of via the normal ChannelMonitor update
7847                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7848                                                 // we're not allowed to call it directly yet. Further, we do the update
7849                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7850                                                 // reason to.
7851                                                 // If we were to generate a new ChannelMonitor update ID here and then
7852                                                 // crash before the user finishes block connect we'd end up force-closing
7853                                                 // this channel as well. On the flip side, there's no harm in restarting
7854                                                 // without the new monitor persisted - we'll end up right back here on
7855                                                 // restart.
7856                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7857                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7858                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7859                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7860                                                         let peer_state = &mut *peer_state_lock;
7861                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7862                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7863                                                         }
7864                                                 }
7865                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7866                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7867                                                 }
7868                                         }
7869                                         pending_events_read.push(events::Event::PaymentClaimed {
7870                                                 receiver_node_id,
7871                                                 payment_hash,
7872                                                 purpose: payment_purpose,
7873                                                 amount_msat: claimable_amt_msat,
7874                                         });
7875                                 }
7876                         }
7877                 }
7878
7879                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7880                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7881                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7882                         } else {
7883                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7884                                 return Err(DecodeError::InvalidValue);
7885                         }
7886                 }
7887
7888                 let channel_manager = ChannelManager {
7889                         genesis_hash,
7890                         fee_estimator: bounded_fee_estimator,
7891                         chain_monitor: args.chain_monitor,
7892                         tx_broadcaster: args.tx_broadcaster,
7893                         router: args.router,
7894
7895                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7896
7897                         inbound_payment_key: expanded_inbound_key,
7898                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7899                         pending_outbound_payments: pending_outbounds,
7900                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7901
7902                         forward_htlcs: Mutex::new(forward_htlcs),
7903                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7904                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7905                         id_to_peer: Mutex::new(id_to_peer),
7906                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7907                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7908
7909                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7910
7911                         our_network_pubkey,
7912                         secp_ctx,
7913
7914                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7915
7916                         per_peer_state: FairRwLock::new(per_peer_state),
7917
7918                         pending_events: Mutex::new(pending_events_read),
7919                         pending_background_events: Mutex::new(pending_background_events),
7920                         total_consistency_lock: RwLock::new(()),
7921                         persistence_notifier: Notifier::new(),
7922
7923                         entropy_source: args.entropy_source,
7924                         node_signer: args.node_signer,
7925                         signer_provider: args.signer_provider,
7926
7927                         logger: args.logger,
7928                         default_configuration: args.default_config,
7929                 };
7930
7931                 for htlc_source in failed_htlcs.drain(..) {
7932                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7933                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7934                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7935                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7936                 }
7937
7938                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7939                 //connection or two.
7940
7941                 Ok((best_block_hash.clone(), channel_manager))
7942         }
7943 }
7944
7945 #[cfg(test)]
7946 mod tests {
7947         use bitcoin::hashes::Hash;
7948         use bitcoin::hashes::sha256::Hash as Sha256;
7949         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7950         #[cfg(feature = "std")]
7951         use core::time::Duration;
7952         use core::sync::atomic::Ordering;
7953         use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7954         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7955         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
7956         use crate::ln::functional_test_utils::*;
7957         use crate::ln::msgs;
7958         use crate::ln::msgs::ChannelMessageHandler;
7959         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7960         use crate::util::errors::APIError;
7961         use crate::util::test_utils;
7962         use crate::util::config::ChannelConfig;
7963         use crate::chain::keysinterface::EntropySource;
7964
7965         #[test]
7966         fn test_notify_limits() {
7967                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7968                 // indeed, do not cause the persistence of a new ChannelManager.
7969                 let chanmon_cfgs = create_chanmon_cfgs(3);
7970                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7971                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7972                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7973
7974                 // All nodes start with a persistable update pending as `create_network` connects each node
7975                 // with all other nodes to make most tests simpler.
7976                 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
7977                 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
7978                 assert!(nodes[2].node.get_persistable_update_future().poll_is_complete());
7979
7980                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7981
7982                 // We check that the channel info nodes have doesn't change too early, even though we try
7983                 // to connect messages with new values
7984                 chan.0.contents.fee_base_msat *= 2;
7985                 chan.1.contents.fee_base_msat *= 2;
7986                 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
7987                         &nodes[1].node.get_our_node_id()).pop().unwrap();
7988                 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
7989                         &nodes[0].node.get_our_node_id()).pop().unwrap();
7990
7991                 // The first two nodes (which opened a channel) should now require fresh persistence
7992                 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
7993                 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
7994                 // ... but the last node should not.
7995                 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
7996                 // After persisting the first two nodes they should no longer need fresh persistence.
7997                 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
7998                 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
7999
8000                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
8001                 // about the channel.
8002                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
8003                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
8004                 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8005
8006                 // The nodes which are a party to the channel should also ignore messages from unrelated
8007                 // parties.
8008                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8009                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8010                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8011                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8012                 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8013                 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8014
8015                 // At this point the channel info given by peers should still be the same.
8016                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8017                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8018
8019                 // An earlier version of handle_channel_update didn't check the directionality of the
8020                 // update message and would always update the local fee info, even if our peer was
8021                 // (spuriously) forwarding us our own channel_update.
8022                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
8023                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
8024                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
8025
8026                 // First deliver each peers' own message, checking that the node doesn't need to be
8027                 // persisted and that its channel info remains the same.
8028                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
8029                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
8030                 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8031                 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8032                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8033                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8034
8035                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
8036                 // the channel info has updated.
8037                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
8038                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
8039                 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8040                 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8041                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
8042                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
8043         }
8044
8045         #[test]
8046         fn test_keysend_dup_hash_partial_mpp() {
8047                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
8048                 // expected.
8049                 let chanmon_cfgs = create_chanmon_cfgs(2);
8050                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8051                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8052                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8053                 create_announced_chan_between_nodes(&nodes, 0, 1);
8054
8055                 // First, send a partial MPP payment.
8056                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
8057                 let mut mpp_route = route.clone();
8058                 mpp_route.paths.push(mpp_route.paths[0].clone());
8059
8060                 let payment_id = PaymentId([42; 32]);
8061                 // Use the utility function send_payment_along_path to send the payment with MPP data which
8062                 // indicates there are more HTLCs coming.
8063                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
8064                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
8065                         RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
8066                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
8067                         RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
8068                 check_added_monitors!(nodes[0], 1);
8069                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8070                 assert_eq!(events.len(), 1);
8071                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
8072
8073                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
8074                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8075                         RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8076                 check_added_monitors!(nodes[0], 1);
8077                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8078                 assert_eq!(events.len(), 1);
8079                 let ev = events.drain(..).next().unwrap();
8080                 let payment_event = SendEvent::from_event(ev);
8081                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8082                 check_added_monitors!(nodes[1], 0);
8083                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8084                 expect_pending_htlcs_forwardable!(nodes[1]);
8085                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
8086                 check_added_monitors!(nodes[1], 1);
8087                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8088                 assert!(updates.update_add_htlcs.is_empty());
8089                 assert!(updates.update_fulfill_htlcs.is_empty());
8090                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8091                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8092                 assert!(updates.update_fee.is_none());
8093                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8094                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8095                 expect_payment_failed!(nodes[0], our_payment_hash, true);
8096
8097                 // Send the second half of the original MPP payment.
8098                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
8099                         RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
8100                 check_added_monitors!(nodes[0], 1);
8101                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8102                 assert_eq!(events.len(), 1);
8103                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
8104
8105                 // Claim the full MPP payment. Note that we can't use a test utility like
8106                 // claim_funds_along_route because the ordering of the messages causes the second half of the
8107                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
8108                 // lightning messages manually.
8109                 nodes[1].node.claim_funds(payment_preimage);
8110                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
8111                 check_added_monitors!(nodes[1], 2);
8112
8113                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8114                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
8115                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
8116                 check_added_monitors!(nodes[0], 1);
8117                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8118                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
8119                 check_added_monitors!(nodes[1], 1);
8120                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8121                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
8122                 check_added_monitors!(nodes[1], 1);
8123                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8124                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
8125                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
8126                 check_added_monitors!(nodes[0], 1);
8127                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
8128                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
8129                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8130                 check_added_monitors!(nodes[0], 1);
8131                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8132                 check_added_monitors!(nodes[1], 1);
8133                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8134                 check_added_monitors!(nodes[1], 1);
8135                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8136                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8137                 check_added_monitors!(nodes[0], 1);
8138
8139                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8140                 // path's success and a PaymentPathSuccessful event for each path's success.
8141                 let events = nodes[0].node.get_and_clear_pending_events();
8142                 assert_eq!(events.len(), 3);
8143                 match events[0] {
8144                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8145                                 assert_eq!(Some(payment_id), *id);
8146                                 assert_eq!(payment_preimage, *preimage);
8147                                 assert_eq!(our_payment_hash, *hash);
8148                         },
8149                         _ => panic!("Unexpected event"),
8150                 }
8151                 match events[1] {
8152                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8153                                 assert_eq!(payment_id, *actual_payment_id);
8154                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8155                                 assert_eq!(route.paths[0], *path);
8156                         },
8157                         _ => panic!("Unexpected event"),
8158                 }
8159                 match events[2] {
8160                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8161                                 assert_eq!(payment_id, *actual_payment_id);
8162                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8163                                 assert_eq!(route.paths[0], *path);
8164                         },
8165                         _ => panic!("Unexpected event"),
8166                 }
8167         }
8168
8169         #[test]
8170         fn test_keysend_dup_payment_hash() {
8171                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8172                 //      outbound regular payment fails as expected.
8173                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8174                 //      fails as expected.
8175                 let chanmon_cfgs = create_chanmon_cfgs(2);
8176                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8177                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8178                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8179                 create_announced_chan_between_nodes(&nodes, 0, 1);
8180                 let scorer = test_utils::TestScorer::new();
8181                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8182
8183                 // To start (1), send a regular payment but don't claim it.
8184                 let expected_route = [&nodes[1]];
8185                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8186
8187                 // Next, attempt a keysend payment and make sure it fails.
8188                 let route_params = RouteParameters {
8189                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8190                         final_value_msat: 100_000,
8191                 };
8192                 let route = find_route(
8193                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8194                         None, nodes[0].logger, &scorer, &random_seed_bytes
8195                 ).unwrap();
8196                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8197                         RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8198                 check_added_monitors!(nodes[0], 1);
8199                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8200                 assert_eq!(events.len(), 1);
8201                 let ev = events.drain(..).next().unwrap();
8202                 let payment_event = SendEvent::from_event(ev);
8203                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8204                 check_added_monitors!(nodes[1], 0);
8205                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8206                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8207                 // fails), the second will process the resulting failure and fail the HTLC backward
8208                 expect_pending_htlcs_forwardable!(nodes[1]);
8209                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8210                 check_added_monitors!(nodes[1], 1);
8211                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8212                 assert!(updates.update_add_htlcs.is_empty());
8213                 assert!(updates.update_fulfill_htlcs.is_empty());
8214                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8215                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8216                 assert!(updates.update_fee.is_none());
8217                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8218                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8219                 expect_payment_failed!(nodes[0], payment_hash, true);
8220
8221                 // Finally, claim the original payment.
8222                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8223
8224                 // To start (2), send a keysend payment but don't claim it.
8225                 let payment_preimage = PaymentPreimage([42; 32]);
8226                 let route = find_route(
8227                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8228                         None, nodes[0].logger, &scorer, &random_seed_bytes
8229                 ).unwrap();
8230                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8231                         RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8232                 check_added_monitors!(nodes[0], 1);
8233                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8234                 assert_eq!(events.len(), 1);
8235                 let event = events.pop().unwrap();
8236                 let path = vec![&nodes[1]];
8237                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8238
8239                 // Next, attempt a regular payment and make sure it fails.
8240                 let payment_secret = PaymentSecret([43; 32]);
8241                 nodes[0].node.send_payment_with_route(&route, payment_hash,
8242                         RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
8243                 check_added_monitors!(nodes[0], 1);
8244                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8245                 assert_eq!(events.len(), 1);
8246                 let ev = events.drain(..).next().unwrap();
8247                 let payment_event = SendEvent::from_event(ev);
8248                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8249                 check_added_monitors!(nodes[1], 0);
8250                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8251                 expect_pending_htlcs_forwardable!(nodes[1]);
8252                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8253                 check_added_monitors!(nodes[1], 1);
8254                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8255                 assert!(updates.update_add_htlcs.is_empty());
8256                 assert!(updates.update_fulfill_htlcs.is_empty());
8257                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8258                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8259                 assert!(updates.update_fee.is_none());
8260                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8261                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8262                 expect_payment_failed!(nodes[0], payment_hash, true);
8263
8264                 // Finally, succeed the keysend payment.
8265                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8266         }
8267
8268         #[test]
8269         fn test_keysend_hash_mismatch() {
8270                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8271                 // preimage doesn't match the msg's payment hash.
8272                 let chanmon_cfgs = create_chanmon_cfgs(2);
8273                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8274                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8275                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8276
8277                 let payer_pubkey = nodes[0].node.get_our_node_id();
8278                 let payee_pubkey = nodes[1].node.get_our_node_id();
8279
8280                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8281                 let route_params = RouteParameters {
8282                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8283                         final_value_msat: 10_000,
8284                 };
8285                 let network_graph = nodes[0].network_graph.clone();
8286                 let first_hops = nodes[0].node.list_usable_channels();
8287                 let scorer = test_utils::TestScorer::new();
8288                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8289                 let route = find_route(
8290                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8291                         nodes[0].logger, &scorer, &random_seed_bytes
8292                 ).unwrap();
8293
8294                 let test_preimage = PaymentPreimage([42; 32]);
8295                 let mismatch_payment_hash = PaymentHash([43; 32]);
8296                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
8297                         RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
8298                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
8299                         RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8300                 check_added_monitors!(nodes[0], 1);
8301
8302                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8303                 assert_eq!(updates.update_add_htlcs.len(), 1);
8304                 assert!(updates.update_fulfill_htlcs.is_empty());
8305                 assert!(updates.update_fail_htlcs.is_empty());
8306                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8307                 assert!(updates.update_fee.is_none());
8308                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8309
8310                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
8311         }
8312
8313         #[test]
8314         fn test_keysend_msg_with_secret_err() {
8315                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8316                 let chanmon_cfgs = create_chanmon_cfgs(2);
8317                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8318                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8319                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8320
8321                 let payer_pubkey = nodes[0].node.get_our_node_id();
8322                 let payee_pubkey = nodes[1].node.get_our_node_id();
8323
8324                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8325                 let route_params = RouteParameters {
8326                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8327                         final_value_msat: 10_000,
8328                 };
8329                 let network_graph = nodes[0].network_graph.clone();
8330                 let first_hops = nodes[0].node.list_usable_channels();
8331                 let scorer = test_utils::TestScorer::new();
8332                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8333                 let route = find_route(
8334                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8335                         nodes[0].logger, &scorer, &random_seed_bytes
8336                 ).unwrap();
8337
8338                 let test_preimage = PaymentPreimage([42; 32]);
8339                 let test_secret = PaymentSecret([43; 32]);
8340                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8341                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
8342                         RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8343                 nodes[0].node.test_send_payment_internal(&route, payment_hash,
8344                         RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
8345                         PaymentId(payment_hash.0), None, session_privs).unwrap();
8346                 check_added_monitors!(nodes[0], 1);
8347
8348                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8349                 assert_eq!(updates.update_add_htlcs.len(), 1);
8350                 assert!(updates.update_fulfill_htlcs.is_empty());
8351                 assert!(updates.update_fail_htlcs.is_empty());
8352                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8353                 assert!(updates.update_fee.is_none());
8354                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8355
8356                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
8357         }
8358
8359         #[test]
8360         fn test_multi_hop_missing_secret() {
8361                 let chanmon_cfgs = create_chanmon_cfgs(4);
8362                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8363                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8364                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8365
8366                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8367                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8368                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8369                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8370
8371                 // Marshall an MPP route.
8372                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8373                 let path = route.paths[0].clone();
8374                 route.paths.push(path);
8375                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8376                 route.paths[0][0].short_channel_id = chan_1_id;
8377                 route.paths[0][1].short_channel_id = chan_3_id;
8378                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8379                 route.paths[1][0].short_channel_id = chan_2_id;
8380                 route.paths[1][1].short_channel_id = chan_4_id;
8381
8382                 match nodes[0].node.send_payment_with_route(&route, payment_hash,
8383                         RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
8384                 .unwrap_err() {
8385                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8386                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
8387                         },
8388                         _ => panic!("unexpected error")
8389                 }
8390         }
8391
8392         #[test]
8393         fn test_drop_disconnected_peers_when_removing_channels() {
8394                 let chanmon_cfgs = create_chanmon_cfgs(2);
8395                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8396                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8397                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8398
8399                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8400
8401                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8402                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8403
8404                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8405                 check_closed_broadcast!(nodes[0], true);
8406                 check_added_monitors!(nodes[0], 1);
8407                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8408
8409                 {
8410                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8411                         // disconnected and the channel between has been force closed.
8412                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8413                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8414                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8415                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8416                 }
8417
8418                 nodes[0].node.timer_tick_occurred();
8419
8420                 {
8421                         // Assert that nodes[1] has now been removed.
8422                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8423                 }
8424         }
8425
8426         #[test]
8427         fn bad_inbound_payment_hash() {
8428                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8429                 let chanmon_cfgs = create_chanmon_cfgs(2);
8430                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8431                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8432                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8433
8434                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8435                 let payment_data = msgs::FinalOnionHopData {
8436                         payment_secret,
8437                         total_msat: 100_000,
8438                 };
8439
8440                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8441                 // payment verification fails as expected.
8442                 let mut bad_payment_hash = payment_hash.clone();
8443                 bad_payment_hash.0[0] += 1;
8444                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8445                         Ok(_) => panic!("Unexpected ok"),
8446                         Err(()) => {
8447                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
8448                         }
8449                 }
8450
8451                 // Check that using the original payment hash succeeds.
8452                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8453         }
8454
8455         #[test]
8456         fn test_id_to_peer_coverage() {
8457                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8458                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8459                 // the channel is successfully closed.
8460                 let chanmon_cfgs = create_chanmon_cfgs(2);
8461                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8462                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8463                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8464
8465                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8466                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8467                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8468                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8469                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8470
8471                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8472                 let channel_id = &tx.txid().into_inner();
8473                 {
8474                         // Ensure that the `id_to_peer` map is empty until either party has received the
8475                         // funding transaction, and have the real `channel_id`.
8476                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8477                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8478                 }
8479
8480                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8481                 {
8482                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8483                         // as it has the funding transaction.
8484                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8485                         assert_eq!(nodes_0_lock.len(), 1);
8486                         assert!(nodes_0_lock.contains_key(channel_id));
8487                 }
8488
8489                 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8490
8491                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8492
8493                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8494                 {
8495                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8496                         assert_eq!(nodes_0_lock.len(), 1);
8497                         assert!(nodes_0_lock.contains_key(channel_id));
8498                 }
8499                 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8500
8501                 {
8502                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8503                         // as it has the funding transaction.
8504                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8505                         assert_eq!(nodes_1_lock.len(), 1);
8506                         assert!(nodes_1_lock.contains_key(channel_id));
8507                 }
8508                 check_added_monitors!(nodes[1], 1);
8509                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8510                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8511                 check_added_monitors!(nodes[0], 1);
8512                 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8513                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8514                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8515                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8516
8517                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8518                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8519                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8520                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8521
8522                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8523                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8524                 {
8525                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8526                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8527                         // fee for the closing transaction has been negotiated and the parties has the other
8528                         // party's signature for the fee negotiated closing transaction.)
8529                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8530                         assert_eq!(nodes_0_lock.len(), 1);
8531                         assert!(nodes_0_lock.contains_key(channel_id));
8532                 }
8533
8534                 {
8535                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8536                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8537                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8538                         // kept in the `nodes[1]`'s `id_to_peer` map.
8539                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8540                         assert_eq!(nodes_1_lock.len(), 1);
8541                         assert!(nodes_1_lock.contains_key(channel_id));
8542                 }
8543
8544                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8545                 {
8546                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8547                         // therefore has all it needs to fully close the channel (both signatures for the
8548                         // closing transaction).
8549                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8550                         // fully closed by `nodes[0]`.
8551                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8552
8553                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8554                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8555                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8556                         assert_eq!(nodes_1_lock.len(), 1);
8557                         assert!(nodes_1_lock.contains_key(channel_id));
8558                 }
8559
8560                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8561
8562                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8563                 {
8564                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8565                         // they both have everything required to fully close the channel.
8566                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8567                 }
8568                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8569
8570                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8571                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8572         }
8573
8574         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8575                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8576                 check_api_error_message(expected_message, res_err)
8577         }
8578
8579         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8580                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8581                 check_api_error_message(expected_message, res_err)
8582         }
8583
8584         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8585                 match res_err {
8586                         Err(APIError::APIMisuseError { err }) => {
8587                                 assert_eq!(err, expected_err_message);
8588                         },
8589                         Err(APIError::ChannelUnavailable { err }) => {
8590                                 assert_eq!(err, expected_err_message);
8591                         },
8592                         Ok(_) => panic!("Unexpected Ok"),
8593                         Err(_) => panic!("Unexpected Error"),
8594                 }
8595         }
8596
8597         #[test]
8598         fn test_api_calls_with_unkown_counterparty_node() {
8599                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8600                 // expected if the `counterparty_node_id` is an unkown peer in the
8601                 // `ChannelManager::per_peer_state` map.
8602                 let chanmon_cfg = create_chanmon_cfgs(2);
8603                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8604                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8605                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8606
8607                 // Dummy values
8608                 let channel_id = [4; 32];
8609                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8610                 let intercept_id = InterceptId([0; 32]);
8611
8612                 // Test the API functions.
8613                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8614
8615                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8616
8617                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8618
8619                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8620
8621                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8622
8623                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8624
8625                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8626         }
8627
8628         #[test]
8629         fn test_connection_limiting() {
8630                 // Test that we limit un-channel'd peers and un-funded channels properly.
8631                 let chanmon_cfgs = create_chanmon_cfgs(2);
8632                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8633                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8634                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8635
8636                 // Note that create_network connects the nodes together for us
8637
8638                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8639                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8640
8641                 let mut funding_tx = None;
8642                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8643                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8644                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8645
8646                         if idx == 0 {
8647                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8648                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8649                                 funding_tx = Some(tx.clone());
8650                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8651                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8652
8653                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8654                                 check_added_monitors!(nodes[1], 1);
8655                                 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8656
8657                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8658
8659                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8660                                 check_added_monitors!(nodes[0], 1);
8661                                 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8662                         }
8663                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8664                 }
8665
8666                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8667                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8668                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8669                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8670                         open_channel_msg.temporary_channel_id);
8671
8672                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8673                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8674                 // limit.
8675                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8676                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8677                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8678                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8679                         peer_pks.push(random_pk);
8680                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8681                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8682                 }
8683                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8684                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8685                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8686                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8687
8688                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8689                 // them if we have too many un-channel'd peers.
8690                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8691                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8692                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8693                 for ev in chan_closed_events {
8694                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8695                 }
8696                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8697                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8698                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8699                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8700
8701                 // but of course if the connection is outbound its allowed...
8702                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8703                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8704                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8705
8706                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8707                 // Even though we accept one more connection from new peers, we won't actually let them
8708                 // open channels.
8709                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8710                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8711                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8712                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8713                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8714                 }
8715                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8716                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8717                         open_channel_msg.temporary_channel_id);
8718
8719                 // Of course, however, outbound channels are always allowed
8720                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8721                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8722
8723                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8724                 // "protected" and can connect again.
8725                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8726                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8727                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8728                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8729
8730                 // Further, because the first channel was funded, we can open another channel with
8731                 // last_random_pk.
8732                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8733                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8734         }
8735
8736         #[test]
8737         fn test_outbound_chans_unlimited() {
8738                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8739                 let chanmon_cfgs = create_chanmon_cfgs(2);
8740                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8741                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8742                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8743
8744                 // Note that create_network connects the nodes together for us
8745
8746                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8747                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8748
8749                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8750                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8751                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8752                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8753                 }
8754
8755                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8756                 // rejected.
8757                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8758                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8759                         open_channel_msg.temporary_channel_id);
8760
8761                 // but we can still open an outbound channel.
8762                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8763                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8764
8765                 // but even with such an outbound channel, additional inbound channels will still fail.
8766                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8767                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8768                         open_channel_msg.temporary_channel_id);
8769         }
8770
8771         #[test]
8772         fn test_0conf_limiting() {
8773                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8774                 // flag set and (sometimes) accept channels as 0conf.
8775                 let chanmon_cfgs = create_chanmon_cfgs(2);
8776                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8777                 let mut settings = test_default_channel_config();
8778                 settings.manually_accept_inbound_channels = true;
8779                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8780                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8781
8782                 // Note that create_network connects the nodes together for us
8783
8784                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8785                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8786
8787                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8788                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8789                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8790                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8791                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8792                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8793
8794                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8795                         let events = nodes[1].node.get_and_clear_pending_events();
8796                         match events[0] {
8797                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8798                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8799                                 }
8800                                 _ => panic!("Unexpected event"),
8801                         }
8802                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8803                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8804                 }
8805
8806                 // If we try to accept a channel from another peer non-0conf it will fail.
8807                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8808                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8809                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8810                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8811                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8812                 let events = nodes[1].node.get_and_clear_pending_events();
8813                 match events[0] {
8814                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8815                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8816                                         Err(APIError::APIMisuseError { err }) =>
8817                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8818                                         _ => panic!(),
8819                                 }
8820                         }
8821                         _ => panic!("Unexpected event"),
8822                 }
8823                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8824                         open_channel_msg.temporary_channel_id);
8825
8826                 // ...however if we accept the same channel 0conf it should work just fine.
8827                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8828                 let events = nodes[1].node.get_and_clear_pending_events();
8829                 match events[0] {
8830                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8831                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8832                         }
8833                         _ => panic!("Unexpected event"),
8834                 }
8835                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8836         }
8837
8838         #[cfg(anchors)]
8839         #[test]
8840         fn test_anchors_zero_fee_htlc_tx_fallback() {
8841                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8842                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8843                 // the channel without the anchors feature.
8844                 let chanmon_cfgs = create_chanmon_cfgs(2);
8845                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8846                 let mut anchors_config = test_default_channel_config();
8847                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8848                 anchors_config.manually_accept_inbound_channels = true;
8849                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8850                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8851
8852                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8853                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8854                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8855
8856                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8857                 let events = nodes[1].node.get_and_clear_pending_events();
8858                 match events[0] {
8859                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8860                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8861                         }
8862                         _ => panic!("Unexpected event"),
8863                 }
8864
8865                 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
8866                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8867
8868                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8869                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8870
8871                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8872         }
8873 }
8874
8875 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8876 pub mod bench {
8877         use crate::chain::Listen;
8878         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8879         use crate::chain::keysinterface::{KeysManager, InMemorySigner};
8880         use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8881         use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
8882         use crate::ln::functional_test_utils::*;
8883         use crate::ln::msgs::{ChannelMessageHandler, Init};
8884         use crate::routing::gossip::NetworkGraph;
8885         use crate::routing::router::{PaymentParameters, RouteParameters};
8886         use crate::util::test_utils;
8887         use crate::util::config::UserConfig;
8888
8889         use bitcoin::hashes::Hash;
8890         use bitcoin::hashes::sha256::Hash as Sha256;
8891         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8892
8893         use crate::sync::{Arc, Mutex};
8894
8895         use test::Bencher;
8896
8897         type Manager<'a, P> = ChannelManager<
8898                 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8899                         &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8900                         &'a test_utils::TestLogger, &'a P>,
8901                 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8902                 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8903                 &'a test_utils::TestLogger>;
8904
8905         struct ANodeHolder<'a, P: Persist<InMemorySigner>> {
8906                 node: &'a Manager<'a, P>,
8907         }
8908         impl<'a, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'a, P> {
8909                 type CM = Manager<'a, P>;
8910                 #[inline]
8911                 fn node(&self) -> &Manager<'a, P> { self.node }
8912                 #[inline]
8913                 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
8914         }
8915
8916         #[cfg(test)]
8917         #[bench]
8918         fn bench_sends(bench: &mut Bencher) {
8919                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8920         }
8921
8922         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8923                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8924                 // Note that this is unrealistic as each payment send will require at least two fsync
8925                 // calls per node.
8926                 let network = bitcoin::Network::Testnet;
8927
8928                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8929                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8930                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8931                 let scorer = Mutex::new(test_utils::TestScorer::new());
8932                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8933
8934                 let mut config: UserConfig = Default::default();
8935                 config.channel_handshake_config.minimum_depth = 1;
8936
8937                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8938                 let seed_a = [1u8; 32];
8939                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8940                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8941                         network,
8942                         best_block: BestBlock::from_network(network),
8943                 });
8944                 let node_a_holder = ANodeHolder { node: &node_a };
8945
8946                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8947                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8948                 let seed_b = [2u8; 32];
8949                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8950                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8951                         network,
8952                         best_block: BestBlock::from_network(network),
8953                 });
8954                 let node_b_holder = ANodeHolder { node: &node_b };
8955
8956                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8957                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8958                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8959                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8960                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8961
8962                 let tx;
8963                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8964                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8965                                 value: 8_000_000, script_pubkey: output_script,
8966                         }]};
8967                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8968                 } else { panic!(); }
8969
8970                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8971                 let events_b = node_b.get_and_clear_pending_events();
8972                 assert_eq!(events_b.len(), 1);
8973                 match events_b[0] {
8974                         Event::ChannelPending{ ref counterparty_node_id, .. } => {
8975                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8976                         },
8977                         _ => panic!("Unexpected event"),
8978                 }
8979
8980                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8981                 let events_a = node_a.get_and_clear_pending_events();
8982                 assert_eq!(events_a.len(), 1);
8983                 match events_a[0] {
8984                         Event::ChannelPending{ ref counterparty_node_id, .. } => {
8985                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8986                         },
8987                         _ => panic!("Unexpected event"),
8988                 }
8989
8990                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8991
8992                 let block = Block {
8993                         header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8994                         txdata: vec![tx],
8995                 };
8996                 Listen::block_connected(&node_a, &block, 1);
8997                 Listen::block_connected(&node_b, &block, 1);
8998
8999                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
9000                 let msg_events = node_a.get_and_clear_pending_msg_events();
9001                 assert_eq!(msg_events.len(), 2);
9002                 match msg_events[0] {
9003                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
9004                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
9005                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
9006                         },
9007                         _ => panic!(),
9008                 }
9009                 match msg_events[1] {
9010                         MessageSendEvent::SendChannelUpdate { .. } => {},
9011                         _ => panic!(),
9012                 }
9013
9014                 let events_a = node_a.get_and_clear_pending_events();
9015                 assert_eq!(events_a.len(), 1);
9016                 match events_a[0] {
9017                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
9018                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
9019                         },
9020                         _ => panic!("Unexpected event"),
9021                 }
9022
9023                 let events_b = node_b.get_and_clear_pending_events();
9024                 assert_eq!(events_b.len(), 1);
9025                 match events_b[0] {
9026                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
9027                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
9028                         },
9029                         _ => panic!("Unexpected event"),
9030                 }
9031
9032                 let mut payment_count: u64 = 0;
9033                 macro_rules! send_payment {
9034                         ($node_a: expr, $node_b: expr) => {
9035                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
9036                                         .with_features($node_b.invoice_features());
9037                                 let mut payment_preimage = PaymentPreimage([0; 32]);
9038                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
9039                                 payment_count += 1;
9040                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
9041                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
9042
9043                                 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
9044                                         PaymentId(payment_hash.0), RouteParameters {
9045                                                 payment_params, final_value_msat: 10_000,
9046                                         }, Retry::Attempts(0)).unwrap();
9047                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
9048                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
9049                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
9050                                 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
9051                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
9052                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
9053                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
9054
9055                                 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
9056                                 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
9057                                 $node_b.claim_funds(payment_preimage);
9058                                 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
9059
9060                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
9061                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
9062                                                 assert_eq!(node_id, $node_a.get_our_node_id());
9063                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
9064                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
9065                                         },
9066                                         _ => panic!("Failed to generate claim event"),
9067                                 }
9068
9069                                 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
9070                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
9071                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
9072                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
9073
9074                                 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
9075                         }
9076                 }
9077
9078                 bench.iter(|| {
9079                         send_payment!(node_a, node_b);
9080                         send_payment!(node_b, node_a);
9081                 });
9082         }
9083 }