1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
48 #[cfg(any(feature = "_test_utils", test))]
49 use crate::ln::features::Bolt11InvoiceFeatures;
50 use crate::routing::gossip::NetworkGraph;
51 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
53 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundOnionErr, NextPacketDetails};
55 use crate::ln::onion_utils;
56 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
57 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
59 use crate::ln::outbound_payment;
60 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
61 use crate::ln::wire::Encode;
62 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
63 use crate::offers::invoice_error::InvoiceError;
64 use crate::offers::merkle::SignError;
65 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
66 use crate::offers::parse::Bolt12SemanticError;
67 use crate::offers::refund::{Refund, RefundBuilder};
68 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
69 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
79 use alloc::collections::{btree_map, BTreeMap};
82 use crate::prelude::*;
84 use core::cell::RefCell;
86 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
87 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
88 use core::time::Duration;
91 // Re-export this for use in the public API.
92 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
93 use crate::ln::script::ShutdownScript;
95 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
97 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
98 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
99 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
101 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
102 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
103 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
104 // before we forward it.
106 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
107 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
108 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
109 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
110 // our payment, which we can use to decode errors or inform the user that the payment was sent.
112 /// Routing info for an inbound HTLC onion.
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub enum PendingHTLCRouting {
115 /// A forwarded HTLC.
117 /// BOLT 4 onion packet.
118 onion_packet: msgs::OnionPacket,
119 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
120 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
121 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
122 /// Set if this HTLC is being forwarded within a blinded path.
123 blinded: Option<BlindedForward>,
125 /// An HTLC paid to an invoice (supposedly) generated by us.
126 /// At this point, we have not checked that the invoice being paid was actually generated by us,
127 /// but rather it's claiming to pay an invoice of ours.
129 /// Payment secret and total msat received.
130 payment_data: msgs::FinalOnionHopData,
131 /// See [`RecipientOnionFields::payment_metadata`] for more info.
132 payment_metadata: Option<Vec<u8>>,
133 /// CLTV expiry of the received HTLC.
134 /// Used to track when we should expire pending HTLCs that go unclaimed.
135 incoming_cltv_expiry: u32,
136 /// Shared secret derived using a phantom node secret key. If this field is Some, the
137 /// payment was sent to a phantom node (one hop beyond the current node), but can be
138 /// settled by this node.
139 phantom_shared_secret: Option<[u8; 32]>,
140 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
141 custom_tlvs: Vec<(u64, Vec<u8>)>,
143 /// Incoming keysend (sender provided the preimage in a TLV).
145 /// This was added in 0.0.116 and will break deserialization on downgrades.
146 payment_data: Option<msgs::FinalOnionHopData>,
147 /// Preimage for this onion payment. This preimage is provided by the sender and will be
148 /// used to settle the spontaneous payment.
149 payment_preimage: PaymentPreimage,
150 /// See [`RecipientOnionFields::payment_metadata`] for more info.
151 payment_metadata: Option<Vec<u8>>,
152 /// CLTV expiry of the received HTLC.
153 /// Used to track when we should expire pending HTLCs that go unclaimed.
154 incoming_cltv_expiry: u32,
155 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
156 custom_tlvs: Vec<(u64, Vec<u8>)>,
160 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
161 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
162 pub struct BlindedForward {
163 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
164 /// onion payload if we're the introduction node. Useful for calculating the next hop's
165 /// [`msgs::UpdateAddHTLC::blinding_point`].
166 pub inbound_blinding_point: PublicKey,
167 // Another field will be added here when we support forwarding as a non-intro node.
170 impl PendingHTLCRouting {
171 // Used to override the onion failure code and data if the HTLC is blinded.
172 fn blinded_failure(&self) -> Option<BlindedFailure> {
173 // TODO: needs update when we support receiving to multi-hop blinded paths
174 if let Self::Forward { blinded: Some(_), .. } = self {
175 Some(BlindedFailure::FromIntroductionNode)
182 /// Full details of an incoming HTLC, including routing info.
183 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
184 pub struct PendingHTLCInfo {
185 /// Further routing details based on whether the HTLC is being forwarded or received.
186 pub routing: PendingHTLCRouting,
187 /// Shared secret from the previous hop.
188 /// Used encrypt failure packets in the event that the HTLC needs to be failed backwards.
189 pub incoming_shared_secret: [u8; 32],
190 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
191 pub payment_hash: PaymentHash,
192 /// Amount offered by this HTLC.
193 pub incoming_amt_msat: Option<u64>, // Added in 0.0.113
194 /// Sender intended amount to forward or receive (actual amount received
195 /// may overshoot this in either case)
196 pub outgoing_amt_msat: u64,
197 /// Outgoing timelock expiration blockheight.
198 pub outgoing_cltv_value: u32,
199 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
200 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
201 pub skimmed_fee_msat: Option<u64>,
204 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
205 pub(super) enum HTLCFailureMsg {
206 Relay(msgs::UpdateFailHTLC),
207 Malformed(msgs::UpdateFailMalformedHTLC),
210 /// Stores whether we can't forward an HTLC or relevant forwarding info
211 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
212 pub(super) enum PendingHTLCStatus {
213 Forward(PendingHTLCInfo),
214 Fail(HTLCFailureMsg),
217 pub(super) struct PendingAddHTLCInfo {
218 pub(super) forward_info: PendingHTLCInfo,
220 // These fields are produced in `forward_htlcs()` and consumed in
221 // `process_pending_htlc_forwards()` for constructing the
222 // `HTLCSource::PreviousHopData` for failed and forwarded
225 // Note that this may be an outbound SCID alias for the associated channel.
226 prev_short_channel_id: u64,
228 prev_funding_outpoint: OutPoint,
229 prev_user_channel_id: u128,
232 pub(super) enum HTLCForwardInfo {
233 AddHTLC(PendingAddHTLCInfo),
236 err_packet: msgs::OnionErrorPacket,
240 // Used for failing blinded HTLCs backwards correctly.
241 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
242 enum BlindedFailure {
243 FromIntroductionNode,
244 // Another variant will be added here for non-intro nodes.
247 /// Tracks the inbound corresponding to an outbound HTLC
248 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
249 pub(crate) struct HTLCPreviousHopData {
250 // Note that this may be an outbound SCID alias for the associated channel.
251 short_channel_id: u64,
252 user_channel_id: Option<u128>,
254 incoming_packet_shared_secret: [u8; 32],
255 phantom_shared_secret: Option<[u8; 32]>,
256 blinded_failure: Option<BlindedFailure>,
258 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
259 // channel with a preimage provided by the forward channel.
264 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
266 /// This is only here for backwards-compatibility in serialization, in the future it can be
267 /// removed, breaking clients running 0.0.106 and earlier.
268 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
270 /// Contains the payer-provided preimage.
271 Spontaneous(PaymentPreimage),
274 /// HTLCs that are to us and can be failed/claimed by the user
275 struct ClaimableHTLC {
276 prev_hop: HTLCPreviousHopData,
278 /// The amount (in msats) of this MPP part
280 /// The amount (in msats) that the sender intended to be sent in this MPP
281 /// part (used for validating total MPP amount)
282 sender_intended_value: u64,
283 onion_payload: OnionPayload,
285 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
286 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
287 total_value_received: Option<u64>,
288 /// The sender intended sum total of all MPP parts specified in the onion
290 /// The extra fee our counterparty skimmed off the top of this HTLC.
291 counterparty_skimmed_fee_msat: Option<u64>,
294 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
295 fn from(val: &ClaimableHTLC) -> Self {
296 events::ClaimedHTLC {
297 channel_id: val.prev_hop.outpoint.to_channel_id(),
298 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
299 cltv_expiry: val.cltv_expiry,
300 value_msat: val.value,
301 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
306 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
307 /// a payment and ensure idempotency in LDK.
309 /// This is not exported to bindings users as we just use [u8; 32] directly
310 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
311 pub struct PaymentId(pub [u8; Self::LENGTH]);
314 /// Number of bytes in the id.
315 pub const LENGTH: usize = 32;
318 impl Writeable for PaymentId {
319 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
324 impl Readable for PaymentId {
325 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
326 let buf: [u8; 32] = Readable::read(r)?;
331 impl core::fmt::Display for PaymentId {
332 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
333 crate::util::logger::DebugBytes(&self.0).fmt(f)
337 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
339 /// This is not exported to bindings users as we just use [u8; 32] directly
340 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
341 pub struct InterceptId(pub [u8; 32]);
343 impl Writeable for InterceptId {
344 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
349 impl Readable for InterceptId {
350 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
351 let buf: [u8; 32] = Readable::read(r)?;
356 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
357 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
358 pub(crate) enum SentHTLCId {
359 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
360 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
363 pub(crate) fn from_source(source: &HTLCSource) -> Self {
365 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
366 short_channel_id: hop_data.short_channel_id,
367 htlc_id: hop_data.htlc_id,
369 HTLCSource::OutboundRoute { session_priv, .. } =>
370 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
374 impl_writeable_tlv_based_enum!(SentHTLCId,
375 (0, PreviousHopData) => {
376 (0, short_channel_id, required),
377 (2, htlc_id, required),
379 (2, OutboundRoute) => {
380 (0, session_priv, required),
385 /// Tracks the inbound corresponding to an outbound HTLC
386 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
387 #[derive(Clone, Debug, PartialEq, Eq)]
388 pub(crate) enum HTLCSource {
389 PreviousHopData(HTLCPreviousHopData),
392 session_priv: SecretKey,
393 /// Technically we can recalculate this from the route, but we cache it here to avoid
394 /// doing a double-pass on route when we get a failure back
395 first_hop_htlc_msat: u64,
396 payment_id: PaymentId,
399 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
400 impl core::hash::Hash for HTLCSource {
401 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
403 HTLCSource::PreviousHopData(prev_hop_data) => {
405 prev_hop_data.hash(hasher);
407 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
410 session_priv[..].hash(hasher);
411 payment_id.hash(hasher);
412 first_hop_htlc_msat.hash(hasher);
418 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
420 pub fn dummy() -> Self {
421 HTLCSource::OutboundRoute {
422 path: Path { hops: Vec::new(), blinded_tail: None },
423 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
424 first_hop_htlc_msat: 0,
425 payment_id: PaymentId([2; 32]),
429 #[cfg(debug_assertions)]
430 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
431 /// transaction. Useful to ensure different datastructures match up.
432 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
433 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
434 *first_hop_htlc_msat == htlc.amount_msat
436 // There's nothing we can check for forwarded HTLCs
442 /// This enum is used to specify which error data to send to peers when failing back an HTLC
443 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
445 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
446 #[derive(Clone, Copy)]
447 pub enum FailureCode {
448 /// We had a temporary error processing the payment. Useful if no other error codes fit
449 /// and you want to indicate that the payer may want to retry.
450 TemporaryNodeFailure,
451 /// We have a required feature which was not in this onion. For example, you may require
452 /// some additional metadata that was not provided with this payment.
453 RequiredNodeFeatureMissing,
454 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
455 /// the HTLC is too close to the current block height for safe handling.
456 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
457 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
458 IncorrectOrUnknownPaymentDetails,
459 /// We failed to process the payload after the onion was decrypted. You may wish to
460 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
462 /// If available, the tuple data may include the type number and byte offset in the
463 /// decrypted byte stream where the failure occurred.
464 InvalidOnionPayload(Option<(u64, u16)>),
467 impl Into<u16> for FailureCode {
468 fn into(self) -> u16 {
470 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
471 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
472 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
473 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
478 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
479 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
480 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
481 /// peer_state lock. We then return the set of things that need to be done outside the lock in
482 /// this struct and call handle_error!() on it.
484 struct MsgHandleErrInternal {
485 err: msgs::LightningError,
486 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
487 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
488 channel_capacity: Option<u64>,
490 impl MsgHandleErrInternal {
492 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
494 err: LightningError {
496 action: msgs::ErrorAction::SendErrorMessage {
497 msg: msgs::ErrorMessage {
504 shutdown_finish: None,
505 channel_capacity: None,
509 fn from_no_close(err: msgs::LightningError) -> Self {
510 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
513 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
514 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
515 let action = if shutdown_res.monitor_update.is_some() {
516 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
517 // should disconnect our peer such that we force them to broadcast their latest
518 // commitment upon reconnecting.
519 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
521 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
524 err: LightningError { err, action },
525 chan_id: Some((channel_id, user_channel_id)),
526 shutdown_finish: Some((shutdown_res, channel_update)),
527 channel_capacity: Some(channel_capacity)
531 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
534 ChannelError::Warn(msg) => LightningError {
536 action: msgs::ErrorAction::SendWarningMessage {
537 msg: msgs::WarningMessage {
541 log_level: Level::Warn,
544 ChannelError::Ignore(msg) => LightningError {
546 action: msgs::ErrorAction::IgnoreError,
548 ChannelError::Close(msg) => LightningError {
550 action: msgs::ErrorAction::SendErrorMessage {
551 msg: msgs::ErrorMessage {
559 shutdown_finish: None,
560 channel_capacity: None,
564 fn closes_channel(&self) -> bool {
565 self.chan_id.is_some()
569 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
570 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
571 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
572 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
573 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
575 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
576 /// be sent in the order they appear in the return value, however sometimes the order needs to be
577 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
578 /// they were originally sent). In those cases, this enum is also returned.
579 #[derive(Clone, PartialEq)]
580 pub(super) enum RAACommitmentOrder {
581 /// Send the CommitmentUpdate messages first
583 /// Send the RevokeAndACK message first
587 /// Information about a payment which is currently being claimed.
588 struct ClaimingPayment {
590 payment_purpose: events::PaymentPurpose,
591 receiver_node_id: PublicKey,
592 htlcs: Vec<events::ClaimedHTLC>,
593 sender_intended_value: Option<u64>,
595 impl_writeable_tlv_based!(ClaimingPayment, {
596 (0, amount_msat, required),
597 (2, payment_purpose, required),
598 (4, receiver_node_id, required),
599 (5, htlcs, optional_vec),
600 (7, sender_intended_value, option),
603 struct ClaimablePayment {
604 purpose: events::PaymentPurpose,
605 onion_fields: Option<RecipientOnionFields>,
606 htlcs: Vec<ClaimableHTLC>,
609 /// Information about claimable or being-claimed payments
610 struct ClaimablePayments {
611 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
612 /// failed/claimed by the user.
614 /// Note that, no consistency guarantees are made about the channels given here actually
615 /// existing anymore by the time you go to read them!
617 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
618 /// we don't get a duplicate payment.
619 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
621 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
622 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
623 /// as an [`events::Event::PaymentClaimed`].
624 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
627 /// Events which we process internally but cannot be processed immediately at the generation site
628 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
629 /// running normally, and specifically must be processed before any other non-background
630 /// [`ChannelMonitorUpdate`]s are applied.
632 enum BackgroundEvent {
633 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
634 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
635 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
636 /// channel has been force-closed we do not need the counterparty node_id.
638 /// Note that any such events are lost on shutdown, so in general they must be updates which
639 /// are regenerated on startup.
640 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
641 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
642 /// channel to continue normal operation.
644 /// In general this should be used rather than
645 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
646 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
647 /// error the other variant is acceptable.
649 /// Note that any such events are lost on shutdown, so in general they must be updates which
650 /// are regenerated on startup.
651 MonitorUpdateRegeneratedOnStartup {
652 counterparty_node_id: PublicKey,
653 funding_txo: OutPoint,
654 update: ChannelMonitorUpdate
656 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
657 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
659 MonitorUpdatesComplete {
660 counterparty_node_id: PublicKey,
661 channel_id: ChannelId,
666 pub(crate) enum MonitorUpdateCompletionAction {
667 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
668 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
669 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
670 /// event can be generated.
671 PaymentClaimed { payment_hash: PaymentHash },
672 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
673 /// operation of another channel.
675 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
676 /// from completing a monitor update which removes the payment preimage until the inbound edge
677 /// completes a monitor update containing the payment preimage. In that case, after the inbound
678 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
680 EmitEventAndFreeOtherChannel {
681 event: events::Event,
682 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
684 /// Indicates we should immediately resume the operation of another channel, unless there is
685 /// some other reason why the channel is blocked. In practice this simply means immediately
686 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
688 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
689 /// from completing a monitor update which removes the payment preimage until the inbound edge
690 /// completes a monitor update containing the payment preimage. However, we use this variant
691 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
692 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
694 /// This variant should thus never be written to disk, as it is processed inline rather than
695 /// stored for later processing.
696 FreeOtherChannelImmediately {
697 downstream_counterparty_node_id: PublicKey,
698 downstream_funding_outpoint: OutPoint,
699 blocking_action: RAAMonitorUpdateBlockingAction,
703 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
704 (0, PaymentClaimed) => { (0, payment_hash, required) },
705 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
706 // *immediately*. However, for simplicity we implement read/write here.
707 (1, FreeOtherChannelImmediately) => {
708 (0, downstream_counterparty_node_id, required),
709 (2, downstream_funding_outpoint, required),
710 (4, blocking_action, required),
712 (2, EmitEventAndFreeOtherChannel) => {
713 (0, event, upgradable_required),
714 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
715 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
716 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
717 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
718 // downgrades to prior versions.
719 (1, downstream_counterparty_and_funding_outpoint, option),
723 #[derive(Clone, Debug, PartialEq, Eq)]
724 pub(crate) enum EventCompletionAction {
725 ReleaseRAAChannelMonitorUpdate {
726 counterparty_node_id: PublicKey,
727 channel_funding_outpoint: OutPoint,
730 impl_writeable_tlv_based_enum!(EventCompletionAction,
731 (0, ReleaseRAAChannelMonitorUpdate) => {
732 (0, channel_funding_outpoint, required),
733 (2, counterparty_node_id, required),
737 #[derive(Clone, PartialEq, Eq, Debug)]
738 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
739 /// the blocked action here. See enum variants for more info.
740 pub(crate) enum RAAMonitorUpdateBlockingAction {
741 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
742 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
744 ForwardedPaymentInboundClaim {
745 /// The upstream channel ID (i.e. the inbound edge).
746 channel_id: ChannelId,
747 /// The HTLC ID on the inbound edge.
752 impl RAAMonitorUpdateBlockingAction {
753 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
754 Self::ForwardedPaymentInboundClaim {
755 channel_id: prev_hop.outpoint.to_channel_id(),
756 htlc_id: prev_hop.htlc_id,
761 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
762 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
766 /// State we hold per-peer.
767 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
768 /// `channel_id` -> `ChannelPhase`
770 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
771 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
772 /// `temporary_channel_id` -> `InboundChannelRequest`.
774 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
775 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
776 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
777 /// the channel is rejected, then the entry is simply removed.
778 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
779 /// The latest `InitFeatures` we heard from the peer.
780 latest_features: InitFeatures,
781 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
782 /// for broadcast messages, where ordering isn't as strict).
783 pub(super) pending_msg_events: Vec<MessageSendEvent>,
784 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
785 /// user but which have not yet completed.
787 /// Note that the channel may no longer exist. For example if the channel was closed but we
788 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
789 /// for a missing channel.
790 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
791 /// Map from a specific channel to some action(s) that should be taken when all pending
792 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
794 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
795 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
796 /// channels with a peer this will just be one allocation and will amount to a linear list of
797 /// channels to walk, avoiding the whole hashing rigmarole.
799 /// Note that the channel may no longer exist. For example, if a channel was closed but we
800 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
801 /// for a missing channel. While a malicious peer could construct a second channel with the
802 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
803 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
804 /// duplicates do not occur, so such channels should fail without a monitor update completing.
805 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
806 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
807 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
808 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
809 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
810 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
811 /// The peer is currently connected (i.e. we've seen a
812 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
813 /// [`ChannelMessageHandler::peer_disconnected`].
817 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
818 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
819 /// If true is passed for `require_disconnected`, the function will return false if we haven't
820 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
821 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
822 if require_disconnected && self.is_connected {
825 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
826 && self.monitor_update_blocked_actions.is_empty()
827 && self.in_flight_monitor_updates.is_empty()
830 // Returns a count of all channels we have with this peer, including unfunded channels.
831 fn total_channel_count(&self) -> usize {
832 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
835 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
836 fn has_channel(&self, channel_id: &ChannelId) -> bool {
837 self.channel_by_id.contains_key(channel_id) ||
838 self.inbound_channel_request_by_id.contains_key(channel_id)
842 /// A not-yet-accepted inbound (from counterparty) channel. Once
843 /// accepted, the parameters will be used to construct a channel.
844 pub(super) struct InboundChannelRequest {
845 /// The original OpenChannel message.
846 pub open_channel_msg: msgs::OpenChannel,
847 /// The number of ticks remaining before the request expires.
848 pub ticks_remaining: i32,
851 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
852 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
853 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
855 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
856 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
858 /// For users who don't want to bother doing their own payment preimage storage, we also store that
861 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
862 /// and instead encoding it in the payment secret.
863 struct PendingInboundPayment {
864 /// The payment secret that the sender must use for us to accept this payment
865 payment_secret: PaymentSecret,
866 /// Time at which this HTLC expires - blocks with a header time above this value will result in
867 /// this payment being removed.
869 /// Arbitrary identifier the user specifies (or not)
870 user_payment_id: u64,
871 // Other required attributes of the payment, optionally enforced:
872 payment_preimage: Option<PaymentPreimage>,
873 min_value_msat: Option<u64>,
876 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
877 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
878 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
879 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
880 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
881 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
882 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
883 /// of [`KeysManager`] and [`DefaultRouter`].
885 /// This is not exported to bindings users as type aliases aren't supported in most languages.
886 #[cfg(not(c_bindings))]
887 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
895 Arc<NetworkGraph<Arc<L>>>,
897 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
898 ProbabilisticScoringFeeParameters,
899 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
904 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
905 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
906 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
907 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
908 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
909 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
910 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
911 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
912 /// of [`KeysManager`] and [`DefaultRouter`].
914 /// This is not exported to bindings users as type aliases aren't supported in most languages.
915 #[cfg(not(c_bindings))]
916 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
925 &'f NetworkGraph<&'g L>,
927 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
928 ProbabilisticScoringFeeParameters,
929 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
934 /// A trivial trait which describes any [`ChannelManager`].
936 /// This is not exported to bindings users as general cover traits aren't useful in other
938 pub trait AChannelManager {
939 /// A type implementing [`chain::Watch`].
940 type Watch: chain::Watch<Self::Signer> + ?Sized;
941 /// A type that may be dereferenced to [`Self::Watch`].
942 type M: Deref<Target = Self::Watch>;
943 /// A type implementing [`BroadcasterInterface`].
944 type Broadcaster: BroadcasterInterface + ?Sized;
945 /// A type that may be dereferenced to [`Self::Broadcaster`].
946 type T: Deref<Target = Self::Broadcaster>;
947 /// A type implementing [`EntropySource`].
948 type EntropySource: EntropySource + ?Sized;
949 /// A type that may be dereferenced to [`Self::EntropySource`].
950 type ES: Deref<Target = Self::EntropySource>;
951 /// A type implementing [`NodeSigner`].
952 type NodeSigner: NodeSigner + ?Sized;
953 /// A type that may be dereferenced to [`Self::NodeSigner`].
954 type NS: Deref<Target = Self::NodeSigner>;
955 /// A type implementing [`WriteableEcdsaChannelSigner`].
956 type Signer: WriteableEcdsaChannelSigner + Sized;
957 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
958 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
959 /// A type that may be dereferenced to [`Self::SignerProvider`].
960 type SP: Deref<Target = Self::SignerProvider>;
961 /// A type implementing [`FeeEstimator`].
962 type FeeEstimator: FeeEstimator + ?Sized;
963 /// A type that may be dereferenced to [`Self::FeeEstimator`].
964 type F: Deref<Target = Self::FeeEstimator>;
965 /// A type implementing [`Router`].
966 type Router: Router + ?Sized;
967 /// A type that may be dereferenced to [`Self::Router`].
968 type R: Deref<Target = Self::Router>;
969 /// A type implementing [`Logger`].
970 type Logger: Logger + ?Sized;
971 /// A type that may be dereferenced to [`Self::Logger`].
972 type L: Deref<Target = Self::Logger>;
973 /// Returns a reference to the actual [`ChannelManager`] object.
974 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
977 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
978 for ChannelManager<M, T, ES, NS, SP, F, R, L>
980 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
981 T::Target: BroadcasterInterface,
982 ES::Target: EntropySource,
983 NS::Target: NodeSigner,
984 SP::Target: SignerProvider,
985 F::Target: FeeEstimator,
989 type Watch = M::Target;
991 type Broadcaster = T::Target;
993 type EntropySource = ES::Target;
995 type NodeSigner = NS::Target;
997 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
998 type SignerProvider = SP::Target;
1000 type FeeEstimator = F::Target;
1002 type Router = R::Target;
1004 type Logger = L::Target;
1006 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1009 /// Manager which keeps track of a number of channels and sends messages to the appropriate
1010 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
1012 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
1013 /// to individual Channels.
1015 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1016 /// all peers during write/read (though does not modify this instance, only the instance being
1017 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1018 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1020 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1021 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1022 /// [`ChannelMonitorUpdate`] before returning from
1023 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1024 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1025 /// `ChannelManager` operations from occurring during the serialization process). If the
1026 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1027 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1028 /// will be lost (modulo on-chain transaction fees).
1030 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1031 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1032 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1034 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1035 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1036 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1037 /// offline for a full minute. In order to track this, you must call
1038 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1040 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1041 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1042 /// not have a channel with being unable to connect to us or open new channels with us if we have
1043 /// many peers with unfunded channels.
1045 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1046 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1047 /// never limited. Please ensure you limit the count of such channels yourself.
1049 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1050 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1051 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1052 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1053 /// you're using lightning-net-tokio.
1055 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1056 /// [`funding_created`]: msgs::FundingCreated
1057 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1058 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1059 /// [`update_channel`]: chain::Watch::update_channel
1060 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1061 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1062 /// [`read`]: ReadableArgs::read
1065 // The tree structure below illustrates the lock order requirements for the different locks of the
1066 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1067 // and should then be taken in the order of the lowest to the highest level in the tree.
1068 // Note that locks on different branches shall not be taken at the same time, as doing so will
1069 // create a new lock order for those specific locks in the order they were taken.
1073 // `pending_offers_messages`
1075 // `total_consistency_lock`
1077 // |__`forward_htlcs`
1079 // | |__`pending_intercepted_htlcs`
1081 // |__`per_peer_state`
1083 // |__`pending_inbound_payments`
1085 // |__`claimable_payments`
1087 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1093 // |__`short_to_chan_info`
1095 // |__`outbound_scid_aliases`
1099 // |__`pending_events`
1101 // |__`pending_background_events`
1103 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1105 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1106 T::Target: BroadcasterInterface,
1107 ES::Target: EntropySource,
1108 NS::Target: NodeSigner,
1109 SP::Target: SignerProvider,
1110 F::Target: FeeEstimator,
1114 default_configuration: UserConfig,
1115 chain_hash: ChainHash,
1116 fee_estimator: LowerBoundedFeeEstimator<F>,
1122 /// See `ChannelManager` struct-level documentation for lock order requirements.
1124 pub(super) best_block: RwLock<BestBlock>,
1126 best_block: RwLock<BestBlock>,
1127 secp_ctx: Secp256k1<secp256k1::All>,
1129 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1130 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1131 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1132 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1134 /// See `ChannelManager` struct-level documentation for lock order requirements.
1135 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1137 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1138 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1139 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1140 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1141 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1142 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1143 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1144 /// after reloading from disk while replaying blocks against ChannelMonitors.
1146 /// See `PendingOutboundPayment` documentation for more info.
1148 /// See `ChannelManager` struct-level documentation for lock order requirements.
1149 pending_outbound_payments: OutboundPayments,
1151 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1153 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1154 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1155 /// and via the classic SCID.
1157 /// Note that no consistency guarantees are made about the existence of a channel with the
1158 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1160 /// See `ChannelManager` struct-level documentation for lock order requirements.
1162 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1164 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1165 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1166 /// until the user tells us what we should do with them.
1168 /// See `ChannelManager` struct-level documentation for lock order requirements.
1169 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1171 /// The sets of payments which are claimable or currently being claimed. See
1172 /// [`ClaimablePayments`]' individual field docs for more info.
1174 /// See `ChannelManager` struct-level documentation for lock order requirements.
1175 claimable_payments: Mutex<ClaimablePayments>,
1177 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1178 /// and some closed channels which reached a usable state prior to being closed. This is used
1179 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1180 /// active channel list on load.
1182 /// See `ChannelManager` struct-level documentation for lock order requirements.
1183 outbound_scid_aliases: Mutex<HashSet<u64>>,
1185 /// `channel_id` -> `counterparty_node_id`.
1187 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1188 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1189 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1191 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1192 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1193 /// the handling of the events.
1195 /// Note that no consistency guarantees are made about the existence of a peer with the
1196 /// `counterparty_node_id` in our other maps.
1199 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1200 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1201 /// would break backwards compatability.
1202 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1203 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1204 /// required to access the channel with the `counterparty_node_id`.
1206 /// See `ChannelManager` struct-level documentation for lock order requirements.
1207 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1209 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1211 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1212 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1213 /// confirmation depth.
1215 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1216 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1217 /// channel with the `channel_id` in our other maps.
1219 /// See `ChannelManager` struct-level documentation for lock order requirements.
1221 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1223 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1225 our_network_pubkey: PublicKey,
1227 inbound_payment_key: inbound_payment::ExpandedKey,
1229 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1230 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1231 /// we encrypt the namespace identifier using these bytes.
1233 /// [fake scids]: crate::util::scid_utils::fake_scid
1234 fake_scid_rand_bytes: [u8; 32],
1236 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1237 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1238 /// keeping additional state.
1239 probing_cookie_secret: [u8; 32],
1241 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1242 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1243 /// very far in the past, and can only ever be up to two hours in the future.
1244 highest_seen_timestamp: AtomicUsize,
1246 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1247 /// basis, as well as the peer's latest features.
1249 /// If we are connected to a peer we always at least have an entry here, even if no channels
1250 /// are currently open with that peer.
1252 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1253 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1256 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1258 /// See `ChannelManager` struct-level documentation for lock order requirements.
1259 #[cfg(not(any(test, feature = "_test_utils")))]
1260 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1261 #[cfg(any(test, feature = "_test_utils"))]
1262 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1264 /// The set of events which we need to give to the user to handle. In some cases an event may
1265 /// require some further action after the user handles it (currently only blocking a monitor
1266 /// update from being handed to the user to ensure the included changes to the channel state
1267 /// are handled by the user before they're persisted durably to disk). In that case, the second
1268 /// element in the tuple is set to `Some` with further details of the action.
1270 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1271 /// could be in the middle of being processed without the direct mutex held.
1273 /// See `ChannelManager` struct-level documentation for lock order requirements.
1274 #[cfg(not(any(test, feature = "_test_utils")))]
1275 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1276 #[cfg(any(test, feature = "_test_utils"))]
1277 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1279 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1280 pending_events_processor: AtomicBool,
1282 /// If we are running during init (either directly during the deserialization method or in
1283 /// block connection methods which run after deserialization but before normal operation) we
1284 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1285 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1286 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1288 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1290 /// See `ChannelManager` struct-level documentation for lock order requirements.
1292 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1293 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1294 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1295 /// Essentially just when we're serializing ourselves out.
1296 /// Taken first everywhere where we are making changes before any other locks.
1297 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1298 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1299 /// Notifier the lock contains sends out a notification when the lock is released.
1300 total_consistency_lock: RwLock<()>,
1301 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1302 /// received and the monitor has been persisted.
1304 /// This information does not need to be persisted as funding nodes can forget
1305 /// unfunded channels upon disconnection.
1306 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1308 background_events_processed_since_startup: AtomicBool,
1310 event_persist_notifier: Notifier,
1311 needs_persist_flag: AtomicBool,
1313 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1317 signer_provider: SP,
1322 /// Chain-related parameters used to construct a new `ChannelManager`.
1324 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1325 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1326 /// are not needed when deserializing a previously constructed `ChannelManager`.
1327 #[derive(Clone, Copy, PartialEq)]
1328 pub struct ChainParameters {
1329 /// The network for determining the `chain_hash` in Lightning messages.
1330 pub network: Network,
1332 /// The hash and height of the latest block successfully connected.
1334 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1335 pub best_block: BestBlock,
1338 #[derive(Copy, Clone, PartialEq)]
1342 SkipPersistHandleEvents,
1343 SkipPersistNoEvents,
1346 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1347 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1348 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1349 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1350 /// sending the aforementioned notification (since the lock being released indicates that the
1351 /// updates are ready for persistence).
1353 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1354 /// notify or not based on whether relevant changes have been made, providing a closure to
1355 /// `optionally_notify` which returns a `NotifyOption`.
1356 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1357 event_persist_notifier: &'a Notifier,
1358 needs_persist_flag: &'a AtomicBool,
1360 // We hold onto this result so the lock doesn't get released immediately.
1361 _read_guard: RwLockReadGuard<'a, ()>,
1364 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1365 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1366 /// events to handle.
1368 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1369 /// other cases where losing the changes on restart may result in a force-close or otherwise
1371 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1372 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1375 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1376 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1377 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1378 let force_notify = cm.get_cm().process_background_events();
1380 PersistenceNotifierGuard {
1381 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1382 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1383 should_persist: move || {
1384 // Pick the "most" action between `persist_check` and the background events
1385 // processing and return that.
1386 let notify = persist_check();
1387 match (notify, force_notify) {
1388 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1389 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1390 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1391 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1392 _ => NotifyOption::SkipPersistNoEvents,
1395 _read_guard: read_guard,
1399 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1400 /// [`ChannelManager::process_background_events`] MUST be called first (or
1401 /// [`Self::optionally_notify`] used).
1402 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1403 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1404 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1406 PersistenceNotifierGuard {
1407 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1408 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1409 should_persist: persist_check,
1410 _read_guard: read_guard,
1415 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1416 fn drop(&mut self) {
1417 match (self.should_persist)() {
1418 NotifyOption::DoPersist => {
1419 self.needs_persist_flag.store(true, Ordering::Release);
1420 self.event_persist_notifier.notify()
1422 NotifyOption::SkipPersistHandleEvents =>
1423 self.event_persist_notifier.notify(),
1424 NotifyOption::SkipPersistNoEvents => {},
1429 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1430 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1432 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1434 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1435 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1436 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1437 /// the maximum required amount in lnd as of March 2021.
1438 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1440 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1441 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1443 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1445 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1446 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1447 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1448 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1449 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1450 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1451 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1452 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1453 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1454 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1455 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1456 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1457 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1459 /// Minimum CLTV difference between the current block height and received inbound payments.
1460 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1462 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1463 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1464 // a payment was being routed, so we add an extra block to be safe.
1465 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1467 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1468 // ie that if the next-hop peer fails the HTLC within
1469 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1470 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1471 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1472 // LATENCY_GRACE_PERIOD_BLOCKS.
1475 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1477 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1478 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1481 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1483 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1484 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1486 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1487 /// until we mark the channel disabled and gossip the update.
1488 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1490 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1491 /// we mark the channel enabled and gossip the update.
1492 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1494 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1495 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1496 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1497 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1499 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1500 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1501 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1503 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1504 /// many peers we reject new (inbound) connections.
1505 const MAX_NO_CHANNEL_PEERS: usize = 250;
1507 /// Information needed for constructing an invoice route hint for this channel.
1508 #[derive(Clone, Debug, PartialEq)]
1509 pub struct CounterpartyForwardingInfo {
1510 /// Base routing fee in millisatoshis.
1511 pub fee_base_msat: u32,
1512 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1513 pub fee_proportional_millionths: u32,
1514 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1515 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1516 /// `cltv_expiry_delta` for more details.
1517 pub cltv_expiry_delta: u16,
1520 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1521 /// to better separate parameters.
1522 #[derive(Clone, Debug, PartialEq)]
1523 pub struct ChannelCounterparty {
1524 /// The node_id of our counterparty
1525 pub node_id: PublicKey,
1526 /// The Features the channel counterparty provided upon last connection.
1527 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1528 /// many routing-relevant features are present in the init context.
1529 pub features: InitFeatures,
1530 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1531 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1532 /// claiming at least this value on chain.
1534 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1536 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1537 pub unspendable_punishment_reserve: u64,
1538 /// Information on the fees and requirements that the counterparty requires when forwarding
1539 /// payments to us through this channel.
1540 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1541 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1542 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1543 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1544 pub outbound_htlc_minimum_msat: Option<u64>,
1545 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1546 pub outbound_htlc_maximum_msat: Option<u64>,
1549 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1550 #[derive(Clone, Debug, PartialEq)]
1551 pub struct ChannelDetails {
1552 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1553 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1554 /// Note that this means this value is *not* persistent - it can change once during the
1555 /// lifetime of the channel.
1556 pub channel_id: ChannelId,
1557 /// Parameters which apply to our counterparty. See individual fields for more information.
1558 pub counterparty: ChannelCounterparty,
1559 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1560 /// our counterparty already.
1562 /// Note that, if this has been set, `channel_id` will be equivalent to
1563 /// `funding_txo.unwrap().to_channel_id()`.
1564 pub funding_txo: Option<OutPoint>,
1565 /// The features which this channel operates with. See individual features for more info.
1567 /// `None` until negotiation completes and the channel type is finalized.
1568 pub channel_type: Option<ChannelTypeFeatures>,
1569 /// The position of the funding transaction in the chain. None if the funding transaction has
1570 /// not yet been confirmed and the channel fully opened.
1572 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1573 /// payments instead of this. See [`get_inbound_payment_scid`].
1575 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1576 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1578 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1579 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1580 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1581 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1582 /// [`confirmations_required`]: Self::confirmations_required
1583 pub short_channel_id: Option<u64>,
1584 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1585 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1586 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1589 /// This will be `None` as long as the channel is not available for routing outbound payments.
1591 /// [`short_channel_id`]: Self::short_channel_id
1592 /// [`confirmations_required`]: Self::confirmations_required
1593 pub outbound_scid_alias: Option<u64>,
1594 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1595 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1596 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1597 /// when they see a payment to be routed to us.
1599 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1600 /// previous values for inbound payment forwarding.
1602 /// [`short_channel_id`]: Self::short_channel_id
1603 pub inbound_scid_alias: Option<u64>,
1604 /// The value, in satoshis, of this channel as appears in the funding output
1605 pub channel_value_satoshis: u64,
1606 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1607 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1608 /// this value on chain.
1610 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1612 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1614 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1615 pub unspendable_punishment_reserve: Option<u64>,
1616 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1617 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1618 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1619 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1620 /// serialized with LDK versions prior to 0.0.113.
1622 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1623 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1624 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1625 pub user_channel_id: u128,
1626 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1627 /// which is applied to commitment and HTLC transactions.
1629 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1630 pub feerate_sat_per_1000_weight: Option<u32>,
1631 /// Our total balance. This is the amount we would get if we close the channel.
1632 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1633 /// amount is not likely to be recoverable on close.
1635 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1636 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1637 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1638 /// This does not consider any on-chain fees.
1640 /// See also [`ChannelDetails::outbound_capacity_msat`]
1641 pub balance_msat: u64,
1642 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1643 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1644 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1645 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1647 /// See also [`ChannelDetails::balance_msat`]
1649 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1650 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1651 /// should be able to spend nearly this amount.
1652 pub outbound_capacity_msat: u64,
1653 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1654 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1655 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1656 /// to use a limit as close as possible to the HTLC limit we can currently send.
1658 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1659 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1660 pub next_outbound_htlc_limit_msat: u64,
1661 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1662 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1663 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1664 /// route which is valid.
1665 pub next_outbound_htlc_minimum_msat: u64,
1666 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1667 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1668 /// available for inclusion in new inbound HTLCs).
1669 /// Note that there are some corner cases not fully handled here, so the actual available
1670 /// inbound capacity may be slightly higher than this.
1672 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1673 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1674 /// However, our counterparty should be able to spend nearly this amount.
1675 pub inbound_capacity_msat: u64,
1676 /// The number of required confirmations on the funding transaction before the funding will be
1677 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1678 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1679 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1680 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1682 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1684 /// [`is_outbound`]: ChannelDetails::is_outbound
1685 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1686 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1687 pub confirmations_required: Option<u32>,
1688 /// The current number of confirmations on the funding transaction.
1690 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1691 pub confirmations: Option<u32>,
1692 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1693 /// until we can claim our funds after we force-close the channel. During this time our
1694 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1695 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1696 /// time to claim our non-HTLC-encumbered funds.
1698 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1699 pub force_close_spend_delay: Option<u16>,
1700 /// True if the channel was initiated (and thus funded) by us.
1701 pub is_outbound: bool,
1702 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1703 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1704 /// required confirmation count has been reached (and we were connected to the peer at some
1705 /// point after the funding transaction received enough confirmations). The required
1706 /// confirmation count is provided in [`confirmations_required`].
1708 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1709 pub is_channel_ready: bool,
1710 /// The stage of the channel's shutdown.
1711 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1712 pub channel_shutdown_state: Option<ChannelShutdownState>,
1713 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1714 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1716 /// This is a strict superset of `is_channel_ready`.
1717 pub is_usable: bool,
1718 /// True if this channel is (or will be) publicly-announced.
1719 pub is_public: bool,
1720 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1721 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1722 pub inbound_htlc_minimum_msat: Option<u64>,
1723 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1724 pub inbound_htlc_maximum_msat: Option<u64>,
1725 /// Set of configurable parameters that affect channel operation.
1727 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1728 pub config: Option<ChannelConfig>,
1731 impl ChannelDetails {
1732 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1733 /// This should be used for providing invoice hints or in any other context where our
1734 /// counterparty will forward a payment to us.
1736 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1737 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1738 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1739 self.inbound_scid_alias.or(self.short_channel_id)
1742 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1743 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1744 /// we're sending or forwarding a payment outbound over this channel.
1746 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1747 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1748 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1749 self.short_channel_id.or(self.outbound_scid_alias)
1752 fn from_channel_context<SP: Deref, F: Deref>(
1753 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1754 fee_estimator: &LowerBoundedFeeEstimator<F>
1757 SP::Target: SignerProvider,
1758 F::Target: FeeEstimator
1760 let balance = context.get_available_balances(fee_estimator);
1761 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1762 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1764 channel_id: context.channel_id(),
1765 counterparty: ChannelCounterparty {
1766 node_id: context.get_counterparty_node_id(),
1767 features: latest_features,
1768 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1769 forwarding_info: context.counterparty_forwarding_info(),
1770 // Ensures that we have actually received the `htlc_minimum_msat` value
1771 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1772 // message (as they are always the first message from the counterparty).
1773 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1774 // default `0` value set by `Channel::new_outbound`.
1775 outbound_htlc_minimum_msat: if context.have_received_message() {
1776 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1777 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1779 funding_txo: context.get_funding_txo(),
1780 // Note that accept_channel (or open_channel) is always the first message, so
1781 // `have_received_message` indicates that type negotiation has completed.
1782 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1783 short_channel_id: context.get_short_channel_id(),
1784 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1785 inbound_scid_alias: context.latest_inbound_scid_alias(),
1786 channel_value_satoshis: context.get_value_satoshis(),
1787 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1788 unspendable_punishment_reserve: to_self_reserve_satoshis,
1789 balance_msat: balance.balance_msat,
1790 inbound_capacity_msat: balance.inbound_capacity_msat,
1791 outbound_capacity_msat: balance.outbound_capacity_msat,
1792 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1793 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1794 user_channel_id: context.get_user_id(),
1795 confirmations_required: context.minimum_depth(),
1796 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1797 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1798 is_outbound: context.is_outbound(),
1799 is_channel_ready: context.is_usable(),
1800 is_usable: context.is_live(),
1801 is_public: context.should_announce(),
1802 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1803 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1804 config: Some(context.config()),
1805 channel_shutdown_state: Some(context.shutdown_state()),
1810 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1811 /// Further information on the details of the channel shutdown.
1812 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1813 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1814 /// the channel will be removed shortly.
1815 /// Also note, that in normal operation, peers could disconnect at any of these states
1816 /// and require peer re-connection before making progress onto other states
1817 pub enum ChannelShutdownState {
1818 /// Channel has not sent or received a shutdown message.
1820 /// Local node has sent a shutdown message for this channel.
1822 /// Shutdown message exchanges have concluded and the channels are in the midst of
1823 /// resolving all existing open HTLCs before closing can continue.
1825 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1826 NegotiatingClosingFee,
1827 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1828 /// to drop the channel.
1832 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1833 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1834 #[derive(Debug, PartialEq)]
1835 pub enum RecentPaymentDetails {
1836 /// When an invoice was requested and thus a payment has not yet been sent.
1838 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1839 /// a payment and ensure idempotency in LDK.
1840 payment_id: PaymentId,
1842 /// When a payment is still being sent and awaiting successful delivery.
1844 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1845 /// a payment and ensure idempotency in LDK.
1846 payment_id: PaymentId,
1847 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1849 payment_hash: PaymentHash,
1850 /// Total amount (in msat, excluding fees) across all paths for this payment,
1851 /// not just the amount currently inflight.
1854 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1855 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1856 /// payment is removed from tracking.
1858 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1859 /// a payment and ensure idempotency in LDK.
1860 payment_id: PaymentId,
1861 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1862 /// made before LDK version 0.0.104.
1863 payment_hash: Option<PaymentHash>,
1865 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1866 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1867 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1869 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1870 /// a payment and ensure idempotency in LDK.
1871 payment_id: PaymentId,
1872 /// Hash of the payment that we have given up trying to send.
1873 payment_hash: PaymentHash,
1877 /// Route hints used in constructing invoices for [phantom node payents].
1879 /// [phantom node payments]: crate::sign::PhantomKeysManager
1881 pub struct PhantomRouteHints {
1882 /// The list of channels to be included in the invoice route hints.
1883 pub channels: Vec<ChannelDetails>,
1884 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1886 pub phantom_scid: u64,
1887 /// The pubkey of the real backing node that would ultimately receive the payment.
1888 pub real_node_pubkey: PublicKey,
1891 macro_rules! handle_error {
1892 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1893 // In testing, ensure there are no deadlocks where the lock is already held upon
1894 // entering the macro.
1895 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1896 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1900 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1901 let mut msg_events = Vec::with_capacity(2);
1903 if let Some((shutdown_res, update_option)) = shutdown_finish {
1904 $self.finish_close_channel(shutdown_res);
1905 if let Some(update) = update_option {
1906 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1910 if let Some((channel_id, user_channel_id)) = chan_id {
1911 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1912 channel_id, user_channel_id,
1913 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1914 counterparty_node_id: Some($counterparty_node_id),
1915 channel_capacity_sats: channel_capacity,
1920 let logger = WithContext::from(
1921 &$self.logger, Some($counterparty_node_id), chan_id.map(|(chan_id, _)| chan_id)
1923 log_error!(logger, "{}", err.err);
1924 if let msgs::ErrorAction::IgnoreError = err.action {
1926 msg_events.push(events::MessageSendEvent::HandleError {
1927 node_id: $counterparty_node_id,
1928 action: err.action.clone()
1932 if !msg_events.is_empty() {
1933 let per_peer_state = $self.per_peer_state.read().unwrap();
1934 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1935 let mut peer_state = peer_state_mutex.lock().unwrap();
1936 peer_state.pending_msg_events.append(&mut msg_events);
1940 // Return error in case higher-API need one
1947 macro_rules! update_maps_on_chan_removal {
1948 ($self: expr, $channel_context: expr) => {{
1949 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1950 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1951 if let Some(short_id) = $channel_context.get_short_channel_id() {
1952 short_to_chan_info.remove(&short_id);
1954 // If the channel was never confirmed on-chain prior to its closure, remove the
1955 // outbound SCID alias we used for it from the collision-prevention set. While we
1956 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1957 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1958 // opening a million channels with us which are closed before we ever reach the funding
1960 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1961 debug_assert!(alias_removed);
1963 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1967 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1968 macro_rules! convert_chan_phase_err {
1969 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1971 ChannelError::Warn(msg) => {
1972 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1974 ChannelError::Ignore(msg) => {
1975 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1977 ChannelError::Close(msg) => {
1978 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
1979 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1980 update_maps_on_chan_removal!($self, $channel.context);
1981 let shutdown_res = $channel.context.force_shutdown(true);
1982 let user_id = $channel.context.get_user_id();
1983 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1985 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1986 shutdown_res, $channel_update, channel_capacity_satoshis))
1990 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1991 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1993 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1994 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1996 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1997 match $channel_phase {
1998 ChannelPhase::Funded(channel) => {
1999 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2001 ChannelPhase::UnfundedOutboundV1(channel) => {
2002 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2004 ChannelPhase::UnfundedInboundV1(channel) => {
2005 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2011 macro_rules! break_chan_phase_entry {
2012 ($self: ident, $res: expr, $entry: expr) => {
2016 let key = *$entry.key();
2017 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2019 $entry.remove_entry();
2027 macro_rules! try_chan_phase_entry {
2028 ($self: ident, $res: expr, $entry: expr) => {
2032 let key = *$entry.key();
2033 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2035 $entry.remove_entry();
2043 macro_rules! remove_channel_phase {
2044 ($self: expr, $entry: expr) => {
2046 let channel = $entry.remove_entry().1;
2047 update_maps_on_chan_removal!($self, &channel.context());
2053 macro_rules! send_channel_ready {
2054 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2055 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2056 node_id: $channel.context.get_counterparty_node_id(),
2057 msg: $channel_ready_msg,
2059 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2060 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2061 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2062 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2063 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2064 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2065 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2066 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2067 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2068 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2073 macro_rules! emit_channel_pending_event {
2074 ($locked_events: expr, $channel: expr) => {
2075 if $channel.context.should_emit_channel_pending_event() {
2076 $locked_events.push_back((events::Event::ChannelPending {
2077 channel_id: $channel.context.channel_id(),
2078 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2079 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2080 user_channel_id: $channel.context.get_user_id(),
2081 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2083 $channel.context.set_channel_pending_event_emitted();
2088 macro_rules! emit_channel_ready_event {
2089 ($locked_events: expr, $channel: expr) => {
2090 if $channel.context.should_emit_channel_ready_event() {
2091 debug_assert!($channel.context.channel_pending_event_emitted());
2092 $locked_events.push_back((events::Event::ChannelReady {
2093 channel_id: $channel.context.channel_id(),
2094 user_channel_id: $channel.context.get_user_id(),
2095 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2096 channel_type: $channel.context.get_channel_type().clone(),
2098 $channel.context.set_channel_ready_event_emitted();
2103 macro_rules! handle_monitor_update_completion {
2104 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2105 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2106 let mut updates = $chan.monitor_updating_restored(&&logger,
2107 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2108 $self.best_block.read().unwrap().height());
2109 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2110 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2111 // We only send a channel_update in the case where we are just now sending a
2112 // channel_ready and the channel is in a usable state. We may re-send a
2113 // channel_update later through the announcement_signatures process for public
2114 // channels, but there's no reason not to just inform our counterparty of our fees
2116 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2117 Some(events::MessageSendEvent::SendChannelUpdate {
2118 node_id: counterparty_node_id,
2124 let update_actions = $peer_state.monitor_update_blocked_actions
2125 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2127 let htlc_forwards = $self.handle_channel_resumption(
2128 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2129 updates.commitment_update, updates.order, updates.accepted_htlcs,
2130 updates.funding_broadcastable, updates.channel_ready,
2131 updates.announcement_sigs);
2132 if let Some(upd) = channel_update {
2133 $peer_state.pending_msg_events.push(upd);
2136 let channel_id = $chan.context.channel_id();
2137 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2138 core::mem::drop($peer_state_lock);
2139 core::mem::drop($per_peer_state_lock);
2141 // If the channel belongs to a batch funding transaction, the progress of the batch
2142 // should be updated as we have received funding_signed and persisted the monitor.
2143 if let Some(txid) = unbroadcasted_batch_funding_txid {
2144 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2145 let mut batch_completed = false;
2146 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2147 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2148 *chan_id == channel_id &&
2149 *pubkey == counterparty_node_id
2151 if let Some(channel_state) = channel_state {
2152 channel_state.2 = true;
2154 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2156 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2158 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2161 // When all channels in a batched funding transaction have become ready, it is not necessary
2162 // to track the progress of the batch anymore and the state of the channels can be updated.
2163 if batch_completed {
2164 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2165 let per_peer_state = $self.per_peer_state.read().unwrap();
2166 let mut batch_funding_tx = None;
2167 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2168 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2169 let mut peer_state = peer_state_mutex.lock().unwrap();
2170 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2171 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2172 chan.set_batch_ready();
2173 let mut pending_events = $self.pending_events.lock().unwrap();
2174 emit_channel_pending_event!(pending_events, chan);
2178 if let Some(tx) = batch_funding_tx {
2179 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2180 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2185 $self.handle_monitor_update_completion_actions(update_actions);
2187 if let Some(forwards) = htlc_forwards {
2188 $self.forward_htlcs(&mut [forwards][..]);
2190 $self.finalize_claims(updates.finalized_claimed_htlcs);
2191 for failure in updates.failed_htlcs.drain(..) {
2192 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2193 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2198 macro_rules! handle_new_monitor_update {
2199 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2200 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2201 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2203 ChannelMonitorUpdateStatus::UnrecoverableError => {
2204 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2205 log_error!(logger, "{}", err_str);
2206 panic!("{}", err_str);
2208 ChannelMonitorUpdateStatus::InProgress => {
2209 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2210 &$chan.context.channel_id());
2213 ChannelMonitorUpdateStatus::Completed => {
2219 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2220 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2221 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2223 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2224 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2225 .or_insert_with(Vec::new);
2226 // During startup, we push monitor updates as background events through to here in
2227 // order to replay updates that were in-flight when we shut down. Thus, we have to
2228 // filter for uniqueness here.
2229 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2230 .unwrap_or_else(|| {
2231 in_flight_updates.push($update);
2232 in_flight_updates.len() - 1
2234 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2235 handle_new_monitor_update!($self, update_res, $chan, _internal,
2237 let _ = in_flight_updates.remove(idx);
2238 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2239 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2245 macro_rules! process_events_body {
2246 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2247 let mut processed_all_events = false;
2248 while !processed_all_events {
2249 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2256 // We'll acquire our total consistency lock so that we can be sure no other
2257 // persists happen while processing monitor events.
2258 let _read_guard = $self.total_consistency_lock.read().unwrap();
2260 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2261 // ensure any startup-generated background events are handled first.
2262 result = $self.process_background_events();
2264 // TODO: This behavior should be documented. It's unintuitive that we query
2265 // ChannelMonitors when clearing other events.
2266 if $self.process_pending_monitor_events() {
2267 result = NotifyOption::DoPersist;
2271 let pending_events = $self.pending_events.lock().unwrap().clone();
2272 let num_events = pending_events.len();
2273 if !pending_events.is_empty() {
2274 result = NotifyOption::DoPersist;
2277 let mut post_event_actions = Vec::new();
2279 for (event, action_opt) in pending_events {
2280 $event_to_handle = event;
2282 if let Some(action) = action_opt {
2283 post_event_actions.push(action);
2288 let mut pending_events = $self.pending_events.lock().unwrap();
2289 pending_events.drain(..num_events);
2290 processed_all_events = pending_events.is_empty();
2291 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2292 // updated here with the `pending_events` lock acquired.
2293 $self.pending_events_processor.store(false, Ordering::Release);
2296 if !post_event_actions.is_empty() {
2297 $self.handle_post_event_actions(post_event_actions);
2298 // If we had some actions, go around again as we may have more events now
2299 processed_all_events = false;
2303 NotifyOption::DoPersist => {
2304 $self.needs_persist_flag.store(true, Ordering::Release);
2305 $self.event_persist_notifier.notify();
2307 NotifyOption::SkipPersistHandleEvents =>
2308 $self.event_persist_notifier.notify(),
2309 NotifyOption::SkipPersistNoEvents => {},
2315 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2317 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
2318 T::Target: BroadcasterInterface,
2319 ES::Target: EntropySource,
2320 NS::Target: NodeSigner,
2321 SP::Target: SignerProvider,
2322 F::Target: FeeEstimator,
2326 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2328 /// The current time or latest block header time can be provided as the `current_timestamp`.
2330 /// This is the main "logic hub" for all channel-related actions, and implements
2331 /// [`ChannelMessageHandler`].
2333 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2335 /// Users need to notify the new `ChannelManager` when a new block is connected or
2336 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2337 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2340 /// [`block_connected`]: chain::Listen::block_connected
2341 /// [`block_disconnected`]: chain::Listen::block_disconnected
2342 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2344 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2345 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2346 current_timestamp: u32,
2348 let mut secp_ctx = Secp256k1::new();
2349 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2350 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2351 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2353 default_configuration: config.clone(),
2354 chain_hash: ChainHash::using_genesis_block(params.network),
2355 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2360 best_block: RwLock::new(params.best_block),
2362 outbound_scid_aliases: Mutex::new(HashSet::new()),
2363 pending_inbound_payments: Mutex::new(HashMap::new()),
2364 pending_outbound_payments: OutboundPayments::new(),
2365 forward_htlcs: Mutex::new(HashMap::new()),
2366 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2367 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2368 id_to_peer: Mutex::new(HashMap::new()),
2369 short_to_chan_info: FairRwLock::new(HashMap::new()),
2371 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2374 inbound_payment_key: expanded_inbound_key,
2375 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2377 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2379 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2381 per_peer_state: FairRwLock::new(HashMap::new()),
2383 pending_events: Mutex::new(VecDeque::new()),
2384 pending_events_processor: AtomicBool::new(false),
2385 pending_background_events: Mutex::new(Vec::new()),
2386 total_consistency_lock: RwLock::new(()),
2387 background_events_processed_since_startup: AtomicBool::new(false),
2388 event_persist_notifier: Notifier::new(),
2389 needs_persist_flag: AtomicBool::new(false),
2390 funding_batch_states: Mutex::new(BTreeMap::new()),
2392 pending_offers_messages: Mutex::new(Vec::new()),
2402 /// Gets the current configuration applied to all new channels.
2403 pub fn get_current_default_configuration(&self) -> &UserConfig {
2404 &self.default_configuration
2407 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2408 let height = self.best_block.read().unwrap().height();
2409 let mut outbound_scid_alias = 0;
2412 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2413 outbound_scid_alias += 1;
2415 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2417 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2421 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2426 /// Creates a new outbound channel to the given remote node and with the given value.
2428 /// `user_channel_id` will be provided back as in
2429 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2430 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2431 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2432 /// is simply copied to events and otherwise ignored.
2434 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2435 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2437 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2438 /// generate a shutdown scriptpubkey or destination script set by
2439 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2441 /// Note that we do not check if you are currently connected to the given peer. If no
2442 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2443 /// the channel eventually being silently forgotten (dropped on reload).
2445 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2446 /// channel. Otherwise, a random one will be generated for you.
2448 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2449 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2450 /// [`ChannelDetails::channel_id`] until after
2451 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2452 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2453 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2455 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2456 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2457 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2458 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2459 if channel_value_satoshis < 1000 {
2460 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2463 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2464 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2465 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2467 let per_peer_state = self.per_peer_state.read().unwrap();
2469 let peer_state_mutex = per_peer_state.get(&their_network_key)
2470 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2472 let mut peer_state = peer_state_mutex.lock().unwrap();
2474 if let Some(temporary_channel_id) = temporary_channel_id {
2475 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2476 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2481 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2482 let their_features = &peer_state.latest_features;
2483 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2484 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2485 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2486 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2490 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2495 let res = channel.get_open_channel(self.chain_hash);
2497 let temporary_channel_id = channel.context.channel_id();
2498 match peer_state.channel_by_id.entry(temporary_channel_id) {
2499 hash_map::Entry::Occupied(_) => {
2501 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2503 panic!("RNG is bad???");
2506 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2509 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2510 node_id: their_network_key,
2513 Ok(temporary_channel_id)
2516 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2517 // Allocate our best estimate of the number of channels we have in the `res`
2518 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2519 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2520 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2521 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2522 // the same channel.
2523 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2525 let best_block_height = self.best_block.read().unwrap().height();
2526 let per_peer_state = self.per_peer_state.read().unwrap();
2527 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2528 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2529 let peer_state = &mut *peer_state_lock;
2530 res.extend(peer_state.channel_by_id.iter()
2531 .filter_map(|(chan_id, phase)| match phase {
2532 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2533 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2537 .map(|(_channel_id, channel)| {
2538 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2539 peer_state.latest_features.clone(), &self.fee_estimator)
2547 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2548 /// more information.
2549 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2550 // Allocate our best estimate of the number of channels we have in the `res`
2551 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2552 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2553 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2554 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2555 // the same channel.
2556 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2558 let best_block_height = self.best_block.read().unwrap().height();
2559 let per_peer_state = self.per_peer_state.read().unwrap();
2560 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2561 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2562 let peer_state = &mut *peer_state_lock;
2563 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2564 let details = ChannelDetails::from_channel_context(context, best_block_height,
2565 peer_state.latest_features.clone(), &self.fee_estimator);
2573 /// Gets the list of usable channels, in random order. Useful as an argument to
2574 /// [`Router::find_route`] to ensure non-announced channels are used.
2576 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2577 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2579 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2580 // Note we use is_live here instead of usable which leads to somewhat confused
2581 // internal/external nomenclature, but that's ok cause that's probably what the user
2582 // really wanted anyway.
2583 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2586 /// Gets the list of channels we have with a given counterparty, in random order.
2587 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2588 let best_block_height = self.best_block.read().unwrap().height();
2589 let per_peer_state = self.per_peer_state.read().unwrap();
2591 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2592 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2593 let peer_state = &mut *peer_state_lock;
2594 let features = &peer_state.latest_features;
2595 let context_to_details = |context| {
2596 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2598 return peer_state.channel_by_id
2600 .map(|(_, phase)| phase.context())
2601 .map(context_to_details)
2607 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2608 /// successful path, or have unresolved HTLCs.
2610 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2611 /// result of a crash. If such a payment exists, is not listed here, and an
2612 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2614 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2615 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2616 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2617 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2618 PendingOutboundPayment::AwaitingInvoice { .. } => {
2619 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2621 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2622 PendingOutboundPayment::InvoiceReceived { .. } => {
2623 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2625 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2626 Some(RecentPaymentDetails::Pending {
2627 payment_id: *payment_id,
2628 payment_hash: *payment_hash,
2629 total_msat: *total_msat,
2632 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2633 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2635 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2636 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2638 PendingOutboundPayment::Legacy { .. } => None
2643 /// Helper function that issues the channel close events
2644 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2645 let mut pending_events_lock = self.pending_events.lock().unwrap();
2646 match context.unbroadcasted_funding() {
2647 Some(transaction) => {
2648 pending_events_lock.push_back((events::Event::DiscardFunding {
2649 channel_id: context.channel_id(), transaction
2654 pending_events_lock.push_back((events::Event::ChannelClosed {
2655 channel_id: context.channel_id(),
2656 user_channel_id: context.get_user_id(),
2657 reason: closure_reason,
2658 counterparty_node_id: Some(context.get_counterparty_node_id()),
2659 channel_capacity_sats: Some(context.get_value_satoshis()),
2663 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2664 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2666 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2667 let shutdown_result;
2669 let per_peer_state = self.per_peer_state.read().unwrap();
2671 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2672 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2674 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2675 let peer_state = &mut *peer_state_lock;
2677 match peer_state.channel_by_id.entry(channel_id.clone()) {
2678 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2679 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2680 let funding_txo_opt = chan.context.get_funding_txo();
2681 let their_features = &peer_state.latest_features;
2682 let (shutdown_msg, mut monitor_update_opt, htlcs, local_shutdown_result) =
2683 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2684 failed_htlcs = htlcs;
2685 shutdown_result = local_shutdown_result;
2686 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
2688 // We can send the `shutdown` message before updating the `ChannelMonitor`
2689 // here as we don't need the monitor update to complete until we send a
2690 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2691 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2692 node_id: *counterparty_node_id,
2696 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2697 "We can't both complete shutdown and generate a monitor update");
2699 // Update the monitor with the shutdown script if necessary.
2700 if let Some(monitor_update) = monitor_update_opt.take() {
2701 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2702 peer_state_lock, peer_state, per_peer_state, chan);
2706 if chan.is_shutdown() {
2707 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2708 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2709 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2713 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2719 hash_map::Entry::Vacant(_) => {
2720 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2721 // it does not exist for this peer. Either way, we can attempt to force-close it.
2723 // An appropriate error will be returned for non-existence of the channel if that's the case.
2724 mem::drop(peer_state_lock);
2725 mem::drop(per_peer_state);
2726 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2731 for htlc_source in failed_htlcs.drain(..) {
2732 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2733 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2734 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2737 if let Some(shutdown_result) = shutdown_result {
2738 self.finish_close_channel(shutdown_result);
2744 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2745 /// will be accepted on the given channel, and after additional timeout/the closing of all
2746 /// pending HTLCs, the channel will be closed on chain.
2748 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2749 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2751 /// * If our counterparty is the channel initiator, we will require a channel closing
2752 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2753 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2754 /// counterparty to pay as much fee as they'd like, however.
2756 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2758 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2759 /// generate a shutdown scriptpubkey or destination script set by
2760 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2763 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2764 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2765 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2766 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2767 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2768 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2771 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2772 /// will be accepted on the given channel, and after additional timeout/the closing of all
2773 /// pending HTLCs, the channel will be closed on chain.
2775 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2776 /// the channel being closed or not:
2777 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2778 /// transaction. The upper-bound is set by
2779 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2780 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2781 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2782 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2783 /// will appear on a force-closure transaction, whichever is lower).
2785 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2786 /// Will fail if a shutdown script has already been set for this channel by
2787 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2788 /// also be compatible with our and the counterparty's features.
2790 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2792 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2793 /// generate a shutdown scriptpubkey or destination script set by
2794 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2797 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2798 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2799 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2800 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2801 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2804 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2805 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2806 #[cfg(debug_assertions)]
2807 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2808 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2811 let logger = WithContext::from(
2812 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
2814 log_debug!(logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2815 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2816 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2817 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2818 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2819 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2821 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2822 // There isn't anything we can do if we get an update failure - we're already
2823 // force-closing. The monitor update on the required in-memory copy should broadcast
2824 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2825 // ignore the result here.
2826 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2828 let mut shutdown_results = Vec::new();
2829 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2830 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2831 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2832 let per_peer_state = self.per_peer_state.read().unwrap();
2833 let mut has_uncompleted_channel = None;
2834 for (channel_id, counterparty_node_id, state) in affected_channels {
2835 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2836 let mut peer_state = peer_state_mutex.lock().unwrap();
2837 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2838 update_maps_on_chan_removal!(self, &chan.context());
2839 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2840 shutdown_results.push(chan.context_mut().force_shutdown(false));
2843 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2846 has_uncompleted_channel.unwrap_or(true),
2847 "Closing a batch where all channels have completed initial monitor update",
2850 for shutdown_result in shutdown_results.drain(..) {
2851 self.finish_close_channel(shutdown_result);
2855 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2856 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2857 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2858 -> Result<PublicKey, APIError> {
2859 let per_peer_state = self.per_peer_state.read().unwrap();
2860 let peer_state_mutex = per_peer_state.get(peer_node_id)
2861 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2862 let (update_opt, counterparty_node_id) = {
2863 let mut peer_state = peer_state_mutex.lock().unwrap();
2864 let closure_reason = if let Some(peer_msg) = peer_msg {
2865 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2867 ClosureReason::HolderForceClosed
2869 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
2870 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2871 log_error!(logger, "Force-closing channel {}", channel_id);
2872 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2873 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2874 mem::drop(peer_state);
2875 mem::drop(per_peer_state);
2877 ChannelPhase::Funded(mut chan) => {
2878 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2879 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2881 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2882 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2883 // Unfunded channel has no update
2884 (None, chan_phase.context().get_counterparty_node_id())
2887 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2888 log_error!(logger, "Force-closing channel {}", &channel_id);
2889 // N.B. that we don't send any channel close event here: we
2890 // don't have a user_channel_id, and we never sent any opening
2892 (None, *peer_node_id)
2894 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2897 if let Some(update) = update_opt {
2898 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2899 // not try to broadcast it via whatever peer we have.
2900 let per_peer_state = self.per_peer_state.read().unwrap();
2901 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2902 .ok_or(per_peer_state.values().next());
2903 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2904 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2905 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2911 Ok(counterparty_node_id)
2914 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2915 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2916 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2917 Ok(counterparty_node_id) => {
2918 let per_peer_state = self.per_peer_state.read().unwrap();
2919 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2920 let mut peer_state = peer_state_mutex.lock().unwrap();
2921 peer_state.pending_msg_events.push(
2922 events::MessageSendEvent::HandleError {
2923 node_id: counterparty_node_id,
2924 action: msgs::ErrorAction::DisconnectPeer {
2925 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2936 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2937 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2938 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2940 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2941 -> Result<(), APIError> {
2942 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2945 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2946 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2947 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2949 /// You can always get the latest local transaction(s) to broadcast from
2950 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2951 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2952 -> Result<(), APIError> {
2953 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2956 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2957 /// for each to the chain and rejecting new HTLCs on each.
2958 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2959 for chan in self.list_channels() {
2960 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2964 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2965 /// local transaction(s).
2966 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2967 for chan in self.list_channels() {
2968 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2972 fn decode_update_add_htlc_onion(
2973 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
2975 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
2977 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
2978 msg, &self.node_signer, &self.logger, &self.secp_ctx
2981 let is_blinded = match next_hop {
2982 onion_utils::Hop::Forward {
2983 next_hop_data: msgs::InboundOnionPayload::BlindedForward { .. }, ..
2985 _ => false, // TODO: update this when we support receiving to multi-hop blinded paths
2988 macro_rules! return_err {
2989 ($msg: expr, $err_code: expr, $data: expr) => {
2992 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
2993 "Failed to accept/forward incoming HTLC: {}", $msg
2995 let (err_code, err_data) = if is_blinded {
2996 (INVALID_ONION_BLINDING, &[0; 32][..])
2997 } else { ($err_code, $data) };
2998 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2999 channel_id: msg.channel_id,
3000 htlc_id: msg.htlc_id,
3001 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3002 .get_encrypted_failure_packet(&shared_secret, &None),
3008 let NextPacketDetails {
3009 next_packet_pubkey, outgoing_amt_msat, outgoing_scid, outgoing_cltv_value
3010 } = match next_packet_details_opt {
3011 Some(next_packet_details) => next_packet_details,
3012 // it is a receive, so no need for outbound checks
3013 None => return Ok((next_hop, shared_secret, None)),
3016 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3017 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3018 if let Some((err, mut code, chan_update)) = loop {
3019 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3020 let forwarding_chan_info_opt = match id_option {
3021 None => { // unknown_next_peer
3022 // Note that this is likely a timing oracle for detecting whether an scid is a
3023 // phantom or an intercept.
3024 if (self.default_configuration.accept_intercept_htlcs &&
3025 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3026 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3030 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3033 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3035 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3036 let per_peer_state = self.per_peer_state.read().unwrap();
3037 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3038 if peer_state_mutex_opt.is_none() {
3039 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3041 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3042 let peer_state = &mut *peer_state_lock;
3043 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3044 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3047 // Channel was removed. The short_to_chan_info and channel_by_id maps
3048 // have no consistency guarantees.
3049 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3053 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3054 // Note that the behavior here should be identical to the above block - we
3055 // should NOT reveal the existence or non-existence of a private channel if
3056 // we don't allow forwards outbound over them.
3057 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3059 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3060 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3061 // "refuse to forward unless the SCID alias was used", so we pretend
3062 // we don't have the channel here.
3063 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3065 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3067 // Note that we could technically not return an error yet here and just hope
3068 // that the connection is reestablished or monitor updated by the time we get
3069 // around to doing the actual forward, but better to fail early if we can and
3070 // hopefully an attacker trying to path-trace payments cannot make this occur
3071 // on a small/per-node/per-channel scale.
3072 if !chan.context.is_live() { // channel_disabled
3073 // If the channel_update we're going to return is disabled (i.e. the
3074 // peer has been disabled for some time), return `channel_disabled`,
3075 // otherwise return `temporary_channel_failure`.
3076 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3077 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3079 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3082 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3083 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3085 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3086 break Some((err, code, chan_update_opt));
3093 let cur_height = self.best_block.read().unwrap().height() + 1;
3095 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
3096 cur_height, outgoing_cltv_value, msg.cltv_expiry
3098 if code & 0x1000 != 0 && chan_update_opt.is_none() {
3099 // We really should set `incorrect_cltv_expiry` here but as we're not
3100 // forwarding over a real channel we can't generate a channel_update
3101 // for it. Instead we just return a generic temporary_node_failure.
3102 break Some((err_msg, 0x2000 | 2, None))
3104 let chan_update_opt = if code & 0x1000 != 0 { chan_update_opt } else { None };
3105 break Some((err_msg, code, chan_update_opt));
3111 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3112 if let Some(chan_update) = chan_update {
3113 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3114 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3116 else if code == 0x1000 | 13 {
3117 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3119 else if code == 0x1000 | 20 {
3120 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3121 0u16.write(&mut res).expect("Writes cannot fail");
3123 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3124 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3125 chan_update.write(&mut res).expect("Writes cannot fail");
3126 } else if code & 0x1000 == 0x1000 {
3127 // If we're trying to return an error that requires a `channel_update` but
3128 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3129 // generate an update), just use the generic "temporary_node_failure"
3133 return_err!(err, code, &res.0[..]);
3135 Ok((next_hop, shared_secret, Some(next_packet_pubkey)))
3138 fn construct_pending_htlc_status<'a>(
3139 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3140 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3141 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3142 ) -> PendingHTLCStatus {
3143 macro_rules! return_err {
3144 ($msg: expr, $err_code: expr, $data: expr) => {
3146 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3147 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3148 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3149 channel_id: msg.channel_id,
3150 htlc_id: msg.htlc_id,
3151 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3152 .get_encrypted_failure_packet(&shared_secret, &None),
3158 onion_utils::Hop::Receive(next_hop_data) => {
3160 let current_height: u32 = self.best_block.read().unwrap().height();
3161 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3162 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3163 current_height, self.default_configuration.accept_mpp_keysend)
3166 // Note that we could obviously respond immediately with an update_fulfill_htlc
3167 // message, however that would leak that we are the recipient of this payment, so
3168 // instead we stay symmetric with the forwarding case, only responding (after a
3169 // delay) once they've send us a commitment_signed!
3170 PendingHTLCStatus::Forward(info)
3172 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3175 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3176 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3177 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3178 Ok(info) => PendingHTLCStatus::Forward(info),
3179 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3185 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3186 /// public, and thus should be called whenever the result is going to be passed out in a
3187 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3189 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3190 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3191 /// storage and the `peer_state` lock has been dropped.
3193 /// [`channel_update`]: msgs::ChannelUpdate
3194 /// [`internal_closing_signed`]: Self::internal_closing_signed
3195 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3196 if !chan.context.should_announce() {
3197 return Err(LightningError {
3198 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3199 action: msgs::ErrorAction::IgnoreError
3202 if chan.context.get_short_channel_id().is_none() {
3203 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3205 let logger = WithChannelContext::from(&self.logger, &chan.context);
3206 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3207 self.get_channel_update_for_unicast(chan)
3210 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3211 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3212 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3213 /// provided evidence that they know about the existence of the channel.
3215 /// Note that through [`internal_closing_signed`], this function is called without the
3216 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3217 /// removed from the storage and the `peer_state` lock has been dropped.
3219 /// [`channel_update`]: msgs::ChannelUpdate
3220 /// [`internal_closing_signed`]: Self::internal_closing_signed
3221 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3222 let logger = WithChannelContext::from(&self.logger, &chan.context);
3223 log_trace!(logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.context.channel_id().0));
3224 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3225 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3229 self.get_channel_update_for_onion(short_channel_id, chan)
3232 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3233 let logger = WithChannelContext::from(&self.logger, &chan.context);
3234 log_trace!(logger, "Generating channel update for channel {}", log_bytes!(chan.context.channel_id().0));
3235 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3237 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3238 ChannelUpdateStatus::Enabled => true,
3239 ChannelUpdateStatus::DisabledStaged(_) => true,
3240 ChannelUpdateStatus::Disabled => false,
3241 ChannelUpdateStatus::EnabledStaged(_) => false,
3244 let unsigned = msgs::UnsignedChannelUpdate {
3245 chain_hash: self.chain_hash,
3247 timestamp: chan.context.get_update_time_counter(),
3248 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3249 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3250 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3251 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3252 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3253 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3254 excess_data: Vec::new(),
3256 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3257 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3258 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3260 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3262 Ok(msgs::ChannelUpdate {
3269 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3270 let _lck = self.total_consistency_lock.read().unwrap();
3271 self.send_payment_along_path(SendAlongPathArgs {
3272 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3277 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3278 let SendAlongPathArgs {
3279 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3282 // The top-level caller should hold the total_consistency_lock read lock.
3283 debug_assert!(self.total_consistency_lock.try_write().is_err());
3284 let prng_seed = self.entropy_source.get_secure_random_bytes();
3285 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3287 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3288 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3289 payment_hash, keysend_preimage, prng_seed
3291 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3292 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
3296 let err: Result<(), _> = loop {
3297 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3299 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3300 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
3301 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
3303 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3306 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
3308 "Attempting to send payment with payment hash {} along path with next hop {}",
3309 payment_hash, path.hops.first().unwrap().short_channel_id);
3311 let per_peer_state = self.per_peer_state.read().unwrap();
3312 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3313 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3314 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3315 let peer_state = &mut *peer_state_lock;
3316 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3317 match chan_phase_entry.get_mut() {
3318 ChannelPhase::Funded(chan) => {
3319 if !chan.context.is_live() {
3320 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3322 let funding_txo = chan.context.get_funding_txo().unwrap();
3323 let logger = WithChannelContext::from(&self.logger, &chan.context);
3324 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3325 htlc_cltv, HTLCSource::OutboundRoute {
3327 session_priv: session_priv.clone(),
3328 first_hop_htlc_msat: htlc_msat,
3330 }, onion_packet, None, &self.fee_estimator, &&logger);
3331 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3332 Some(monitor_update) => {
3333 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3335 // Note that MonitorUpdateInProgress here indicates (per function
3336 // docs) that we will resend the commitment update once monitor
3337 // updating completes. Therefore, we must return an error
3338 // indicating that it is unsafe to retry the payment wholesale,
3339 // which we do in the send_payment check for
3340 // MonitorUpdateInProgress, below.
3341 return Err(APIError::MonitorUpdateInProgress);
3349 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3352 // The channel was likely removed after we fetched the id from the
3353 // `short_to_chan_info` map, but before we successfully locked the
3354 // `channel_by_id` map.
3355 // This can occur as no consistency guarantees exists between the two maps.
3356 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3360 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3361 Ok(_) => unreachable!(),
3363 Err(APIError::ChannelUnavailable { err: e.err })
3368 /// Sends a payment along a given route.
3370 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3371 /// fields for more info.
3373 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3374 /// [`PeerManager::process_events`]).
3376 /// # Avoiding Duplicate Payments
3378 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3379 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3380 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3381 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3382 /// second payment with the same [`PaymentId`].
3384 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3385 /// tracking of payments, including state to indicate once a payment has completed. Because you
3386 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3387 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3388 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3390 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3391 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3392 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3393 /// [`ChannelManager::list_recent_payments`] for more information.
3395 /// # Possible Error States on [`PaymentSendFailure`]
3397 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3398 /// each entry matching the corresponding-index entry in the route paths, see
3399 /// [`PaymentSendFailure`] for more info.
3401 /// In general, a path may raise:
3402 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3403 /// node public key) is specified.
3404 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3405 /// closed, doesn't exist, or the peer is currently disconnected.
3406 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3407 /// relevant updates.
3409 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3410 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3411 /// different route unless you intend to pay twice!
3413 /// [`RouteHop`]: crate::routing::router::RouteHop
3414 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3415 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3416 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3417 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3418 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3419 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3420 let best_block_height = self.best_block.read().unwrap().height();
3421 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3422 self.pending_outbound_payments
3423 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3424 &self.entropy_source, &self.node_signer, best_block_height,
3425 |args| self.send_payment_along_path(args))
3428 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3429 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3430 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3431 let best_block_height = self.best_block.read().unwrap().height();
3432 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3433 self.pending_outbound_payments
3434 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3435 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3436 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3437 &self.pending_events, |args| self.send_payment_along_path(args))
3441 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3442 let best_block_height = self.best_block.read().unwrap().height();
3443 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3444 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3445 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3446 best_block_height, |args| self.send_payment_along_path(args))
3450 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3451 let best_block_height = self.best_block.read().unwrap().height();
3452 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3456 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3457 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3460 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3461 let best_block_height = self.best_block.read().unwrap().height();
3462 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3463 self.pending_outbound_payments
3464 .send_payment_for_bolt12_invoice(
3465 invoice, payment_id, &self.router, self.list_usable_channels(),
3466 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3467 best_block_height, &self.logger, &self.pending_events,
3468 |args| self.send_payment_along_path(args)
3472 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3473 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3474 /// retries are exhausted.
3476 /// # Event Generation
3478 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3479 /// as there are no remaining pending HTLCs for this payment.
3481 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3482 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3483 /// determine the ultimate status of a payment.
3485 /// # Requested Invoices
3487 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3488 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3489 /// and prevent any attempts at paying it once received. The other events may only be generated
3490 /// once the invoice has been received.
3492 /// # Restart Behavior
3494 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3495 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3496 /// [`Event::InvoiceRequestFailed`].
3498 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3499 pub fn abandon_payment(&self, payment_id: PaymentId) {
3500 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3501 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3504 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3505 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3506 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3507 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3508 /// never reach the recipient.
3510 /// See [`send_payment`] documentation for more details on the return value of this function
3511 /// and idempotency guarantees provided by the [`PaymentId`] key.
3513 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3514 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3516 /// [`send_payment`]: Self::send_payment
3517 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3518 let best_block_height = self.best_block.read().unwrap().height();
3519 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3520 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3521 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3522 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3525 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3526 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3528 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3531 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3532 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3533 let best_block_height = self.best_block.read().unwrap().height();
3534 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3535 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3536 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3537 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3538 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3541 /// Send a payment that is probing the given route for liquidity. We calculate the
3542 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3543 /// us to easily discern them from real payments.
3544 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3545 let best_block_height = self.best_block.read().unwrap().height();
3546 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3547 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3548 &self.entropy_source, &self.node_signer, best_block_height,
3549 |args| self.send_payment_along_path(args))
3552 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3555 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3556 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3559 /// Sends payment probes over all paths of a route that would be used to pay the given
3560 /// amount to the given `node_id`.
3562 /// See [`ChannelManager::send_preflight_probes`] for more information.
3563 pub fn send_spontaneous_preflight_probes(
3564 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3565 liquidity_limit_multiplier: Option<u64>,
3566 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3567 let payment_params =
3568 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3570 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3572 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3575 /// Sends payment probes over all paths of a route that would be used to pay a route found
3576 /// according to the given [`RouteParameters`].
3578 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3579 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3580 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3581 /// confirmation in a wallet UI.
3583 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3584 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3585 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3586 /// payment. To mitigate this issue, channels with available liquidity less than the required
3587 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3588 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3589 pub fn send_preflight_probes(
3590 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3591 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3592 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3594 let payer = self.get_our_node_id();
3595 let usable_channels = self.list_usable_channels();
3596 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3597 let inflight_htlcs = self.compute_inflight_htlcs();
3601 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3603 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3604 ProbeSendFailure::RouteNotFound
3607 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3609 let mut res = Vec::new();
3611 for mut path in route.paths {
3612 // If the last hop is probably an unannounced channel we refrain from probing all the
3613 // way through to the end and instead probe up to the second-to-last channel.
3614 while let Some(last_path_hop) = path.hops.last() {
3615 if last_path_hop.maybe_announced_channel {
3616 // We found a potentially announced last hop.
3619 // Drop the last hop, as it's likely unannounced.
3622 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3623 last_path_hop.short_channel_id
3625 let final_value_msat = path.final_value_msat();
3627 if let Some(new_last) = path.hops.last_mut() {
3628 new_last.fee_msat += final_value_msat;
3633 if path.hops.len() < 2 {
3636 "Skipped sending payment probe over path with less than two hops."
3641 if let Some(first_path_hop) = path.hops.first() {
3642 if let Some(first_hop) = first_hops.iter().find(|h| {
3643 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3645 let path_value = path.final_value_msat() + path.fee_msat();
3646 let used_liquidity =
3647 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3649 if first_hop.next_outbound_htlc_limit_msat
3650 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3652 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3655 *used_liquidity += path_value;
3660 res.push(self.send_probe(path).map_err(|e| {
3661 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3662 ProbeSendFailure::SendingFailed(e)
3669 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3670 /// which checks the correctness of the funding transaction given the associated channel.
3671 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3672 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3673 mut find_funding_output: FundingOutput,
3674 ) -> Result<(), APIError> {
3675 let per_peer_state = self.per_peer_state.read().unwrap();
3676 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3677 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3679 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3680 let peer_state = &mut *peer_state_lock;
3681 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3682 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3683 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3685 let logger = WithChannelContext::from(&self.logger, &chan.context);
3686 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
3687 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3688 let channel_id = chan.context.channel_id();
3689 let user_id = chan.context.get_user_id();
3690 let shutdown_res = chan.context.force_shutdown(false);
3691 let channel_capacity = chan.context.get_value_satoshis();
3692 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3693 } else { unreachable!(); });
3695 Ok((chan, funding_msg)) => (chan, funding_msg),
3696 Err((chan, err)) => {
3697 mem::drop(peer_state_lock);
3698 mem::drop(per_peer_state);
3699 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3700 return Err(APIError::ChannelUnavailable {
3701 err: "Signer refused to sign the initial commitment transaction".to_owned()
3707 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3708 return Err(APIError::APIMisuseError {
3710 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3711 temporary_channel_id, counterparty_node_id),
3714 None => return Err(APIError::ChannelUnavailable {err: format!(
3715 "Channel with id {} not found for the passed counterparty node_id {}",
3716 temporary_channel_id, counterparty_node_id),
3720 if let Some(msg) = msg_opt {
3721 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3722 node_id: chan.context.get_counterparty_node_id(),
3726 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3727 hash_map::Entry::Occupied(_) => {
3728 panic!("Generated duplicate funding txid?");
3730 hash_map::Entry::Vacant(e) => {
3731 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3732 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3733 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3735 e.insert(ChannelPhase::Funded(chan));
3742 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3743 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3744 Ok(OutPoint { txid: tx.txid(), index: output_index })
3748 /// Call this upon creation of a funding transaction for the given channel.
3750 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3751 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3753 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3754 /// across the p2p network.
3756 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3757 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3759 /// May panic if the output found in the funding transaction is duplicative with some other
3760 /// channel (note that this should be trivially prevented by using unique funding transaction
3761 /// keys per-channel).
3763 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3764 /// counterparty's signature the funding transaction will automatically be broadcast via the
3765 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3767 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3768 /// not currently support replacing a funding transaction on an existing channel. Instead,
3769 /// create a new channel with a conflicting funding transaction.
3771 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3772 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3773 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3774 /// for more details.
3776 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3777 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3778 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3779 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3782 /// Call this upon creation of a batch funding transaction for the given channels.
3784 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3785 /// each individual channel and transaction output.
3787 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3788 /// will only be broadcast when we have safely received and persisted the counterparty's
3789 /// signature for each channel.
3791 /// If there is an error, all channels in the batch are to be considered closed.
3792 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3793 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3794 let mut result = Ok(());
3796 if !funding_transaction.is_coin_base() {
3797 for inp in funding_transaction.input.iter() {
3798 if inp.witness.is_empty() {
3799 result = result.and(Err(APIError::APIMisuseError {
3800 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3805 if funding_transaction.output.len() > u16::max_value() as usize {
3806 result = result.and(Err(APIError::APIMisuseError {
3807 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3811 let height = self.best_block.read().unwrap().height();
3812 // Transactions are evaluated as final by network mempools if their locktime is strictly
3813 // lower than the next block height. However, the modules constituting our Lightning
3814 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3815 // module is ahead of LDK, only allow one more block of headroom.
3816 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
3817 funding_transaction.lock_time.is_block_height() &&
3818 funding_transaction.lock_time.to_consensus_u32() > height + 1
3820 result = result.and(Err(APIError::APIMisuseError {
3821 err: "Funding transaction absolute timelock is non-final".to_owned()
3826 let txid = funding_transaction.txid();
3827 let is_batch_funding = temporary_channels.len() > 1;
3828 let mut funding_batch_states = if is_batch_funding {
3829 Some(self.funding_batch_states.lock().unwrap())
3833 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3834 match states.entry(txid) {
3835 btree_map::Entry::Occupied(_) => {
3836 result = result.clone().and(Err(APIError::APIMisuseError {
3837 err: "Batch funding transaction with the same txid already exists".to_owned()
3841 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3844 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3845 result = result.and_then(|_| self.funding_transaction_generated_intern(
3846 temporary_channel_id,
3847 counterparty_node_id,
3848 funding_transaction.clone(),
3851 let mut output_index = None;
3852 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3853 for (idx, outp) in tx.output.iter().enumerate() {
3854 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3855 if output_index.is_some() {
3856 return Err(APIError::APIMisuseError {
3857 err: "Multiple outputs matched the expected script and value".to_owned()
3860 output_index = Some(idx as u16);
3863 if output_index.is_none() {
3864 return Err(APIError::APIMisuseError {
3865 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3868 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3869 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3870 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3876 if let Err(ref e) = result {
3877 // Remaining channels need to be removed on any error.
3878 let e = format!("Error in transaction funding: {:?}", e);
3879 let mut channels_to_remove = Vec::new();
3880 channels_to_remove.extend(funding_batch_states.as_mut()
3881 .and_then(|states| states.remove(&txid))
3882 .into_iter().flatten()
3883 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3885 channels_to_remove.extend(temporary_channels.iter()
3886 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3888 let mut shutdown_results = Vec::new();
3890 let per_peer_state = self.per_peer_state.read().unwrap();
3891 for (channel_id, counterparty_node_id) in channels_to_remove {
3892 per_peer_state.get(&counterparty_node_id)
3893 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3894 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3896 update_maps_on_chan_removal!(self, &chan.context());
3897 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3898 shutdown_results.push(chan.context_mut().force_shutdown(false));
3902 for shutdown_result in shutdown_results.drain(..) {
3903 self.finish_close_channel(shutdown_result);
3909 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3911 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3912 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3913 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3914 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3916 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3917 /// `counterparty_node_id` is provided.
3919 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3920 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3922 /// If an error is returned, none of the updates should be considered applied.
3924 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3925 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3926 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3927 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3928 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3929 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3930 /// [`APIMisuseError`]: APIError::APIMisuseError
3931 pub fn update_partial_channel_config(
3932 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3933 ) -> Result<(), APIError> {
3934 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3935 return Err(APIError::APIMisuseError {
3936 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3940 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3941 let per_peer_state = self.per_peer_state.read().unwrap();
3942 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3943 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3944 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3945 let peer_state = &mut *peer_state_lock;
3946 for channel_id in channel_ids {
3947 if !peer_state.has_channel(channel_id) {
3948 return Err(APIError::ChannelUnavailable {
3949 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
3953 for channel_id in channel_ids {
3954 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
3955 let mut config = channel_phase.context().config();
3956 config.apply(config_update);
3957 if !channel_phase.context_mut().update_config(&config) {
3960 if let ChannelPhase::Funded(channel) = channel_phase {
3961 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3962 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3963 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3964 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3965 node_id: channel.context.get_counterparty_node_id(),
3972 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
3973 debug_assert!(false);
3974 return Err(APIError::ChannelUnavailable {
3976 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
3977 channel_id, counterparty_node_id),
3984 /// Atomically updates the [`ChannelConfig`] for the given channels.
3986 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3987 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3988 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3989 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3991 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3992 /// `counterparty_node_id` is provided.
3994 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3995 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3997 /// If an error is returned, none of the updates should be considered applied.
3999 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4000 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4001 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4002 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4003 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4004 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4005 /// [`APIMisuseError`]: APIError::APIMisuseError
4006 pub fn update_channel_config(
4007 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4008 ) -> Result<(), APIError> {
4009 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4012 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4013 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4015 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4016 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4018 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4019 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4020 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4021 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4022 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4024 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4025 /// you from forwarding more than you received. See
4026 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4029 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4032 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4033 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4034 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4035 // TODO: when we move to deciding the best outbound channel at forward time, only take
4036 // `next_node_id` and not `next_hop_channel_id`
4037 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4038 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4040 let next_hop_scid = {
4041 let peer_state_lock = self.per_peer_state.read().unwrap();
4042 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4043 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4044 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4045 let peer_state = &mut *peer_state_lock;
4046 match peer_state.channel_by_id.get(next_hop_channel_id) {
4047 Some(ChannelPhase::Funded(chan)) => {
4048 if !chan.context.is_usable() {
4049 return Err(APIError::ChannelUnavailable {
4050 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4053 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4055 Some(_) => return Err(APIError::ChannelUnavailable {
4056 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4057 next_hop_channel_id, next_node_id)
4060 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4061 next_hop_channel_id, next_node_id);
4062 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4063 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4064 return Err(APIError::ChannelUnavailable {
4071 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4072 .ok_or_else(|| APIError::APIMisuseError {
4073 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4076 let routing = match payment.forward_info.routing {
4077 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4078 PendingHTLCRouting::Forward {
4079 onion_packet, blinded, short_channel_id: next_hop_scid
4082 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4084 let skimmed_fee_msat =
4085 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4086 let pending_htlc_info = PendingHTLCInfo {
4087 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4088 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4091 let mut per_source_pending_forward = [(
4092 payment.prev_short_channel_id,
4093 payment.prev_funding_outpoint,
4094 payment.prev_user_channel_id,
4095 vec![(pending_htlc_info, payment.prev_htlc_id)]
4097 self.forward_htlcs(&mut per_source_pending_forward);
4101 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4102 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4104 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4107 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4108 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4109 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4111 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4112 .ok_or_else(|| APIError::APIMisuseError {
4113 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4116 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4117 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4118 short_channel_id: payment.prev_short_channel_id,
4119 user_channel_id: Some(payment.prev_user_channel_id),
4120 outpoint: payment.prev_funding_outpoint,
4121 htlc_id: payment.prev_htlc_id,
4122 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4123 phantom_shared_secret: None,
4124 blinded_failure: payment.forward_info.routing.blinded_failure(),
4127 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4128 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4129 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4130 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4135 /// Processes HTLCs which are pending waiting on random forward delay.
4137 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4138 /// Will likely generate further events.
4139 pub fn process_pending_htlc_forwards(&self) {
4140 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4142 let mut new_events = VecDeque::new();
4143 let mut failed_forwards = Vec::new();
4144 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4146 let mut forward_htlcs = HashMap::new();
4147 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4149 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4150 if short_chan_id != 0 {
4151 let mut forwarding_counterparty = None;
4152 macro_rules! forwarding_channel_not_found {
4154 for forward_info in pending_forwards.drain(..) {
4155 match forward_info {
4156 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4157 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4158 forward_info: PendingHTLCInfo {
4159 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4160 outgoing_cltv_value, ..
4163 macro_rules! failure_handler {
4164 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4165 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_funding_outpoint.to_channel_id()));
4166 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4168 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4169 short_channel_id: prev_short_channel_id,
4170 user_channel_id: Some(prev_user_channel_id),
4171 outpoint: prev_funding_outpoint,
4172 htlc_id: prev_htlc_id,
4173 incoming_packet_shared_secret: incoming_shared_secret,
4174 phantom_shared_secret: $phantom_ss,
4175 blinded_failure: routing.blinded_failure(),
4178 let reason = if $next_hop_unknown {
4179 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4181 HTLCDestination::FailedPayment{ payment_hash }
4184 failed_forwards.push((htlc_source, payment_hash,
4185 HTLCFailReason::reason($err_code, $err_data),
4191 macro_rules! fail_forward {
4192 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4194 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4198 macro_rules! failed_payment {
4199 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4201 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4205 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
4206 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4207 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4208 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4209 let next_hop = match onion_utils::decode_next_payment_hop(
4210 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4211 payment_hash, &self.node_signer
4214 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4215 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
4216 // In this scenario, the phantom would have sent us an
4217 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4218 // if it came from us (the second-to-last hop) but contains the sha256
4220 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4222 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4223 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4227 onion_utils::Hop::Receive(hop_data) => {
4228 let current_height: u32 = self.best_block.read().unwrap().height();
4229 match create_recv_pending_htlc_info(hop_data,
4230 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4231 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
4232 current_height, self.default_configuration.accept_mpp_keysend)
4234 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4235 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4241 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4244 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4247 HTLCForwardInfo::FailHTLC { .. } => {
4248 // Channel went away before we could fail it. This implies
4249 // the channel is now on chain and our counterparty is
4250 // trying to broadcast the HTLC-Timeout, but that's their
4251 // problem, not ours.
4257 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4258 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4259 Some((cp_id, chan_id)) => (cp_id, chan_id),
4261 forwarding_channel_not_found!();
4265 forwarding_counterparty = Some(counterparty_node_id);
4266 let per_peer_state = self.per_peer_state.read().unwrap();
4267 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4268 if peer_state_mutex_opt.is_none() {
4269 forwarding_channel_not_found!();
4272 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4273 let peer_state = &mut *peer_state_lock;
4274 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4275 let logger = WithChannelContext::from(&self.logger, &chan.context);
4276 for forward_info in pending_forwards.drain(..) {
4277 match forward_info {
4278 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4279 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4280 forward_info: PendingHTLCInfo {
4281 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4282 routing: PendingHTLCRouting::Forward {
4283 onion_packet, blinded, ..
4284 }, skimmed_fee_msat, ..
4287 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4288 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4289 short_channel_id: prev_short_channel_id,
4290 user_channel_id: Some(prev_user_channel_id),
4291 outpoint: prev_funding_outpoint,
4292 htlc_id: prev_htlc_id,
4293 incoming_packet_shared_secret: incoming_shared_secret,
4294 // Phantom payments are only PendingHTLCRouting::Receive.
4295 phantom_shared_secret: None,
4296 blinded_failure: blinded.map(|_| BlindedFailure::FromIntroductionNode),
4298 let next_blinding_point = blinded.and_then(|b| {
4299 let encrypted_tlvs_ss = self.node_signer.ecdh(
4300 Recipient::Node, &b.inbound_blinding_point, None
4301 ).unwrap().secret_bytes();
4302 onion_utils::next_hop_pubkey(
4303 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
4306 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4307 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4308 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
4311 if let ChannelError::Ignore(msg) = e {
4312 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4314 panic!("Stated return value requirements in send_htlc() were not met");
4316 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4317 failed_forwards.push((htlc_source, payment_hash,
4318 HTLCFailReason::reason(failure_code, data),
4319 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4324 HTLCForwardInfo::AddHTLC { .. } => {
4325 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4327 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4328 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4329 if let Err(e) = chan.queue_fail_htlc(
4330 htlc_id, err_packet, &&logger
4332 if let ChannelError::Ignore(msg) = e {
4333 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4335 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4337 // fail-backs are best-effort, we probably already have one
4338 // pending, and if not that's OK, if not, the channel is on
4339 // the chain and sending the HTLC-Timeout is their problem.
4346 forwarding_channel_not_found!();
4350 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4351 match forward_info {
4352 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4353 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4354 forward_info: PendingHTLCInfo {
4355 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4356 skimmed_fee_msat, ..
4359 let blinded_failure = routing.blinded_failure();
4360 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4361 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4362 let _legacy_hop_data = Some(payment_data.clone());
4363 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4364 payment_metadata, custom_tlvs };
4365 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4366 Some(payment_data), phantom_shared_secret, onion_fields)
4368 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4369 let onion_fields = RecipientOnionFields {
4370 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4374 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4375 payment_data, None, onion_fields)
4378 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4381 let claimable_htlc = ClaimableHTLC {
4382 prev_hop: HTLCPreviousHopData {
4383 short_channel_id: prev_short_channel_id,
4384 user_channel_id: Some(prev_user_channel_id),
4385 outpoint: prev_funding_outpoint,
4386 htlc_id: prev_htlc_id,
4387 incoming_packet_shared_secret: incoming_shared_secret,
4388 phantom_shared_secret,
4391 // We differentiate the received value from the sender intended value
4392 // if possible so that we don't prematurely mark MPP payments complete
4393 // if routing nodes overpay
4394 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4395 sender_intended_value: outgoing_amt_msat,
4397 total_value_received: None,
4398 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4401 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4404 let mut committed_to_claimable = false;
4406 macro_rules! fail_htlc {
4407 ($htlc: expr, $payment_hash: expr) => {
4408 debug_assert!(!committed_to_claimable);
4409 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4410 htlc_msat_height_data.extend_from_slice(
4411 &self.best_block.read().unwrap().height().to_be_bytes(),
4413 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4414 short_channel_id: $htlc.prev_hop.short_channel_id,
4415 user_channel_id: $htlc.prev_hop.user_channel_id,
4416 outpoint: prev_funding_outpoint,
4417 htlc_id: $htlc.prev_hop.htlc_id,
4418 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4419 phantom_shared_secret,
4420 blinded_failure: None,
4422 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4423 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4425 continue 'next_forwardable_htlc;
4428 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4429 let mut receiver_node_id = self.our_network_pubkey;
4430 if phantom_shared_secret.is_some() {
4431 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4432 .expect("Failed to get node_id for phantom node recipient");
4435 macro_rules! check_total_value {
4436 ($purpose: expr) => {{
4437 let mut payment_claimable_generated = false;
4438 let is_keysend = match $purpose {
4439 events::PaymentPurpose::SpontaneousPayment(_) => true,
4440 events::PaymentPurpose::InvoicePayment { .. } => false,
4442 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4443 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4444 fail_htlc!(claimable_htlc, payment_hash);
4446 let ref mut claimable_payment = claimable_payments.claimable_payments
4447 .entry(payment_hash)
4448 // Note that if we insert here we MUST NOT fail_htlc!()
4449 .or_insert_with(|| {
4450 committed_to_claimable = true;
4452 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4455 if $purpose != claimable_payment.purpose {
4456 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4457 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4458 fail_htlc!(claimable_htlc, payment_hash);
4460 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4461 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4462 fail_htlc!(claimable_htlc, payment_hash);
4464 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4465 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4466 fail_htlc!(claimable_htlc, payment_hash);
4469 claimable_payment.onion_fields = Some(onion_fields);
4471 let ref mut htlcs = &mut claimable_payment.htlcs;
4472 let mut total_value = claimable_htlc.sender_intended_value;
4473 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4474 for htlc in htlcs.iter() {
4475 total_value += htlc.sender_intended_value;
4476 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4477 if htlc.total_msat != claimable_htlc.total_msat {
4478 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4479 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4480 total_value = msgs::MAX_VALUE_MSAT;
4482 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4484 // The condition determining whether an MPP is complete must
4485 // match exactly the condition used in `timer_tick_occurred`
4486 if total_value >= msgs::MAX_VALUE_MSAT {
4487 fail_htlc!(claimable_htlc, payment_hash);
4488 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4489 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4491 fail_htlc!(claimable_htlc, payment_hash);
4492 } else if total_value >= claimable_htlc.total_msat {
4493 #[allow(unused_assignments)] {
4494 committed_to_claimable = true;
4496 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4497 htlcs.push(claimable_htlc);
4498 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4499 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4500 let counterparty_skimmed_fee_msat = htlcs.iter()
4501 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4502 debug_assert!(total_value.saturating_sub(amount_msat) <=
4503 counterparty_skimmed_fee_msat);
4504 new_events.push_back((events::Event::PaymentClaimable {
4505 receiver_node_id: Some(receiver_node_id),
4509 counterparty_skimmed_fee_msat,
4510 via_channel_id: Some(prev_channel_id),
4511 via_user_channel_id: Some(prev_user_channel_id),
4512 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4513 onion_fields: claimable_payment.onion_fields.clone(),
4515 payment_claimable_generated = true;
4517 // Nothing to do - we haven't reached the total
4518 // payment value yet, wait until we receive more
4520 htlcs.push(claimable_htlc);
4521 #[allow(unused_assignments)] {
4522 committed_to_claimable = true;
4525 payment_claimable_generated
4529 // Check that the payment hash and secret are known. Note that we
4530 // MUST take care to handle the "unknown payment hash" and
4531 // "incorrect payment secret" cases here identically or we'd expose
4532 // that we are the ultimate recipient of the given payment hash.
4533 // Further, we must not expose whether we have any other HTLCs
4534 // associated with the same payment_hash pending or not.
4535 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4536 match payment_secrets.entry(payment_hash) {
4537 hash_map::Entry::Vacant(_) => {
4538 match claimable_htlc.onion_payload {
4539 OnionPayload::Invoice { .. } => {
4540 let payment_data = payment_data.unwrap();
4541 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4542 Ok(result) => result,
4544 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4545 fail_htlc!(claimable_htlc, payment_hash);
4548 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4549 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4550 if (cltv_expiry as u64) < expected_min_expiry_height {
4551 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4552 &payment_hash, cltv_expiry, expected_min_expiry_height);
4553 fail_htlc!(claimable_htlc, payment_hash);
4556 let purpose = events::PaymentPurpose::InvoicePayment {
4557 payment_preimage: payment_preimage.clone(),
4558 payment_secret: payment_data.payment_secret,
4560 check_total_value!(purpose);
4562 OnionPayload::Spontaneous(preimage) => {
4563 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4564 check_total_value!(purpose);
4568 hash_map::Entry::Occupied(inbound_payment) => {
4569 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4570 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4571 fail_htlc!(claimable_htlc, payment_hash);
4573 let payment_data = payment_data.unwrap();
4574 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4575 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4576 fail_htlc!(claimable_htlc, payment_hash);
4577 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4578 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4579 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4580 fail_htlc!(claimable_htlc, payment_hash);
4582 let purpose = events::PaymentPurpose::InvoicePayment {
4583 payment_preimage: inbound_payment.get().payment_preimage,
4584 payment_secret: payment_data.payment_secret,
4586 let payment_claimable_generated = check_total_value!(purpose);
4587 if payment_claimable_generated {
4588 inbound_payment.remove_entry();
4594 HTLCForwardInfo::FailHTLC { .. } => {
4595 panic!("Got pending fail of our own HTLC");
4603 let best_block_height = self.best_block.read().unwrap().height();
4604 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4605 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4606 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4608 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4609 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4611 self.forward_htlcs(&mut phantom_receives);
4613 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4614 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4615 // nice to do the work now if we can rather than while we're trying to get messages in the
4617 self.check_free_holding_cells();
4619 if new_events.is_empty() { return }
4620 let mut events = self.pending_events.lock().unwrap();
4621 events.append(&mut new_events);
4624 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4626 /// Expects the caller to have a total_consistency_lock read lock.
4627 fn process_background_events(&self) -> NotifyOption {
4628 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4630 self.background_events_processed_since_startup.store(true, Ordering::Release);
4632 let mut background_events = Vec::new();
4633 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4634 if background_events.is_empty() {
4635 return NotifyOption::SkipPersistNoEvents;
4638 for event in background_events.drain(..) {
4640 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4641 // The channel has already been closed, so no use bothering to care about the
4642 // monitor updating completing.
4643 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4645 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4646 let mut updated_chan = false;
4648 let per_peer_state = self.per_peer_state.read().unwrap();
4649 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4650 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4651 let peer_state = &mut *peer_state_lock;
4652 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4653 hash_map::Entry::Occupied(mut chan_phase) => {
4654 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4655 updated_chan = true;
4656 handle_new_monitor_update!(self, funding_txo, update.clone(),
4657 peer_state_lock, peer_state, per_peer_state, chan);
4659 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4662 hash_map::Entry::Vacant(_) => {},
4667 // TODO: Track this as in-flight even though the channel is closed.
4668 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4671 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4672 let per_peer_state = self.per_peer_state.read().unwrap();
4673 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4674 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4675 let peer_state = &mut *peer_state_lock;
4676 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4677 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4679 let update_actions = peer_state.monitor_update_blocked_actions
4680 .remove(&channel_id).unwrap_or(Vec::new());
4681 mem::drop(peer_state_lock);
4682 mem::drop(per_peer_state);
4683 self.handle_monitor_update_completion_actions(update_actions);
4689 NotifyOption::DoPersist
4692 #[cfg(any(test, feature = "_test_utils"))]
4693 /// Process background events, for functional testing
4694 pub fn test_process_background_events(&self) {
4695 let _lck = self.total_consistency_lock.read().unwrap();
4696 let _ = self.process_background_events();
4699 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4700 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4702 let logger = WithChannelContext::from(&self.logger, &chan.context);
4704 // If the feerate has decreased by less than half, don't bother
4705 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4706 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4707 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4708 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4710 return NotifyOption::SkipPersistNoEvents;
4712 if !chan.context.is_live() {
4713 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4714 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4715 return NotifyOption::SkipPersistNoEvents;
4717 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
4718 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4720 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
4721 NotifyOption::DoPersist
4725 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4726 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4727 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4728 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4729 pub fn maybe_update_chan_fees(&self) {
4730 PersistenceNotifierGuard::optionally_notify(self, || {
4731 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4733 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4734 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4736 let per_peer_state = self.per_peer_state.read().unwrap();
4737 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4738 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4739 let peer_state = &mut *peer_state_lock;
4740 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4741 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4743 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4748 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4749 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4757 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4759 /// This currently includes:
4760 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4761 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4762 /// than a minute, informing the network that they should no longer attempt to route over
4764 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4765 /// with the current [`ChannelConfig`].
4766 /// * Removing peers which have disconnected but and no longer have any channels.
4767 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4768 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4769 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4770 /// The latter is determined using the system clock in `std` and the highest seen block time
4771 /// minus two hours in `no-std`.
4773 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4774 /// estimate fetches.
4776 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4777 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4778 pub fn timer_tick_occurred(&self) {
4779 PersistenceNotifierGuard::optionally_notify(self, || {
4780 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4782 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4783 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4785 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4786 let mut timed_out_mpp_htlcs = Vec::new();
4787 let mut pending_peers_awaiting_removal = Vec::new();
4788 let mut shutdown_channels = Vec::new();
4790 let mut process_unfunded_channel_tick = |
4791 chan_id: &ChannelId,
4792 context: &mut ChannelContext<SP>,
4793 unfunded_context: &mut UnfundedChannelContext,
4794 pending_msg_events: &mut Vec<MessageSendEvent>,
4795 counterparty_node_id: PublicKey,
4797 context.maybe_expire_prev_config();
4798 if unfunded_context.should_expire_unfunded_channel() {
4799 let logger = WithChannelContext::from(&self.logger, context);
4801 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4802 update_maps_on_chan_removal!(self, &context);
4803 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4804 shutdown_channels.push(context.force_shutdown(false));
4805 pending_msg_events.push(MessageSendEvent::HandleError {
4806 node_id: counterparty_node_id,
4807 action: msgs::ErrorAction::SendErrorMessage {
4808 msg: msgs::ErrorMessage {
4809 channel_id: *chan_id,
4810 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4821 let per_peer_state = self.per_peer_state.read().unwrap();
4822 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4823 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4824 let peer_state = &mut *peer_state_lock;
4825 let pending_msg_events = &mut peer_state.pending_msg_events;
4826 let counterparty_node_id = *counterparty_node_id;
4827 peer_state.channel_by_id.retain(|chan_id, phase| {
4829 ChannelPhase::Funded(chan) => {
4830 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4835 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4836 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4838 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4839 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4840 handle_errors.push((Err(err), counterparty_node_id));
4841 if needs_close { return false; }
4844 match chan.channel_update_status() {
4845 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4846 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4847 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4848 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4849 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4850 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4851 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4853 if n >= DISABLE_GOSSIP_TICKS {
4854 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4855 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4856 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4860 should_persist = NotifyOption::DoPersist;
4862 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4865 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4867 if n >= ENABLE_GOSSIP_TICKS {
4868 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4869 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4870 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4874 should_persist = NotifyOption::DoPersist;
4876 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4882 chan.context.maybe_expire_prev_config();
4884 if chan.should_disconnect_peer_awaiting_response() {
4885 let logger = WithChannelContext::from(&self.logger, &chan.context);
4886 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
4887 counterparty_node_id, chan_id);
4888 pending_msg_events.push(MessageSendEvent::HandleError {
4889 node_id: counterparty_node_id,
4890 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4891 msg: msgs::WarningMessage {
4892 channel_id: *chan_id,
4893 data: "Disconnecting due to timeout awaiting response".to_owned(),
4901 ChannelPhase::UnfundedInboundV1(chan) => {
4902 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4903 pending_msg_events, counterparty_node_id)
4905 ChannelPhase::UnfundedOutboundV1(chan) => {
4906 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4907 pending_msg_events, counterparty_node_id)
4912 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4913 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4914 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
4915 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4916 peer_state.pending_msg_events.push(
4917 events::MessageSendEvent::HandleError {
4918 node_id: counterparty_node_id,
4919 action: msgs::ErrorAction::SendErrorMessage {
4920 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4926 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4928 if peer_state.ok_to_remove(true) {
4929 pending_peers_awaiting_removal.push(counterparty_node_id);
4934 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4935 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4936 // of to that peer is later closed while still being disconnected (i.e. force closed),
4937 // we therefore need to remove the peer from `peer_state` separately.
4938 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4939 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4940 // negative effects on parallelism as much as possible.
4941 if pending_peers_awaiting_removal.len() > 0 {
4942 let mut per_peer_state = self.per_peer_state.write().unwrap();
4943 for counterparty_node_id in pending_peers_awaiting_removal {
4944 match per_peer_state.entry(counterparty_node_id) {
4945 hash_map::Entry::Occupied(entry) => {
4946 // Remove the entry if the peer is still disconnected and we still
4947 // have no channels to the peer.
4948 let remove_entry = {
4949 let peer_state = entry.get().lock().unwrap();
4950 peer_state.ok_to_remove(true)
4953 entry.remove_entry();
4956 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4961 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4962 if payment.htlcs.is_empty() {
4963 // This should be unreachable
4964 debug_assert!(false);
4967 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4968 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4969 // In this case we're not going to handle any timeouts of the parts here.
4970 // This condition determining whether the MPP is complete here must match
4971 // exactly the condition used in `process_pending_htlc_forwards`.
4972 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4973 .fold(0, |total, htlc| total + htlc.sender_intended_value)
4976 } else if payment.htlcs.iter_mut().any(|htlc| {
4977 htlc.timer_ticks += 1;
4978 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
4980 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
4981 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
4988 for htlc_source in timed_out_mpp_htlcs.drain(..) {
4989 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
4990 let reason = HTLCFailReason::from_failure_code(23);
4991 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
4992 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
4995 for (err, counterparty_node_id) in handle_errors.drain(..) {
4996 let _ = handle_error!(self, err, counterparty_node_id);
4999 for shutdown_res in shutdown_channels {
5000 self.finish_close_channel(shutdown_res);
5003 #[cfg(feature = "std")]
5004 let duration_since_epoch = std::time::SystemTime::now()
5005 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5006 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5007 #[cfg(not(feature = "std"))]
5008 let duration_since_epoch = Duration::from_secs(
5009 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5012 self.pending_outbound_payments.remove_stale_payments(
5013 duration_since_epoch, &self.pending_events
5016 // Technically we don't need to do this here, but if we have holding cell entries in a
5017 // channel that need freeing, it's better to do that here and block a background task
5018 // than block the message queueing pipeline.
5019 if self.check_free_holding_cells() {
5020 should_persist = NotifyOption::DoPersist;
5027 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5028 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5029 /// along the path (including in our own channel on which we received it).
5031 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5032 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5033 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5034 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5036 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5037 /// [`ChannelManager::claim_funds`]), you should still monitor for
5038 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5039 /// startup during which time claims that were in-progress at shutdown may be replayed.
5040 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5041 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5044 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5045 /// reason for the failure.
5047 /// See [`FailureCode`] for valid failure codes.
5048 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5049 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5051 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5052 if let Some(payment) = removed_source {
5053 for htlc in payment.htlcs {
5054 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5055 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5056 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5057 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5062 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5063 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5064 match failure_code {
5065 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5066 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5067 FailureCode::IncorrectOrUnknownPaymentDetails => {
5068 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5069 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5070 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5072 FailureCode::InvalidOnionPayload(data) => {
5073 let fail_data = match data {
5074 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5077 HTLCFailReason::reason(failure_code.into(), fail_data)
5082 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5083 /// that we want to return and a channel.
5085 /// This is for failures on the channel on which the HTLC was *received*, not failures
5087 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5088 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5089 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5090 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5091 // an inbound SCID alias before the real SCID.
5092 let scid_pref = if chan.context.should_announce() {
5093 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5095 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5097 if let Some(scid) = scid_pref {
5098 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5100 (0x4000|10, Vec::new())
5105 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5106 /// that we want to return and a channel.
5107 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5108 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5109 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5110 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5111 if desired_err_code == 0x1000 | 20 {
5112 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5113 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5114 0u16.write(&mut enc).expect("Writes cannot fail");
5116 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5117 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5118 upd.write(&mut enc).expect("Writes cannot fail");
5119 (desired_err_code, enc.0)
5121 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5122 // which means we really shouldn't have gotten a payment to be forwarded over this
5123 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5124 // PERM|no_such_channel should be fine.
5125 (0x4000|10, Vec::new())
5129 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5130 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5131 // be surfaced to the user.
5132 fn fail_holding_cell_htlcs(
5133 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5134 counterparty_node_id: &PublicKey
5136 let (failure_code, onion_failure_data) = {
5137 let per_peer_state = self.per_peer_state.read().unwrap();
5138 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5139 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5140 let peer_state = &mut *peer_state_lock;
5141 match peer_state.channel_by_id.entry(channel_id) {
5142 hash_map::Entry::Occupied(chan_phase_entry) => {
5143 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5144 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5146 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5147 debug_assert!(false);
5148 (0x4000|10, Vec::new())
5151 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5153 } else { (0x4000|10, Vec::new()) }
5156 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5157 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5158 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5159 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5163 /// Fails an HTLC backwards to the sender of it to us.
5164 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5165 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5166 // Ensure that no peer state channel storage lock is held when calling this function.
5167 // This ensures that future code doesn't introduce a lock-order requirement for
5168 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5169 // this function with any `per_peer_state` peer lock acquired would.
5170 #[cfg(debug_assertions)]
5171 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5172 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5175 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5176 //identify whether we sent it or not based on the (I presume) very different runtime
5177 //between the branches here. We should make this async and move it into the forward HTLCs
5180 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5181 // from block_connected which may run during initialization prior to the chain_monitor
5182 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5184 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5185 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5186 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5187 &self.pending_events, &self.logger)
5188 { self.push_pending_forwards_ev(); }
5190 HTLCSource::PreviousHopData(HTLCPreviousHopData {
5191 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
5192 ref phantom_shared_secret, ref outpoint, ref blinded_failure, ..
5195 WithContext::from(&self.logger, None, Some(outpoint.to_channel_id())),
5196 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
5197 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
5199 let err_packet = match blinded_failure {
5200 Some(BlindedFailure::FromIntroductionNode) => {
5201 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
5202 blinded_onion_error.get_encrypted_failure_packet(
5203 incoming_packet_shared_secret, phantom_shared_secret
5207 onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret)
5211 let mut push_forward_ev = false;
5212 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5213 if forward_htlcs.is_empty() {
5214 push_forward_ev = true;
5216 match forward_htlcs.entry(*short_channel_id) {
5217 hash_map::Entry::Occupied(mut entry) => {
5218 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5220 hash_map::Entry::Vacant(entry) => {
5221 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5224 mem::drop(forward_htlcs);
5225 if push_forward_ev { self.push_pending_forwards_ev(); }
5226 let mut pending_events = self.pending_events.lock().unwrap();
5227 pending_events.push_back((events::Event::HTLCHandlingFailed {
5228 prev_channel_id: outpoint.to_channel_id(),
5229 failed_next_destination: destination,
5235 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5236 /// [`MessageSendEvent`]s needed to claim the payment.
5238 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5239 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5240 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5241 /// successful. It will generally be available in the next [`process_pending_events`] call.
5243 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5244 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5245 /// event matches your expectation. If you fail to do so and call this method, you may provide
5246 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5248 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5249 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5250 /// [`claim_funds_with_known_custom_tlvs`].
5252 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5253 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5254 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5255 /// [`process_pending_events`]: EventsProvider::process_pending_events
5256 /// [`create_inbound_payment`]: Self::create_inbound_payment
5257 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5258 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5259 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5260 self.claim_payment_internal(payment_preimage, false);
5263 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5264 /// even type numbers.
5268 /// You MUST check you've understood all even TLVs before using this to
5269 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5271 /// [`claim_funds`]: Self::claim_funds
5272 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5273 self.claim_payment_internal(payment_preimage, true);
5276 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5277 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
5279 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5282 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5283 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5284 let mut receiver_node_id = self.our_network_pubkey;
5285 for htlc in payment.htlcs.iter() {
5286 if htlc.prev_hop.phantom_shared_secret.is_some() {
5287 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5288 .expect("Failed to get node_id for phantom node recipient");
5289 receiver_node_id = phantom_pubkey;
5294 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5295 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5296 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5297 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5298 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5300 if dup_purpose.is_some() {
5301 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5302 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5306 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5307 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5308 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5309 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5310 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5311 mem::drop(claimable_payments);
5312 for htlc in payment.htlcs {
5313 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5314 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5315 let receiver = HTLCDestination::FailedPayment { payment_hash };
5316 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5325 debug_assert!(!sources.is_empty());
5327 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5328 // and when we got here we need to check that the amount we're about to claim matches the
5329 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5330 // the MPP parts all have the same `total_msat`.
5331 let mut claimable_amt_msat = 0;
5332 let mut prev_total_msat = None;
5333 let mut expected_amt_msat = None;
5334 let mut valid_mpp = true;
5335 let mut errs = Vec::new();
5336 let per_peer_state = self.per_peer_state.read().unwrap();
5337 for htlc in sources.iter() {
5338 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5339 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5340 debug_assert!(false);
5344 prev_total_msat = Some(htlc.total_msat);
5346 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5347 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5348 debug_assert!(false);
5352 expected_amt_msat = htlc.total_value_received;
5353 claimable_amt_msat += htlc.value;
5355 mem::drop(per_peer_state);
5356 if sources.is_empty() || expected_amt_msat.is_none() {
5357 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5358 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5361 if claimable_amt_msat != expected_amt_msat.unwrap() {
5362 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5363 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5364 expected_amt_msat.unwrap(), claimable_amt_msat);
5368 for htlc in sources.drain(..) {
5369 let prev_hop_chan_id = htlc.prev_hop.outpoint.to_channel_id();
5370 if let Err((pk, err)) = self.claim_funds_from_hop(
5371 htlc.prev_hop, payment_preimage,
5372 |_, definitely_duplicate| {
5373 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5374 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5377 if let msgs::ErrorAction::IgnoreError = err.err.action {
5378 // We got a temporary failure updating monitor, but will claim the
5379 // HTLC when the monitor updating is restored (or on chain).
5380 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
5381 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5382 } else { errs.push((pk, err)); }
5387 for htlc in sources.drain(..) {
5388 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5389 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5390 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5391 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5392 let receiver = HTLCDestination::FailedPayment { payment_hash };
5393 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5395 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5398 // Now we can handle any errors which were generated.
5399 for (counterparty_node_id, err) in errs.drain(..) {
5400 let res: Result<(), _> = Err(err);
5401 let _ = handle_error!(self, res, counterparty_node_id);
5405 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5406 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5407 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5408 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5410 // If we haven't yet run background events assume we're still deserializing and shouldn't
5411 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5412 // `BackgroundEvent`s.
5413 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5415 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5416 // the required mutexes are not held before we start.
5417 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5418 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5421 let per_peer_state = self.per_peer_state.read().unwrap();
5422 let chan_id = prev_hop.outpoint.to_channel_id();
5423 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5424 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5428 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5429 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5430 .map(|peer_mutex| peer_mutex.lock().unwrap())
5433 if peer_state_opt.is_some() {
5434 let mut peer_state_lock = peer_state_opt.unwrap();
5435 let peer_state = &mut *peer_state_lock;
5436 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5437 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5438 let counterparty_node_id = chan.context.get_counterparty_node_id();
5439 let logger = WithChannelContext::from(&self.logger, &chan.context);
5440 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
5443 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5444 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5445 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
5447 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5450 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5451 peer_state, per_peer_state, chan);
5453 // If we're running during init we cannot update a monitor directly -
5454 // they probably haven't actually been loaded yet. Instead, push the
5455 // monitor update as a background event.
5456 self.pending_background_events.lock().unwrap().push(
5457 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5458 counterparty_node_id,
5459 funding_txo: prev_hop.outpoint,
5460 update: monitor_update.clone(),
5464 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5465 let action = if let Some(action) = completion_action(None, true) {
5470 mem::drop(peer_state_lock);
5472 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5474 let (node_id, funding_outpoint, blocker) =
5475 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5476 downstream_counterparty_node_id: node_id,
5477 downstream_funding_outpoint: funding_outpoint,
5478 blocking_action: blocker,
5480 (node_id, funding_outpoint, blocker)
5482 debug_assert!(false,
5483 "Duplicate claims should always free another channel immediately");
5486 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5487 let mut peer_state = peer_state_mtx.lock().unwrap();
5488 if let Some(blockers) = peer_state
5489 .actions_blocking_raa_monitor_updates
5490 .get_mut(&funding_outpoint.to_channel_id())
5492 let mut found_blocker = false;
5493 blockers.retain(|iter| {
5494 // Note that we could actually be blocked, in
5495 // which case we need to only remove the one
5496 // blocker which was added duplicatively.
5497 let first_blocker = !found_blocker;
5498 if *iter == blocker { found_blocker = true; }
5499 *iter != blocker || !first_blocker
5501 debug_assert!(found_blocker);
5504 debug_assert!(false);
5513 let preimage_update = ChannelMonitorUpdate {
5514 update_id: CLOSED_CHANNEL_UPDATE_ID,
5515 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5521 // We update the ChannelMonitor on the backward link, after
5522 // receiving an `update_fulfill_htlc` from the forward link.
5523 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5524 if update_res != ChannelMonitorUpdateStatus::Completed {
5525 // TODO: This needs to be handled somehow - if we receive a monitor update
5526 // with a preimage we *must* somehow manage to propagate it to the upstream
5527 // channel, or we must have an ability to receive the same event and try
5528 // again on restart.
5529 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.outpoint.to_channel_id())), "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5530 payment_preimage, update_res);
5533 // If we're running during init we cannot update a monitor directly - they probably
5534 // haven't actually been loaded yet. Instead, push the monitor update as a background
5536 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5537 // channel is already closed) we need to ultimately handle the monitor update
5538 // completion action only after we've completed the monitor update. This is the only
5539 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5540 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5541 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5542 // complete the monitor update completion action from `completion_action`.
5543 self.pending_background_events.lock().unwrap().push(
5544 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5545 prev_hop.outpoint, preimage_update,
5548 // Note that we do process the completion action here. This totally could be a
5549 // duplicate claim, but we have no way of knowing without interrogating the
5550 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5551 // generally always allowed to be duplicative (and it's specifically noted in
5552 // `PaymentForwarded`).
5553 self.handle_monitor_update_completion_actions(completion_action(None, false));
5557 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5558 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5561 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5562 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5563 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5566 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5567 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5568 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5569 if let Some(pubkey) = next_channel_counterparty_node_id {
5570 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5572 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5573 channel_funding_outpoint: next_channel_outpoint,
5574 counterparty_node_id: path.hops[0].pubkey,
5576 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5577 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5580 HTLCSource::PreviousHopData(hop_data) => {
5581 let prev_outpoint = hop_data.outpoint;
5582 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5583 #[cfg(debug_assertions)]
5584 let claiming_chan_funding_outpoint = hop_data.outpoint;
5585 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5586 |htlc_claim_value_msat, definitely_duplicate| {
5587 let chan_to_release =
5588 if let Some(node_id) = next_channel_counterparty_node_id {
5589 Some((node_id, next_channel_outpoint, completed_blocker))
5591 // We can only get `None` here if we are processing a
5592 // `ChannelMonitor`-originated event, in which case we
5593 // don't care about ensuring we wake the downstream
5594 // channel's monitor updating - the channel is already
5599 if definitely_duplicate && startup_replay {
5600 // On startup we may get redundant claims which are related to
5601 // monitor updates still in flight. In that case, we shouldn't
5602 // immediately free, but instead let that monitor update complete
5603 // in the background.
5604 #[cfg(debug_assertions)] {
5605 let background_events = self.pending_background_events.lock().unwrap();
5606 // There should be a `BackgroundEvent` pending...
5607 assert!(background_events.iter().any(|ev| {
5609 // to apply a monitor update that blocked the claiming channel,
5610 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5611 funding_txo, update, ..
5613 if *funding_txo == claiming_chan_funding_outpoint {
5614 assert!(update.updates.iter().any(|upd|
5615 if let ChannelMonitorUpdateStep::PaymentPreimage {
5616 payment_preimage: update_preimage
5618 payment_preimage == *update_preimage
5624 // or the channel we'd unblock is already closed,
5625 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5626 (funding_txo, monitor_update)
5628 if *funding_txo == next_channel_outpoint {
5629 assert_eq!(monitor_update.updates.len(), 1);
5631 monitor_update.updates[0],
5632 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5637 // or the monitor update has completed and will unblock
5638 // immediately once we get going.
5639 BackgroundEvent::MonitorUpdatesComplete {
5642 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5644 }), "{:?}", *background_events);
5647 } else if definitely_duplicate {
5648 if let Some(other_chan) = chan_to_release {
5649 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5650 downstream_counterparty_node_id: other_chan.0,
5651 downstream_funding_outpoint: other_chan.1,
5652 blocking_action: other_chan.2,
5656 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5657 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5658 Some(claimed_htlc_value - forwarded_htlc_value)
5661 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5662 event: events::Event::PaymentForwarded {
5664 claim_from_onchain_tx: from_onchain,
5665 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5666 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5667 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5669 downstream_counterparty_and_funding_outpoint: chan_to_release,
5673 if let Err((pk, err)) = res {
5674 let result: Result<(), _> = Err(err);
5675 let _ = handle_error!(self, result, pk);
5681 /// Gets the node_id held by this ChannelManager
5682 pub fn get_our_node_id(&self) -> PublicKey {
5683 self.our_network_pubkey.clone()
5686 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5687 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5688 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5689 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5691 for action in actions.into_iter() {
5693 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5694 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5695 if let Some(ClaimingPayment {
5697 payment_purpose: purpose,
5700 sender_intended_value: sender_intended_total_msat,
5702 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5706 receiver_node_id: Some(receiver_node_id),
5708 sender_intended_total_msat,
5712 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5713 event, downstream_counterparty_and_funding_outpoint
5715 self.pending_events.lock().unwrap().push_back((event, None));
5716 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5717 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5720 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5721 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5723 self.handle_monitor_update_release(
5724 downstream_counterparty_node_id,
5725 downstream_funding_outpoint,
5726 Some(blocking_action),
5733 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5734 /// update completion.
5735 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5736 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5737 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5738 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5739 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5740 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5741 let logger = WithChannelContext::from(&self.logger, &channel.context);
5742 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5743 &channel.context.channel_id(),
5744 if raa.is_some() { "an" } else { "no" },
5745 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5746 if funding_broadcastable.is_some() { "" } else { "not " },
5747 if channel_ready.is_some() { "sending" } else { "without" },
5748 if announcement_sigs.is_some() { "sending" } else { "without" });
5750 let mut htlc_forwards = None;
5752 let counterparty_node_id = channel.context.get_counterparty_node_id();
5753 if !pending_forwards.is_empty() {
5754 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5755 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5758 if let Some(msg) = channel_ready {
5759 send_channel_ready!(self, pending_msg_events, channel, msg);
5761 if let Some(msg) = announcement_sigs {
5762 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5763 node_id: counterparty_node_id,
5768 macro_rules! handle_cs { () => {
5769 if let Some(update) = commitment_update {
5770 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5771 node_id: counterparty_node_id,
5776 macro_rules! handle_raa { () => {
5777 if let Some(revoke_and_ack) = raa {
5778 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5779 node_id: counterparty_node_id,
5780 msg: revoke_and_ack,
5785 RAACommitmentOrder::CommitmentFirst => {
5789 RAACommitmentOrder::RevokeAndACKFirst => {
5795 if let Some(tx) = funding_broadcastable {
5796 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
5797 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5801 let mut pending_events = self.pending_events.lock().unwrap();
5802 emit_channel_pending_event!(pending_events, channel);
5803 emit_channel_ready_event!(pending_events, channel);
5809 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5810 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5812 let counterparty_node_id = match counterparty_node_id {
5813 Some(cp_id) => cp_id.clone(),
5815 // TODO: Once we can rely on the counterparty_node_id from the
5816 // monitor event, this and the id_to_peer map should be removed.
5817 let id_to_peer = self.id_to_peer.lock().unwrap();
5818 match id_to_peer.get(&funding_txo.to_channel_id()) {
5819 Some(cp_id) => cp_id.clone(),
5824 let per_peer_state = self.per_peer_state.read().unwrap();
5825 let mut peer_state_lock;
5826 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5827 if peer_state_mutex_opt.is_none() { return }
5828 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5829 let peer_state = &mut *peer_state_lock;
5831 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5834 let update_actions = peer_state.monitor_update_blocked_actions
5835 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5836 mem::drop(peer_state_lock);
5837 mem::drop(per_peer_state);
5838 self.handle_monitor_update_completion_actions(update_actions);
5841 let remaining_in_flight =
5842 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5843 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5846 let logger = WithChannelContext::from(&self.logger, &channel.context);
5847 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5848 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5849 remaining_in_flight);
5850 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5853 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5856 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5858 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5859 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5862 /// The `user_channel_id` parameter will be provided back in
5863 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5864 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5866 /// Note that this method will return an error and reject the channel, if it requires support
5867 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5868 /// used to accept such channels.
5870 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5871 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5872 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5873 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5876 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5877 /// it as confirmed immediately.
5879 /// The `user_channel_id` parameter will be provided back in
5880 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5881 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5883 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5884 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5886 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5887 /// transaction and blindly assumes that it will eventually confirm.
5889 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5890 /// does not pay to the correct script the correct amount, *you will lose funds*.
5892 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5893 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5894 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5895 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5898 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5899 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5901 let peers_without_funded_channels =
5902 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5903 let per_peer_state = self.per_peer_state.read().unwrap();
5904 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5905 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5906 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5907 let peer_state = &mut *peer_state_lock;
5908 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5910 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5911 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5912 // that we can delay allocating the SCID until after we're sure that the checks below will
5914 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5915 Some(unaccepted_channel) => {
5916 let best_block_height = self.best_block.read().unwrap().height();
5917 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5918 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5919 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5920 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5922 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5926 // This should have been correctly configured by the call to InboundV1Channel::new.
5927 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5928 } else if channel.context.get_channel_type().requires_zero_conf() {
5929 let send_msg_err_event = events::MessageSendEvent::HandleError {
5930 node_id: channel.context.get_counterparty_node_id(),
5931 action: msgs::ErrorAction::SendErrorMessage{
5932 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5935 peer_state.pending_msg_events.push(send_msg_err_event);
5936 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5938 // If this peer already has some channels, a new channel won't increase our number of peers
5939 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5940 // channels per-peer we can accept channels from a peer with existing ones.
5941 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5942 let send_msg_err_event = events::MessageSendEvent::HandleError {
5943 node_id: channel.context.get_counterparty_node_id(),
5944 action: msgs::ErrorAction::SendErrorMessage{
5945 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5948 peer_state.pending_msg_events.push(send_msg_err_event);
5949 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5953 // Now that we know we have a channel, assign an outbound SCID alias.
5954 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5955 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5957 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5958 node_id: channel.context.get_counterparty_node_id(),
5959 msg: channel.accept_inbound_channel(),
5962 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
5967 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5968 /// or 0-conf channels.
5970 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5971 /// non-0-conf channels we have with the peer.
5972 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5973 where Filter: Fn(&PeerState<SP>) -> bool {
5974 let mut peers_without_funded_channels = 0;
5975 let best_block_height = self.best_block.read().unwrap().height();
5977 let peer_state_lock = self.per_peer_state.read().unwrap();
5978 for (_, peer_mtx) in peer_state_lock.iter() {
5979 let peer = peer_mtx.lock().unwrap();
5980 if !maybe_count_peer(&*peer) { continue; }
5981 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5982 if num_unfunded_channels == peer.total_channel_count() {
5983 peers_without_funded_channels += 1;
5987 return peers_without_funded_channels;
5990 fn unfunded_channel_count(
5991 peer: &PeerState<SP>, best_block_height: u32
5993 let mut num_unfunded_channels = 0;
5994 for (_, phase) in peer.channel_by_id.iter() {
5996 ChannelPhase::Funded(chan) => {
5997 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5998 // which have not yet had any confirmations on-chain.
5999 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6000 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6002 num_unfunded_channels += 1;
6005 ChannelPhase::UnfundedInboundV1(chan) => {
6006 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6007 num_unfunded_channels += 1;
6010 ChannelPhase::UnfundedOutboundV1(_) => {
6011 // Outbound channels don't contribute to the unfunded count in the DoS context.
6016 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6019 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6020 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6021 // likely to be lost on restart!
6022 if msg.chain_hash != self.chain_hash {
6023 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6026 if !self.default_configuration.accept_inbound_channels {
6027 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6030 // Get the number of peers with channels, but without funded ones. We don't care too much
6031 // about peers that never open a channel, so we filter by peers that have at least one
6032 // channel, and then limit the number of those with unfunded channels.
6033 let channeled_peers_without_funding =
6034 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6036 let per_peer_state = self.per_peer_state.read().unwrap();
6037 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6039 debug_assert!(false);
6040 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6042 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6043 let peer_state = &mut *peer_state_lock;
6045 // If this peer already has some channels, a new channel won't increase our number of peers
6046 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6047 // channels per-peer we can accept channels from a peer with existing ones.
6048 if peer_state.total_channel_count() == 0 &&
6049 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6050 !self.default_configuration.manually_accept_inbound_channels
6052 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6053 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6054 msg.temporary_channel_id.clone()));
6057 let best_block_height = self.best_block.read().unwrap().height();
6058 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6059 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6060 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6061 msg.temporary_channel_id.clone()));
6064 let channel_id = msg.temporary_channel_id;
6065 let channel_exists = peer_state.has_channel(&channel_id);
6067 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6070 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6071 if self.default_configuration.manually_accept_inbound_channels {
6072 let mut pending_events = self.pending_events.lock().unwrap();
6073 pending_events.push_back((events::Event::OpenChannelRequest {
6074 temporary_channel_id: msg.temporary_channel_id.clone(),
6075 counterparty_node_id: counterparty_node_id.clone(),
6076 funding_satoshis: msg.funding_satoshis,
6077 push_msat: msg.push_msat,
6078 channel_type: msg.channel_type.clone().unwrap(),
6080 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6081 open_channel_msg: msg.clone(),
6082 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6087 // Otherwise create the channel right now.
6088 let mut random_bytes = [0u8; 16];
6089 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6090 let user_channel_id = u128::from_be_bytes(random_bytes);
6091 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6092 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6093 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6096 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6101 let channel_type = channel.context.get_channel_type();
6102 if channel_type.requires_zero_conf() {
6103 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6105 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6106 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6109 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6110 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6112 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6113 node_id: counterparty_node_id.clone(),
6114 msg: channel.accept_inbound_channel(),
6116 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6120 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6121 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6122 // likely to be lost on restart!
6123 let (value, output_script, user_id) = {
6124 let per_peer_state = self.per_peer_state.read().unwrap();
6125 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6127 debug_assert!(false);
6128 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6130 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6131 let peer_state = &mut *peer_state_lock;
6132 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6133 hash_map::Entry::Occupied(mut phase) => {
6134 match phase.get_mut() {
6135 ChannelPhase::UnfundedOutboundV1(chan) => {
6136 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6137 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6140 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6144 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6147 let mut pending_events = self.pending_events.lock().unwrap();
6148 pending_events.push_back((events::Event::FundingGenerationReady {
6149 temporary_channel_id: msg.temporary_channel_id,
6150 counterparty_node_id: *counterparty_node_id,
6151 channel_value_satoshis: value,
6153 user_channel_id: user_id,
6158 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6159 let best_block = *self.best_block.read().unwrap();
6161 let per_peer_state = self.per_peer_state.read().unwrap();
6162 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6164 debug_assert!(false);
6165 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6168 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6169 let peer_state = &mut *peer_state_lock;
6170 let (chan, funding_msg_opt, monitor) =
6171 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6172 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6173 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
6174 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
6176 Err((mut inbound_chan, err)) => {
6177 // We've already removed this inbound channel from the map in `PeerState`
6178 // above so at this point we just need to clean up any lingering entries
6179 // concerning this channel as it is safe to do so.
6180 update_maps_on_chan_removal!(self, &inbound_chan.context);
6181 let user_id = inbound_chan.context.get_user_id();
6182 let shutdown_res = inbound_chan.context.force_shutdown(false);
6183 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6184 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6188 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6189 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6191 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6194 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6195 hash_map::Entry::Occupied(_) => {
6196 Err(MsgHandleErrInternal::send_err_msg_no_close(
6197 "Already had channel with the new channel_id".to_owned(),
6198 chan.context.channel_id()
6201 hash_map::Entry::Vacant(e) => {
6202 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6203 match id_to_peer_lock.entry(chan.context.channel_id()) {
6204 hash_map::Entry::Occupied(_) => {
6205 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6206 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6207 chan.context.channel_id()))
6209 hash_map::Entry::Vacant(i_e) => {
6210 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6211 if let Ok(persist_state) = monitor_res {
6212 i_e.insert(chan.context.get_counterparty_node_id());
6213 mem::drop(id_to_peer_lock);
6215 // There's no problem signing a counterparty's funding transaction if our monitor
6216 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6217 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6218 // until we have persisted our monitor.
6219 if let Some(msg) = funding_msg_opt {
6220 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6221 node_id: counterparty_node_id.clone(),
6226 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6227 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6228 per_peer_state, chan, INITIAL_MONITOR);
6230 unreachable!("This must be a funded channel as we just inserted it.");
6234 let logger = WithChannelContext::from(&self.logger, &chan.context);
6235 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6236 let channel_id = match funding_msg_opt {
6237 Some(msg) => msg.channel_id,
6238 None => chan.context.channel_id(),
6240 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6241 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6250 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6251 let best_block = *self.best_block.read().unwrap();
6252 let per_peer_state = self.per_peer_state.read().unwrap();
6253 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6255 debug_assert!(false);
6256 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6259 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6260 let peer_state = &mut *peer_state_lock;
6261 match peer_state.channel_by_id.entry(msg.channel_id) {
6262 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6263 match chan_phase_entry.get_mut() {
6264 ChannelPhase::Funded(ref mut chan) => {
6265 let logger = WithChannelContext::from(&self.logger, &chan.context);
6266 let monitor = try_chan_phase_entry!(self,
6267 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger), chan_phase_entry);
6268 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6269 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6272 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6276 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6280 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6284 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6285 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6286 // closing a channel), so any changes are likely to be lost on restart!
6287 let per_peer_state = self.per_peer_state.read().unwrap();
6288 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6290 debug_assert!(false);
6291 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6293 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6294 let peer_state = &mut *peer_state_lock;
6295 match peer_state.channel_by_id.entry(msg.channel_id) {
6296 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6297 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6298 let logger = WithChannelContext::from(&self.logger, &chan.context);
6299 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6300 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
6301 if let Some(announcement_sigs) = announcement_sigs_opt {
6302 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6303 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6304 node_id: counterparty_node_id.clone(),
6305 msg: announcement_sigs,
6307 } else if chan.context.is_usable() {
6308 // If we're sending an announcement_signatures, we'll send the (public)
6309 // channel_update after sending a channel_announcement when we receive our
6310 // counterparty's announcement_signatures. Thus, we only bother to send a
6311 // channel_update here if the channel is not public, i.e. we're not sending an
6312 // announcement_signatures.
6313 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6314 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6315 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6316 node_id: counterparty_node_id.clone(),
6323 let mut pending_events = self.pending_events.lock().unwrap();
6324 emit_channel_ready_event!(pending_events, chan);
6329 try_chan_phase_entry!(self, Err(ChannelError::Close(
6330 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6333 hash_map::Entry::Vacant(_) => {
6334 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6339 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6340 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6341 let mut finish_shutdown = None;
6343 let per_peer_state = self.per_peer_state.read().unwrap();
6344 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6346 debug_assert!(false);
6347 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6349 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6350 let peer_state = &mut *peer_state_lock;
6351 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6352 let phase = chan_phase_entry.get_mut();
6354 ChannelPhase::Funded(chan) => {
6355 if !chan.received_shutdown() {
6356 let logger = WithChannelContext::from(&self.logger, &chan.context);
6357 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
6359 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6362 let funding_txo_opt = chan.context.get_funding_txo();
6363 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6364 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6365 dropped_htlcs = htlcs;
6367 if let Some(msg) = shutdown {
6368 // We can send the `shutdown` message before updating the `ChannelMonitor`
6369 // here as we don't need the monitor update to complete until we send a
6370 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6371 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6372 node_id: *counterparty_node_id,
6376 // Update the monitor with the shutdown script if necessary.
6377 if let Some(monitor_update) = monitor_update_opt {
6378 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6379 peer_state_lock, peer_state, per_peer_state, chan);
6382 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6383 let context = phase.context_mut();
6384 let logger = WithChannelContext::from(&self.logger, context);
6385 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6386 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6387 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6388 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6392 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6395 for htlc_source in dropped_htlcs.drain(..) {
6396 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6397 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6398 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6400 if let Some(shutdown_res) = finish_shutdown {
6401 self.finish_close_channel(shutdown_res);
6407 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6408 let per_peer_state = self.per_peer_state.read().unwrap();
6409 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6411 debug_assert!(false);
6412 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6414 let (tx, chan_option, shutdown_result) = {
6415 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6416 let peer_state = &mut *peer_state_lock;
6417 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6418 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6419 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6420 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6421 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6422 if let Some(msg) = closing_signed {
6423 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6424 node_id: counterparty_node_id.clone(),
6429 // We're done with this channel, we've got a signed closing transaction and
6430 // will send the closing_signed back to the remote peer upon return. This
6431 // also implies there are no pending HTLCs left on the channel, so we can
6432 // fully delete it from tracking (the channel monitor is still around to
6433 // watch for old state broadcasts)!
6434 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6435 } else { (tx, None, shutdown_result) }
6437 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6438 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6441 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6444 if let Some(broadcast_tx) = tx {
6445 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
6446 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
6447 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6449 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6450 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6451 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6452 let peer_state = &mut *peer_state_lock;
6453 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6457 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6459 mem::drop(per_peer_state);
6460 if let Some(shutdown_result) = shutdown_result {
6461 self.finish_close_channel(shutdown_result);
6466 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6467 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6468 //determine the state of the payment based on our response/if we forward anything/the time
6469 //we take to respond. We should take care to avoid allowing such an attack.
6471 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6472 //us repeatedly garbled in different ways, and compare our error messages, which are
6473 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6474 //but we should prevent it anyway.
6476 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6477 // closing a channel), so any changes are likely to be lost on restart!
6479 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
6480 let per_peer_state = self.per_peer_state.read().unwrap();
6481 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6483 debug_assert!(false);
6484 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6486 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6487 let peer_state = &mut *peer_state_lock;
6488 match peer_state.channel_by_id.entry(msg.channel_id) {
6489 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6490 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6491 let pending_forward_info = match decoded_hop_res {
6492 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6493 self.construct_pending_htlc_status(
6494 msg, counterparty_node_id, shared_secret, next_hop,
6495 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
6497 Err(e) => PendingHTLCStatus::Fail(e)
6499 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6500 // If the update_add is completely bogus, the call will Err and we will close,
6501 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6502 // want to reject the new HTLC and fail it backwards instead of forwarding.
6503 match pending_forward_info {
6504 PendingHTLCStatus::Forward(PendingHTLCInfo {
6505 ref incoming_shared_secret, ref routing, ..
6507 let reason = if routing.blinded_failure().is_some() {
6508 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
6509 } else if (error_code & 0x1000) != 0 {
6510 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6511 HTLCFailReason::reason(real_code, error_data)
6513 HTLCFailReason::from_failure_code(error_code)
6514 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6515 let msg = msgs::UpdateFailHTLC {
6516 channel_id: msg.channel_id,
6517 htlc_id: msg.htlc_id,
6520 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6522 _ => pending_forward_info
6525 let logger = WithChannelContext::from(&self.logger, &chan.context);
6526 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &&logger), chan_phase_entry);
6528 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6529 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6532 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6537 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6539 let (htlc_source, forwarded_htlc_value) = {
6540 let per_peer_state = self.per_peer_state.read().unwrap();
6541 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6543 debug_assert!(false);
6544 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6546 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6547 let peer_state = &mut *peer_state_lock;
6548 match peer_state.channel_by_id.entry(msg.channel_id) {
6549 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6550 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6551 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6552 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6553 let logger = WithChannelContext::from(&self.logger, &chan.context);
6555 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6557 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6558 .or_insert_with(Vec::new)
6559 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6561 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6562 // entry here, even though we *do* need to block the next RAA monitor update.
6563 // We do this instead in the `claim_funds_internal` by attaching a
6564 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6565 // outbound HTLC is claimed. This is guaranteed to all complete before we
6566 // process the RAA as messages are processed from single peers serially.
6567 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6570 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6571 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6574 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6577 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6581 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6582 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6583 // closing a channel), so any changes are likely to be lost on restart!
6584 let per_peer_state = self.per_peer_state.read().unwrap();
6585 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6587 debug_assert!(false);
6588 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6590 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6591 let peer_state = &mut *peer_state_lock;
6592 match peer_state.channel_by_id.entry(msg.channel_id) {
6593 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6594 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6595 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6597 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6598 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6601 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6606 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6607 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6608 // closing a channel), so any changes are likely to be lost on restart!
6609 let per_peer_state = self.per_peer_state.read().unwrap();
6610 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6612 debug_assert!(false);
6613 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6615 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6616 let peer_state = &mut *peer_state_lock;
6617 match peer_state.channel_by_id.entry(msg.channel_id) {
6618 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6619 if (msg.failure_code & 0x8000) == 0 {
6620 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6621 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6623 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6624 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6626 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6627 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6631 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6635 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6636 let per_peer_state = self.per_peer_state.read().unwrap();
6637 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6639 debug_assert!(false);
6640 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6642 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6643 let peer_state = &mut *peer_state_lock;
6644 match peer_state.channel_by_id.entry(msg.channel_id) {
6645 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6646 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6647 let logger = WithChannelContext::from(&self.logger, &chan.context);
6648 let funding_txo = chan.context.get_funding_txo();
6649 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
6650 if let Some(monitor_update) = monitor_update_opt {
6651 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6652 peer_state, per_peer_state, chan);
6656 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6657 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6660 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6665 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6666 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6667 let mut push_forward_event = false;
6668 let mut new_intercept_events = VecDeque::new();
6669 let mut failed_intercept_forwards = Vec::new();
6670 if !pending_forwards.is_empty() {
6671 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6672 let scid = match forward_info.routing {
6673 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6674 PendingHTLCRouting::Receive { .. } => 0,
6675 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6677 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6678 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6680 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6681 let forward_htlcs_empty = forward_htlcs.is_empty();
6682 match forward_htlcs.entry(scid) {
6683 hash_map::Entry::Occupied(mut entry) => {
6684 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6685 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6687 hash_map::Entry::Vacant(entry) => {
6688 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6689 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6691 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
6692 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6693 match pending_intercepts.entry(intercept_id) {
6694 hash_map::Entry::Vacant(entry) => {
6695 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6696 requested_next_hop_scid: scid,
6697 payment_hash: forward_info.payment_hash,
6698 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6699 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6702 entry.insert(PendingAddHTLCInfo {
6703 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6705 hash_map::Entry::Occupied(_) => {
6706 let logger = WithContext::from(&self.logger, None, Some(prev_funding_outpoint.to_channel_id()));
6707 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6708 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6709 short_channel_id: prev_short_channel_id,
6710 user_channel_id: Some(prev_user_channel_id),
6711 outpoint: prev_funding_outpoint,
6712 htlc_id: prev_htlc_id,
6713 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6714 phantom_shared_secret: None,
6715 blinded_failure: forward_info.routing.blinded_failure(),
6718 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6719 HTLCFailReason::from_failure_code(0x4000 | 10),
6720 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6725 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6726 // payments are being processed.
6727 if forward_htlcs_empty {
6728 push_forward_event = true;
6730 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6731 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6738 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6739 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6742 if !new_intercept_events.is_empty() {
6743 let mut events = self.pending_events.lock().unwrap();
6744 events.append(&mut new_intercept_events);
6746 if push_forward_event { self.push_pending_forwards_ev() }
6750 fn push_pending_forwards_ev(&self) {
6751 let mut pending_events = self.pending_events.lock().unwrap();
6752 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6753 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6754 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6756 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6757 // events is done in batches and they are not removed until we're done processing each
6758 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6759 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6760 // payments will need an additional forwarding event before being claimed to make them look
6761 // real by taking more time.
6762 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6763 pending_events.push_back((Event::PendingHTLCsForwardable {
6764 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6769 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6770 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6771 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6772 /// the [`ChannelMonitorUpdate`] in question.
6773 fn raa_monitor_updates_held(&self,
6774 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6775 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6777 actions_blocking_raa_monitor_updates
6778 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6779 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6780 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6781 channel_funding_outpoint,
6782 counterparty_node_id,
6787 #[cfg(any(test, feature = "_test_utils"))]
6788 pub(crate) fn test_raa_monitor_updates_held(&self,
6789 counterparty_node_id: PublicKey, channel_id: ChannelId
6791 let per_peer_state = self.per_peer_state.read().unwrap();
6792 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6793 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6794 let peer_state = &mut *peer_state_lck;
6796 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6797 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6798 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6804 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6805 let htlcs_to_fail = {
6806 let per_peer_state = self.per_peer_state.read().unwrap();
6807 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6809 debug_assert!(false);
6810 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6811 }).map(|mtx| mtx.lock().unwrap())?;
6812 let peer_state = &mut *peer_state_lock;
6813 match peer_state.channel_by_id.entry(msg.channel_id) {
6814 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6815 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6816 let logger = WithChannelContext::from(&self.logger, &chan.context);
6817 let funding_txo_opt = chan.context.get_funding_txo();
6818 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6819 self.raa_monitor_updates_held(
6820 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6821 *counterparty_node_id)
6823 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6824 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
6825 if let Some(monitor_update) = monitor_update_opt {
6826 let funding_txo = funding_txo_opt
6827 .expect("Funding outpoint must have been set for RAA handling to succeed");
6828 handle_new_monitor_update!(self, funding_txo, monitor_update,
6829 peer_state_lock, peer_state, per_peer_state, chan);
6833 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6834 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6837 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6840 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6844 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6845 let per_peer_state = self.per_peer_state.read().unwrap();
6846 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6848 debug_assert!(false);
6849 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6851 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6852 let peer_state = &mut *peer_state_lock;
6853 match peer_state.channel_by_id.entry(msg.channel_id) {
6854 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6855 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6856 let logger = WithChannelContext::from(&self.logger, &chan.context);
6857 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
6859 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6860 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6863 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6868 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6869 let per_peer_state = self.per_peer_state.read().unwrap();
6870 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6872 debug_assert!(false);
6873 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6875 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6876 let peer_state = &mut *peer_state_lock;
6877 match peer_state.channel_by_id.entry(msg.channel_id) {
6878 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6879 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6880 if !chan.context.is_usable() {
6881 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6884 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6885 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6886 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6887 msg, &self.default_configuration
6888 ), chan_phase_entry),
6889 // Note that announcement_signatures fails if the channel cannot be announced,
6890 // so get_channel_update_for_broadcast will never fail by the time we get here.
6891 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6894 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6895 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6898 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6903 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6904 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6905 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6906 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6908 // It's not a local channel
6909 return Ok(NotifyOption::SkipPersistNoEvents)
6912 let per_peer_state = self.per_peer_state.read().unwrap();
6913 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6914 if peer_state_mutex_opt.is_none() {
6915 return Ok(NotifyOption::SkipPersistNoEvents)
6917 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6918 let peer_state = &mut *peer_state_lock;
6919 match peer_state.channel_by_id.entry(chan_id) {
6920 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6921 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6922 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6923 if chan.context.should_announce() {
6924 // If the announcement is about a channel of ours which is public, some
6925 // other peer may simply be forwarding all its gossip to us. Don't provide
6926 // a scary-looking error message and return Ok instead.
6927 return Ok(NotifyOption::SkipPersistNoEvents);
6929 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6931 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6932 let msg_from_node_one = msg.contents.flags & 1 == 0;
6933 if were_node_one == msg_from_node_one {
6934 return Ok(NotifyOption::SkipPersistNoEvents);
6936 let logger = WithChannelContext::from(&self.logger, &chan.context);
6937 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6938 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6939 // If nothing changed after applying their update, we don't need to bother
6942 return Ok(NotifyOption::SkipPersistNoEvents);
6946 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6947 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
6950 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
6952 Ok(NotifyOption::DoPersist)
6955 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
6957 let need_lnd_workaround = {
6958 let per_peer_state = self.per_peer_state.read().unwrap();
6960 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6962 debug_assert!(false);
6963 MsgHandleErrInternal::send_err_msg_no_close(
6964 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
6968 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
6969 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6970 let peer_state = &mut *peer_state_lock;
6971 match peer_state.channel_by_id.entry(msg.channel_id) {
6972 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6973 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6974 // Currently, we expect all holding cell update_adds to be dropped on peer
6975 // disconnect, so Channel's reestablish will never hand us any holding cell
6976 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6977 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6978 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
6979 msg, &&logger, &self.node_signer, self.chain_hash,
6980 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
6981 let mut channel_update = None;
6982 if let Some(msg) = responses.shutdown_msg {
6983 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6984 node_id: counterparty_node_id.clone(),
6987 } else if chan.context.is_usable() {
6988 // If the channel is in a usable state (ie the channel is not being shut
6989 // down), send a unicast channel_update to our counterparty to make sure
6990 // they have the latest channel parameters.
6991 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6992 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6993 node_id: chan.context.get_counterparty_node_id(),
6998 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
6999 htlc_forwards = self.handle_channel_resumption(
7000 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7001 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7002 if let Some(upd) = channel_update {
7003 peer_state.pending_msg_events.push(upd);
7007 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7008 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7011 hash_map::Entry::Vacant(_) => {
7012 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7013 log_bytes!(msg.channel_id.0));
7014 // Unfortunately, lnd doesn't force close on errors
7015 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7016 // One of the few ways to get an lnd counterparty to force close is by
7017 // replicating what they do when restoring static channel backups (SCBs). They
7018 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7019 // invalid `your_last_per_commitment_secret`.
7021 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7022 // can assume it's likely the channel closed from our point of view, but it
7023 // remains open on the counterparty's side. By sending this bogus
7024 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7025 // force close broadcasting their latest state. If the closing transaction from
7026 // our point of view remains unconfirmed, it'll enter a race with the
7027 // counterparty's to-be-broadcast latest commitment transaction.
7028 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7029 node_id: *counterparty_node_id,
7030 msg: msgs::ChannelReestablish {
7031 channel_id: msg.channel_id,
7032 next_local_commitment_number: 0,
7033 next_remote_commitment_number: 0,
7034 your_last_per_commitment_secret: [1u8; 32],
7035 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7036 next_funding_txid: None,
7039 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7040 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7041 counterparty_node_id), msg.channel_id)
7047 let mut persist = NotifyOption::SkipPersistHandleEvents;
7048 if let Some(forwards) = htlc_forwards {
7049 self.forward_htlcs(&mut [forwards][..]);
7050 persist = NotifyOption::DoPersist;
7053 if let Some(channel_ready_msg) = need_lnd_workaround {
7054 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7059 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7060 fn process_pending_monitor_events(&self) -> bool {
7061 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7063 let mut failed_channels = Vec::new();
7064 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7065 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7066 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7067 for monitor_event in monitor_events.drain(..) {
7068 match monitor_event {
7069 MonitorEvent::HTLCEvent(htlc_update) => {
7070 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(funding_outpoint.to_channel_id()));
7071 if let Some(preimage) = htlc_update.payment_preimage {
7072 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7073 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7075 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7076 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7077 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7078 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7081 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7082 let counterparty_node_id_opt = match counterparty_node_id {
7083 Some(cp_id) => Some(cp_id),
7085 // TODO: Once we can rely on the counterparty_node_id from the
7086 // monitor event, this and the id_to_peer map should be removed.
7087 let id_to_peer = self.id_to_peer.lock().unwrap();
7088 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
7091 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7092 let per_peer_state = self.per_peer_state.read().unwrap();
7093 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7094 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7095 let peer_state = &mut *peer_state_lock;
7096 let pending_msg_events = &mut peer_state.pending_msg_events;
7097 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7098 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7099 failed_channels.push(chan.context.force_shutdown(false));
7100 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7101 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7105 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
7106 pending_msg_events.push(events::MessageSendEvent::HandleError {
7107 node_id: chan.context.get_counterparty_node_id(),
7108 action: msgs::ErrorAction::DisconnectPeer {
7109 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7117 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7118 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7124 for failure in failed_channels.drain(..) {
7125 self.finish_close_channel(failure);
7128 has_pending_monitor_events
7131 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7132 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7133 /// update events as a separate process method here.
7135 pub fn process_monitor_events(&self) {
7136 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7137 self.process_pending_monitor_events();
7140 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7141 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7142 /// update was applied.
7143 fn check_free_holding_cells(&self) -> bool {
7144 let mut has_monitor_update = false;
7145 let mut failed_htlcs = Vec::new();
7147 // Walk our list of channels and find any that need to update. Note that when we do find an
7148 // update, if it includes actions that must be taken afterwards, we have to drop the
7149 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7150 // manage to go through all our peers without finding a single channel to update.
7152 let per_peer_state = self.per_peer_state.read().unwrap();
7153 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7155 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7156 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7157 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7158 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7160 let counterparty_node_id = chan.context.get_counterparty_node_id();
7161 let funding_txo = chan.context.get_funding_txo();
7162 let (monitor_opt, holding_cell_failed_htlcs) =
7163 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
7164 if !holding_cell_failed_htlcs.is_empty() {
7165 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7167 if let Some(monitor_update) = monitor_opt {
7168 has_monitor_update = true;
7170 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7171 peer_state_lock, peer_state, per_peer_state, chan);
7172 continue 'peer_loop;
7181 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7182 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7183 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7189 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7190 /// is (temporarily) unavailable, and the operation should be retried later.
7192 /// This method allows for that retry - either checking for any signer-pending messages to be
7193 /// attempted in every channel, or in the specifically provided channel.
7195 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7196 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7197 // actually finish implementing it fully.
7198 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7199 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7201 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7202 let node_id = phase.context().get_counterparty_node_id();
7203 if let ChannelPhase::Funded(chan) = phase {
7204 let msgs = chan.signer_maybe_unblocked(&self.logger);
7205 if let Some(updates) = msgs.commitment_update {
7206 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7211 if let Some(msg) = msgs.funding_signed {
7212 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7217 if let Some(msg) = msgs.funding_created {
7218 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7223 if let Some(msg) = msgs.channel_ready {
7224 send_channel_ready!(self, pending_msg_events, chan, msg);
7229 let per_peer_state = self.per_peer_state.read().unwrap();
7230 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7231 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7232 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7233 let peer_state = &mut *peer_state_lock;
7234 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7235 unblock_chan(chan, &mut peer_state.pending_msg_events);
7239 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7240 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7241 let peer_state = &mut *peer_state_lock;
7242 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7243 unblock_chan(chan, &mut peer_state.pending_msg_events);
7249 /// Check whether any channels have finished removing all pending updates after a shutdown
7250 /// exchange and can now send a closing_signed.
7251 /// Returns whether any closing_signed messages were generated.
7252 fn maybe_generate_initial_closing_signed(&self) -> bool {
7253 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7254 let mut has_update = false;
7255 let mut shutdown_results = Vec::new();
7257 let per_peer_state = self.per_peer_state.read().unwrap();
7259 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7260 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7261 let peer_state = &mut *peer_state_lock;
7262 let pending_msg_events = &mut peer_state.pending_msg_events;
7263 peer_state.channel_by_id.retain(|channel_id, phase| {
7265 ChannelPhase::Funded(chan) => {
7266 let logger = WithChannelContext::from(&self.logger, &chan.context);
7267 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
7268 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7269 if let Some(msg) = msg_opt {
7271 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7272 node_id: chan.context.get_counterparty_node_id(), msg,
7275 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7276 if let Some(shutdown_result) = shutdown_result_opt {
7277 shutdown_results.push(shutdown_result);
7279 if let Some(tx) = tx_opt {
7280 // We're done with this channel. We got a closing_signed and sent back
7281 // a closing_signed with a closing transaction to broadcast.
7282 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7283 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7288 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7290 log_info!(logger, "Broadcasting {}", log_tx!(tx));
7291 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7292 update_maps_on_chan_removal!(self, &chan.context);
7298 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7299 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7304 _ => true, // Retain unfunded channels if present.
7310 for (counterparty_node_id, err) in handle_errors.drain(..) {
7311 let _ = handle_error!(self, err, counterparty_node_id);
7314 for shutdown_result in shutdown_results.drain(..) {
7315 self.finish_close_channel(shutdown_result);
7321 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7322 /// pushing the channel monitor update (if any) to the background events queue and removing the
7324 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7325 for mut failure in failed_channels.drain(..) {
7326 // Either a commitment transactions has been confirmed on-chain or
7327 // Channel::block_disconnected detected that the funding transaction has been
7328 // reorganized out of the main chain.
7329 // We cannot broadcast our latest local state via monitor update (as
7330 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7331 // so we track the update internally and handle it when the user next calls
7332 // timer_tick_occurred, guaranteeing we're running normally.
7333 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7334 assert_eq!(update.updates.len(), 1);
7335 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7336 assert!(should_broadcast);
7337 } else { unreachable!(); }
7338 self.pending_background_events.lock().unwrap().push(
7339 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7340 counterparty_node_id, funding_txo, update
7343 self.finish_close_channel(failure);
7347 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7348 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7349 /// not have an expiration unless otherwise set on the builder.
7353 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7354 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7355 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7356 /// node in order to send the [`InvoiceRequest`].
7360 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7363 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7365 /// [`Offer`]: crate::offers::offer::Offer
7366 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7367 pub fn create_offer_builder(
7368 &self, description: String
7369 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7370 let node_id = self.get_our_node_id();
7371 let expanded_key = &self.inbound_payment_key;
7372 let entropy = &*self.entropy_source;
7373 let secp_ctx = &self.secp_ctx;
7374 let path = self.create_one_hop_blinded_path();
7376 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7377 .chain_hash(self.chain_hash)
7381 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7382 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7386 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7387 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7389 /// The builder will have the provided expiration set. Any changes to the expiration on the
7390 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7391 /// block time minus two hours is used for the current time when determining if the refund has
7394 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7395 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7396 /// with an [`Event::InvoiceRequestFailed`].
7398 /// If `max_total_routing_fee_msat` is not specified, The default from
7399 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7403 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7404 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7405 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7406 /// in order to send the [`Bolt12Invoice`].
7410 /// Requires a direct connection to an introduction node in the responding
7411 /// [`Bolt12Invoice::payment_paths`].
7415 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7416 /// or if `amount_msats` is invalid.
7418 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7420 /// [`Refund`]: crate::offers::refund::Refund
7421 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7422 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7423 pub fn create_refund_builder(
7424 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7425 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7426 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7427 let node_id = self.get_our_node_id();
7428 let expanded_key = &self.inbound_payment_key;
7429 let entropy = &*self.entropy_source;
7430 let secp_ctx = &self.secp_ctx;
7431 let path = self.create_one_hop_blinded_path();
7433 let builder = RefundBuilder::deriving_payer_id(
7434 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7436 .chain_hash(self.chain_hash)
7437 .absolute_expiry(absolute_expiry)
7440 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7441 self.pending_outbound_payments
7442 .add_new_awaiting_invoice(
7443 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7445 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7450 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7451 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7452 /// [`Bolt12Invoice`] once it is received.
7454 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7455 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7456 /// The optional parameters are used in the builder, if `Some`:
7457 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7458 /// [`Offer::expects_quantity`] is `true`.
7459 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7460 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7462 /// If `max_total_routing_fee_msat` is not specified, The default from
7463 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7467 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7468 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7471 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7472 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7473 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7477 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7478 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7479 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7480 /// in order to send the [`Bolt12Invoice`].
7484 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7485 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7486 /// [`Bolt12Invoice::payment_paths`].
7490 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7491 /// or if the provided parameters are invalid for the offer.
7493 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7494 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7495 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7496 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7497 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7498 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7499 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7500 pub fn pay_for_offer(
7501 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7502 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7503 max_total_routing_fee_msat: Option<u64>
7504 ) -> Result<(), Bolt12SemanticError> {
7505 let expanded_key = &self.inbound_payment_key;
7506 let entropy = &*self.entropy_source;
7507 let secp_ctx = &self.secp_ctx;
7510 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7511 .chain_hash(self.chain_hash)?;
7512 let builder = match quantity {
7514 Some(quantity) => builder.quantity(quantity)?,
7516 let builder = match amount_msats {
7518 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7520 let builder = match payer_note {
7522 Some(payer_note) => builder.payer_note(payer_note),
7525 let invoice_request = builder.build_and_sign()?;
7526 let reply_path = self.create_one_hop_blinded_path();
7528 let expiration = StaleExpiration::TimerTicks(1);
7529 self.pending_outbound_payments
7530 .add_new_awaiting_invoice(
7531 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7533 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7535 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7536 if offer.paths().is_empty() {
7537 let message = new_pending_onion_message(
7538 OffersMessage::InvoiceRequest(invoice_request),
7539 Destination::Node(offer.signing_pubkey()),
7542 pending_offers_messages.push(message);
7544 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7545 // Using only one path could result in a failure if the path no longer exists. But only
7546 // one invoice for a given payment id will be paid, even if more than one is received.
7547 const REQUEST_LIMIT: usize = 10;
7548 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7549 let message = new_pending_onion_message(
7550 OffersMessage::InvoiceRequest(invoice_request.clone()),
7551 Destination::BlindedPath(path.clone()),
7552 Some(reply_path.clone()),
7554 pending_offers_messages.push(message);
7561 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7564 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7565 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7566 /// [`PaymentPreimage`].
7570 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7571 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7572 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7573 /// received and no retries will be made.
7575 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7576 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7577 let expanded_key = &self.inbound_payment_key;
7578 let entropy = &*self.entropy_source;
7579 let secp_ctx = &self.secp_ctx;
7581 let amount_msats = refund.amount_msats();
7582 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7584 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7585 Ok((payment_hash, payment_secret)) => {
7586 let payment_paths = vec![
7587 self.create_one_hop_blinded_payment_path(payment_secret),
7589 #[cfg(not(feature = "no-std"))]
7590 let builder = refund.respond_using_derived_keys(
7591 payment_paths, payment_hash, expanded_key, entropy
7593 #[cfg(feature = "no-std")]
7594 let created_at = Duration::from_secs(
7595 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7597 #[cfg(feature = "no-std")]
7598 let builder = refund.respond_using_derived_keys_no_std(
7599 payment_paths, payment_hash, created_at, expanded_key, entropy
7601 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7602 let reply_path = self.create_one_hop_blinded_path();
7604 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7605 if refund.paths().is_empty() {
7606 let message = new_pending_onion_message(
7607 OffersMessage::Invoice(invoice),
7608 Destination::Node(refund.payer_id()),
7611 pending_offers_messages.push(message);
7613 for path in refund.paths() {
7614 let message = new_pending_onion_message(
7615 OffersMessage::Invoice(invoice.clone()),
7616 Destination::BlindedPath(path.clone()),
7617 Some(reply_path.clone()),
7619 pending_offers_messages.push(message);
7625 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7629 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7632 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7633 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7635 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7636 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7637 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7638 /// passed directly to [`claim_funds`].
7640 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7642 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7643 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7647 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7648 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7650 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7652 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7653 /// on versions of LDK prior to 0.0.114.
7655 /// [`claim_funds`]: Self::claim_funds
7656 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7657 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7658 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7659 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7660 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7661 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7662 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7663 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7664 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7665 min_final_cltv_expiry_delta)
7668 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7669 /// stored external to LDK.
7671 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7672 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7673 /// the `min_value_msat` provided here, if one is provided.
7675 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7676 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7679 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7680 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7681 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7682 /// sender "proof-of-payment" unless they have paid the required amount.
7684 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7685 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7686 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7687 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7688 /// invoices when no timeout is set.
7690 /// Note that we use block header time to time-out pending inbound payments (with some margin
7691 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7692 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7693 /// If you need exact expiry semantics, you should enforce them upon receipt of
7694 /// [`PaymentClaimable`].
7696 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7697 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7699 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7700 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7704 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7705 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7707 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7709 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7710 /// on versions of LDK prior to 0.0.114.
7712 /// [`create_inbound_payment`]: Self::create_inbound_payment
7713 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7714 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7715 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7716 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7717 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7718 min_final_cltv_expiry)
7721 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7722 /// previously returned from [`create_inbound_payment`].
7724 /// [`create_inbound_payment`]: Self::create_inbound_payment
7725 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7726 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7729 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7731 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7732 let entropy_source = self.entropy_source.deref();
7733 let secp_ctx = &self.secp_ctx;
7734 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7737 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7739 fn create_one_hop_blinded_payment_path(
7740 &self, payment_secret: PaymentSecret
7741 ) -> (BlindedPayInfo, BlindedPath) {
7742 let entropy_source = self.entropy_source.deref();
7743 let secp_ctx = &self.secp_ctx;
7745 let payee_node_id = self.get_our_node_id();
7746 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7747 let payee_tlvs = ReceiveTlvs {
7749 payment_constraints: PaymentConstraints {
7751 htlc_minimum_msat: 1,
7754 // TODO: Err for overflow?
7755 BlindedPath::one_hop_for_payment(
7756 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7760 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7761 /// are used when constructing the phantom invoice's route hints.
7763 /// [phantom node payments]: crate::sign::PhantomKeysManager
7764 pub fn get_phantom_scid(&self) -> u64 {
7765 let best_block_height = self.best_block.read().unwrap().height();
7766 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7768 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7769 // Ensure the generated scid doesn't conflict with a real channel.
7770 match short_to_chan_info.get(&scid_candidate) {
7771 Some(_) => continue,
7772 None => return scid_candidate
7777 /// Gets route hints for use in receiving [phantom node payments].
7779 /// [phantom node payments]: crate::sign::PhantomKeysManager
7780 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7782 channels: self.list_usable_channels(),
7783 phantom_scid: self.get_phantom_scid(),
7784 real_node_pubkey: self.get_our_node_id(),
7788 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7789 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7790 /// [`ChannelManager::forward_intercepted_htlc`].
7792 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7793 /// times to get a unique scid.
7794 pub fn get_intercept_scid(&self) -> u64 {
7795 let best_block_height = self.best_block.read().unwrap().height();
7796 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7798 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7799 // Ensure the generated scid doesn't conflict with a real channel.
7800 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7801 return scid_candidate
7805 /// Gets inflight HTLC information by processing pending outbound payments that are in
7806 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7807 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7808 let mut inflight_htlcs = InFlightHtlcs::new();
7810 let per_peer_state = self.per_peer_state.read().unwrap();
7811 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7812 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7813 let peer_state = &mut *peer_state_lock;
7814 for chan in peer_state.channel_by_id.values().filter_map(
7815 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7817 for (htlc_source, _) in chan.inflight_htlc_sources() {
7818 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7819 inflight_htlcs.process_path(path, self.get_our_node_id());
7828 #[cfg(any(test, feature = "_test_utils"))]
7829 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7830 let events = core::cell::RefCell::new(Vec::new());
7831 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7832 self.process_pending_events(&event_handler);
7836 #[cfg(feature = "_test_utils")]
7837 pub fn push_pending_event(&self, event: events::Event) {
7838 let mut events = self.pending_events.lock().unwrap();
7839 events.push_back((event, None));
7843 pub fn pop_pending_event(&self) -> Option<events::Event> {
7844 let mut events = self.pending_events.lock().unwrap();
7845 events.pop_front().map(|(e, _)| e)
7849 pub fn has_pending_payments(&self) -> bool {
7850 self.pending_outbound_payments.has_pending_payments()
7854 pub fn clear_pending_payments(&self) {
7855 self.pending_outbound_payments.clear_pending_payments()
7858 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7859 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7860 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7861 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7862 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7863 let logger = WithContext::from(
7864 &self.logger, Some(counterparty_node_id), Some(channel_funding_outpoint.to_channel_id())
7867 let per_peer_state = self.per_peer_state.read().unwrap();
7868 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7869 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7870 let peer_state = &mut *peer_state_lck;
7871 if let Some(blocker) = completed_blocker.take() {
7872 // Only do this on the first iteration of the loop.
7873 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7874 .get_mut(&channel_funding_outpoint.to_channel_id())
7876 blockers.retain(|iter| iter != &blocker);
7880 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7881 channel_funding_outpoint, counterparty_node_id) {
7882 // Check that, while holding the peer lock, we don't have anything else
7883 // blocking monitor updates for this channel. If we do, release the monitor
7884 // update(s) when those blockers complete.
7885 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7886 &channel_funding_outpoint.to_channel_id());
7890 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7891 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7892 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7893 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7894 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
7895 channel_funding_outpoint.to_channel_id());
7896 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7897 peer_state_lck, peer_state, per_peer_state, chan);
7898 if further_update_exists {
7899 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7904 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
7905 channel_funding_outpoint.to_channel_id());
7911 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7912 log_pubkey!(counterparty_node_id));
7918 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7919 for action in actions {
7921 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7922 channel_funding_outpoint, counterparty_node_id
7924 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7930 /// Processes any events asynchronously in the order they were generated since the last call
7931 /// using the given event handler.
7933 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7934 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7938 process_events_body!(self, ev, { handler(ev).await });
7942 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7944 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
7945 T::Target: BroadcasterInterface,
7946 ES::Target: EntropySource,
7947 NS::Target: NodeSigner,
7948 SP::Target: SignerProvider,
7949 F::Target: FeeEstimator,
7953 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
7954 /// The returned array will contain `MessageSendEvent`s for different peers if
7955 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
7956 /// is always placed next to each other.
7958 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
7959 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
7960 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
7961 /// will randomly be placed first or last in the returned array.
7963 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
7964 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
7965 /// the `MessageSendEvent`s to the specific peer they were generated under.
7966 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
7967 let events = RefCell::new(Vec::new());
7968 PersistenceNotifierGuard::optionally_notify(self, || {
7969 let mut result = NotifyOption::SkipPersistNoEvents;
7971 // TODO: This behavior should be documented. It's unintuitive that we query
7972 // ChannelMonitors when clearing other events.
7973 if self.process_pending_monitor_events() {
7974 result = NotifyOption::DoPersist;
7977 if self.check_free_holding_cells() {
7978 result = NotifyOption::DoPersist;
7980 if self.maybe_generate_initial_closing_signed() {
7981 result = NotifyOption::DoPersist;
7984 let mut pending_events = Vec::new();
7985 let per_peer_state = self.per_peer_state.read().unwrap();
7986 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7987 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7988 let peer_state = &mut *peer_state_lock;
7989 if peer_state.pending_msg_events.len() > 0 {
7990 pending_events.append(&mut peer_state.pending_msg_events);
7994 if !pending_events.is_empty() {
7995 events.replace(pending_events);
8004 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8006 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8007 T::Target: BroadcasterInterface,
8008 ES::Target: EntropySource,
8009 NS::Target: NodeSigner,
8010 SP::Target: SignerProvider,
8011 F::Target: FeeEstimator,
8015 /// Processes events that must be periodically handled.
8017 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8018 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8019 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8021 process_events_body!(self, ev, handler.handle_event(ev));
8025 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8027 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8028 T::Target: BroadcasterInterface,
8029 ES::Target: EntropySource,
8030 NS::Target: NodeSigner,
8031 SP::Target: SignerProvider,
8032 F::Target: FeeEstimator,
8036 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
8038 let best_block = self.best_block.read().unwrap();
8039 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8040 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8041 assert_eq!(best_block.height(), height - 1,
8042 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8045 self.transactions_confirmed(header, txdata, height);
8046 self.best_block_updated(header, height);
8049 fn block_disconnected(&self, header: &Header, height: u32) {
8050 let _persistence_guard =
8051 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8052 self, || -> NotifyOption { NotifyOption::DoPersist });
8053 let new_height = height - 1;
8055 let mut best_block = self.best_block.write().unwrap();
8056 assert_eq!(best_block.block_hash(), header.block_hash(),
8057 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8058 assert_eq!(best_block.height(), height,
8059 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8060 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8063 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8067 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8069 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8070 T::Target: BroadcasterInterface,
8071 ES::Target: EntropySource,
8072 NS::Target: NodeSigner,
8073 SP::Target: SignerProvider,
8074 F::Target: FeeEstimator,
8078 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
8079 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8080 // during initialization prior to the chain_monitor being fully configured in some cases.
8081 // See the docs for `ChannelManagerReadArgs` for more.
8083 let block_hash = header.block_hash();
8084 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8086 let _persistence_guard =
8087 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8088 self, || -> NotifyOption { NotifyOption::DoPersist });
8089 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
8090 .map(|(a, b)| (a, Vec::new(), b)));
8092 let last_best_block_height = self.best_block.read().unwrap().height();
8093 if height < last_best_block_height {
8094 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8095 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8099 fn best_block_updated(&self, header: &Header, height: u32) {
8100 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8101 // during initialization prior to the chain_monitor being fully configured in some cases.
8102 // See the docs for `ChannelManagerReadArgs` for more.
8104 let block_hash = header.block_hash();
8105 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8107 let _persistence_guard =
8108 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8109 self, || -> NotifyOption { NotifyOption::DoPersist });
8110 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8112 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8114 macro_rules! max_time {
8115 ($timestamp: expr) => {
8117 // Update $timestamp to be the max of its current value and the block
8118 // timestamp. This should keep us close to the current time without relying on
8119 // having an explicit local time source.
8120 // Just in case we end up in a race, we loop until we either successfully
8121 // update $timestamp or decide we don't need to.
8122 let old_serial = $timestamp.load(Ordering::Acquire);
8123 if old_serial >= header.time as usize { break; }
8124 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8130 max_time!(self.highest_seen_timestamp);
8131 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8132 payment_secrets.retain(|_, inbound_payment| {
8133 inbound_payment.expiry_time > header.time as u64
8137 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
8138 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8139 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8140 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8141 let peer_state = &mut *peer_state_lock;
8142 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8143 let txid_opt = chan.context.get_funding_txo();
8144 let height_opt = chan.context.get_funding_tx_confirmation_height();
8145 let hash_opt = chan.context.get_funding_tx_confirmed_in();
8146 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
8147 res.push((funding_txo.txid, conf_height, Some(block_hash)));
8154 fn transaction_unconfirmed(&self, txid: &Txid) {
8155 let _persistence_guard =
8156 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8157 self, || -> NotifyOption { NotifyOption::DoPersist });
8158 self.do_chain_event(None, |channel| {
8159 if let Some(funding_txo) = channel.context.get_funding_txo() {
8160 if funding_txo.txid == *txid {
8161 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
8162 } else { Ok((None, Vec::new(), None)) }
8163 } else { Ok((None, Vec::new(), None)) }
8168 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8170 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8171 T::Target: BroadcasterInterface,
8172 ES::Target: EntropySource,
8173 NS::Target: NodeSigner,
8174 SP::Target: SignerProvider,
8175 F::Target: FeeEstimator,
8179 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8180 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8182 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8183 (&self, height_opt: Option<u32>, f: FN) {
8184 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8185 // during initialization prior to the chain_monitor being fully configured in some cases.
8186 // See the docs for `ChannelManagerReadArgs` for more.
8188 let mut failed_channels = Vec::new();
8189 let mut timed_out_htlcs = Vec::new();
8191 let per_peer_state = self.per_peer_state.read().unwrap();
8192 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8193 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8194 let peer_state = &mut *peer_state_lock;
8195 let pending_msg_events = &mut peer_state.pending_msg_events;
8196 peer_state.channel_by_id.retain(|_, phase| {
8198 // Retain unfunded channels.
8199 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8200 ChannelPhase::Funded(channel) => {
8201 let res = f(channel);
8202 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8203 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8204 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8205 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8206 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8208 let logger = WithChannelContext::from(&self.logger, &channel.context);
8209 if let Some(channel_ready) = channel_ready_opt {
8210 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8211 if channel.context.is_usable() {
8212 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8213 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8214 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8215 node_id: channel.context.get_counterparty_node_id(),
8220 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8225 let mut pending_events = self.pending_events.lock().unwrap();
8226 emit_channel_ready_event!(pending_events, channel);
8229 if let Some(announcement_sigs) = announcement_sigs {
8230 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8231 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8232 node_id: channel.context.get_counterparty_node_id(),
8233 msg: announcement_sigs,
8235 if let Some(height) = height_opt {
8236 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8237 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8239 // Note that announcement_signatures fails if the channel cannot be announced,
8240 // so get_channel_update_for_broadcast will never fail by the time we get here.
8241 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8246 if channel.is_our_channel_ready() {
8247 if let Some(real_scid) = channel.context.get_short_channel_id() {
8248 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8249 // to the short_to_chan_info map here. Note that we check whether we
8250 // can relay using the real SCID at relay-time (i.e.
8251 // enforce option_scid_alias then), and if the funding tx is ever
8252 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8253 // is always consistent.
8254 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8255 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8256 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8257 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8258 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8261 } else if let Err(reason) = res {
8262 update_maps_on_chan_removal!(self, &channel.context);
8263 // It looks like our counterparty went on-chain or funding transaction was
8264 // reorged out of the main chain. Close the channel.
8265 failed_channels.push(channel.context.force_shutdown(true));
8266 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8267 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8271 let reason_message = format!("{}", reason);
8272 self.issue_channel_close_events(&channel.context, reason);
8273 pending_msg_events.push(events::MessageSendEvent::HandleError {
8274 node_id: channel.context.get_counterparty_node_id(),
8275 action: msgs::ErrorAction::DisconnectPeer {
8276 msg: Some(msgs::ErrorMessage {
8277 channel_id: channel.context.channel_id(),
8278 data: reason_message,
8291 if let Some(height) = height_opt {
8292 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8293 payment.htlcs.retain(|htlc| {
8294 // If height is approaching the number of blocks we think it takes us to get
8295 // our commitment transaction confirmed before the HTLC expires, plus the
8296 // number of blocks we generally consider it to take to do a commitment update,
8297 // just give up on it and fail the HTLC.
8298 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8299 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8300 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8302 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8303 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8304 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8308 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8311 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8312 intercepted_htlcs.retain(|_, htlc| {
8313 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8314 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8315 short_channel_id: htlc.prev_short_channel_id,
8316 user_channel_id: Some(htlc.prev_user_channel_id),
8317 htlc_id: htlc.prev_htlc_id,
8318 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8319 phantom_shared_secret: None,
8320 outpoint: htlc.prev_funding_outpoint,
8321 blinded_failure: htlc.forward_info.routing.blinded_failure(),
8324 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8325 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8326 _ => unreachable!(),
8328 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8329 HTLCFailReason::from_failure_code(0x2000 | 2),
8330 HTLCDestination::InvalidForward { requested_forward_scid }));
8331 let logger = WithContext::from(
8332 &self.logger, None, Some(htlc.prev_funding_outpoint.to_channel_id())
8334 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8340 self.handle_init_event_channel_failures(failed_channels);
8342 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8343 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8347 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8348 /// may have events that need processing.
8350 /// In order to check if this [`ChannelManager`] needs persisting, call
8351 /// [`Self::get_and_clear_needs_persistence`].
8353 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8354 /// [`ChannelManager`] and should instead register actions to be taken later.
8355 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8356 self.event_persist_notifier.get_future()
8359 /// Returns true if this [`ChannelManager`] needs to be persisted.
8360 pub fn get_and_clear_needs_persistence(&self) -> bool {
8361 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8364 #[cfg(any(test, feature = "_test_utils"))]
8365 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8366 self.event_persist_notifier.notify_pending()
8369 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8370 /// [`chain::Confirm`] interfaces.
8371 pub fn current_best_block(&self) -> BestBlock {
8372 self.best_block.read().unwrap().clone()
8375 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8376 /// [`ChannelManager`].
8377 pub fn node_features(&self) -> NodeFeatures {
8378 provided_node_features(&self.default_configuration)
8381 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8382 /// [`ChannelManager`].
8384 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8385 /// or not. Thus, this method is not public.
8386 #[cfg(any(feature = "_test_utils", test))]
8387 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8388 provided_bolt11_invoice_features(&self.default_configuration)
8391 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8392 /// [`ChannelManager`].
8393 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8394 provided_bolt12_invoice_features(&self.default_configuration)
8397 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8398 /// [`ChannelManager`].
8399 pub fn channel_features(&self) -> ChannelFeatures {
8400 provided_channel_features(&self.default_configuration)
8403 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8404 /// [`ChannelManager`].
8405 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8406 provided_channel_type_features(&self.default_configuration)
8409 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8410 /// [`ChannelManager`].
8411 pub fn init_features(&self) -> InitFeatures {
8412 provided_init_features(&self.default_configuration)
8416 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8417 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8419 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8420 T::Target: BroadcasterInterface,
8421 ES::Target: EntropySource,
8422 NS::Target: NodeSigner,
8423 SP::Target: SignerProvider,
8424 F::Target: FeeEstimator,
8428 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8429 // Note that we never need to persist the updated ChannelManager for an inbound
8430 // open_channel message - pre-funded channels are never written so there should be no
8431 // change to the contents.
8432 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8433 let res = self.internal_open_channel(counterparty_node_id, msg);
8434 let persist = match &res {
8435 Err(e) if e.closes_channel() => {
8436 debug_assert!(false, "We shouldn't close a new channel");
8437 NotifyOption::DoPersist
8439 _ => NotifyOption::SkipPersistHandleEvents,
8441 let _ = handle_error!(self, res, *counterparty_node_id);
8446 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8447 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8448 "Dual-funded channels not supported".to_owned(),
8449 msg.temporary_channel_id.clone())), *counterparty_node_id);
8452 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8453 // Note that we never need to persist the updated ChannelManager for an inbound
8454 // accept_channel message - pre-funded channels are never written so there should be no
8455 // change to the contents.
8456 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8457 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8458 NotifyOption::SkipPersistHandleEvents
8462 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8463 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8464 "Dual-funded channels not supported".to_owned(),
8465 msg.temporary_channel_id.clone())), *counterparty_node_id);
8468 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8469 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8470 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8473 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8474 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8475 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8478 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8479 // Note that we never need to persist the updated ChannelManager for an inbound
8480 // channel_ready message - while the channel's state will change, any channel_ready message
8481 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8482 // will not force-close the channel on startup.
8483 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8484 let res = self.internal_channel_ready(counterparty_node_id, msg);
8485 let persist = match &res {
8486 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8487 _ => NotifyOption::SkipPersistHandleEvents,
8489 let _ = handle_error!(self, res, *counterparty_node_id);
8494 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8495 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8496 "Quiescence not supported".to_owned(),
8497 msg.channel_id.clone())), *counterparty_node_id);
8500 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8501 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8502 "Splicing not supported".to_owned(),
8503 msg.channel_id.clone())), *counterparty_node_id);
8506 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8507 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8508 "Splicing not supported (splice_ack)".to_owned(),
8509 msg.channel_id.clone())), *counterparty_node_id);
8512 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8513 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8514 "Splicing not supported (splice_locked)".to_owned(),
8515 msg.channel_id.clone())), *counterparty_node_id);
8518 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8519 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8520 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8523 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8524 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8525 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8528 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8529 // Note that we never need to persist the updated ChannelManager for an inbound
8530 // update_add_htlc message - the message itself doesn't change our channel state only the
8531 // `commitment_signed` message afterwards will.
8532 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8533 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8534 let persist = match &res {
8535 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8536 Err(_) => NotifyOption::SkipPersistHandleEvents,
8537 Ok(()) => NotifyOption::SkipPersistNoEvents,
8539 let _ = handle_error!(self, res, *counterparty_node_id);
8544 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8545 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8546 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8549 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8550 // Note that we never need to persist the updated ChannelManager for an inbound
8551 // update_fail_htlc message - the message itself doesn't change our channel state only the
8552 // `commitment_signed` message afterwards will.
8553 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8554 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8555 let persist = match &res {
8556 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8557 Err(_) => NotifyOption::SkipPersistHandleEvents,
8558 Ok(()) => NotifyOption::SkipPersistNoEvents,
8560 let _ = handle_error!(self, res, *counterparty_node_id);
8565 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8566 // Note that we never need to persist the updated ChannelManager for an inbound
8567 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8568 // only the `commitment_signed` message afterwards will.
8569 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8570 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8571 let persist = match &res {
8572 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8573 Err(_) => NotifyOption::SkipPersistHandleEvents,
8574 Ok(()) => NotifyOption::SkipPersistNoEvents,
8576 let _ = handle_error!(self, res, *counterparty_node_id);
8581 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8582 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8583 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8586 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8587 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8588 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8591 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8592 // Note that we never need to persist the updated ChannelManager for an inbound
8593 // update_fee message - the message itself doesn't change our channel state only the
8594 // `commitment_signed` message afterwards will.
8595 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8596 let res = self.internal_update_fee(counterparty_node_id, msg);
8597 let persist = match &res {
8598 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8599 Err(_) => NotifyOption::SkipPersistHandleEvents,
8600 Ok(()) => NotifyOption::SkipPersistNoEvents,
8602 let _ = handle_error!(self, res, *counterparty_node_id);
8607 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8608 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8609 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8612 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8613 PersistenceNotifierGuard::optionally_notify(self, || {
8614 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8617 NotifyOption::DoPersist
8622 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8623 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8624 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8625 let persist = match &res {
8626 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8627 Err(_) => NotifyOption::SkipPersistHandleEvents,
8628 Ok(persist) => *persist,
8630 let _ = handle_error!(self, res, *counterparty_node_id);
8635 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8636 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8637 self, || NotifyOption::SkipPersistHandleEvents);
8638 let mut failed_channels = Vec::new();
8639 let mut per_peer_state = self.per_peer_state.write().unwrap();
8642 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
8643 "Marking channels with {} disconnected and generating channel_updates.",
8644 log_pubkey!(counterparty_node_id)
8646 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8647 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8648 let peer_state = &mut *peer_state_lock;
8649 let pending_msg_events = &mut peer_state.pending_msg_events;
8650 peer_state.channel_by_id.retain(|_, phase| {
8651 let context = match phase {
8652 ChannelPhase::Funded(chan) => {
8653 let logger = WithChannelContext::from(&self.logger, &chan.context);
8654 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
8655 // We only retain funded channels that are not shutdown.
8660 // Unfunded channels will always be removed.
8661 ChannelPhase::UnfundedOutboundV1(chan) => {
8664 ChannelPhase::UnfundedInboundV1(chan) => {
8668 // Clean up for removal.
8669 update_maps_on_chan_removal!(self, &context);
8670 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8671 failed_channels.push(context.force_shutdown(false));
8674 // Note that we don't bother generating any events for pre-accept channels -
8675 // they're not considered "channels" yet from the PoV of our events interface.
8676 peer_state.inbound_channel_request_by_id.clear();
8677 pending_msg_events.retain(|msg| {
8679 // V1 Channel Establishment
8680 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8681 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8682 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8683 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8684 // V2 Channel Establishment
8685 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8686 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8687 // Common Channel Establishment
8688 &events::MessageSendEvent::SendChannelReady { .. } => false,
8689 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8691 &events::MessageSendEvent::SendStfu { .. } => false,
8693 &events::MessageSendEvent::SendSplice { .. } => false,
8694 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8695 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8696 // Interactive Transaction Construction
8697 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8698 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8699 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8700 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8701 &events::MessageSendEvent::SendTxComplete { .. } => false,
8702 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8703 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8704 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8705 &events::MessageSendEvent::SendTxAbort { .. } => false,
8706 // Channel Operations
8707 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8708 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8709 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8710 &events::MessageSendEvent::SendShutdown { .. } => false,
8711 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8712 &events::MessageSendEvent::HandleError { .. } => false,
8714 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8715 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8716 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8717 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8718 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8719 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8720 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8721 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8722 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8725 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8726 peer_state.is_connected = false;
8727 peer_state.ok_to_remove(true)
8728 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8731 per_peer_state.remove(counterparty_node_id);
8733 mem::drop(per_peer_state);
8735 for failure in failed_channels.drain(..) {
8736 self.finish_close_channel(failure);
8740 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8741 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
8742 if !init_msg.features.supports_static_remote_key() {
8743 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8747 let mut res = Ok(());
8749 PersistenceNotifierGuard::optionally_notify(self, || {
8750 // If we have too many peers connected which don't have funded channels, disconnect the
8751 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8752 // unfunded channels taking up space in memory for disconnected peers, we still let new
8753 // peers connect, but we'll reject new channels from them.
8754 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8755 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8758 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8759 match peer_state_lock.entry(counterparty_node_id.clone()) {
8760 hash_map::Entry::Vacant(e) => {
8761 if inbound_peer_limited {
8763 return NotifyOption::SkipPersistNoEvents;
8765 e.insert(Mutex::new(PeerState {
8766 channel_by_id: HashMap::new(),
8767 inbound_channel_request_by_id: HashMap::new(),
8768 latest_features: init_msg.features.clone(),
8769 pending_msg_events: Vec::new(),
8770 in_flight_monitor_updates: BTreeMap::new(),
8771 monitor_update_blocked_actions: BTreeMap::new(),
8772 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8776 hash_map::Entry::Occupied(e) => {
8777 let mut peer_state = e.get().lock().unwrap();
8778 peer_state.latest_features = init_msg.features.clone();
8780 let best_block_height = self.best_block.read().unwrap().height();
8781 if inbound_peer_limited &&
8782 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8783 peer_state.channel_by_id.len()
8786 return NotifyOption::SkipPersistNoEvents;
8789 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8790 peer_state.is_connected = true;
8795 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8797 let per_peer_state = self.per_peer_state.read().unwrap();
8798 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8799 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8800 let peer_state = &mut *peer_state_lock;
8801 let pending_msg_events = &mut peer_state.pending_msg_events;
8803 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8804 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8805 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8806 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8807 // worry about closing and removing them.
8808 debug_assert!(false);
8812 let logger = WithChannelContext::from(&self.logger, &chan.context);
8813 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8814 node_id: chan.context.get_counterparty_node_id(),
8815 msg: chan.get_channel_reestablish(&&logger),
8820 return NotifyOption::SkipPersistHandleEvents;
8821 //TODO: Also re-broadcast announcement_signatures
8826 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8827 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8829 match &msg.data as &str {
8830 "cannot co-op close channel w/ active htlcs"|
8831 "link failed to shutdown" =>
8833 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8834 // send one while HTLCs are still present. The issue is tracked at
8835 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8836 // to fix it but none so far have managed to land upstream. The issue appears to be
8837 // very low priority for the LND team despite being marked "P1".
8838 // We're not going to bother handling this in a sensible way, instead simply
8839 // repeating the Shutdown message on repeat until morale improves.
8840 if !msg.channel_id.is_zero() {
8841 let per_peer_state = self.per_peer_state.read().unwrap();
8842 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8843 if peer_state_mutex_opt.is_none() { return; }
8844 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8845 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8846 if let Some(msg) = chan.get_outbound_shutdown() {
8847 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8848 node_id: *counterparty_node_id,
8852 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8853 node_id: *counterparty_node_id,
8854 action: msgs::ErrorAction::SendWarningMessage {
8855 msg: msgs::WarningMessage {
8856 channel_id: msg.channel_id,
8857 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8859 log_level: Level::Trace,
8869 if msg.channel_id.is_zero() {
8870 let channel_ids: Vec<ChannelId> = {
8871 let per_peer_state = self.per_peer_state.read().unwrap();
8872 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8873 if peer_state_mutex_opt.is_none() { return; }
8874 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8875 let peer_state = &mut *peer_state_lock;
8876 // Note that we don't bother generating any events for pre-accept channels -
8877 // they're not considered "channels" yet from the PoV of our events interface.
8878 peer_state.inbound_channel_request_by_id.clear();
8879 peer_state.channel_by_id.keys().cloned().collect()
8881 for channel_id in channel_ids {
8882 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8883 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8887 // First check if we can advance the channel type and try again.
8888 let per_peer_state = self.per_peer_state.read().unwrap();
8889 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8890 if peer_state_mutex_opt.is_none() { return; }
8891 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8892 let peer_state = &mut *peer_state_lock;
8893 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8894 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8895 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8896 node_id: *counterparty_node_id,
8904 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8905 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8909 fn provided_node_features(&self) -> NodeFeatures {
8910 provided_node_features(&self.default_configuration)
8913 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8914 provided_init_features(&self.default_configuration)
8917 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
8918 Some(vec![self.chain_hash])
8921 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8922 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8923 "Dual-funded channels not supported".to_owned(),
8924 msg.channel_id.clone())), *counterparty_node_id);
8927 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8928 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8929 "Dual-funded channels not supported".to_owned(),
8930 msg.channel_id.clone())), *counterparty_node_id);
8933 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8934 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8935 "Dual-funded channels not supported".to_owned(),
8936 msg.channel_id.clone())), *counterparty_node_id);
8939 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8940 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8941 "Dual-funded channels not supported".to_owned(),
8942 msg.channel_id.clone())), *counterparty_node_id);
8945 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8946 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8947 "Dual-funded channels not supported".to_owned(),
8948 msg.channel_id.clone())), *counterparty_node_id);
8951 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8952 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8953 "Dual-funded channels not supported".to_owned(),
8954 msg.channel_id.clone())), *counterparty_node_id);
8957 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8958 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8959 "Dual-funded channels not supported".to_owned(),
8960 msg.channel_id.clone())), *counterparty_node_id);
8963 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8964 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8965 "Dual-funded channels not supported".to_owned(),
8966 msg.channel_id.clone())), *counterparty_node_id);
8969 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
8970 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8971 "Dual-funded channels not supported".to_owned(),
8972 msg.channel_id.clone())), *counterparty_node_id);
8976 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8977 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8979 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8980 T::Target: BroadcasterInterface,
8981 ES::Target: EntropySource,
8982 NS::Target: NodeSigner,
8983 SP::Target: SignerProvider,
8984 F::Target: FeeEstimator,
8988 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
8989 let secp_ctx = &self.secp_ctx;
8990 let expanded_key = &self.inbound_payment_key;
8993 OffersMessage::InvoiceRequest(invoice_request) => {
8994 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
8997 Ok(amount_msats) => Some(amount_msats),
8998 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9000 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9001 Ok(invoice_request) => invoice_request,
9003 let error = Bolt12SemanticError::InvalidMetadata;
9004 return Some(OffersMessage::InvoiceError(error.into()));
9007 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9009 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9010 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9011 let payment_paths = vec![
9012 self.create_one_hop_blinded_payment_path(payment_secret),
9014 #[cfg(not(feature = "no-std"))]
9015 let builder = invoice_request.respond_using_derived_keys(
9016 payment_paths, payment_hash
9018 #[cfg(feature = "no-std")]
9019 let created_at = Duration::from_secs(
9020 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9022 #[cfg(feature = "no-std")]
9023 let builder = invoice_request.respond_using_derived_keys_no_std(
9024 payment_paths, payment_hash, created_at
9026 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9027 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9028 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9031 Ok((payment_hash, payment_secret)) => {
9032 let payment_paths = vec![
9033 self.create_one_hop_blinded_payment_path(payment_secret),
9035 #[cfg(not(feature = "no-std"))]
9036 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9037 #[cfg(feature = "no-std")]
9038 let created_at = Duration::from_secs(
9039 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9041 #[cfg(feature = "no-std")]
9042 let builder = invoice_request.respond_with_no_std(
9043 payment_paths, payment_hash, created_at
9045 let response = builder.and_then(|builder| builder.allow_mpp().build())
9046 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9048 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9049 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9050 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9051 InvoiceError::from_string("Failed signing invoice".to_string())
9053 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9054 InvoiceError::from_string("Failed invoice signature verification".to_string())
9058 Ok(invoice) => Some(invoice),
9059 Err(error) => Some(error),
9063 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9067 OffersMessage::Invoice(invoice) => {
9068 match invoice.verify(expanded_key, secp_ctx) {
9070 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9072 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9073 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9076 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9077 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9078 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9085 OffersMessage::InvoiceError(invoice_error) => {
9086 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9092 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9093 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9097 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9098 /// [`ChannelManager`].
9099 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9100 let mut node_features = provided_init_features(config).to_context();
9101 node_features.set_keysend_optional();
9105 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9106 /// [`ChannelManager`].
9108 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9109 /// or not. Thus, this method is not public.
9110 #[cfg(any(feature = "_test_utils", test))]
9111 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9112 provided_init_features(config).to_context()
9115 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9116 /// [`ChannelManager`].
9117 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9118 provided_init_features(config).to_context()
9121 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9122 /// [`ChannelManager`].
9123 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9124 provided_init_features(config).to_context()
9127 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9128 /// [`ChannelManager`].
9129 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9130 ChannelTypeFeatures::from_init(&provided_init_features(config))
9133 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9134 /// [`ChannelManager`].
9135 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9136 // Note that if new features are added here which other peers may (eventually) require, we
9137 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9138 // [`ErroringMessageHandler`].
9139 let mut features = InitFeatures::empty();
9140 features.set_data_loss_protect_required();
9141 features.set_upfront_shutdown_script_optional();
9142 features.set_variable_length_onion_required();
9143 features.set_static_remote_key_required();
9144 features.set_payment_secret_required();
9145 features.set_basic_mpp_optional();
9146 features.set_wumbo_optional();
9147 features.set_shutdown_any_segwit_optional();
9148 features.set_channel_type_optional();
9149 features.set_scid_privacy_optional();
9150 features.set_zero_conf_optional();
9151 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9152 features.set_anchors_zero_fee_htlc_tx_optional();
9157 const SERIALIZATION_VERSION: u8 = 1;
9158 const MIN_SERIALIZATION_VERSION: u8 = 1;
9160 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9161 (2, fee_base_msat, required),
9162 (4, fee_proportional_millionths, required),
9163 (6, cltv_expiry_delta, required),
9166 impl_writeable_tlv_based!(ChannelCounterparty, {
9167 (2, node_id, required),
9168 (4, features, required),
9169 (6, unspendable_punishment_reserve, required),
9170 (8, forwarding_info, option),
9171 (9, outbound_htlc_minimum_msat, option),
9172 (11, outbound_htlc_maximum_msat, option),
9175 impl Writeable for ChannelDetails {
9176 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9177 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9178 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9179 let user_channel_id_low = self.user_channel_id as u64;
9180 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9181 write_tlv_fields!(writer, {
9182 (1, self.inbound_scid_alias, option),
9183 (2, self.channel_id, required),
9184 (3, self.channel_type, option),
9185 (4, self.counterparty, required),
9186 (5, self.outbound_scid_alias, option),
9187 (6, self.funding_txo, option),
9188 (7, self.config, option),
9189 (8, self.short_channel_id, option),
9190 (9, self.confirmations, option),
9191 (10, self.channel_value_satoshis, required),
9192 (12, self.unspendable_punishment_reserve, option),
9193 (14, user_channel_id_low, required),
9194 (16, self.balance_msat, required),
9195 (18, self.outbound_capacity_msat, required),
9196 (19, self.next_outbound_htlc_limit_msat, required),
9197 (20, self.inbound_capacity_msat, required),
9198 (21, self.next_outbound_htlc_minimum_msat, required),
9199 (22, self.confirmations_required, option),
9200 (24, self.force_close_spend_delay, option),
9201 (26, self.is_outbound, required),
9202 (28, self.is_channel_ready, required),
9203 (30, self.is_usable, required),
9204 (32, self.is_public, required),
9205 (33, self.inbound_htlc_minimum_msat, option),
9206 (35, self.inbound_htlc_maximum_msat, option),
9207 (37, user_channel_id_high_opt, option),
9208 (39, self.feerate_sat_per_1000_weight, option),
9209 (41, self.channel_shutdown_state, option),
9215 impl Readable for ChannelDetails {
9216 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9217 _init_and_read_len_prefixed_tlv_fields!(reader, {
9218 (1, inbound_scid_alias, option),
9219 (2, channel_id, required),
9220 (3, channel_type, option),
9221 (4, counterparty, required),
9222 (5, outbound_scid_alias, option),
9223 (6, funding_txo, option),
9224 (7, config, option),
9225 (8, short_channel_id, option),
9226 (9, confirmations, option),
9227 (10, channel_value_satoshis, required),
9228 (12, unspendable_punishment_reserve, option),
9229 (14, user_channel_id_low, required),
9230 (16, balance_msat, required),
9231 (18, outbound_capacity_msat, required),
9232 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9233 // filled in, so we can safely unwrap it here.
9234 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9235 (20, inbound_capacity_msat, required),
9236 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9237 (22, confirmations_required, option),
9238 (24, force_close_spend_delay, option),
9239 (26, is_outbound, required),
9240 (28, is_channel_ready, required),
9241 (30, is_usable, required),
9242 (32, is_public, required),
9243 (33, inbound_htlc_minimum_msat, option),
9244 (35, inbound_htlc_maximum_msat, option),
9245 (37, user_channel_id_high_opt, option),
9246 (39, feerate_sat_per_1000_weight, option),
9247 (41, channel_shutdown_state, option),
9250 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9251 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9252 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9253 let user_channel_id = user_channel_id_low as u128 +
9254 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9258 channel_id: channel_id.0.unwrap(),
9260 counterparty: counterparty.0.unwrap(),
9261 outbound_scid_alias,
9265 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9266 unspendable_punishment_reserve,
9268 balance_msat: balance_msat.0.unwrap(),
9269 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9270 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9271 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9272 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9273 confirmations_required,
9275 force_close_spend_delay,
9276 is_outbound: is_outbound.0.unwrap(),
9277 is_channel_ready: is_channel_ready.0.unwrap(),
9278 is_usable: is_usable.0.unwrap(),
9279 is_public: is_public.0.unwrap(),
9280 inbound_htlc_minimum_msat,
9281 inbound_htlc_maximum_msat,
9282 feerate_sat_per_1000_weight,
9283 channel_shutdown_state,
9288 impl_writeable_tlv_based!(PhantomRouteHints, {
9289 (2, channels, required_vec),
9290 (4, phantom_scid, required),
9291 (6, real_node_pubkey, required),
9294 impl_writeable_tlv_based!(BlindedForward, {
9295 (0, inbound_blinding_point, required),
9298 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9300 (0, onion_packet, required),
9301 (1, blinded, option),
9302 (2, short_channel_id, required),
9305 (0, payment_data, required),
9306 (1, phantom_shared_secret, option),
9307 (2, incoming_cltv_expiry, required),
9308 (3, payment_metadata, option),
9309 (5, custom_tlvs, optional_vec),
9311 (2, ReceiveKeysend) => {
9312 (0, payment_preimage, required),
9313 (2, incoming_cltv_expiry, required),
9314 (3, payment_metadata, option),
9315 (4, payment_data, option), // Added in 0.0.116
9316 (5, custom_tlvs, optional_vec),
9320 impl_writeable_tlv_based!(PendingHTLCInfo, {
9321 (0, routing, required),
9322 (2, incoming_shared_secret, required),
9323 (4, payment_hash, required),
9324 (6, outgoing_amt_msat, required),
9325 (8, outgoing_cltv_value, required),
9326 (9, incoming_amt_msat, option),
9327 (10, skimmed_fee_msat, option),
9331 impl Writeable for HTLCFailureMsg {
9332 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9334 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9336 channel_id.write(writer)?;
9337 htlc_id.write(writer)?;
9338 reason.write(writer)?;
9340 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9341 channel_id, htlc_id, sha256_of_onion, failure_code
9344 channel_id.write(writer)?;
9345 htlc_id.write(writer)?;
9346 sha256_of_onion.write(writer)?;
9347 failure_code.write(writer)?;
9354 impl Readable for HTLCFailureMsg {
9355 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9356 let id: u8 = Readable::read(reader)?;
9359 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9360 channel_id: Readable::read(reader)?,
9361 htlc_id: Readable::read(reader)?,
9362 reason: Readable::read(reader)?,
9366 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9367 channel_id: Readable::read(reader)?,
9368 htlc_id: Readable::read(reader)?,
9369 sha256_of_onion: Readable::read(reader)?,
9370 failure_code: Readable::read(reader)?,
9373 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9374 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9375 // messages contained in the variants.
9376 // In version 0.0.101, support for reading the variants with these types was added, and
9377 // we should migrate to writing these variants when UpdateFailHTLC or
9378 // UpdateFailMalformedHTLC get TLV fields.
9380 let length: BigSize = Readable::read(reader)?;
9381 let mut s = FixedLengthReader::new(reader, length.0);
9382 let res = Readable::read(&mut s)?;
9383 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9384 Ok(HTLCFailureMsg::Relay(res))
9387 let length: BigSize = Readable::read(reader)?;
9388 let mut s = FixedLengthReader::new(reader, length.0);
9389 let res = Readable::read(&mut s)?;
9390 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9391 Ok(HTLCFailureMsg::Malformed(res))
9393 _ => Err(DecodeError::UnknownRequiredFeature),
9398 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9403 impl_writeable_tlv_based_enum!(BlindedFailure,
9404 (0, FromIntroductionNode) => {}, ;
9407 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9408 (0, short_channel_id, required),
9409 (1, phantom_shared_secret, option),
9410 (2, outpoint, required),
9411 (3, blinded_failure, option),
9412 (4, htlc_id, required),
9413 (6, incoming_packet_shared_secret, required),
9414 (7, user_channel_id, option),
9417 impl Writeable for ClaimableHTLC {
9418 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9419 let (payment_data, keysend_preimage) = match &self.onion_payload {
9420 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9421 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9423 write_tlv_fields!(writer, {
9424 (0, self.prev_hop, required),
9425 (1, self.total_msat, required),
9426 (2, self.value, required),
9427 (3, self.sender_intended_value, required),
9428 (4, payment_data, option),
9429 (5, self.total_value_received, option),
9430 (6, self.cltv_expiry, required),
9431 (8, keysend_preimage, option),
9432 (10, self.counterparty_skimmed_fee_msat, option),
9438 impl Readable for ClaimableHTLC {
9439 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9440 _init_and_read_len_prefixed_tlv_fields!(reader, {
9441 (0, prev_hop, required),
9442 (1, total_msat, option),
9443 (2, value_ser, required),
9444 (3, sender_intended_value, option),
9445 (4, payment_data_opt, option),
9446 (5, total_value_received, option),
9447 (6, cltv_expiry, required),
9448 (8, keysend_preimage, option),
9449 (10, counterparty_skimmed_fee_msat, option),
9451 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9452 let value = value_ser.0.unwrap();
9453 let onion_payload = match keysend_preimage {
9455 if payment_data.is_some() {
9456 return Err(DecodeError::InvalidValue)
9458 if total_msat.is_none() {
9459 total_msat = Some(value);
9461 OnionPayload::Spontaneous(p)
9464 if total_msat.is_none() {
9465 if payment_data.is_none() {
9466 return Err(DecodeError::InvalidValue)
9468 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9470 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9474 prev_hop: prev_hop.0.unwrap(),
9477 sender_intended_value: sender_intended_value.unwrap_or(value),
9478 total_value_received,
9479 total_msat: total_msat.unwrap(),
9481 cltv_expiry: cltv_expiry.0.unwrap(),
9482 counterparty_skimmed_fee_msat,
9487 impl Readable for HTLCSource {
9488 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9489 let id: u8 = Readable::read(reader)?;
9492 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9493 let mut first_hop_htlc_msat: u64 = 0;
9494 let mut path_hops = Vec::new();
9495 let mut payment_id = None;
9496 let mut payment_params: Option<PaymentParameters> = None;
9497 let mut blinded_tail: Option<BlindedTail> = None;
9498 read_tlv_fields!(reader, {
9499 (0, session_priv, required),
9500 (1, payment_id, option),
9501 (2, first_hop_htlc_msat, required),
9502 (4, path_hops, required_vec),
9503 (5, payment_params, (option: ReadableArgs, 0)),
9504 (6, blinded_tail, option),
9506 if payment_id.is_none() {
9507 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9509 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9511 let path = Path { hops: path_hops, blinded_tail };
9512 if path.hops.len() == 0 {
9513 return Err(DecodeError::InvalidValue);
9515 if let Some(params) = payment_params.as_mut() {
9516 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9517 if final_cltv_expiry_delta == &0 {
9518 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9522 Ok(HTLCSource::OutboundRoute {
9523 session_priv: session_priv.0.unwrap(),
9524 first_hop_htlc_msat,
9526 payment_id: payment_id.unwrap(),
9529 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9530 _ => Err(DecodeError::UnknownRequiredFeature),
9535 impl Writeable for HTLCSource {
9536 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9538 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9540 let payment_id_opt = Some(payment_id);
9541 write_tlv_fields!(writer, {
9542 (0, session_priv, required),
9543 (1, payment_id_opt, option),
9544 (2, first_hop_htlc_msat, required),
9545 // 3 was previously used to write a PaymentSecret for the payment.
9546 (4, path.hops, required_vec),
9547 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9548 (6, path.blinded_tail, option),
9551 HTLCSource::PreviousHopData(ref field) => {
9553 field.write(writer)?;
9560 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9561 (0, forward_info, required),
9562 (1, prev_user_channel_id, (default_value, 0)),
9563 (2, prev_short_channel_id, required),
9564 (4, prev_htlc_id, required),
9565 (6, prev_funding_outpoint, required),
9568 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9570 (0, htlc_id, required),
9571 (2, err_packet, required),
9576 impl_writeable_tlv_based!(PendingInboundPayment, {
9577 (0, payment_secret, required),
9578 (2, expiry_time, required),
9579 (4, user_payment_id, required),
9580 (6, payment_preimage, required),
9581 (8, min_value_msat, required),
9584 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9586 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9587 T::Target: BroadcasterInterface,
9588 ES::Target: EntropySource,
9589 NS::Target: NodeSigner,
9590 SP::Target: SignerProvider,
9591 F::Target: FeeEstimator,
9595 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9596 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9598 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9600 self.chain_hash.write(writer)?;
9602 let best_block = self.best_block.read().unwrap();
9603 best_block.height().write(writer)?;
9604 best_block.block_hash().write(writer)?;
9607 let mut serializable_peer_count: u64 = 0;
9609 let per_peer_state = self.per_peer_state.read().unwrap();
9610 let mut number_of_funded_channels = 0;
9611 for (_, peer_state_mutex) in per_peer_state.iter() {
9612 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9613 let peer_state = &mut *peer_state_lock;
9614 if !peer_state.ok_to_remove(false) {
9615 serializable_peer_count += 1;
9618 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9619 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9623 (number_of_funded_channels as u64).write(writer)?;
9625 for (_, peer_state_mutex) in per_peer_state.iter() {
9626 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9627 let peer_state = &mut *peer_state_lock;
9628 for channel in peer_state.channel_by_id.iter().filter_map(
9629 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9630 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9633 channel.write(writer)?;
9639 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9640 (forward_htlcs.len() as u64).write(writer)?;
9641 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9642 short_channel_id.write(writer)?;
9643 (pending_forwards.len() as u64).write(writer)?;
9644 for forward in pending_forwards {
9645 forward.write(writer)?;
9650 let per_peer_state = self.per_peer_state.write().unwrap();
9652 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9653 let claimable_payments = self.claimable_payments.lock().unwrap();
9654 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9656 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9657 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9658 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9659 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9660 payment_hash.write(writer)?;
9661 (payment.htlcs.len() as u64).write(writer)?;
9662 for htlc in payment.htlcs.iter() {
9663 htlc.write(writer)?;
9665 htlc_purposes.push(&payment.purpose);
9666 htlc_onion_fields.push(&payment.onion_fields);
9669 let mut monitor_update_blocked_actions_per_peer = None;
9670 let mut peer_states = Vec::new();
9671 for (_, peer_state_mutex) in per_peer_state.iter() {
9672 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9673 // of a lockorder violation deadlock - no other thread can be holding any
9674 // per_peer_state lock at all.
9675 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9678 (serializable_peer_count).write(writer)?;
9679 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9680 // Peers which we have no channels to should be dropped once disconnected. As we
9681 // disconnect all peers when shutting down and serializing the ChannelManager, we
9682 // consider all peers as disconnected here. There's therefore no need write peers with
9684 if !peer_state.ok_to_remove(false) {
9685 peer_pubkey.write(writer)?;
9686 peer_state.latest_features.write(writer)?;
9687 if !peer_state.monitor_update_blocked_actions.is_empty() {
9688 monitor_update_blocked_actions_per_peer
9689 .get_or_insert_with(Vec::new)
9690 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9695 let events = self.pending_events.lock().unwrap();
9696 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9697 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9698 // refuse to read the new ChannelManager.
9699 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9700 if events_not_backwards_compatible {
9701 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9702 // well save the space and not write any events here.
9703 0u64.write(writer)?;
9705 (events.len() as u64).write(writer)?;
9706 for (event, _) in events.iter() {
9707 event.write(writer)?;
9711 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9712 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9713 // the closing monitor updates were always effectively replayed on startup (either directly
9714 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9715 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9716 0u64.write(writer)?;
9718 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9719 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9720 // likely to be identical.
9721 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9722 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9724 (pending_inbound_payments.len() as u64).write(writer)?;
9725 for (hash, pending_payment) in pending_inbound_payments.iter() {
9726 hash.write(writer)?;
9727 pending_payment.write(writer)?;
9730 // For backwards compat, write the session privs and their total length.
9731 let mut num_pending_outbounds_compat: u64 = 0;
9732 for (_, outbound) in pending_outbound_payments.iter() {
9733 if !outbound.is_fulfilled() && !outbound.abandoned() {
9734 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9737 num_pending_outbounds_compat.write(writer)?;
9738 for (_, outbound) in pending_outbound_payments.iter() {
9740 PendingOutboundPayment::Legacy { session_privs } |
9741 PendingOutboundPayment::Retryable { session_privs, .. } => {
9742 for session_priv in session_privs.iter() {
9743 session_priv.write(writer)?;
9746 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9747 PendingOutboundPayment::InvoiceReceived { .. } => {},
9748 PendingOutboundPayment::Fulfilled { .. } => {},
9749 PendingOutboundPayment::Abandoned { .. } => {},
9753 // Encode without retry info for 0.0.101 compatibility.
9754 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9755 for (id, outbound) in pending_outbound_payments.iter() {
9757 PendingOutboundPayment::Legacy { session_privs } |
9758 PendingOutboundPayment::Retryable { session_privs, .. } => {
9759 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9765 let mut pending_intercepted_htlcs = None;
9766 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9767 if our_pending_intercepts.len() != 0 {
9768 pending_intercepted_htlcs = Some(our_pending_intercepts);
9771 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9772 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9773 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9774 // map. Thus, if there are no entries we skip writing a TLV for it.
9775 pending_claiming_payments = None;
9778 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9779 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9780 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9781 if !updates.is_empty() {
9782 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9783 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9788 write_tlv_fields!(writer, {
9789 (1, pending_outbound_payments_no_retry, required),
9790 (2, pending_intercepted_htlcs, option),
9791 (3, pending_outbound_payments, required),
9792 (4, pending_claiming_payments, option),
9793 (5, self.our_network_pubkey, required),
9794 (6, monitor_update_blocked_actions_per_peer, option),
9795 (7, self.fake_scid_rand_bytes, required),
9796 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9797 (9, htlc_purposes, required_vec),
9798 (10, in_flight_monitor_updates, option),
9799 (11, self.probing_cookie_secret, required),
9800 (13, htlc_onion_fields, optional_vec),
9807 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9808 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9809 (self.len() as u64).write(w)?;
9810 for (event, action) in self.iter() {
9813 #[cfg(debug_assertions)] {
9814 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9815 // be persisted and are regenerated on restart. However, if such an event has a
9816 // post-event-handling action we'll write nothing for the event and would have to
9817 // either forget the action or fail on deserialization (which we do below). Thus,
9818 // check that the event is sane here.
9819 let event_encoded = event.encode();
9820 let event_read: Option<Event> =
9821 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9822 if action.is_some() { assert!(event_read.is_some()); }
9828 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9829 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9830 let len: u64 = Readable::read(reader)?;
9831 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9832 let mut events: Self = VecDeque::with_capacity(cmp::min(
9833 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9836 let ev_opt = MaybeReadable::read(reader)?;
9837 let action = Readable::read(reader)?;
9838 if let Some(ev) = ev_opt {
9839 events.push_back((ev, action));
9840 } else if action.is_some() {
9841 return Err(DecodeError::InvalidValue);
9848 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9849 (0, NotShuttingDown) => {},
9850 (2, ShutdownInitiated) => {},
9851 (4, ResolvingHTLCs) => {},
9852 (6, NegotiatingClosingFee) => {},
9853 (8, ShutdownComplete) => {}, ;
9856 /// Arguments for the creation of a ChannelManager that are not deserialized.
9858 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9860 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9861 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9862 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9863 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9864 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9865 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9866 /// same way you would handle a [`chain::Filter`] call using
9867 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9868 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9869 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9870 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9871 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9872 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9874 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9875 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9877 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9878 /// call any other methods on the newly-deserialized [`ChannelManager`].
9880 /// Note that because some channels may be closed during deserialization, it is critical that you
9881 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9882 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9883 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9884 /// not force-close the same channels but consider them live), you may end up revoking a state for
9885 /// which you've already broadcasted the transaction.
9887 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9888 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9890 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9891 T::Target: BroadcasterInterface,
9892 ES::Target: EntropySource,
9893 NS::Target: NodeSigner,
9894 SP::Target: SignerProvider,
9895 F::Target: FeeEstimator,
9899 /// A cryptographically secure source of entropy.
9900 pub entropy_source: ES,
9902 /// A signer that is able to perform node-scoped cryptographic operations.
9903 pub node_signer: NS,
9905 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9906 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9908 pub signer_provider: SP,
9910 /// The fee_estimator for use in the ChannelManager in the future.
9912 /// No calls to the FeeEstimator will be made during deserialization.
9913 pub fee_estimator: F,
9914 /// The chain::Watch for use in the ChannelManager in the future.
9916 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9917 /// you have deserialized ChannelMonitors separately and will add them to your
9918 /// chain::Watch after deserializing this ChannelManager.
9919 pub chain_monitor: M,
9921 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9922 /// used to broadcast the latest local commitment transactions of channels which must be
9923 /// force-closed during deserialization.
9924 pub tx_broadcaster: T,
9925 /// The router which will be used in the ChannelManager in the future for finding routes
9926 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9928 /// No calls to the router will be made during deserialization.
9930 /// The Logger for use in the ChannelManager and which may be used to log information during
9931 /// deserialization.
9933 /// Default settings used for new channels. Any existing channels will continue to use the
9934 /// runtime settings which were stored when the ChannelManager was serialized.
9935 pub default_config: UserConfig,
9937 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
9938 /// value.context.get_funding_txo() should be the key).
9940 /// If a monitor is inconsistent with the channel state during deserialization the channel will
9941 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
9942 /// is true for missing channels as well. If there is a monitor missing for which we find
9943 /// channel data Err(DecodeError::InvalidValue) will be returned.
9945 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
9948 /// This is not exported to bindings users because we have no HashMap bindings
9949 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
9952 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9953 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
9955 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9956 T::Target: BroadcasterInterface,
9957 ES::Target: EntropySource,
9958 NS::Target: NodeSigner,
9959 SP::Target: SignerProvider,
9960 F::Target: FeeEstimator,
9964 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9965 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9966 /// populate a HashMap directly from C.
9967 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9968 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
9970 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9971 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
9976 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
9977 // SipmleArcChannelManager type:
9978 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9979 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
9981 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9982 T::Target: BroadcasterInterface,
9983 ES::Target: EntropySource,
9984 NS::Target: NodeSigner,
9985 SP::Target: SignerProvider,
9986 F::Target: FeeEstimator,
9990 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9991 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
9992 Ok((blockhash, Arc::new(chan_manager)))
9996 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9997 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
9999 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10000 T::Target: BroadcasterInterface,
10001 ES::Target: EntropySource,
10002 NS::Target: NodeSigner,
10003 SP::Target: SignerProvider,
10004 F::Target: FeeEstimator,
10008 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10009 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10011 let chain_hash: ChainHash = Readable::read(reader)?;
10012 let best_block_height: u32 = Readable::read(reader)?;
10013 let best_block_hash: BlockHash = Readable::read(reader)?;
10015 let mut failed_htlcs = Vec::new();
10017 let channel_count: u64 = Readable::read(reader)?;
10018 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10019 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10020 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10021 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10022 let mut channel_closures = VecDeque::new();
10023 let mut close_background_events = Vec::new();
10024 for _ in 0..channel_count {
10025 let mut channel: Channel<SP> = Channel::read(reader, (
10026 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10028 let logger = WithChannelContext::from(&args.logger, &channel.context);
10029 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10030 funding_txo_set.insert(funding_txo.clone());
10031 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10032 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10033 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10034 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10035 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10036 // But if the channel is behind of the monitor, close the channel:
10037 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10038 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10039 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10040 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10041 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10043 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10044 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10045 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10047 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10048 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10049 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10051 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10052 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10053 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10055 let mut shutdown_result = channel.context.force_shutdown(true);
10056 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10057 return Err(DecodeError::InvalidValue);
10059 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10060 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10061 counterparty_node_id, funding_txo, update
10064 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10065 channel_closures.push_back((events::Event::ChannelClosed {
10066 channel_id: channel.context.channel_id(),
10067 user_channel_id: channel.context.get_user_id(),
10068 reason: ClosureReason::OutdatedChannelManager,
10069 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10070 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10072 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10073 let mut found_htlc = false;
10074 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10075 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10078 // If we have some HTLCs in the channel which are not present in the newer
10079 // ChannelMonitor, they have been removed and should be failed back to
10080 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10081 // were actually claimed we'd have generated and ensured the previous-hop
10082 // claim update ChannelMonitor updates were persisted prior to persising
10083 // the ChannelMonitor update for the forward leg, so attempting to fail the
10084 // backwards leg of the HTLC will simply be rejected.
10086 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10087 &channel.context.channel_id(), &payment_hash);
10088 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10092 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10093 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10094 monitor.get_latest_update_id());
10095 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10096 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10098 if channel.context.is_funding_broadcast() {
10099 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10101 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10102 hash_map::Entry::Occupied(mut entry) => {
10103 let by_id_map = entry.get_mut();
10104 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10106 hash_map::Entry::Vacant(entry) => {
10107 let mut by_id_map = HashMap::new();
10108 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10109 entry.insert(by_id_map);
10113 } else if channel.is_awaiting_initial_mon_persist() {
10114 // If we were persisted and shut down while the initial ChannelMonitor persistence
10115 // was in-progress, we never broadcasted the funding transaction and can still
10116 // safely discard the channel.
10117 let _ = channel.context.force_shutdown(false);
10118 channel_closures.push_back((events::Event::ChannelClosed {
10119 channel_id: channel.context.channel_id(),
10120 user_channel_id: channel.context.get_user_id(),
10121 reason: ClosureReason::DisconnectedPeer,
10122 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10123 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10126 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10127 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10128 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10129 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10130 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10131 return Err(DecodeError::InvalidValue);
10135 for (funding_txo, monitor) in args.channel_monitors.iter() {
10136 if !funding_txo_set.contains(funding_txo) {
10137 let logger = WithChannelMonitor::from(&args.logger, monitor);
10138 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
10139 &funding_txo.to_channel_id());
10140 let monitor_update = ChannelMonitorUpdate {
10141 update_id: CLOSED_CHANNEL_UPDATE_ID,
10142 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10144 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10148 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10149 let forward_htlcs_count: u64 = Readable::read(reader)?;
10150 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10151 for _ in 0..forward_htlcs_count {
10152 let short_channel_id = Readable::read(reader)?;
10153 let pending_forwards_count: u64 = Readable::read(reader)?;
10154 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10155 for _ in 0..pending_forwards_count {
10156 pending_forwards.push(Readable::read(reader)?);
10158 forward_htlcs.insert(short_channel_id, pending_forwards);
10161 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10162 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10163 for _ in 0..claimable_htlcs_count {
10164 let payment_hash = Readable::read(reader)?;
10165 let previous_hops_len: u64 = Readable::read(reader)?;
10166 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10167 for _ in 0..previous_hops_len {
10168 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10170 claimable_htlcs_list.push((payment_hash, previous_hops));
10173 let peer_state_from_chans = |channel_by_id| {
10176 inbound_channel_request_by_id: HashMap::new(),
10177 latest_features: InitFeatures::empty(),
10178 pending_msg_events: Vec::new(),
10179 in_flight_monitor_updates: BTreeMap::new(),
10180 monitor_update_blocked_actions: BTreeMap::new(),
10181 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10182 is_connected: false,
10186 let peer_count: u64 = Readable::read(reader)?;
10187 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10188 for _ in 0..peer_count {
10189 let peer_pubkey = Readable::read(reader)?;
10190 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10191 let mut peer_state = peer_state_from_chans(peer_chans);
10192 peer_state.latest_features = Readable::read(reader)?;
10193 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10196 let event_count: u64 = Readable::read(reader)?;
10197 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10198 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10199 for _ in 0..event_count {
10200 match MaybeReadable::read(reader)? {
10201 Some(event) => pending_events_read.push_back((event, None)),
10206 let background_event_count: u64 = Readable::read(reader)?;
10207 for _ in 0..background_event_count {
10208 match <u8 as Readable>::read(reader)? {
10210 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10211 // however we really don't (and never did) need them - we regenerate all
10212 // on-startup monitor updates.
10213 let _: OutPoint = Readable::read(reader)?;
10214 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10216 _ => return Err(DecodeError::InvalidValue),
10220 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10221 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10223 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10224 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10225 for _ in 0..pending_inbound_payment_count {
10226 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10227 return Err(DecodeError::InvalidValue);
10231 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10232 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10233 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10234 for _ in 0..pending_outbound_payments_count_compat {
10235 let session_priv = Readable::read(reader)?;
10236 let payment = PendingOutboundPayment::Legacy {
10237 session_privs: [session_priv].iter().cloned().collect()
10239 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10240 return Err(DecodeError::InvalidValue)
10244 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10245 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10246 let mut pending_outbound_payments = None;
10247 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10248 let mut received_network_pubkey: Option<PublicKey> = None;
10249 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10250 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10251 let mut claimable_htlc_purposes = None;
10252 let mut claimable_htlc_onion_fields = None;
10253 let mut pending_claiming_payments = Some(HashMap::new());
10254 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10255 let mut events_override = None;
10256 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10257 read_tlv_fields!(reader, {
10258 (1, pending_outbound_payments_no_retry, option),
10259 (2, pending_intercepted_htlcs, option),
10260 (3, pending_outbound_payments, option),
10261 (4, pending_claiming_payments, option),
10262 (5, received_network_pubkey, option),
10263 (6, monitor_update_blocked_actions_per_peer, option),
10264 (7, fake_scid_rand_bytes, option),
10265 (8, events_override, option),
10266 (9, claimable_htlc_purposes, optional_vec),
10267 (10, in_flight_monitor_updates, option),
10268 (11, probing_cookie_secret, option),
10269 (13, claimable_htlc_onion_fields, optional_vec),
10271 if fake_scid_rand_bytes.is_none() {
10272 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10275 if probing_cookie_secret.is_none() {
10276 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10279 if let Some(events) = events_override {
10280 pending_events_read = events;
10283 if !channel_closures.is_empty() {
10284 pending_events_read.append(&mut channel_closures);
10287 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10288 pending_outbound_payments = Some(pending_outbound_payments_compat);
10289 } else if pending_outbound_payments.is_none() {
10290 let mut outbounds = HashMap::new();
10291 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10292 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10294 pending_outbound_payments = Some(outbounds);
10296 let pending_outbounds = OutboundPayments {
10297 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10298 retry_lock: Mutex::new(())
10301 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10302 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10303 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10304 // replayed, and for each monitor update we have to replay we have to ensure there's a
10305 // `ChannelMonitor` for it.
10307 // In order to do so we first walk all of our live channels (so that we can check their
10308 // state immediately after doing the update replays, when we have the `update_id`s
10309 // available) and then walk any remaining in-flight updates.
10311 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10312 let mut pending_background_events = Vec::new();
10313 macro_rules! handle_in_flight_updates {
10314 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10315 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
10317 let mut max_in_flight_update_id = 0;
10318 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10319 for update in $chan_in_flight_upds.iter() {
10320 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10321 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10322 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10323 pending_background_events.push(
10324 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10325 counterparty_node_id: $counterparty_node_id,
10326 funding_txo: $funding_txo,
10327 update: update.clone(),
10330 if $chan_in_flight_upds.is_empty() {
10331 // We had some updates to apply, but it turns out they had completed before we
10332 // were serialized, we just weren't notified of that. Thus, we may have to run
10333 // the completion actions for any monitor updates, but otherwise are done.
10334 pending_background_events.push(
10335 BackgroundEvent::MonitorUpdatesComplete {
10336 counterparty_node_id: $counterparty_node_id,
10337 channel_id: $funding_txo.to_channel_id(),
10340 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10341 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
10342 return Err(DecodeError::InvalidValue);
10344 max_in_flight_update_id
10348 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10349 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10350 let peer_state = &mut *peer_state_lock;
10351 for phase in peer_state.channel_by_id.values() {
10352 if let ChannelPhase::Funded(chan) = phase {
10353 let logger = WithChannelContext::from(&args.logger, &chan.context);
10355 // Channels that were persisted have to be funded, otherwise they should have been
10357 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10358 let monitor = args.channel_monitors.get(&funding_txo)
10359 .expect("We already checked for monitor presence when loading channels");
10360 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10361 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10362 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10363 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10364 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10365 funding_txo, monitor, peer_state, logger, ""));
10368 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10369 // If the channel is ahead of the monitor, return InvalidValue:
10370 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10371 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10372 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10373 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10374 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10375 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10376 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10377 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10378 return Err(DecodeError::InvalidValue);
10381 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10382 // created in this `channel_by_id` map.
10383 debug_assert!(false);
10384 return Err(DecodeError::InvalidValue);
10389 if let Some(in_flight_upds) = in_flight_monitor_updates {
10390 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10391 let logger = WithContext::from(&args.logger, Some(counterparty_id), Some(funding_txo.to_channel_id()));
10392 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10393 // Now that we've removed all the in-flight monitor updates for channels that are
10394 // still open, we need to replay any monitor updates that are for closed channels,
10395 // creating the neccessary peer_state entries as we go.
10396 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10397 Mutex::new(peer_state_from_chans(HashMap::new()))
10399 let mut peer_state = peer_state_mutex.lock().unwrap();
10400 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10401 funding_txo, monitor, peer_state, logger, "closed ");
10403 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10404 log_error!(logger, " The ChannelMonitor for channel {} is missing.",
10405 &funding_txo.to_channel_id());
10406 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10407 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10408 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10409 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10410 return Err(DecodeError::InvalidValue);
10415 // Note that we have to do the above replays before we push new monitor updates.
10416 pending_background_events.append(&mut close_background_events);
10418 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10419 // should ensure we try them again on the inbound edge. We put them here and do so after we
10420 // have a fully-constructed `ChannelManager` at the end.
10421 let mut pending_claims_to_replay = Vec::new();
10424 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10425 // ChannelMonitor data for any channels for which we do not have authorative state
10426 // (i.e. those for which we just force-closed above or we otherwise don't have a
10427 // corresponding `Channel` at all).
10428 // This avoids several edge-cases where we would otherwise "forget" about pending
10429 // payments which are still in-flight via their on-chain state.
10430 // We only rebuild the pending payments map if we were most recently serialized by
10432 for (_, monitor) in args.channel_monitors.iter() {
10433 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10434 let chan_id = monitor.get_funding_txo().0.to_channel_id();
10435 if counterparty_opt.is_none() {
10436 let logger = WithChannelMonitor::from(&args.logger, monitor);
10437 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10438 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10439 if path.hops.is_empty() {
10440 log_error!(logger, "Got an empty path for a pending payment");
10441 return Err(DecodeError::InvalidValue);
10444 let path_amt = path.final_value_msat();
10445 let mut session_priv_bytes = [0; 32];
10446 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10447 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10448 hash_map::Entry::Occupied(mut entry) => {
10449 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10450 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10451 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
10453 hash_map::Entry::Vacant(entry) => {
10454 let path_fee = path.fee_msat();
10455 entry.insert(PendingOutboundPayment::Retryable {
10456 retry_strategy: None,
10457 attempts: PaymentAttempts::new(),
10458 payment_params: None,
10459 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10460 payment_hash: htlc.payment_hash,
10461 payment_secret: None, // only used for retries, and we'll never retry on startup
10462 payment_metadata: None, // only used for retries, and we'll never retry on startup
10463 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10464 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10465 pending_amt_msat: path_amt,
10466 pending_fee_msat: Some(path_fee),
10467 total_msat: path_amt,
10468 starting_block_height: best_block_height,
10469 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10471 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10472 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10477 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10478 match htlc_source {
10479 HTLCSource::PreviousHopData(prev_hop_data) => {
10480 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10481 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10482 info.prev_htlc_id == prev_hop_data.htlc_id
10484 // The ChannelMonitor is now responsible for this HTLC's
10485 // failure/success and will let us know what its outcome is. If we
10486 // still have an entry for this HTLC in `forward_htlcs` or
10487 // `pending_intercepted_htlcs`, we were apparently not persisted after
10488 // the monitor was when forwarding the payment.
10489 forward_htlcs.retain(|_, forwards| {
10490 forwards.retain(|forward| {
10491 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10492 if pending_forward_matches_htlc(&htlc_info) {
10493 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10494 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10499 !forwards.is_empty()
10501 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10502 if pending_forward_matches_htlc(&htlc_info) {
10503 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10504 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10505 pending_events_read.retain(|(event, _)| {
10506 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10507 intercepted_id != ev_id
10514 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10515 if let Some(preimage) = preimage_opt {
10516 let pending_events = Mutex::new(pending_events_read);
10517 // Note that we set `from_onchain` to "false" here,
10518 // deliberately keeping the pending payment around forever.
10519 // Given it should only occur when we have a channel we're
10520 // force-closing for being stale that's okay.
10521 // The alternative would be to wipe the state when claiming,
10522 // generating a `PaymentPathSuccessful` event but regenerating
10523 // it and the `PaymentSent` on every restart until the
10524 // `ChannelMonitor` is removed.
10526 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10527 channel_funding_outpoint: monitor.get_funding_txo().0,
10528 counterparty_node_id: path.hops[0].pubkey,
10530 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10531 path, false, compl_action, &pending_events, &&logger);
10532 pending_events_read = pending_events.into_inner().unwrap();
10539 // Whether the downstream channel was closed or not, try to re-apply any payment
10540 // preimages from it which may be needed in upstream channels for forwarded
10542 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10544 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10545 if let HTLCSource::PreviousHopData(_) = htlc_source {
10546 if let Some(payment_preimage) = preimage_opt {
10547 Some((htlc_source, payment_preimage, htlc.amount_msat,
10548 // Check if `counterparty_opt.is_none()` to see if the
10549 // downstream chan is closed (because we don't have a
10550 // channel_id -> peer map entry).
10551 counterparty_opt.is_none(),
10552 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10553 monitor.get_funding_txo().0))
10556 // If it was an outbound payment, we've handled it above - if a preimage
10557 // came in and we persisted the `ChannelManager` we either handled it and
10558 // are good to go or the channel force-closed - we don't have to handle the
10559 // channel still live case here.
10563 for tuple in outbound_claimed_htlcs_iter {
10564 pending_claims_to_replay.push(tuple);
10569 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10570 // If we have pending HTLCs to forward, assume we either dropped a
10571 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10572 // shut down before the timer hit. Either way, set the time_forwardable to a small
10573 // constant as enough time has likely passed that we should simply handle the forwards
10574 // now, or at least after the user gets a chance to reconnect to our peers.
10575 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10576 time_forwardable: Duration::from_secs(2),
10580 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10581 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10583 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10584 if let Some(purposes) = claimable_htlc_purposes {
10585 if purposes.len() != claimable_htlcs_list.len() {
10586 return Err(DecodeError::InvalidValue);
10588 if let Some(onion_fields) = claimable_htlc_onion_fields {
10589 if onion_fields.len() != claimable_htlcs_list.len() {
10590 return Err(DecodeError::InvalidValue);
10592 for (purpose, (onion, (payment_hash, htlcs))) in
10593 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10595 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10596 purpose, htlcs, onion_fields: onion,
10598 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10601 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10602 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10603 purpose, htlcs, onion_fields: None,
10605 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10609 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10610 // include a `_legacy_hop_data` in the `OnionPayload`.
10611 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10612 if htlcs.is_empty() {
10613 return Err(DecodeError::InvalidValue);
10615 let purpose = match &htlcs[0].onion_payload {
10616 OnionPayload::Invoice { _legacy_hop_data } => {
10617 if let Some(hop_data) = _legacy_hop_data {
10618 events::PaymentPurpose::InvoicePayment {
10619 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10620 Some(inbound_payment) => inbound_payment.payment_preimage,
10621 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10622 Ok((payment_preimage, _)) => payment_preimage,
10624 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10625 return Err(DecodeError::InvalidValue);
10629 payment_secret: hop_data.payment_secret,
10631 } else { return Err(DecodeError::InvalidValue); }
10633 OnionPayload::Spontaneous(payment_preimage) =>
10634 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10636 claimable_payments.insert(payment_hash, ClaimablePayment {
10637 purpose, htlcs, onion_fields: None,
10642 let mut secp_ctx = Secp256k1::new();
10643 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10645 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10647 Err(()) => return Err(DecodeError::InvalidValue)
10649 if let Some(network_pubkey) = received_network_pubkey {
10650 if network_pubkey != our_network_pubkey {
10651 log_error!(args.logger, "Key that was generated does not match the existing key.");
10652 return Err(DecodeError::InvalidValue);
10656 let mut outbound_scid_aliases = HashSet::new();
10657 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10658 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10659 let peer_state = &mut *peer_state_lock;
10660 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10661 if let ChannelPhase::Funded(chan) = phase {
10662 let logger = WithChannelContext::from(&args.logger, &chan.context);
10663 if chan.context.outbound_scid_alias() == 0 {
10664 let mut outbound_scid_alias;
10666 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10667 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10668 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10670 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10671 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10672 // Note that in rare cases its possible to hit this while reading an older
10673 // channel if we just happened to pick a colliding outbound alias above.
10674 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10675 return Err(DecodeError::InvalidValue);
10677 if chan.context.is_usable() {
10678 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10679 // Note that in rare cases its possible to hit this while reading an older
10680 // channel if we just happened to pick a colliding outbound alias above.
10681 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10682 return Err(DecodeError::InvalidValue);
10686 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10687 // created in this `channel_by_id` map.
10688 debug_assert!(false);
10689 return Err(DecodeError::InvalidValue);
10694 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10696 for (_, monitor) in args.channel_monitors.iter() {
10697 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10698 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10699 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10700 let mut claimable_amt_msat = 0;
10701 let mut receiver_node_id = Some(our_network_pubkey);
10702 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10703 if phantom_shared_secret.is_some() {
10704 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10705 .expect("Failed to get node_id for phantom node recipient");
10706 receiver_node_id = Some(phantom_pubkey)
10708 for claimable_htlc in &payment.htlcs {
10709 claimable_amt_msat += claimable_htlc.value;
10711 // Add a holding-cell claim of the payment to the Channel, which should be
10712 // applied ~immediately on peer reconnection. Because it won't generate a
10713 // new commitment transaction we can just provide the payment preimage to
10714 // the corresponding ChannelMonitor and nothing else.
10716 // We do so directly instead of via the normal ChannelMonitor update
10717 // procedure as the ChainMonitor hasn't yet been initialized, implying
10718 // we're not allowed to call it directly yet. Further, we do the update
10719 // without incrementing the ChannelMonitor update ID as there isn't any
10721 // If we were to generate a new ChannelMonitor update ID here and then
10722 // crash before the user finishes block connect we'd end up force-closing
10723 // this channel as well. On the flip side, there's no harm in restarting
10724 // without the new monitor persisted - we'll end up right back here on
10726 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10727 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10728 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10729 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10730 let peer_state = &mut *peer_state_lock;
10731 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10732 let logger = WithChannelContext::from(&args.logger, &channel.context);
10733 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
10736 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10737 let logger = WithChannelMonitor::from(&args.logger, previous_hop_monitor);
10738 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &&logger);
10741 pending_events_read.push_back((events::Event::PaymentClaimed {
10744 purpose: payment.purpose,
10745 amount_msat: claimable_amt_msat,
10746 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10747 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10753 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10754 if let Some(peer_state) = per_peer_state.get(&node_id) {
10755 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
10756 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
10757 for action in actions.iter() {
10758 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10759 downstream_counterparty_and_funding_outpoint:
10760 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10762 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10764 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10765 blocked_channel_outpoint.to_channel_id());
10766 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10767 .entry(blocked_channel_outpoint.to_channel_id())
10768 .or_insert_with(Vec::new).push(blocking_action.clone());
10770 // If the channel we were blocking has closed, we don't need to
10771 // worry about it - the blocked monitor update should never have
10772 // been released from the `Channel` object so it can't have
10773 // completed, and if the channel closed there's no reason to bother
10777 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10778 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10782 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10784 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
10785 return Err(DecodeError::InvalidValue);
10789 let channel_manager = ChannelManager {
10791 fee_estimator: bounded_fee_estimator,
10792 chain_monitor: args.chain_monitor,
10793 tx_broadcaster: args.tx_broadcaster,
10794 router: args.router,
10796 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10798 inbound_payment_key: expanded_inbound_key,
10799 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10800 pending_outbound_payments: pending_outbounds,
10801 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10803 forward_htlcs: Mutex::new(forward_htlcs),
10804 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10805 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10806 id_to_peer: Mutex::new(id_to_peer),
10807 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10808 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10810 probing_cookie_secret: probing_cookie_secret.unwrap(),
10812 our_network_pubkey,
10815 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10817 per_peer_state: FairRwLock::new(per_peer_state),
10819 pending_events: Mutex::new(pending_events_read),
10820 pending_events_processor: AtomicBool::new(false),
10821 pending_background_events: Mutex::new(pending_background_events),
10822 total_consistency_lock: RwLock::new(()),
10823 background_events_processed_since_startup: AtomicBool::new(false),
10825 event_persist_notifier: Notifier::new(),
10826 needs_persist_flag: AtomicBool::new(false),
10828 funding_batch_states: Mutex::new(BTreeMap::new()),
10830 pending_offers_messages: Mutex::new(Vec::new()),
10832 entropy_source: args.entropy_source,
10833 node_signer: args.node_signer,
10834 signer_provider: args.signer_provider,
10836 logger: args.logger,
10837 default_configuration: args.default_config,
10840 for htlc_source in failed_htlcs.drain(..) {
10841 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10842 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10843 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10844 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10847 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10848 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10849 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10850 // channel is closed we just assume that it probably came from an on-chain claim.
10851 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10852 downstream_closed, true, downstream_node_id, downstream_funding);
10855 //TODO: Broadcast channel update for closed channels, but only after we've made a
10856 //connection or two.
10858 Ok((best_block_hash.clone(), channel_manager))
10864 use bitcoin::hashes::Hash;
10865 use bitcoin::hashes::sha256::Hash as Sha256;
10866 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10867 use core::sync::atomic::Ordering;
10868 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10869 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10870 use crate::ln::ChannelId;
10871 use crate::ln::channelmanager::{create_recv_pending_htlc_info, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10872 use crate::ln::functional_test_utils::*;
10873 use crate::ln::msgs::{self, ErrorAction};
10874 use crate::ln::msgs::ChannelMessageHandler;
10875 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10876 use crate::util::errors::APIError;
10877 use crate::util::test_utils;
10878 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10879 use crate::sign::EntropySource;
10882 fn test_notify_limits() {
10883 // Check that a few cases which don't require the persistence of a new ChannelManager,
10884 // indeed, do not cause the persistence of a new ChannelManager.
10885 let chanmon_cfgs = create_chanmon_cfgs(3);
10886 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10887 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10888 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10890 // All nodes start with a persistable update pending as `create_network` connects each node
10891 // with all other nodes to make most tests simpler.
10892 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10893 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10894 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10896 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10898 // We check that the channel info nodes have doesn't change too early, even though we try
10899 // to connect messages with new values
10900 chan.0.contents.fee_base_msat *= 2;
10901 chan.1.contents.fee_base_msat *= 2;
10902 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10903 &nodes[1].node.get_our_node_id()).pop().unwrap();
10904 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10905 &nodes[0].node.get_our_node_id()).pop().unwrap();
10907 // The first two nodes (which opened a channel) should now require fresh persistence
10908 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10909 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10910 // ... but the last node should not.
10911 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10912 // After persisting the first two nodes they should no longer need fresh persistence.
10913 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10914 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10916 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10917 // about the channel.
10918 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10919 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10920 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10922 // The nodes which are a party to the channel should also ignore messages from unrelated
10924 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10925 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10926 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10927 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10928 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10929 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10931 // At this point the channel info given by peers should still be the same.
10932 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10933 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10935 // An earlier version of handle_channel_update didn't check the directionality of the
10936 // update message and would always update the local fee info, even if our peer was
10937 // (spuriously) forwarding us our own channel_update.
10938 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
10939 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
10940 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
10942 // First deliver each peers' own message, checking that the node doesn't need to be
10943 // persisted and that its channel info remains the same.
10944 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
10945 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
10946 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10947 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10948 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10949 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10951 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
10952 // the channel info has updated.
10953 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
10954 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
10955 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10956 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10957 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
10958 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
10962 fn test_keysend_dup_hash_partial_mpp() {
10963 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
10965 let chanmon_cfgs = create_chanmon_cfgs(2);
10966 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10967 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10968 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10969 create_announced_chan_between_nodes(&nodes, 0, 1);
10971 // First, send a partial MPP payment.
10972 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
10973 let mut mpp_route = route.clone();
10974 mpp_route.paths.push(mpp_route.paths[0].clone());
10976 let payment_id = PaymentId([42; 32]);
10977 // Use the utility function send_payment_along_path to send the payment with MPP data which
10978 // indicates there are more HTLCs coming.
10979 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
10980 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
10981 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
10982 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
10983 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
10984 check_added_monitors!(nodes[0], 1);
10985 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10986 assert_eq!(events.len(), 1);
10987 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
10989 // Next, send a keysend payment with the same payment_hash and make sure it fails.
10990 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10991 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10992 check_added_monitors!(nodes[0], 1);
10993 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10994 assert_eq!(events.len(), 1);
10995 let ev = events.drain(..).next().unwrap();
10996 let payment_event = SendEvent::from_event(ev);
10997 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10998 check_added_monitors!(nodes[1], 0);
10999 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11000 expect_pending_htlcs_forwardable!(nodes[1]);
11001 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11002 check_added_monitors!(nodes[1], 1);
11003 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11004 assert!(updates.update_add_htlcs.is_empty());
11005 assert!(updates.update_fulfill_htlcs.is_empty());
11006 assert_eq!(updates.update_fail_htlcs.len(), 1);
11007 assert!(updates.update_fail_malformed_htlcs.is_empty());
11008 assert!(updates.update_fee.is_none());
11009 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11010 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11011 expect_payment_failed!(nodes[0], our_payment_hash, true);
11013 // Send the second half of the original MPP payment.
11014 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11015 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11016 check_added_monitors!(nodes[0], 1);
11017 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11018 assert_eq!(events.len(), 1);
11019 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11021 // Claim the full MPP payment. Note that we can't use a test utility like
11022 // claim_funds_along_route because the ordering of the messages causes the second half of the
11023 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11024 // lightning messages manually.
11025 nodes[1].node.claim_funds(payment_preimage);
11026 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11027 check_added_monitors!(nodes[1], 2);
11029 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11030 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11031 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11032 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11033 check_added_monitors!(nodes[0], 1);
11034 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11035 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11036 check_added_monitors!(nodes[1], 1);
11037 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11038 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11039 check_added_monitors!(nodes[1], 1);
11040 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11041 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11042 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11043 check_added_monitors!(nodes[0], 1);
11044 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11045 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11046 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11047 check_added_monitors!(nodes[0], 1);
11048 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11049 check_added_monitors!(nodes[1], 1);
11050 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11051 check_added_monitors!(nodes[1], 1);
11052 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11053 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11054 check_added_monitors!(nodes[0], 1);
11056 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11057 // path's success and a PaymentPathSuccessful event for each path's success.
11058 let events = nodes[0].node.get_and_clear_pending_events();
11059 assert_eq!(events.len(), 2);
11061 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11062 assert_eq!(payment_id, *actual_payment_id);
11063 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11064 assert_eq!(route.paths[0], *path);
11066 _ => panic!("Unexpected event"),
11069 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11070 assert_eq!(payment_id, *actual_payment_id);
11071 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11072 assert_eq!(route.paths[0], *path);
11074 _ => panic!("Unexpected event"),
11079 fn test_keysend_dup_payment_hash() {
11080 do_test_keysend_dup_payment_hash(false);
11081 do_test_keysend_dup_payment_hash(true);
11084 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11085 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11086 // outbound regular payment fails as expected.
11087 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11088 // fails as expected.
11089 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11090 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11091 // reject MPP keysend payments, since in this case where the payment has no payment
11092 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11093 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11094 // payment secrets and reject otherwise.
11095 let chanmon_cfgs = create_chanmon_cfgs(2);
11096 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11097 let mut mpp_keysend_cfg = test_default_channel_config();
11098 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11099 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11100 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11101 create_announced_chan_between_nodes(&nodes, 0, 1);
11102 let scorer = test_utils::TestScorer::new();
11103 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11105 // To start (1), send a regular payment but don't claim it.
11106 let expected_route = [&nodes[1]];
11107 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11109 // Next, attempt a keysend payment and make sure it fails.
11110 let route_params = RouteParameters::from_payment_params_and_value(
11111 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11112 TEST_FINAL_CLTV, false), 100_000);
11113 let route = find_route(
11114 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11115 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11117 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11118 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11119 check_added_monitors!(nodes[0], 1);
11120 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11121 assert_eq!(events.len(), 1);
11122 let ev = events.drain(..).next().unwrap();
11123 let payment_event = SendEvent::from_event(ev);
11124 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11125 check_added_monitors!(nodes[1], 0);
11126 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11127 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11128 // fails), the second will process the resulting failure and fail the HTLC backward
11129 expect_pending_htlcs_forwardable!(nodes[1]);
11130 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11131 check_added_monitors!(nodes[1], 1);
11132 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11133 assert!(updates.update_add_htlcs.is_empty());
11134 assert!(updates.update_fulfill_htlcs.is_empty());
11135 assert_eq!(updates.update_fail_htlcs.len(), 1);
11136 assert!(updates.update_fail_malformed_htlcs.is_empty());
11137 assert!(updates.update_fee.is_none());
11138 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11139 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11140 expect_payment_failed!(nodes[0], payment_hash, true);
11142 // Finally, claim the original payment.
11143 claim_payment(&nodes[0], &expected_route, payment_preimage);
11145 // To start (2), send a keysend payment but don't claim it.
11146 let payment_preimage = PaymentPreimage([42; 32]);
11147 let route = find_route(
11148 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11149 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11151 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11152 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11153 check_added_monitors!(nodes[0], 1);
11154 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11155 assert_eq!(events.len(), 1);
11156 let event = events.pop().unwrap();
11157 let path = vec![&nodes[1]];
11158 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11160 // Next, attempt a regular payment and make sure it fails.
11161 let payment_secret = PaymentSecret([43; 32]);
11162 nodes[0].node.send_payment_with_route(&route, payment_hash,
11163 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11164 check_added_monitors!(nodes[0], 1);
11165 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11166 assert_eq!(events.len(), 1);
11167 let ev = events.drain(..).next().unwrap();
11168 let payment_event = SendEvent::from_event(ev);
11169 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11170 check_added_monitors!(nodes[1], 0);
11171 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11172 expect_pending_htlcs_forwardable!(nodes[1]);
11173 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11174 check_added_monitors!(nodes[1], 1);
11175 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11176 assert!(updates.update_add_htlcs.is_empty());
11177 assert!(updates.update_fulfill_htlcs.is_empty());
11178 assert_eq!(updates.update_fail_htlcs.len(), 1);
11179 assert!(updates.update_fail_malformed_htlcs.is_empty());
11180 assert!(updates.update_fee.is_none());
11181 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11182 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11183 expect_payment_failed!(nodes[0], payment_hash, true);
11185 // Finally, succeed the keysend payment.
11186 claim_payment(&nodes[0], &expected_route, payment_preimage);
11188 // To start (3), send a keysend payment but don't claim it.
11189 let payment_id_1 = PaymentId([44; 32]);
11190 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11191 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11192 check_added_monitors!(nodes[0], 1);
11193 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11194 assert_eq!(events.len(), 1);
11195 let event = events.pop().unwrap();
11196 let path = vec![&nodes[1]];
11197 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11199 // Next, attempt a keysend payment and make sure it fails.
11200 let route_params = RouteParameters::from_payment_params_and_value(
11201 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11204 let route = find_route(
11205 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11206 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11208 let payment_id_2 = PaymentId([45; 32]);
11209 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11210 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11211 check_added_monitors!(nodes[0], 1);
11212 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11213 assert_eq!(events.len(), 1);
11214 let ev = events.drain(..).next().unwrap();
11215 let payment_event = SendEvent::from_event(ev);
11216 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11217 check_added_monitors!(nodes[1], 0);
11218 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11219 expect_pending_htlcs_forwardable!(nodes[1]);
11220 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11221 check_added_monitors!(nodes[1], 1);
11222 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11223 assert!(updates.update_add_htlcs.is_empty());
11224 assert!(updates.update_fulfill_htlcs.is_empty());
11225 assert_eq!(updates.update_fail_htlcs.len(), 1);
11226 assert!(updates.update_fail_malformed_htlcs.is_empty());
11227 assert!(updates.update_fee.is_none());
11228 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11229 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11230 expect_payment_failed!(nodes[0], payment_hash, true);
11232 // Finally, claim the original payment.
11233 claim_payment(&nodes[0], &expected_route, payment_preimage);
11237 fn test_keysend_hash_mismatch() {
11238 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11239 // preimage doesn't match the msg's payment hash.
11240 let chanmon_cfgs = create_chanmon_cfgs(2);
11241 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11242 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11243 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11245 let payer_pubkey = nodes[0].node.get_our_node_id();
11246 let payee_pubkey = nodes[1].node.get_our_node_id();
11248 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11249 let route_params = RouteParameters::from_payment_params_and_value(
11250 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11251 let network_graph = nodes[0].network_graph;
11252 let first_hops = nodes[0].node.list_usable_channels();
11253 let scorer = test_utils::TestScorer::new();
11254 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11255 let route = find_route(
11256 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11257 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11260 let test_preimage = PaymentPreimage([42; 32]);
11261 let mismatch_payment_hash = PaymentHash([43; 32]);
11262 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11263 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11264 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11265 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11266 check_added_monitors!(nodes[0], 1);
11268 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11269 assert_eq!(updates.update_add_htlcs.len(), 1);
11270 assert!(updates.update_fulfill_htlcs.is_empty());
11271 assert!(updates.update_fail_htlcs.is_empty());
11272 assert!(updates.update_fail_malformed_htlcs.is_empty());
11273 assert!(updates.update_fee.is_none());
11274 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11276 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11280 fn test_keysend_msg_with_secret_err() {
11281 // Test that we error as expected if we receive a keysend payment that includes a payment
11282 // secret when we don't support MPP keysend.
11283 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11284 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11285 let chanmon_cfgs = create_chanmon_cfgs(2);
11286 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11287 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11288 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11290 let payer_pubkey = nodes[0].node.get_our_node_id();
11291 let payee_pubkey = nodes[1].node.get_our_node_id();
11293 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11294 let route_params = RouteParameters::from_payment_params_and_value(
11295 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11296 let network_graph = nodes[0].network_graph;
11297 let first_hops = nodes[0].node.list_usable_channels();
11298 let scorer = test_utils::TestScorer::new();
11299 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11300 let route = find_route(
11301 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11302 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11305 let test_preimage = PaymentPreimage([42; 32]);
11306 let test_secret = PaymentSecret([43; 32]);
11307 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
11308 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11309 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11310 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11311 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11312 PaymentId(payment_hash.0), None, session_privs).unwrap();
11313 check_added_monitors!(nodes[0], 1);
11315 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11316 assert_eq!(updates.update_add_htlcs.len(), 1);
11317 assert!(updates.update_fulfill_htlcs.is_empty());
11318 assert!(updates.update_fail_htlcs.is_empty());
11319 assert!(updates.update_fail_malformed_htlcs.is_empty());
11320 assert!(updates.update_fee.is_none());
11321 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11323 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11327 fn test_multi_hop_missing_secret() {
11328 let chanmon_cfgs = create_chanmon_cfgs(4);
11329 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11330 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11331 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11333 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11334 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11335 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11336 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11338 // Marshall an MPP route.
11339 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11340 let path = route.paths[0].clone();
11341 route.paths.push(path);
11342 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11343 route.paths[0].hops[0].short_channel_id = chan_1_id;
11344 route.paths[0].hops[1].short_channel_id = chan_3_id;
11345 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11346 route.paths[1].hops[0].short_channel_id = chan_2_id;
11347 route.paths[1].hops[1].short_channel_id = chan_4_id;
11349 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11350 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11352 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11353 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11355 _ => panic!("unexpected error")
11360 fn test_drop_disconnected_peers_when_removing_channels() {
11361 let chanmon_cfgs = create_chanmon_cfgs(2);
11362 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11363 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11364 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11366 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11368 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11369 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11371 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11372 check_closed_broadcast!(nodes[0], true);
11373 check_added_monitors!(nodes[0], 1);
11374 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11377 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11378 // disconnected and the channel between has been force closed.
11379 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11380 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11381 assert_eq!(nodes_0_per_peer_state.len(), 1);
11382 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11385 nodes[0].node.timer_tick_occurred();
11388 // Assert that nodes[1] has now been removed.
11389 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11394 fn bad_inbound_payment_hash() {
11395 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11396 let chanmon_cfgs = create_chanmon_cfgs(2);
11397 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11398 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11399 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11401 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11402 let payment_data = msgs::FinalOnionHopData {
11404 total_msat: 100_000,
11407 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11408 // payment verification fails as expected.
11409 let mut bad_payment_hash = payment_hash.clone();
11410 bad_payment_hash.0[0] += 1;
11411 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11412 Ok(_) => panic!("Unexpected ok"),
11414 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11418 // Check that using the original payment hash succeeds.
11419 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11423 fn test_id_to_peer_coverage() {
11424 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11425 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11426 // the channel is successfully closed.
11427 let chanmon_cfgs = create_chanmon_cfgs(2);
11428 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11429 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11430 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11432 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11433 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11434 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11435 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11436 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11438 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11439 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
11441 // Ensure that the `id_to_peer` map is empty until either party has received the
11442 // funding transaction, and have the real `channel_id`.
11443 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11444 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11447 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11449 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11450 // as it has the funding transaction.
11451 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11452 assert_eq!(nodes_0_lock.len(), 1);
11453 assert!(nodes_0_lock.contains_key(&channel_id));
11456 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11458 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11460 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11462 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11463 assert_eq!(nodes_0_lock.len(), 1);
11464 assert!(nodes_0_lock.contains_key(&channel_id));
11466 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11469 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11470 // as it has the funding transaction.
11471 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11472 assert_eq!(nodes_1_lock.len(), 1);
11473 assert!(nodes_1_lock.contains_key(&channel_id));
11475 check_added_monitors!(nodes[1], 1);
11476 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11477 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11478 check_added_monitors!(nodes[0], 1);
11479 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11480 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11481 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11482 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11484 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11485 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11486 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11487 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11489 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11490 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11492 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11493 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11494 // fee for the closing transaction has been negotiated and the parties has the other
11495 // party's signature for the fee negotiated closing transaction.)
11496 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11497 assert_eq!(nodes_0_lock.len(), 1);
11498 assert!(nodes_0_lock.contains_key(&channel_id));
11502 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11503 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11504 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11505 // kept in the `nodes[1]`'s `id_to_peer` map.
11506 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11507 assert_eq!(nodes_1_lock.len(), 1);
11508 assert!(nodes_1_lock.contains_key(&channel_id));
11511 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11513 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11514 // therefore has all it needs to fully close the channel (both signatures for the
11515 // closing transaction).
11516 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11517 // fully closed by `nodes[0]`.
11518 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11520 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11521 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11522 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11523 assert_eq!(nodes_1_lock.len(), 1);
11524 assert!(nodes_1_lock.contains_key(&channel_id));
11527 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11529 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11531 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11532 // they both have everything required to fully close the channel.
11533 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11535 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11537 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11538 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11541 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11542 let expected_message = format!("Not connected to node: {}", expected_public_key);
11543 check_api_error_message(expected_message, res_err)
11546 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11547 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11548 check_api_error_message(expected_message, res_err)
11551 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11552 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11553 check_api_error_message(expected_message, res_err)
11556 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11557 let expected_message = "No such channel awaiting to be accepted.".to_string();
11558 check_api_error_message(expected_message, res_err)
11561 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11563 Err(APIError::APIMisuseError { err }) => {
11564 assert_eq!(err, expected_err_message);
11566 Err(APIError::ChannelUnavailable { err }) => {
11567 assert_eq!(err, expected_err_message);
11569 Ok(_) => panic!("Unexpected Ok"),
11570 Err(_) => panic!("Unexpected Error"),
11575 fn test_api_calls_with_unkown_counterparty_node() {
11576 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11577 // expected if the `counterparty_node_id` is an unkown peer in the
11578 // `ChannelManager::per_peer_state` map.
11579 let chanmon_cfg = create_chanmon_cfgs(2);
11580 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11581 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11582 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11585 let channel_id = ChannelId::from_bytes([4; 32]);
11586 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11587 let intercept_id = InterceptId([0; 32]);
11589 // Test the API functions.
11590 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11592 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11594 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11596 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11598 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11600 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11602 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11606 fn test_api_calls_with_unavailable_channel() {
11607 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11608 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11609 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11610 // the given `channel_id`.
11611 let chanmon_cfg = create_chanmon_cfgs(2);
11612 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11613 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11614 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11616 let counterparty_node_id = nodes[1].node.get_our_node_id();
11619 let channel_id = ChannelId::from_bytes([4; 32]);
11621 // Test the API functions.
11622 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11624 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11626 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11628 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11630 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11632 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11636 fn test_connection_limiting() {
11637 // Test that we limit un-channel'd peers and un-funded channels properly.
11638 let chanmon_cfgs = create_chanmon_cfgs(2);
11639 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11640 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11641 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11643 // Note that create_network connects the nodes together for us
11645 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11646 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11648 let mut funding_tx = None;
11649 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11650 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11651 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11654 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11655 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11656 funding_tx = Some(tx.clone());
11657 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11658 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11660 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11661 check_added_monitors!(nodes[1], 1);
11662 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11664 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11666 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11667 check_added_monitors!(nodes[0], 1);
11668 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11670 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11673 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11674 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11675 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11676 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11677 open_channel_msg.temporary_channel_id);
11679 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11680 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11682 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11683 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11684 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11685 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11686 peer_pks.push(random_pk);
11687 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11688 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11691 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11692 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11693 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11694 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11695 }, true).unwrap_err();
11697 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11698 // them if we have too many un-channel'd peers.
11699 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11700 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11701 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11702 for ev in chan_closed_events {
11703 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11705 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11706 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11708 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11709 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11710 }, true).unwrap_err();
11712 // but of course if the connection is outbound its allowed...
11713 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11714 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11715 }, false).unwrap();
11716 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11718 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11719 // Even though we accept one more connection from new peers, we won't actually let them
11721 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11722 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11723 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11724 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11725 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11727 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11728 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11729 open_channel_msg.temporary_channel_id);
11731 // Of course, however, outbound channels are always allowed
11732 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11733 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11735 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11736 // "protected" and can connect again.
11737 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11738 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11739 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11741 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11743 // Further, because the first channel was funded, we can open another channel with
11745 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11746 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11750 fn test_outbound_chans_unlimited() {
11751 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11752 let chanmon_cfgs = create_chanmon_cfgs(2);
11753 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11754 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11755 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11757 // Note that create_network connects the nodes together for us
11759 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11760 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11762 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11763 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11764 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11765 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11768 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11770 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11771 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11772 open_channel_msg.temporary_channel_id);
11774 // but we can still open an outbound channel.
11775 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11776 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11778 // but even with such an outbound channel, additional inbound channels will still fail.
11779 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11780 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11781 open_channel_msg.temporary_channel_id);
11785 fn test_0conf_limiting() {
11786 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11787 // flag set and (sometimes) accept channels as 0conf.
11788 let chanmon_cfgs = create_chanmon_cfgs(2);
11789 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11790 let mut settings = test_default_channel_config();
11791 settings.manually_accept_inbound_channels = true;
11792 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11793 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11795 // Note that create_network connects the nodes together for us
11797 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11798 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11800 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11801 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11802 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11803 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11804 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11805 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11808 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11809 let events = nodes[1].node.get_and_clear_pending_events();
11811 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11812 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11814 _ => panic!("Unexpected event"),
11816 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11817 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11820 // If we try to accept a channel from another peer non-0conf it will fail.
11821 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11822 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11823 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11824 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11826 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11827 let events = nodes[1].node.get_and_clear_pending_events();
11829 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11830 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11831 Err(APIError::APIMisuseError { err }) =>
11832 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11836 _ => panic!("Unexpected event"),
11838 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11839 open_channel_msg.temporary_channel_id);
11841 // ...however if we accept the same channel 0conf it should work just fine.
11842 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11843 let events = nodes[1].node.get_and_clear_pending_events();
11845 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11846 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11848 _ => panic!("Unexpected event"),
11850 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11854 fn reject_excessively_underpaying_htlcs() {
11855 let chanmon_cfg = create_chanmon_cfgs(1);
11856 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11857 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11858 let node = create_network(1, &node_cfg, &node_chanmgr);
11859 let sender_intended_amt_msat = 100;
11860 let extra_fee_msat = 10;
11861 let hop_data = msgs::InboundOnionPayload::Receive {
11863 outgoing_cltv_value: 42,
11864 payment_metadata: None,
11865 keysend_preimage: None,
11866 payment_data: Some(msgs::FinalOnionHopData {
11867 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11869 custom_tlvs: Vec::new(),
11871 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11872 // intended amount, we fail the payment.
11873 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11874 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11875 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11876 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
11877 current_height, node[0].node.default_configuration.accept_mpp_keysend)
11879 assert_eq!(err_code, 19);
11880 } else { panic!(); }
11882 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11883 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11885 outgoing_cltv_value: 42,
11886 payment_metadata: None,
11887 keysend_preimage: None,
11888 payment_data: Some(msgs::FinalOnionHopData {
11889 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11891 custom_tlvs: Vec::new(),
11893 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11894 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11895 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
11896 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
11900 fn test_final_incorrect_cltv(){
11901 let chanmon_cfg = create_chanmon_cfgs(1);
11902 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11903 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11904 let node = create_network(1, &node_cfg, &node_chanmgr);
11906 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
11907 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
11909 outgoing_cltv_value: 22,
11910 payment_metadata: None,
11911 keysend_preimage: None,
11912 payment_data: Some(msgs::FinalOnionHopData {
11913 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
11915 custom_tlvs: Vec::new(),
11916 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
11917 node[0].node.default_configuration.accept_mpp_keysend);
11919 // Should not return an error as this condition:
11920 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
11921 // is not satisfied.
11922 assert!(result.is_ok());
11926 fn test_inbound_anchors_manual_acceptance() {
11927 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11928 // flag set and (sometimes) accept channels as 0conf.
11929 let mut anchors_cfg = test_default_channel_config();
11930 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11932 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11933 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11935 let chanmon_cfgs = create_chanmon_cfgs(3);
11936 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11937 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
11938 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
11939 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11941 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11942 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11944 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11945 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11946 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
11947 match &msg_events[0] {
11948 MessageSendEvent::HandleError { node_id, action } => {
11949 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
11951 ErrorAction::SendErrorMessage { msg } =>
11952 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
11953 _ => panic!("Unexpected error action"),
11956 _ => panic!("Unexpected event"),
11959 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11960 let events = nodes[2].node.get_and_clear_pending_events();
11962 Event::OpenChannelRequest { temporary_channel_id, .. } =>
11963 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
11964 _ => panic!("Unexpected event"),
11966 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11970 fn test_anchors_zero_fee_htlc_tx_fallback() {
11971 // Tests that if both nodes support anchors, but the remote node does not want to accept
11972 // anchor channels at the moment, an error it sent to the local node such that it can retry
11973 // the channel without the anchors feature.
11974 let chanmon_cfgs = create_chanmon_cfgs(2);
11975 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11976 let mut anchors_config = test_default_channel_config();
11977 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11978 anchors_config.manually_accept_inbound_channels = true;
11979 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
11980 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11982 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
11983 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11984 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
11986 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11987 let events = nodes[1].node.get_and_clear_pending_events();
11989 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11990 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
11992 _ => panic!("Unexpected event"),
11995 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
11996 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
11998 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11999 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12001 // Since nodes[1] should not have accepted the channel, it should
12002 // not have generated any events.
12003 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12007 fn test_update_channel_config() {
12008 let chanmon_cfg = create_chanmon_cfgs(2);
12009 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12010 let mut user_config = test_default_channel_config();
12011 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12012 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12013 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12014 let channel = &nodes[0].node.list_channels()[0];
12016 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12017 let events = nodes[0].node.get_and_clear_pending_msg_events();
12018 assert_eq!(events.len(), 0);
12020 user_config.channel_config.forwarding_fee_base_msat += 10;
12021 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12022 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12023 let events = nodes[0].node.get_and_clear_pending_msg_events();
12024 assert_eq!(events.len(), 1);
12026 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12027 _ => panic!("expected BroadcastChannelUpdate event"),
12030 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12031 let events = nodes[0].node.get_and_clear_pending_msg_events();
12032 assert_eq!(events.len(), 0);
12034 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12035 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12036 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12037 ..Default::default()
12039 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12040 let events = nodes[0].node.get_and_clear_pending_msg_events();
12041 assert_eq!(events.len(), 1);
12043 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12044 _ => panic!("expected BroadcastChannelUpdate event"),
12047 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12048 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12049 forwarding_fee_proportional_millionths: Some(new_fee),
12050 ..Default::default()
12052 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12053 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12054 let events = nodes[0].node.get_and_clear_pending_msg_events();
12055 assert_eq!(events.len(), 1);
12057 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12058 _ => panic!("expected BroadcastChannelUpdate event"),
12061 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12062 // should be applied to ensure update atomicity as specified in the API docs.
12063 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12064 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12065 let new_fee = current_fee + 100;
12068 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12069 forwarding_fee_proportional_millionths: Some(new_fee),
12070 ..Default::default()
12072 Err(APIError::ChannelUnavailable { err: _ }),
12075 // Check that the fee hasn't changed for the channel that exists.
12076 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12077 let events = nodes[0].node.get_and_clear_pending_msg_events();
12078 assert_eq!(events.len(), 0);
12082 fn test_payment_display() {
12083 let payment_id = PaymentId([42; 32]);
12084 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12085 let payment_hash = PaymentHash([42; 32]);
12086 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12087 let payment_preimage = PaymentPreimage([42; 32]);
12088 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12092 fn test_trigger_lnd_force_close() {
12093 let chanmon_cfg = create_chanmon_cfgs(2);
12094 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12095 let user_config = test_default_channel_config();
12096 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12097 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12099 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12100 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12101 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12102 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12103 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12104 check_closed_broadcast(&nodes[0], 1, true);
12105 check_added_monitors(&nodes[0], 1);
12106 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12108 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12109 assert_eq!(txn.len(), 1);
12110 check_spends!(txn[0], funding_tx);
12113 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12114 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12116 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12117 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12119 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12120 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12121 }, false).unwrap();
12122 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12123 let channel_reestablish = get_event_msg!(
12124 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12126 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12128 // Alice should respond with an error since the channel isn't known, but a bogus
12129 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12130 // close even if it was an lnd node.
12131 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12132 assert_eq!(msg_events.len(), 2);
12133 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12134 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12135 assert_eq!(msg.next_local_commitment_number, 0);
12136 assert_eq!(msg.next_remote_commitment_number, 0);
12137 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12138 } else { panic!() };
12139 check_closed_broadcast(&nodes[1], 1, true);
12140 check_added_monitors(&nodes[1], 1);
12141 let expected_close_reason = ClosureReason::ProcessingError {
12142 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12144 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12146 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12147 assert_eq!(txn.len(), 1);
12148 check_spends!(txn[0], funding_tx);
12155 use crate::chain::Listen;
12156 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12157 use crate::sign::{KeysManager, InMemorySigner};
12158 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12159 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12160 use crate::ln::functional_test_utils::*;
12161 use crate::ln::msgs::{ChannelMessageHandler, Init};
12162 use crate::routing::gossip::NetworkGraph;
12163 use crate::routing::router::{PaymentParameters, RouteParameters};
12164 use crate::util::test_utils;
12165 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12167 use bitcoin::blockdata::locktime::absolute::LockTime;
12168 use bitcoin::hashes::Hash;
12169 use bitcoin::hashes::sha256::Hash as Sha256;
12170 use bitcoin::{Block, Transaction, TxOut};
12172 use crate::sync::{Arc, Mutex, RwLock};
12174 use criterion::Criterion;
12176 type Manager<'a, P> = ChannelManager<
12177 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12178 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12179 &'a test_utils::TestLogger, &'a P>,
12180 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12181 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12182 &'a test_utils::TestLogger>;
12184 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12185 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12187 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12188 type CM = Manager<'chan_mon_cfg, P>;
12190 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12192 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12195 pub fn bench_sends(bench: &mut Criterion) {
12196 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12199 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12200 // Do a simple benchmark of sending a payment back and forth between two nodes.
12201 // Note that this is unrealistic as each payment send will require at least two fsync
12203 let network = bitcoin::Network::Testnet;
12204 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12206 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12207 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12208 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12209 let scorer = RwLock::new(test_utils::TestScorer::new());
12210 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12212 let mut config: UserConfig = Default::default();
12213 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12214 config.channel_handshake_config.minimum_depth = 1;
12216 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12217 let seed_a = [1u8; 32];
12218 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12219 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12221 best_block: BestBlock::from_network(network),
12222 }, genesis_block.header.time);
12223 let node_a_holder = ANodeHolder { node: &node_a };
12225 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12226 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12227 let seed_b = [2u8; 32];
12228 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12229 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12231 best_block: BestBlock::from_network(network),
12232 }, genesis_block.header.time);
12233 let node_b_holder = ANodeHolder { node: &node_b };
12235 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12236 features: node_b.init_features(), networks: None, remote_network_address: None
12238 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12239 features: node_a.init_features(), networks: None, remote_network_address: None
12240 }, false).unwrap();
12241 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12242 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12243 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12246 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12247 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12248 value: 8_000_000, script_pubkey: output_script,
12250 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12251 } else { panic!(); }
12253 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12254 let events_b = node_b.get_and_clear_pending_events();
12255 assert_eq!(events_b.len(), 1);
12256 match events_b[0] {
12257 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12258 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12260 _ => panic!("Unexpected event"),
12263 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12264 let events_a = node_a.get_and_clear_pending_events();
12265 assert_eq!(events_a.len(), 1);
12266 match events_a[0] {
12267 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12268 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12270 _ => panic!("Unexpected event"),
12273 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12275 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12276 Listen::block_connected(&node_a, &block, 1);
12277 Listen::block_connected(&node_b, &block, 1);
12279 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12280 let msg_events = node_a.get_and_clear_pending_msg_events();
12281 assert_eq!(msg_events.len(), 2);
12282 match msg_events[0] {
12283 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12284 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12285 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12289 match msg_events[1] {
12290 MessageSendEvent::SendChannelUpdate { .. } => {},
12294 let events_a = node_a.get_and_clear_pending_events();
12295 assert_eq!(events_a.len(), 1);
12296 match events_a[0] {
12297 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12298 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12300 _ => panic!("Unexpected event"),
12303 let events_b = node_b.get_and_clear_pending_events();
12304 assert_eq!(events_b.len(), 1);
12305 match events_b[0] {
12306 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12307 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12309 _ => panic!("Unexpected event"),
12312 let mut payment_count: u64 = 0;
12313 macro_rules! send_payment {
12314 ($node_a: expr, $node_b: expr) => {
12315 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12316 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12317 let mut payment_preimage = PaymentPreimage([0; 32]);
12318 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12319 payment_count += 1;
12320 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
12321 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12323 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12324 PaymentId(payment_hash.0),
12325 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12326 Retry::Attempts(0)).unwrap();
12327 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12328 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12329 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12330 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12331 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12332 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12333 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12335 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12336 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12337 $node_b.claim_funds(payment_preimage);
12338 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12340 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12341 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12342 assert_eq!(node_id, $node_a.get_our_node_id());
12343 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12344 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12346 _ => panic!("Failed to generate claim event"),
12349 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12350 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12351 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12352 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12354 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12358 bench.bench_function(bench_name, |b| b.iter(|| {
12359 send_payment!(node_a, node_b);
12360 send_payment!(node_b, node_a);