1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::{genesis_block, ChainHash};
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteHop, RouteParameters, Router};
49 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
57 use crate::ln::wire::Encode;
58 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::BTreeMap;
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
81 use crate::ln::script::ShutdownScript;
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
103 onion_packet: msgs::OnionPacket,
104 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
109 payment_data: msgs::FinalOnionHopData,
110 payment_metadata: Option<Vec<u8>>,
111 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
112 phantom_shared_secret: Option<[u8; 32]>,
115 /// This was added in 0.0.116 and will break deserialization on downgrades.
116 payment_data: Option<msgs::FinalOnionHopData>,
117 payment_preimage: PaymentPreimage,
118 payment_metadata: Option<Vec<u8>>,
119 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
123 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
124 pub(super) struct PendingHTLCInfo {
125 pub(super) routing: PendingHTLCRouting,
126 pub(super) incoming_shared_secret: [u8; 32],
127 payment_hash: PaymentHash,
129 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
130 /// Sender intended amount to forward or receive (actual amount received
131 /// may overshoot this in either case)
132 pub(super) outgoing_amt_msat: u64,
133 pub(super) outgoing_cltv_value: u32,
134 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
135 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
136 pub(super) skimmed_fee_msat: Option<u64>,
139 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
140 pub(super) enum HTLCFailureMsg {
141 Relay(msgs::UpdateFailHTLC),
142 Malformed(msgs::UpdateFailMalformedHTLC),
145 /// Stores whether we can't forward an HTLC or relevant forwarding info
146 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
147 pub(super) enum PendingHTLCStatus {
148 Forward(PendingHTLCInfo),
149 Fail(HTLCFailureMsg),
152 pub(super) struct PendingAddHTLCInfo {
153 pub(super) forward_info: PendingHTLCInfo,
155 // These fields are produced in `forward_htlcs()` and consumed in
156 // `process_pending_htlc_forwards()` for constructing the
157 // `HTLCSource::PreviousHopData` for failed and forwarded
160 // Note that this may be an outbound SCID alias for the associated channel.
161 prev_short_channel_id: u64,
163 prev_funding_outpoint: OutPoint,
164 prev_user_channel_id: u128,
167 pub(super) enum HTLCForwardInfo {
168 AddHTLC(PendingAddHTLCInfo),
171 err_packet: msgs::OnionErrorPacket,
175 /// Tracks the inbound corresponding to an outbound HTLC
176 #[derive(Clone, Hash, PartialEq, Eq)]
177 pub(crate) struct HTLCPreviousHopData {
178 // Note that this may be an outbound SCID alias for the associated channel.
179 short_channel_id: u64,
181 incoming_packet_shared_secret: [u8; 32],
182 phantom_shared_secret: Option<[u8; 32]>,
184 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
185 // channel with a preimage provided by the forward channel.
190 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
192 /// This is only here for backwards-compatibility in serialization, in the future it can be
193 /// removed, breaking clients running 0.0.106 and earlier.
194 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
196 /// Contains the payer-provided preimage.
197 Spontaneous(PaymentPreimage),
200 /// HTLCs that are to us and can be failed/claimed by the user
201 struct ClaimableHTLC {
202 prev_hop: HTLCPreviousHopData,
204 /// The amount (in msats) of this MPP part
206 /// The amount (in msats) that the sender intended to be sent in this MPP
207 /// part (used for validating total MPP amount)
208 sender_intended_value: u64,
209 onion_payload: OnionPayload,
211 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
212 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
213 total_value_received: Option<u64>,
214 /// The sender intended sum total of all MPP parts specified in the onion
216 /// The extra fee our counterparty skimmed off the top of this HTLC.
217 counterparty_skimmed_fee_msat: Option<u64>,
220 /// A payment identifier used to uniquely identify a payment to LDK.
222 /// This is not exported to bindings users as we just use [u8; 32] directly
223 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
224 pub struct PaymentId(pub [u8; 32]);
226 impl Writeable for PaymentId {
227 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
232 impl Readable for PaymentId {
233 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
234 let buf: [u8; 32] = Readable::read(r)?;
239 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
241 /// This is not exported to bindings users as we just use [u8; 32] directly
242 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
243 pub struct InterceptId(pub [u8; 32]);
245 impl Writeable for InterceptId {
246 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
251 impl Readable for InterceptId {
252 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
253 let buf: [u8; 32] = Readable::read(r)?;
258 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
259 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
260 pub(crate) enum SentHTLCId {
261 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
262 OutboundRoute { session_priv: SecretKey },
265 pub(crate) fn from_source(source: &HTLCSource) -> Self {
267 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
268 short_channel_id: hop_data.short_channel_id,
269 htlc_id: hop_data.htlc_id,
271 HTLCSource::OutboundRoute { session_priv, .. } =>
272 Self::OutboundRoute { session_priv: *session_priv },
276 impl_writeable_tlv_based_enum!(SentHTLCId,
277 (0, PreviousHopData) => {
278 (0, short_channel_id, required),
279 (2, htlc_id, required),
281 (2, OutboundRoute) => {
282 (0, session_priv, required),
287 /// Tracks the inbound corresponding to an outbound HTLC
288 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
289 #[derive(Clone, PartialEq, Eq)]
290 pub(crate) enum HTLCSource {
291 PreviousHopData(HTLCPreviousHopData),
294 session_priv: SecretKey,
295 /// Technically we can recalculate this from the route, but we cache it here to avoid
296 /// doing a double-pass on route when we get a failure back
297 first_hop_htlc_msat: u64,
298 payment_id: PaymentId,
301 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
302 impl core::hash::Hash for HTLCSource {
303 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
305 HTLCSource::PreviousHopData(prev_hop_data) => {
307 prev_hop_data.hash(hasher);
309 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
312 session_priv[..].hash(hasher);
313 payment_id.hash(hasher);
314 first_hop_htlc_msat.hash(hasher);
320 #[cfg(not(feature = "grind_signatures"))]
322 pub fn dummy() -> Self {
323 HTLCSource::OutboundRoute {
324 path: Path { hops: Vec::new(), blinded_tail: None },
325 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
326 first_hop_htlc_msat: 0,
327 payment_id: PaymentId([2; 32]),
331 #[cfg(debug_assertions)]
332 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
333 /// transaction. Useful to ensure different datastructures match up.
334 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
335 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
336 *first_hop_htlc_msat == htlc.amount_msat
338 // There's nothing we can check for forwarded HTLCs
344 struct ReceiveError {
350 /// This enum is used to specify which error data to send to peers when failing back an HTLC
351 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
353 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
354 #[derive(Clone, Copy)]
355 pub enum FailureCode {
356 /// We had a temporary error processing the payment. Useful if no other error codes fit
357 /// and you want to indicate that the payer may want to retry.
358 TemporaryNodeFailure = 0x2000 | 2,
359 /// We have a required feature which was not in this onion. For example, you may require
360 /// some additional metadata that was not provided with this payment.
361 RequiredNodeFeatureMissing = 0x4000 | 0x2000 | 3,
362 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
363 /// the HTLC is too close to the current block height for safe handling.
364 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
365 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
366 IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
369 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
370 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
371 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
372 /// peer_state lock. We then return the set of things that need to be done outside the lock in
373 /// this struct and call handle_error!() on it.
375 struct MsgHandleErrInternal {
376 err: msgs::LightningError,
377 chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
378 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
380 impl MsgHandleErrInternal {
382 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
384 err: LightningError {
386 action: msgs::ErrorAction::SendErrorMessage {
387 msg: msgs::ErrorMessage {
394 shutdown_finish: None,
398 fn from_no_close(err: msgs::LightningError) -> Self {
399 Self { err, chan_id: None, shutdown_finish: None }
402 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
404 err: LightningError {
406 action: msgs::ErrorAction::SendErrorMessage {
407 msg: msgs::ErrorMessage {
413 chan_id: Some((channel_id, user_channel_id)),
414 shutdown_finish: Some((shutdown_res, channel_update)),
418 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
421 ChannelError::Warn(msg) => LightningError {
423 action: msgs::ErrorAction::SendWarningMessage {
424 msg: msgs::WarningMessage {
428 log_level: Level::Warn,
431 ChannelError::Ignore(msg) => LightningError {
433 action: msgs::ErrorAction::IgnoreError,
435 ChannelError::Close(msg) => LightningError {
437 action: msgs::ErrorAction::SendErrorMessage {
438 msg: msgs::ErrorMessage {
446 shutdown_finish: None,
451 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
452 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
453 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
454 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
455 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
457 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
458 /// be sent in the order they appear in the return value, however sometimes the order needs to be
459 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
460 /// they were originally sent). In those cases, this enum is also returned.
461 #[derive(Clone, PartialEq)]
462 pub(super) enum RAACommitmentOrder {
463 /// Send the CommitmentUpdate messages first
465 /// Send the RevokeAndACK message first
469 /// Information about a payment which is currently being claimed.
470 struct ClaimingPayment {
472 payment_purpose: events::PaymentPurpose,
473 receiver_node_id: PublicKey,
475 impl_writeable_tlv_based!(ClaimingPayment, {
476 (0, amount_msat, required),
477 (2, payment_purpose, required),
478 (4, receiver_node_id, required),
481 struct ClaimablePayment {
482 purpose: events::PaymentPurpose,
483 onion_fields: Option<RecipientOnionFields>,
484 htlcs: Vec<ClaimableHTLC>,
487 /// Information about claimable or being-claimed payments
488 struct ClaimablePayments {
489 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
490 /// failed/claimed by the user.
492 /// Note that, no consistency guarantees are made about the channels given here actually
493 /// existing anymore by the time you go to read them!
495 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
496 /// we don't get a duplicate payment.
497 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
499 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
500 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
501 /// as an [`events::Event::PaymentClaimed`].
502 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
505 /// Events which we process internally but cannot be processed immediately at the generation site
506 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
507 /// running normally, and specifically must be processed before any other non-background
508 /// [`ChannelMonitorUpdate`]s are applied.
509 enum BackgroundEvent {
510 /// Handle a ChannelMonitorUpdate which closes the channel. This is only separated from
511 /// [`Self::MonitorUpdateRegeneratedOnStartup`] as the maybe-non-closing variant needs a public
512 /// key to handle channel resumption, whereas if the channel has been force-closed we do not
513 /// need the counterparty node_id.
515 /// Note that any such events are lost on shutdown, so in general they must be updates which
516 /// are regenerated on startup.
517 ClosingMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
518 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
519 /// channel to continue normal operation.
521 /// In general this should be used rather than
522 /// [`Self::ClosingMonitorUpdateRegeneratedOnStartup`], however in cases where the
523 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
524 /// error the other variant is acceptable.
526 /// Note that any such events are lost on shutdown, so in general they must be updates which
527 /// are regenerated on startup.
528 MonitorUpdateRegeneratedOnStartup {
529 counterparty_node_id: PublicKey,
530 funding_txo: OutPoint,
531 update: ChannelMonitorUpdate
536 pub(crate) enum MonitorUpdateCompletionAction {
537 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
538 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
539 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
540 /// event can be generated.
541 PaymentClaimed { payment_hash: PaymentHash },
542 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
543 /// operation of another channel.
545 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
546 /// from completing a monitor update which removes the payment preimage until the inbound edge
547 /// completes a monitor update containing the payment preimage. In that case, after the inbound
548 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
550 EmitEventAndFreeOtherChannel {
551 event: events::Event,
552 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
556 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
557 (0, PaymentClaimed) => { (0, payment_hash, required) },
558 (2, EmitEventAndFreeOtherChannel) => {
559 (0, event, upgradable_required),
560 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
561 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
562 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
563 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
564 // downgrades to prior versions.
565 (1, downstream_counterparty_and_funding_outpoint, option),
569 #[derive(Clone, Debug, PartialEq, Eq)]
570 pub(crate) enum EventCompletionAction {
571 ReleaseRAAChannelMonitorUpdate {
572 counterparty_node_id: PublicKey,
573 channel_funding_outpoint: OutPoint,
576 impl_writeable_tlv_based_enum!(EventCompletionAction,
577 (0, ReleaseRAAChannelMonitorUpdate) => {
578 (0, channel_funding_outpoint, required),
579 (2, counterparty_node_id, required),
583 #[derive(Clone, PartialEq, Eq, Debug)]
584 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
585 /// the blocked action here. See enum variants for more info.
586 pub(crate) enum RAAMonitorUpdateBlockingAction {
587 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
588 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
590 ForwardedPaymentInboundClaim {
591 /// The upstream channel ID (i.e. the inbound edge).
592 channel_id: [u8; 32],
593 /// The HTLC ID on the inbound edge.
598 impl RAAMonitorUpdateBlockingAction {
600 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
601 Self::ForwardedPaymentInboundClaim {
602 channel_id: prev_hop.outpoint.to_channel_id(),
603 htlc_id: prev_hop.htlc_id,
608 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
609 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
613 /// State we hold per-peer.
614 pub(super) struct PeerState<Signer: ChannelSigner> {
615 /// `channel_id` -> `Channel`.
617 /// Holds all funded channels where the peer is the counterparty.
618 pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
619 /// `temporary_channel_id` -> `OutboundV1Channel`.
621 /// Holds all outbound V1 channels where the peer is the counterparty. Once an outbound channel has
622 /// been assigned a `channel_id`, the entry in this map is removed and one is created in
624 pub(super) outbound_v1_channel_by_id: HashMap<[u8; 32], OutboundV1Channel<Signer>>,
625 /// `temporary_channel_id` -> `InboundV1Channel`.
627 /// Holds all inbound V1 channels where the peer is the counterparty. Once an inbound channel has
628 /// been assigned a `channel_id`, the entry in this map is removed and one is created in
630 pub(super) inbound_v1_channel_by_id: HashMap<[u8; 32], InboundV1Channel<Signer>>,
631 /// The latest `InitFeatures` we heard from the peer.
632 latest_features: InitFeatures,
633 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
634 /// for broadcast messages, where ordering isn't as strict).
635 pub(super) pending_msg_events: Vec<MessageSendEvent>,
636 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
637 /// user but which have not yet completed.
639 /// Note that the channel may no longer exist. For example if the channel was closed but we
640 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
641 /// for a missing channel.
642 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
643 /// Map from a specific channel to some action(s) that should be taken when all pending
644 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
646 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
647 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
648 /// channels with a peer this will just be one allocation and will amount to a linear list of
649 /// channels to walk, avoiding the whole hashing rigmarole.
651 /// Note that the channel may no longer exist. For example, if a channel was closed but we
652 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
653 /// for a missing channel. While a malicious peer could construct a second channel with the
654 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
655 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
656 /// duplicates do not occur, so such channels should fail without a monitor update completing.
657 monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
658 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
659 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
660 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
661 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
662 actions_blocking_raa_monitor_updates: BTreeMap<[u8; 32], Vec<RAAMonitorUpdateBlockingAction>>,
663 /// The peer is currently connected (i.e. we've seen a
664 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
665 /// [`ChannelMessageHandler::peer_disconnected`].
669 impl <Signer: ChannelSigner> PeerState<Signer> {
670 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
671 /// If true is passed for `require_disconnected`, the function will return false if we haven't
672 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
673 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
674 if require_disconnected && self.is_connected {
677 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
678 && self.in_flight_monitor_updates.is_empty()
681 // Returns a count of all channels we have with this peer, including pending channels.
682 fn total_channel_count(&self) -> usize {
683 self.channel_by_id.len() +
684 self.outbound_v1_channel_by_id.len() +
685 self.inbound_v1_channel_by_id.len()
688 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
689 fn has_channel(&self, channel_id: &[u8; 32]) -> bool {
690 self.channel_by_id.contains_key(channel_id) ||
691 self.outbound_v1_channel_by_id.contains_key(channel_id) ||
692 self.inbound_v1_channel_by_id.contains_key(channel_id)
696 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
697 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
699 /// For users who don't want to bother doing their own payment preimage storage, we also store that
702 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
703 /// and instead encoding it in the payment secret.
704 struct PendingInboundPayment {
705 /// The payment secret that the sender must use for us to accept this payment
706 payment_secret: PaymentSecret,
707 /// Time at which this HTLC expires - blocks with a header time above this value will result in
708 /// this payment being removed.
710 /// Arbitrary identifier the user specifies (or not)
711 user_payment_id: u64,
712 // Other required attributes of the payment, optionally enforced:
713 payment_preimage: Option<PaymentPreimage>,
714 min_value_msat: Option<u64>,
717 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
718 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
719 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
720 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
721 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
722 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
723 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
724 /// of [`KeysManager`] and [`DefaultRouter`].
726 /// This is not exported to bindings users as Arcs don't make sense in bindings
727 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
735 Arc<NetworkGraph<Arc<L>>>,
737 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
738 ProbabilisticScoringFeeParameters,
739 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
744 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
745 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
746 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
747 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
748 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
749 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
750 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
751 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
752 /// of [`KeysManager`] and [`DefaultRouter`].
754 /// This is not exported to bindings users as Arcs don't make sense in bindings
755 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>, ProbabilisticScoringFeeParameters, ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>, &'g L>;
757 macro_rules! define_test_pub_trait { ($vis: vis) => {
758 /// A trivial trait which describes any [`ChannelManager`] used in testing.
759 $vis trait AChannelManager {
760 type Watch: chain::Watch<Self::Signer> + ?Sized;
761 type M: Deref<Target = Self::Watch>;
762 type Broadcaster: BroadcasterInterface + ?Sized;
763 type T: Deref<Target = Self::Broadcaster>;
764 type EntropySource: EntropySource + ?Sized;
765 type ES: Deref<Target = Self::EntropySource>;
766 type NodeSigner: NodeSigner + ?Sized;
767 type NS: Deref<Target = Self::NodeSigner>;
768 type Signer: WriteableEcdsaChannelSigner + Sized;
769 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
770 type SP: Deref<Target = Self::SignerProvider>;
771 type FeeEstimator: FeeEstimator + ?Sized;
772 type F: Deref<Target = Self::FeeEstimator>;
773 type Router: Router + ?Sized;
774 type R: Deref<Target = Self::Router>;
775 type Logger: Logger + ?Sized;
776 type L: Deref<Target = Self::Logger>;
777 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
780 #[cfg(any(test, feature = "_test_utils"))]
781 define_test_pub_trait!(pub);
782 #[cfg(not(any(test, feature = "_test_utils")))]
783 define_test_pub_trait!(pub(crate));
784 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
785 for ChannelManager<M, T, ES, NS, SP, F, R, L>
787 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
788 T::Target: BroadcasterInterface,
789 ES::Target: EntropySource,
790 NS::Target: NodeSigner,
791 SP::Target: SignerProvider,
792 F::Target: FeeEstimator,
796 type Watch = M::Target;
798 type Broadcaster = T::Target;
800 type EntropySource = ES::Target;
802 type NodeSigner = NS::Target;
804 type Signer = <SP::Target as SignerProvider>::Signer;
805 type SignerProvider = SP::Target;
807 type FeeEstimator = F::Target;
809 type Router = R::Target;
811 type Logger = L::Target;
813 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
816 /// Manager which keeps track of a number of channels and sends messages to the appropriate
817 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
819 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
820 /// to individual Channels.
822 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
823 /// all peers during write/read (though does not modify this instance, only the instance being
824 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
825 /// called [`funding_transaction_generated`] for outbound channels) being closed.
827 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
828 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
829 /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
830 /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
831 /// the serialization process). If the deserialized version is out-of-date compared to the
832 /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
833 /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
835 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
836 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
837 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
839 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
840 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
841 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
842 /// offline for a full minute. In order to track this, you must call
843 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
845 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
846 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
847 /// not have a channel with being unable to connect to us or open new channels with us if we have
848 /// many peers with unfunded channels.
850 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
851 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
852 /// never limited. Please ensure you limit the count of such channels yourself.
854 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
855 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
856 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
857 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
858 /// you're using lightning-net-tokio.
860 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
861 /// [`funding_created`]: msgs::FundingCreated
862 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
863 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
864 /// [`update_channel`]: chain::Watch::update_channel
865 /// [`ChannelUpdate`]: msgs::ChannelUpdate
866 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
867 /// [`read`]: ReadableArgs::read
870 // The tree structure below illustrates the lock order requirements for the different locks of the
871 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
872 // and should then be taken in the order of the lowest to the highest level in the tree.
873 // Note that locks on different branches shall not be taken at the same time, as doing so will
874 // create a new lock order for those specific locks in the order they were taken.
878 // `total_consistency_lock`
880 // |__`forward_htlcs`
882 // | |__`pending_intercepted_htlcs`
884 // |__`per_peer_state`
886 // | |__`pending_inbound_payments`
888 // | |__`claimable_payments`
890 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
896 // | |__`short_to_chan_info`
898 // | |__`outbound_scid_aliases`
902 // | |__`pending_events`
904 // | |__`pending_background_events`
906 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
908 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
909 T::Target: BroadcasterInterface,
910 ES::Target: EntropySource,
911 NS::Target: NodeSigner,
912 SP::Target: SignerProvider,
913 F::Target: FeeEstimator,
917 default_configuration: UserConfig,
918 genesis_hash: BlockHash,
919 fee_estimator: LowerBoundedFeeEstimator<F>,
925 /// See `ChannelManager` struct-level documentation for lock order requirements.
927 pub(super) best_block: RwLock<BestBlock>,
929 best_block: RwLock<BestBlock>,
930 secp_ctx: Secp256k1<secp256k1::All>,
932 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
933 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
934 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
935 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
937 /// See `ChannelManager` struct-level documentation for lock order requirements.
938 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
940 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
941 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
942 /// (if the channel has been force-closed), however we track them here to prevent duplicative
943 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
944 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
945 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
946 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
947 /// after reloading from disk while replaying blocks against ChannelMonitors.
949 /// See `PendingOutboundPayment` documentation for more info.
951 /// See `ChannelManager` struct-level documentation for lock order requirements.
952 pending_outbound_payments: OutboundPayments,
954 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
956 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
957 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
958 /// and via the classic SCID.
960 /// Note that no consistency guarantees are made about the existence of a channel with the
961 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
963 /// See `ChannelManager` struct-level documentation for lock order requirements.
965 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
967 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
968 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
969 /// until the user tells us what we should do with them.
971 /// See `ChannelManager` struct-level documentation for lock order requirements.
972 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
974 /// The sets of payments which are claimable or currently being claimed. See
975 /// [`ClaimablePayments`]' individual field docs for more info.
977 /// See `ChannelManager` struct-level documentation for lock order requirements.
978 claimable_payments: Mutex<ClaimablePayments>,
980 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
981 /// and some closed channels which reached a usable state prior to being closed. This is used
982 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
983 /// active channel list on load.
985 /// See `ChannelManager` struct-level documentation for lock order requirements.
986 outbound_scid_aliases: Mutex<HashSet<u64>>,
988 /// `channel_id` -> `counterparty_node_id`.
990 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
991 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
992 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
994 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
995 /// the corresponding channel for the event, as we only have access to the `channel_id` during
996 /// the handling of the events.
998 /// Note that no consistency guarantees are made about the existence of a peer with the
999 /// `counterparty_node_id` in our other maps.
1002 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1003 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1004 /// would break backwards compatability.
1005 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1006 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1007 /// required to access the channel with the `counterparty_node_id`.
1009 /// See `ChannelManager` struct-level documentation for lock order requirements.
1010 id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
1012 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1014 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1015 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1016 /// confirmation depth.
1018 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1019 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1020 /// channel with the `channel_id` in our other maps.
1022 /// See `ChannelManager` struct-level documentation for lock order requirements.
1024 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
1026 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
1028 our_network_pubkey: PublicKey,
1030 inbound_payment_key: inbound_payment::ExpandedKey,
1032 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1033 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1034 /// we encrypt the namespace identifier using these bytes.
1036 /// [fake scids]: crate::util::scid_utils::fake_scid
1037 fake_scid_rand_bytes: [u8; 32],
1039 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1040 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1041 /// keeping additional state.
1042 probing_cookie_secret: [u8; 32],
1044 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1045 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1046 /// very far in the past, and can only ever be up to two hours in the future.
1047 highest_seen_timestamp: AtomicUsize,
1049 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1050 /// basis, as well as the peer's latest features.
1052 /// If we are connected to a peer we always at least have an entry here, even if no channels
1053 /// are currently open with that peer.
1055 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1056 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1059 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1061 /// See `ChannelManager` struct-level documentation for lock order requirements.
1062 #[cfg(not(any(test, feature = "_test_utils")))]
1063 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
1064 #[cfg(any(test, feature = "_test_utils"))]
1065 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
1067 /// The set of events which we need to give to the user to handle. In some cases an event may
1068 /// require some further action after the user handles it (currently only blocking a monitor
1069 /// update from being handed to the user to ensure the included changes to the channel state
1070 /// are handled by the user before they're persisted durably to disk). In that case, the second
1071 /// element in the tuple is set to `Some` with further details of the action.
1073 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1074 /// could be in the middle of being processed without the direct mutex held.
1076 /// See `ChannelManager` struct-level documentation for lock order requirements.
1077 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1078 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1079 pending_events_processor: AtomicBool,
1081 /// If we are running during init (either directly during the deserialization method or in
1082 /// block connection methods which run after deserialization but before normal operation) we
1083 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1084 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1085 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1087 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1089 /// See `ChannelManager` struct-level documentation for lock order requirements.
1091 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1092 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1093 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1094 /// Essentially just when we're serializing ourselves out.
1095 /// Taken first everywhere where we are making changes before any other locks.
1096 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1097 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1098 /// Notifier the lock contains sends out a notification when the lock is released.
1099 total_consistency_lock: RwLock<()>,
1101 #[cfg(debug_assertions)]
1102 background_events_processed_since_startup: AtomicBool,
1104 persistence_notifier: Notifier,
1108 signer_provider: SP,
1113 /// Chain-related parameters used to construct a new `ChannelManager`.
1115 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1116 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1117 /// are not needed when deserializing a previously constructed `ChannelManager`.
1118 #[derive(Clone, Copy, PartialEq)]
1119 pub struct ChainParameters {
1120 /// The network for determining the `chain_hash` in Lightning messages.
1121 pub network: Network,
1123 /// The hash and height of the latest block successfully connected.
1125 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1126 pub best_block: BestBlock,
1129 #[derive(Copy, Clone, PartialEq)]
1136 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1137 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1138 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1139 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1140 /// sending the aforementioned notification (since the lock being released indicates that the
1141 /// updates are ready for persistence).
1143 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1144 /// notify or not based on whether relevant changes have been made, providing a closure to
1145 /// `optionally_notify` which returns a `NotifyOption`.
1146 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
1147 persistence_notifier: &'a Notifier,
1149 // We hold onto this result so the lock doesn't get released immediately.
1150 _read_guard: RwLockReadGuard<'a, ()>,
1153 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1154 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
1155 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1156 let _ = cm.get_cm().process_background_events(); // We always persist
1158 PersistenceNotifierGuard {
1159 persistence_notifier: &cm.get_cm().persistence_notifier,
1160 should_persist: || -> NotifyOption { NotifyOption::DoPersist },
1161 _read_guard: read_guard,
1166 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1167 /// [`ChannelManager::process_background_events`] MUST be called first.
1168 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1169 let read_guard = lock.read().unwrap();
1171 PersistenceNotifierGuard {
1172 persistence_notifier: notifier,
1173 should_persist: persist_check,
1174 _read_guard: read_guard,
1179 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1180 fn drop(&mut self) {
1181 if (self.should_persist)() == NotifyOption::DoPersist {
1182 self.persistence_notifier.notify();
1187 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1188 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1190 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1192 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1193 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1194 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1195 /// the maximum required amount in lnd as of March 2021.
1196 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1198 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1199 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1201 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1203 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1204 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1205 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1206 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1207 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1208 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1209 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1210 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1211 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1212 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1213 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1214 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1215 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1217 /// Minimum CLTV difference between the current block height and received inbound payments.
1218 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1220 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1221 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1222 // a payment was being routed, so we add an extra block to be safe.
1223 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1225 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1226 // ie that if the next-hop peer fails the HTLC within
1227 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1228 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1229 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1230 // LATENCY_GRACE_PERIOD_BLOCKS.
1233 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1235 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1236 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1239 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1241 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1242 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1244 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
1245 /// idempotency of payments by [`PaymentId`]. See
1246 /// [`OutboundPayments::remove_stale_resolved_payments`].
1247 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
1249 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1250 /// until we mark the channel disabled and gossip the update.
1251 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1253 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1254 /// we mark the channel enabled and gossip the update.
1255 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1257 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1258 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1259 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1260 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1262 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1263 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1264 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1266 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1267 /// many peers we reject new (inbound) connections.
1268 const MAX_NO_CHANNEL_PEERS: usize = 250;
1270 /// Information needed for constructing an invoice route hint for this channel.
1271 #[derive(Clone, Debug, PartialEq)]
1272 pub struct CounterpartyForwardingInfo {
1273 /// Base routing fee in millisatoshis.
1274 pub fee_base_msat: u32,
1275 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1276 pub fee_proportional_millionths: u32,
1277 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1278 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1279 /// `cltv_expiry_delta` for more details.
1280 pub cltv_expiry_delta: u16,
1283 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1284 /// to better separate parameters.
1285 #[derive(Clone, Debug, PartialEq)]
1286 pub struct ChannelCounterparty {
1287 /// The node_id of our counterparty
1288 pub node_id: PublicKey,
1289 /// The Features the channel counterparty provided upon last connection.
1290 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1291 /// many routing-relevant features are present in the init context.
1292 pub features: InitFeatures,
1293 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1294 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1295 /// claiming at least this value on chain.
1297 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1299 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1300 pub unspendable_punishment_reserve: u64,
1301 /// Information on the fees and requirements that the counterparty requires when forwarding
1302 /// payments to us through this channel.
1303 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1304 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1305 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1306 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1307 pub outbound_htlc_minimum_msat: Option<u64>,
1308 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1309 pub outbound_htlc_maximum_msat: Option<u64>,
1312 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1313 #[derive(Clone, Debug, PartialEq)]
1314 pub struct ChannelDetails {
1315 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1316 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1317 /// Note that this means this value is *not* persistent - it can change once during the
1318 /// lifetime of the channel.
1319 pub channel_id: [u8; 32],
1320 /// Parameters which apply to our counterparty. See individual fields for more information.
1321 pub counterparty: ChannelCounterparty,
1322 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1323 /// our counterparty already.
1325 /// Note that, if this has been set, `channel_id` will be equivalent to
1326 /// `funding_txo.unwrap().to_channel_id()`.
1327 pub funding_txo: Option<OutPoint>,
1328 /// The features which this channel operates with. See individual features for more info.
1330 /// `None` until negotiation completes and the channel type is finalized.
1331 pub channel_type: Option<ChannelTypeFeatures>,
1332 /// The position of the funding transaction in the chain. None if the funding transaction has
1333 /// not yet been confirmed and the channel fully opened.
1335 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1336 /// payments instead of this. See [`get_inbound_payment_scid`].
1338 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1339 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1341 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1342 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1343 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1344 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1345 /// [`confirmations_required`]: Self::confirmations_required
1346 pub short_channel_id: Option<u64>,
1347 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1348 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1349 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1352 /// This will be `None` as long as the channel is not available for routing outbound payments.
1354 /// [`short_channel_id`]: Self::short_channel_id
1355 /// [`confirmations_required`]: Self::confirmations_required
1356 pub outbound_scid_alias: Option<u64>,
1357 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1358 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1359 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1360 /// when they see a payment to be routed to us.
1362 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1363 /// previous values for inbound payment forwarding.
1365 /// [`short_channel_id`]: Self::short_channel_id
1366 pub inbound_scid_alias: Option<u64>,
1367 /// The value, in satoshis, of this channel as appears in the funding output
1368 pub channel_value_satoshis: u64,
1369 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1370 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1371 /// this value on chain.
1373 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1375 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1377 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1378 pub unspendable_punishment_reserve: Option<u64>,
1379 /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1380 /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1382 pub user_channel_id: u128,
1383 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1384 /// which is applied to commitment and HTLC transactions.
1386 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1387 pub feerate_sat_per_1000_weight: Option<u32>,
1388 /// Our total balance. This is the amount we would get if we close the channel.
1389 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1390 /// amount is not likely to be recoverable on close.
1392 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1393 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1394 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1395 /// This does not consider any on-chain fees.
1397 /// See also [`ChannelDetails::outbound_capacity_msat`]
1398 pub balance_msat: u64,
1399 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1400 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1401 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1402 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1404 /// See also [`ChannelDetails::balance_msat`]
1406 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1407 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1408 /// should be able to spend nearly this amount.
1409 pub outbound_capacity_msat: u64,
1410 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1411 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1412 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1413 /// to use a limit as close as possible to the HTLC limit we can currently send.
1415 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1416 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1417 pub next_outbound_htlc_limit_msat: u64,
1418 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1419 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1420 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1421 /// route which is valid.
1422 pub next_outbound_htlc_minimum_msat: u64,
1423 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1424 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1425 /// available for inclusion in new inbound HTLCs).
1426 /// Note that there are some corner cases not fully handled here, so the actual available
1427 /// inbound capacity may be slightly higher than this.
1429 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1430 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1431 /// However, our counterparty should be able to spend nearly this amount.
1432 pub inbound_capacity_msat: u64,
1433 /// The number of required confirmations on the funding transaction before the funding will be
1434 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1435 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1436 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1437 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1439 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1441 /// [`is_outbound`]: ChannelDetails::is_outbound
1442 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1443 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1444 pub confirmations_required: Option<u32>,
1445 /// The current number of confirmations on the funding transaction.
1447 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1448 pub confirmations: Option<u32>,
1449 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1450 /// until we can claim our funds after we force-close the channel. During this time our
1451 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1452 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1453 /// time to claim our non-HTLC-encumbered funds.
1455 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1456 pub force_close_spend_delay: Option<u16>,
1457 /// True if the channel was initiated (and thus funded) by us.
1458 pub is_outbound: bool,
1459 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1460 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1461 /// required confirmation count has been reached (and we were connected to the peer at some
1462 /// point after the funding transaction received enough confirmations). The required
1463 /// confirmation count is provided in [`confirmations_required`].
1465 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1466 pub is_channel_ready: bool,
1467 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1468 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1470 /// This is a strict superset of `is_channel_ready`.
1471 pub is_usable: bool,
1472 /// True if this channel is (or will be) publicly-announced.
1473 pub is_public: bool,
1474 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1475 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1476 pub inbound_htlc_minimum_msat: Option<u64>,
1477 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1478 pub inbound_htlc_maximum_msat: Option<u64>,
1479 /// Set of configurable parameters that affect channel operation.
1481 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1482 pub config: Option<ChannelConfig>,
1485 impl ChannelDetails {
1486 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1487 /// This should be used for providing invoice hints or in any other context where our
1488 /// counterparty will forward a payment to us.
1490 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1491 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1492 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1493 self.inbound_scid_alias.or(self.short_channel_id)
1496 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1497 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1498 /// we're sending or forwarding a payment outbound over this channel.
1500 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1501 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1502 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1503 self.short_channel_id.or(self.outbound_scid_alias)
1506 fn from_channel_context<Signer: WriteableEcdsaChannelSigner>(context: &ChannelContext<Signer>,
1507 best_block_height: u32, latest_features: InitFeatures) -> Self {
1509 let balance = context.get_available_balances();
1510 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1511 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1513 channel_id: context.channel_id(),
1514 counterparty: ChannelCounterparty {
1515 node_id: context.get_counterparty_node_id(),
1516 features: latest_features,
1517 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1518 forwarding_info: context.counterparty_forwarding_info(),
1519 // Ensures that we have actually received the `htlc_minimum_msat` value
1520 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1521 // message (as they are always the first message from the counterparty).
1522 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1523 // default `0` value set by `Channel::new_outbound`.
1524 outbound_htlc_minimum_msat: if context.have_received_message() {
1525 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1526 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1528 funding_txo: context.get_funding_txo(),
1529 // Note that accept_channel (or open_channel) is always the first message, so
1530 // `have_received_message` indicates that type negotiation has completed.
1531 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1532 short_channel_id: context.get_short_channel_id(),
1533 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1534 inbound_scid_alias: context.latest_inbound_scid_alias(),
1535 channel_value_satoshis: context.get_value_satoshis(),
1536 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1537 unspendable_punishment_reserve: to_self_reserve_satoshis,
1538 balance_msat: balance.balance_msat,
1539 inbound_capacity_msat: balance.inbound_capacity_msat,
1540 outbound_capacity_msat: balance.outbound_capacity_msat,
1541 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1542 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1543 user_channel_id: context.get_user_id(),
1544 confirmations_required: context.minimum_depth(),
1545 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1546 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1547 is_outbound: context.is_outbound(),
1548 is_channel_ready: context.is_usable(),
1549 is_usable: context.is_live(),
1550 is_public: context.should_announce(),
1551 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1552 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1553 config: Some(context.config()),
1558 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1559 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1560 #[derive(Debug, PartialEq)]
1561 pub enum RecentPaymentDetails {
1562 /// When a payment is still being sent and awaiting successful delivery.
1564 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1566 payment_hash: PaymentHash,
1567 /// Total amount (in msat, excluding fees) across all paths for this payment,
1568 /// not just the amount currently inflight.
1571 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1572 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1573 /// payment is removed from tracking.
1575 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1576 /// made before LDK version 0.0.104.
1577 payment_hash: Option<PaymentHash>,
1579 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1580 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1581 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1583 /// Hash of the payment that we have given up trying to send.
1584 payment_hash: PaymentHash,
1588 /// Route hints used in constructing invoices for [phantom node payents].
1590 /// [phantom node payments]: crate::sign::PhantomKeysManager
1592 pub struct PhantomRouteHints {
1593 /// The list of channels to be included in the invoice route hints.
1594 pub channels: Vec<ChannelDetails>,
1595 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1597 pub phantom_scid: u64,
1598 /// The pubkey of the real backing node that would ultimately receive the payment.
1599 pub real_node_pubkey: PublicKey,
1602 macro_rules! handle_error {
1603 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1604 // In testing, ensure there are no deadlocks where the lock is already held upon
1605 // entering the macro.
1606 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1607 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1611 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1612 let mut msg_events = Vec::with_capacity(2);
1614 if let Some((shutdown_res, update_option)) = shutdown_finish {
1615 $self.finish_force_close_channel(shutdown_res);
1616 if let Some(update) = update_option {
1617 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1621 if let Some((channel_id, user_channel_id)) = chan_id {
1622 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1623 channel_id, user_channel_id,
1624 reason: ClosureReason::ProcessingError { err: err.err.clone() }
1629 log_error!($self.logger, "{}", err.err);
1630 if let msgs::ErrorAction::IgnoreError = err.action {
1632 msg_events.push(events::MessageSendEvent::HandleError {
1633 node_id: $counterparty_node_id,
1634 action: err.action.clone()
1638 if !msg_events.is_empty() {
1639 let per_peer_state = $self.per_peer_state.read().unwrap();
1640 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1641 let mut peer_state = peer_state_mutex.lock().unwrap();
1642 peer_state.pending_msg_events.append(&mut msg_events);
1646 // Return error in case higher-API need one
1651 ($self: ident, $internal: expr) => {
1654 Err((chan, msg_handle_err)) => {
1655 let counterparty_node_id = chan.get_counterparty_node_id();
1656 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1662 macro_rules! update_maps_on_chan_removal {
1663 ($self: expr, $channel_context: expr) => {{
1664 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1665 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1666 if let Some(short_id) = $channel_context.get_short_channel_id() {
1667 short_to_chan_info.remove(&short_id);
1669 // If the channel was never confirmed on-chain prior to its closure, remove the
1670 // outbound SCID alias we used for it from the collision-prevention set. While we
1671 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1672 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1673 // opening a million channels with us which are closed before we ever reach the funding
1675 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1676 debug_assert!(alias_removed);
1678 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1682 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1683 macro_rules! convert_chan_err {
1684 ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1686 ChannelError::Warn(msg) => {
1687 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1689 ChannelError::Ignore(msg) => {
1690 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1692 ChannelError::Close(msg) => {
1693 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1694 update_maps_on_chan_removal!($self, &$channel.context);
1695 let shutdown_res = $channel.context.force_shutdown(true);
1696 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.context.get_user_id(),
1697 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1701 ($self: ident, $err: expr, $channel_context: expr, $channel_id: expr, PREFUNDED) => {
1703 // We should only ever have `ChannelError::Close` when prefunded channels error.
1704 // In any case, just close the channel.
1705 ChannelError::Warn(msg) | ChannelError::Ignore(msg) | ChannelError::Close(msg) => {
1706 log_error!($self.logger, "Closing prefunded channel {} due to an error: {}", log_bytes!($channel_id[..]), msg);
1707 update_maps_on_chan_removal!($self, &$channel_context);
1708 let shutdown_res = $channel_context.force_shutdown(false);
1709 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel_context.get_user_id(),
1710 shutdown_res, None))
1716 macro_rules! break_chan_entry {
1717 ($self: ident, $res: expr, $entry: expr) => {
1721 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1723 $entry.remove_entry();
1731 macro_rules! try_v1_outbound_chan_entry {
1732 ($self: ident, $res: expr, $entry: expr) => {
1736 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut().context, $entry.key(), PREFUNDED);
1738 $entry.remove_entry();
1746 macro_rules! try_chan_entry {
1747 ($self: ident, $res: expr, $entry: expr) => {
1751 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1753 $entry.remove_entry();
1761 macro_rules! remove_channel {
1762 ($self: expr, $entry: expr) => {
1764 let channel = $entry.remove_entry().1;
1765 update_maps_on_chan_removal!($self, &channel.context);
1771 macro_rules! send_channel_ready {
1772 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1773 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1774 node_id: $channel.context.get_counterparty_node_id(),
1775 msg: $channel_ready_msg,
1777 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1778 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1779 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1780 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1781 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1782 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1783 if let Some(real_scid) = $channel.context.get_short_channel_id() {
1784 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1785 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1786 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1791 macro_rules! emit_channel_pending_event {
1792 ($locked_events: expr, $channel: expr) => {
1793 if $channel.context.should_emit_channel_pending_event() {
1794 $locked_events.push_back((events::Event::ChannelPending {
1795 channel_id: $channel.context.channel_id(),
1796 former_temporary_channel_id: $channel.context.temporary_channel_id(),
1797 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1798 user_channel_id: $channel.context.get_user_id(),
1799 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1801 $channel.context.set_channel_pending_event_emitted();
1806 macro_rules! emit_channel_ready_event {
1807 ($locked_events: expr, $channel: expr) => {
1808 if $channel.context.should_emit_channel_ready_event() {
1809 debug_assert!($channel.context.channel_pending_event_emitted());
1810 $locked_events.push_back((events::Event::ChannelReady {
1811 channel_id: $channel.context.channel_id(),
1812 user_channel_id: $channel.context.get_user_id(),
1813 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1814 channel_type: $channel.context.get_channel_type().clone(),
1816 $channel.context.set_channel_ready_event_emitted();
1821 macro_rules! handle_monitor_update_completion {
1822 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1823 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1824 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1825 $self.best_block.read().unwrap().height());
1826 let counterparty_node_id = $chan.context.get_counterparty_node_id();
1827 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
1828 // We only send a channel_update in the case where we are just now sending a
1829 // channel_ready and the channel is in a usable state. We may re-send a
1830 // channel_update later through the announcement_signatures process for public
1831 // channels, but there's no reason not to just inform our counterparty of our fees
1833 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1834 Some(events::MessageSendEvent::SendChannelUpdate {
1835 node_id: counterparty_node_id,
1841 let update_actions = $peer_state.monitor_update_blocked_actions
1842 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
1844 let htlc_forwards = $self.handle_channel_resumption(
1845 &mut $peer_state.pending_msg_events, $chan, updates.raa,
1846 updates.commitment_update, updates.order, updates.accepted_htlcs,
1847 updates.funding_broadcastable, updates.channel_ready,
1848 updates.announcement_sigs);
1849 if let Some(upd) = channel_update {
1850 $peer_state.pending_msg_events.push(upd);
1853 let channel_id = $chan.context.channel_id();
1854 core::mem::drop($peer_state_lock);
1855 core::mem::drop($per_peer_state_lock);
1857 $self.handle_monitor_update_completion_actions(update_actions);
1859 if let Some(forwards) = htlc_forwards {
1860 $self.forward_htlcs(&mut [forwards][..]);
1862 $self.finalize_claims(updates.finalized_claimed_htlcs);
1863 for failure in updates.failed_htlcs.drain(..) {
1864 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1865 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1870 macro_rules! handle_new_monitor_update {
1871 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, _internal, $remove: expr, $completed: expr) => { {
1872 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1873 // any case so that it won't deadlock.
1874 debug_assert_ne!($self.id_to_peer.held_by_thread(), LockHeldState::HeldByThread);
1875 #[cfg(debug_assertions)] {
1876 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
1879 ChannelMonitorUpdateStatus::InProgress => {
1880 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1881 log_bytes!($chan.context.channel_id()[..]));
1884 ChannelMonitorUpdateStatus::PermanentFailure => {
1885 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1886 log_bytes!($chan.context.channel_id()[..]));
1887 update_maps_on_chan_removal!($self, &$chan.context);
1888 let res = Err(MsgHandleErrInternal::from_finish_shutdown(
1889 "ChannelMonitor storage failure".to_owned(), $chan.context.channel_id(),
1890 $chan.context.get_user_id(), $chan.context.force_shutdown(false),
1891 $self.get_channel_update_for_broadcast(&$chan).ok()));
1895 ChannelMonitorUpdateStatus::Completed => {
1901 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING_INITIAL_MONITOR, $remove: expr) => {
1902 handle_new_monitor_update!($self, $update_res, $peer_state_lock, $peer_state,
1903 $per_peer_state_lock, $chan, _internal, $remove,
1904 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
1906 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr, INITIAL_MONITOR) => {
1907 handle_new_monitor_update!($self, $update_res, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING_INITIAL_MONITOR, $chan_entry.remove_entry())
1909 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1910 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
1911 .or_insert_with(Vec::new);
1912 // During startup, we push monitor updates as background events through to here in
1913 // order to replay updates that were in-flight when we shut down. Thus, we have to
1914 // filter for uniqueness here.
1915 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
1916 .unwrap_or_else(|| {
1917 in_flight_updates.push($update);
1918 in_flight_updates.len() - 1
1920 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
1921 handle_new_monitor_update!($self, update_res, $peer_state_lock, $peer_state,
1922 $per_peer_state_lock, $chan, _internal, $remove,
1924 let _ = in_flight_updates.remove(idx);
1925 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
1926 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1930 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1931 handle_new_monitor_update!($self, $funding_txo, $update, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1935 macro_rules! process_events_body {
1936 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
1937 let mut processed_all_events = false;
1938 while !processed_all_events {
1939 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
1943 let mut result = NotifyOption::SkipPersist;
1946 // We'll acquire our total consistency lock so that we can be sure no other
1947 // persists happen while processing monitor events.
1948 let _read_guard = $self.total_consistency_lock.read().unwrap();
1950 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
1951 // ensure any startup-generated background events are handled first.
1952 if $self.process_background_events() == NotifyOption::DoPersist { result = NotifyOption::DoPersist; }
1954 // TODO: This behavior should be documented. It's unintuitive that we query
1955 // ChannelMonitors when clearing other events.
1956 if $self.process_pending_monitor_events() {
1957 result = NotifyOption::DoPersist;
1961 let pending_events = $self.pending_events.lock().unwrap().clone();
1962 let num_events = pending_events.len();
1963 if !pending_events.is_empty() {
1964 result = NotifyOption::DoPersist;
1967 let mut post_event_actions = Vec::new();
1969 for (event, action_opt) in pending_events {
1970 $event_to_handle = event;
1972 if let Some(action) = action_opt {
1973 post_event_actions.push(action);
1978 let mut pending_events = $self.pending_events.lock().unwrap();
1979 pending_events.drain(..num_events);
1980 processed_all_events = pending_events.is_empty();
1981 $self.pending_events_processor.store(false, Ordering::Release);
1984 if !post_event_actions.is_empty() {
1985 $self.handle_post_event_actions(post_event_actions);
1986 // If we had some actions, go around again as we may have more events now
1987 processed_all_events = false;
1990 if result == NotifyOption::DoPersist {
1991 $self.persistence_notifier.notify();
1997 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1999 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2000 T::Target: BroadcasterInterface,
2001 ES::Target: EntropySource,
2002 NS::Target: NodeSigner,
2003 SP::Target: SignerProvider,
2004 F::Target: FeeEstimator,
2008 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2010 /// This is the main "logic hub" for all channel-related actions, and implements
2011 /// [`ChannelMessageHandler`].
2013 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2015 /// Users need to notify the new `ChannelManager` when a new block is connected or
2016 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2017 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2020 /// [`block_connected`]: chain::Listen::block_connected
2021 /// [`block_disconnected`]: chain::Listen::block_disconnected
2022 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2023 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
2024 let mut secp_ctx = Secp256k1::new();
2025 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2026 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2027 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2029 default_configuration: config.clone(),
2030 genesis_hash: genesis_block(params.network).header.block_hash(),
2031 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2036 best_block: RwLock::new(params.best_block),
2038 outbound_scid_aliases: Mutex::new(HashSet::new()),
2039 pending_inbound_payments: Mutex::new(HashMap::new()),
2040 pending_outbound_payments: OutboundPayments::new(),
2041 forward_htlcs: Mutex::new(HashMap::new()),
2042 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2043 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2044 id_to_peer: Mutex::new(HashMap::new()),
2045 short_to_chan_info: FairRwLock::new(HashMap::new()),
2047 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2050 inbound_payment_key: expanded_inbound_key,
2051 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2053 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2055 highest_seen_timestamp: AtomicUsize::new(0),
2057 per_peer_state: FairRwLock::new(HashMap::new()),
2059 pending_events: Mutex::new(VecDeque::new()),
2060 pending_events_processor: AtomicBool::new(false),
2061 pending_background_events: Mutex::new(Vec::new()),
2062 total_consistency_lock: RwLock::new(()),
2063 #[cfg(debug_assertions)]
2064 background_events_processed_since_startup: AtomicBool::new(false),
2065 persistence_notifier: Notifier::new(),
2075 /// Gets the current configuration applied to all new channels.
2076 pub fn get_current_default_configuration(&self) -> &UserConfig {
2077 &self.default_configuration
2080 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2081 let height = self.best_block.read().unwrap().height();
2082 let mut outbound_scid_alias = 0;
2085 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2086 outbound_scid_alias += 1;
2088 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2090 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2094 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2099 /// Creates a new outbound channel to the given remote node and with the given value.
2101 /// `user_channel_id` will be provided back as in
2102 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2103 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2104 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2105 /// is simply copied to events and otherwise ignored.
2107 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2108 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2110 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2111 /// generate a shutdown scriptpubkey or destination script set by
2112 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2114 /// Note that we do not check if you are currently connected to the given peer. If no
2115 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2116 /// the channel eventually being silently forgotten (dropped on reload).
2118 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2119 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2120 /// [`ChannelDetails::channel_id`] until after
2121 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2122 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2123 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2125 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2126 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2127 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2128 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
2129 if channel_value_satoshis < 1000 {
2130 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2133 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2134 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2135 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2137 let per_peer_state = self.per_peer_state.read().unwrap();
2139 let peer_state_mutex = per_peer_state.get(&their_network_key)
2140 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2142 let mut peer_state = peer_state_mutex.lock().unwrap();
2144 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2145 let their_features = &peer_state.latest_features;
2146 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2147 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2148 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2149 self.best_block.read().unwrap().height(), outbound_scid_alias)
2153 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2158 let res = channel.get_open_channel(self.genesis_hash.clone());
2160 let temporary_channel_id = channel.context.channel_id();
2161 match peer_state.outbound_v1_channel_by_id.entry(temporary_channel_id) {
2162 hash_map::Entry::Occupied(_) => {
2164 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2166 panic!("RNG is bad???");
2169 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
2172 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2173 node_id: their_network_key,
2176 Ok(temporary_channel_id)
2179 fn list_funded_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2180 // Allocate our best estimate of the number of channels we have in the `res`
2181 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2182 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2183 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2184 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2185 // the same channel.
2186 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2188 let best_block_height = self.best_block.read().unwrap().height();
2189 let per_peer_state = self.per_peer_state.read().unwrap();
2190 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2191 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2192 let peer_state = &mut *peer_state_lock;
2193 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
2194 let details = ChannelDetails::from_channel_context(&channel.context, best_block_height,
2195 peer_state.latest_features.clone());
2203 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2204 /// more information.
2205 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2206 // Allocate our best estimate of the number of channels we have in the `res`
2207 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2208 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2209 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2210 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2211 // the same channel.
2212 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2214 let best_block_height = self.best_block.read().unwrap().height();
2215 let per_peer_state = self.per_peer_state.read().unwrap();
2216 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2217 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2218 let peer_state = &mut *peer_state_lock;
2219 for (_channel_id, channel) in peer_state.channel_by_id.iter() {
2220 let details = ChannelDetails::from_channel_context(&channel.context, best_block_height,
2221 peer_state.latest_features.clone());
2224 for (_channel_id, channel) in peer_state.inbound_v1_channel_by_id.iter() {
2225 let details = ChannelDetails::from_channel_context(&channel.context, best_block_height,
2226 peer_state.latest_features.clone());
2229 for (_channel_id, channel) in peer_state.outbound_v1_channel_by_id.iter() {
2230 let details = ChannelDetails::from_channel_context(&channel.context, best_block_height,
2231 peer_state.latest_features.clone());
2239 /// Gets the list of usable channels, in random order. Useful as an argument to
2240 /// [`Router::find_route`] to ensure non-announced channels are used.
2242 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2243 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2245 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2246 // Note we use is_live here instead of usable which leads to somewhat confused
2247 // internal/external nomenclature, but that's ok cause that's probably what the user
2248 // really wanted anyway.
2249 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2252 /// Gets the list of channels we have with a given counterparty, in random order.
2253 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2254 let best_block_height = self.best_block.read().unwrap().height();
2255 let per_peer_state = self.per_peer_state.read().unwrap();
2257 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2258 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2259 let peer_state = &mut *peer_state_lock;
2260 let features = &peer_state.latest_features;
2261 return peer_state.channel_by_id
2264 ChannelDetails::from_channel_context(&channel.context, best_block_height, features.clone()))
2270 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2271 /// successful path, or have unresolved HTLCs.
2273 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2274 /// result of a crash. If such a payment exists, is not listed here, and an
2275 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2277 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2278 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2279 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2280 .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
2281 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2282 Some(RecentPaymentDetails::Pending {
2283 payment_hash: *payment_hash,
2284 total_msat: *total_msat,
2287 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2288 Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
2290 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2291 Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
2293 PendingOutboundPayment::Legacy { .. } => None
2298 /// Helper function that issues the channel close events
2299 fn issue_channel_close_events(&self, context: &ChannelContext<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
2300 let mut pending_events_lock = self.pending_events.lock().unwrap();
2301 match context.unbroadcasted_funding() {
2302 Some(transaction) => {
2303 pending_events_lock.push_back((events::Event::DiscardFunding {
2304 channel_id: context.channel_id(), transaction
2309 pending_events_lock.push_back((events::Event::ChannelClosed {
2310 channel_id: context.channel_id(),
2311 user_channel_id: context.get_user_id(),
2312 reason: closure_reason
2316 fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2317 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2319 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2320 let result: Result<(), _> = loop {
2321 let per_peer_state = self.per_peer_state.read().unwrap();
2323 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2324 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2326 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2327 let peer_state = &mut *peer_state_lock;
2328 match peer_state.channel_by_id.entry(channel_id.clone()) {
2329 hash_map::Entry::Occupied(mut chan_entry) => {
2330 let funding_txo_opt = chan_entry.get().context.get_funding_txo();
2331 let their_features = &peer_state.latest_features;
2332 let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
2333 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2334 failed_htlcs = htlcs;
2336 // We can send the `shutdown` message before updating the `ChannelMonitor`
2337 // here as we don't need the monitor update to complete until we send a
2338 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2339 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2340 node_id: *counterparty_node_id,
2344 // Update the monitor with the shutdown script if necessary.
2345 if let Some(monitor_update) = monitor_update_opt.take() {
2346 break handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2347 peer_state_lock, peer_state, per_peer_state, chan_entry).map(|_| ());
2350 if chan_entry.get().is_shutdown() {
2351 let channel = remove_channel!(self, chan_entry);
2352 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
2353 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2357 self.issue_channel_close_events(&channel.context, ClosureReason::HolderForceClosed);
2361 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
2365 for htlc_source in failed_htlcs.drain(..) {
2366 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2367 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2368 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2371 let _ = handle_error!(self, result, *counterparty_node_id);
2375 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2376 /// will be accepted on the given channel, and after additional timeout/the closing of all
2377 /// pending HTLCs, the channel will be closed on chain.
2379 /// * If we are the channel initiator, we will pay between our [`Background`] and
2380 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2382 /// * If our counterparty is the channel initiator, we will require a channel closing
2383 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2384 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2385 /// counterparty to pay as much fee as they'd like, however.
2387 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2389 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2390 /// generate a shutdown scriptpubkey or destination script set by
2391 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2394 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2395 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2396 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2397 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2398 pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2399 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2402 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2403 /// will be accepted on the given channel, and after additional timeout/the closing of all
2404 /// pending HTLCs, the channel will be closed on chain.
2406 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2407 /// the channel being closed or not:
2408 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2409 /// transaction. The upper-bound is set by
2410 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2411 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2412 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2413 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2414 /// will appear on a force-closure transaction, whichever is lower).
2416 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2417 /// Will fail if a shutdown script has already been set for this channel by
2418 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2419 /// also be compatible with our and the counterparty's features.
2421 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2423 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2424 /// generate a shutdown scriptpubkey or destination script set by
2425 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2428 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2429 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2430 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2431 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2432 pub fn close_channel_with_feerate_and_script(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2433 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2437 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2438 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2439 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2440 for htlc_source in failed_htlcs.drain(..) {
2441 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2442 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2443 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2444 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2446 if let Some((_, funding_txo, monitor_update)) = monitor_update_option {
2447 // There isn't anything we can do if we get an update failure - we're already
2448 // force-closing. The monitor update on the required in-memory copy should broadcast
2449 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2450 // ignore the result here.
2451 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2455 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2456 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2457 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2458 -> Result<PublicKey, APIError> {
2459 let per_peer_state = self.per_peer_state.read().unwrap();
2460 let peer_state_mutex = per_peer_state.get(peer_node_id)
2461 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2462 let (update_opt, counterparty_node_id) = {
2463 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2464 let peer_state = &mut *peer_state_lock;
2465 let closure_reason = if let Some(peer_msg) = peer_msg {
2466 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2468 ClosureReason::HolderForceClosed
2470 if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
2471 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2472 self.issue_channel_close_events(&chan.get().context, closure_reason);
2473 let mut chan = remove_channel!(self, chan);
2474 self.finish_force_close_channel(chan.context.force_shutdown(broadcast));
2475 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2476 } else if let hash_map::Entry::Occupied(chan) = peer_state.outbound_v1_channel_by_id.entry(channel_id.clone()) {
2477 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2478 self.issue_channel_close_events(&chan.get().context, closure_reason);
2479 let mut chan = remove_channel!(self, chan);
2480 self.finish_force_close_channel(chan.context.force_shutdown(false));
2481 // Prefunded channel has no update
2482 (None, chan.context.get_counterparty_node_id())
2483 } else if let hash_map::Entry::Occupied(chan) = peer_state.inbound_v1_channel_by_id.entry(channel_id.clone()) {
2484 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2485 self.issue_channel_close_events(&chan.get().context, closure_reason);
2486 let mut chan = remove_channel!(self, chan);
2487 self.finish_force_close_channel(chan.context.force_shutdown(false));
2488 // Prefunded channel has no update
2489 (None, chan.context.get_counterparty_node_id())
2491 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2494 if let Some(update) = update_opt {
2495 let mut peer_state = peer_state_mutex.lock().unwrap();
2496 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2501 Ok(counterparty_node_id)
2504 fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2505 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2506 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2507 Ok(counterparty_node_id) => {
2508 let per_peer_state = self.per_peer_state.read().unwrap();
2509 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2510 let mut peer_state = peer_state_mutex.lock().unwrap();
2511 peer_state.pending_msg_events.push(
2512 events::MessageSendEvent::HandleError {
2513 node_id: counterparty_node_id,
2514 action: msgs::ErrorAction::SendErrorMessage {
2515 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2526 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2527 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2528 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2530 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2531 -> Result<(), APIError> {
2532 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2535 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2536 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2537 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2539 /// You can always get the latest local transaction(s) to broadcast from
2540 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2541 pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2542 -> Result<(), APIError> {
2543 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2546 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2547 /// for each to the chain and rejecting new HTLCs on each.
2548 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2549 for chan in self.list_channels() {
2550 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2554 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2555 /// local transaction(s).
2556 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2557 for chan in self.list_channels() {
2558 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2562 fn construct_recv_pending_htlc_info(
2563 &self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32], payment_hash: PaymentHash,
2564 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2565 counterparty_skimmed_fee_msat: Option<u64>,
2566 ) -> Result<PendingHTLCInfo, ReceiveError> {
2567 // final_incorrect_cltv_expiry
2568 if hop_data.outgoing_cltv_value > cltv_expiry {
2569 return Err(ReceiveError {
2570 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2572 err_data: cltv_expiry.to_be_bytes().to_vec()
2575 // final_expiry_too_soon
2576 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2577 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2579 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2580 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2581 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2582 let current_height: u32 = self.best_block.read().unwrap().height();
2583 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2584 let mut err_data = Vec::with_capacity(12);
2585 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2586 err_data.extend_from_slice(¤t_height.to_be_bytes());
2587 return Err(ReceiveError {
2588 err_code: 0x4000 | 15, err_data,
2589 msg: "The final CLTV expiry is too soon to handle",
2592 if (!allow_underpay && hop_data.amt_to_forward > amt_msat) ||
2593 (allow_underpay && hop_data.amt_to_forward >
2594 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
2596 return Err(ReceiveError {
2598 err_data: amt_msat.to_be_bytes().to_vec(),
2599 msg: "Upstream node sent less than we were supposed to receive in payment",
2603 let routing = match hop_data.format {
2604 msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2605 return Err(ReceiveError {
2606 err_code: 0x4000|22,
2607 err_data: Vec::new(),
2608 msg: "Got non final data with an HMAC of 0",
2611 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage, payment_metadata } => {
2612 if let Some(payment_preimage) = keysend_preimage {
2613 // We need to check that the sender knows the keysend preimage before processing this
2614 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2615 // could discover the final destination of X, by probing the adjacent nodes on the route
2616 // with a keysend payment of identical payment hash to X and observing the processing
2617 // time discrepancies due to a hash collision with X.
2618 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2619 if hashed_preimage != payment_hash {
2620 return Err(ReceiveError {
2621 err_code: 0x4000|22,
2622 err_data: Vec::new(),
2623 msg: "Payment preimage didn't match payment hash",
2626 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
2627 return Err(ReceiveError {
2628 err_code: 0x4000|22,
2629 err_data: Vec::new(),
2630 msg: "We don't support MPP keysend payments",
2633 PendingHTLCRouting::ReceiveKeysend {
2637 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2639 } else if let Some(data) = payment_data {
2640 PendingHTLCRouting::Receive {
2643 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2644 phantom_shared_secret,
2647 return Err(ReceiveError {
2648 err_code: 0x4000|0x2000|3,
2649 err_data: Vec::new(),
2650 msg: "We require payment_secrets",
2655 Ok(PendingHTLCInfo {
2658 incoming_shared_secret: shared_secret,
2659 incoming_amt_msat: Some(amt_msat),
2660 outgoing_amt_msat: hop_data.amt_to_forward,
2661 outgoing_cltv_value: hop_data.outgoing_cltv_value,
2662 skimmed_fee_msat: counterparty_skimmed_fee_msat,
2666 fn decode_update_add_htlc_onion(
2667 &self, msg: &msgs::UpdateAddHTLC
2668 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
2669 macro_rules! return_malformed_err {
2670 ($msg: expr, $err_code: expr) => {
2672 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2673 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2674 channel_id: msg.channel_id,
2675 htlc_id: msg.htlc_id,
2676 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2677 failure_code: $err_code,
2683 if let Err(_) = msg.onion_routing_packet.public_key {
2684 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2687 let shared_secret = self.node_signer.ecdh(
2688 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2689 ).unwrap().secret_bytes();
2691 if msg.onion_routing_packet.version != 0 {
2692 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2693 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2694 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2695 //receiving node would have to brute force to figure out which version was put in the
2696 //packet by the node that send us the message, in the case of hashing the hop_data, the
2697 //node knows the HMAC matched, so they already know what is there...
2698 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2700 macro_rules! return_err {
2701 ($msg: expr, $err_code: expr, $data: expr) => {
2703 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2704 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2705 channel_id: msg.channel_id,
2706 htlc_id: msg.htlc_id,
2707 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2708 .get_encrypted_failure_packet(&shared_secret, &None),
2714 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2716 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2717 return_malformed_err!(err_msg, err_code);
2719 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2720 return_err!(err_msg, err_code, &[0; 0]);
2723 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
2724 onion_utils::Hop::Forward {
2725 next_hop_data: msgs::OnionHopData {
2726 format: msgs::OnionHopDataFormat::NonFinalNode { short_channel_id }, amt_to_forward,
2727 outgoing_cltv_value,
2730 let next_pk = onion_utils::next_hop_packet_pubkey(&self.secp_ctx,
2731 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
2732 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_pk))
2734 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
2735 // inbound channel's state.
2736 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
2737 onion_utils::Hop::Forward {
2738 next_hop_data: msgs::OnionHopData { format: msgs::OnionHopDataFormat::FinalNode { .. }, .. }, ..
2740 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
2744 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
2745 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
2746 if let Some((err, mut code, chan_update)) = loop {
2747 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
2748 let forwarding_chan_info_opt = match id_option {
2749 None => { // unknown_next_peer
2750 // Note that this is likely a timing oracle for detecting whether an scid is a
2751 // phantom or an intercept.
2752 if (self.default_configuration.accept_intercept_htlcs &&
2753 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)) ||
2754 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)
2758 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2761 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2763 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2764 let per_peer_state = self.per_peer_state.read().unwrap();
2765 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2766 if peer_state_mutex_opt.is_none() {
2767 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2769 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2770 let peer_state = &mut *peer_state_lock;
2771 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2773 // Channel was removed. The short_to_chan_info and channel_by_id maps
2774 // have no consistency guarantees.
2775 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2779 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2780 // Note that the behavior here should be identical to the above block - we
2781 // should NOT reveal the existence or non-existence of a private channel if
2782 // we don't allow forwards outbound over them.
2783 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2785 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
2786 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2787 // "refuse to forward unless the SCID alias was used", so we pretend
2788 // we don't have the channel here.
2789 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2791 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
2793 // Note that we could technically not return an error yet here and just hope
2794 // that the connection is reestablished or monitor updated by the time we get
2795 // around to doing the actual forward, but better to fail early if we can and
2796 // hopefully an attacker trying to path-trace payments cannot make this occur
2797 // on a small/per-node/per-channel scale.
2798 if !chan.context.is_live() { // channel_disabled
2799 // If the channel_update we're going to return is disabled (i.e. the
2800 // peer has been disabled for some time), return `channel_disabled`,
2801 // otherwise return `temporary_channel_failure`.
2802 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
2803 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
2805 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
2808 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2809 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2811 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
2812 break Some((err, code, chan_update_opt));
2816 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2817 // We really should set `incorrect_cltv_expiry` here but as we're not
2818 // forwarding over a real channel we can't generate a channel_update
2819 // for it. Instead we just return a generic temporary_node_failure.
2821 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2828 let cur_height = self.best_block.read().unwrap().height() + 1;
2829 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2830 // but we want to be robust wrt to counterparty packet sanitization (see
2831 // HTLC_FAIL_BACK_BUFFER rationale).
2832 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2833 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2835 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2836 break Some(("CLTV expiry is too far in the future", 21, None));
2838 // If the HTLC expires ~now, don't bother trying to forward it to our
2839 // counterparty. They should fail it anyway, but we don't want to bother with
2840 // the round-trips or risk them deciding they definitely want the HTLC and
2841 // force-closing to ensure they get it if we're offline.
2842 // We previously had a much more aggressive check here which tried to ensure
2843 // our counterparty receives an HTLC which has *our* risk threshold met on it,
2844 // but there is no need to do that, and since we're a bit conservative with our
2845 // risk threshold it just results in failing to forward payments.
2846 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2847 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2853 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2854 if let Some(chan_update) = chan_update {
2855 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2856 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2858 else if code == 0x1000 | 13 {
2859 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2861 else if code == 0x1000 | 20 {
2862 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2863 0u16.write(&mut res).expect("Writes cannot fail");
2865 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2866 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2867 chan_update.write(&mut res).expect("Writes cannot fail");
2868 } else if code & 0x1000 == 0x1000 {
2869 // If we're trying to return an error that requires a `channel_update` but
2870 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2871 // generate an update), just use the generic "temporary_node_failure"
2875 return_err!(err, code, &res.0[..]);
2877 Ok((next_hop, shared_secret, next_packet_pk_opt))
2880 fn construct_pending_htlc_status<'a>(
2881 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
2882 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2883 ) -> PendingHTLCStatus {
2884 macro_rules! return_err {
2885 ($msg: expr, $err_code: expr, $data: expr) => {
2887 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2888 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2889 channel_id: msg.channel_id,
2890 htlc_id: msg.htlc_id,
2891 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2892 .get_encrypted_failure_packet(&shared_secret, &None),
2898 onion_utils::Hop::Receive(next_hop_data) => {
2900 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
2901 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
2904 // Note that we could obviously respond immediately with an update_fulfill_htlc
2905 // message, however that would leak that we are the recipient of this payment, so
2906 // instead we stay symmetric with the forwarding case, only responding (after a
2907 // delay) once they've send us a commitment_signed!
2908 PendingHTLCStatus::Forward(info)
2910 Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2913 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2914 debug_assert!(next_packet_pubkey_opt.is_some());
2915 let outgoing_packet = msgs::OnionPacket {
2917 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2918 hop_data: new_packet_bytes,
2919 hmac: next_hop_hmac.clone(),
2922 let short_channel_id = match next_hop_data.format {
2923 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2924 msgs::OnionHopDataFormat::FinalNode { .. } => {
2925 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2929 PendingHTLCStatus::Forward(PendingHTLCInfo {
2930 routing: PendingHTLCRouting::Forward {
2931 onion_packet: outgoing_packet,
2934 payment_hash: msg.payment_hash.clone(),
2935 incoming_shared_secret: shared_secret,
2936 incoming_amt_msat: Some(msg.amount_msat),
2937 outgoing_amt_msat: next_hop_data.amt_to_forward,
2938 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2939 skimmed_fee_msat: None,
2945 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
2946 /// public, and thus should be called whenever the result is going to be passed out in a
2947 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2949 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
2950 /// corresponding to the channel's counterparty locked, as the channel been removed from the
2951 /// storage and the `peer_state` lock has been dropped.
2953 /// [`channel_update`]: msgs::ChannelUpdate
2954 /// [`internal_closing_signed`]: Self::internal_closing_signed
2955 fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2956 if !chan.context.should_announce() {
2957 return Err(LightningError {
2958 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2959 action: msgs::ErrorAction::IgnoreError
2962 if chan.context.get_short_channel_id().is_none() {
2963 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2965 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.context.channel_id()));
2966 self.get_channel_update_for_unicast(chan)
2969 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
2970 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
2971 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2972 /// provided evidence that they know about the existence of the channel.
2974 /// Note that through [`internal_closing_signed`], this function is called without the
2975 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
2976 /// removed from the storage and the `peer_state` lock has been dropped.
2978 /// [`channel_update`]: msgs::ChannelUpdate
2979 /// [`internal_closing_signed`]: Self::internal_closing_signed
2980 fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2981 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.context.channel_id()));
2982 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
2983 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2987 self.get_channel_update_for_onion(short_channel_id, chan)
2990 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2991 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.context.channel_id()));
2992 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
2994 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
2995 ChannelUpdateStatus::Enabled => true,
2996 ChannelUpdateStatus::DisabledStaged(_) => true,
2997 ChannelUpdateStatus::Disabled => false,
2998 ChannelUpdateStatus::EnabledStaged(_) => false,
3001 let unsigned = msgs::UnsignedChannelUpdate {
3002 chain_hash: self.genesis_hash,
3004 timestamp: chan.context.get_update_time_counter(),
3005 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3006 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3007 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3008 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3009 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3010 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3011 excess_data: Vec::new(),
3013 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3014 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3015 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3017 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3019 Ok(msgs::ChannelUpdate {
3026 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3027 let _lck = self.total_consistency_lock.read().unwrap();
3028 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
3031 fn send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3032 // The top-level caller should hold the total_consistency_lock read lock.
3033 debug_assert!(self.total_consistency_lock.try_write().is_err());
3035 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.hops.first().unwrap().short_channel_id);
3036 let prng_seed = self.entropy_source.get_secure_random_bytes();
3037 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3039 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
3040 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
3041 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
3043 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
3044 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
3046 let err: Result<(), _> = loop {
3047 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3048 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3049 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3052 let per_peer_state = self.per_peer_state.read().unwrap();
3053 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3054 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3055 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3056 let peer_state = &mut *peer_state_lock;
3057 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
3058 if !chan.get().context.is_live() {
3059 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3061 let funding_txo = chan.get().context.get_funding_txo().unwrap();
3062 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3063 htlc_cltv, HTLCSource::OutboundRoute {
3065 session_priv: session_priv.clone(),
3066 first_hop_htlc_msat: htlc_msat,
3068 }, onion_packet, None, &self.logger);
3069 match break_chan_entry!(self, send_res, chan) {
3070 Some(monitor_update) => {
3071 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3072 Err(e) => break Err(e),
3074 // Note that MonitorUpdateInProgress here indicates (per function
3075 // docs) that we will resend the commitment update once monitor
3076 // updating completes. Therefore, we must return an error
3077 // indicating that it is unsafe to retry the payment wholesale,
3078 // which we do in the send_payment check for
3079 // MonitorUpdateInProgress, below.
3080 return Err(APIError::MonitorUpdateInProgress);
3088 // The channel was likely removed after we fetched the id from the
3089 // `short_to_chan_info` map, but before we successfully locked the
3090 // `channel_by_id` map.
3091 // This can occur as no consistency guarantees exists between the two maps.
3092 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3097 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3098 Ok(_) => unreachable!(),
3100 Err(APIError::ChannelUnavailable { err: e.err })
3105 /// Sends a payment along a given route.
3107 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3108 /// fields for more info.
3110 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3111 /// [`PeerManager::process_events`]).
3113 /// # Avoiding Duplicate Payments
3115 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3116 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3117 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3118 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3119 /// second payment with the same [`PaymentId`].
3121 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3122 /// tracking of payments, including state to indicate once a payment has completed. Because you
3123 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3124 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3125 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3127 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3128 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3129 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3130 /// [`ChannelManager::list_recent_payments`] for more information.
3132 /// # Possible Error States on [`PaymentSendFailure`]
3134 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3135 /// each entry matching the corresponding-index entry in the route paths, see
3136 /// [`PaymentSendFailure`] for more info.
3138 /// In general, a path may raise:
3139 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3140 /// node public key) is specified.
3141 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
3142 /// (including due to previous monitor update failure or new permanent monitor update
3144 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3145 /// relevant updates.
3147 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3148 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3149 /// different route unless you intend to pay twice!
3151 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3152 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3153 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3154 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3155 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3156 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3157 let best_block_height = self.best_block.read().unwrap().height();
3158 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3159 self.pending_outbound_payments
3160 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
3161 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3162 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
3165 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3166 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3167 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3168 let best_block_height = self.best_block.read().unwrap().height();
3169 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3170 self.pending_outbound_payments
3171 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3172 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3173 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3174 &self.pending_events,
3175 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3176 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
3180 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3181 let best_block_height = self.best_block.read().unwrap().height();
3182 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3183 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
3184 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3185 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
3189 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3190 let best_block_height = self.best_block.read().unwrap().height();
3191 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3195 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3196 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3200 /// Signals that no further retries for the given payment should occur. Useful if you have a
3201 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3202 /// retries are exhausted.
3204 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3205 /// as there are no remaining pending HTLCs for this payment.
3207 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3208 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3209 /// determine the ultimate status of a payment.
3211 /// If an [`Event::PaymentFailed`] event is generated and we restart without this
3212 /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
3214 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3215 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3216 pub fn abandon_payment(&self, payment_id: PaymentId) {
3217 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3218 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3221 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3222 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3223 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3224 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3225 /// never reach the recipient.
3227 /// See [`send_payment`] documentation for more details on the return value of this function
3228 /// and idempotency guarantees provided by the [`PaymentId`] key.
3230 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3231 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3233 /// [`send_payment`]: Self::send_payment
3234 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3235 let best_block_height = self.best_block.read().unwrap().height();
3236 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3237 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3238 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3239 &self.node_signer, best_block_height,
3240 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3241 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
3244 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3245 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3247 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3250 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3251 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3252 let best_block_height = self.best_block.read().unwrap().height();
3253 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3254 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3255 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3256 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3257 &self.logger, &self.pending_events,
3258 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3259 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
3262 /// Send a payment that is probing the given route for liquidity. We calculate the
3263 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3264 /// us to easily discern them from real payments.
3265 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3266 let best_block_height = self.best_block.read().unwrap().height();
3267 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3268 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
3269 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3270 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
3273 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3276 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3277 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3280 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3281 /// which checks the correctness of the funding transaction given the associated channel.
3282 fn funding_transaction_generated_intern<FundingOutput: Fn(&OutboundV1Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
3283 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
3284 ) -> Result<(), APIError> {
3285 let per_peer_state = self.per_peer_state.read().unwrap();
3286 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3287 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3289 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3290 let peer_state = &mut *peer_state_lock;
3291 let (chan, msg) = match peer_state.outbound_v1_channel_by_id.remove(temporary_channel_id) {
3293 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3295 let funding_res = chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
3296 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3297 let channel_id = chan.context.channel_id();
3298 let user_id = chan.context.get_user_id();
3299 let shutdown_res = chan.context.force_shutdown(false);
3300 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None))
3301 } else { unreachable!(); });
3303 Ok((chan, funding_msg)) => (chan, funding_msg),
3304 Err((chan, err)) => {
3305 mem::drop(peer_state_lock);
3306 mem::drop(per_peer_state);
3308 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3309 return Err(APIError::ChannelUnavailable {
3310 err: "Signer refused to sign the initial commitment transaction".to_owned()
3316 return Err(APIError::ChannelUnavailable {
3318 "Channel with id {} not found for the passed counterparty node_id {}",
3319 log_bytes!(*temporary_channel_id), counterparty_node_id),
3324 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3325 node_id: chan.context.get_counterparty_node_id(),
3328 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3329 hash_map::Entry::Occupied(_) => {
3330 panic!("Generated duplicate funding txid?");
3332 hash_map::Entry::Vacant(e) => {
3333 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3334 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3335 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3344 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3345 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
3346 Ok(OutPoint { txid: tx.txid(), index: output_index })
3350 /// Call this upon creation of a funding transaction for the given channel.
3352 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3353 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3355 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3356 /// across the p2p network.
3358 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3359 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3361 /// May panic if the output found in the funding transaction is duplicative with some other
3362 /// channel (note that this should be trivially prevented by using unique funding transaction
3363 /// keys per-channel).
3365 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3366 /// counterparty's signature the funding transaction will automatically be broadcast via the
3367 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3369 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3370 /// not currently support replacing a funding transaction on an existing channel. Instead,
3371 /// create a new channel with a conflicting funding transaction.
3373 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3374 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3375 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3376 /// for more details.
3378 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3379 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3380 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3381 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3383 for inp in funding_transaction.input.iter() {
3384 if inp.witness.is_empty() {
3385 return Err(APIError::APIMisuseError {
3386 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3391 let height = self.best_block.read().unwrap().height();
3392 // Transactions are evaluated as final by network mempools if their locktime is strictly
3393 // lower than the next block height. However, the modules constituting our Lightning
3394 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3395 // module is ahead of LDK, only allow one more block of headroom.
3396 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3397 return Err(APIError::APIMisuseError {
3398 err: "Funding transaction absolute timelock is non-final".to_owned()
3402 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
3403 if tx.output.len() > u16::max_value() as usize {
3404 return Err(APIError::APIMisuseError {
3405 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3409 let mut output_index = None;
3410 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3411 for (idx, outp) in tx.output.iter().enumerate() {
3412 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3413 if output_index.is_some() {
3414 return Err(APIError::APIMisuseError {
3415 err: "Multiple outputs matched the expected script and value".to_owned()
3418 output_index = Some(idx as u16);
3421 if output_index.is_none() {
3422 return Err(APIError::APIMisuseError {
3423 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3426 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3430 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3432 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3433 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3434 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3435 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3437 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3438 /// `counterparty_node_id` is provided.
3440 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3441 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3443 /// If an error is returned, none of the updates should be considered applied.
3445 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3446 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3447 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3448 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3449 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3450 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3451 /// [`APIMisuseError`]: APIError::APIMisuseError
3452 pub fn update_partial_channel_config(
3453 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config_update: &ChannelConfigUpdate,
3454 ) -> Result<(), APIError> {
3455 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3456 return Err(APIError::APIMisuseError {
3457 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3461 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3462 let per_peer_state = self.per_peer_state.read().unwrap();
3463 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3464 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3465 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3466 let peer_state = &mut *peer_state_lock;
3467 for channel_id in channel_ids {
3468 if !peer_state.channel_by_id.contains_key(channel_id) {
3469 return Err(APIError::ChannelUnavailable {
3470 err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
3474 for channel_id in channel_ids {
3475 let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
3476 let mut config = channel.context.config();
3477 config.apply(config_update);
3478 if !channel.context.update_config(&config) {
3481 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3482 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3483 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3484 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3485 node_id: channel.context.get_counterparty_node_id(),
3493 /// Atomically updates the [`ChannelConfig`] for the given channels.
3495 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3496 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3497 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3498 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3500 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3501 /// `counterparty_node_id` is provided.
3503 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3504 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3506 /// If an error is returned, none of the updates should be considered applied.
3508 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3509 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3510 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3511 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3512 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3513 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3514 /// [`APIMisuseError`]: APIError::APIMisuseError
3515 pub fn update_channel_config(
3516 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
3517 ) -> Result<(), APIError> {
3518 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
3521 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3522 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3524 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3525 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3527 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3528 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3529 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3530 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3531 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3533 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3534 /// you from forwarding more than you received. See
3535 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
3538 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3541 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3542 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3543 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
3544 // TODO: when we move to deciding the best outbound channel at forward time, only take
3545 // `next_node_id` and not `next_hop_channel_id`
3546 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3547 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3549 let next_hop_scid = {
3550 let peer_state_lock = self.per_peer_state.read().unwrap();
3551 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3552 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3553 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3554 let peer_state = &mut *peer_state_lock;
3555 match peer_state.channel_by_id.get(next_hop_channel_id) {
3557 if !chan.context.is_usable() {
3558 return Err(APIError::ChannelUnavailable {
3559 err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
3562 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
3564 None => return Err(APIError::ChannelUnavailable {
3565 err: format!("Funded channel with id {} not found for the passed counterparty node_id {}. Channel may still be opening.",
3566 log_bytes!(*next_hop_channel_id), next_node_id)
3571 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3572 .ok_or_else(|| APIError::APIMisuseError {
3573 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3576 let routing = match payment.forward_info.routing {
3577 PendingHTLCRouting::Forward { onion_packet, .. } => {
3578 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3580 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3582 let skimmed_fee_msat =
3583 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
3584 let pending_htlc_info = PendingHTLCInfo {
3585 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
3586 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3589 let mut per_source_pending_forward = [(
3590 payment.prev_short_channel_id,
3591 payment.prev_funding_outpoint,
3592 payment.prev_user_channel_id,
3593 vec![(pending_htlc_info, payment.prev_htlc_id)]
3595 self.forward_htlcs(&mut per_source_pending_forward);
3599 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3600 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3602 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3605 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3606 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3607 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3609 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3610 .ok_or_else(|| APIError::APIMisuseError {
3611 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3614 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3615 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3616 short_channel_id: payment.prev_short_channel_id,
3617 outpoint: payment.prev_funding_outpoint,
3618 htlc_id: payment.prev_htlc_id,
3619 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3620 phantom_shared_secret: None,
3623 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3624 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3625 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3626 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3631 /// Processes HTLCs which are pending waiting on random forward delay.
3633 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3634 /// Will likely generate further events.
3635 pub fn process_pending_htlc_forwards(&self) {
3636 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3638 let mut new_events = VecDeque::new();
3639 let mut failed_forwards = Vec::new();
3640 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3642 let mut forward_htlcs = HashMap::new();
3643 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3645 for (short_chan_id, mut pending_forwards) in forward_htlcs {
3646 if short_chan_id != 0 {
3647 macro_rules! forwarding_channel_not_found {
3649 for forward_info in pending_forwards.drain(..) {
3650 match forward_info {
3651 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3652 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3653 forward_info: PendingHTLCInfo {
3654 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3655 outgoing_cltv_value, ..
3658 macro_rules! failure_handler {
3659 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3660 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3662 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3663 short_channel_id: prev_short_channel_id,
3664 outpoint: prev_funding_outpoint,
3665 htlc_id: prev_htlc_id,
3666 incoming_packet_shared_secret: incoming_shared_secret,
3667 phantom_shared_secret: $phantom_ss,
3670 let reason = if $next_hop_unknown {
3671 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3673 HTLCDestination::FailedPayment{ payment_hash }
3676 failed_forwards.push((htlc_source, payment_hash,
3677 HTLCFailReason::reason($err_code, $err_data),
3683 macro_rules! fail_forward {
3684 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3686 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3690 macro_rules! failed_payment {
3691 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3693 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3697 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3698 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3699 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3700 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3701 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3703 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3704 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3705 // In this scenario, the phantom would have sent us an
3706 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3707 // if it came from us (the second-to-last hop) but contains the sha256
3709 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3711 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3712 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3716 onion_utils::Hop::Receive(hop_data) => {
3717 match self.construct_recv_pending_htlc_info(hop_data,
3718 incoming_shared_secret, payment_hash, outgoing_amt_msat,
3719 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
3721 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3722 Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3728 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3731 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3734 HTLCForwardInfo::FailHTLC { .. } => {
3735 // Channel went away before we could fail it. This implies
3736 // the channel is now on chain and our counterparty is
3737 // trying to broadcast the HTLC-Timeout, but that's their
3738 // problem, not ours.
3744 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3745 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3747 forwarding_channel_not_found!();
3751 let per_peer_state = self.per_peer_state.read().unwrap();
3752 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3753 if peer_state_mutex_opt.is_none() {
3754 forwarding_channel_not_found!();
3757 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3758 let peer_state = &mut *peer_state_lock;
3759 match peer_state.channel_by_id.entry(forward_chan_id) {
3760 hash_map::Entry::Vacant(_) => {
3761 forwarding_channel_not_found!();
3764 hash_map::Entry::Occupied(mut chan) => {
3765 for forward_info in pending_forwards.drain(..) {
3766 match forward_info {
3767 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3768 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3769 forward_info: PendingHTLCInfo {
3770 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3771 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
3774 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3775 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3776 short_channel_id: prev_short_channel_id,
3777 outpoint: prev_funding_outpoint,
3778 htlc_id: prev_htlc_id,
3779 incoming_packet_shared_secret: incoming_shared_secret,
3780 // Phantom payments are only PendingHTLCRouting::Receive.
3781 phantom_shared_secret: None,
3783 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3784 payment_hash, outgoing_cltv_value, htlc_source.clone(),
3785 onion_packet, skimmed_fee_msat, &self.logger)
3787 if let ChannelError::Ignore(msg) = e {
3788 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3790 panic!("Stated return value requirements in send_htlc() were not met");
3792 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3793 failed_forwards.push((htlc_source, payment_hash,
3794 HTLCFailReason::reason(failure_code, data),
3795 HTLCDestination::NextHopChannel { node_id: Some(chan.get().context.get_counterparty_node_id()), channel_id: forward_chan_id }
3800 HTLCForwardInfo::AddHTLC { .. } => {
3801 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3803 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3804 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3805 if let Err(e) = chan.get_mut().queue_fail_htlc(
3806 htlc_id, err_packet, &self.logger
3808 if let ChannelError::Ignore(msg) = e {
3809 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3811 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3813 // fail-backs are best-effort, we probably already have one
3814 // pending, and if not that's OK, if not, the channel is on
3815 // the chain and sending the HTLC-Timeout is their problem.
3824 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
3825 match forward_info {
3826 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3827 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3828 forward_info: PendingHTLCInfo {
3829 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
3830 skimmed_fee_msat, ..
3833 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
3834 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret } => {
3835 let _legacy_hop_data = Some(payment_data.clone());
3837 RecipientOnionFields { payment_secret: Some(payment_data.payment_secret), payment_metadata };
3838 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
3839 Some(payment_data), phantom_shared_secret, onion_fields)
3841 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry } => {
3842 let onion_fields = RecipientOnionFields {
3843 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
3846 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
3847 payment_data, None, onion_fields)
3850 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3853 let claimable_htlc = ClaimableHTLC {
3854 prev_hop: HTLCPreviousHopData {
3855 short_channel_id: prev_short_channel_id,
3856 outpoint: prev_funding_outpoint,
3857 htlc_id: prev_htlc_id,
3858 incoming_packet_shared_secret: incoming_shared_secret,
3859 phantom_shared_secret,
3861 // We differentiate the received value from the sender intended value
3862 // if possible so that we don't prematurely mark MPP payments complete
3863 // if routing nodes overpay
3864 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
3865 sender_intended_value: outgoing_amt_msat,
3867 total_value_received: None,
3868 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3871 counterparty_skimmed_fee_msat: skimmed_fee_msat,
3874 let mut committed_to_claimable = false;
3876 macro_rules! fail_htlc {
3877 ($htlc: expr, $payment_hash: expr) => {
3878 debug_assert!(!committed_to_claimable);
3879 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3880 htlc_msat_height_data.extend_from_slice(
3881 &self.best_block.read().unwrap().height().to_be_bytes(),
3883 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3884 short_channel_id: $htlc.prev_hop.short_channel_id,
3885 outpoint: prev_funding_outpoint,
3886 htlc_id: $htlc.prev_hop.htlc_id,
3887 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3888 phantom_shared_secret,
3890 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3891 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3893 continue 'next_forwardable_htlc;
3896 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3897 let mut receiver_node_id = self.our_network_pubkey;
3898 if phantom_shared_secret.is_some() {
3899 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3900 .expect("Failed to get node_id for phantom node recipient");
3903 macro_rules! check_total_value {
3904 ($purpose: expr) => {{
3905 let mut payment_claimable_generated = false;
3906 let is_keysend = match $purpose {
3907 events::PaymentPurpose::SpontaneousPayment(_) => true,
3908 events::PaymentPurpose::InvoicePayment { .. } => false,
3910 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3911 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3912 fail_htlc!(claimable_htlc, payment_hash);
3914 let ref mut claimable_payment = claimable_payments.claimable_payments
3915 .entry(payment_hash)
3916 // Note that if we insert here we MUST NOT fail_htlc!()
3917 .or_insert_with(|| {
3918 committed_to_claimable = true;
3920 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
3923 if $purpose != claimable_payment.purpose {
3924 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
3925 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), log_bytes!(payment_hash.0), log_keysend(!is_keysend));
3926 fail_htlc!(claimable_htlc, payment_hash);
3928 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
3929 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", log_bytes!(payment_hash.0));
3930 fail_htlc!(claimable_htlc, payment_hash);
3932 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
3933 if earlier_fields.check_merge(&mut onion_fields).is_err() {
3934 fail_htlc!(claimable_htlc, payment_hash);
3937 claimable_payment.onion_fields = Some(onion_fields);
3939 let ref mut htlcs = &mut claimable_payment.htlcs;
3940 let mut total_value = claimable_htlc.sender_intended_value;
3941 let mut earliest_expiry = claimable_htlc.cltv_expiry;
3942 for htlc in htlcs.iter() {
3943 total_value += htlc.sender_intended_value;
3944 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
3945 if htlc.total_msat != claimable_htlc.total_msat {
3946 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3947 log_bytes!(payment_hash.0), claimable_htlc.total_msat, htlc.total_msat);
3948 total_value = msgs::MAX_VALUE_MSAT;
3950 if total_value >= msgs::MAX_VALUE_MSAT { break; }
3952 // The condition determining whether an MPP is complete must
3953 // match exactly the condition used in `timer_tick_occurred`
3954 if total_value >= msgs::MAX_VALUE_MSAT {
3955 fail_htlc!(claimable_htlc, payment_hash);
3956 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
3957 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
3958 log_bytes!(payment_hash.0));
3959 fail_htlc!(claimable_htlc, payment_hash);
3960 } else if total_value >= claimable_htlc.total_msat {
3961 #[allow(unused_assignments)] {
3962 committed_to_claimable = true;
3964 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3965 htlcs.push(claimable_htlc);
3966 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
3967 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
3968 let counterparty_skimmed_fee_msat = htlcs.iter()
3969 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
3970 debug_assert!(total_value.saturating_sub(amount_msat) <=
3971 counterparty_skimmed_fee_msat);
3972 new_events.push_back((events::Event::PaymentClaimable {
3973 receiver_node_id: Some(receiver_node_id),
3977 counterparty_skimmed_fee_msat,
3978 via_channel_id: Some(prev_channel_id),
3979 via_user_channel_id: Some(prev_user_channel_id),
3980 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
3981 onion_fields: claimable_payment.onion_fields.clone(),
3983 payment_claimable_generated = true;
3985 // Nothing to do - we haven't reached the total
3986 // payment value yet, wait until we receive more
3988 htlcs.push(claimable_htlc);
3989 #[allow(unused_assignments)] {
3990 committed_to_claimable = true;
3993 payment_claimable_generated
3997 // Check that the payment hash and secret are known. Note that we
3998 // MUST take care to handle the "unknown payment hash" and
3999 // "incorrect payment secret" cases here identically or we'd expose
4000 // that we are the ultimate recipient of the given payment hash.
4001 // Further, we must not expose whether we have any other HTLCs
4002 // associated with the same payment_hash pending or not.
4003 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4004 match payment_secrets.entry(payment_hash) {
4005 hash_map::Entry::Vacant(_) => {
4006 match claimable_htlc.onion_payload {
4007 OnionPayload::Invoice { .. } => {
4008 let payment_data = payment_data.unwrap();
4009 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4010 Ok(result) => result,
4012 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
4013 fail_htlc!(claimable_htlc, payment_hash);
4016 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4017 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4018 if (cltv_expiry as u64) < expected_min_expiry_height {
4019 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4020 log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
4021 fail_htlc!(claimable_htlc, payment_hash);
4024 let purpose = events::PaymentPurpose::InvoicePayment {
4025 payment_preimage: payment_preimage.clone(),
4026 payment_secret: payment_data.payment_secret,
4028 check_total_value!(purpose);
4030 OnionPayload::Spontaneous(preimage) => {
4031 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4032 check_total_value!(purpose);
4036 hash_map::Entry::Occupied(inbound_payment) => {
4037 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4038 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
4039 fail_htlc!(claimable_htlc, payment_hash);
4041 let payment_data = payment_data.unwrap();
4042 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4043 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
4044 fail_htlc!(claimable_htlc, payment_hash);
4045 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4046 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4047 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4048 fail_htlc!(claimable_htlc, payment_hash);
4050 let purpose = events::PaymentPurpose::InvoicePayment {
4051 payment_preimage: inbound_payment.get().payment_preimage,
4052 payment_secret: payment_data.payment_secret,
4054 let payment_claimable_generated = check_total_value!(purpose);
4055 if payment_claimable_generated {
4056 inbound_payment.remove_entry();
4062 HTLCForwardInfo::FailHTLC { .. } => {
4063 panic!("Got pending fail of our own HTLC");
4071 let best_block_height = self.best_block.read().unwrap().height();
4072 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4073 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4074 &self.pending_events, &self.logger,
4075 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
4076 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv));
4078 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4079 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4081 self.forward_htlcs(&mut phantom_receives);
4083 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4084 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4085 // nice to do the work now if we can rather than while we're trying to get messages in the
4087 self.check_free_holding_cells();
4089 if new_events.is_empty() { return }
4090 let mut events = self.pending_events.lock().unwrap();
4091 events.append(&mut new_events);
4094 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4096 /// Expects the caller to have a total_consistency_lock read lock.
4097 fn process_background_events(&self) -> NotifyOption {
4098 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4100 #[cfg(debug_assertions)]
4101 self.background_events_processed_since_startup.store(true, Ordering::Release);
4103 let mut background_events = Vec::new();
4104 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4105 if background_events.is_empty() {
4106 return NotifyOption::SkipPersist;
4109 for event in background_events.drain(..) {
4111 BackgroundEvent::ClosingMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4112 // The channel has already been closed, so no use bothering to care about the
4113 // monitor updating completing.
4114 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4116 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4117 let mut updated_chan = false;
4119 let per_peer_state = self.per_peer_state.read().unwrap();
4120 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4121 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4122 let peer_state = &mut *peer_state_lock;
4123 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4124 hash_map::Entry::Occupied(mut chan) => {
4125 updated_chan = true;
4126 handle_new_monitor_update!(self, funding_txo, update.clone(),
4127 peer_state_lock, peer_state, per_peer_state, chan).map(|_| ())
4129 hash_map::Entry::Vacant(_) => Ok(()),
4134 // TODO: Track this as in-flight even though the channel is closed.
4135 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4137 // TODO: If this channel has since closed, we're likely providing a payment
4138 // preimage update, which we must ensure is durable! We currently don't,
4139 // however, ensure that.
4141 log_error!(self.logger,
4142 "Failed to provide ChannelMonitorUpdate to closed channel! This likely lost us a payment preimage!");
4144 let _ = handle_error!(self, res, counterparty_node_id);
4148 NotifyOption::DoPersist
4151 #[cfg(any(test, feature = "_test_utils"))]
4152 /// Process background events, for functional testing
4153 pub fn test_process_background_events(&self) {
4154 let _lck = self.total_consistency_lock.read().unwrap();
4155 let _ = self.process_background_events();
4158 fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
4159 if !chan.context.is_outbound() { return NotifyOption::SkipPersist; }
4160 // If the feerate has decreased by less than half, don't bother
4161 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4162 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4163 log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4164 return NotifyOption::SkipPersist;
4166 if !chan.context.is_live() {
4167 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4168 log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4169 return NotifyOption::SkipPersist;
4171 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4172 log_bytes!(chan_id[..]), chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4174 chan.queue_update_fee(new_feerate, &self.logger);
4175 NotifyOption::DoPersist
4179 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4180 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4181 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4182 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4183 pub fn maybe_update_chan_fees(&self) {
4184 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4185 let mut should_persist = self.process_background_events();
4187 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4189 let per_peer_state = self.per_peer_state.read().unwrap();
4190 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4191 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4192 let peer_state = &mut *peer_state_lock;
4193 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
4194 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4195 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4203 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4205 /// This currently includes:
4206 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4207 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4208 /// than a minute, informing the network that they should no longer attempt to route over
4210 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4211 /// with the current [`ChannelConfig`].
4212 /// * Removing peers which have disconnected but and no longer have any channels.
4214 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4215 /// estimate fetches.
4217 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4218 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4219 pub fn timer_tick_occurred(&self) {
4220 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4221 let mut should_persist = self.process_background_events();
4223 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4225 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4226 let mut timed_out_mpp_htlcs = Vec::new();
4227 let mut pending_peers_awaiting_removal = Vec::new();
4229 let per_peer_state = self.per_peer_state.read().unwrap();
4230 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4231 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4232 let peer_state = &mut *peer_state_lock;
4233 let pending_msg_events = &mut peer_state.pending_msg_events;
4234 let counterparty_node_id = *counterparty_node_id;
4235 peer_state.channel_by_id.retain(|chan_id, chan| {
4236 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4237 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4239 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4240 let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
4241 handle_errors.push((Err(err), counterparty_node_id));
4242 if needs_close { return false; }
4245 match chan.channel_update_status() {
4246 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4247 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4248 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4249 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4250 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4251 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4252 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4254 if n >= DISABLE_GOSSIP_TICKS {
4255 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4256 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4257 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4261 should_persist = NotifyOption::DoPersist;
4263 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4266 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4268 if n >= ENABLE_GOSSIP_TICKS {
4269 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4270 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4271 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4275 should_persist = NotifyOption::DoPersist;
4277 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4283 chan.context.maybe_expire_prev_config();
4285 if chan.should_disconnect_peer_awaiting_response() {
4286 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4287 counterparty_node_id, log_bytes!(*chan_id));
4288 pending_msg_events.push(MessageSendEvent::HandleError {
4289 node_id: counterparty_node_id,
4290 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4291 msg: msgs::WarningMessage {
4292 channel_id: *chan_id,
4293 data: "Disconnecting due to timeout awaiting response".to_owned(),
4301 if peer_state.ok_to_remove(true) {
4302 pending_peers_awaiting_removal.push(counterparty_node_id);
4307 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4308 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4309 // of to that peer is later closed while still being disconnected (i.e. force closed),
4310 // we therefore need to remove the peer from `peer_state` separately.
4311 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4312 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4313 // negative effects on parallelism as much as possible.
4314 if pending_peers_awaiting_removal.len() > 0 {
4315 let mut per_peer_state = self.per_peer_state.write().unwrap();
4316 for counterparty_node_id in pending_peers_awaiting_removal {
4317 match per_peer_state.entry(counterparty_node_id) {
4318 hash_map::Entry::Occupied(entry) => {
4319 // Remove the entry if the peer is still disconnected and we still
4320 // have no channels to the peer.
4321 let remove_entry = {
4322 let peer_state = entry.get().lock().unwrap();
4323 peer_state.ok_to_remove(true)
4326 entry.remove_entry();
4329 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4334 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4335 if payment.htlcs.is_empty() {
4336 // This should be unreachable
4337 debug_assert!(false);
4340 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4341 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4342 // In this case we're not going to handle any timeouts of the parts here.
4343 // This condition determining whether the MPP is complete here must match
4344 // exactly the condition used in `process_pending_htlc_forwards`.
4345 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4346 .fold(0, |total, htlc| total + htlc.sender_intended_value)
4349 } else if payment.htlcs.iter_mut().any(|htlc| {
4350 htlc.timer_ticks += 1;
4351 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
4353 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
4354 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
4361 for htlc_source in timed_out_mpp_htlcs.drain(..) {
4362 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
4363 let reason = HTLCFailReason::from_failure_code(23);
4364 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
4365 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
4368 for (err, counterparty_node_id) in handle_errors.drain(..) {
4369 let _ = handle_error!(self, err, counterparty_node_id);
4372 self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
4374 // Technically we don't need to do this here, but if we have holding cell entries in a
4375 // channel that need freeing, it's better to do that here and block a background task
4376 // than block the message queueing pipeline.
4377 if self.check_free_holding_cells() {
4378 should_persist = NotifyOption::DoPersist;
4385 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
4386 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
4387 /// along the path (including in our own channel on which we received it).
4389 /// Note that in some cases around unclean shutdown, it is possible the payment may have
4390 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
4391 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
4392 /// may have already been failed automatically by LDK if it was nearing its expiration time.
4394 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
4395 /// [`ChannelManager::claim_funds`]), you should still monitor for
4396 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
4397 /// startup during which time claims that were in-progress at shutdown may be replayed.
4398 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
4399 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
4402 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
4403 /// reason for the failure.
4405 /// See [`FailureCode`] for valid failure codes.
4406 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
4407 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4409 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
4410 if let Some(payment) = removed_source {
4411 for htlc in payment.htlcs {
4412 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
4413 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4414 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
4415 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4420 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
4421 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
4422 match failure_code {
4423 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
4424 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
4425 FailureCode::IncorrectOrUnknownPaymentDetails => {
4426 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4427 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4428 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
4433 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4434 /// that we want to return and a channel.
4436 /// This is for failures on the channel on which the HTLC was *received*, not failures
4438 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
4439 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
4440 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
4441 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
4442 // an inbound SCID alias before the real SCID.
4443 let scid_pref = if chan.context.should_announce() {
4444 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
4446 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
4448 if let Some(scid) = scid_pref {
4449 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
4451 (0x4000|10, Vec::new())
4456 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4457 /// that we want to return and a channel.
4458 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
4459 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
4460 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
4461 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
4462 if desired_err_code == 0x1000 | 20 {
4463 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
4464 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
4465 0u16.write(&mut enc).expect("Writes cannot fail");
4467 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
4468 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
4469 upd.write(&mut enc).expect("Writes cannot fail");
4470 (desired_err_code, enc.0)
4472 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
4473 // which means we really shouldn't have gotten a payment to be forwarded over this
4474 // channel yet, or if we did it's from a route hint. Either way, returning an error of
4475 // PERM|no_such_channel should be fine.
4476 (0x4000|10, Vec::new())
4480 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
4481 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
4482 // be surfaced to the user.
4483 fn fail_holding_cell_htlcs(
4484 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
4485 counterparty_node_id: &PublicKey
4487 let (failure_code, onion_failure_data) = {
4488 let per_peer_state = self.per_peer_state.read().unwrap();
4489 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
4490 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4491 let peer_state = &mut *peer_state_lock;
4492 match peer_state.channel_by_id.entry(channel_id) {
4493 hash_map::Entry::Occupied(chan_entry) => {
4494 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
4496 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
4498 } else { (0x4000|10, Vec::new()) }
4501 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
4502 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
4503 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
4504 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
4508 /// Fails an HTLC backwards to the sender of it to us.
4509 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
4510 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
4511 // Ensure that no peer state channel storage lock is held when calling this function.
4512 // This ensures that future code doesn't introduce a lock-order requirement for
4513 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
4514 // this function with any `per_peer_state` peer lock acquired would.
4515 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
4516 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
4519 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
4520 //identify whether we sent it or not based on the (I presume) very different runtime
4521 //between the branches here. We should make this async and move it into the forward HTLCs
4524 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4525 // from block_connected which may run during initialization prior to the chain_monitor
4526 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
4528 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
4529 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
4530 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
4531 &self.pending_events, &self.logger)
4532 { self.push_pending_forwards_ev(); }
4534 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
4535 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
4536 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
4538 let mut push_forward_ev = false;
4539 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4540 if forward_htlcs.is_empty() {
4541 push_forward_ev = true;
4543 match forward_htlcs.entry(*short_channel_id) {
4544 hash_map::Entry::Occupied(mut entry) => {
4545 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
4547 hash_map::Entry::Vacant(entry) => {
4548 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
4551 mem::drop(forward_htlcs);
4552 if push_forward_ev { self.push_pending_forwards_ev(); }
4553 let mut pending_events = self.pending_events.lock().unwrap();
4554 pending_events.push_back((events::Event::HTLCHandlingFailed {
4555 prev_channel_id: outpoint.to_channel_id(),
4556 failed_next_destination: destination,
4562 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
4563 /// [`MessageSendEvent`]s needed to claim the payment.
4565 /// This method is guaranteed to ensure the payment has been claimed but only if the current
4566 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
4567 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
4568 /// successful. It will generally be available in the next [`process_pending_events`] call.
4570 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
4571 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
4572 /// event matches your expectation. If you fail to do so and call this method, you may provide
4573 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
4575 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
4576 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
4577 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
4578 /// [`process_pending_events`]: EventsProvider::process_pending_events
4579 /// [`create_inbound_payment`]: Self::create_inbound_payment
4580 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4581 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
4582 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4584 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4587 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4588 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
4589 let mut receiver_node_id = self.our_network_pubkey;
4590 for htlc in payment.htlcs.iter() {
4591 if htlc.prev_hop.phantom_shared_secret.is_some() {
4592 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
4593 .expect("Failed to get node_id for phantom node recipient");
4594 receiver_node_id = phantom_pubkey;
4599 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
4600 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
4601 payment_purpose: payment.purpose, receiver_node_id,
4603 if dup_purpose.is_some() {
4604 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
4605 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
4606 log_bytes!(payment_hash.0));
4611 debug_assert!(!sources.is_empty());
4613 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
4614 // and when we got here we need to check that the amount we're about to claim matches the
4615 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
4616 // the MPP parts all have the same `total_msat`.
4617 let mut claimable_amt_msat = 0;
4618 let mut prev_total_msat = None;
4619 let mut expected_amt_msat = None;
4620 let mut valid_mpp = true;
4621 let mut errs = Vec::new();
4622 let per_peer_state = self.per_peer_state.read().unwrap();
4623 for htlc in sources.iter() {
4624 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
4625 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
4626 debug_assert!(false);
4630 prev_total_msat = Some(htlc.total_msat);
4632 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
4633 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
4634 debug_assert!(false);
4638 expected_amt_msat = htlc.total_value_received;
4639 claimable_amt_msat += htlc.value;
4641 mem::drop(per_peer_state);
4642 if sources.is_empty() || expected_amt_msat.is_none() {
4643 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4644 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4647 if claimable_amt_msat != expected_amt_msat.unwrap() {
4648 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4649 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4650 expected_amt_msat.unwrap(), claimable_amt_msat);
4654 for htlc in sources.drain(..) {
4655 if let Err((pk, err)) = self.claim_funds_from_hop(
4656 htlc.prev_hop, payment_preimage,
4657 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4659 if let msgs::ErrorAction::IgnoreError = err.err.action {
4660 // We got a temporary failure updating monitor, but will claim the
4661 // HTLC when the monitor updating is restored (or on chain).
4662 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4663 } else { errs.push((pk, err)); }
4668 for htlc in sources.drain(..) {
4669 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4670 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4671 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4672 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4673 let receiver = HTLCDestination::FailedPayment { payment_hash };
4674 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4676 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4679 // Now we can handle any errors which were generated.
4680 for (counterparty_node_id, err) in errs.drain(..) {
4681 let res: Result<(), _> = Err(err);
4682 let _ = handle_error!(self, res, counterparty_node_id);
4686 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4687 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4688 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4689 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4692 let per_peer_state = self.per_peer_state.read().unwrap();
4693 let chan_id = prev_hop.outpoint.to_channel_id();
4694 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4695 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4699 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4700 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
4701 .map(|peer_mutex| peer_mutex.lock().unwrap())
4704 if peer_state_opt.is_some() {
4705 let mut peer_state_lock = peer_state_opt.unwrap();
4706 let peer_state = &mut *peer_state_lock;
4707 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4708 let counterparty_node_id = chan.get().context.get_counterparty_node_id();
4709 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4711 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4712 if let Some(action) = completion_action(Some(htlc_value_msat)) {
4713 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4714 log_bytes!(chan_id), action);
4715 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4717 let res = handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
4718 peer_state, per_peer_state, chan);
4719 if let Err(e) = res {
4720 // TODO: This is a *critical* error - we probably updated the outbound edge
4721 // of the HTLC's monitor with a preimage. We should retry this monitor
4722 // update over and over again until morale improves.
4723 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4724 return Err((counterparty_node_id, e));
4731 let preimage_update = ChannelMonitorUpdate {
4732 update_id: CLOSED_CHANNEL_UPDATE_ID,
4733 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4737 // We update the ChannelMonitor on the backward link, after
4738 // receiving an `update_fulfill_htlc` from the forward link.
4739 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4740 if update_res != ChannelMonitorUpdateStatus::Completed {
4741 // TODO: This needs to be handled somehow - if we receive a monitor update
4742 // with a preimage we *must* somehow manage to propagate it to the upstream
4743 // channel, or we must have an ability to receive the same event and try
4744 // again on restart.
4745 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4746 payment_preimage, update_res);
4748 // Note that we do process the completion action here. This totally could be a
4749 // duplicate claim, but we have no way of knowing without interrogating the
4750 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4751 // generally always allowed to be duplicative (and it's specifically noted in
4752 // `PaymentForwarded`).
4753 self.handle_monitor_update_completion_actions(completion_action(None));
4757 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4758 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4761 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4763 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4764 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4766 HTLCSource::PreviousHopData(hop_data) => {
4767 let prev_outpoint = hop_data.outpoint;
4768 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4769 |htlc_claim_value_msat| {
4770 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4771 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4772 Some(claimed_htlc_value - forwarded_htlc_value)
4775 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
4776 event: events::Event::PaymentForwarded {
4778 claim_from_onchain_tx: from_onchain,
4779 prev_channel_id: Some(prev_outpoint.to_channel_id()),
4780 next_channel_id: Some(next_channel_id),
4781 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
4783 downstream_counterparty_and_funding_outpoint: None,
4787 if let Err((pk, err)) = res {
4788 let result: Result<(), _> = Err(err);
4789 let _ = handle_error!(self, result, pk);
4795 /// Gets the node_id held by this ChannelManager
4796 pub fn get_our_node_id(&self) -> PublicKey {
4797 self.our_network_pubkey.clone()
4800 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4801 for action in actions.into_iter() {
4803 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4804 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4805 if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4806 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
4807 payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4811 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
4812 event, downstream_counterparty_and_funding_outpoint
4814 self.pending_events.lock().unwrap().push_back((event, None));
4815 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
4816 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
4823 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4824 /// update completion.
4825 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4826 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4827 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4828 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4829 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4830 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4831 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4832 log_bytes!(channel.context.channel_id()),
4833 if raa.is_some() { "an" } else { "no" },
4834 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4835 if funding_broadcastable.is_some() { "" } else { "not " },
4836 if channel_ready.is_some() { "sending" } else { "without" },
4837 if announcement_sigs.is_some() { "sending" } else { "without" });
4839 let mut htlc_forwards = None;
4841 let counterparty_node_id = channel.context.get_counterparty_node_id();
4842 if !pending_forwards.is_empty() {
4843 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
4844 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
4847 if let Some(msg) = channel_ready {
4848 send_channel_ready!(self, pending_msg_events, channel, msg);
4850 if let Some(msg) = announcement_sigs {
4851 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4852 node_id: counterparty_node_id,
4857 macro_rules! handle_cs { () => {
4858 if let Some(update) = commitment_update {
4859 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4860 node_id: counterparty_node_id,
4865 macro_rules! handle_raa { () => {
4866 if let Some(revoke_and_ack) = raa {
4867 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4868 node_id: counterparty_node_id,
4869 msg: revoke_and_ack,
4874 RAACommitmentOrder::CommitmentFirst => {
4878 RAACommitmentOrder::RevokeAndACKFirst => {
4884 if let Some(tx) = funding_broadcastable {
4885 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4886 self.tx_broadcaster.broadcast_transactions(&[&tx]);
4890 let mut pending_events = self.pending_events.lock().unwrap();
4891 emit_channel_pending_event!(pending_events, channel);
4892 emit_channel_ready_event!(pending_events, channel);
4898 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4899 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4901 let counterparty_node_id = match counterparty_node_id {
4902 Some(cp_id) => cp_id.clone(),
4904 // TODO: Once we can rely on the counterparty_node_id from the
4905 // monitor event, this and the id_to_peer map should be removed.
4906 let id_to_peer = self.id_to_peer.lock().unwrap();
4907 match id_to_peer.get(&funding_txo.to_channel_id()) {
4908 Some(cp_id) => cp_id.clone(),
4913 let per_peer_state = self.per_peer_state.read().unwrap();
4914 let mut peer_state_lock;
4915 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4916 if peer_state_mutex_opt.is_none() { return }
4917 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4918 let peer_state = &mut *peer_state_lock;
4920 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4921 hash_map::Entry::Occupied(chan) => chan,
4922 hash_map::Entry::Vacant(_) => return,
4925 let remaining_in_flight =
4926 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
4927 pending.retain(|upd| upd.update_id > highest_applied_update_id);
4930 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
4931 highest_applied_update_id, channel.get().context.get_latest_monitor_update_id(),
4932 remaining_in_flight);
4933 if !channel.get().is_awaiting_monitor_update() || channel.get().context.get_latest_monitor_update_id() != highest_applied_update_id {
4936 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4939 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4941 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4942 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4945 /// The `user_channel_id` parameter will be provided back in
4946 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4947 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4949 /// Note that this method will return an error and reject the channel, if it requires support
4950 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4951 /// used to accept such channels.
4953 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4954 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4955 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4956 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4959 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4960 /// it as confirmed immediately.
4962 /// The `user_channel_id` parameter will be provided back in
4963 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4964 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4966 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4967 /// and (if the counterparty agrees), enables forwarding of payments immediately.
4969 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4970 /// transaction and blindly assumes that it will eventually confirm.
4972 /// If it does not confirm before we decide to close the channel, or if the funding transaction
4973 /// does not pay to the correct script the correct amount, *you will lose funds*.
4975 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4976 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4977 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4978 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4981 fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4982 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4984 let peers_without_funded_channels =
4985 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
4986 let per_peer_state = self.per_peer_state.read().unwrap();
4987 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4988 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4989 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4990 let peer_state = &mut *peer_state_lock;
4991 let is_only_peer_channel = peer_state.total_channel_count() == 1;
4992 match peer_state.inbound_v1_channel_by_id.entry(temporary_channel_id.clone()) {
4993 hash_map::Entry::Occupied(mut channel) => {
4994 if !channel.get().is_awaiting_accept() {
4995 return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4998 channel.get_mut().set_0conf();
4999 } else if channel.get().context.get_channel_type().requires_zero_conf() {
5000 let send_msg_err_event = events::MessageSendEvent::HandleError {
5001 node_id: channel.get().context.get_counterparty_node_id(),
5002 action: msgs::ErrorAction::SendErrorMessage{
5003 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5006 peer_state.pending_msg_events.push(send_msg_err_event);
5007 let _ = remove_channel!(self, channel);
5008 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5010 // If this peer already has some channels, a new channel won't increase our number of peers
5011 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5012 // channels per-peer we can accept channels from a peer with existing ones.
5013 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5014 let send_msg_err_event = events::MessageSendEvent::HandleError {
5015 node_id: channel.get().context.get_counterparty_node_id(),
5016 action: msgs::ErrorAction::SendErrorMessage{
5017 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5020 peer_state.pending_msg_events.push(send_msg_err_event);
5021 let _ = remove_channel!(self, channel);
5022 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5026 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5027 node_id: channel.get().context.get_counterparty_node_id(),
5028 msg: channel.get_mut().accept_inbound_channel(user_channel_id),
5031 hash_map::Entry::Vacant(_) => {
5032 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
5038 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5039 /// or 0-conf channels.
5041 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5042 /// non-0-conf channels we have with the peer.
5043 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5044 where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
5045 let mut peers_without_funded_channels = 0;
5046 let best_block_height = self.best_block.read().unwrap().height();
5048 let peer_state_lock = self.per_peer_state.read().unwrap();
5049 for (_, peer_mtx) in peer_state_lock.iter() {
5050 let peer = peer_mtx.lock().unwrap();
5051 if !maybe_count_peer(&*peer) { continue; }
5052 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5053 if num_unfunded_channels == peer.total_channel_count() {
5054 peers_without_funded_channels += 1;
5058 return peers_without_funded_channels;
5061 fn unfunded_channel_count(
5062 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
5064 let mut num_unfunded_channels = 0;
5065 for (_, chan) in peer.channel_by_id.iter() {
5066 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5067 // which have not yet had any confirmations on-chain.
5068 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5069 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5071 num_unfunded_channels += 1;
5074 for (_, chan) in peer.inbound_v1_channel_by_id.iter() {
5075 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5076 num_unfunded_channels += 1;
5079 num_unfunded_channels
5082 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5083 if msg.chain_hash != self.genesis_hash {
5084 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5087 if !self.default_configuration.accept_inbound_channels {
5088 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5091 let mut random_bytes = [0u8; 16];
5092 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5093 let user_channel_id = u128::from_be_bytes(random_bytes);
5094 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5096 // Get the number of peers with channels, but without funded ones. We don't care too much
5097 // about peers that never open a channel, so we filter by peers that have at least one
5098 // channel, and then limit the number of those with unfunded channels.
5099 let channeled_peers_without_funding =
5100 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5102 let per_peer_state = self.per_peer_state.read().unwrap();
5103 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5105 debug_assert!(false);
5106 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5108 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5109 let peer_state = &mut *peer_state_lock;
5111 // If this peer already has some channels, a new channel won't increase our number of peers
5112 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5113 // channels per-peer we can accept channels from a peer with existing ones.
5114 if peer_state.total_channel_count() == 0 &&
5115 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5116 !self.default_configuration.manually_accept_inbound_channels
5118 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5119 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5120 msg.temporary_channel_id.clone()));
5123 let best_block_height = self.best_block.read().unwrap().height();
5124 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5125 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5126 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5127 msg.temporary_channel_id.clone()));
5130 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5131 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5132 &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
5135 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
5136 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5140 let channel_id = channel.context.channel_id();
5141 let channel_exists = peer_state.has_channel(&channel_id);
5143 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
5144 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
5146 if !self.default_configuration.manually_accept_inbound_channels {
5147 let channel_type = channel.context.get_channel_type();
5148 if channel_type.requires_zero_conf() {
5149 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5151 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5152 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5154 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5155 node_id: counterparty_node_id.clone(),
5156 msg: channel.accept_inbound_channel(user_channel_id),
5159 let mut pending_events = self.pending_events.lock().unwrap();
5160 pending_events.push_back((events::Event::OpenChannelRequest {
5161 temporary_channel_id: msg.temporary_channel_id.clone(),
5162 counterparty_node_id: counterparty_node_id.clone(),
5163 funding_satoshis: msg.funding_satoshis,
5164 push_msat: msg.push_msat,
5165 channel_type: channel.context.get_channel_type().clone(),
5168 peer_state.inbound_v1_channel_by_id.insert(channel_id, channel);
5173 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
5174 let (value, output_script, user_id) = {
5175 let per_peer_state = self.per_peer_state.read().unwrap();
5176 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5178 debug_assert!(false);
5179 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5181 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5182 let peer_state = &mut *peer_state_lock;
5183 match peer_state.outbound_v1_channel_by_id.entry(msg.temporary_channel_id) {
5184 hash_map::Entry::Occupied(mut chan) => {
5185 try_v1_outbound_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
5186 (chan.get().context.get_value_satoshis(), chan.get().context.get_funding_redeemscript().to_v0_p2wsh(), chan.get().context.get_user_id())
5188 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
5191 let mut pending_events = self.pending_events.lock().unwrap();
5192 pending_events.push_back((events::Event::FundingGenerationReady {
5193 temporary_channel_id: msg.temporary_channel_id,
5194 counterparty_node_id: *counterparty_node_id,
5195 channel_value_satoshis: value,
5197 user_channel_id: user_id,
5202 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
5203 let best_block = *self.best_block.read().unwrap();
5205 let per_peer_state = self.per_peer_state.read().unwrap();
5206 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5208 debug_assert!(false);
5209 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5212 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5213 let peer_state = &mut *peer_state_lock;
5214 let (chan, funding_msg, monitor) =
5215 match peer_state.inbound_v1_channel_by_id.remove(&msg.temporary_channel_id) {
5216 Some(inbound_chan) => {
5217 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
5219 Err((mut inbound_chan, err)) => {
5220 // We've already removed this inbound channel from the map in `PeerState`
5221 // above so at this point we just need to clean up any lingering entries
5222 // concerning this channel as it is safe to do so.
5223 update_maps_on_chan_removal!(self, &inbound_chan.context);
5224 let user_id = inbound_chan.context.get_user_id();
5225 let shutdown_res = inbound_chan.context.force_shutdown(false);
5226 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
5227 msg.temporary_channel_id, user_id, shutdown_res, None));
5231 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
5234 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
5235 hash_map::Entry::Occupied(_) => {
5236 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
5238 hash_map::Entry::Vacant(e) => {
5239 match self.id_to_peer.lock().unwrap().entry(chan.context.channel_id()) {
5240 hash_map::Entry::Occupied(_) => {
5241 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5242 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
5243 funding_msg.channel_id))
5245 hash_map::Entry::Vacant(i_e) => {
5246 i_e.insert(chan.context.get_counterparty_node_id());
5250 // There's no problem signing a counterparty's funding transaction if our monitor
5251 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
5252 // accepted payment from yet. We do, however, need to wait to send our channel_ready
5253 // until we have persisted our monitor.
5254 let new_channel_id = funding_msg.channel_id;
5255 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
5256 node_id: counterparty_node_id.clone(),
5260 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
5262 let chan = e.insert(chan);
5263 let mut res = handle_new_monitor_update!(self, monitor_res, peer_state_lock, peer_state,
5264 per_peer_state, chan, MANUALLY_REMOVING_INITIAL_MONITOR,
5265 { peer_state.channel_by_id.remove(&new_channel_id) });
5267 // Note that we reply with the new channel_id in error messages if we gave up on the
5268 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
5269 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
5270 // any messages referencing a previously-closed channel anyway.
5271 // We do not propagate the monitor update to the user as it would be for a monitor
5272 // that we didn't manage to store (and that we don't care about - we don't respond
5273 // with the funding_signed so the channel can never go on chain).
5274 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
5282 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
5283 let best_block = *self.best_block.read().unwrap();
5284 let per_peer_state = self.per_peer_state.read().unwrap();
5285 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5287 debug_assert!(false);
5288 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5291 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5292 let peer_state = &mut *peer_state_lock;
5293 match peer_state.channel_by_id.entry(msg.channel_id) {
5294 hash_map::Entry::Occupied(mut chan) => {
5295 let monitor = try_chan_entry!(self,
5296 chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
5297 let update_res = self.chain_monitor.watch_channel(chan.get().context.get_funding_txo().unwrap(), monitor);
5298 let mut res = handle_new_monitor_update!(self, update_res, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
5299 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
5300 // We weren't able to watch the channel to begin with, so no updates should be made on
5301 // it. Previously, full_stack_target found an (unreachable) panic when the
5302 // monitor update contained within `shutdown_finish` was applied.
5303 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
5304 shutdown_finish.0.take();
5309 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5313 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
5314 let per_peer_state = self.per_peer_state.read().unwrap();
5315 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5317 debug_assert!(false);
5318 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5320 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5321 let peer_state = &mut *peer_state_lock;
5322 match peer_state.channel_by_id.entry(msg.channel_id) {
5323 hash_map::Entry::Occupied(mut chan) => {
5324 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
5325 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
5326 if let Some(announcement_sigs) = announcement_sigs_opt {
5327 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().context.channel_id()));
5328 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5329 node_id: counterparty_node_id.clone(),
5330 msg: announcement_sigs,
5332 } else if chan.get().context.is_usable() {
5333 // If we're sending an announcement_signatures, we'll send the (public)
5334 // channel_update after sending a channel_announcement when we receive our
5335 // counterparty's announcement_signatures. Thus, we only bother to send a
5336 // channel_update here if the channel is not public, i.e. we're not sending an
5337 // announcement_signatures.
5338 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().context.channel_id()));
5339 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5340 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5341 node_id: counterparty_node_id.clone(),
5348 let mut pending_events = self.pending_events.lock().unwrap();
5349 emit_channel_ready_event!(pending_events, chan.get_mut());
5354 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5358 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
5359 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
5360 let result: Result<(), _> = loop {
5361 let per_peer_state = self.per_peer_state.read().unwrap();
5362 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5364 debug_assert!(false);
5365 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5367 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5368 let peer_state = &mut *peer_state_lock;
5369 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
5370 hash_map::Entry::Occupied(mut chan_entry) => {
5372 if !chan_entry.get().received_shutdown() {
5373 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
5374 log_bytes!(msg.channel_id),
5375 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
5378 let funding_txo_opt = chan_entry.get().context.get_funding_txo();
5379 let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
5380 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
5381 dropped_htlcs = htlcs;
5383 if let Some(msg) = shutdown {
5384 // We can send the `shutdown` message before updating the `ChannelMonitor`
5385 // here as we don't need the monitor update to complete until we send a
5386 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
5387 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5388 node_id: *counterparty_node_id,
5393 // Update the monitor with the shutdown script if necessary.
5394 if let Some(monitor_update) = monitor_update_opt {
5395 break handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
5396 peer_state_lock, peer_state, per_peer_state, chan_entry).map(|_| ());
5400 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5403 for htlc_source in dropped_htlcs.drain(..) {
5404 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
5405 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5406 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
5412 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
5413 let per_peer_state = self.per_peer_state.read().unwrap();
5414 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5416 debug_assert!(false);
5417 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5419 let (tx, chan_option) = {
5420 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5421 let peer_state = &mut *peer_state_lock;
5422 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
5423 hash_map::Entry::Occupied(mut chan_entry) => {
5424 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
5425 if let Some(msg) = closing_signed {
5426 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5427 node_id: counterparty_node_id.clone(),
5432 // We're done with this channel, we've got a signed closing transaction and
5433 // will send the closing_signed back to the remote peer upon return. This
5434 // also implies there are no pending HTLCs left on the channel, so we can
5435 // fully delete it from tracking (the channel monitor is still around to
5436 // watch for old state broadcasts)!
5437 (tx, Some(remove_channel!(self, chan_entry)))
5438 } else { (tx, None) }
5440 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5443 if let Some(broadcast_tx) = tx {
5444 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
5445 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
5447 if let Some(chan) = chan_option {
5448 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5449 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5450 let peer_state = &mut *peer_state_lock;
5451 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5455 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
5460 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
5461 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
5462 //determine the state of the payment based on our response/if we forward anything/the time
5463 //we take to respond. We should take care to avoid allowing such an attack.
5465 //TODO: There exists a further attack where a node may garble the onion data, forward it to
5466 //us repeatedly garbled in different ways, and compare our error messages, which are
5467 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
5468 //but we should prevent it anyway.
5470 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
5471 let per_peer_state = self.per_peer_state.read().unwrap();
5472 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5474 debug_assert!(false);
5475 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5477 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5478 let peer_state = &mut *peer_state_lock;
5479 match peer_state.channel_by_id.entry(msg.channel_id) {
5480 hash_map::Entry::Occupied(mut chan) => {
5482 let pending_forward_info = match decoded_hop_res {
5483 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
5484 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
5485 chan.get().context.config().accept_underpaying_htlcs, next_packet_pk_opt),
5486 Err(e) => PendingHTLCStatus::Fail(e)
5488 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
5489 // If the update_add is completely bogus, the call will Err and we will close,
5490 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
5491 // want to reject the new HTLC and fail it backwards instead of forwarding.
5492 match pending_forward_info {
5493 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
5494 let reason = if (error_code & 0x1000) != 0 {
5495 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
5496 HTLCFailReason::reason(real_code, error_data)
5498 HTLCFailReason::from_failure_code(error_code)
5499 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
5500 let msg = msgs::UpdateFailHTLC {
5501 channel_id: msg.channel_id,
5502 htlc_id: msg.htlc_id,
5505 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
5507 _ => pending_forward_info
5510 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
5512 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5517 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
5518 let (htlc_source, forwarded_htlc_value) = {
5519 let per_peer_state = self.per_peer_state.read().unwrap();
5520 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5522 debug_assert!(false);
5523 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5525 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5526 let peer_state = &mut *peer_state_lock;
5527 match peer_state.channel_by_id.entry(msg.channel_id) {
5528 hash_map::Entry::Occupied(mut chan) => {
5529 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
5531 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5534 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
5538 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
5539 let per_peer_state = self.per_peer_state.read().unwrap();
5540 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5542 debug_assert!(false);
5543 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5545 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5546 let peer_state = &mut *peer_state_lock;
5547 match peer_state.channel_by_id.entry(msg.channel_id) {
5548 hash_map::Entry::Occupied(mut chan) => {
5549 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
5551 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5556 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
5557 let per_peer_state = self.per_peer_state.read().unwrap();
5558 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5560 debug_assert!(false);
5561 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5563 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5564 let peer_state = &mut *peer_state_lock;
5565 match peer_state.channel_by_id.entry(msg.channel_id) {
5566 hash_map::Entry::Occupied(mut chan) => {
5567 if (msg.failure_code & 0x8000) == 0 {
5568 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
5569 try_chan_entry!(self, Err(chan_err), chan);
5571 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
5574 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5578 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
5579 let per_peer_state = self.per_peer_state.read().unwrap();
5580 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5582 debug_assert!(false);
5583 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5585 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5586 let peer_state = &mut *peer_state_lock;
5587 match peer_state.channel_by_id.entry(msg.channel_id) {
5588 hash_map::Entry::Occupied(mut chan) => {
5589 let funding_txo = chan.get().context.get_funding_txo();
5590 let monitor_update_opt = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
5591 if let Some(monitor_update) = monitor_update_opt {
5592 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
5593 peer_state, per_peer_state, chan).map(|_| ())
5596 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5601 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
5602 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
5603 let mut push_forward_event = false;
5604 let mut new_intercept_events = VecDeque::new();
5605 let mut failed_intercept_forwards = Vec::new();
5606 if !pending_forwards.is_empty() {
5607 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
5608 let scid = match forward_info.routing {
5609 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
5610 PendingHTLCRouting::Receive { .. } => 0,
5611 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
5613 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
5614 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
5616 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5617 let forward_htlcs_empty = forward_htlcs.is_empty();
5618 match forward_htlcs.entry(scid) {
5619 hash_map::Entry::Occupied(mut entry) => {
5620 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5621 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
5623 hash_map::Entry::Vacant(entry) => {
5624 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
5625 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
5627 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
5628 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
5629 match pending_intercepts.entry(intercept_id) {
5630 hash_map::Entry::Vacant(entry) => {
5631 new_intercept_events.push_back((events::Event::HTLCIntercepted {
5632 requested_next_hop_scid: scid,
5633 payment_hash: forward_info.payment_hash,
5634 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
5635 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
5638 entry.insert(PendingAddHTLCInfo {
5639 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
5641 hash_map::Entry::Occupied(_) => {
5642 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
5643 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5644 short_channel_id: prev_short_channel_id,
5645 outpoint: prev_funding_outpoint,
5646 htlc_id: prev_htlc_id,
5647 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
5648 phantom_shared_secret: None,
5651 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
5652 HTLCFailReason::from_failure_code(0x4000 | 10),
5653 HTLCDestination::InvalidForward { requested_forward_scid: scid },
5658 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
5659 // payments are being processed.
5660 if forward_htlcs_empty {
5661 push_forward_event = true;
5663 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5664 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
5671 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
5672 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5675 if !new_intercept_events.is_empty() {
5676 let mut events = self.pending_events.lock().unwrap();
5677 events.append(&mut new_intercept_events);
5679 if push_forward_event { self.push_pending_forwards_ev() }
5683 // We only want to push a PendingHTLCsForwardable event if no others are queued.
5684 fn push_pending_forwards_ev(&self) {
5685 let mut pending_events = self.pending_events.lock().unwrap();
5686 let forward_ev_exists = pending_events.iter()
5687 .find(|(ev, _)| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
5689 if !forward_ev_exists {
5690 pending_events.push_back((events::Event::PendingHTLCsForwardable {
5692 Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
5697 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
5698 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other event
5699 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
5700 /// the [`ChannelMonitorUpdate`] in question.
5701 fn raa_monitor_updates_held(&self,
5702 actions_blocking_raa_monitor_updates: &BTreeMap<[u8; 32], Vec<RAAMonitorUpdateBlockingAction>>,
5703 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
5705 actions_blocking_raa_monitor_updates
5706 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
5707 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
5708 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5709 channel_funding_outpoint,
5710 counterparty_node_id,
5715 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5716 let (htlcs_to_fail, res) = {
5717 let per_peer_state = self.per_peer_state.read().unwrap();
5718 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
5720 debug_assert!(false);
5721 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5722 }).map(|mtx| mtx.lock().unwrap())?;
5723 let peer_state = &mut *peer_state_lock;
5724 match peer_state.channel_by_id.entry(msg.channel_id) {
5725 hash_map::Entry::Occupied(mut chan) => {
5726 let funding_txo = chan.get().context.get_funding_txo();
5727 let (htlcs_to_fail, monitor_update_opt) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5728 let res = if let Some(monitor_update) = monitor_update_opt {
5729 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
5730 peer_state_lock, peer_state, per_peer_state, chan).map(|_| ())
5732 (htlcs_to_fail, res)
5734 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5737 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5741 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5742 let per_peer_state = self.per_peer_state.read().unwrap();
5743 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5745 debug_assert!(false);
5746 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5748 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5749 let peer_state = &mut *peer_state_lock;
5750 match peer_state.channel_by_id.entry(msg.channel_id) {
5751 hash_map::Entry::Occupied(mut chan) => {
5752 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5754 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5759 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5760 let per_peer_state = self.per_peer_state.read().unwrap();
5761 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5763 debug_assert!(false);
5764 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5766 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5767 let peer_state = &mut *peer_state_lock;
5768 match peer_state.channel_by_id.entry(msg.channel_id) {
5769 hash_map::Entry::Occupied(mut chan) => {
5770 if !chan.get().context.is_usable() {
5771 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5774 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5775 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5776 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5777 msg, &self.default_configuration
5779 // Note that announcement_signatures fails if the channel cannot be announced,
5780 // so get_channel_update_for_broadcast will never fail by the time we get here.
5781 update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5784 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5789 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5790 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5791 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5792 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5794 // It's not a local channel
5795 return Ok(NotifyOption::SkipPersist)
5798 let per_peer_state = self.per_peer_state.read().unwrap();
5799 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5800 if peer_state_mutex_opt.is_none() {
5801 return Ok(NotifyOption::SkipPersist)
5803 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5804 let peer_state = &mut *peer_state_lock;
5805 match peer_state.channel_by_id.entry(chan_id) {
5806 hash_map::Entry::Occupied(mut chan) => {
5807 if chan.get().context.get_counterparty_node_id() != *counterparty_node_id {
5808 if chan.get().context.should_announce() {
5809 // If the announcement is about a channel of ours which is public, some
5810 // other peer may simply be forwarding all its gossip to us. Don't provide
5811 // a scary-looking error message and return Ok instead.
5812 return Ok(NotifyOption::SkipPersist);
5814 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5816 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().context.get_counterparty_node_id().serialize()[..];
5817 let msg_from_node_one = msg.contents.flags & 1 == 0;
5818 if were_node_one == msg_from_node_one {
5819 return Ok(NotifyOption::SkipPersist);
5821 log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5822 try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5825 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5827 Ok(NotifyOption::DoPersist)
5830 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5832 let need_lnd_workaround = {
5833 let per_peer_state = self.per_peer_state.read().unwrap();
5835 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5837 debug_assert!(false);
5838 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5840 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5841 let peer_state = &mut *peer_state_lock;
5842 match peer_state.channel_by_id.entry(msg.channel_id) {
5843 hash_map::Entry::Occupied(mut chan) => {
5844 // Currently, we expect all holding cell update_adds to be dropped on peer
5845 // disconnect, so Channel's reestablish will never hand us any holding cell
5846 // freed HTLCs to fail backwards. If in the future we no longer drop pending
5847 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5848 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5849 msg, &self.logger, &self.node_signer, self.genesis_hash,
5850 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5851 let mut channel_update = None;
5852 if let Some(msg) = responses.shutdown_msg {
5853 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5854 node_id: counterparty_node_id.clone(),
5857 } else if chan.get().context.is_usable() {
5858 // If the channel is in a usable state (ie the channel is not being shut
5859 // down), send a unicast channel_update to our counterparty to make sure
5860 // they have the latest channel parameters.
5861 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5862 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5863 node_id: chan.get().context.get_counterparty_node_id(),
5868 let need_lnd_workaround = chan.get_mut().context.workaround_lnd_bug_4006.take();
5869 htlc_forwards = self.handle_channel_resumption(
5870 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5871 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5872 if let Some(upd) = channel_update {
5873 peer_state.pending_msg_events.push(upd);
5877 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5881 if let Some(forwards) = htlc_forwards {
5882 self.forward_htlcs(&mut [forwards][..]);
5885 if let Some(channel_ready_msg) = need_lnd_workaround {
5886 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5891 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
5892 fn process_pending_monitor_events(&self) -> bool {
5893 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5895 let mut failed_channels = Vec::new();
5896 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5897 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5898 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5899 for monitor_event in monitor_events.drain(..) {
5900 match monitor_event {
5901 MonitorEvent::HTLCEvent(htlc_update) => {
5902 if let Some(preimage) = htlc_update.payment_preimage {
5903 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5904 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5906 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5907 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5908 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5909 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5912 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5913 MonitorEvent::UpdateFailed(funding_outpoint) => {
5914 let counterparty_node_id_opt = match counterparty_node_id {
5915 Some(cp_id) => Some(cp_id),
5917 // TODO: Once we can rely on the counterparty_node_id from the
5918 // monitor event, this and the id_to_peer map should be removed.
5919 let id_to_peer = self.id_to_peer.lock().unwrap();
5920 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5923 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5924 let per_peer_state = self.per_peer_state.read().unwrap();
5925 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5926 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5927 let peer_state = &mut *peer_state_lock;
5928 let pending_msg_events = &mut peer_state.pending_msg_events;
5929 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5930 let mut chan = remove_channel!(self, chan_entry);
5931 failed_channels.push(chan.context.force_shutdown(false));
5932 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5933 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5937 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5938 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5940 ClosureReason::CommitmentTxConfirmed
5942 self.issue_channel_close_events(&chan.context, reason);
5943 pending_msg_events.push(events::MessageSendEvent::HandleError {
5944 node_id: chan.context.get_counterparty_node_id(),
5945 action: msgs::ErrorAction::SendErrorMessage {
5946 msg: msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() }
5953 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5954 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5960 for failure in failed_channels.drain(..) {
5961 self.finish_force_close_channel(failure);
5964 has_pending_monitor_events
5967 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5968 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5969 /// update events as a separate process method here.
5971 pub fn process_monitor_events(&self) {
5972 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5973 self.process_pending_monitor_events();
5976 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5977 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5978 /// update was applied.
5979 fn check_free_holding_cells(&self) -> bool {
5980 let mut has_monitor_update = false;
5981 let mut failed_htlcs = Vec::new();
5982 let mut handle_errors = Vec::new();
5984 // Walk our list of channels and find any that need to update. Note that when we do find an
5985 // update, if it includes actions that must be taken afterwards, we have to drop the
5986 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5987 // manage to go through all our peers without finding a single channel to update.
5989 let per_peer_state = self.per_peer_state.read().unwrap();
5990 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5992 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5993 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5994 for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5995 let counterparty_node_id = chan.context.get_counterparty_node_id();
5996 let funding_txo = chan.context.get_funding_txo();
5997 let (monitor_opt, holding_cell_failed_htlcs) =
5998 chan.maybe_free_holding_cell_htlcs(&self.logger);
5999 if !holding_cell_failed_htlcs.is_empty() {
6000 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
6002 if let Some(monitor_update) = monitor_opt {
6003 has_monitor_update = true;
6005 let channel_id: [u8; 32] = *channel_id;
6006 let res = handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
6007 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
6008 peer_state.channel_by_id.remove(&channel_id));
6010 handle_errors.push((counterparty_node_id, res));
6012 continue 'peer_loop;
6021 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
6022 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
6023 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
6026 for (counterparty_node_id, err) in handle_errors.drain(..) {
6027 let _ = handle_error!(self, err, counterparty_node_id);
6033 /// Check whether any channels have finished removing all pending updates after a shutdown
6034 /// exchange and can now send a closing_signed.
6035 /// Returns whether any closing_signed messages were generated.
6036 fn maybe_generate_initial_closing_signed(&self) -> bool {
6037 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
6038 let mut has_update = false;
6040 let per_peer_state = self.per_peer_state.read().unwrap();
6042 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6043 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6044 let peer_state = &mut *peer_state_lock;
6045 let pending_msg_events = &mut peer_state.pending_msg_events;
6046 peer_state.channel_by_id.retain(|channel_id, chan| {
6047 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
6048 Ok((msg_opt, tx_opt)) => {
6049 if let Some(msg) = msg_opt {
6051 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6052 node_id: chan.context.get_counterparty_node_id(), msg,
6055 if let Some(tx) = tx_opt {
6056 // We're done with this channel. We got a closing_signed and sent back
6057 // a closing_signed with a closing transaction to broadcast.
6058 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6059 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6064 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6066 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
6067 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6068 update_maps_on_chan_removal!(self, &chan.context);
6074 let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
6075 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
6083 for (counterparty_node_id, err) in handle_errors.drain(..) {
6084 let _ = handle_error!(self, err, counterparty_node_id);
6090 /// Handle a list of channel failures during a block_connected or block_disconnected call,
6091 /// pushing the channel monitor update (if any) to the background events queue and removing the
6093 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
6094 for mut failure in failed_channels.drain(..) {
6095 // Either a commitment transactions has been confirmed on-chain or
6096 // Channel::block_disconnected detected that the funding transaction has been
6097 // reorganized out of the main chain.
6098 // We cannot broadcast our latest local state via monitor update (as
6099 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
6100 // so we track the update internally and handle it when the user next calls
6101 // timer_tick_occurred, guaranteeing we're running normally.
6102 if let Some((counterparty_node_id, funding_txo, update)) = failure.0.take() {
6103 assert_eq!(update.updates.len(), 1);
6104 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
6105 assert!(should_broadcast);
6106 } else { unreachable!(); }
6107 self.pending_background_events.lock().unwrap().push(
6108 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6109 counterparty_node_id, funding_txo, update
6112 self.finish_force_close_channel(failure);
6116 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
6119 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
6120 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
6122 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
6123 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
6124 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
6125 /// passed directly to [`claim_funds`].
6127 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
6129 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
6130 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
6134 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
6135 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
6137 /// Errors if `min_value_msat` is greater than total bitcoin supply.
6139 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
6140 /// on versions of LDK prior to 0.0.114.
6142 /// [`claim_funds`]: Self::claim_funds
6143 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
6144 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
6145 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
6146 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
6147 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6148 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
6149 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
6150 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
6151 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
6152 min_final_cltv_expiry_delta)
6155 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
6156 /// stored external to LDK.
6158 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
6159 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
6160 /// the `min_value_msat` provided here, if one is provided.
6162 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
6163 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
6166 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
6167 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
6168 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
6169 /// sender "proof-of-payment" unless they have paid the required amount.
6171 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
6172 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
6173 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
6174 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
6175 /// invoices when no timeout is set.
6177 /// Note that we use block header time to time-out pending inbound payments (with some margin
6178 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
6179 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
6180 /// If you need exact expiry semantics, you should enforce them upon receipt of
6181 /// [`PaymentClaimable`].
6183 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
6184 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
6186 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
6187 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
6191 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
6192 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
6194 /// Errors if `min_value_msat` is greater than total bitcoin supply.
6196 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
6197 /// on versions of LDK prior to 0.0.114.
6199 /// [`create_inbound_payment`]: Self::create_inbound_payment
6200 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
6201 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
6202 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
6203 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
6204 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
6205 min_final_cltv_expiry)
6208 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
6209 /// previously returned from [`create_inbound_payment`].
6211 /// [`create_inbound_payment`]: Self::create_inbound_payment
6212 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
6213 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
6216 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
6217 /// are used when constructing the phantom invoice's route hints.
6219 /// [phantom node payments]: crate::sign::PhantomKeysManager
6220 pub fn get_phantom_scid(&self) -> u64 {
6221 let best_block_height = self.best_block.read().unwrap().height();
6222 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
6224 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
6225 // Ensure the generated scid doesn't conflict with a real channel.
6226 match short_to_chan_info.get(&scid_candidate) {
6227 Some(_) => continue,
6228 None => return scid_candidate
6233 /// Gets route hints for use in receiving [phantom node payments].
6235 /// [phantom node payments]: crate::sign::PhantomKeysManager
6236 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
6238 channels: self.list_usable_channels(),
6239 phantom_scid: self.get_phantom_scid(),
6240 real_node_pubkey: self.get_our_node_id(),
6244 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
6245 /// used when constructing the route hints for HTLCs intended to be intercepted. See
6246 /// [`ChannelManager::forward_intercepted_htlc`].
6248 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
6249 /// times to get a unique scid.
6250 pub fn get_intercept_scid(&self) -> u64 {
6251 let best_block_height = self.best_block.read().unwrap().height();
6252 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
6254 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
6255 // Ensure the generated scid doesn't conflict with a real channel.
6256 if short_to_chan_info.contains_key(&scid_candidate) { continue }
6257 return scid_candidate
6261 /// Gets inflight HTLC information by processing pending outbound payments that are in
6262 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
6263 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
6264 let mut inflight_htlcs = InFlightHtlcs::new();
6266 let per_peer_state = self.per_peer_state.read().unwrap();
6267 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6268 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6269 let peer_state = &mut *peer_state_lock;
6270 for chan in peer_state.channel_by_id.values() {
6271 for (htlc_source, _) in chan.inflight_htlc_sources() {
6272 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
6273 inflight_htlcs.process_path(path, self.get_our_node_id());
6282 #[cfg(any(test, feature = "_test_utils"))]
6283 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
6284 let events = core::cell::RefCell::new(Vec::new());
6285 let event_handler = |event: events::Event| events.borrow_mut().push(event);
6286 self.process_pending_events(&event_handler);
6290 #[cfg(feature = "_test_utils")]
6291 pub fn push_pending_event(&self, event: events::Event) {
6292 let mut events = self.pending_events.lock().unwrap();
6293 events.push_back((event, None));
6297 pub fn pop_pending_event(&self) -> Option<events::Event> {
6298 let mut events = self.pending_events.lock().unwrap();
6299 events.pop_front().map(|(e, _)| e)
6303 pub fn has_pending_payments(&self) -> bool {
6304 self.pending_outbound_payments.has_pending_payments()
6308 pub fn clear_pending_payments(&self) {
6309 self.pending_outbound_payments.clear_pending_payments()
6312 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
6313 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
6314 /// operation. It will double-check that nothing *else* is also blocking the same channel from
6315 /// making progress and then any blocked [`ChannelMonitorUpdate`]s fly.
6316 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
6317 let mut errors = Vec::new();
6319 let per_peer_state = self.per_peer_state.read().unwrap();
6320 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6321 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6322 let peer_state = &mut *peer_state_lck;
6324 if let Some(blocker) = completed_blocker.take() {
6325 // Only do this on the first iteration of the loop.
6326 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
6327 .get_mut(&channel_funding_outpoint.to_channel_id())
6329 blockers.retain(|iter| iter != &blocker);
6333 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6334 channel_funding_outpoint, counterparty_node_id) {
6335 // Check that, while holding the peer lock, we don't have anything else
6336 // blocking monitor updates for this channel. If we do, release the monitor
6337 // update(s) when those blockers complete.
6338 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
6339 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
6343 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
6344 debug_assert_eq!(chan.get().context.get_funding_txo().unwrap(), channel_funding_outpoint);
6345 if let Some((monitor_update, further_update_exists)) = chan.get_mut().unblock_next_blocked_monitor_update() {
6346 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
6347 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
6348 if let Err(e) = handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
6349 peer_state_lck, peer_state, per_peer_state, chan)
6351 errors.push((e, counterparty_node_id));
6353 if further_update_exists {
6354 // If there are more `ChannelMonitorUpdate`s to process, restart at the
6359 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
6360 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
6364 log_debug!(self.logger,
6365 "Got a release post-RAA monitor update for peer {} but the channel is gone",
6366 log_pubkey!(counterparty_node_id));
6370 for (err, counterparty_node_id) in errors {
6371 let res = Err::<(), _>(err);
6372 let _ = handle_error!(self, res, counterparty_node_id);
6376 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
6377 for action in actions {
6379 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6380 channel_funding_outpoint, counterparty_node_id
6382 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
6388 /// Processes any events asynchronously in the order they were generated since the last call
6389 /// using the given event handler.
6391 /// See the trait-level documentation of [`EventsProvider`] for requirements.
6392 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
6396 process_events_body!(self, ev, { handler(ev).await });
6400 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
6402 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6403 T::Target: BroadcasterInterface,
6404 ES::Target: EntropySource,
6405 NS::Target: NodeSigner,
6406 SP::Target: SignerProvider,
6407 F::Target: FeeEstimator,
6411 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
6412 /// The returned array will contain `MessageSendEvent`s for different peers if
6413 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
6414 /// is always placed next to each other.
6416 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
6417 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
6418 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
6419 /// will randomly be placed first or last in the returned array.
6421 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
6422 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
6423 /// the `MessageSendEvent`s to the specific peer they were generated under.
6424 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
6425 let events = RefCell::new(Vec::new());
6426 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6427 let mut result = self.process_background_events();
6429 // TODO: This behavior should be documented. It's unintuitive that we query
6430 // ChannelMonitors when clearing other events.
6431 if self.process_pending_monitor_events() {
6432 result = NotifyOption::DoPersist;
6435 if self.check_free_holding_cells() {
6436 result = NotifyOption::DoPersist;
6438 if self.maybe_generate_initial_closing_signed() {
6439 result = NotifyOption::DoPersist;
6442 let mut pending_events = Vec::new();
6443 let per_peer_state = self.per_peer_state.read().unwrap();
6444 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6445 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6446 let peer_state = &mut *peer_state_lock;
6447 if peer_state.pending_msg_events.len() > 0 {
6448 pending_events.append(&mut peer_state.pending_msg_events);
6452 if !pending_events.is_empty() {
6453 events.replace(pending_events);
6462 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
6464 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6465 T::Target: BroadcasterInterface,
6466 ES::Target: EntropySource,
6467 NS::Target: NodeSigner,
6468 SP::Target: SignerProvider,
6469 F::Target: FeeEstimator,
6473 /// Processes events that must be periodically handled.
6475 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
6476 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
6477 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
6479 process_events_body!(self, ev, handler.handle_event(ev));
6483 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
6485 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6486 T::Target: BroadcasterInterface,
6487 ES::Target: EntropySource,
6488 NS::Target: NodeSigner,
6489 SP::Target: SignerProvider,
6490 F::Target: FeeEstimator,
6494 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
6496 let best_block = self.best_block.read().unwrap();
6497 assert_eq!(best_block.block_hash(), header.prev_blockhash,
6498 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
6499 assert_eq!(best_block.height(), height - 1,
6500 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
6503 self.transactions_confirmed(header, txdata, height);
6504 self.best_block_updated(header, height);
6507 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
6508 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock,
6509 &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist });
6510 let new_height = height - 1;
6512 let mut best_block = self.best_block.write().unwrap();
6513 assert_eq!(best_block.block_hash(), header.block_hash(),
6514 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
6515 assert_eq!(best_block.height(), height,
6516 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
6517 *best_block = BestBlock::new(header.prev_blockhash, new_height)
6520 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6524 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
6526 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6527 T::Target: BroadcasterInterface,
6528 ES::Target: EntropySource,
6529 NS::Target: NodeSigner,
6530 SP::Target: SignerProvider,
6531 F::Target: FeeEstimator,
6535 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
6536 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6537 // during initialization prior to the chain_monitor being fully configured in some cases.
6538 // See the docs for `ChannelManagerReadArgs` for more.
6540 let block_hash = header.block_hash();
6541 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
6543 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock,
6544 &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist });
6545 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
6546 .map(|(a, b)| (a, Vec::new(), b)));
6548 let last_best_block_height = self.best_block.read().unwrap().height();
6549 if height < last_best_block_height {
6550 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
6551 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6555 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
6556 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6557 // during initialization prior to the chain_monitor being fully configured in some cases.
6558 // See the docs for `ChannelManagerReadArgs` for more.
6560 let block_hash = header.block_hash();
6561 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
6563 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock,
6564 &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist });
6565 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
6567 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6569 macro_rules! max_time {
6570 ($timestamp: expr) => {
6572 // Update $timestamp to be the max of its current value and the block
6573 // timestamp. This should keep us close to the current time without relying on
6574 // having an explicit local time source.
6575 // Just in case we end up in a race, we loop until we either successfully
6576 // update $timestamp or decide we don't need to.
6577 let old_serial = $timestamp.load(Ordering::Acquire);
6578 if old_serial >= header.time as usize { break; }
6579 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
6585 max_time!(self.highest_seen_timestamp);
6586 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
6587 payment_secrets.retain(|_, inbound_payment| {
6588 inbound_payment.expiry_time > header.time as u64
6592 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
6593 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
6594 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
6595 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6596 let peer_state = &mut *peer_state_lock;
6597 for chan in peer_state.channel_by_id.values() {
6598 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
6599 res.push((funding_txo.txid, Some(block_hash)));
6606 fn transaction_unconfirmed(&self, txid: &Txid) {
6607 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock,
6608 &self.persistence_notifier, || -> NotifyOption { NotifyOption::DoPersist });
6609 self.do_chain_event(None, |channel| {
6610 if let Some(funding_txo) = channel.context.get_funding_txo() {
6611 if funding_txo.txid == *txid {
6612 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
6613 } else { Ok((None, Vec::new(), None)) }
6614 } else { Ok((None, Vec::new(), None)) }
6619 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
6621 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6622 T::Target: BroadcasterInterface,
6623 ES::Target: EntropySource,
6624 NS::Target: NodeSigner,
6625 SP::Target: SignerProvider,
6626 F::Target: FeeEstimator,
6630 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
6631 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
6633 fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
6634 (&self, height_opt: Option<u32>, f: FN) {
6635 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6636 // during initialization prior to the chain_monitor being fully configured in some cases.
6637 // See the docs for `ChannelManagerReadArgs` for more.
6639 let mut failed_channels = Vec::new();
6640 let mut timed_out_htlcs = Vec::new();
6642 let per_peer_state = self.per_peer_state.read().unwrap();
6643 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6644 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6645 let peer_state = &mut *peer_state_lock;
6646 let pending_msg_events = &mut peer_state.pending_msg_events;
6647 peer_state.channel_by_id.retain(|_, channel| {
6648 let res = f(channel);
6649 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
6650 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
6651 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
6652 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
6653 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
6655 if let Some(channel_ready) = channel_ready_opt {
6656 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
6657 if channel.context.is_usable() {
6658 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.context.channel_id()));
6659 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
6660 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6661 node_id: channel.context.get_counterparty_node_id(),
6666 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.context.channel_id()));
6671 let mut pending_events = self.pending_events.lock().unwrap();
6672 emit_channel_ready_event!(pending_events, channel);
6675 if let Some(announcement_sigs) = announcement_sigs {
6676 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.context.channel_id()));
6677 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6678 node_id: channel.context.get_counterparty_node_id(),
6679 msg: announcement_sigs,
6681 if let Some(height) = height_opt {
6682 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
6683 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6685 // Note that announcement_signatures fails if the channel cannot be announced,
6686 // so get_channel_update_for_broadcast will never fail by the time we get here.
6687 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
6692 if channel.is_our_channel_ready() {
6693 if let Some(real_scid) = channel.context.get_short_channel_id() {
6694 // If we sent a 0conf channel_ready, and now have an SCID, we add it
6695 // to the short_to_chan_info map here. Note that we check whether we
6696 // can relay using the real SCID at relay-time (i.e.
6697 // enforce option_scid_alias then), and if the funding tx is ever
6698 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6699 // is always consistent.
6700 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6701 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
6702 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
6703 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6704 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6707 } else if let Err(reason) = res {
6708 update_maps_on_chan_removal!(self, &channel.context);
6709 // It looks like our counterparty went on-chain or funding transaction was
6710 // reorged out of the main chain. Close the channel.
6711 failed_channels.push(channel.context.force_shutdown(true));
6712 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6713 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6717 let reason_message = format!("{}", reason);
6718 self.issue_channel_close_events(&channel.context, reason);
6719 pending_msg_events.push(events::MessageSendEvent::HandleError {
6720 node_id: channel.context.get_counterparty_node_id(),
6721 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6722 channel_id: channel.context.channel_id(),
6723 data: reason_message,
6733 if let Some(height) = height_opt {
6734 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
6735 payment.htlcs.retain(|htlc| {
6736 // If height is approaching the number of blocks we think it takes us to get
6737 // our commitment transaction confirmed before the HTLC expires, plus the
6738 // number of blocks we generally consider it to take to do a commitment update,
6739 // just give up on it and fail the HTLC.
6740 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6741 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6742 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6744 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6745 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6746 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6750 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6753 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6754 intercepted_htlcs.retain(|_, htlc| {
6755 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6756 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6757 short_channel_id: htlc.prev_short_channel_id,
6758 htlc_id: htlc.prev_htlc_id,
6759 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6760 phantom_shared_secret: None,
6761 outpoint: htlc.prev_funding_outpoint,
6764 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6765 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6766 _ => unreachable!(),
6768 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6769 HTLCFailReason::from_failure_code(0x2000 | 2),
6770 HTLCDestination::InvalidForward { requested_forward_scid }));
6771 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6777 self.handle_init_event_channel_failures(failed_channels);
6779 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6780 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6784 /// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted.
6786 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
6787 /// [`ChannelManager`] and should instead register actions to be taken later.
6789 pub fn get_persistable_update_future(&self) -> Future {
6790 self.persistence_notifier.get_future()
6793 #[cfg(any(test, feature = "_test_utils"))]
6794 pub fn get_persistence_condvar_value(&self) -> bool {
6795 self.persistence_notifier.notify_pending()
6798 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6799 /// [`chain::Confirm`] interfaces.
6800 pub fn current_best_block(&self) -> BestBlock {
6801 self.best_block.read().unwrap().clone()
6804 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6805 /// [`ChannelManager`].
6806 pub fn node_features(&self) -> NodeFeatures {
6807 provided_node_features(&self.default_configuration)
6810 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6811 /// [`ChannelManager`].
6813 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6814 /// or not. Thus, this method is not public.
6815 #[cfg(any(feature = "_test_utils", test))]
6816 pub fn invoice_features(&self) -> InvoiceFeatures {
6817 provided_invoice_features(&self.default_configuration)
6820 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6821 /// [`ChannelManager`].
6822 pub fn channel_features(&self) -> ChannelFeatures {
6823 provided_channel_features(&self.default_configuration)
6826 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6827 /// [`ChannelManager`].
6828 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6829 provided_channel_type_features(&self.default_configuration)
6832 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6833 /// [`ChannelManager`].
6834 pub fn init_features(&self) -> InitFeatures {
6835 provided_init_features(&self.default_configuration)
6839 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6840 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6842 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6843 T::Target: BroadcasterInterface,
6844 ES::Target: EntropySource,
6845 NS::Target: NodeSigner,
6846 SP::Target: SignerProvider,
6847 F::Target: FeeEstimator,
6851 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6852 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6853 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6856 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
6857 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6858 "Dual-funded channels not supported".to_owned(),
6859 msg.temporary_channel_id.clone())), *counterparty_node_id);
6862 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6863 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6864 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6867 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
6868 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6869 "Dual-funded channels not supported".to_owned(),
6870 msg.temporary_channel_id.clone())), *counterparty_node_id);
6873 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6874 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6875 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6878 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6879 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6880 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6883 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6884 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6885 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6888 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6889 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6890 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6893 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6894 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6895 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6898 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6899 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6900 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6903 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6904 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6905 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6908 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6909 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6910 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6913 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6914 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6915 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6918 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6919 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6920 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6923 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6924 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6925 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6928 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6929 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6930 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6933 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6934 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6935 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6938 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6939 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6940 let force_persist = self.process_background_events();
6941 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6942 if force_persist == NotifyOption::DoPersist { NotifyOption::DoPersist } else { persist }
6944 NotifyOption::SkipPersist
6949 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6950 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6951 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6954 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6955 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6956 let mut failed_channels = Vec::new();
6957 let mut per_peer_state = self.per_peer_state.write().unwrap();
6959 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6960 log_pubkey!(counterparty_node_id));
6961 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6962 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6963 let peer_state = &mut *peer_state_lock;
6964 let pending_msg_events = &mut peer_state.pending_msg_events;
6965 peer_state.channel_by_id.retain(|_, chan| {
6966 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6967 if chan.is_shutdown() {
6968 update_maps_on_chan_removal!(self, &chan.context);
6969 self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer);
6974 peer_state.inbound_v1_channel_by_id.retain(|_, chan| {
6975 update_maps_on_chan_removal!(self, &chan.context);
6976 self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer);
6979 peer_state.outbound_v1_channel_by_id.retain(|_, chan| {
6980 update_maps_on_chan_removal!(self, &chan.context);
6981 self.issue_channel_close_events(&chan.context, ClosureReason::DisconnectedPeer);
6984 pending_msg_events.retain(|msg| {
6986 // V1 Channel Establishment
6987 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6988 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6989 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6990 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6991 // V2 Channel Establishment
6992 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
6993 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
6994 // Common Channel Establishment
6995 &events::MessageSendEvent::SendChannelReady { .. } => false,
6996 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6997 // Interactive Transaction Construction
6998 &events::MessageSendEvent::SendTxAddInput { .. } => false,
6999 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
7000 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
7001 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
7002 &events::MessageSendEvent::SendTxComplete { .. } => false,
7003 &events::MessageSendEvent::SendTxSignatures { .. } => false,
7004 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
7005 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
7006 &events::MessageSendEvent::SendTxAbort { .. } => false,
7007 // Channel Operations
7008 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
7009 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
7010 &events::MessageSendEvent::SendClosingSigned { .. } => false,
7011 &events::MessageSendEvent::SendShutdown { .. } => false,
7012 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
7013 &events::MessageSendEvent::HandleError { .. } => false,
7015 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
7016 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
7017 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
7018 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
7019 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
7020 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
7021 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
7022 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
7023 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
7026 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
7027 peer_state.is_connected = false;
7028 peer_state.ok_to_remove(true)
7029 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
7032 per_peer_state.remove(counterparty_node_id);
7034 mem::drop(per_peer_state);
7036 for failure in failed_channels.drain(..) {
7037 self.finish_force_close_channel(failure);
7041 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
7042 if !init_msg.features.supports_static_remote_key() {
7043 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
7047 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7049 // If we have too many peers connected which don't have funded channels, disconnect the
7050 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
7051 // unfunded channels taking up space in memory for disconnected peers, we still let new
7052 // peers connect, but we'll reject new channels from them.
7053 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
7054 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
7057 let mut peer_state_lock = self.per_peer_state.write().unwrap();
7058 match peer_state_lock.entry(counterparty_node_id.clone()) {
7059 hash_map::Entry::Vacant(e) => {
7060 if inbound_peer_limited {
7063 e.insert(Mutex::new(PeerState {
7064 channel_by_id: HashMap::new(),
7065 outbound_v1_channel_by_id: HashMap::new(),
7066 inbound_v1_channel_by_id: HashMap::new(),
7067 latest_features: init_msg.features.clone(),
7068 pending_msg_events: Vec::new(),
7069 in_flight_monitor_updates: BTreeMap::new(),
7070 monitor_update_blocked_actions: BTreeMap::new(),
7071 actions_blocking_raa_monitor_updates: BTreeMap::new(),
7075 hash_map::Entry::Occupied(e) => {
7076 let mut peer_state = e.get().lock().unwrap();
7077 peer_state.latest_features = init_msg.features.clone();
7079 let best_block_height = self.best_block.read().unwrap().height();
7080 if inbound_peer_limited &&
7081 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
7082 peer_state.channel_by_id.len()
7087 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
7088 peer_state.is_connected = true;
7093 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
7095 let per_peer_state = self.per_peer_state.read().unwrap();
7096 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7097 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7098 let peer_state = &mut *peer_state_lock;
7099 let pending_msg_events = &mut peer_state.pending_msg_events;
7100 peer_state.channel_by_id.retain(|_, chan| {
7101 let retain = if chan.context.get_counterparty_node_id() == *counterparty_node_id {
7102 if !chan.context.have_received_message() {
7103 // If we created this (outbound) channel while we were disconnected from the
7104 // peer we probably failed to send the open_channel message, which is now
7105 // lost. We can't have had anything pending related to this channel, so we just
7109 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
7110 node_id: chan.context.get_counterparty_node_id(),
7111 msg: chan.get_channel_reestablish(&self.logger),
7116 if retain && chan.context.get_counterparty_node_id() != *counterparty_node_id {
7117 if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
7118 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
7119 pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
7120 node_id: *counterparty_node_id,
7129 //TODO: Also re-broadcast announcement_signatures
7133 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
7134 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7136 if msg.channel_id == [0; 32] {
7137 let channel_ids: Vec<[u8; 32]> = {
7138 let per_peer_state = self.per_peer_state.read().unwrap();
7139 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
7140 if peer_state_mutex_opt.is_none() { return; }
7141 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
7142 let peer_state = &mut *peer_state_lock;
7143 peer_state.channel_by_id.keys().cloned()
7144 .chain(peer_state.outbound_v1_channel_by_id.keys().cloned())
7145 .chain(peer_state.inbound_v1_channel_by_id.keys().cloned()).collect()
7147 for channel_id in channel_ids {
7148 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
7149 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
7153 // First check if we can advance the channel type and try again.
7154 let per_peer_state = self.per_peer_state.read().unwrap();
7155 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
7156 if peer_state_mutex_opt.is_none() { return; }
7157 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
7158 let peer_state = &mut *peer_state_lock;
7159 if let Some(chan) = peer_state.outbound_v1_channel_by_id.get_mut(&msg.channel_id) {
7160 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
7161 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
7162 node_id: *counterparty_node_id,
7170 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
7171 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
7175 fn provided_node_features(&self) -> NodeFeatures {
7176 provided_node_features(&self.default_configuration)
7179 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
7180 provided_init_features(&self.default_configuration)
7183 fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
7184 Some(vec![ChainHash::from(&self.genesis_hash[..])])
7187 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
7188 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7189 "Dual-funded channels not supported".to_owned(),
7190 msg.channel_id.clone())), *counterparty_node_id);
7193 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
7194 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7195 "Dual-funded channels not supported".to_owned(),
7196 msg.channel_id.clone())), *counterparty_node_id);
7199 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
7200 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7201 "Dual-funded channels not supported".to_owned(),
7202 msg.channel_id.clone())), *counterparty_node_id);
7205 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
7206 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7207 "Dual-funded channels not supported".to_owned(),
7208 msg.channel_id.clone())), *counterparty_node_id);
7211 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
7212 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7213 "Dual-funded channels not supported".to_owned(),
7214 msg.channel_id.clone())), *counterparty_node_id);
7217 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
7218 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7219 "Dual-funded channels not supported".to_owned(),
7220 msg.channel_id.clone())), *counterparty_node_id);
7223 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
7224 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7225 "Dual-funded channels not supported".to_owned(),
7226 msg.channel_id.clone())), *counterparty_node_id);
7229 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
7230 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7231 "Dual-funded channels not supported".to_owned(),
7232 msg.channel_id.clone())), *counterparty_node_id);
7235 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
7236 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7237 "Dual-funded channels not supported".to_owned(),
7238 msg.channel_id.clone())), *counterparty_node_id);
7242 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
7243 /// [`ChannelManager`].
7244 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
7245 provided_init_features(config).to_context()
7248 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
7249 /// [`ChannelManager`].
7251 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
7252 /// or not. Thus, this method is not public.
7253 #[cfg(any(feature = "_test_utils", test))]
7254 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
7255 provided_init_features(config).to_context()
7258 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
7259 /// [`ChannelManager`].
7260 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
7261 provided_init_features(config).to_context()
7264 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
7265 /// [`ChannelManager`].
7266 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
7267 ChannelTypeFeatures::from_init(&provided_init_features(config))
7270 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
7271 /// [`ChannelManager`].
7272 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
7273 // Note that if new features are added here which other peers may (eventually) require, we
7274 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
7275 // [`ErroringMessageHandler`].
7276 let mut features = InitFeatures::empty();
7277 features.set_data_loss_protect_required();
7278 features.set_upfront_shutdown_script_optional();
7279 features.set_variable_length_onion_required();
7280 features.set_static_remote_key_required();
7281 features.set_payment_secret_required();
7282 features.set_basic_mpp_optional();
7283 features.set_wumbo_optional();
7284 features.set_shutdown_any_segwit_optional();
7285 features.set_channel_type_optional();
7286 features.set_scid_privacy_optional();
7287 features.set_zero_conf_optional();
7288 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
7289 features.set_anchors_zero_fee_htlc_tx_optional();
7294 const SERIALIZATION_VERSION: u8 = 1;
7295 const MIN_SERIALIZATION_VERSION: u8 = 1;
7297 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
7298 (2, fee_base_msat, required),
7299 (4, fee_proportional_millionths, required),
7300 (6, cltv_expiry_delta, required),
7303 impl_writeable_tlv_based!(ChannelCounterparty, {
7304 (2, node_id, required),
7305 (4, features, required),
7306 (6, unspendable_punishment_reserve, required),
7307 (8, forwarding_info, option),
7308 (9, outbound_htlc_minimum_msat, option),
7309 (11, outbound_htlc_maximum_msat, option),
7312 impl Writeable for ChannelDetails {
7313 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7314 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
7315 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
7316 let user_channel_id_low = self.user_channel_id as u64;
7317 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
7318 write_tlv_fields!(writer, {
7319 (1, self.inbound_scid_alias, option),
7320 (2, self.channel_id, required),
7321 (3, self.channel_type, option),
7322 (4, self.counterparty, required),
7323 (5, self.outbound_scid_alias, option),
7324 (6, self.funding_txo, option),
7325 (7, self.config, option),
7326 (8, self.short_channel_id, option),
7327 (9, self.confirmations, option),
7328 (10, self.channel_value_satoshis, required),
7329 (12, self.unspendable_punishment_reserve, option),
7330 (14, user_channel_id_low, required),
7331 (16, self.balance_msat, required),
7332 (18, self.outbound_capacity_msat, required),
7333 (19, self.next_outbound_htlc_limit_msat, required),
7334 (20, self.inbound_capacity_msat, required),
7335 (21, self.next_outbound_htlc_minimum_msat, required),
7336 (22, self.confirmations_required, option),
7337 (24, self.force_close_spend_delay, option),
7338 (26, self.is_outbound, required),
7339 (28, self.is_channel_ready, required),
7340 (30, self.is_usable, required),
7341 (32, self.is_public, required),
7342 (33, self.inbound_htlc_minimum_msat, option),
7343 (35, self.inbound_htlc_maximum_msat, option),
7344 (37, user_channel_id_high_opt, option),
7345 (39, self.feerate_sat_per_1000_weight, option),
7351 impl Readable for ChannelDetails {
7352 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7353 _init_and_read_tlv_fields!(reader, {
7354 (1, inbound_scid_alias, option),
7355 (2, channel_id, required),
7356 (3, channel_type, option),
7357 (4, counterparty, required),
7358 (5, outbound_scid_alias, option),
7359 (6, funding_txo, option),
7360 (7, config, option),
7361 (8, short_channel_id, option),
7362 (9, confirmations, option),
7363 (10, channel_value_satoshis, required),
7364 (12, unspendable_punishment_reserve, option),
7365 (14, user_channel_id_low, required),
7366 (16, balance_msat, required),
7367 (18, outbound_capacity_msat, required),
7368 // Note that by the time we get past the required read above, outbound_capacity_msat will be
7369 // filled in, so we can safely unwrap it here.
7370 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
7371 (20, inbound_capacity_msat, required),
7372 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
7373 (22, confirmations_required, option),
7374 (24, force_close_spend_delay, option),
7375 (26, is_outbound, required),
7376 (28, is_channel_ready, required),
7377 (30, is_usable, required),
7378 (32, is_public, required),
7379 (33, inbound_htlc_minimum_msat, option),
7380 (35, inbound_htlc_maximum_msat, option),
7381 (37, user_channel_id_high_opt, option),
7382 (39, feerate_sat_per_1000_weight, option),
7385 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
7386 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
7387 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
7388 let user_channel_id = user_channel_id_low as u128 +
7389 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
7393 channel_id: channel_id.0.unwrap(),
7395 counterparty: counterparty.0.unwrap(),
7396 outbound_scid_alias,
7400 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
7401 unspendable_punishment_reserve,
7403 balance_msat: balance_msat.0.unwrap(),
7404 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
7405 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
7406 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
7407 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
7408 confirmations_required,
7410 force_close_spend_delay,
7411 is_outbound: is_outbound.0.unwrap(),
7412 is_channel_ready: is_channel_ready.0.unwrap(),
7413 is_usable: is_usable.0.unwrap(),
7414 is_public: is_public.0.unwrap(),
7415 inbound_htlc_minimum_msat,
7416 inbound_htlc_maximum_msat,
7417 feerate_sat_per_1000_weight,
7422 impl_writeable_tlv_based!(PhantomRouteHints, {
7423 (2, channels, vec_type),
7424 (4, phantom_scid, required),
7425 (6, real_node_pubkey, required),
7428 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
7430 (0, onion_packet, required),
7431 (2, short_channel_id, required),
7434 (0, payment_data, required),
7435 (1, phantom_shared_secret, option),
7436 (2, incoming_cltv_expiry, required),
7437 (3, payment_metadata, option),
7439 (2, ReceiveKeysend) => {
7440 (0, payment_preimage, required),
7441 (2, incoming_cltv_expiry, required),
7442 (3, payment_metadata, option),
7443 (4, payment_data, option), // Added in 0.0.116
7447 impl_writeable_tlv_based!(PendingHTLCInfo, {
7448 (0, routing, required),
7449 (2, incoming_shared_secret, required),
7450 (4, payment_hash, required),
7451 (6, outgoing_amt_msat, required),
7452 (8, outgoing_cltv_value, required),
7453 (9, incoming_amt_msat, option),
7454 (10, skimmed_fee_msat, option),
7458 impl Writeable for HTLCFailureMsg {
7459 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7461 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
7463 channel_id.write(writer)?;
7464 htlc_id.write(writer)?;
7465 reason.write(writer)?;
7467 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
7468 channel_id, htlc_id, sha256_of_onion, failure_code
7471 channel_id.write(writer)?;
7472 htlc_id.write(writer)?;
7473 sha256_of_onion.write(writer)?;
7474 failure_code.write(writer)?;
7481 impl Readable for HTLCFailureMsg {
7482 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7483 let id: u8 = Readable::read(reader)?;
7486 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
7487 channel_id: Readable::read(reader)?,
7488 htlc_id: Readable::read(reader)?,
7489 reason: Readable::read(reader)?,
7493 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
7494 channel_id: Readable::read(reader)?,
7495 htlc_id: Readable::read(reader)?,
7496 sha256_of_onion: Readable::read(reader)?,
7497 failure_code: Readable::read(reader)?,
7500 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
7501 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
7502 // messages contained in the variants.
7503 // In version 0.0.101, support for reading the variants with these types was added, and
7504 // we should migrate to writing these variants when UpdateFailHTLC or
7505 // UpdateFailMalformedHTLC get TLV fields.
7507 let length: BigSize = Readable::read(reader)?;
7508 let mut s = FixedLengthReader::new(reader, length.0);
7509 let res = Readable::read(&mut s)?;
7510 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
7511 Ok(HTLCFailureMsg::Relay(res))
7514 let length: BigSize = Readable::read(reader)?;
7515 let mut s = FixedLengthReader::new(reader, length.0);
7516 let res = Readable::read(&mut s)?;
7517 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
7518 Ok(HTLCFailureMsg::Malformed(res))
7520 _ => Err(DecodeError::UnknownRequiredFeature),
7525 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
7530 impl_writeable_tlv_based!(HTLCPreviousHopData, {
7531 (0, short_channel_id, required),
7532 (1, phantom_shared_secret, option),
7533 (2, outpoint, required),
7534 (4, htlc_id, required),
7535 (6, incoming_packet_shared_secret, required)
7538 impl Writeable for ClaimableHTLC {
7539 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7540 let (payment_data, keysend_preimage) = match &self.onion_payload {
7541 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
7542 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
7544 write_tlv_fields!(writer, {
7545 (0, self.prev_hop, required),
7546 (1, self.total_msat, required),
7547 (2, self.value, required),
7548 (3, self.sender_intended_value, required),
7549 (4, payment_data, option),
7550 (5, self.total_value_received, option),
7551 (6, self.cltv_expiry, required),
7552 (8, keysend_preimage, option),
7553 (10, self.counterparty_skimmed_fee_msat, option),
7559 impl Readable for ClaimableHTLC {
7560 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7561 _init_and_read_tlv_fields!(reader, {
7562 (0, prev_hop, required),
7563 (1, total_msat, option),
7564 (2, value_ser, required),
7565 (3, sender_intended_value, option),
7566 (4, payment_data_opt, option),
7567 (5, total_value_received, option),
7568 (6, cltv_expiry, required),
7569 (8, keysend_preimage, option),
7570 (10, counterparty_skimmed_fee_msat, option),
7572 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
7573 let value = value_ser.0.unwrap();
7574 let onion_payload = match keysend_preimage {
7576 if payment_data.is_some() {
7577 return Err(DecodeError::InvalidValue)
7579 if total_msat.is_none() {
7580 total_msat = Some(value);
7582 OnionPayload::Spontaneous(p)
7585 if total_msat.is_none() {
7586 if payment_data.is_none() {
7587 return Err(DecodeError::InvalidValue)
7589 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
7591 OnionPayload::Invoice { _legacy_hop_data: payment_data }
7595 prev_hop: prev_hop.0.unwrap(),
7598 sender_intended_value: sender_intended_value.unwrap_or(value),
7599 total_value_received,
7600 total_msat: total_msat.unwrap(),
7602 cltv_expiry: cltv_expiry.0.unwrap(),
7603 counterparty_skimmed_fee_msat,
7608 impl Readable for HTLCSource {
7609 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7610 let id: u8 = Readable::read(reader)?;
7613 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
7614 let mut first_hop_htlc_msat: u64 = 0;
7615 let mut path_hops: Option<Vec<RouteHop>> = Some(Vec::new());
7616 let mut payment_id = None;
7617 let mut payment_params: Option<PaymentParameters> = None;
7618 let mut blinded_tail: Option<BlindedTail> = None;
7619 read_tlv_fields!(reader, {
7620 (0, session_priv, required),
7621 (1, payment_id, option),
7622 (2, first_hop_htlc_msat, required),
7623 (4, path_hops, vec_type),
7624 (5, payment_params, (option: ReadableArgs, 0)),
7625 (6, blinded_tail, option),
7627 if payment_id.is_none() {
7628 // For backwards compat, if there was no payment_id written, use the session_priv bytes
7630 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
7632 let path = Path { hops: path_hops.ok_or(DecodeError::InvalidValue)?, blinded_tail };
7633 if path.hops.len() == 0 {
7634 return Err(DecodeError::InvalidValue);
7636 if let Some(params) = payment_params.as_mut() {
7637 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
7638 if final_cltv_expiry_delta == &0 {
7639 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
7643 Ok(HTLCSource::OutboundRoute {
7644 session_priv: session_priv.0.unwrap(),
7645 first_hop_htlc_msat,
7647 payment_id: payment_id.unwrap(),
7650 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
7651 _ => Err(DecodeError::UnknownRequiredFeature),
7656 impl Writeable for HTLCSource {
7657 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
7659 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
7661 let payment_id_opt = Some(payment_id);
7662 write_tlv_fields!(writer, {
7663 (0, session_priv, required),
7664 (1, payment_id_opt, option),
7665 (2, first_hop_htlc_msat, required),
7666 // 3 was previously used to write a PaymentSecret for the payment.
7667 (4, path.hops, vec_type),
7668 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
7669 (6, path.blinded_tail, option),
7672 HTLCSource::PreviousHopData(ref field) => {
7674 field.write(writer)?;
7681 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
7682 (0, forward_info, required),
7683 (1, prev_user_channel_id, (default_value, 0)),
7684 (2, prev_short_channel_id, required),
7685 (4, prev_htlc_id, required),
7686 (6, prev_funding_outpoint, required),
7689 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
7691 (0, htlc_id, required),
7692 (2, err_packet, required),
7697 impl_writeable_tlv_based!(PendingInboundPayment, {
7698 (0, payment_secret, required),
7699 (2, expiry_time, required),
7700 (4, user_payment_id, required),
7701 (6, payment_preimage, required),
7702 (8, min_value_msat, required),
7705 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
7707 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7708 T::Target: BroadcasterInterface,
7709 ES::Target: EntropySource,
7710 NS::Target: NodeSigner,
7711 SP::Target: SignerProvider,
7712 F::Target: FeeEstimator,
7716 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7717 let _consistency_lock = self.total_consistency_lock.write().unwrap();
7719 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
7721 self.genesis_hash.write(writer)?;
7723 let best_block = self.best_block.read().unwrap();
7724 best_block.height().write(writer)?;
7725 best_block.block_hash().write(writer)?;
7728 let mut serializable_peer_count: u64 = 0;
7730 let per_peer_state = self.per_peer_state.read().unwrap();
7731 let mut unfunded_channels = 0;
7732 let mut number_of_channels = 0;
7733 for (_, peer_state_mutex) in per_peer_state.iter() {
7734 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7735 let peer_state = &mut *peer_state_lock;
7736 if !peer_state.ok_to_remove(false) {
7737 serializable_peer_count += 1;
7739 number_of_channels += peer_state.channel_by_id.len();
7740 for (_, channel) in peer_state.channel_by_id.iter() {
7741 if !channel.context.is_funding_initiated() {
7742 unfunded_channels += 1;
7747 ((number_of_channels - unfunded_channels) as u64).write(writer)?;
7749 for (_, peer_state_mutex) in per_peer_state.iter() {
7750 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7751 let peer_state = &mut *peer_state_lock;
7752 for (_, channel) in peer_state.channel_by_id.iter() {
7753 if channel.context.is_funding_initiated() {
7754 channel.write(writer)?;
7761 let forward_htlcs = self.forward_htlcs.lock().unwrap();
7762 (forward_htlcs.len() as u64).write(writer)?;
7763 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
7764 short_channel_id.write(writer)?;
7765 (pending_forwards.len() as u64).write(writer)?;
7766 for forward in pending_forwards {
7767 forward.write(writer)?;
7772 let per_peer_state = self.per_peer_state.write().unwrap();
7774 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
7775 let claimable_payments = self.claimable_payments.lock().unwrap();
7776 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
7778 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
7779 let mut htlc_onion_fields: Vec<&_> = Vec::new();
7780 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
7781 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
7782 payment_hash.write(writer)?;
7783 (payment.htlcs.len() as u64).write(writer)?;
7784 for htlc in payment.htlcs.iter() {
7785 htlc.write(writer)?;
7787 htlc_purposes.push(&payment.purpose);
7788 htlc_onion_fields.push(&payment.onion_fields);
7791 let mut monitor_update_blocked_actions_per_peer = None;
7792 let mut peer_states = Vec::new();
7793 for (_, peer_state_mutex) in per_peer_state.iter() {
7794 // Because we're holding the owning `per_peer_state` write lock here there's no chance
7795 // of a lockorder violation deadlock - no other thread can be holding any
7796 // per_peer_state lock at all.
7797 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7800 (serializable_peer_count).write(writer)?;
7801 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7802 // Peers which we have no channels to should be dropped once disconnected. As we
7803 // disconnect all peers when shutting down and serializing the ChannelManager, we
7804 // consider all peers as disconnected here. There's therefore no need write peers with
7806 if !peer_state.ok_to_remove(false) {
7807 peer_pubkey.write(writer)?;
7808 peer_state.latest_features.write(writer)?;
7809 if !peer_state.monitor_update_blocked_actions.is_empty() {
7810 monitor_update_blocked_actions_per_peer
7811 .get_or_insert_with(Vec::new)
7812 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7817 let events = self.pending_events.lock().unwrap();
7818 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
7819 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
7820 // refuse to read the new ChannelManager.
7821 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
7822 if events_not_backwards_compatible {
7823 // If we're gonna write a even TLV that will overwrite our events anyway we might as
7824 // well save the space and not write any events here.
7825 0u64.write(writer)?;
7827 (events.len() as u64).write(writer)?;
7828 for (event, _) in events.iter() {
7829 event.write(writer)?;
7833 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
7834 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
7835 // the closing monitor updates were always effectively replayed on startup (either directly
7836 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
7837 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
7838 0u64.write(writer)?;
7840 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7841 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7842 // likely to be identical.
7843 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7844 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7846 (pending_inbound_payments.len() as u64).write(writer)?;
7847 for (hash, pending_payment) in pending_inbound_payments.iter() {
7848 hash.write(writer)?;
7849 pending_payment.write(writer)?;
7852 // For backwards compat, write the session privs and their total length.
7853 let mut num_pending_outbounds_compat: u64 = 0;
7854 for (_, outbound) in pending_outbound_payments.iter() {
7855 if !outbound.is_fulfilled() && !outbound.abandoned() {
7856 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7859 num_pending_outbounds_compat.write(writer)?;
7860 for (_, outbound) in pending_outbound_payments.iter() {
7862 PendingOutboundPayment::Legacy { session_privs } |
7863 PendingOutboundPayment::Retryable { session_privs, .. } => {
7864 for session_priv in session_privs.iter() {
7865 session_priv.write(writer)?;
7868 PendingOutboundPayment::Fulfilled { .. } => {},
7869 PendingOutboundPayment::Abandoned { .. } => {},
7873 // Encode without retry info for 0.0.101 compatibility.
7874 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7875 for (id, outbound) in pending_outbound_payments.iter() {
7877 PendingOutboundPayment::Legacy { session_privs } |
7878 PendingOutboundPayment::Retryable { session_privs, .. } => {
7879 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7885 let mut pending_intercepted_htlcs = None;
7886 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7887 if our_pending_intercepts.len() != 0 {
7888 pending_intercepted_htlcs = Some(our_pending_intercepts);
7891 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7892 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7893 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7894 // map. Thus, if there are no entries we skip writing a TLV for it.
7895 pending_claiming_payments = None;
7898 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
7899 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7900 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
7901 if !updates.is_empty() {
7902 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
7903 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
7908 write_tlv_fields!(writer, {
7909 (1, pending_outbound_payments_no_retry, required),
7910 (2, pending_intercepted_htlcs, option),
7911 (3, pending_outbound_payments, required),
7912 (4, pending_claiming_payments, option),
7913 (5, self.our_network_pubkey, required),
7914 (6, monitor_update_blocked_actions_per_peer, option),
7915 (7, self.fake_scid_rand_bytes, required),
7916 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
7917 (9, htlc_purposes, vec_type),
7918 (10, in_flight_monitor_updates, option),
7919 (11, self.probing_cookie_secret, required),
7920 (13, htlc_onion_fields, optional_vec),
7927 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
7928 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
7929 (self.len() as u64).write(w)?;
7930 for (event, action) in self.iter() {
7933 #[cfg(debug_assertions)] {
7934 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
7935 // be persisted and are regenerated on restart. However, if such an event has a
7936 // post-event-handling action we'll write nothing for the event and would have to
7937 // either forget the action or fail on deserialization (which we do below). Thus,
7938 // check that the event is sane here.
7939 let event_encoded = event.encode();
7940 let event_read: Option<Event> =
7941 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
7942 if action.is_some() { assert!(event_read.is_some()); }
7948 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
7949 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7950 let len: u64 = Readable::read(reader)?;
7951 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
7952 let mut events: Self = VecDeque::with_capacity(cmp::min(
7953 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
7956 let ev_opt = MaybeReadable::read(reader)?;
7957 let action = Readable::read(reader)?;
7958 if let Some(ev) = ev_opt {
7959 events.push_back((ev, action));
7960 } else if action.is_some() {
7961 return Err(DecodeError::InvalidValue);
7968 /// Arguments for the creation of a ChannelManager that are not deserialized.
7970 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7972 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7973 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7974 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
7975 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7976 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7977 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7978 /// same way you would handle a [`chain::Filter`] call using
7979 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7980 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7981 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7982 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7983 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7984 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7986 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7987 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7989 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7990 /// call any other methods on the newly-deserialized [`ChannelManager`].
7992 /// Note that because some channels may be closed during deserialization, it is critical that you
7993 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7994 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7995 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7996 /// not force-close the same channels but consider them live), you may end up revoking a state for
7997 /// which you've already broadcasted the transaction.
7999 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
8000 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8002 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8003 T::Target: BroadcasterInterface,
8004 ES::Target: EntropySource,
8005 NS::Target: NodeSigner,
8006 SP::Target: SignerProvider,
8007 F::Target: FeeEstimator,
8011 /// A cryptographically secure source of entropy.
8012 pub entropy_source: ES,
8014 /// A signer that is able to perform node-scoped cryptographic operations.
8015 pub node_signer: NS,
8017 /// The keys provider which will give us relevant keys. Some keys will be loaded during
8018 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
8020 pub signer_provider: SP,
8022 /// The fee_estimator for use in the ChannelManager in the future.
8024 /// No calls to the FeeEstimator will be made during deserialization.
8025 pub fee_estimator: F,
8026 /// The chain::Watch for use in the ChannelManager in the future.
8028 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
8029 /// you have deserialized ChannelMonitors separately and will add them to your
8030 /// chain::Watch after deserializing this ChannelManager.
8031 pub chain_monitor: M,
8033 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
8034 /// used to broadcast the latest local commitment transactions of channels which must be
8035 /// force-closed during deserialization.
8036 pub tx_broadcaster: T,
8037 /// The router which will be used in the ChannelManager in the future for finding routes
8038 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
8040 /// No calls to the router will be made during deserialization.
8042 /// The Logger for use in the ChannelManager and which may be used to log information during
8043 /// deserialization.
8045 /// Default settings used for new channels. Any existing channels will continue to use the
8046 /// runtime settings which were stored when the ChannelManager was serialized.
8047 pub default_config: UserConfig,
8049 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
8050 /// value.context.get_funding_txo() should be the key).
8052 /// If a monitor is inconsistent with the channel state during deserialization the channel will
8053 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
8054 /// is true for missing channels as well. If there is a monitor missing for which we find
8055 /// channel data Err(DecodeError::InvalidValue) will be returned.
8057 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
8060 /// This is not exported to bindings users because we have no HashMap bindings
8061 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
8064 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8065 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
8067 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8068 T::Target: BroadcasterInterface,
8069 ES::Target: EntropySource,
8070 NS::Target: NodeSigner,
8071 SP::Target: SignerProvider,
8072 F::Target: FeeEstimator,
8076 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
8077 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
8078 /// populate a HashMap directly from C.
8079 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
8080 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
8082 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
8083 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
8088 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
8089 // SipmleArcChannelManager type:
8090 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8091 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
8093 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8094 T::Target: BroadcasterInterface,
8095 ES::Target: EntropySource,
8096 NS::Target: NodeSigner,
8097 SP::Target: SignerProvider,
8098 F::Target: FeeEstimator,
8102 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
8103 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
8104 Ok((blockhash, Arc::new(chan_manager)))
8108 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8109 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
8111 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8112 T::Target: BroadcasterInterface,
8113 ES::Target: EntropySource,
8114 NS::Target: NodeSigner,
8115 SP::Target: SignerProvider,
8116 F::Target: FeeEstimator,
8120 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
8121 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
8123 let genesis_hash: BlockHash = Readable::read(reader)?;
8124 let best_block_height: u32 = Readable::read(reader)?;
8125 let best_block_hash: BlockHash = Readable::read(reader)?;
8127 let mut failed_htlcs = Vec::new();
8129 let channel_count: u64 = Readable::read(reader)?;
8130 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
8131 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
8132 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
8133 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
8134 let mut channel_closures = VecDeque::new();
8135 let mut close_background_events = Vec::new();
8136 for _ in 0..channel_count {
8137 let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
8138 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
8140 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
8141 funding_txo_set.insert(funding_txo.clone());
8142 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
8143 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
8144 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
8145 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
8146 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
8147 // But if the channel is behind of the monitor, close the channel:
8148 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
8149 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
8150 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
8151 log_bytes!(channel.context.channel_id()), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
8152 let (monitor_update, mut new_failed_htlcs) = channel.context.force_shutdown(true);
8153 if let Some((counterparty_node_id, funding_txo, update)) = monitor_update {
8154 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8155 counterparty_node_id, funding_txo, update
8158 failed_htlcs.append(&mut new_failed_htlcs);
8159 channel_closures.push_back((events::Event::ChannelClosed {
8160 channel_id: channel.context.channel_id(),
8161 user_channel_id: channel.context.get_user_id(),
8162 reason: ClosureReason::OutdatedChannelManager
8164 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
8165 let mut found_htlc = false;
8166 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
8167 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
8170 // If we have some HTLCs in the channel which are not present in the newer
8171 // ChannelMonitor, they have been removed and should be failed back to
8172 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
8173 // were actually claimed we'd have generated and ensured the previous-hop
8174 // claim update ChannelMonitor updates were persisted prior to persising
8175 // the ChannelMonitor update for the forward leg, so attempting to fail the
8176 // backwards leg of the HTLC will simply be rejected.
8177 log_info!(args.logger,
8178 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
8179 log_bytes!(channel.context.channel_id()), log_bytes!(payment_hash.0));
8180 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8184 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
8185 log_bytes!(channel.context.channel_id()), channel.context.get_latest_monitor_update_id(),
8186 monitor.get_latest_update_id());
8187 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
8188 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8190 if channel.context.is_funding_initiated() {
8191 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
8193 match peer_channels.entry(channel.context.get_counterparty_node_id()) {
8194 hash_map::Entry::Occupied(mut entry) => {
8195 let by_id_map = entry.get_mut();
8196 by_id_map.insert(channel.context.channel_id(), channel);
8198 hash_map::Entry::Vacant(entry) => {
8199 let mut by_id_map = HashMap::new();
8200 by_id_map.insert(channel.context.channel_id(), channel);
8201 entry.insert(by_id_map);
8205 } else if channel.is_awaiting_initial_mon_persist() {
8206 // If we were persisted and shut down while the initial ChannelMonitor persistence
8207 // was in-progress, we never broadcasted the funding transaction and can still
8208 // safely discard the channel.
8209 let _ = channel.context.force_shutdown(false);
8210 channel_closures.push_back((events::Event::ChannelClosed {
8211 channel_id: channel.context.channel_id(),
8212 user_channel_id: channel.context.get_user_id(),
8213 reason: ClosureReason::DisconnectedPeer,
8216 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.context.channel_id()));
8217 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
8218 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
8219 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
8220 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
8221 return Err(DecodeError::InvalidValue);
8225 for (funding_txo, _) in args.channel_monitors.iter() {
8226 if !funding_txo_set.contains(funding_txo) {
8227 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
8228 log_bytes!(funding_txo.to_channel_id()));
8229 let monitor_update = ChannelMonitorUpdate {
8230 update_id: CLOSED_CHANNEL_UPDATE_ID,
8231 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
8233 close_background_events.push(BackgroundEvent::ClosingMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
8237 const MAX_ALLOC_SIZE: usize = 1024 * 64;
8238 let forward_htlcs_count: u64 = Readable::read(reader)?;
8239 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
8240 for _ in 0..forward_htlcs_count {
8241 let short_channel_id = Readable::read(reader)?;
8242 let pending_forwards_count: u64 = Readable::read(reader)?;
8243 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
8244 for _ in 0..pending_forwards_count {
8245 pending_forwards.push(Readable::read(reader)?);
8247 forward_htlcs.insert(short_channel_id, pending_forwards);
8250 let claimable_htlcs_count: u64 = Readable::read(reader)?;
8251 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
8252 for _ in 0..claimable_htlcs_count {
8253 let payment_hash = Readable::read(reader)?;
8254 let previous_hops_len: u64 = Readable::read(reader)?;
8255 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
8256 for _ in 0..previous_hops_len {
8257 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
8259 claimable_htlcs_list.push((payment_hash, previous_hops));
8262 let peer_state_from_chans = |channel_by_id| {
8265 outbound_v1_channel_by_id: HashMap::new(),
8266 inbound_v1_channel_by_id: HashMap::new(),
8267 latest_features: InitFeatures::empty(),
8268 pending_msg_events: Vec::new(),
8269 in_flight_monitor_updates: BTreeMap::new(),
8270 monitor_update_blocked_actions: BTreeMap::new(),
8271 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8272 is_connected: false,
8276 let peer_count: u64 = Readable::read(reader)?;
8277 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
8278 for _ in 0..peer_count {
8279 let peer_pubkey = Readable::read(reader)?;
8280 let peer_chans = peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
8281 let mut peer_state = peer_state_from_chans(peer_chans);
8282 peer_state.latest_features = Readable::read(reader)?;
8283 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
8286 let event_count: u64 = Readable::read(reader)?;
8287 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
8288 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
8289 for _ in 0..event_count {
8290 match MaybeReadable::read(reader)? {
8291 Some(event) => pending_events_read.push_back((event, None)),
8296 let background_event_count: u64 = Readable::read(reader)?;
8297 for _ in 0..background_event_count {
8298 match <u8 as Readable>::read(reader)? {
8300 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
8301 // however we really don't (and never did) need them - we regenerate all
8302 // on-startup monitor updates.
8303 let _: OutPoint = Readable::read(reader)?;
8304 let _: ChannelMonitorUpdate = Readable::read(reader)?;
8306 _ => return Err(DecodeError::InvalidValue),
8310 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
8311 let highest_seen_timestamp: u32 = Readable::read(reader)?;
8313 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
8314 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
8315 for _ in 0..pending_inbound_payment_count {
8316 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
8317 return Err(DecodeError::InvalidValue);
8321 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
8322 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
8323 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
8324 for _ in 0..pending_outbound_payments_count_compat {
8325 let session_priv = Readable::read(reader)?;
8326 let payment = PendingOutboundPayment::Legacy {
8327 session_privs: [session_priv].iter().cloned().collect()
8329 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
8330 return Err(DecodeError::InvalidValue)
8334 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
8335 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
8336 let mut pending_outbound_payments = None;
8337 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
8338 let mut received_network_pubkey: Option<PublicKey> = None;
8339 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
8340 let mut probing_cookie_secret: Option<[u8; 32]> = None;
8341 let mut claimable_htlc_purposes = None;
8342 let mut claimable_htlc_onion_fields = None;
8343 let mut pending_claiming_payments = Some(HashMap::new());
8344 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
8345 let mut events_override = None;
8346 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
8347 read_tlv_fields!(reader, {
8348 (1, pending_outbound_payments_no_retry, option),
8349 (2, pending_intercepted_htlcs, option),
8350 (3, pending_outbound_payments, option),
8351 (4, pending_claiming_payments, option),
8352 (5, received_network_pubkey, option),
8353 (6, monitor_update_blocked_actions_per_peer, option),
8354 (7, fake_scid_rand_bytes, option),
8355 (8, events_override, option),
8356 (9, claimable_htlc_purposes, vec_type),
8357 (10, in_flight_monitor_updates, option),
8358 (11, probing_cookie_secret, option),
8359 (13, claimable_htlc_onion_fields, optional_vec),
8361 if fake_scid_rand_bytes.is_none() {
8362 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
8365 if probing_cookie_secret.is_none() {
8366 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
8369 if let Some(events) = events_override {
8370 pending_events_read = events;
8373 if !channel_closures.is_empty() {
8374 pending_events_read.append(&mut channel_closures);
8377 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
8378 pending_outbound_payments = Some(pending_outbound_payments_compat);
8379 } else if pending_outbound_payments.is_none() {
8380 let mut outbounds = HashMap::new();
8381 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
8382 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
8384 pending_outbound_payments = Some(outbounds);
8386 let pending_outbounds = OutboundPayments {
8387 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
8388 retry_lock: Mutex::new(())
8391 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
8392 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
8393 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
8394 // replayed, and for each monitor update we have to replay we have to ensure there's a
8395 // `ChannelMonitor` for it.
8397 // In order to do so we first walk all of our live channels (so that we can check their
8398 // state immediately after doing the update replays, when we have the `update_id`s
8399 // available) and then walk any remaining in-flight updates.
8401 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
8402 let mut pending_background_events = Vec::new();
8403 macro_rules! handle_in_flight_updates {
8404 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
8405 $monitor: expr, $peer_state: expr, $channel_info_log: expr
8407 let mut max_in_flight_update_id = 0;
8408 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
8409 for update in $chan_in_flight_upds.iter() {
8410 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
8411 update.update_id, $channel_info_log, log_bytes!($funding_txo.to_channel_id()));
8412 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
8413 pending_background_events.push(
8414 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8415 counterparty_node_id: $counterparty_node_id,
8416 funding_txo: $funding_txo,
8417 update: update.clone(),
8420 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
8421 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
8422 return Err(DecodeError::InvalidValue);
8424 max_in_flight_update_id
8428 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
8429 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
8430 let peer_state = &mut *peer_state_lock;
8431 for (_, chan) in peer_state.channel_by_id.iter() {
8432 // Channels that were persisted have to be funded, otherwise they should have been
8434 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
8435 let monitor = args.channel_monitors.get(&funding_txo)
8436 .expect("We already checked for monitor presence when loading channels");
8437 let mut max_in_flight_update_id = monitor.get_latest_update_id();
8438 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
8439 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
8440 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
8441 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
8442 funding_txo, monitor, peer_state, ""));
8445 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
8446 // If the channel is ahead of the monitor, return InvalidValue:
8447 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
8448 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
8449 log_bytes!(chan.context.channel_id()), monitor.get_latest_update_id(), max_in_flight_update_id);
8450 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
8451 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
8452 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
8453 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
8454 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
8455 return Err(DecodeError::InvalidValue);
8460 if let Some(in_flight_upds) = in_flight_monitor_updates {
8461 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
8462 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
8463 // Now that we've removed all the in-flight monitor updates for channels that are
8464 // still open, we need to replay any monitor updates that are for closed channels,
8465 // creating the neccessary peer_state entries as we go.
8466 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
8467 Mutex::new(peer_state_from_chans(HashMap::new()))
8469 let mut peer_state = peer_state_mutex.lock().unwrap();
8470 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
8471 funding_txo, monitor, peer_state, "closed ");
8473 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
8474 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
8475 log_bytes!(funding_txo.to_channel_id()));
8476 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
8477 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
8478 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
8479 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
8480 return Err(DecodeError::InvalidValue);
8485 // Note that we have to do the above replays before we push new monitor updates.
8486 pending_background_events.append(&mut close_background_events);
8489 // If we're tracking pending payments, ensure we haven't lost any by looking at the
8490 // ChannelMonitor data for any channels for which we do not have authorative state
8491 // (i.e. those for which we just force-closed above or we otherwise don't have a
8492 // corresponding `Channel` at all).
8493 // This avoids several edge-cases where we would otherwise "forget" about pending
8494 // payments which are still in-flight via their on-chain state.
8495 // We only rebuild the pending payments map if we were most recently serialized by
8497 for (_, monitor) in args.channel_monitors.iter() {
8498 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
8499 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
8500 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
8501 if path.hops.is_empty() {
8502 log_error!(args.logger, "Got an empty path for a pending payment");
8503 return Err(DecodeError::InvalidValue);
8506 let path_amt = path.final_value_msat();
8507 let mut session_priv_bytes = [0; 32];
8508 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
8509 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
8510 hash_map::Entry::Occupied(mut entry) => {
8511 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
8512 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
8513 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
8515 hash_map::Entry::Vacant(entry) => {
8516 let path_fee = path.fee_msat();
8517 entry.insert(PendingOutboundPayment::Retryable {
8518 retry_strategy: None,
8519 attempts: PaymentAttempts::new(),
8520 payment_params: None,
8521 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
8522 payment_hash: htlc.payment_hash,
8523 payment_secret: None, // only used for retries, and we'll never retry on startup
8524 payment_metadata: None, // only used for retries, and we'll never retry on startup
8525 keysend_preimage: None, // only used for retries, and we'll never retry on startup
8526 pending_amt_msat: path_amt,
8527 pending_fee_msat: Some(path_fee),
8528 total_msat: path_amt,
8529 starting_block_height: best_block_height,
8531 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
8532 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
8537 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
8539 HTLCSource::PreviousHopData(prev_hop_data) => {
8540 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
8541 info.prev_funding_outpoint == prev_hop_data.outpoint &&
8542 info.prev_htlc_id == prev_hop_data.htlc_id
8544 // The ChannelMonitor is now responsible for this HTLC's
8545 // failure/success and will let us know what its outcome is. If we
8546 // still have an entry for this HTLC in `forward_htlcs` or
8547 // `pending_intercepted_htlcs`, we were apparently not persisted after
8548 // the monitor was when forwarding the payment.
8549 forward_htlcs.retain(|_, forwards| {
8550 forwards.retain(|forward| {
8551 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
8552 if pending_forward_matches_htlc(&htlc_info) {
8553 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
8554 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
8559 !forwards.is_empty()
8561 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
8562 if pending_forward_matches_htlc(&htlc_info) {
8563 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
8564 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
8565 pending_events_read.retain(|(event, _)| {
8566 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
8567 intercepted_id != ev_id
8574 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
8575 if let Some(preimage) = preimage_opt {
8576 let pending_events = Mutex::new(pending_events_read);
8577 // Note that we set `from_onchain` to "false" here,
8578 // deliberately keeping the pending payment around forever.
8579 // Given it should only occur when we have a channel we're
8580 // force-closing for being stale that's okay.
8581 // The alternative would be to wipe the state when claiming,
8582 // generating a `PaymentPathSuccessful` event but regenerating
8583 // it and the `PaymentSent` on every restart until the
8584 // `ChannelMonitor` is removed.
8585 pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
8586 pending_events_read = pending_events.into_inner().unwrap();
8595 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
8596 // If we have pending HTLCs to forward, assume we either dropped a
8597 // `PendingHTLCsForwardable` or the user received it but never processed it as they
8598 // shut down before the timer hit. Either way, set the time_forwardable to a small
8599 // constant as enough time has likely passed that we should simply handle the forwards
8600 // now, or at least after the user gets a chance to reconnect to our peers.
8601 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
8602 time_forwardable: Duration::from_secs(2),
8606 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
8607 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
8609 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
8610 if let Some(purposes) = claimable_htlc_purposes {
8611 if purposes.len() != claimable_htlcs_list.len() {
8612 return Err(DecodeError::InvalidValue);
8614 if let Some(onion_fields) = claimable_htlc_onion_fields {
8615 if onion_fields.len() != claimable_htlcs_list.len() {
8616 return Err(DecodeError::InvalidValue);
8618 for (purpose, (onion, (payment_hash, htlcs))) in
8619 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
8621 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
8622 purpose, htlcs, onion_fields: onion,
8624 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
8627 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
8628 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
8629 purpose, htlcs, onion_fields: None,
8631 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
8635 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
8636 // include a `_legacy_hop_data` in the `OnionPayload`.
8637 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
8638 if htlcs.is_empty() {
8639 return Err(DecodeError::InvalidValue);
8641 let purpose = match &htlcs[0].onion_payload {
8642 OnionPayload::Invoice { _legacy_hop_data } => {
8643 if let Some(hop_data) = _legacy_hop_data {
8644 events::PaymentPurpose::InvoicePayment {
8645 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
8646 Some(inbound_payment) => inbound_payment.payment_preimage,
8647 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
8648 Ok((payment_preimage, _)) => payment_preimage,
8650 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
8651 return Err(DecodeError::InvalidValue);
8655 payment_secret: hop_data.payment_secret,
8657 } else { return Err(DecodeError::InvalidValue); }
8659 OnionPayload::Spontaneous(payment_preimage) =>
8660 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
8662 claimable_payments.insert(payment_hash, ClaimablePayment {
8663 purpose, htlcs, onion_fields: None,
8668 let mut secp_ctx = Secp256k1::new();
8669 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
8671 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
8673 Err(()) => return Err(DecodeError::InvalidValue)
8675 if let Some(network_pubkey) = received_network_pubkey {
8676 if network_pubkey != our_network_pubkey {
8677 log_error!(args.logger, "Key that was generated does not match the existing key.");
8678 return Err(DecodeError::InvalidValue);
8682 let mut outbound_scid_aliases = HashSet::new();
8683 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
8684 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8685 let peer_state = &mut *peer_state_lock;
8686 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
8687 if chan.context.outbound_scid_alias() == 0 {
8688 let mut outbound_scid_alias;
8690 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
8691 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
8692 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
8694 chan.context.set_outbound_scid_alias(outbound_scid_alias);
8695 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
8696 // Note that in rare cases its possible to hit this while reading an older
8697 // channel if we just happened to pick a colliding outbound alias above.
8698 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
8699 return Err(DecodeError::InvalidValue);
8701 if chan.context.is_usable() {
8702 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
8703 // Note that in rare cases its possible to hit this while reading an older
8704 // channel if we just happened to pick a colliding outbound alias above.
8705 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
8706 return Err(DecodeError::InvalidValue);
8712 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
8714 for (_, monitor) in args.channel_monitors.iter() {
8715 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
8716 if let Some(payment) = claimable_payments.remove(&payment_hash) {
8717 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
8718 let mut claimable_amt_msat = 0;
8719 let mut receiver_node_id = Some(our_network_pubkey);
8720 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
8721 if phantom_shared_secret.is_some() {
8722 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
8723 .expect("Failed to get node_id for phantom node recipient");
8724 receiver_node_id = Some(phantom_pubkey)
8726 for claimable_htlc in payment.htlcs {
8727 claimable_amt_msat += claimable_htlc.value;
8729 // Add a holding-cell claim of the payment to the Channel, which should be
8730 // applied ~immediately on peer reconnection. Because it won't generate a
8731 // new commitment transaction we can just provide the payment preimage to
8732 // the corresponding ChannelMonitor and nothing else.
8734 // We do so directly instead of via the normal ChannelMonitor update
8735 // procedure as the ChainMonitor hasn't yet been initialized, implying
8736 // we're not allowed to call it directly yet. Further, we do the update
8737 // without incrementing the ChannelMonitor update ID as there isn't any
8739 // If we were to generate a new ChannelMonitor update ID here and then
8740 // crash before the user finishes block connect we'd end up force-closing
8741 // this channel as well. On the flip side, there's no harm in restarting
8742 // without the new monitor persisted - we'll end up right back here on
8744 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
8745 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
8746 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
8747 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8748 let peer_state = &mut *peer_state_lock;
8749 if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
8750 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
8753 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
8754 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
8757 pending_events_read.push_back((events::Event::PaymentClaimed {
8760 purpose: payment.purpose,
8761 amount_msat: claimable_amt_msat,
8767 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
8768 if let Some(peer_state) = per_peer_state.get(&node_id) {
8769 for (_, actions) in monitor_update_blocked_actions.iter() {
8770 for action in actions.iter() {
8771 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
8772 downstream_counterparty_and_funding_outpoint:
8773 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
8775 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
8776 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
8777 .entry(blocked_channel_outpoint.to_channel_id())
8778 .or_insert_with(Vec::new).push(blocking_action.clone());
8783 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
8785 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
8786 return Err(DecodeError::InvalidValue);
8790 let channel_manager = ChannelManager {
8792 fee_estimator: bounded_fee_estimator,
8793 chain_monitor: args.chain_monitor,
8794 tx_broadcaster: args.tx_broadcaster,
8795 router: args.router,
8797 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
8799 inbound_payment_key: expanded_inbound_key,
8800 pending_inbound_payments: Mutex::new(pending_inbound_payments),
8801 pending_outbound_payments: pending_outbounds,
8802 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
8804 forward_htlcs: Mutex::new(forward_htlcs),
8805 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
8806 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
8807 id_to_peer: Mutex::new(id_to_peer),
8808 short_to_chan_info: FairRwLock::new(short_to_chan_info),
8809 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
8811 probing_cookie_secret: probing_cookie_secret.unwrap(),
8816 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
8818 per_peer_state: FairRwLock::new(per_peer_state),
8820 pending_events: Mutex::new(pending_events_read),
8821 pending_events_processor: AtomicBool::new(false),
8822 pending_background_events: Mutex::new(pending_background_events),
8823 total_consistency_lock: RwLock::new(()),
8824 #[cfg(debug_assertions)]
8825 background_events_processed_since_startup: AtomicBool::new(false),
8826 persistence_notifier: Notifier::new(),
8828 entropy_source: args.entropy_source,
8829 node_signer: args.node_signer,
8830 signer_provider: args.signer_provider,
8832 logger: args.logger,
8833 default_configuration: args.default_config,
8836 for htlc_source in failed_htlcs.drain(..) {
8837 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
8838 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
8839 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8840 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
8843 //TODO: Broadcast channel update for closed channels, but only after we've made a
8844 //connection or two.
8846 Ok((best_block_hash.clone(), channel_manager))
8852 use bitcoin::hashes::Hash;
8853 use bitcoin::hashes::sha256::Hash as Sha256;
8854 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
8855 use core::sync::atomic::Ordering;
8856 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
8857 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
8858 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
8859 use crate::ln::functional_test_utils::*;
8860 use crate::ln::msgs::{self, ErrorAction};
8861 use crate::ln::msgs::ChannelMessageHandler;
8862 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
8863 use crate::util::errors::APIError;
8864 use crate::util::test_utils;
8865 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
8866 use crate::sign::EntropySource;
8869 fn test_notify_limits() {
8870 // Check that a few cases which don't require the persistence of a new ChannelManager,
8871 // indeed, do not cause the persistence of a new ChannelManager.
8872 let chanmon_cfgs = create_chanmon_cfgs(3);
8873 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
8874 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
8875 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
8877 // All nodes start with a persistable update pending as `create_network` connects each node
8878 // with all other nodes to make most tests simpler.
8879 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8880 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8881 assert!(nodes[2].node.get_persistable_update_future().poll_is_complete());
8883 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8885 // We check that the channel info nodes have doesn't change too early, even though we try
8886 // to connect messages with new values
8887 chan.0.contents.fee_base_msat *= 2;
8888 chan.1.contents.fee_base_msat *= 2;
8889 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
8890 &nodes[1].node.get_our_node_id()).pop().unwrap();
8891 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
8892 &nodes[0].node.get_our_node_id()).pop().unwrap();
8894 // The first two nodes (which opened a channel) should now require fresh persistence
8895 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8896 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8897 // ... but the last node should not.
8898 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8899 // After persisting the first two nodes they should no longer need fresh persistence.
8900 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8901 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8903 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
8904 // about the channel.
8905 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
8906 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
8907 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8909 // The nodes which are a party to the channel should also ignore messages from unrelated
8911 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8912 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8913 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8914 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8915 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8916 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8918 // At this point the channel info given by peers should still be the same.
8919 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8920 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8922 // An earlier version of handle_channel_update didn't check the directionality of the
8923 // update message and would always update the local fee info, even if our peer was
8924 // (spuriously) forwarding us our own channel_update.
8925 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
8926 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
8927 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
8929 // First deliver each peers' own message, checking that the node doesn't need to be
8930 // persisted and that its channel info remains the same.
8931 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
8932 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
8933 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8934 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8935 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8936 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8938 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
8939 // the channel info has updated.
8940 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
8941 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
8942 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8943 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8944 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
8945 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
8949 fn test_keysend_dup_hash_partial_mpp() {
8950 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
8952 let chanmon_cfgs = create_chanmon_cfgs(2);
8953 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8954 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8955 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8956 create_announced_chan_between_nodes(&nodes, 0, 1);
8958 // First, send a partial MPP payment.
8959 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
8960 let mut mpp_route = route.clone();
8961 mpp_route.paths.push(mpp_route.paths[0].clone());
8963 let payment_id = PaymentId([42; 32]);
8964 // Use the utility function send_payment_along_path to send the payment with MPP data which
8965 // indicates there are more HTLCs coming.
8966 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
8967 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
8968 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
8969 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
8970 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
8971 check_added_monitors!(nodes[0], 1);
8972 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8973 assert_eq!(events.len(), 1);
8974 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
8976 // Next, send a keysend payment with the same payment_hash and make sure it fails.
8977 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8978 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8979 check_added_monitors!(nodes[0], 1);
8980 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8981 assert_eq!(events.len(), 1);
8982 let ev = events.drain(..).next().unwrap();
8983 let payment_event = SendEvent::from_event(ev);
8984 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8985 check_added_monitors!(nodes[1], 0);
8986 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8987 expect_pending_htlcs_forwardable!(nodes[1]);
8988 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
8989 check_added_monitors!(nodes[1], 1);
8990 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8991 assert!(updates.update_add_htlcs.is_empty());
8992 assert!(updates.update_fulfill_htlcs.is_empty());
8993 assert_eq!(updates.update_fail_htlcs.len(), 1);
8994 assert!(updates.update_fail_malformed_htlcs.is_empty());
8995 assert!(updates.update_fee.is_none());
8996 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8997 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8998 expect_payment_failed!(nodes[0], our_payment_hash, true);
9000 // Send the second half of the original MPP payment.
9001 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
9002 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
9003 check_added_monitors!(nodes[0], 1);
9004 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9005 assert_eq!(events.len(), 1);
9006 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
9008 // Claim the full MPP payment. Note that we can't use a test utility like
9009 // claim_funds_along_route because the ordering of the messages causes the second half of the
9010 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
9011 // lightning messages manually.
9012 nodes[1].node.claim_funds(payment_preimage);
9013 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
9014 check_added_monitors!(nodes[1], 2);
9016 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9017 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
9018 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
9019 check_added_monitors!(nodes[0], 1);
9020 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
9021 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
9022 check_added_monitors!(nodes[1], 1);
9023 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9024 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
9025 check_added_monitors!(nodes[1], 1);
9026 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
9027 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
9028 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
9029 check_added_monitors!(nodes[0], 1);
9030 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
9031 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
9032 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
9033 check_added_monitors!(nodes[0], 1);
9034 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
9035 check_added_monitors!(nodes[1], 1);
9036 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
9037 check_added_monitors!(nodes[1], 1);
9038 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
9039 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
9040 check_added_monitors!(nodes[0], 1);
9042 // Note that successful MPP payments will generate a single PaymentSent event upon the first
9043 // path's success and a PaymentPathSuccessful event for each path's success.
9044 let events = nodes[0].node.get_and_clear_pending_events();
9045 assert_eq!(events.len(), 3);
9047 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
9048 assert_eq!(Some(payment_id), *id);
9049 assert_eq!(payment_preimage, *preimage);
9050 assert_eq!(our_payment_hash, *hash);
9052 _ => panic!("Unexpected event"),
9055 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
9056 assert_eq!(payment_id, *actual_payment_id);
9057 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
9058 assert_eq!(route.paths[0], *path);
9060 _ => panic!("Unexpected event"),
9063 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
9064 assert_eq!(payment_id, *actual_payment_id);
9065 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
9066 assert_eq!(route.paths[0], *path);
9068 _ => panic!("Unexpected event"),
9073 fn test_keysend_dup_payment_hash() {
9074 do_test_keysend_dup_payment_hash(false);
9075 do_test_keysend_dup_payment_hash(true);
9078 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
9079 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
9080 // outbound regular payment fails as expected.
9081 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
9082 // fails as expected.
9083 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
9084 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
9085 // reject MPP keysend payments, since in this case where the payment has no payment
9086 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
9087 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
9088 // payment secrets and reject otherwise.
9089 let chanmon_cfgs = create_chanmon_cfgs(2);
9090 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9091 let mut mpp_keysend_cfg = test_default_channel_config();
9092 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
9093 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
9094 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9095 create_announced_chan_between_nodes(&nodes, 0, 1);
9096 let scorer = test_utils::TestScorer::new();
9097 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
9099 // To start (1), send a regular payment but don't claim it.
9100 let expected_route = [&nodes[1]];
9101 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
9103 // Next, attempt a keysend payment and make sure it fails.
9104 let route_params = RouteParameters {
9105 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
9106 final_value_msat: 100_000,
9108 let route = find_route(
9109 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
9110 None, nodes[0].logger, &scorer, &(), &random_seed_bytes
9112 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9113 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
9114 check_added_monitors!(nodes[0], 1);
9115 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9116 assert_eq!(events.len(), 1);
9117 let ev = events.drain(..).next().unwrap();
9118 let payment_event = SendEvent::from_event(ev);
9119 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
9120 check_added_monitors!(nodes[1], 0);
9121 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
9122 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
9123 // fails), the second will process the resulting failure and fail the HTLC backward
9124 expect_pending_htlcs_forwardable!(nodes[1]);
9125 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
9126 check_added_monitors!(nodes[1], 1);
9127 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9128 assert!(updates.update_add_htlcs.is_empty());
9129 assert!(updates.update_fulfill_htlcs.is_empty());
9130 assert_eq!(updates.update_fail_htlcs.len(), 1);
9131 assert!(updates.update_fail_malformed_htlcs.is_empty());
9132 assert!(updates.update_fee.is_none());
9133 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
9134 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
9135 expect_payment_failed!(nodes[0], payment_hash, true);
9137 // Finally, claim the original payment.
9138 claim_payment(&nodes[0], &expected_route, payment_preimage);
9140 // To start (2), send a keysend payment but don't claim it.
9141 let payment_preimage = PaymentPreimage([42; 32]);
9142 let route = find_route(
9143 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
9144 None, nodes[0].logger, &scorer, &(), &random_seed_bytes
9146 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9147 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
9148 check_added_monitors!(nodes[0], 1);
9149 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9150 assert_eq!(events.len(), 1);
9151 let event = events.pop().unwrap();
9152 let path = vec![&nodes[1]];
9153 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
9155 // Next, attempt a regular payment and make sure it fails.
9156 let payment_secret = PaymentSecret([43; 32]);
9157 nodes[0].node.send_payment_with_route(&route, payment_hash,
9158 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
9159 check_added_monitors!(nodes[0], 1);
9160 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9161 assert_eq!(events.len(), 1);
9162 let ev = events.drain(..).next().unwrap();
9163 let payment_event = SendEvent::from_event(ev);
9164 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
9165 check_added_monitors!(nodes[1], 0);
9166 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
9167 expect_pending_htlcs_forwardable!(nodes[1]);
9168 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
9169 check_added_monitors!(nodes[1], 1);
9170 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9171 assert!(updates.update_add_htlcs.is_empty());
9172 assert!(updates.update_fulfill_htlcs.is_empty());
9173 assert_eq!(updates.update_fail_htlcs.len(), 1);
9174 assert!(updates.update_fail_malformed_htlcs.is_empty());
9175 assert!(updates.update_fee.is_none());
9176 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
9177 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
9178 expect_payment_failed!(nodes[0], payment_hash, true);
9180 // Finally, succeed the keysend payment.
9181 claim_payment(&nodes[0], &expected_route, payment_preimage);
9183 // To start (3), send a keysend payment but don't claim it.
9184 let payment_id_1 = PaymentId([44; 32]);
9185 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9186 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
9187 check_added_monitors!(nodes[0], 1);
9188 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9189 assert_eq!(events.len(), 1);
9190 let event = events.pop().unwrap();
9191 let path = vec![&nodes[1]];
9192 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
9194 // Next, attempt a keysend payment and make sure it fails.
9195 let route_params = RouteParameters {
9196 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
9197 final_value_msat: 100_000,
9199 let route = find_route(
9200 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
9201 None, nodes[0].logger, &scorer, &(), &random_seed_bytes
9203 let payment_id_2 = PaymentId([45; 32]);
9204 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9205 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
9206 check_added_monitors!(nodes[0], 1);
9207 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9208 assert_eq!(events.len(), 1);
9209 let ev = events.drain(..).next().unwrap();
9210 let payment_event = SendEvent::from_event(ev);
9211 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
9212 check_added_monitors!(nodes[1], 0);
9213 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
9214 expect_pending_htlcs_forwardable!(nodes[1]);
9215 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
9216 check_added_monitors!(nodes[1], 1);
9217 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9218 assert!(updates.update_add_htlcs.is_empty());
9219 assert!(updates.update_fulfill_htlcs.is_empty());
9220 assert_eq!(updates.update_fail_htlcs.len(), 1);
9221 assert!(updates.update_fail_malformed_htlcs.is_empty());
9222 assert!(updates.update_fee.is_none());
9223 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
9224 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
9225 expect_payment_failed!(nodes[0], payment_hash, true);
9227 // Finally, claim the original payment.
9228 claim_payment(&nodes[0], &expected_route, payment_preimage);
9232 fn test_keysend_hash_mismatch() {
9233 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
9234 // preimage doesn't match the msg's payment hash.
9235 let chanmon_cfgs = create_chanmon_cfgs(2);
9236 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9237 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9238 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9240 let payer_pubkey = nodes[0].node.get_our_node_id();
9241 let payee_pubkey = nodes[1].node.get_our_node_id();
9243 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
9244 let route_params = RouteParameters {
9245 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40, false),
9246 final_value_msat: 10_000,
9248 let network_graph = nodes[0].network_graph.clone();
9249 let first_hops = nodes[0].node.list_usable_channels();
9250 let scorer = test_utils::TestScorer::new();
9251 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
9252 let route = find_route(
9253 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
9254 nodes[0].logger, &scorer, &(), &random_seed_bytes
9257 let test_preimage = PaymentPreimage([42; 32]);
9258 let mismatch_payment_hash = PaymentHash([43; 32]);
9259 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
9260 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
9261 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
9262 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
9263 check_added_monitors!(nodes[0], 1);
9265 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
9266 assert_eq!(updates.update_add_htlcs.len(), 1);
9267 assert!(updates.update_fulfill_htlcs.is_empty());
9268 assert!(updates.update_fail_htlcs.is_empty());
9269 assert!(updates.update_fail_malformed_htlcs.is_empty());
9270 assert!(updates.update_fee.is_none());
9271 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
9273 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
9277 fn test_keysend_msg_with_secret_err() {
9278 // Test that we error as expected if we receive a keysend payment that includes a payment
9279 // secret when we don't support MPP keysend.
9280 let mut reject_mpp_keysend_cfg = test_default_channel_config();
9281 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
9282 let chanmon_cfgs = create_chanmon_cfgs(2);
9283 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9284 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
9285 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9287 let payer_pubkey = nodes[0].node.get_our_node_id();
9288 let payee_pubkey = nodes[1].node.get_our_node_id();
9290 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
9291 let route_params = RouteParameters {
9292 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40, false),
9293 final_value_msat: 10_000,
9295 let network_graph = nodes[0].network_graph.clone();
9296 let first_hops = nodes[0].node.list_usable_channels();
9297 let scorer = test_utils::TestScorer::new();
9298 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
9299 let route = find_route(
9300 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
9301 nodes[0].logger, &scorer, &(), &random_seed_bytes
9304 let test_preimage = PaymentPreimage([42; 32]);
9305 let test_secret = PaymentSecret([43; 32]);
9306 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
9307 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
9308 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
9309 nodes[0].node.test_send_payment_internal(&route, payment_hash,
9310 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
9311 PaymentId(payment_hash.0), None, session_privs).unwrap();
9312 check_added_monitors!(nodes[0], 1);
9314 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
9315 assert_eq!(updates.update_add_htlcs.len(), 1);
9316 assert!(updates.update_fulfill_htlcs.is_empty());
9317 assert!(updates.update_fail_htlcs.is_empty());
9318 assert!(updates.update_fail_malformed_htlcs.is_empty());
9319 assert!(updates.update_fee.is_none());
9320 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
9322 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
9326 fn test_multi_hop_missing_secret() {
9327 let chanmon_cfgs = create_chanmon_cfgs(4);
9328 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
9329 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
9330 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
9332 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
9333 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
9334 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
9335 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
9337 // Marshall an MPP route.
9338 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
9339 let path = route.paths[0].clone();
9340 route.paths.push(path);
9341 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
9342 route.paths[0].hops[0].short_channel_id = chan_1_id;
9343 route.paths[0].hops[1].short_channel_id = chan_3_id;
9344 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
9345 route.paths[1].hops[0].short_channel_id = chan_2_id;
9346 route.paths[1].hops[1].short_channel_id = chan_4_id;
9348 match nodes[0].node.send_payment_with_route(&route, payment_hash,
9349 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
9351 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
9352 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
9354 _ => panic!("unexpected error")
9359 fn test_drop_disconnected_peers_when_removing_channels() {
9360 let chanmon_cfgs = create_chanmon_cfgs(2);
9361 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9362 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9363 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9365 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
9367 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
9368 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
9370 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
9371 check_closed_broadcast!(nodes[0], true);
9372 check_added_monitors!(nodes[0], 1);
9373 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
9376 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
9377 // disconnected and the channel between has been force closed.
9378 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
9379 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
9380 assert_eq!(nodes_0_per_peer_state.len(), 1);
9381 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
9384 nodes[0].node.timer_tick_occurred();
9387 // Assert that nodes[1] has now been removed.
9388 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
9393 fn bad_inbound_payment_hash() {
9394 // Add coverage for checking that a user-provided payment hash matches the payment secret.
9395 let chanmon_cfgs = create_chanmon_cfgs(2);
9396 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9397 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9398 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9400 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
9401 let payment_data = msgs::FinalOnionHopData {
9403 total_msat: 100_000,
9406 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
9407 // payment verification fails as expected.
9408 let mut bad_payment_hash = payment_hash.clone();
9409 bad_payment_hash.0[0] += 1;
9410 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
9411 Ok(_) => panic!("Unexpected ok"),
9413 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
9417 // Check that using the original payment hash succeeds.
9418 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
9422 fn test_id_to_peer_coverage() {
9423 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
9424 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
9425 // the channel is successfully closed.
9426 let chanmon_cfgs = create_chanmon_cfgs(2);
9427 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9428 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9429 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9431 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
9432 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9433 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
9434 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
9435 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
9437 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
9438 let channel_id = &tx.txid().into_inner();
9440 // Ensure that the `id_to_peer` map is empty until either party has received the
9441 // funding transaction, and have the real `channel_id`.
9442 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
9443 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
9446 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
9448 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
9449 // as it has the funding transaction.
9450 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
9451 assert_eq!(nodes_0_lock.len(), 1);
9452 assert!(nodes_0_lock.contains_key(channel_id));
9455 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
9457 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
9459 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
9461 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
9462 assert_eq!(nodes_0_lock.len(), 1);
9463 assert!(nodes_0_lock.contains_key(channel_id));
9465 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
9468 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
9469 // as it has the funding transaction.
9470 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
9471 assert_eq!(nodes_1_lock.len(), 1);
9472 assert!(nodes_1_lock.contains_key(channel_id));
9474 check_added_monitors!(nodes[1], 1);
9475 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
9476 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
9477 check_added_monitors!(nodes[0], 1);
9478 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
9479 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
9480 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
9481 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
9483 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
9484 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
9485 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
9486 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
9488 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
9489 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
9491 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
9492 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
9493 // fee for the closing transaction has been negotiated and the parties has the other
9494 // party's signature for the fee negotiated closing transaction.)
9495 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
9496 assert_eq!(nodes_0_lock.len(), 1);
9497 assert!(nodes_0_lock.contains_key(channel_id));
9501 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
9502 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
9503 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
9504 // kept in the `nodes[1]`'s `id_to_peer` map.
9505 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
9506 assert_eq!(nodes_1_lock.len(), 1);
9507 assert!(nodes_1_lock.contains_key(channel_id));
9510 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
9512 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
9513 // therefore has all it needs to fully close the channel (both signatures for the
9514 // closing transaction).
9515 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
9516 // fully closed by `nodes[0]`.
9517 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
9519 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
9520 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
9521 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
9522 assert_eq!(nodes_1_lock.len(), 1);
9523 assert!(nodes_1_lock.contains_key(channel_id));
9526 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
9528 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
9530 // Assert that the channel has now been removed from both parties `id_to_peer` map once
9531 // they both have everything required to fully close the channel.
9532 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
9534 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
9536 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
9537 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
9540 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
9541 let expected_message = format!("Not connected to node: {}", expected_public_key);
9542 check_api_error_message(expected_message, res_err)
9545 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
9546 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
9547 check_api_error_message(expected_message, res_err)
9550 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
9552 Err(APIError::APIMisuseError { err }) => {
9553 assert_eq!(err, expected_err_message);
9555 Err(APIError::ChannelUnavailable { err }) => {
9556 assert_eq!(err, expected_err_message);
9558 Ok(_) => panic!("Unexpected Ok"),
9559 Err(_) => panic!("Unexpected Error"),
9564 fn test_api_calls_with_unkown_counterparty_node() {
9565 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
9566 // expected if the `counterparty_node_id` is an unkown peer in the
9567 // `ChannelManager::per_peer_state` map.
9568 let chanmon_cfg = create_chanmon_cfgs(2);
9569 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
9570 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
9571 let nodes = create_network(2, &node_cfg, &node_chanmgr);
9574 let channel_id = [4; 32];
9575 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
9576 let intercept_id = InterceptId([0; 32]);
9578 // Test the API functions.
9579 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
9581 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
9583 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
9585 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
9587 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
9589 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
9591 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
9595 fn test_connection_limiting() {
9596 // Test that we limit un-channel'd peers and un-funded channels properly.
9597 let chanmon_cfgs = create_chanmon_cfgs(2);
9598 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9599 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9600 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9602 // Note that create_network connects the nodes together for us
9604 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9605 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9607 let mut funding_tx = None;
9608 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
9609 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9610 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
9613 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
9614 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
9615 funding_tx = Some(tx.clone());
9616 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
9617 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
9619 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
9620 check_added_monitors!(nodes[1], 1);
9621 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
9623 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
9625 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
9626 check_added_monitors!(nodes[0], 1);
9627 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
9629 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9632 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
9633 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9634 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9635 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
9636 open_channel_msg.temporary_channel_id);
9638 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
9639 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
9641 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
9642 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
9643 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
9644 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
9645 peer_pks.push(random_pk);
9646 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
9647 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
9650 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
9651 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
9652 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
9653 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
9654 }, true).unwrap_err();
9656 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
9657 // them if we have too many un-channel'd peers.
9658 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
9659 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
9660 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
9661 for ev in chan_closed_events {
9662 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
9664 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
9665 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
9667 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
9668 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
9669 }, true).unwrap_err();
9671 // but of course if the connection is outbound its allowed...
9672 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
9673 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
9675 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
9677 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
9678 // Even though we accept one more connection from new peers, we won't actually let them
9680 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
9681 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
9682 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
9683 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
9684 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9686 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
9687 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
9688 open_channel_msg.temporary_channel_id);
9690 // Of course, however, outbound channels are always allowed
9691 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
9692 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
9694 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
9695 // "protected" and can connect again.
9696 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
9697 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
9698 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
9700 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
9702 // Further, because the first channel was funded, we can open another channel with
9704 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
9705 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
9709 fn test_outbound_chans_unlimited() {
9710 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
9711 let chanmon_cfgs = create_chanmon_cfgs(2);
9712 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9713 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9714 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9716 // Note that create_network connects the nodes together for us
9718 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9719 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9721 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
9722 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9723 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
9724 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9727 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
9729 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9730 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
9731 open_channel_msg.temporary_channel_id);
9733 // but we can still open an outbound channel.
9734 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9735 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
9737 // but even with such an outbound channel, additional inbound channels will still fail.
9738 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9739 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
9740 open_channel_msg.temporary_channel_id);
9744 fn test_0conf_limiting() {
9745 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
9746 // flag set and (sometimes) accept channels as 0conf.
9747 let chanmon_cfgs = create_chanmon_cfgs(2);
9748 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9749 let mut settings = test_default_channel_config();
9750 settings.manually_accept_inbound_channels = true;
9751 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
9752 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9754 // Note that create_network connects the nodes together for us
9756 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9757 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9759 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
9760 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
9761 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
9762 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
9763 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
9764 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
9767 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
9768 let events = nodes[1].node.get_and_clear_pending_events();
9770 Event::OpenChannelRequest { temporary_channel_id, .. } => {
9771 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
9773 _ => panic!("Unexpected event"),
9775 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
9776 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9779 // If we try to accept a channel from another peer non-0conf it will fail.
9780 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
9781 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
9782 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
9783 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
9785 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
9786 let events = nodes[1].node.get_and_clear_pending_events();
9788 Event::OpenChannelRequest { temporary_channel_id, .. } => {
9789 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
9790 Err(APIError::APIMisuseError { err }) =>
9791 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
9795 _ => panic!("Unexpected event"),
9797 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
9798 open_channel_msg.temporary_channel_id);
9800 // ...however if we accept the same channel 0conf it should work just fine.
9801 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
9802 let events = nodes[1].node.get_and_clear_pending_events();
9804 Event::OpenChannelRequest { temporary_channel_id, .. } => {
9805 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
9807 _ => panic!("Unexpected event"),
9809 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
9813 fn reject_excessively_underpaying_htlcs() {
9814 let chanmon_cfg = create_chanmon_cfgs(1);
9815 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
9816 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
9817 let node = create_network(1, &node_cfg, &node_chanmgr);
9818 let sender_intended_amt_msat = 100;
9819 let extra_fee_msat = 10;
9820 let hop_data = msgs::OnionHopData {
9821 amt_to_forward: 100,
9822 outgoing_cltv_value: 42,
9823 format: msgs::OnionHopDataFormat::FinalNode {
9824 keysend_preimage: None,
9825 payment_metadata: None,
9826 payment_data: Some(msgs::FinalOnionHopData {
9827 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
9831 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
9832 // intended amount, we fail the payment.
9833 if let Err(crate::ln::channelmanager::ReceiveError { err_code, .. }) =
9834 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
9835 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
9837 assert_eq!(err_code, 19);
9838 } else { panic!(); }
9840 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
9841 let hop_data = msgs::OnionHopData { // This is the same hop_data as above, OnionHopData doesn't implement Clone
9842 amt_to_forward: 100,
9843 outgoing_cltv_value: 42,
9844 format: msgs::OnionHopDataFormat::FinalNode {
9845 keysend_preimage: None,
9846 payment_metadata: None,
9847 payment_data: Some(msgs::FinalOnionHopData {
9848 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
9852 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
9853 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
9857 fn test_inbound_anchors_manual_acceptance() {
9858 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
9859 // flag set and (sometimes) accept channels as 0conf.
9860 let mut anchors_cfg = test_default_channel_config();
9861 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
9863 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
9864 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
9866 let chanmon_cfgs = create_chanmon_cfgs(3);
9867 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
9868 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
9869 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
9870 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
9872 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9873 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9875 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9876 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
9877 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
9878 match &msg_events[0] {
9879 MessageSendEvent::HandleError { node_id, action } => {
9880 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
9882 ErrorAction::SendErrorMessage { msg } =>
9883 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
9884 _ => panic!("Unexpected error action"),
9887 _ => panic!("Unexpected event"),
9890 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9891 let events = nodes[2].node.get_and_clear_pending_events();
9893 Event::OpenChannelRequest { temporary_channel_id, .. } =>
9894 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
9895 _ => panic!("Unexpected event"),
9897 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
9901 fn test_anchors_zero_fee_htlc_tx_fallback() {
9902 // Tests that if both nodes support anchors, but the remote node does not want to accept
9903 // anchor channels at the moment, an error it sent to the local node such that it can retry
9904 // the channel without the anchors feature.
9905 let chanmon_cfgs = create_chanmon_cfgs(2);
9906 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9907 let mut anchors_config = test_default_channel_config();
9908 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
9909 anchors_config.manually_accept_inbound_channels = true;
9910 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
9911 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9913 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
9914 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9915 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
9917 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9918 let events = nodes[1].node.get_and_clear_pending_events();
9920 Event::OpenChannelRequest { temporary_channel_id, .. } => {
9921 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
9923 _ => panic!("Unexpected event"),
9926 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
9927 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
9929 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9930 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
9932 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
9936 fn test_update_channel_config() {
9937 let chanmon_cfg = create_chanmon_cfgs(2);
9938 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
9939 let mut user_config = test_default_channel_config();
9940 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
9941 let nodes = create_network(2, &node_cfg, &node_chanmgr);
9942 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
9943 let channel = &nodes[0].node.list_channels()[0];
9945 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
9946 let events = nodes[0].node.get_and_clear_pending_msg_events();
9947 assert_eq!(events.len(), 0);
9949 user_config.channel_config.forwarding_fee_base_msat += 10;
9950 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
9951 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
9952 let events = nodes[0].node.get_and_clear_pending_msg_events();
9953 assert_eq!(events.len(), 1);
9955 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
9956 _ => panic!("expected BroadcastChannelUpdate event"),
9959 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
9960 let events = nodes[0].node.get_and_clear_pending_msg_events();
9961 assert_eq!(events.len(), 0);
9963 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
9964 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
9965 cltv_expiry_delta: Some(new_cltv_expiry_delta),
9966 ..Default::default()
9968 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
9969 let events = nodes[0].node.get_and_clear_pending_msg_events();
9970 assert_eq!(events.len(), 1);
9972 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
9973 _ => panic!("expected BroadcastChannelUpdate event"),
9976 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
9977 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
9978 forwarding_fee_proportional_millionths: Some(new_fee),
9979 ..Default::default()
9981 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
9982 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
9983 let events = nodes[0].node.get_and_clear_pending_msg_events();
9984 assert_eq!(events.len(), 1);
9986 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
9987 _ => panic!("expected BroadcastChannelUpdate event"),
9994 use crate::chain::Listen;
9995 use crate::chain::chainmonitor::{ChainMonitor, Persist};
9996 use crate::sign::{KeysManager, InMemorySigner};
9997 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
9998 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
9999 use crate::ln::functional_test_utils::*;
10000 use crate::ln::msgs::{ChannelMessageHandler, Init};
10001 use crate::routing::gossip::NetworkGraph;
10002 use crate::routing::router::{PaymentParameters, RouteParameters};
10003 use crate::util::test_utils;
10004 use crate::util::config::UserConfig;
10006 use bitcoin::hashes::Hash;
10007 use bitcoin::hashes::sha256::Hash as Sha256;
10008 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
10010 use crate::sync::{Arc, Mutex};
10012 use criterion::Criterion;
10014 type Manager<'a, P> = ChannelManager<
10015 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
10016 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
10017 &'a test_utils::TestLogger, &'a P>,
10018 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
10019 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
10020 &'a test_utils::TestLogger>;
10022 struct ANodeHolder<'a, P: Persist<InMemorySigner>> {
10023 node: &'a Manager<'a, P>,
10025 impl<'a, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'a, P> {
10026 type CM = Manager<'a, P>;
10028 fn node(&self) -> &Manager<'a, P> { self.node }
10030 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
10033 pub fn bench_sends(bench: &mut Criterion) {
10034 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
10037 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
10038 // Do a simple benchmark of sending a payment back and forth between two nodes.
10039 // Note that this is unrealistic as each payment send will require at least two fsync
10041 let network = bitcoin::Network::Testnet;
10043 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
10044 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
10045 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
10046 let scorer = Mutex::new(test_utils::TestScorer::new());
10047 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
10049 let mut config: UserConfig = Default::default();
10050 config.channel_handshake_config.minimum_depth = 1;
10052 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
10053 let seed_a = [1u8; 32];
10054 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
10055 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
10057 best_block: BestBlock::from_network(network),
10059 let node_a_holder = ANodeHolder { node: &node_a };
10061 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
10062 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
10063 let seed_b = [2u8; 32];
10064 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
10065 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
10067 best_block: BestBlock::from_network(network),
10069 let node_b_holder = ANodeHolder { node: &node_b };
10071 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
10072 features: node_b.init_features(), networks: None, remote_network_address: None
10074 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
10075 features: node_a.init_features(), networks: None, remote_network_address: None
10076 }, false).unwrap();
10077 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
10078 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
10079 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
10082 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
10083 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
10084 value: 8_000_000, script_pubkey: output_script,
10086 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
10087 } else { panic!(); }
10089 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
10090 let events_b = node_b.get_and_clear_pending_events();
10091 assert_eq!(events_b.len(), 1);
10092 match events_b[0] {
10093 Event::ChannelPending{ ref counterparty_node_id, .. } => {
10094 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
10096 _ => panic!("Unexpected event"),
10099 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
10100 let events_a = node_a.get_and_clear_pending_events();
10101 assert_eq!(events_a.len(), 1);
10102 match events_a[0] {
10103 Event::ChannelPending{ ref counterparty_node_id, .. } => {
10104 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
10106 _ => panic!("Unexpected event"),
10109 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
10111 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
10112 Listen::block_connected(&node_a, &block, 1);
10113 Listen::block_connected(&node_b, &block, 1);
10115 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
10116 let msg_events = node_a.get_and_clear_pending_msg_events();
10117 assert_eq!(msg_events.len(), 2);
10118 match msg_events[0] {
10119 MessageSendEvent::SendChannelReady { ref msg, .. } => {
10120 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
10121 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
10125 match msg_events[1] {
10126 MessageSendEvent::SendChannelUpdate { .. } => {},
10130 let events_a = node_a.get_and_clear_pending_events();
10131 assert_eq!(events_a.len(), 1);
10132 match events_a[0] {
10133 Event::ChannelReady{ ref counterparty_node_id, .. } => {
10134 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
10136 _ => panic!("Unexpected event"),
10139 let events_b = node_b.get_and_clear_pending_events();
10140 assert_eq!(events_b.len(), 1);
10141 match events_b[0] {
10142 Event::ChannelReady{ ref counterparty_node_id, .. } => {
10143 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
10145 _ => panic!("Unexpected event"),
10148 let mut payment_count: u64 = 0;
10149 macro_rules! send_payment {
10150 ($node_a: expr, $node_b: expr) => {
10151 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
10152 .with_bolt11_features($node_b.invoice_features()).unwrap();
10153 let mut payment_preimage = PaymentPreimage([0; 32]);
10154 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
10155 payment_count += 1;
10156 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
10157 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
10159 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
10160 PaymentId(payment_hash.0), RouteParameters {
10161 payment_params, final_value_msat: 10_000,
10162 }, Retry::Attempts(0)).unwrap();
10163 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
10164 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
10165 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
10166 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
10167 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
10168 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
10169 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
10171 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
10172 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
10173 $node_b.claim_funds(payment_preimage);
10174 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
10176 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
10177 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
10178 assert_eq!(node_id, $node_a.get_our_node_id());
10179 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
10180 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
10182 _ => panic!("Failed to generate claim event"),
10185 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
10186 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
10187 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
10188 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
10190 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
10194 bench.bench_function(bench_name, |b| b.iter(|| {
10195 send_payment!(node_a, node_b);
10196 send_payment!(node_b, node_a);