1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
47 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
48 #[cfg(any(feature = "_test_utils", test))]
49 use crate::ln::features::Bolt11InvoiceFeatures;
50 use crate::routing::gossip::NetworkGraph;
51 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::HTLCFailReason;
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::merkle::SignError;
64 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
68 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider};
69 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
70 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
71 use crate::util::wakers::{Future, Notifier};
72 use crate::util::scid_utils::fake_scid;
73 use crate::util::string::UntrustedString;
74 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
75 use crate::util::logger::{Level, Logger};
76 use crate::util::errors::APIError;
78 use alloc::collections::{btree_map, BTreeMap};
81 use crate::prelude::*;
83 use core::cell::RefCell;
85 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
86 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
87 use core::time::Duration;
90 // Re-export this for use in the public API.
91 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
92 use crate::ln::script::ShutdownScript;
94 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
96 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
97 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
98 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
100 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
101 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
102 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
103 // before we forward it.
105 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
106 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
107 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
108 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
109 // our payment, which we can use to decode errors or inform the user that the payment was sent.
111 /// Routing info for an inbound HTLC onion.
112 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
113 pub enum PendingHTLCRouting {
114 /// A forwarded HTLC.
116 /// BOLT 4 onion packet.
117 onion_packet: msgs::OnionPacket,
118 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
119 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
120 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
122 /// An HTLC paid to an invoice we generated.
124 /// Payment secret and total msat received.
125 payment_data: msgs::FinalOnionHopData,
126 /// See [`RecipientOnionFields::payment_metadata`] for more info.
127 payment_metadata: Option<Vec<u8>>,
128 /// Used to track when we should expire pending HTLCs that go unclaimed.
129 incoming_cltv_expiry: u32,
130 /// Optional shared secret for phantom node.
131 phantom_shared_secret: Option<[u8; 32]>,
132 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
133 custom_tlvs: Vec<(u64, Vec<u8>)>,
135 /// Incoming keysend (sender provided the preimage in a TLV).
137 /// This was added in 0.0.116 and will break deserialization on downgrades.
138 payment_data: Option<msgs::FinalOnionHopData>,
139 /// Preimage for this onion payment.
140 payment_preimage: PaymentPreimage,
141 /// See [`RecipientOnionFields::payment_metadata`] for more info.
142 payment_metadata: Option<Vec<u8>>,
143 /// CLTV expiry of the incoming HTLC.
144 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
145 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
146 custom_tlvs: Vec<(u64, Vec<u8>)>,
150 /// Full details of an incoming HTLC, including routing info.
151 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
152 pub struct PendingHTLCInfo {
153 /// Further routing details based on whether the HTLC is being forwarded or received.
154 pub routing: PendingHTLCRouting,
155 /// Shared secret from the previous hop.
156 pub incoming_shared_secret: [u8; 32],
157 payment_hash: PaymentHash,
159 pub incoming_amt_msat: Option<u64>, // Added in 0.0.113
160 /// Sender intended amount to forward or receive (actual amount received
161 /// may overshoot this in either case)
162 pub outgoing_amt_msat: u64,
163 /// Outgoing CLTV height.
164 pub outgoing_cltv_value: u32,
165 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
166 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
167 pub skimmed_fee_msat: Option<u64>,
170 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
171 pub(super) enum HTLCFailureMsg {
172 Relay(msgs::UpdateFailHTLC),
173 Malformed(msgs::UpdateFailMalformedHTLC),
176 /// Stores whether we can't forward an HTLC or relevant forwarding info
177 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
178 pub(super) enum PendingHTLCStatus {
179 Forward(PendingHTLCInfo),
180 Fail(HTLCFailureMsg),
183 pub(super) struct PendingAddHTLCInfo {
184 pub(super) forward_info: PendingHTLCInfo,
186 // These fields are produced in `forward_htlcs()` and consumed in
187 // `process_pending_htlc_forwards()` for constructing the
188 // `HTLCSource::PreviousHopData` for failed and forwarded
191 // Note that this may be an outbound SCID alias for the associated channel.
192 prev_short_channel_id: u64,
194 prev_funding_outpoint: OutPoint,
195 prev_user_channel_id: u128,
198 pub(super) enum HTLCForwardInfo {
199 AddHTLC(PendingAddHTLCInfo),
202 err_packet: msgs::OnionErrorPacket,
206 /// Tracks the inbound corresponding to an outbound HTLC
207 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
208 pub(crate) struct HTLCPreviousHopData {
209 // Note that this may be an outbound SCID alias for the associated channel.
210 short_channel_id: u64,
211 user_channel_id: Option<u128>,
213 incoming_packet_shared_secret: [u8; 32],
214 phantom_shared_secret: Option<[u8; 32]>,
216 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
217 // channel with a preimage provided by the forward channel.
222 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
224 /// This is only here for backwards-compatibility in serialization, in the future it can be
225 /// removed, breaking clients running 0.0.106 and earlier.
226 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
228 /// Contains the payer-provided preimage.
229 Spontaneous(PaymentPreimage),
232 /// HTLCs that are to us and can be failed/claimed by the user
233 struct ClaimableHTLC {
234 prev_hop: HTLCPreviousHopData,
236 /// The amount (in msats) of this MPP part
238 /// The amount (in msats) that the sender intended to be sent in this MPP
239 /// part (used for validating total MPP amount)
240 sender_intended_value: u64,
241 onion_payload: OnionPayload,
243 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
244 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
245 total_value_received: Option<u64>,
246 /// The sender intended sum total of all MPP parts specified in the onion
248 /// The extra fee our counterparty skimmed off the top of this HTLC.
249 counterparty_skimmed_fee_msat: Option<u64>,
252 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
253 fn from(val: &ClaimableHTLC) -> Self {
254 events::ClaimedHTLC {
255 channel_id: val.prev_hop.outpoint.to_channel_id(),
256 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
257 cltv_expiry: val.cltv_expiry,
258 value_msat: val.value,
259 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
264 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
265 /// a payment and ensure idempotency in LDK.
267 /// This is not exported to bindings users as we just use [u8; 32] directly
268 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
269 pub struct PaymentId(pub [u8; Self::LENGTH]);
272 /// Number of bytes in the id.
273 pub const LENGTH: usize = 32;
276 impl Writeable for PaymentId {
277 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
282 impl Readable for PaymentId {
283 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
284 let buf: [u8; 32] = Readable::read(r)?;
289 impl core::fmt::Display for PaymentId {
290 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
291 crate::util::logger::DebugBytes(&self.0).fmt(f)
295 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
297 /// This is not exported to bindings users as we just use [u8; 32] directly
298 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
299 pub struct InterceptId(pub [u8; 32]);
301 impl Writeable for InterceptId {
302 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
307 impl Readable for InterceptId {
308 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
309 let buf: [u8; 32] = Readable::read(r)?;
314 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
315 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
316 pub(crate) enum SentHTLCId {
317 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
318 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
321 pub(crate) fn from_source(source: &HTLCSource) -> Self {
323 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
324 short_channel_id: hop_data.short_channel_id,
325 htlc_id: hop_data.htlc_id,
327 HTLCSource::OutboundRoute { session_priv, .. } =>
328 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
332 impl_writeable_tlv_based_enum!(SentHTLCId,
333 (0, PreviousHopData) => {
334 (0, short_channel_id, required),
335 (2, htlc_id, required),
337 (2, OutboundRoute) => {
338 (0, session_priv, required),
343 /// Tracks the inbound corresponding to an outbound HTLC
344 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
345 #[derive(Clone, Debug, PartialEq, Eq)]
346 pub(crate) enum HTLCSource {
347 PreviousHopData(HTLCPreviousHopData),
350 session_priv: SecretKey,
351 /// Technically we can recalculate this from the route, but we cache it here to avoid
352 /// doing a double-pass on route when we get a failure back
353 first_hop_htlc_msat: u64,
354 payment_id: PaymentId,
357 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
358 impl core::hash::Hash for HTLCSource {
359 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
361 HTLCSource::PreviousHopData(prev_hop_data) => {
363 prev_hop_data.hash(hasher);
365 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
368 session_priv[..].hash(hasher);
369 payment_id.hash(hasher);
370 first_hop_htlc_msat.hash(hasher);
376 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
378 pub fn dummy() -> Self {
379 HTLCSource::OutboundRoute {
380 path: Path { hops: Vec::new(), blinded_tail: None },
381 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
382 first_hop_htlc_msat: 0,
383 payment_id: PaymentId([2; 32]),
387 #[cfg(debug_assertions)]
388 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
389 /// transaction. Useful to ensure different datastructures match up.
390 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
391 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
392 *first_hop_htlc_msat == htlc.amount_msat
394 // There's nothing we can check for forwarded HTLCs
400 /// Invalid inbound onion payment.
401 pub struct InboundOnionErr {
402 /// BOLT 4 error code.
404 /// Data attached to this error.
405 pub err_data: Vec<u8>,
406 /// Error message text.
407 pub msg: &'static str,
410 /// This enum is used to specify which error data to send to peers when failing back an HTLC
411 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
413 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
414 #[derive(Clone, Copy)]
415 pub enum FailureCode {
416 /// We had a temporary error processing the payment. Useful if no other error codes fit
417 /// and you want to indicate that the payer may want to retry.
418 TemporaryNodeFailure,
419 /// We have a required feature which was not in this onion. For example, you may require
420 /// some additional metadata that was not provided with this payment.
421 RequiredNodeFeatureMissing,
422 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
423 /// the HTLC is too close to the current block height for safe handling.
424 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
425 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
426 IncorrectOrUnknownPaymentDetails,
427 /// We failed to process the payload after the onion was decrypted. You may wish to
428 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
430 /// If available, the tuple data may include the type number and byte offset in the
431 /// decrypted byte stream where the failure occurred.
432 InvalidOnionPayload(Option<(u64, u16)>),
435 impl Into<u16> for FailureCode {
436 fn into(self) -> u16 {
438 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
439 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
440 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
441 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
446 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
447 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
448 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
449 /// peer_state lock. We then return the set of things that need to be done outside the lock in
450 /// this struct and call handle_error!() on it.
452 struct MsgHandleErrInternal {
453 err: msgs::LightningError,
454 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
455 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
456 channel_capacity: Option<u64>,
458 impl MsgHandleErrInternal {
460 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
462 err: LightningError {
464 action: msgs::ErrorAction::SendErrorMessage {
465 msg: msgs::ErrorMessage {
472 shutdown_finish: None,
473 channel_capacity: None,
477 fn from_no_close(err: msgs::LightningError) -> Self {
478 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
481 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
482 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
483 let action = if shutdown_res.monitor_update.is_some() {
484 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
485 // should disconnect our peer such that we force them to broadcast their latest
486 // commitment upon reconnecting.
487 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
489 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
492 err: LightningError { err, action },
493 chan_id: Some((channel_id, user_channel_id)),
494 shutdown_finish: Some((shutdown_res, channel_update)),
495 channel_capacity: Some(channel_capacity)
499 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
502 ChannelError::Warn(msg) => LightningError {
504 action: msgs::ErrorAction::SendWarningMessage {
505 msg: msgs::WarningMessage {
509 log_level: Level::Warn,
512 ChannelError::Ignore(msg) => LightningError {
514 action: msgs::ErrorAction::IgnoreError,
516 ChannelError::Close(msg) => LightningError {
518 action: msgs::ErrorAction::SendErrorMessage {
519 msg: msgs::ErrorMessage {
527 shutdown_finish: None,
528 channel_capacity: None,
532 fn closes_channel(&self) -> bool {
533 self.chan_id.is_some()
537 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
538 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
539 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
540 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
541 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
543 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
544 /// be sent in the order they appear in the return value, however sometimes the order needs to be
545 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
546 /// they were originally sent). In those cases, this enum is also returned.
547 #[derive(Clone, PartialEq)]
548 pub(super) enum RAACommitmentOrder {
549 /// Send the CommitmentUpdate messages first
551 /// Send the RevokeAndACK message first
555 /// Information about a payment which is currently being claimed.
556 struct ClaimingPayment {
558 payment_purpose: events::PaymentPurpose,
559 receiver_node_id: PublicKey,
560 htlcs: Vec<events::ClaimedHTLC>,
561 sender_intended_value: Option<u64>,
563 impl_writeable_tlv_based!(ClaimingPayment, {
564 (0, amount_msat, required),
565 (2, payment_purpose, required),
566 (4, receiver_node_id, required),
567 (5, htlcs, optional_vec),
568 (7, sender_intended_value, option),
571 struct ClaimablePayment {
572 purpose: events::PaymentPurpose,
573 onion_fields: Option<RecipientOnionFields>,
574 htlcs: Vec<ClaimableHTLC>,
577 /// Information about claimable or being-claimed payments
578 struct ClaimablePayments {
579 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
580 /// failed/claimed by the user.
582 /// Note that, no consistency guarantees are made about the channels given here actually
583 /// existing anymore by the time you go to read them!
585 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
586 /// we don't get a duplicate payment.
587 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
589 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
590 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
591 /// as an [`events::Event::PaymentClaimed`].
592 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
595 /// Events which we process internally but cannot be processed immediately at the generation site
596 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
597 /// running normally, and specifically must be processed before any other non-background
598 /// [`ChannelMonitorUpdate`]s are applied.
600 enum BackgroundEvent {
601 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
602 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
603 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
604 /// channel has been force-closed we do not need the counterparty node_id.
606 /// Note that any such events are lost on shutdown, so in general they must be updates which
607 /// are regenerated on startup.
608 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
609 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
610 /// channel to continue normal operation.
612 /// In general this should be used rather than
613 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
614 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
615 /// error the other variant is acceptable.
617 /// Note that any such events are lost on shutdown, so in general they must be updates which
618 /// are regenerated on startup.
619 MonitorUpdateRegeneratedOnStartup {
620 counterparty_node_id: PublicKey,
621 funding_txo: OutPoint,
622 update: ChannelMonitorUpdate
624 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
625 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
627 MonitorUpdatesComplete {
628 counterparty_node_id: PublicKey,
629 channel_id: ChannelId,
634 pub(crate) enum MonitorUpdateCompletionAction {
635 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
636 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
637 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
638 /// event can be generated.
639 PaymentClaimed { payment_hash: PaymentHash },
640 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
641 /// operation of another channel.
643 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
644 /// from completing a monitor update which removes the payment preimage until the inbound edge
645 /// completes a monitor update containing the payment preimage. In that case, after the inbound
646 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
648 EmitEventAndFreeOtherChannel {
649 event: events::Event,
650 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
652 /// Indicates we should immediately resume the operation of another channel, unless there is
653 /// some other reason why the channel is blocked. In practice this simply means immediately
654 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
656 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
657 /// from completing a monitor update which removes the payment preimage until the inbound edge
658 /// completes a monitor update containing the payment preimage. However, we use this variant
659 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
660 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
662 /// This variant should thus never be written to disk, as it is processed inline rather than
663 /// stored for later processing.
664 FreeOtherChannelImmediately {
665 downstream_counterparty_node_id: PublicKey,
666 downstream_funding_outpoint: OutPoint,
667 blocking_action: RAAMonitorUpdateBlockingAction,
671 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
672 (0, PaymentClaimed) => { (0, payment_hash, required) },
673 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
674 // *immediately*. However, for simplicity we implement read/write here.
675 (1, FreeOtherChannelImmediately) => {
676 (0, downstream_counterparty_node_id, required),
677 (2, downstream_funding_outpoint, required),
678 (4, blocking_action, required),
680 (2, EmitEventAndFreeOtherChannel) => {
681 (0, event, upgradable_required),
682 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
683 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
684 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
685 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
686 // downgrades to prior versions.
687 (1, downstream_counterparty_and_funding_outpoint, option),
691 #[derive(Clone, Debug, PartialEq, Eq)]
692 pub(crate) enum EventCompletionAction {
693 ReleaseRAAChannelMonitorUpdate {
694 counterparty_node_id: PublicKey,
695 channel_funding_outpoint: OutPoint,
698 impl_writeable_tlv_based_enum!(EventCompletionAction,
699 (0, ReleaseRAAChannelMonitorUpdate) => {
700 (0, channel_funding_outpoint, required),
701 (2, counterparty_node_id, required),
705 #[derive(Clone, PartialEq, Eq, Debug)]
706 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
707 /// the blocked action here. See enum variants for more info.
708 pub(crate) enum RAAMonitorUpdateBlockingAction {
709 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
710 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
712 ForwardedPaymentInboundClaim {
713 /// The upstream channel ID (i.e. the inbound edge).
714 channel_id: ChannelId,
715 /// The HTLC ID on the inbound edge.
720 impl RAAMonitorUpdateBlockingAction {
721 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
722 Self::ForwardedPaymentInboundClaim {
723 channel_id: prev_hop.outpoint.to_channel_id(),
724 htlc_id: prev_hop.htlc_id,
729 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
730 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
734 /// State we hold per-peer.
735 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
736 /// `channel_id` -> `ChannelPhase`
738 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
739 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
740 /// `temporary_channel_id` -> `InboundChannelRequest`.
742 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
743 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
744 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
745 /// the channel is rejected, then the entry is simply removed.
746 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
747 /// The latest `InitFeatures` we heard from the peer.
748 latest_features: InitFeatures,
749 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
750 /// for broadcast messages, where ordering isn't as strict).
751 pub(super) pending_msg_events: Vec<MessageSendEvent>,
752 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
753 /// user but which have not yet completed.
755 /// Note that the channel may no longer exist. For example if the channel was closed but we
756 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
757 /// for a missing channel.
758 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
759 /// Map from a specific channel to some action(s) that should be taken when all pending
760 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
762 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
763 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
764 /// channels with a peer this will just be one allocation and will amount to a linear list of
765 /// channels to walk, avoiding the whole hashing rigmarole.
767 /// Note that the channel may no longer exist. For example, if a channel was closed but we
768 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
769 /// for a missing channel. While a malicious peer could construct a second channel with the
770 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
771 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
772 /// duplicates do not occur, so such channels should fail without a monitor update completing.
773 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
774 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
775 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
776 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
777 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
778 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
779 /// The peer is currently connected (i.e. we've seen a
780 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
781 /// [`ChannelMessageHandler::peer_disconnected`].
785 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
786 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
787 /// If true is passed for `require_disconnected`, the function will return false if we haven't
788 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
789 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
790 if require_disconnected && self.is_connected {
793 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
794 && self.monitor_update_blocked_actions.is_empty()
795 && self.in_flight_monitor_updates.is_empty()
798 // Returns a count of all channels we have with this peer, including unfunded channels.
799 fn total_channel_count(&self) -> usize {
800 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
803 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
804 fn has_channel(&self, channel_id: &ChannelId) -> bool {
805 self.channel_by_id.contains_key(channel_id) ||
806 self.inbound_channel_request_by_id.contains_key(channel_id)
810 /// A not-yet-accepted inbound (from counterparty) channel. Once
811 /// accepted, the parameters will be used to construct a channel.
812 pub(super) struct InboundChannelRequest {
813 /// The original OpenChannel message.
814 pub open_channel_msg: msgs::OpenChannel,
815 /// The number of ticks remaining before the request expires.
816 pub ticks_remaining: i32,
819 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
820 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
821 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
823 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
824 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
826 /// For users who don't want to bother doing their own payment preimage storage, we also store that
829 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
830 /// and instead encoding it in the payment secret.
831 struct PendingInboundPayment {
832 /// The payment secret that the sender must use for us to accept this payment
833 payment_secret: PaymentSecret,
834 /// Time at which this HTLC expires - blocks with a header time above this value will result in
835 /// this payment being removed.
837 /// Arbitrary identifier the user specifies (or not)
838 user_payment_id: u64,
839 // Other required attributes of the payment, optionally enforced:
840 payment_preimage: Option<PaymentPreimage>,
841 min_value_msat: Option<u64>,
844 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
845 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
846 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
847 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
848 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
849 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
850 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
851 /// of [`KeysManager`] and [`DefaultRouter`].
853 /// This is not exported to bindings users as type aliases aren't supported in most languages.
854 #[cfg(not(c_bindings))]
855 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
863 Arc<NetworkGraph<Arc<L>>>,
865 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
866 ProbabilisticScoringFeeParameters,
867 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
872 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
873 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
874 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
875 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
876 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
877 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
878 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
879 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
880 /// of [`KeysManager`] and [`DefaultRouter`].
882 /// This is not exported to bindings users as type aliases aren't supported in most languages.
883 #[cfg(not(c_bindings))]
884 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
893 &'f NetworkGraph<&'g L>,
895 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
896 ProbabilisticScoringFeeParameters,
897 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
902 /// A trivial trait which describes any [`ChannelManager`].
904 /// This is not exported to bindings users as general cover traits aren't useful in other
906 pub trait AChannelManager {
907 /// A type implementing [`chain::Watch`].
908 type Watch: chain::Watch<Self::Signer> + ?Sized;
909 /// A type that may be dereferenced to [`Self::Watch`].
910 type M: Deref<Target = Self::Watch>;
911 /// A type implementing [`BroadcasterInterface`].
912 type Broadcaster: BroadcasterInterface + ?Sized;
913 /// A type that may be dereferenced to [`Self::Broadcaster`].
914 type T: Deref<Target = Self::Broadcaster>;
915 /// A type implementing [`EntropySource`].
916 type EntropySource: EntropySource + ?Sized;
917 /// A type that may be dereferenced to [`Self::EntropySource`].
918 type ES: Deref<Target = Self::EntropySource>;
919 /// A type implementing [`NodeSigner`].
920 type NodeSigner: NodeSigner + ?Sized;
921 /// A type that may be dereferenced to [`Self::NodeSigner`].
922 type NS: Deref<Target = Self::NodeSigner>;
923 /// A type implementing [`WriteableEcdsaChannelSigner`].
924 type Signer: WriteableEcdsaChannelSigner + Sized;
925 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
926 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
927 /// A type that may be dereferenced to [`Self::SignerProvider`].
928 type SP: Deref<Target = Self::SignerProvider>;
929 /// A type implementing [`FeeEstimator`].
930 type FeeEstimator: FeeEstimator + ?Sized;
931 /// A type that may be dereferenced to [`Self::FeeEstimator`].
932 type F: Deref<Target = Self::FeeEstimator>;
933 /// A type implementing [`Router`].
934 type Router: Router + ?Sized;
935 /// A type that may be dereferenced to [`Self::Router`].
936 type R: Deref<Target = Self::Router>;
937 /// A type implementing [`Logger`].
938 type Logger: Logger + ?Sized;
939 /// A type that may be dereferenced to [`Self::Logger`].
940 type L: Deref<Target = Self::Logger>;
941 /// Returns a reference to the actual [`ChannelManager`] object.
942 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
945 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
946 for ChannelManager<M, T, ES, NS, SP, F, R, L>
948 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
949 T::Target: BroadcasterInterface,
950 ES::Target: EntropySource,
951 NS::Target: NodeSigner,
952 SP::Target: SignerProvider,
953 F::Target: FeeEstimator,
957 type Watch = M::Target;
959 type Broadcaster = T::Target;
961 type EntropySource = ES::Target;
963 type NodeSigner = NS::Target;
965 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
966 type SignerProvider = SP::Target;
968 type FeeEstimator = F::Target;
970 type Router = R::Target;
972 type Logger = L::Target;
974 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
977 /// Manager which keeps track of a number of channels and sends messages to the appropriate
978 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
980 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
981 /// to individual Channels.
983 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
984 /// all peers during write/read (though does not modify this instance, only the instance being
985 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
986 /// called [`funding_transaction_generated`] for outbound channels) being closed.
988 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
989 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
990 /// [`ChannelMonitorUpdate`] before returning from
991 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
992 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
993 /// `ChannelManager` operations from occurring during the serialization process). If the
994 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
995 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
996 /// will be lost (modulo on-chain transaction fees).
998 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
999 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1000 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1002 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1003 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1004 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1005 /// offline for a full minute. In order to track this, you must call
1006 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1008 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1009 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1010 /// not have a channel with being unable to connect to us or open new channels with us if we have
1011 /// many peers with unfunded channels.
1013 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1014 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1015 /// never limited. Please ensure you limit the count of such channels yourself.
1017 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1018 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1019 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1020 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1021 /// you're using lightning-net-tokio.
1023 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1024 /// [`funding_created`]: msgs::FundingCreated
1025 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1026 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1027 /// [`update_channel`]: chain::Watch::update_channel
1028 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1029 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1030 /// [`read`]: ReadableArgs::read
1033 // The tree structure below illustrates the lock order requirements for the different locks of the
1034 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1035 // and should then be taken in the order of the lowest to the highest level in the tree.
1036 // Note that locks on different branches shall not be taken at the same time, as doing so will
1037 // create a new lock order for those specific locks in the order they were taken.
1041 // `pending_offers_messages`
1043 // `total_consistency_lock`
1045 // |__`forward_htlcs`
1047 // | |__`pending_intercepted_htlcs`
1049 // |__`per_peer_state`
1051 // |__`pending_inbound_payments`
1053 // |__`claimable_payments`
1055 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1061 // |__`short_to_chan_info`
1063 // |__`outbound_scid_aliases`
1067 // |__`pending_events`
1069 // |__`pending_background_events`
1071 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1073 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1074 T::Target: BroadcasterInterface,
1075 ES::Target: EntropySource,
1076 NS::Target: NodeSigner,
1077 SP::Target: SignerProvider,
1078 F::Target: FeeEstimator,
1082 default_configuration: UserConfig,
1083 chain_hash: ChainHash,
1084 fee_estimator: LowerBoundedFeeEstimator<F>,
1090 /// See `ChannelManager` struct-level documentation for lock order requirements.
1092 pub(super) best_block: RwLock<BestBlock>,
1094 best_block: RwLock<BestBlock>,
1095 secp_ctx: Secp256k1<secp256k1::All>,
1097 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1098 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1099 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1100 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1102 /// See `ChannelManager` struct-level documentation for lock order requirements.
1103 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1105 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1106 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1107 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1108 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1109 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1110 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1111 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1112 /// after reloading from disk while replaying blocks against ChannelMonitors.
1114 /// See `PendingOutboundPayment` documentation for more info.
1116 /// See `ChannelManager` struct-level documentation for lock order requirements.
1117 pending_outbound_payments: OutboundPayments,
1119 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1121 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1122 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1123 /// and via the classic SCID.
1125 /// Note that no consistency guarantees are made about the existence of a channel with the
1126 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1128 /// See `ChannelManager` struct-level documentation for lock order requirements.
1130 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1132 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1133 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1134 /// until the user tells us what we should do with them.
1136 /// See `ChannelManager` struct-level documentation for lock order requirements.
1137 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1139 /// The sets of payments which are claimable or currently being claimed. See
1140 /// [`ClaimablePayments`]' individual field docs for more info.
1142 /// See `ChannelManager` struct-level documentation for lock order requirements.
1143 claimable_payments: Mutex<ClaimablePayments>,
1145 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1146 /// and some closed channels which reached a usable state prior to being closed. This is used
1147 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1148 /// active channel list on load.
1150 /// See `ChannelManager` struct-level documentation for lock order requirements.
1151 outbound_scid_aliases: Mutex<HashSet<u64>>,
1153 /// `channel_id` -> `counterparty_node_id`.
1155 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1156 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1157 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1159 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1160 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1161 /// the handling of the events.
1163 /// Note that no consistency guarantees are made about the existence of a peer with the
1164 /// `counterparty_node_id` in our other maps.
1167 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1168 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1169 /// would break backwards compatability.
1170 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1171 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1172 /// required to access the channel with the `counterparty_node_id`.
1174 /// See `ChannelManager` struct-level documentation for lock order requirements.
1175 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1177 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1179 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1180 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1181 /// confirmation depth.
1183 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1184 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1185 /// channel with the `channel_id` in our other maps.
1187 /// See `ChannelManager` struct-level documentation for lock order requirements.
1189 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1191 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1193 our_network_pubkey: PublicKey,
1195 inbound_payment_key: inbound_payment::ExpandedKey,
1197 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1198 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1199 /// we encrypt the namespace identifier using these bytes.
1201 /// [fake scids]: crate::util::scid_utils::fake_scid
1202 fake_scid_rand_bytes: [u8; 32],
1204 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1205 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1206 /// keeping additional state.
1207 probing_cookie_secret: [u8; 32],
1209 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1210 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1211 /// very far in the past, and can only ever be up to two hours in the future.
1212 highest_seen_timestamp: AtomicUsize,
1214 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1215 /// basis, as well as the peer's latest features.
1217 /// If we are connected to a peer we always at least have an entry here, even if no channels
1218 /// are currently open with that peer.
1220 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1221 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1224 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1226 /// See `ChannelManager` struct-level documentation for lock order requirements.
1227 #[cfg(not(any(test, feature = "_test_utils")))]
1228 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1229 #[cfg(any(test, feature = "_test_utils"))]
1230 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1232 /// The set of events which we need to give to the user to handle. In some cases an event may
1233 /// require some further action after the user handles it (currently only blocking a monitor
1234 /// update from being handed to the user to ensure the included changes to the channel state
1235 /// are handled by the user before they're persisted durably to disk). In that case, the second
1236 /// element in the tuple is set to `Some` with further details of the action.
1238 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1239 /// could be in the middle of being processed without the direct mutex held.
1241 /// See `ChannelManager` struct-level documentation for lock order requirements.
1242 #[cfg(not(any(test, feature = "_test_utils")))]
1243 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1244 #[cfg(any(test, feature = "_test_utils"))]
1245 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1247 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1248 pending_events_processor: AtomicBool,
1250 /// If we are running during init (either directly during the deserialization method or in
1251 /// block connection methods which run after deserialization but before normal operation) we
1252 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1253 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1254 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1256 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1258 /// See `ChannelManager` struct-level documentation for lock order requirements.
1260 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1261 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1262 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1263 /// Essentially just when we're serializing ourselves out.
1264 /// Taken first everywhere where we are making changes before any other locks.
1265 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1266 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1267 /// Notifier the lock contains sends out a notification when the lock is released.
1268 total_consistency_lock: RwLock<()>,
1269 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1270 /// received and the monitor has been persisted.
1272 /// This information does not need to be persisted as funding nodes can forget
1273 /// unfunded channels upon disconnection.
1274 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1276 background_events_processed_since_startup: AtomicBool,
1278 event_persist_notifier: Notifier,
1279 needs_persist_flag: AtomicBool,
1281 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1285 signer_provider: SP,
1290 /// Chain-related parameters used to construct a new `ChannelManager`.
1292 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1293 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1294 /// are not needed when deserializing a previously constructed `ChannelManager`.
1295 #[derive(Clone, Copy, PartialEq)]
1296 pub struct ChainParameters {
1297 /// The network for determining the `chain_hash` in Lightning messages.
1298 pub network: Network,
1300 /// The hash and height of the latest block successfully connected.
1302 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1303 pub best_block: BestBlock,
1306 #[derive(Copy, Clone, PartialEq)]
1310 SkipPersistHandleEvents,
1311 SkipPersistNoEvents,
1314 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1315 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1316 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1317 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1318 /// sending the aforementioned notification (since the lock being released indicates that the
1319 /// updates are ready for persistence).
1321 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1322 /// notify or not based on whether relevant changes have been made, providing a closure to
1323 /// `optionally_notify` which returns a `NotifyOption`.
1324 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1325 event_persist_notifier: &'a Notifier,
1326 needs_persist_flag: &'a AtomicBool,
1328 // We hold onto this result so the lock doesn't get released immediately.
1329 _read_guard: RwLockReadGuard<'a, ()>,
1332 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1333 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1334 /// events to handle.
1336 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1337 /// other cases where losing the changes on restart may result in a force-close or otherwise
1339 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1340 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1343 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1344 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1345 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1346 let force_notify = cm.get_cm().process_background_events();
1348 PersistenceNotifierGuard {
1349 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1350 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1351 should_persist: move || {
1352 // Pick the "most" action between `persist_check` and the background events
1353 // processing and return that.
1354 let notify = persist_check();
1355 match (notify, force_notify) {
1356 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1357 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1358 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1359 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1360 _ => NotifyOption::SkipPersistNoEvents,
1363 _read_guard: read_guard,
1367 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1368 /// [`ChannelManager::process_background_events`] MUST be called first (or
1369 /// [`Self::optionally_notify`] used).
1370 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1371 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1372 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1374 PersistenceNotifierGuard {
1375 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1376 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1377 should_persist: persist_check,
1378 _read_guard: read_guard,
1383 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1384 fn drop(&mut self) {
1385 match (self.should_persist)() {
1386 NotifyOption::DoPersist => {
1387 self.needs_persist_flag.store(true, Ordering::Release);
1388 self.event_persist_notifier.notify()
1390 NotifyOption::SkipPersistHandleEvents =>
1391 self.event_persist_notifier.notify(),
1392 NotifyOption::SkipPersistNoEvents => {},
1397 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1398 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1400 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1402 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1403 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1404 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1405 /// the maximum required amount in lnd as of March 2021.
1406 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1408 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1409 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1411 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1413 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1414 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1415 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1416 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1417 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1418 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1419 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1420 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1421 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1422 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1423 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1424 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1425 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1427 /// Minimum CLTV difference between the current block height and received inbound payments.
1428 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1430 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1431 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1432 // a payment was being routed, so we add an extra block to be safe.
1433 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1435 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1436 // ie that if the next-hop peer fails the HTLC within
1437 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1438 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1439 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1440 // LATENCY_GRACE_PERIOD_BLOCKS.
1443 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1445 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1446 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1449 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1451 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1452 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1454 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1455 /// until we mark the channel disabled and gossip the update.
1456 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1458 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1459 /// we mark the channel enabled and gossip the update.
1460 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1462 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1463 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1464 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1465 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1467 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1468 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1469 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1471 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1472 /// many peers we reject new (inbound) connections.
1473 const MAX_NO_CHANNEL_PEERS: usize = 250;
1475 /// Information needed for constructing an invoice route hint for this channel.
1476 #[derive(Clone, Debug, PartialEq)]
1477 pub struct CounterpartyForwardingInfo {
1478 /// Base routing fee in millisatoshis.
1479 pub fee_base_msat: u32,
1480 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1481 pub fee_proportional_millionths: u32,
1482 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1483 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1484 /// `cltv_expiry_delta` for more details.
1485 pub cltv_expiry_delta: u16,
1488 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1489 /// to better separate parameters.
1490 #[derive(Clone, Debug, PartialEq)]
1491 pub struct ChannelCounterparty {
1492 /// The node_id of our counterparty
1493 pub node_id: PublicKey,
1494 /// The Features the channel counterparty provided upon last connection.
1495 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1496 /// many routing-relevant features are present in the init context.
1497 pub features: InitFeatures,
1498 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1499 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1500 /// claiming at least this value on chain.
1502 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1504 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1505 pub unspendable_punishment_reserve: u64,
1506 /// Information on the fees and requirements that the counterparty requires when forwarding
1507 /// payments to us through this channel.
1508 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1509 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1510 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1511 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1512 pub outbound_htlc_minimum_msat: Option<u64>,
1513 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1514 pub outbound_htlc_maximum_msat: Option<u64>,
1517 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1518 #[derive(Clone, Debug, PartialEq)]
1519 pub struct ChannelDetails {
1520 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1521 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1522 /// Note that this means this value is *not* persistent - it can change once during the
1523 /// lifetime of the channel.
1524 pub channel_id: ChannelId,
1525 /// Parameters which apply to our counterparty. See individual fields for more information.
1526 pub counterparty: ChannelCounterparty,
1527 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1528 /// our counterparty already.
1530 /// Note that, if this has been set, `channel_id` will be equivalent to
1531 /// `funding_txo.unwrap().to_channel_id()`.
1532 pub funding_txo: Option<OutPoint>,
1533 /// The features which this channel operates with. See individual features for more info.
1535 /// `None` until negotiation completes and the channel type is finalized.
1536 pub channel_type: Option<ChannelTypeFeatures>,
1537 /// The position of the funding transaction in the chain. None if the funding transaction has
1538 /// not yet been confirmed and the channel fully opened.
1540 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1541 /// payments instead of this. See [`get_inbound_payment_scid`].
1543 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1544 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1546 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1547 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1548 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1549 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1550 /// [`confirmations_required`]: Self::confirmations_required
1551 pub short_channel_id: Option<u64>,
1552 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1553 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1554 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1557 /// This will be `None` as long as the channel is not available for routing outbound payments.
1559 /// [`short_channel_id`]: Self::short_channel_id
1560 /// [`confirmations_required`]: Self::confirmations_required
1561 pub outbound_scid_alias: Option<u64>,
1562 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1563 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1564 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1565 /// when they see a payment to be routed to us.
1567 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1568 /// previous values for inbound payment forwarding.
1570 /// [`short_channel_id`]: Self::short_channel_id
1571 pub inbound_scid_alias: Option<u64>,
1572 /// The value, in satoshis, of this channel as appears in the funding output
1573 pub channel_value_satoshis: u64,
1574 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1575 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1576 /// this value on chain.
1578 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1580 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1582 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1583 pub unspendable_punishment_reserve: Option<u64>,
1584 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1585 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1586 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1587 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1588 /// serialized with LDK versions prior to 0.0.113.
1590 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1591 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1592 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1593 pub user_channel_id: u128,
1594 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1595 /// which is applied to commitment and HTLC transactions.
1597 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1598 pub feerate_sat_per_1000_weight: Option<u32>,
1599 /// Our total balance. This is the amount we would get if we close the channel.
1600 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1601 /// amount is not likely to be recoverable on close.
1603 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1604 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1605 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1606 /// This does not consider any on-chain fees.
1608 /// See also [`ChannelDetails::outbound_capacity_msat`]
1609 pub balance_msat: u64,
1610 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1611 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1612 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1613 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1615 /// See also [`ChannelDetails::balance_msat`]
1617 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1618 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1619 /// should be able to spend nearly this amount.
1620 pub outbound_capacity_msat: u64,
1621 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1622 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1623 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1624 /// to use a limit as close as possible to the HTLC limit we can currently send.
1626 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1627 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1628 pub next_outbound_htlc_limit_msat: u64,
1629 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1630 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1631 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1632 /// route which is valid.
1633 pub next_outbound_htlc_minimum_msat: u64,
1634 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1635 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1636 /// available for inclusion in new inbound HTLCs).
1637 /// Note that there are some corner cases not fully handled here, so the actual available
1638 /// inbound capacity may be slightly higher than this.
1640 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1641 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1642 /// However, our counterparty should be able to spend nearly this amount.
1643 pub inbound_capacity_msat: u64,
1644 /// The number of required confirmations on the funding transaction before the funding will be
1645 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1646 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1647 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1648 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1650 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1652 /// [`is_outbound`]: ChannelDetails::is_outbound
1653 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1654 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1655 pub confirmations_required: Option<u32>,
1656 /// The current number of confirmations on the funding transaction.
1658 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1659 pub confirmations: Option<u32>,
1660 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1661 /// until we can claim our funds after we force-close the channel. During this time our
1662 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1663 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1664 /// time to claim our non-HTLC-encumbered funds.
1666 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1667 pub force_close_spend_delay: Option<u16>,
1668 /// True if the channel was initiated (and thus funded) by us.
1669 pub is_outbound: bool,
1670 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1671 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1672 /// required confirmation count has been reached (and we were connected to the peer at some
1673 /// point after the funding transaction received enough confirmations). The required
1674 /// confirmation count is provided in [`confirmations_required`].
1676 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1677 pub is_channel_ready: bool,
1678 /// The stage of the channel's shutdown.
1679 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1680 pub channel_shutdown_state: Option<ChannelShutdownState>,
1681 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1682 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1684 /// This is a strict superset of `is_channel_ready`.
1685 pub is_usable: bool,
1686 /// True if this channel is (or will be) publicly-announced.
1687 pub is_public: bool,
1688 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1689 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1690 pub inbound_htlc_minimum_msat: Option<u64>,
1691 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1692 pub inbound_htlc_maximum_msat: Option<u64>,
1693 /// Set of configurable parameters that affect channel operation.
1695 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1696 pub config: Option<ChannelConfig>,
1699 impl ChannelDetails {
1700 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1701 /// This should be used for providing invoice hints or in any other context where our
1702 /// counterparty will forward a payment to us.
1704 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1705 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1706 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1707 self.inbound_scid_alias.or(self.short_channel_id)
1710 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1711 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1712 /// we're sending or forwarding a payment outbound over this channel.
1714 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1715 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1716 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1717 self.short_channel_id.or(self.outbound_scid_alias)
1720 fn from_channel_context<SP: Deref, F: Deref>(
1721 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1722 fee_estimator: &LowerBoundedFeeEstimator<F>
1725 SP::Target: SignerProvider,
1726 F::Target: FeeEstimator
1728 let balance = context.get_available_balances(fee_estimator);
1729 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1730 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1732 channel_id: context.channel_id(),
1733 counterparty: ChannelCounterparty {
1734 node_id: context.get_counterparty_node_id(),
1735 features: latest_features,
1736 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1737 forwarding_info: context.counterparty_forwarding_info(),
1738 // Ensures that we have actually received the `htlc_minimum_msat` value
1739 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1740 // message (as they are always the first message from the counterparty).
1741 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1742 // default `0` value set by `Channel::new_outbound`.
1743 outbound_htlc_minimum_msat: if context.have_received_message() {
1744 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1745 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1747 funding_txo: context.get_funding_txo(),
1748 // Note that accept_channel (or open_channel) is always the first message, so
1749 // `have_received_message` indicates that type negotiation has completed.
1750 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1751 short_channel_id: context.get_short_channel_id(),
1752 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1753 inbound_scid_alias: context.latest_inbound_scid_alias(),
1754 channel_value_satoshis: context.get_value_satoshis(),
1755 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1756 unspendable_punishment_reserve: to_self_reserve_satoshis,
1757 balance_msat: balance.balance_msat,
1758 inbound_capacity_msat: balance.inbound_capacity_msat,
1759 outbound_capacity_msat: balance.outbound_capacity_msat,
1760 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1761 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1762 user_channel_id: context.get_user_id(),
1763 confirmations_required: context.minimum_depth(),
1764 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1765 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1766 is_outbound: context.is_outbound(),
1767 is_channel_ready: context.is_usable(),
1768 is_usable: context.is_live(),
1769 is_public: context.should_announce(),
1770 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1771 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1772 config: Some(context.config()),
1773 channel_shutdown_state: Some(context.shutdown_state()),
1778 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1779 /// Further information on the details of the channel shutdown.
1780 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1781 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1782 /// the channel will be removed shortly.
1783 /// Also note, that in normal operation, peers could disconnect at any of these states
1784 /// and require peer re-connection before making progress onto other states
1785 pub enum ChannelShutdownState {
1786 /// Channel has not sent or received a shutdown message.
1788 /// Local node has sent a shutdown message for this channel.
1790 /// Shutdown message exchanges have concluded and the channels are in the midst of
1791 /// resolving all existing open HTLCs before closing can continue.
1793 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1794 NegotiatingClosingFee,
1795 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1796 /// to drop the channel.
1800 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1801 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1802 #[derive(Debug, PartialEq)]
1803 pub enum RecentPaymentDetails {
1804 /// When an invoice was requested and thus a payment has not yet been sent.
1806 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1807 /// a payment and ensure idempotency in LDK.
1808 payment_id: PaymentId,
1810 /// When a payment is still being sent and awaiting successful delivery.
1812 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1813 /// a payment and ensure idempotency in LDK.
1814 payment_id: PaymentId,
1815 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1817 payment_hash: PaymentHash,
1818 /// Total amount (in msat, excluding fees) across all paths for this payment,
1819 /// not just the amount currently inflight.
1822 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1823 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1824 /// payment is removed from tracking.
1826 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1827 /// a payment and ensure idempotency in LDK.
1828 payment_id: PaymentId,
1829 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1830 /// made before LDK version 0.0.104.
1831 payment_hash: Option<PaymentHash>,
1833 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1834 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1835 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1837 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1838 /// a payment and ensure idempotency in LDK.
1839 payment_id: PaymentId,
1840 /// Hash of the payment that we have given up trying to send.
1841 payment_hash: PaymentHash,
1845 /// Route hints used in constructing invoices for [phantom node payents].
1847 /// [phantom node payments]: crate::sign::PhantomKeysManager
1849 pub struct PhantomRouteHints {
1850 /// The list of channels to be included in the invoice route hints.
1851 pub channels: Vec<ChannelDetails>,
1852 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1854 pub phantom_scid: u64,
1855 /// The pubkey of the real backing node that would ultimately receive the payment.
1856 pub real_node_pubkey: PublicKey,
1859 macro_rules! handle_error {
1860 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1861 // In testing, ensure there are no deadlocks where the lock is already held upon
1862 // entering the macro.
1863 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1864 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1868 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1869 let mut msg_events = Vec::with_capacity(2);
1871 if let Some((shutdown_res, update_option)) = shutdown_finish {
1872 $self.finish_close_channel(shutdown_res);
1873 if let Some(update) = update_option {
1874 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1878 if let Some((channel_id, user_channel_id)) = chan_id {
1879 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1880 channel_id, user_channel_id,
1881 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1882 counterparty_node_id: Some($counterparty_node_id),
1883 channel_capacity_sats: channel_capacity,
1888 log_error!($self.logger, "{}", err.err);
1889 if let msgs::ErrorAction::IgnoreError = err.action {
1891 msg_events.push(events::MessageSendEvent::HandleError {
1892 node_id: $counterparty_node_id,
1893 action: err.action.clone()
1897 if !msg_events.is_empty() {
1898 let per_peer_state = $self.per_peer_state.read().unwrap();
1899 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1900 let mut peer_state = peer_state_mutex.lock().unwrap();
1901 peer_state.pending_msg_events.append(&mut msg_events);
1905 // Return error in case higher-API need one
1910 ($self: ident, $internal: expr) => {
1913 Err((chan, msg_handle_err)) => {
1914 let counterparty_node_id = chan.get_counterparty_node_id();
1915 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1921 macro_rules! update_maps_on_chan_removal {
1922 ($self: expr, $channel_context: expr) => {{
1923 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1924 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1925 if let Some(short_id) = $channel_context.get_short_channel_id() {
1926 short_to_chan_info.remove(&short_id);
1928 // If the channel was never confirmed on-chain prior to its closure, remove the
1929 // outbound SCID alias we used for it from the collision-prevention set. While we
1930 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1931 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1932 // opening a million channels with us which are closed before we ever reach the funding
1934 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1935 debug_assert!(alias_removed);
1937 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1941 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1942 macro_rules! convert_chan_phase_err {
1943 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1945 ChannelError::Warn(msg) => {
1946 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1948 ChannelError::Ignore(msg) => {
1949 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1951 ChannelError::Close(msg) => {
1952 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1953 update_maps_on_chan_removal!($self, $channel.context);
1954 let shutdown_res = $channel.context.force_shutdown(true);
1955 let user_id = $channel.context.get_user_id();
1956 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1958 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1959 shutdown_res, $channel_update, channel_capacity_satoshis))
1963 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1964 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1966 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1967 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1969 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1970 match $channel_phase {
1971 ChannelPhase::Funded(channel) => {
1972 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1974 ChannelPhase::UnfundedOutboundV1(channel) => {
1975 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1977 ChannelPhase::UnfundedInboundV1(channel) => {
1978 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1984 macro_rules! break_chan_phase_entry {
1985 ($self: ident, $res: expr, $entry: expr) => {
1989 let key = *$entry.key();
1990 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1992 $entry.remove_entry();
2000 macro_rules! try_chan_phase_entry {
2001 ($self: ident, $res: expr, $entry: expr) => {
2005 let key = *$entry.key();
2006 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2008 $entry.remove_entry();
2016 macro_rules! remove_channel_phase {
2017 ($self: expr, $entry: expr) => {
2019 let channel = $entry.remove_entry().1;
2020 update_maps_on_chan_removal!($self, &channel.context());
2026 macro_rules! send_channel_ready {
2027 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2028 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2029 node_id: $channel.context.get_counterparty_node_id(),
2030 msg: $channel_ready_msg,
2032 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2033 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2034 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2035 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2036 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2037 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2038 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2039 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2040 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2041 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2046 macro_rules! emit_channel_pending_event {
2047 ($locked_events: expr, $channel: expr) => {
2048 if $channel.context.should_emit_channel_pending_event() {
2049 $locked_events.push_back((events::Event::ChannelPending {
2050 channel_id: $channel.context.channel_id(),
2051 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2052 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2053 user_channel_id: $channel.context.get_user_id(),
2054 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2056 $channel.context.set_channel_pending_event_emitted();
2061 macro_rules! emit_channel_ready_event {
2062 ($locked_events: expr, $channel: expr) => {
2063 if $channel.context.should_emit_channel_ready_event() {
2064 debug_assert!($channel.context.channel_pending_event_emitted());
2065 $locked_events.push_back((events::Event::ChannelReady {
2066 channel_id: $channel.context.channel_id(),
2067 user_channel_id: $channel.context.get_user_id(),
2068 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2069 channel_type: $channel.context.get_channel_type().clone(),
2071 $channel.context.set_channel_ready_event_emitted();
2076 macro_rules! handle_monitor_update_completion {
2077 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2078 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2079 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2080 $self.best_block.read().unwrap().height());
2081 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2082 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2083 // We only send a channel_update in the case where we are just now sending a
2084 // channel_ready and the channel is in a usable state. We may re-send a
2085 // channel_update later through the announcement_signatures process for public
2086 // channels, but there's no reason not to just inform our counterparty of our fees
2088 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2089 Some(events::MessageSendEvent::SendChannelUpdate {
2090 node_id: counterparty_node_id,
2096 let update_actions = $peer_state.monitor_update_blocked_actions
2097 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2099 let htlc_forwards = $self.handle_channel_resumption(
2100 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2101 updates.commitment_update, updates.order, updates.accepted_htlcs,
2102 updates.funding_broadcastable, updates.channel_ready,
2103 updates.announcement_sigs);
2104 if let Some(upd) = channel_update {
2105 $peer_state.pending_msg_events.push(upd);
2108 let channel_id = $chan.context.channel_id();
2109 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2110 core::mem::drop($peer_state_lock);
2111 core::mem::drop($per_peer_state_lock);
2113 // If the channel belongs to a batch funding transaction, the progress of the batch
2114 // should be updated as we have received funding_signed and persisted the monitor.
2115 if let Some(txid) = unbroadcasted_batch_funding_txid {
2116 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2117 let mut batch_completed = false;
2118 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2119 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2120 *chan_id == channel_id &&
2121 *pubkey == counterparty_node_id
2123 if let Some(channel_state) = channel_state {
2124 channel_state.2 = true;
2126 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2128 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2130 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2133 // When all channels in a batched funding transaction have become ready, it is not necessary
2134 // to track the progress of the batch anymore and the state of the channels can be updated.
2135 if batch_completed {
2136 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2137 let per_peer_state = $self.per_peer_state.read().unwrap();
2138 let mut batch_funding_tx = None;
2139 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2140 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2141 let mut peer_state = peer_state_mutex.lock().unwrap();
2142 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2143 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2144 chan.set_batch_ready();
2145 let mut pending_events = $self.pending_events.lock().unwrap();
2146 emit_channel_pending_event!(pending_events, chan);
2150 if let Some(tx) = batch_funding_tx {
2151 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2152 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2157 $self.handle_monitor_update_completion_actions(update_actions);
2159 if let Some(forwards) = htlc_forwards {
2160 $self.forward_htlcs(&mut [forwards][..]);
2162 $self.finalize_claims(updates.finalized_claimed_htlcs);
2163 for failure in updates.failed_htlcs.drain(..) {
2164 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2165 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2170 macro_rules! handle_new_monitor_update {
2171 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2172 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2174 ChannelMonitorUpdateStatus::UnrecoverableError => {
2175 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2176 log_error!($self.logger, "{}", err_str);
2177 panic!("{}", err_str);
2179 ChannelMonitorUpdateStatus::InProgress => {
2180 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2181 &$chan.context.channel_id());
2184 ChannelMonitorUpdateStatus::Completed => {
2190 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2191 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2192 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2194 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2195 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2196 .or_insert_with(Vec::new);
2197 // During startup, we push monitor updates as background events through to here in
2198 // order to replay updates that were in-flight when we shut down. Thus, we have to
2199 // filter for uniqueness here.
2200 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2201 .unwrap_or_else(|| {
2202 in_flight_updates.push($update);
2203 in_flight_updates.len() - 1
2205 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2206 handle_new_monitor_update!($self, update_res, $chan, _internal,
2208 let _ = in_flight_updates.remove(idx);
2209 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2210 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2216 macro_rules! process_events_body {
2217 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2218 let mut processed_all_events = false;
2219 while !processed_all_events {
2220 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2227 // We'll acquire our total consistency lock so that we can be sure no other
2228 // persists happen while processing monitor events.
2229 let _read_guard = $self.total_consistency_lock.read().unwrap();
2231 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2232 // ensure any startup-generated background events are handled first.
2233 result = $self.process_background_events();
2235 // TODO: This behavior should be documented. It's unintuitive that we query
2236 // ChannelMonitors when clearing other events.
2237 if $self.process_pending_monitor_events() {
2238 result = NotifyOption::DoPersist;
2242 let pending_events = $self.pending_events.lock().unwrap().clone();
2243 let num_events = pending_events.len();
2244 if !pending_events.is_empty() {
2245 result = NotifyOption::DoPersist;
2248 let mut post_event_actions = Vec::new();
2250 for (event, action_opt) in pending_events {
2251 $event_to_handle = event;
2253 if let Some(action) = action_opt {
2254 post_event_actions.push(action);
2259 let mut pending_events = $self.pending_events.lock().unwrap();
2260 pending_events.drain(..num_events);
2261 processed_all_events = pending_events.is_empty();
2262 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2263 // updated here with the `pending_events` lock acquired.
2264 $self.pending_events_processor.store(false, Ordering::Release);
2267 if !post_event_actions.is_empty() {
2268 $self.handle_post_event_actions(post_event_actions);
2269 // If we had some actions, go around again as we may have more events now
2270 processed_all_events = false;
2274 NotifyOption::DoPersist => {
2275 $self.needs_persist_flag.store(true, Ordering::Release);
2276 $self.event_persist_notifier.notify();
2278 NotifyOption::SkipPersistHandleEvents =>
2279 $self.event_persist_notifier.notify(),
2280 NotifyOption::SkipPersistNoEvents => {},
2286 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2288 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
2289 T::Target: BroadcasterInterface,
2290 ES::Target: EntropySource,
2291 NS::Target: NodeSigner,
2292 SP::Target: SignerProvider,
2293 F::Target: FeeEstimator,
2297 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2299 /// The current time or latest block header time can be provided as the `current_timestamp`.
2301 /// This is the main "logic hub" for all channel-related actions, and implements
2302 /// [`ChannelMessageHandler`].
2304 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2306 /// Users need to notify the new `ChannelManager` when a new block is connected or
2307 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2308 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2311 /// [`block_connected`]: chain::Listen::block_connected
2312 /// [`block_disconnected`]: chain::Listen::block_disconnected
2313 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2315 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2316 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2317 current_timestamp: u32,
2319 let mut secp_ctx = Secp256k1::new();
2320 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2321 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2322 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2324 default_configuration: config.clone(),
2325 chain_hash: ChainHash::using_genesis_block(params.network),
2326 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2331 best_block: RwLock::new(params.best_block),
2333 outbound_scid_aliases: Mutex::new(HashSet::new()),
2334 pending_inbound_payments: Mutex::new(HashMap::new()),
2335 pending_outbound_payments: OutboundPayments::new(),
2336 forward_htlcs: Mutex::new(HashMap::new()),
2337 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2338 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2339 id_to_peer: Mutex::new(HashMap::new()),
2340 short_to_chan_info: FairRwLock::new(HashMap::new()),
2342 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2345 inbound_payment_key: expanded_inbound_key,
2346 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2348 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2350 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2352 per_peer_state: FairRwLock::new(HashMap::new()),
2354 pending_events: Mutex::new(VecDeque::new()),
2355 pending_events_processor: AtomicBool::new(false),
2356 pending_background_events: Mutex::new(Vec::new()),
2357 total_consistency_lock: RwLock::new(()),
2358 background_events_processed_since_startup: AtomicBool::new(false),
2359 event_persist_notifier: Notifier::new(),
2360 needs_persist_flag: AtomicBool::new(false),
2361 funding_batch_states: Mutex::new(BTreeMap::new()),
2363 pending_offers_messages: Mutex::new(Vec::new()),
2373 /// Gets the current configuration applied to all new channels.
2374 pub fn get_current_default_configuration(&self) -> &UserConfig {
2375 &self.default_configuration
2378 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2379 let height = self.best_block.read().unwrap().height();
2380 let mut outbound_scid_alias = 0;
2383 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2384 outbound_scid_alias += 1;
2386 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2388 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2392 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2397 /// Creates a new outbound channel to the given remote node and with the given value.
2399 /// `user_channel_id` will be provided back as in
2400 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2401 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2402 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2403 /// is simply copied to events and otherwise ignored.
2405 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2406 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2408 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2409 /// generate a shutdown scriptpubkey or destination script set by
2410 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2412 /// Note that we do not check if you are currently connected to the given peer. If no
2413 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2414 /// the channel eventually being silently forgotten (dropped on reload).
2416 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2417 /// channel. Otherwise, a random one will be generated for you.
2419 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2420 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2421 /// [`ChannelDetails::channel_id`] until after
2422 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2423 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2424 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2426 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2427 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2428 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2429 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2430 if channel_value_satoshis < 1000 {
2431 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2434 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2435 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2436 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2438 let per_peer_state = self.per_peer_state.read().unwrap();
2440 let peer_state_mutex = per_peer_state.get(&their_network_key)
2441 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2443 let mut peer_state = peer_state_mutex.lock().unwrap();
2445 if let Some(temporary_channel_id) = temporary_channel_id {
2446 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2447 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2452 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2453 let their_features = &peer_state.latest_features;
2454 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2455 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2456 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2457 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2461 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2466 let res = channel.get_open_channel(self.chain_hash);
2468 let temporary_channel_id = channel.context.channel_id();
2469 match peer_state.channel_by_id.entry(temporary_channel_id) {
2470 hash_map::Entry::Occupied(_) => {
2472 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2474 panic!("RNG is bad???");
2477 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2480 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2481 node_id: their_network_key,
2484 Ok(temporary_channel_id)
2487 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2488 // Allocate our best estimate of the number of channels we have in the `res`
2489 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2490 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2491 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2492 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2493 // the same channel.
2494 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2496 let best_block_height = self.best_block.read().unwrap().height();
2497 let per_peer_state = self.per_peer_state.read().unwrap();
2498 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2499 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2500 let peer_state = &mut *peer_state_lock;
2501 res.extend(peer_state.channel_by_id.iter()
2502 .filter_map(|(chan_id, phase)| match phase {
2503 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2504 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2508 .map(|(_channel_id, channel)| {
2509 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2510 peer_state.latest_features.clone(), &self.fee_estimator)
2518 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2519 /// more information.
2520 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2521 // Allocate our best estimate of the number of channels we have in the `res`
2522 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2523 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2524 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2525 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2526 // the same channel.
2527 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2529 let best_block_height = self.best_block.read().unwrap().height();
2530 let per_peer_state = self.per_peer_state.read().unwrap();
2531 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2532 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2533 let peer_state = &mut *peer_state_lock;
2534 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2535 let details = ChannelDetails::from_channel_context(context, best_block_height,
2536 peer_state.latest_features.clone(), &self.fee_estimator);
2544 /// Gets the list of usable channels, in random order. Useful as an argument to
2545 /// [`Router::find_route`] to ensure non-announced channels are used.
2547 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2548 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2550 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2551 // Note we use is_live here instead of usable which leads to somewhat confused
2552 // internal/external nomenclature, but that's ok cause that's probably what the user
2553 // really wanted anyway.
2554 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2557 /// Gets the list of channels we have with a given counterparty, in random order.
2558 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2559 let best_block_height = self.best_block.read().unwrap().height();
2560 let per_peer_state = self.per_peer_state.read().unwrap();
2562 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2563 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2564 let peer_state = &mut *peer_state_lock;
2565 let features = &peer_state.latest_features;
2566 let context_to_details = |context| {
2567 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2569 return peer_state.channel_by_id
2571 .map(|(_, phase)| phase.context())
2572 .map(context_to_details)
2578 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2579 /// successful path, or have unresolved HTLCs.
2581 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2582 /// result of a crash. If such a payment exists, is not listed here, and an
2583 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2585 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2586 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2587 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2588 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2589 PendingOutboundPayment::AwaitingInvoice { .. } => {
2590 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2592 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2593 PendingOutboundPayment::InvoiceReceived { .. } => {
2594 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2596 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2597 Some(RecentPaymentDetails::Pending {
2598 payment_id: *payment_id,
2599 payment_hash: *payment_hash,
2600 total_msat: *total_msat,
2603 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2604 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2606 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2607 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2609 PendingOutboundPayment::Legacy { .. } => None
2614 /// Helper function that issues the channel close events
2615 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2616 let mut pending_events_lock = self.pending_events.lock().unwrap();
2617 match context.unbroadcasted_funding() {
2618 Some(transaction) => {
2619 pending_events_lock.push_back((events::Event::DiscardFunding {
2620 channel_id: context.channel_id(), transaction
2625 pending_events_lock.push_back((events::Event::ChannelClosed {
2626 channel_id: context.channel_id(),
2627 user_channel_id: context.get_user_id(),
2628 reason: closure_reason,
2629 counterparty_node_id: Some(context.get_counterparty_node_id()),
2630 channel_capacity_sats: Some(context.get_value_satoshis()),
2634 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2635 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2637 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2638 let shutdown_result;
2640 let per_peer_state = self.per_peer_state.read().unwrap();
2642 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2643 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2645 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2646 let peer_state = &mut *peer_state_lock;
2648 match peer_state.channel_by_id.entry(channel_id.clone()) {
2649 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2650 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2651 let funding_txo_opt = chan.context.get_funding_txo();
2652 let their_features = &peer_state.latest_features;
2653 let (shutdown_msg, mut monitor_update_opt, htlcs, local_shutdown_result) =
2654 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2655 failed_htlcs = htlcs;
2656 shutdown_result = local_shutdown_result;
2657 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
2659 // We can send the `shutdown` message before updating the `ChannelMonitor`
2660 // here as we don't need the monitor update to complete until we send a
2661 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2662 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2663 node_id: *counterparty_node_id,
2667 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2668 "We can't both complete shutdown and generate a monitor update");
2670 // Update the monitor with the shutdown script if necessary.
2671 if let Some(monitor_update) = monitor_update_opt.take() {
2672 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2673 peer_state_lock, peer_state, per_peer_state, chan);
2677 if chan.is_shutdown() {
2678 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2679 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2680 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2684 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2690 hash_map::Entry::Vacant(_) => {
2691 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2692 // it does not exist for this peer. Either way, we can attempt to force-close it.
2694 // An appropriate error will be returned for non-existence of the channel if that's the case.
2695 mem::drop(peer_state_lock);
2696 mem::drop(per_peer_state);
2697 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2702 for htlc_source in failed_htlcs.drain(..) {
2703 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2704 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2705 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2708 if let Some(shutdown_result) = shutdown_result {
2709 self.finish_close_channel(shutdown_result);
2715 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2716 /// will be accepted on the given channel, and after additional timeout/the closing of all
2717 /// pending HTLCs, the channel will be closed on chain.
2719 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2720 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2722 /// * If our counterparty is the channel initiator, we will require a channel closing
2723 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2724 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2725 /// counterparty to pay as much fee as they'd like, however.
2727 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2729 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2730 /// generate a shutdown scriptpubkey or destination script set by
2731 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2734 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2735 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2736 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2737 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2738 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2739 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2742 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2743 /// will be accepted on the given channel, and after additional timeout/the closing of all
2744 /// pending HTLCs, the channel will be closed on chain.
2746 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2747 /// the channel being closed or not:
2748 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2749 /// transaction. The upper-bound is set by
2750 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2751 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2752 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2753 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2754 /// will appear on a force-closure transaction, whichever is lower).
2756 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2757 /// Will fail if a shutdown script has already been set for this channel by
2758 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2759 /// also be compatible with our and the counterparty's features.
2761 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2763 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2764 /// generate a shutdown scriptpubkey or destination script set by
2765 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2768 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2769 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2770 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2771 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2772 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2775 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2776 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2777 #[cfg(debug_assertions)]
2778 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2779 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2782 log_debug!(self.logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2783 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2784 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2785 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2786 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2787 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2789 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2790 // There isn't anything we can do if we get an update failure - we're already
2791 // force-closing. The monitor update on the required in-memory copy should broadcast
2792 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2793 // ignore the result here.
2794 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2796 let mut shutdown_results = Vec::new();
2797 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2798 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2799 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2800 let per_peer_state = self.per_peer_state.read().unwrap();
2801 let mut has_uncompleted_channel = None;
2802 for (channel_id, counterparty_node_id, state) in affected_channels {
2803 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2804 let mut peer_state = peer_state_mutex.lock().unwrap();
2805 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2806 update_maps_on_chan_removal!(self, &chan.context());
2807 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2808 shutdown_results.push(chan.context_mut().force_shutdown(false));
2811 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2814 has_uncompleted_channel.unwrap_or(true),
2815 "Closing a batch where all channels have completed initial monitor update",
2818 for shutdown_result in shutdown_results.drain(..) {
2819 self.finish_close_channel(shutdown_result);
2823 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2824 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2825 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2826 -> Result<PublicKey, APIError> {
2827 let per_peer_state = self.per_peer_state.read().unwrap();
2828 let peer_state_mutex = per_peer_state.get(peer_node_id)
2829 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2830 let (update_opt, counterparty_node_id) = {
2831 let mut peer_state = peer_state_mutex.lock().unwrap();
2832 let closure_reason = if let Some(peer_msg) = peer_msg {
2833 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2835 ClosureReason::HolderForceClosed
2837 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2838 log_error!(self.logger, "Force-closing channel {}", channel_id);
2839 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2840 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2841 mem::drop(peer_state);
2842 mem::drop(per_peer_state);
2844 ChannelPhase::Funded(mut chan) => {
2845 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2846 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2848 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2849 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2850 // Unfunded channel has no update
2851 (None, chan_phase.context().get_counterparty_node_id())
2854 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2855 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2856 // N.B. that we don't send any channel close event here: we
2857 // don't have a user_channel_id, and we never sent any opening
2859 (None, *peer_node_id)
2861 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2864 if let Some(update) = update_opt {
2865 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2866 // not try to broadcast it via whatever peer we have.
2867 let per_peer_state = self.per_peer_state.read().unwrap();
2868 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2869 .ok_or(per_peer_state.values().next());
2870 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2871 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2872 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2878 Ok(counterparty_node_id)
2881 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2882 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2883 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2884 Ok(counterparty_node_id) => {
2885 let per_peer_state = self.per_peer_state.read().unwrap();
2886 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2887 let mut peer_state = peer_state_mutex.lock().unwrap();
2888 peer_state.pending_msg_events.push(
2889 events::MessageSendEvent::HandleError {
2890 node_id: counterparty_node_id,
2891 action: msgs::ErrorAction::DisconnectPeer {
2892 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2903 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2904 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2905 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2907 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2908 -> Result<(), APIError> {
2909 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2912 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2913 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2914 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2916 /// You can always get the latest local transaction(s) to broadcast from
2917 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2918 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2919 -> Result<(), APIError> {
2920 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2923 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2924 /// for each to the chain and rejecting new HTLCs on each.
2925 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2926 for chan in self.list_channels() {
2927 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2931 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2932 /// local transaction(s).
2933 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2934 for chan in self.list_channels() {
2935 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2939 fn decode_update_add_htlc_onion(
2940 &self, msg: &msgs::UpdateAddHTLC
2942 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
2944 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
2945 msg, &self.node_signer, &self.logger, &self.secp_ctx
2948 macro_rules! return_err {
2949 ($msg: expr, $err_code: expr, $data: expr) => {
2951 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2952 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2953 channel_id: msg.channel_id,
2954 htlc_id: msg.htlc_id,
2955 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2956 .get_encrypted_failure_packet(&shared_secret, &None),
2962 let NextPacketDetails {
2963 next_packet_pubkey, outgoing_amt_msat, outgoing_scid, outgoing_cltv_value
2964 } = match next_packet_details_opt {
2965 Some(next_packet_details) => next_packet_details,
2966 // it is a receive, so no need for outbound checks
2967 None => return Ok((next_hop, shared_secret, None)),
2970 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
2971 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
2972 if let Some((err, mut code, chan_update)) = loop {
2973 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
2974 let forwarding_chan_info_opt = match id_option {
2975 None => { // unknown_next_peer
2976 // Note that this is likely a timing oracle for detecting whether an scid is a
2977 // phantom or an intercept.
2978 if (self.default_configuration.accept_intercept_htlcs &&
2979 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
2980 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
2984 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2987 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2989 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2990 let per_peer_state = self.per_peer_state.read().unwrap();
2991 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2992 if peer_state_mutex_opt.is_none() {
2993 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2995 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2996 let peer_state = &mut *peer_state_lock;
2997 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
2998 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3001 // Channel was removed. The short_to_chan_info and channel_by_id maps
3002 // have no consistency guarantees.
3003 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3007 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3008 // Note that the behavior here should be identical to the above block - we
3009 // should NOT reveal the existence or non-existence of a private channel if
3010 // we don't allow forwards outbound over them.
3011 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3013 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3014 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3015 // "refuse to forward unless the SCID alias was used", so we pretend
3016 // we don't have the channel here.
3017 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3019 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3021 // Note that we could technically not return an error yet here and just hope
3022 // that the connection is reestablished or monitor updated by the time we get
3023 // around to doing the actual forward, but better to fail early if we can and
3024 // hopefully an attacker trying to path-trace payments cannot make this occur
3025 // on a small/per-node/per-channel scale.
3026 if !chan.context.is_live() { // channel_disabled
3027 // If the channel_update we're going to return is disabled (i.e. the
3028 // peer has been disabled for some time), return `channel_disabled`,
3029 // otherwise return `temporary_channel_failure`.
3030 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3031 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3033 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3036 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3037 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3039 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3040 break Some((err, code, chan_update_opt));
3047 let cur_height = self.best_block.read().unwrap().height() + 1;
3049 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
3050 cur_height, outgoing_cltv_value, msg.cltv_expiry
3052 if code & 0x1000 != 0 && chan_update_opt.is_none() {
3053 // We really should set `incorrect_cltv_expiry` here but as we're not
3054 // forwarding over a real channel we can't generate a channel_update
3055 // for it. Instead we just return a generic temporary_node_failure.
3056 break Some((err_msg, 0x2000 | 2, None))
3058 let chan_update_opt = if code & 0x1000 != 0 { chan_update_opt } else { None };
3059 break Some((err_msg, code, chan_update_opt));
3065 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3066 if let Some(chan_update) = chan_update {
3067 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3068 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3070 else if code == 0x1000 | 13 {
3071 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3073 else if code == 0x1000 | 20 {
3074 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3075 0u16.write(&mut res).expect("Writes cannot fail");
3077 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3078 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3079 chan_update.write(&mut res).expect("Writes cannot fail");
3080 } else if code & 0x1000 == 0x1000 {
3081 // If we're trying to return an error that requires a `channel_update` but
3082 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3083 // generate an update), just use the generic "temporary_node_failure"
3087 return_err!(err, code, &res.0[..]);
3089 Ok((next_hop, shared_secret, Some(next_packet_pubkey)))
3092 fn construct_pending_htlc_status<'a>(
3093 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3094 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3095 ) -> PendingHTLCStatus {
3096 macro_rules! return_err {
3097 ($msg: expr, $err_code: expr, $data: expr) => {
3099 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3100 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3101 channel_id: msg.channel_id,
3102 htlc_id: msg.htlc_id,
3103 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3104 .get_encrypted_failure_packet(&shared_secret, &None),
3110 onion_utils::Hop::Receive(next_hop_data) => {
3112 let current_height: u32 = self.best_block.read().unwrap().height();
3113 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3114 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3115 current_height, self.default_configuration.accept_mpp_keysend)
3118 // Note that we could obviously respond immediately with an update_fulfill_htlc
3119 // message, however that would leak that we are the recipient of this payment, so
3120 // instead we stay symmetric with the forwarding case, only responding (after a
3121 // delay) once they've send us a commitment_signed!
3122 PendingHTLCStatus::Forward(info)
3124 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3127 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3128 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3129 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3130 Ok(info) => PendingHTLCStatus::Forward(info),
3131 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3137 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3138 /// public, and thus should be called whenever the result is going to be passed out in a
3139 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3141 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3142 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3143 /// storage and the `peer_state` lock has been dropped.
3145 /// [`channel_update`]: msgs::ChannelUpdate
3146 /// [`internal_closing_signed`]: Self::internal_closing_signed
3147 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3148 if !chan.context.should_announce() {
3149 return Err(LightningError {
3150 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3151 action: msgs::ErrorAction::IgnoreError
3154 if chan.context.get_short_channel_id().is_none() {
3155 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3157 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3158 self.get_channel_update_for_unicast(chan)
3161 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3162 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3163 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3164 /// provided evidence that they know about the existence of the channel.
3166 /// Note that through [`internal_closing_signed`], this function is called without the
3167 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3168 /// removed from the storage and the `peer_state` lock has been dropped.
3170 /// [`channel_update`]: msgs::ChannelUpdate
3171 /// [`internal_closing_signed`]: Self::internal_closing_signed
3172 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3173 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3174 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3175 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3179 self.get_channel_update_for_onion(short_channel_id, chan)
3182 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3183 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3184 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3186 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3187 ChannelUpdateStatus::Enabled => true,
3188 ChannelUpdateStatus::DisabledStaged(_) => true,
3189 ChannelUpdateStatus::Disabled => false,
3190 ChannelUpdateStatus::EnabledStaged(_) => false,
3193 let unsigned = msgs::UnsignedChannelUpdate {
3194 chain_hash: self.chain_hash,
3196 timestamp: chan.context.get_update_time_counter(),
3197 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3198 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3199 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3200 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3201 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3202 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3203 excess_data: Vec::new(),
3205 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3206 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3207 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3209 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3211 Ok(msgs::ChannelUpdate {
3218 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3219 let _lck = self.total_consistency_lock.read().unwrap();
3220 self.send_payment_along_path(SendAlongPathArgs {
3221 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3226 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3227 let SendAlongPathArgs {
3228 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3231 // The top-level caller should hold the total_consistency_lock read lock.
3232 debug_assert!(self.total_consistency_lock.try_write().is_err());
3234 log_trace!(self.logger,
3235 "Attempting to send payment with payment hash {} along path with next hop {}",
3236 payment_hash, path.hops.first().unwrap().short_channel_id);
3237 let prng_seed = self.entropy_source.get_secure_random_bytes();
3238 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3240 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3241 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3242 payment_hash, keysend_preimage, prng_seed
3245 let err: Result<(), _> = loop {
3246 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3247 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3248 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3251 let per_peer_state = self.per_peer_state.read().unwrap();
3252 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3253 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3254 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3255 let peer_state = &mut *peer_state_lock;
3256 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3257 match chan_phase_entry.get_mut() {
3258 ChannelPhase::Funded(chan) => {
3259 if !chan.context.is_live() {
3260 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3262 let funding_txo = chan.context.get_funding_txo().unwrap();
3263 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3264 htlc_cltv, HTLCSource::OutboundRoute {
3266 session_priv: session_priv.clone(),
3267 first_hop_htlc_msat: htlc_msat,
3269 }, onion_packet, None, &self.fee_estimator, &self.logger);
3270 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3271 Some(monitor_update) => {
3272 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3274 // Note that MonitorUpdateInProgress here indicates (per function
3275 // docs) that we will resend the commitment update once monitor
3276 // updating completes. Therefore, we must return an error
3277 // indicating that it is unsafe to retry the payment wholesale,
3278 // which we do in the send_payment check for
3279 // MonitorUpdateInProgress, below.
3280 return Err(APIError::MonitorUpdateInProgress);
3288 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3291 // The channel was likely removed after we fetched the id from the
3292 // `short_to_chan_info` map, but before we successfully locked the
3293 // `channel_by_id` map.
3294 // This can occur as no consistency guarantees exists between the two maps.
3295 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3300 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3301 Ok(_) => unreachable!(),
3303 Err(APIError::ChannelUnavailable { err: e.err })
3308 /// Sends a payment along a given route.
3310 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3311 /// fields for more info.
3313 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3314 /// [`PeerManager::process_events`]).
3316 /// # Avoiding Duplicate Payments
3318 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3319 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3320 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3321 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3322 /// second payment with the same [`PaymentId`].
3324 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3325 /// tracking of payments, including state to indicate once a payment has completed. Because you
3326 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3327 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3328 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3330 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3331 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3332 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3333 /// [`ChannelManager::list_recent_payments`] for more information.
3335 /// # Possible Error States on [`PaymentSendFailure`]
3337 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3338 /// each entry matching the corresponding-index entry in the route paths, see
3339 /// [`PaymentSendFailure`] for more info.
3341 /// In general, a path may raise:
3342 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3343 /// node public key) is specified.
3344 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3345 /// closed, doesn't exist, or the peer is currently disconnected.
3346 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3347 /// relevant updates.
3349 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3350 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3351 /// different route unless you intend to pay twice!
3353 /// [`RouteHop`]: crate::routing::router::RouteHop
3354 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3355 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3356 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3357 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3358 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3359 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3360 let best_block_height = self.best_block.read().unwrap().height();
3361 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3362 self.pending_outbound_payments
3363 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3364 &self.entropy_source, &self.node_signer, best_block_height,
3365 |args| self.send_payment_along_path(args))
3368 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3369 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3370 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3371 let best_block_height = self.best_block.read().unwrap().height();
3372 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3373 self.pending_outbound_payments
3374 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3375 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3376 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3377 &self.pending_events, |args| self.send_payment_along_path(args))
3381 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3382 let best_block_height = self.best_block.read().unwrap().height();
3383 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3384 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3385 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3386 best_block_height, |args| self.send_payment_along_path(args))
3390 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3391 let best_block_height = self.best_block.read().unwrap().height();
3392 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3396 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3397 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3400 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3401 let best_block_height = self.best_block.read().unwrap().height();
3402 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3403 self.pending_outbound_payments
3404 .send_payment_for_bolt12_invoice(
3405 invoice, payment_id, &self.router, self.list_usable_channels(),
3406 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3407 best_block_height, &self.logger, &self.pending_events,
3408 |args| self.send_payment_along_path(args)
3412 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3413 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3414 /// retries are exhausted.
3416 /// # Event Generation
3418 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3419 /// as there are no remaining pending HTLCs for this payment.
3421 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3422 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3423 /// determine the ultimate status of a payment.
3425 /// # Requested Invoices
3427 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3428 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3429 /// and prevent any attempts at paying it once received. The other events may only be generated
3430 /// once the invoice has been received.
3432 /// # Restart Behavior
3434 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3435 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3436 /// [`Event::InvoiceRequestFailed`].
3438 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3439 pub fn abandon_payment(&self, payment_id: PaymentId) {
3440 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3441 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3444 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3445 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3446 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3447 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3448 /// never reach the recipient.
3450 /// See [`send_payment`] documentation for more details on the return value of this function
3451 /// and idempotency guarantees provided by the [`PaymentId`] key.
3453 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3454 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3456 /// [`send_payment`]: Self::send_payment
3457 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3458 let best_block_height = self.best_block.read().unwrap().height();
3459 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3460 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3461 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3462 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3465 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3466 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3468 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3471 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3472 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3473 let best_block_height = self.best_block.read().unwrap().height();
3474 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3475 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3476 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3477 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3478 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3481 /// Send a payment that is probing the given route for liquidity. We calculate the
3482 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3483 /// us to easily discern them from real payments.
3484 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3485 let best_block_height = self.best_block.read().unwrap().height();
3486 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3487 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3488 &self.entropy_source, &self.node_signer, best_block_height,
3489 |args| self.send_payment_along_path(args))
3492 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3495 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3496 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3499 /// Sends payment probes over all paths of a route that would be used to pay the given
3500 /// amount to the given `node_id`.
3502 /// See [`ChannelManager::send_preflight_probes`] for more information.
3503 pub fn send_spontaneous_preflight_probes(
3504 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3505 liquidity_limit_multiplier: Option<u64>,
3506 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3507 let payment_params =
3508 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3510 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3512 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3515 /// Sends payment probes over all paths of a route that would be used to pay a route found
3516 /// according to the given [`RouteParameters`].
3518 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3519 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3520 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3521 /// confirmation in a wallet UI.
3523 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3524 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3525 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3526 /// payment. To mitigate this issue, channels with available liquidity less than the required
3527 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3528 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3529 pub fn send_preflight_probes(
3530 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3531 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3532 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3534 let payer = self.get_our_node_id();
3535 let usable_channels = self.list_usable_channels();
3536 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3537 let inflight_htlcs = self.compute_inflight_htlcs();
3541 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3543 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3544 ProbeSendFailure::RouteNotFound
3547 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3549 let mut res = Vec::new();
3551 for mut path in route.paths {
3552 // If the last hop is probably an unannounced channel we refrain from probing all the
3553 // way through to the end and instead probe up to the second-to-last channel.
3554 while let Some(last_path_hop) = path.hops.last() {
3555 if last_path_hop.maybe_announced_channel {
3556 // We found a potentially announced last hop.
3559 // Drop the last hop, as it's likely unannounced.
3562 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3563 last_path_hop.short_channel_id
3565 let final_value_msat = path.final_value_msat();
3567 if let Some(new_last) = path.hops.last_mut() {
3568 new_last.fee_msat += final_value_msat;
3573 if path.hops.len() < 2 {
3576 "Skipped sending payment probe over path with less than two hops."
3581 if let Some(first_path_hop) = path.hops.first() {
3582 if let Some(first_hop) = first_hops.iter().find(|h| {
3583 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3585 let path_value = path.final_value_msat() + path.fee_msat();
3586 let used_liquidity =
3587 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3589 if first_hop.next_outbound_htlc_limit_msat
3590 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3592 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3595 *used_liquidity += path_value;
3600 res.push(self.send_probe(path).map_err(|e| {
3601 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3602 ProbeSendFailure::SendingFailed(e)
3609 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3610 /// which checks the correctness of the funding transaction given the associated channel.
3611 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3612 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3613 mut find_funding_output: FundingOutput,
3614 ) -> Result<(), APIError> {
3615 let per_peer_state = self.per_peer_state.read().unwrap();
3616 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3617 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3619 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3620 let peer_state = &mut *peer_state_lock;
3621 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3622 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3623 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3625 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3626 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3627 let channel_id = chan.context.channel_id();
3628 let user_id = chan.context.get_user_id();
3629 let shutdown_res = chan.context.force_shutdown(false);
3630 let channel_capacity = chan.context.get_value_satoshis();
3631 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3632 } else { unreachable!(); });
3634 Ok((chan, funding_msg)) => (chan, funding_msg),
3635 Err((chan, err)) => {
3636 mem::drop(peer_state_lock);
3637 mem::drop(per_peer_state);
3639 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3640 return Err(APIError::ChannelUnavailable {
3641 err: "Signer refused to sign the initial commitment transaction".to_owned()
3647 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3648 return Err(APIError::APIMisuseError {
3650 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3651 temporary_channel_id, counterparty_node_id),
3654 None => return Err(APIError::ChannelUnavailable {err: format!(
3655 "Channel with id {} not found for the passed counterparty node_id {}",
3656 temporary_channel_id, counterparty_node_id),
3660 if let Some(msg) = msg_opt {
3661 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3662 node_id: chan.context.get_counterparty_node_id(),
3666 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3667 hash_map::Entry::Occupied(_) => {
3668 panic!("Generated duplicate funding txid?");
3670 hash_map::Entry::Vacant(e) => {
3671 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3672 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3673 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3675 e.insert(ChannelPhase::Funded(chan));
3682 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3683 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3684 Ok(OutPoint { txid: tx.txid(), index: output_index })
3688 /// Call this upon creation of a funding transaction for the given channel.
3690 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3691 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3693 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3694 /// across the p2p network.
3696 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3697 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3699 /// May panic if the output found in the funding transaction is duplicative with some other
3700 /// channel (note that this should be trivially prevented by using unique funding transaction
3701 /// keys per-channel).
3703 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3704 /// counterparty's signature the funding transaction will automatically be broadcast via the
3705 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3707 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3708 /// not currently support replacing a funding transaction on an existing channel. Instead,
3709 /// create a new channel with a conflicting funding transaction.
3711 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3712 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3713 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3714 /// for more details.
3716 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3717 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3718 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3719 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3722 /// Call this upon creation of a batch funding transaction for the given channels.
3724 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3725 /// each individual channel and transaction output.
3727 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3728 /// will only be broadcast when we have safely received and persisted the counterparty's
3729 /// signature for each channel.
3731 /// If there is an error, all channels in the batch are to be considered closed.
3732 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3733 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3734 let mut result = Ok(());
3736 if !funding_transaction.is_coin_base() {
3737 for inp in funding_transaction.input.iter() {
3738 if inp.witness.is_empty() {
3739 result = result.and(Err(APIError::APIMisuseError {
3740 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3745 if funding_transaction.output.len() > u16::max_value() as usize {
3746 result = result.and(Err(APIError::APIMisuseError {
3747 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3751 let height = self.best_block.read().unwrap().height();
3752 // Transactions are evaluated as final by network mempools if their locktime is strictly
3753 // lower than the next block height. However, the modules constituting our Lightning
3754 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3755 // module is ahead of LDK, only allow one more block of headroom.
3756 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
3757 funding_transaction.lock_time.is_block_height() &&
3758 funding_transaction.lock_time.to_consensus_u32() > height + 1
3760 result = result.and(Err(APIError::APIMisuseError {
3761 err: "Funding transaction absolute timelock is non-final".to_owned()
3766 let txid = funding_transaction.txid();
3767 let is_batch_funding = temporary_channels.len() > 1;
3768 let mut funding_batch_states = if is_batch_funding {
3769 Some(self.funding_batch_states.lock().unwrap())
3773 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3774 match states.entry(txid) {
3775 btree_map::Entry::Occupied(_) => {
3776 result = result.clone().and(Err(APIError::APIMisuseError {
3777 err: "Batch funding transaction with the same txid already exists".to_owned()
3781 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3784 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3785 result = result.and_then(|_| self.funding_transaction_generated_intern(
3786 temporary_channel_id,
3787 counterparty_node_id,
3788 funding_transaction.clone(),
3791 let mut output_index = None;
3792 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3793 for (idx, outp) in tx.output.iter().enumerate() {
3794 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3795 if output_index.is_some() {
3796 return Err(APIError::APIMisuseError {
3797 err: "Multiple outputs matched the expected script and value".to_owned()
3800 output_index = Some(idx as u16);
3803 if output_index.is_none() {
3804 return Err(APIError::APIMisuseError {
3805 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3808 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3809 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3810 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3816 if let Err(ref e) = result {
3817 // Remaining channels need to be removed on any error.
3818 let e = format!("Error in transaction funding: {:?}", e);
3819 let mut channels_to_remove = Vec::new();
3820 channels_to_remove.extend(funding_batch_states.as_mut()
3821 .and_then(|states| states.remove(&txid))
3822 .into_iter().flatten()
3823 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3825 channels_to_remove.extend(temporary_channels.iter()
3826 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3828 let mut shutdown_results = Vec::new();
3830 let per_peer_state = self.per_peer_state.read().unwrap();
3831 for (channel_id, counterparty_node_id) in channels_to_remove {
3832 per_peer_state.get(&counterparty_node_id)
3833 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3834 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3836 update_maps_on_chan_removal!(self, &chan.context());
3837 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3838 shutdown_results.push(chan.context_mut().force_shutdown(false));
3842 for shutdown_result in shutdown_results.drain(..) {
3843 self.finish_close_channel(shutdown_result);
3849 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3851 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3852 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3853 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3854 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3856 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3857 /// `counterparty_node_id` is provided.
3859 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3860 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3862 /// If an error is returned, none of the updates should be considered applied.
3864 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3865 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3866 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3867 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3868 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3869 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3870 /// [`APIMisuseError`]: APIError::APIMisuseError
3871 pub fn update_partial_channel_config(
3872 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3873 ) -> Result<(), APIError> {
3874 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3875 return Err(APIError::APIMisuseError {
3876 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3880 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3881 let per_peer_state = self.per_peer_state.read().unwrap();
3882 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3883 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3884 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3885 let peer_state = &mut *peer_state_lock;
3886 for channel_id in channel_ids {
3887 if !peer_state.has_channel(channel_id) {
3888 return Err(APIError::ChannelUnavailable {
3889 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
3893 for channel_id in channel_ids {
3894 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
3895 let mut config = channel_phase.context().config();
3896 config.apply(config_update);
3897 if !channel_phase.context_mut().update_config(&config) {
3900 if let ChannelPhase::Funded(channel) = channel_phase {
3901 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3902 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3903 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3904 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3905 node_id: channel.context.get_counterparty_node_id(),
3912 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
3913 debug_assert!(false);
3914 return Err(APIError::ChannelUnavailable {
3916 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
3917 channel_id, counterparty_node_id),
3924 /// Atomically updates the [`ChannelConfig`] for the given channels.
3926 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3927 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3928 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3929 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3931 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3932 /// `counterparty_node_id` is provided.
3934 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3935 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3937 /// If an error is returned, none of the updates should be considered applied.
3939 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3940 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3941 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3942 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3943 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3944 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3945 /// [`APIMisuseError`]: APIError::APIMisuseError
3946 pub fn update_channel_config(
3947 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
3948 ) -> Result<(), APIError> {
3949 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
3952 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3953 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3955 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3956 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3958 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3959 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3960 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3961 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3962 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3964 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3965 /// you from forwarding more than you received. See
3966 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
3969 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3972 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3973 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3974 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
3975 // TODO: when we move to deciding the best outbound channel at forward time, only take
3976 // `next_node_id` and not `next_hop_channel_id`
3977 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3978 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3980 let next_hop_scid = {
3981 let peer_state_lock = self.per_peer_state.read().unwrap();
3982 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3983 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3984 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3985 let peer_state = &mut *peer_state_lock;
3986 match peer_state.channel_by_id.get(next_hop_channel_id) {
3987 Some(ChannelPhase::Funded(chan)) => {
3988 if !chan.context.is_usable() {
3989 return Err(APIError::ChannelUnavailable {
3990 err: format!("Channel with id {} not fully established", next_hop_channel_id)
3993 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
3995 Some(_) => return Err(APIError::ChannelUnavailable {
3996 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
3997 next_hop_channel_id, next_node_id)
4000 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4001 next_hop_channel_id, next_node_id);
4002 log_error!(self.logger, "{} when attempting to forward intercepted HTLC", error);
4003 return Err(APIError::ChannelUnavailable {
4010 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4011 .ok_or_else(|| APIError::APIMisuseError {
4012 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4015 let routing = match payment.forward_info.routing {
4016 PendingHTLCRouting::Forward { onion_packet, .. } => {
4017 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4019 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4021 let skimmed_fee_msat =
4022 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4023 let pending_htlc_info = PendingHTLCInfo {
4024 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4025 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4028 let mut per_source_pending_forward = [(
4029 payment.prev_short_channel_id,
4030 payment.prev_funding_outpoint,
4031 payment.prev_user_channel_id,
4032 vec![(pending_htlc_info, payment.prev_htlc_id)]
4034 self.forward_htlcs(&mut per_source_pending_forward);
4038 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4039 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4041 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4044 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4045 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4046 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4048 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4049 .ok_or_else(|| APIError::APIMisuseError {
4050 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4053 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4054 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4055 short_channel_id: payment.prev_short_channel_id,
4056 user_channel_id: Some(payment.prev_user_channel_id),
4057 outpoint: payment.prev_funding_outpoint,
4058 htlc_id: payment.prev_htlc_id,
4059 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4060 phantom_shared_secret: None,
4063 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4064 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4065 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4066 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4071 /// Processes HTLCs which are pending waiting on random forward delay.
4073 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4074 /// Will likely generate further events.
4075 pub fn process_pending_htlc_forwards(&self) {
4076 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4078 let mut new_events = VecDeque::new();
4079 let mut failed_forwards = Vec::new();
4080 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4082 let mut forward_htlcs = HashMap::new();
4083 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4085 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4086 if short_chan_id != 0 {
4087 macro_rules! forwarding_channel_not_found {
4089 for forward_info in pending_forwards.drain(..) {
4090 match forward_info {
4091 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4092 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4093 forward_info: PendingHTLCInfo {
4094 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4095 outgoing_cltv_value, ..
4098 macro_rules! failure_handler {
4099 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4100 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4102 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4103 short_channel_id: prev_short_channel_id,
4104 user_channel_id: Some(prev_user_channel_id),
4105 outpoint: prev_funding_outpoint,
4106 htlc_id: prev_htlc_id,
4107 incoming_packet_shared_secret: incoming_shared_secret,
4108 phantom_shared_secret: $phantom_ss,
4111 let reason = if $next_hop_unknown {
4112 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4114 HTLCDestination::FailedPayment{ payment_hash }
4117 failed_forwards.push((htlc_source, payment_hash,
4118 HTLCFailReason::reason($err_code, $err_data),
4124 macro_rules! fail_forward {
4125 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4127 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4131 macro_rules! failed_payment {
4132 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4134 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4138 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4139 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4140 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4141 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4142 let next_hop = match onion_utils::decode_next_payment_hop(
4143 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4144 payment_hash, &self.node_signer
4147 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4148 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
4149 // In this scenario, the phantom would have sent us an
4150 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4151 // if it came from us (the second-to-last hop) but contains the sha256
4153 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4155 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4156 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4160 onion_utils::Hop::Receive(hop_data) => {
4161 let current_height: u32 = self.best_block.read().unwrap().height();
4162 match create_recv_pending_htlc_info(hop_data,
4163 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4164 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
4165 current_height, self.default_configuration.accept_mpp_keysend)
4167 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4168 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4174 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4177 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4180 HTLCForwardInfo::FailHTLC { .. } => {
4181 // Channel went away before we could fail it. This implies
4182 // the channel is now on chain and our counterparty is
4183 // trying to broadcast the HTLC-Timeout, but that's their
4184 // problem, not ours.
4190 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4191 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4192 Some((cp_id, chan_id)) => (cp_id, chan_id),
4194 forwarding_channel_not_found!();
4198 let per_peer_state = self.per_peer_state.read().unwrap();
4199 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4200 if peer_state_mutex_opt.is_none() {
4201 forwarding_channel_not_found!();
4204 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4205 let peer_state = &mut *peer_state_lock;
4206 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4207 for forward_info in pending_forwards.drain(..) {
4208 match forward_info {
4209 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4210 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4211 forward_info: PendingHTLCInfo {
4212 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4213 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4216 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4217 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4218 short_channel_id: prev_short_channel_id,
4219 user_channel_id: Some(prev_user_channel_id),
4220 outpoint: prev_funding_outpoint,
4221 htlc_id: prev_htlc_id,
4222 incoming_packet_shared_secret: incoming_shared_secret,
4223 // Phantom payments are only PendingHTLCRouting::Receive.
4224 phantom_shared_secret: None,
4226 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4227 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4228 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4231 if let ChannelError::Ignore(msg) = e {
4232 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4234 panic!("Stated return value requirements in send_htlc() were not met");
4236 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4237 failed_forwards.push((htlc_source, payment_hash,
4238 HTLCFailReason::reason(failure_code, data),
4239 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4244 HTLCForwardInfo::AddHTLC { .. } => {
4245 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4247 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4248 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4249 if let Err(e) = chan.queue_fail_htlc(
4250 htlc_id, err_packet, &self.logger
4252 if let ChannelError::Ignore(msg) = e {
4253 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4255 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4257 // fail-backs are best-effort, we probably already have one
4258 // pending, and if not that's OK, if not, the channel is on
4259 // the chain and sending the HTLC-Timeout is their problem.
4266 forwarding_channel_not_found!();
4270 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4271 match forward_info {
4272 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4273 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4274 forward_info: PendingHTLCInfo {
4275 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4276 skimmed_fee_msat, ..
4279 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4280 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4281 let _legacy_hop_data = Some(payment_data.clone());
4282 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4283 payment_metadata, custom_tlvs };
4284 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4285 Some(payment_data), phantom_shared_secret, onion_fields)
4287 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4288 let onion_fields = RecipientOnionFields {
4289 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4293 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4294 payment_data, None, onion_fields)
4297 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4300 let claimable_htlc = ClaimableHTLC {
4301 prev_hop: HTLCPreviousHopData {
4302 short_channel_id: prev_short_channel_id,
4303 user_channel_id: Some(prev_user_channel_id),
4304 outpoint: prev_funding_outpoint,
4305 htlc_id: prev_htlc_id,
4306 incoming_packet_shared_secret: incoming_shared_secret,
4307 phantom_shared_secret,
4309 // We differentiate the received value from the sender intended value
4310 // if possible so that we don't prematurely mark MPP payments complete
4311 // if routing nodes overpay
4312 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4313 sender_intended_value: outgoing_amt_msat,
4315 total_value_received: None,
4316 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4319 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4322 let mut committed_to_claimable = false;
4324 macro_rules! fail_htlc {
4325 ($htlc: expr, $payment_hash: expr) => {
4326 debug_assert!(!committed_to_claimable);
4327 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4328 htlc_msat_height_data.extend_from_slice(
4329 &self.best_block.read().unwrap().height().to_be_bytes(),
4331 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4332 short_channel_id: $htlc.prev_hop.short_channel_id,
4333 user_channel_id: $htlc.prev_hop.user_channel_id,
4334 outpoint: prev_funding_outpoint,
4335 htlc_id: $htlc.prev_hop.htlc_id,
4336 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4337 phantom_shared_secret,
4339 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4340 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4342 continue 'next_forwardable_htlc;
4345 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4346 let mut receiver_node_id = self.our_network_pubkey;
4347 if phantom_shared_secret.is_some() {
4348 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4349 .expect("Failed to get node_id for phantom node recipient");
4352 macro_rules! check_total_value {
4353 ($purpose: expr) => {{
4354 let mut payment_claimable_generated = false;
4355 let is_keysend = match $purpose {
4356 events::PaymentPurpose::SpontaneousPayment(_) => true,
4357 events::PaymentPurpose::InvoicePayment { .. } => false,
4359 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4360 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4361 fail_htlc!(claimable_htlc, payment_hash);
4363 let ref mut claimable_payment = claimable_payments.claimable_payments
4364 .entry(payment_hash)
4365 // Note that if we insert here we MUST NOT fail_htlc!()
4366 .or_insert_with(|| {
4367 committed_to_claimable = true;
4369 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4372 if $purpose != claimable_payment.purpose {
4373 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4374 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4375 fail_htlc!(claimable_htlc, payment_hash);
4377 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4378 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4379 fail_htlc!(claimable_htlc, payment_hash);
4381 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4382 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4383 fail_htlc!(claimable_htlc, payment_hash);
4386 claimable_payment.onion_fields = Some(onion_fields);
4388 let ref mut htlcs = &mut claimable_payment.htlcs;
4389 let mut total_value = claimable_htlc.sender_intended_value;
4390 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4391 for htlc in htlcs.iter() {
4392 total_value += htlc.sender_intended_value;
4393 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4394 if htlc.total_msat != claimable_htlc.total_msat {
4395 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4396 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4397 total_value = msgs::MAX_VALUE_MSAT;
4399 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4401 // The condition determining whether an MPP is complete must
4402 // match exactly the condition used in `timer_tick_occurred`
4403 if total_value >= msgs::MAX_VALUE_MSAT {
4404 fail_htlc!(claimable_htlc, payment_hash);
4405 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4406 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4408 fail_htlc!(claimable_htlc, payment_hash);
4409 } else if total_value >= claimable_htlc.total_msat {
4410 #[allow(unused_assignments)] {
4411 committed_to_claimable = true;
4413 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4414 htlcs.push(claimable_htlc);
4415 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4416 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4417 let counterparty_skimmed_fee_msat = htlcs.iter()
4418 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4419 debug_assert!(total_value.saturating_sub(amount_msat) <=
4420 counterparty_skimmed_fee_msat);
4421 new_events.push_back((events::Event::PaymentClaimable {
4422 receiver_node_id: Some(receiver_node_id),
4426 counterparty_skimmed_fee_msat,
4427 via_channel_id: Some(prev_channel_id),
4428 via_user_channel_id: Some(prev_user_channel_id),
4429 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4430 onion_fields: claimable_payment.onion_fields.clone(),
4432 payment_claimable_generated = true;
4434 // Nothing to do - we haven't reached the total
4435 // payment value yet, wait until we receive more
4437 htlcs.push(claimable_htlc);
4438 #[allow(unused_assignments)] {
4439 committed_to_claimable = true;
4442 payment_claimable_generated
4446 // Check that the payment hash and secret are known. Note that we
4447 // MUST take care to handle the "unknown payment hash" and
4448 // "incorrect payment secret" cases here identically or we'd expose
4449 // that we are the ultimate recipient of the given payment hash.
4450 // Further, we must not expose whether we have any other HTLCs
4451 // associated with the same payment_hash pending or not.
4452 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4453 match payment_secrets.entry(payment_hash) {
4454 hash_map::Entry::Vacant(_) => {
4455 match claimable_htlc.onion_payload {
4456 OnionPayload::Invoice { .. } => {
4457 let payment_data = payment_data.unwrap();
4458 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4459 Ok(result) => result,
4461 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4462 fail_htlc!(claimable_htlc, payment_hash);
4465 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4466 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4467 if (cltv_expiry as u64) < expected_min_expiry_height {
4468 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4469 &payment_hash, cltv_expiry, expected_min_expiry_height);
4470 fail_htlc!(claimable_htlc, payment_hash);
4473 let purpose = events::PaymentPurpose::InvoicePayment {
4474 payment_preimage: payment_preimage.clone(),
4475 payment_secret: payment_data.payment_secret,
4477 check_total_value!(purpose);
4479 OnionPayload::Spontaneous(preimage) => {
4480 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4481 check_total_value!(purpose);
4485 hash_map::Entry::Occupied(inbound_payment) => {
4486 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4487 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4488 fail_htlc!(claimable_htlc, payment_hash);
4490 let payment_data = payment_data.unwrap();
4491 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4492 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4493 fail_htlc!(claimable_htlc, payment_hash);
4494 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4495 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4496 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4497 fail_htlc!(claimable_htlc, payment_hash);
4499 let purpose = events::PaymentPurpose::InvoicePayment {
4500 payment_preimage: inbound_payment.get().payment_preimage,
4501 payment_secret: payment_data.payment_secret,
4503 let payment_claimable_generated = check_total_value!(purpose);
4504 if payment_claimable_generated {
4505 inbound_payment.remove_entry();
4511 HTLCForwardInfo::FailHTLC { .. } => {
4512 panic!("Got pending fail of our own HTLC");
4520 let best_block_height = self.best_block.read().unwrap().height();
4521 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4522 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4523 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4525 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4526 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4528 self.forward_htlcs(&mut phantom_receives);
4530 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4531 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4532 // nice to do the work now if we can rather than while we're trying to get messages in the
4534 self.check_free_holding_cells();
4536 if new_events.is_empty() { return }
4537 let mut events = self.pending_events.lock().unwrap();
4538 events.append(&mut new_events);
4541 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4543 /// Expects the caller to have a total_consistency_lock read lock.
4544 fn process_background_events(&self) -> NotifyOption {
4545 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4547 self.background_events_processed_since_startup.store(true, Ordering::Release);
4549 let mut background_events = Vec::new();
4550 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4551 if background_events.is_empty() {
4552 return NotifyOption::SkipPersistNoEvents;
4555 for event in background_events.drain(..) {
4557 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4558 // The channel has already been closed, so no use bothering to care about the
4559 // monitor updating completing.
4560 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4562 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4563 let mut updated_chan = false;
4565 let per_peer_state = self.per_peer_state.read().unwrap();
4566 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4567 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4568 let peer_state = &mut *peer_state_lock;
4569 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4570 hash_map::Entry::Occupied(mut chan_phase) => {
4571 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4572 updated_chan = true;
4573 handle_new_monitor_update!(self, funding_txo, update.clone(),
4574 peer_state_lock, peer_state, per_peer_state, chan);
4576 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4579 hash_map::Entry::Vacant(_) => {},
4584 // TODO: Track this as in-flight even though the channel is closed.
4585 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4588 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4589 let per_peer_state = self.per_peer_state.read().unwrap();
4590 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4591 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4592 let peer_state = &mut *peer_state_lock;
4593 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4594 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4596 let update_actions = peer_state.monitor_update_blocked_actions
4597 .remove(&channel_id).unwrap_or(Vec::new());
4598 mem::drop(peer_state_lock);
4599 mem::drop(per_peer_state);
4600 self.handle_monitor_update_completion_actions(update_actions);
4606 NotifyOption::DoPersist
4609 #[cfg(any(test, feature = "_test_utils"))]
4610 /// Process background events, for functional testing
4611 pub fn test_process_background_events(&self) {
4612 let _lck = self.total_consistency_lock.read().unwrap();
4613 let _ = self.process_background_events();
4616 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4617 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4618 // If the feerate has decreased by less than half, don't bother
4619 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4620 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4621 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4622 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4624 return NotifyOption::SkipPersistNoEvents;
4626 if !chan.context.is_live() {
4627 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4628 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4629 return NotifyOption::SkipPersistNoEvents;
4631 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4632 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4634 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4635 NotifyOption::DoPersist
4639 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4640 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4641 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4642 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4643 pub fn maybe_update_chan_fees(&self) {
4644 PersistenceNotifierGuard::optionally_notify(self, || {
4645 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4647 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4648 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4650 let per_peer_state = self.per_peer_state.read().unwrap();
4651 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4652 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4653 let peer_state = &mut *peer_state_lock;
4654 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4655 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4657 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4662 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4663 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4671 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4673 /// This currently includes:
4674 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4675 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4676 /// than a minute, informing the network that they should no longer attempt to route over
4678 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4679 /// with the current [`ChannelConfig`].
4680 /// * Removing peers which have disconnected but and no longer have any channels.
4681 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4682 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4683 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4684 /// The latter is determined using the system clock in `std` and the highest seen block time
4685 /// minus two hours in `no-std`.
4687 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4688 /// estimate fetches.
4690 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4691 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4692 pub fn timer_tick_occurred(&self) {
4693 PersistenceNotifierGuard::optionally_notify(self, || {
4694 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4696 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4697 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4699 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4700 let mut timed_out_mpp_htlcs = Vec::new();
4701 let mut pending_peers_awaiting_removal = Vec::new();
4702 let mut shutdown_channels = Vec::new();
4704 let mut process_unfunded_channel_tick = |
4705 chan_id: &ChannelId,
4706 context: &mut ChannelContext<SP>,
4707 unfunded_context: &mut UnfundedChannelContext,
4708 pending_msg_events: &mut Vec<MessageSendEvent>,
4709 counterparty_node_id: PublicKey,
4711 context.maybe_expire_prev_config();
4712 if unfunded_context.should_expire_unfunded_channel() {
4713 log_error!(self.logger,
4714 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4715 update_maps_on_chan_removal!(self, &context);
4716 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4717 shutdown_channels.push(context.force_shutdown(false));
4718 pending_msg_events.push(MessageSendEvent::HandleError {
4719 node_id: counterparty_node_id,
4720 action: msgs::ErrorAction::SendErrorMessage {
4721 msg: msgs::ErrorMessage {
4722 channel_id: *chan_id,
4723 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4734 let per_peer_state = self.per_peer_state.read().unwrap();
4735 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4736 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4737 let peer_state = &mut *peer_state_lock;
4738 let pending_msg_events = &mut peer_state.pending_msg_events;
4739 let counterparty_node_id = *counterparty_node_id;
4740 peer_state.channel_by_id.retain(|chan_id, phase| {
4742 ChannelPhase::Funded(chan) => {
4743 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4748 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4749 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4751 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4752 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4753 handle_errors.push((Err(err), counterparty_node_id));
4754 if needs_close { return false; }
4757 match chan.channel_update_status() {
4758 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4759 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4760 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4761 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4762 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4763 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4764 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4766 if n >= DISABLE_GOSSIP_TICKS {
4767 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4768 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4769 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4773 should_persist = NotifyOption::DoPersist;
4775 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4778 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4780 if n >= ENABLE_GOSSIP_TICKS {
4781 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4782 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4783 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4787 should_persist = NotifyOption::DoPersist;
4789 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4795 chan.context.maybe_expire_prev_config();
4797 if chan.should_disconnect_peer_awaiting_response() {
4798 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4799 counterparty_node_id, chan_id);
4800 pending_msg_events.push(MessageSendEvent::HandleError {
4801 node_id: counterparty_node_id,
4802 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4803 msg: msgs::WarningMessage {
4804 channel_id: *chan_id,
4805 data: "Disconnecting due to timeout awaiting response".to_owned(),
4813 ChannelPhase::UnfundedInboundV1(chan) => {
4814 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4815 pending_msg_events, counterparty_node_id)
4817 ChannelPhase::UnfundedOutboundV1(chan) => {
4818 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4819 pending_msg_events, counterparty_node_id)
4824 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4825 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4826 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4827 peer_state.pending_msg_events.push(
4828 events::MessageSendEvent::HandleError {
4829 node_id: counterparty_node_id,
4830 action: msgs::ErrorAction::SendErrorMessage {
4831 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4837 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4839 if peer_state.ok_to_remove(true) {
4840 pending_peers_awaiting_removal.push(counterparty_node_id);
4845 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4846 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4847 // of to that peer is later closed while still being disconnected (i.e. force closed),
4848 // we therefore need to remove the peer from `peer_state` separately.
4849 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4850 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4851 // negative effects on parallelism as much as possible.
4852 if pending_peers_awaiting_removal.len() > 0 {
4853 let mut per_peer_state = self.per_peer_state.write().unwrap();
4854 for counterparty_node_id in pending_peers_awaiting_removal {
4855 match per_peer_state.entry(counterparty_node_id) {
4856 hash_map::Entry::Occupied(entry) => {
4857 // Remove the entry if the peer is still disconnected and we still
4858 // have no channels to the peer.
4859 let remove_entry = {
4860 let peer_state = entry.get().lock().unwrap();
4861 peer_state.ok_to_remove(true)
4864 entry.remove_entry();
4867 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4872 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4873 if payment.htlcs.is_empty() {
4874 // This should be unreachable
4875 debug_assert!(false);
4878 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4879 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4880 // In this case we're not going to handle any timeouts of the parts here.
4881 // This condition determining whether the MPP is complete here must match
4882 // exactly the condition used in `process_pending_htlc_forwards`.
4883 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4884 .fold(0, |total, htlc| total + htlc.sender_intended_value)
4887 } else if payment.htlcs.iter_mut().any(|htlc| {
4888 htlc.timer_ticks += 1;
4889 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
4891 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
4892 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
4899 for htlc_source in timed_out_mpp_htlcs.drain(..) {
4900 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
4901 let reason = HTLCFailReason::from_failure_code(23);
4902 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
4903 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
4906 for (err, counterparty_node_id) in handle_errors.drain(..) {
4907 let _ = handle_error!(self, err, counterparty_node_id);
4910 for shutdown_res in shutdown_channels {
4911 self.finish_close_channel(shutdown_res);
4914 #[cfg(feature = "std")]
4915 let duration_since_epoch = std::time::SystemTime::now()
4916 .duration_since(std::time::SystemTime::UNIX_EPOCH)
4917 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
4918 #[cfg(not(feature = "std"))]
4919 let duration_since_epoch = Duration::from_secs(
4920 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
4923 self.pending_outbound_payments.remove_stale_payments(
4924 duration_since_epoch, &self.pending_events
4927 // Technically we don't need to do this here, but if we have holding cell entries in a
4928 // channel that need freeing, it's better to do that here and block a background task
4929 // than block the message queueing pipeline.
4930 if self.check_free_holding_cells() {
4931 should_persist = NotifyOption::DoPersist;
4938 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
4939 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
4940 /// along the path (including in our own channel on which we received it).
4942 /// Note that in some cases around unclean shutdown, it is possible the payment may have
4943 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
4944 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
4945 /// may have already been failed automatically by LDK if it was nearing its expiration time.
4947 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
4948 /// [`ChannelManager::claim_funds`]), you should still monitor for
4949 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
4950 /// startup during which time claims that were in-progress at shutdown may be replayed.
4951 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
4952 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
4955 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
4956 /// reason for the failure.
4958 /// See [`FailureCode`] for valid failure codes.
4959 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
4960 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4962 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
4963 if let Some(payment) = removed_source {
4964 for htlc in payment.htlcs {
4965 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
4966 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4967 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
4968 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4973 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
4974 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
4975 match failure_code {
4976 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
4977 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
4978 FailureCode::IncorrectOrUnknownPaymentDetails => {
4979 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4980 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4981 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
4983 FailureCode::InvalidOnionPayload(data) => {
4984 let fail_data = match data {
4985 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
4988 HTLCFailReason::reason(failure_code.into(), fail_data)
4993 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4994 /// that we want to return and a channel.
4996 /// This is for failures on the channel on which the HTLC was *received*, not failures
4998 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
4999 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5000 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5001 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5002 // an inbound SCID alias before the real SCID.
5003 let scid_pref = if chan.context.should_announce() {
5004 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5006 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5008 if let Some(scid) = scid_pref {
5009 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5011 (0x4000|10, Vec::new())
5016 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5017 /// that we want to return and a channel.
5018 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5019 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5020 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5021 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5022 if desired_err_code == 0x1000 | 20 {
5023 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5024 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5025 0u16.write(&mut enc).expect("Writes cannot fail");
5027 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5028 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5029 upd.write(&mut enc).expect("Writes cannot fail");
5030 (desired_err_code, enc.0)
5032 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5033 // which means we really shouldn't have gotten a payment to be forwarded over this
5034 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5035 // PERM|no_such_channel should be fine.
5036 (0x4000|10, Vec::new())
5040 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5041 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5042 // be surfaced to the user.
5043 fn fail_holding_cell_htlcs(
5044 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5045 counterparty_node_id: &PublicKey
5047 let (failure_code, onion_failure_data) = {
5048 let per_peer_state = self.per_peer_state.read().unwrap();
5049 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5050 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5051 let peer_state = &mut *peer_state_lock;
5052 match peer_state.channel_by_id.entry(channel_id) {
5053 hash_map::Entry::Occupied(chan_phase_entry) => {
5054 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5055 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5057 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5058 debug_assert!(false);
5059 (0x4000|10, Vec::new())
5062 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5064 } else { (0x4000|10, Vec::new()) }
5067 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5068 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5069 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5070 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5074 /// Fails an HTLC backwards to the sender of it to us.
5075 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5076 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5077 // Ensure that no peer state channel storage lock is held when calling this function.
5078 // This ensures that future code doesn't introduce a lock-order requirement for
5079 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5080 // this function with any `per_peer_state` peer lock acquired would.
5081 #[cfg(debug_assertions)]
5082 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5083 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5086 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5087 //identify whether we sent it or not based on the (I presume) very different runtime
5088 //between the branches here. We should make this async and move it into the forward HTLCs
5091 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5092 // from block_connected which may run during initialization prior to the chain_monitor
5093 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5095 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5096 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5097 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5098 &self.pending_events, &self.logger)
5099 { self.push_pending_forwards_ev(); }
5101 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5102 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5103 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5105 let mut push_forward_ev = false;
5106 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5107 if forward_htlcs.is_empty() {
5108 push_forward_ev = true;
5110 match forward_htlcs.entry(*short_channel_id) {
5111 hash_map::Entry::Occupied(mut entry) => {
5112 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5114 hash_map::Entry::Vacant(entry) => {
5115 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5118 mem::drop(forward_htlcs);
5119 if push_forward_ev { self.push_pending_forwards_ev(); }
5120 let mut pending_events = self.pending_events.lock().unwrap();
5121 pending_events.push_back((events::Event::HTLCHandlingFailed {
5122 prev_channel_id: outpoint.to_channel_id(),
5123 failed_next_destination: destination,
5129 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5130 /// [`MessageSendEvent`]s needed to claim the payment.
5132 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5133 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5134 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5135 /// successful. It will generally be available in the next [`process_pending_events`] call.
5137 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5138 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5139 /// event matches your expectation. If you fail to do so and call this method, you may provide
5140 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5142 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5143 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5144 /// [`claim_funds_with_known_custom_tlvs`].
5146 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5147 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5148 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5149 /// [`process_pending_events`]: EventsProvider::process_pending_events
5150 /// [`create_inbound_payment`]: Self::create_inbound_payment
5151 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5152 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5153 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5154 self.claim_payment_internal(payment_preimage, false);
5157 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5158 /// even type numbers.
5162 /// You MUST check you've understood all even TLVs before using this to
5163 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5165 /// [`claim_funds`]: Self::claim_funds
5166 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5167 self.claim_payment_internal(payment_preimage, true);
5170 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5171 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
5173 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5176 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5177 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5178 let mut receiver_node_id = self.our_network_pubkey;
5179 for htlc in payment.htlcs.iter() {
5180 if htlc.prev_hop.phantom_shared_secret.is_some() {
5181 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5182 .expect("Failed to get node_id for phantom node recipient");
5183 receiver_node_id = phantom_pubkey;
5188 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5189 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5190 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5191 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5192 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5194 if dup_purpose.is_some() {
5195 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5196 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5200 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5201 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5202 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5203 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5204 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5205 mem::drop(claimable_payments);
5206 for htlc in payment.htlcs {
5207 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5208 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5209 let receiver = HTLCDestination::FailedPayment { payment_hash };
5210 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5219 debug_assert!(!sources.is_empty());
5221 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5222 // and when we got here we need to check that the amount we're about to claim matches the
5223 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5224 // the MPP parts all have the same `total_msat`.
5225 let mut claimable_amt_msat = 0;
5226 let mut prev_total_msat = None;
5227 let mut expected_amt_msat = None;
5228 let mut valid_mpp = true;
5229 let mut errs = Vec::new();
5230 let per_peer_state = self.per_peer_state.read().unwrap();
5231 for htlc in sources.iter() {
5232 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5233 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5234 debug_assert!(false);
5238 prev_total_msat = Some(htlc.total_msat);
5240 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5241 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5242 debug_assert!(false);
5246 expected_amt_msat = htlc.total_value_received;
5247 claimable_amt_msat += htlc.value;
5249 mem::drop(per_peer_state);
5250 if sources.is_empty() || expected_amt_msat.is_none() {
5251 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5252 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5255 if claimable_amt_msat != expected_amt_msat.unwrap() {
5256 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5257 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5258 expected_amt_msat.unwrap(), claimable_amt_msat);
5262 for htlc in sources.drain(..) {
5263 if let Err((pk, err)) = self.claim_funds_from_hop(
5264 htlc.prev_hop, payment_preimage,
5265 |_, definitely_duplicate| {
5266 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5267 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5270 if let msgs::ErrorAction::IgnoreError = err.err.action {
5271 // We got a temporary failure updating monitor, but will claim the
5272 // HTLC when the monitor updating is restored (or on chain).
5273 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5274 } else { errs.push((pk, err)); }
5279 for htlc in sources.drain(..) {
5280 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5281 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5282 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5283 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5284 let receiver = HTLCDestination::FailedPayment { payment_hash };
5285 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5287 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5290 // Now we can handle any errors which were generated.
5291 for (counterparty_node_id, err) in errs.drain(..) {
5292 let res: Result<(), _> = Err(err);
5293 let _ = handle_error!(self, res, counterparty_node_id);
5297 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5298 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5299 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5300 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5302 // If we haven't yet run background events assume we're still deserializing and shouldn't
5303 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5304 // `BackgroundEvent`s.
5305 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5307 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5308 // the required mutexes are not held before we start.
5309 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5310 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5313 let per_peer_state = self.per_peer_state.read().unwrap();
5314 let chan_id = prev_hop.outpoint.to_channel_id();
5315 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5316 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5320 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5321 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5322 .map(|peer_mutex| peer_mutex.lock().unwrap())
5325 if peer_state_opt.is_some() {
5326 let mut peer_state_lock = peer_state_opt.unwrap();
5327 let peer_state = &mut *peer_state_lock;
5328 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5329 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5330 let counterparty_node_id = chan.context.get_counterparty_node_id();
5331 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5334 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5335 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5336 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5338 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5341 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5342 peer_state, per_peer_state, chan);
5344 // If we're running during init we cannot update a monitor directly -
5345 // they probably haven't actually been loaded yet. Instead, push the
5346 // monitor update as a background event.
5347 self.pending_background_events.lock().unwrap().push(
5348 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5349 counterparty_node_id,
5350 funding_txo: prev_hop.outpoint,
5351 update: monitor_update.clone(),
5355 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5356 let action = if let Some(action) = completion_action(None, true) {
5361 mem::drop(peer_state_lock);
5363 log_trace!(self.logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5365 let (node_id, funding_outpoint, blocker) =
5366 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5367 downstream_counterparty_node_id: node_id,
5368 downstream_funding_outpoint: funding_outpoint,
5369 blocking_action: blocker,
5371 (node_id, funding_outpoint, blocker)
5373 debug_assert!(false,
5374 "Duplicate claims should always free another channel immediately");
5377 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5378 let mut peer_state = peer_state_mtx.lock().unwrap();
5379 if let Some(blockers) = peer_state
5380 .actions_blocking_raa_monitor_updates
5381 .get_mut(&funding_outpoint.to_channel_id())
5383 let mut found_blocker = false;
5384 blockers.retain(|iter| {
5385 // Note that we could actually be blocked, in
5386 // which case we need to only remove the one
5387 // blocker which was added duplicatively.
5388 let first_blocker = !found_blocker;
5389 if *iter == blocker { found_blocker = true; }
5390 *iter != blocker || !first_blocker
5392 debug_assert!(found_blocker);
5395 debug_assert!(false);
5404 let preimage_update = ChannelMonitorUpdate {
5405 update_id: CLOSED_CHANNEL_UPDATE_ID,
5406 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5412 // We update the ChannelMonitor on the backward link, after
5413 // receiving an `update_fulfill_htlc` from the forward link.
5414 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5415 if update_res != ChannelMonitorUpdateStatus::Completed {
5416 // TODO: This needs to be handled somehow - if we receive a monitor update
5417 // with a preimage we *must* somehow manage to propagate it to the upstream
5418 // channel, or we must have an ability to receive the same event and try
5419 // again on restart.
5420 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5421 payment_preimage, update_res);
5424 // If we're running during init we cannot update a monitor directly - they probably
5425 // haven't actually been loaded yet. Instead, push the monitor update as a background
5427 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5428 // channel is already closed) we need to ultimately handle the monitor update
5429 // completion action only after we've completed the monitor update. This is the only
5430 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5431 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5432 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5433 // complete the monitor update completion action from `completion_action`.
5434 self.pending_background_events.lock().unwrap().push(
5435 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5436 prev_hop.outpoint, preimage_update,
5439 // Note that we do process the completion action here. This totally could be a
5440 // duplicate claim, but we have no way of knowing without interrogating the
5441 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5442 // generally always allowed to be duplicative (and it's specifically noted in
5443 // `PaymentForwarded`).
5444 self.handle_monitor_update_completion_actions(completion_action(None, false));
5448 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5449 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5452 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5453 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5454 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5457 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5458 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5459 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5460 if let Some(pubkey) = next_channel_counterparty_node_id {
5461 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5463 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5464 channel_funding_outpoint: next_channel_outpoint,
5465 counterparty_node_id: path.hops[0].pubkey,
5467 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5468 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5471 HTLCSource::PreviousHopData(hop_data) => {
5472 let prev_outpoint = hop_data.outpoint;
5473 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5474 #[cfg(debug_assertions)]
5475 let claiming_chan_funding_outpoint = hop_data.outpoint;
5476 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5477 |htlc_claim_value_msat, definitely_duplicate| {
5478 let chan_to_release =
5479 if let Some(node_id) = next_channel_counterparty_node_id {
5480 Some((node_id, next_channel_outpoint, completed_blocker))
5482 // We can only get `None` here if we are processing a
5483 // `ChannelMonitor`-originated event, in which case we
5484 // don't care about ensuring we wake the downstream
5485 // channel's monitor updating - the channel is already
5490 if definitely_duplicate && startup_replay {
5491 // On startup we may get redundant claims which are related to
5492 // monitor updates still in flight. In that case, we shouldn't
5493 // immediately free, but instead let that monitor update complete
5494 // in the background.
5495 #[cfg(debug_assertions)] {
5496 let background_events = self.pending_background_events.lock().unwrap();
5497 // There should be a `BackgroundEvent` pending...
5498 assert!(background_events.iter().any(|ev| {
5500 // to apply a monitor update that blocked the claiming channel,
5501 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5502 funding_txo, update, ..
5504 if *funding_txo == claiming_chan_funding_outpoint {
5505 assert!(update.updates.iter().any(|upd|
5506 if let ChannelMonitorUpdateStep::PaymentPreimage {
5507 payment_preimage: update_preimage
5509 payment_preimage == *update_preimage
5515 // or the channel we'd unblock is already closed,
5516 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5517 (funding_txo, monitor_update)
5519 if *funding_txo == next_channel_outpoint {
5520 assert_eq!(monitor_update.updates.len(), 1);
5522 monitor_update.updates[0],
5523 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5528 // or the monitor update has completed and will unblock
5529 // immediately once we get going.
5530 BackgroundEvent::MonitorUpdatesComplete {
5533 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5535 }), "{:?}", *background_events);
5538 } else if definitely_duplicate {
5539 if let Some(other_chan) = chan_to_release {
5540 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5541 downstream_counterparty_node_id: other_chan.0,
5542 downstream_funding_outpoint: other_chan.1,
5543 blocking_action: other_chan.2,
5547 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5548 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5549 Some(claimed_htlc_value - forwarded_htlc_value)
5552 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5553 event: events::Event::PaymentForwarded {
5555 claim_from_onchain_tx: from_onchain,
5556 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5557 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5558 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5560 downstream_counterparty_and_funding_outpoint: chan_to_release,
5564 if let Err((pk, err)) = res {
5565 let result: Result<(), _> = Err(err);
5566 let _ = handle_error!(self, result, pk);
5572 /// Gets the node_id held by this ChannelManager
5573 pub fn get_our_node_id(&self) -> PublicKey {
5574 self.our_network_pubkey.clone()
5577 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5578 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5579 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5580 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5582 for action in actions.into_iter() {
5584 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5585 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5586 if let Some(ClaimingPayment {
5588 payment_purpose: purpose,
5591 sender_intended_value: sender_intended_total_msat,
5593 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5597 receiver_node_id: Some(receiver_node_id),
5599 sender_intended_total_msat,
5603 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5604 event, downstream_counterparty_and_funding_outpoint
5606 self.pending_events.lock().unwrap().push_back((event, None));
5607 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5608 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5611 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5612 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5614 self.handle_monitor_update_release(
5615 downstream_counterparty_node_id,
5616 downstream_funding_outpoint,
5617 Some(blocking_action),
5624 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5625 /// update completion.
5626 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5627 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5628 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5629 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5630 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5631 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5632 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5633 &channel.context.channel_id(),
5634 if raa.is_some() { "an" } else { "no" },
5635 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5636 if funding_broadcastable.is_some() { "" } else { "not " },
5637 if channel_ready.is_some() { "sending" } else { "without" },
5638 if announcement_sigs.is_some() { "sending" } else { "without" });
5640 let mut htlc_forwards = None;
5642 let counterparty_node_id = channel.context.get_counterparty_node_id();
5643 if !pending_forwards.is_empty() {
5644 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5645 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5648 if let Some(msg) = channel_ready {
5649 send_channel_ready!(self, pending_msg_events, channel, msg);
5651 if let Some(msg) = announcement_sigs {
5652 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5653 node_id: counterparty_node_id,
5658 macro_rules! handle_cs { () => {
5659 if let Some(update) = commitment_update {
5660 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5661 node_id: counterparty_node_id,
5666 macro_rules! handle_raa { () => {
5667 if let Some(revoke_and_ack) = raa {
5668 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5669 node_id: counterparty_node_id,
5670 msg: revoke_and_ack,
5675 RAACommitmentOrder::CommitmentFirst => {
5679 RAACommitmentOrder::RevokeAndACKFirst => {
5685 if let Some(tx) = funding_broadcastable {
5686 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5687 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5691 let mut pending_events = self.pending_events.lock().unwrap();
5692 emit_channel_pending_event!(pending_events, channel);
5693 emit_channel_ready_event!(pending_events, channel);
5699 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5700 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5702 let counterparty_node_id = match counterparty_node_id {
5703 Some(cp_id) => cp_id.clone(),
5705 // TODO: Once we can rely on the counterparty_node_id from the
5706 // monitor event, this and the id_to_peer map should be removed.
5707 let id_to_peer = self.id_to_peer.lock().unwrap();
5708 match id_to_peer.get(&funding_txo.to_channel_id()) {
5709 Some(cp_id) => cp_id.clone(),
5714 let per_peer_state = self.per_peer_state.read().unwrap();
5715 let mut peer_state_lock;
5716 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5717 if peer_state_mutex_opt.is_none() { return }
5718 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5719 let peer_state = &mut *peer_state_lock;
5721 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5724 let update_actions = peer_state.monitor_update_blocked_actions
5725 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5726 mem::drop(peer_state_lock);
5727 mem::drop(per_peer_state);
5728 self.handle_monitor_update_completion_actions(update_actions);
5731 let remaining_in_flight =
5732 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5733 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5736 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5737 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5738 remaining_in_flight);
5739 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5742 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5745 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5747 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5748 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5751 /// The `user_channel_id` parameter will be provided back in
5752 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5753 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5755 /// Note that this method will return an error and reject the channel, if it requires support
5756 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5757 /// used to accept such channels.
5759 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5760 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5761 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5762 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5765 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5766 /// it as confirmed immediately.
5768 /// The `user_channel_id` parameter will be provided back in
5769 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5770 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5772 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5773 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5775 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5776 /// transaction and blindly assumes that it will eventually confirm.
5778 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5779 /// does not pay to the correct script the correct amount, *you will lose funds*.
5781 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5782 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5783 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5784 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5787 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5788 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5790 let peers_without_funded_channels =
5791 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5792 let per_peer_state = self.per_peer_state.read().unwrap();
5793 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5794 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5795 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5796 let peer_state = &mut *peer_state_lock;
5797 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5799 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5800 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5801 // that we can delay allocating the SCID until after we're sure that the checks below will
5803 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5804 Some(unaccepted_channel) => {
5805 let best_block_height = self.best_block.read().unwrap().height();
5806 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5807 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5808 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5809 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5811 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5815 // This should have been correctly configured by the call to InboundV1Channel::new.
5816 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5817 } else if channel.context.get_channel_type().requires_zero_conf() {
5818 let send_msg_err_event = events::MessageSendEvent::HandleError {
5819 node_id: channel.context.get_counterparty_node_id(),
5820 action: msgs::ErrorAction::SendErrorMessage{
5821 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5824 peer_state.pending_msg_events.push(send_msg_err_event);
5825 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5827 // If this peer already has some channels, a new channel won't increase our number of peers
5828 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5829 // channels per-peer we can accept channels from a peer with existing ones.
5830 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5831 let send_msg_err_event = events::MessageSendEvent::HandleError {
5832 node_id: channel.context.get_counterparty_node_id(),
5833 action: msgs::ErrorAction::SendErrorMessage{
5834 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5837 peer_state.pending_msg_events.push(send_msg_err_event);
5838 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5842 // Now that we know we have a channel, assign an outbound SCID alias.
5843 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5844 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5846 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5847 node_id: channel.context.get_counterparty_node_id(),
5848 msg: channel.accept_inbound_channel(),
5851 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
5856 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5857 /// or 0-conf channels.
5859 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5860 /// non-0-conf channels we have with the peer.
5861 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5862 where Filter: Fn(&PeerState<SP>) -> bool {
5863 let mut peers_without_funded_channels = 0;
5864 let best_block_height = self.best_block.read().unwrap().height();
5866 let peer_state_lock = self.per_peer_state.read().unwrap();
5867 for (_, peer_mtx) in peer_state_lock.iter() {
5868 let peer = peer_mtx.lock().unwrap();
5869 if !maybe_count_peer(&*peer) { continue; }
5870 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5871 if num_unfunded_channels == peer.total_channel_count() {
5872 peers_without_funded_channels += 1;
5876 return peers_without_funded_channels;
5879 fn unfunded_channel_count(
5880 peer: &PeerState<SP>, best_block_height: u32
5882 let mut num_unfunded_channels = 0;
5883 for (_, phase) in peer.channel_by_id.iter() {
5885 ChannelPhase::Funded(chan) => {
5886 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5887 // which have not yet had any confirmations on-chain.
5888 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5889 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5891 num_unfunded_channels += 1;
5894 ChannelPhase::UnfundedInboundV1(chan) => {
5895 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5896 num_unfunded_channels += 1;
5899 ChannelPhase::UnfundedOutboundV1(_) => {
5900 // Outbound channels don't contribute to the unfunded count in the DoS context.
5905 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
5908 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5909 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5910 // likely to be lost on restart!
5911 if msg.chain_hash != self.chain_hash {
5912 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5915 if !self.default_configuration.accept_inbound_channels {
5916 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5919 // Get the number of peers with channels, but without funded ones. We don't care too much
5920 // about peers that never open a channel, so we filter by peers that have at least one
5921 // channel, and then limit the number of those with unfunded channels.
5922 let channeled_peers_without_funding =
5923 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5925 let per_peer_state = self.per_peer_state.read().unwrap();
5926 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5928 debug_assert!(false);
5929 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5931 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5932 let peer_state = &mut *peer_state_lock;
5934 // If this peer already has some channels, a new channel won't increase our number of peers
5935 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5936 // channels per-peer we can accept channels from a peer with existing ones.
5937 if peer_state.total_channel_count() == 0 &&
5938 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5939 !self.default_configuration.manually_accept_inbound_channels
5941 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5942 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5943 msg.temporary_channel_id.clone()));
5946 let best_block_height = self.best_block.read().unwrap().height();
5947 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5948 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5949 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5950 msg.temporary_channel_id.clone()));
5953 let channel_id = msg.temporary_channel_id;
5954 let channel_exists = peer_state.has_channel(&channel_id);
5956 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
5959 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
5960 if self.default_configuration.manually_accept_inbound_channels {
5961 let mut pending_events = self.pending_events.lock().unwrap();
5962 pending_events.push_back((events::Event::OpenChannelRequest {
5963 temporary_channel_id: msg.temporary_channel_id.clone(),
5964 counterparty_node_id: counterparty_node_id.clone(),
5965 funding_satoshis: msg.funding_satoshis,
5966 push_msat: msg.push_msat,
5967 channel_type: msg.channel_type.clone().unwrap(),
5969 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
5970 open_channel_msg: msg.clone(),
5971 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
5976 // Otherwise create the channel right now.
5977 let mut random_bytes = [0u8; 16];
5978 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5979 let user_channel_id = u128::from_be_bytes(random_bytes);
5980 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5981 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5982 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
5985 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5990 let channel_type = channel.context.get_channel_type();
5991 if channel_type.requires_zero_conf() {
5992 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5994 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5995 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5998 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5999 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6001 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6002 node_id: counterparty_node_id.clone(),
6003 msg: channel.accept_inbound_channel(),
6005 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6009 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6010 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6011 // likely to be lost on restart!
6012 let (value, output_script, user_id) = {
6013 let per_peer_state = self.per_peer_state.read().unwrap();
6014 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6016 debug_assert!(false);
6017 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6019 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6020 let peer_state = &mut *peer_state_lock;
6021 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6022 hash_map::Entry::Occupied(mut phase) => {
6023 match phase.get_mut() {
6024 ChannelPhase::UnfundedOutboundV1(chan) => {
6025 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6026 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6029 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6033 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6036 let mut pending_events = self.pending_events.lock().unwrap();
6037 pending_events.push_back((events::Event::FundingGenerationReady {
6038 temporary_channel_id: msg.temporary_channel_id,
6039 counterparty_node_id: *counterparty_node_id,
6040 channel_value_satoshis: value,
6042 user_channel_id: user_id,
6047 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6048 let best_block = *self.best_block.read().unwrap();
6050 let per_peer_state = self.per_peer_state.read().unwrap();
6051 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6053 debug_assert!(false);
6054 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6057 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6058 let peer_state = &mut *peer_state_lock;
6059 let (chan, funding_msg_opt, monitor) =
6060 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6061 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6062 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6064 Err((mut inbound_chan, err)) => {
6065 // We've already removed this inbound channel from the map in `PeerState`
6066 // above so at this point we just need to clean up any lingering entries
6067 // concerning this channel as it is safe to do so.
6068 update_maps_on_chan_removal!(self, &inbound_chan.context);
6069 let user_id = inbound_chan.context.get_user_id();
6070 let shutdown_res = inbound_chan.context.force_shutdown(false);
6071 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6072 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6076 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6077 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6079 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6082 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6083 hash_map::Entry::Occupied(_) => {
6084 Err(MsgHandleErrInternal::send_err_msg_no_close(
6085 "Already had channel with the new channel_id".to_owned(),
6086 chan.context.channel_id()
6089 hash_map::Entry::Vacant(e) => {
6090 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6091 match id_to_peer_lock.entry(chan.context.channel_id()) {
6092 hash_map::Entry::Occupied(_) => {
6093 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6094 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6095 chan.context.channel_id()))
6097 hash_map::Entry::Vacant(i_e) => {
6098 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6099 if let Ok(persist_state) = monitor_res {
6100 i_e.insert(chan.context.get_counterparty_node_id());
6101 mem::drop(id_to_peer_lock);
6103 // There's no problem signing a counterparty's funding transaction if our monitor
6104 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6105 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6106 // until we have persisted our monitor.
6107 if let Some(msg) = funding_msg_opt {
6108 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6109 node_id: counterparty_node_id.clone(),
6114 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6115 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6116 per_peer_state, chan, INITIAL_MONITOR);
6118 unreachable!("This must be a funded channel as we just inserted it.");
6122 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6123 let channel_id = match funding_msg_opt {
6124 Some(msg) => msg.channel_id,
6125 None => chan.context.channel_id(),
6127 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6128 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6137 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6138 let best_block = *self.best_block.read().unwrap();
6139 let per_peer_state = self.per_peer_state.read().unwrap();
6140 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6142 debug_assert!(false);
6143 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6146 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6147 let peer_state = &mut *peer_state_lock;
6148 match peer_state.channel_by_id.entry(msg.channel_id) {
6149 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6150 match chan_phase_entry.get_mut() {
6151 ChannelPhase::Funded(ref mut chan) => {
6152 let monitor = try_chan_phase_entry!(self,
6153 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6154 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6155 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6158 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6162 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6166 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6170 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6171 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6172 // closing a channel), so any changes are likely to be lost on restart!
6173 let per_peer_state = self.per_peer_state.read().unwrap();
6174 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6176 debug_assert!(false);
6177 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6179 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6180 let peer_state = &mut *peer_state_lock;
6181 match peer_state.channel_by_id.entry(msg.channel_id) {
6182 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6183 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6184 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6185 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6186 if let Some(announcement_sigs) = announcement_sigs_opt {
6187 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6188 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6189 node_id: counterparty_node_id.clone(),
6190 msg: announcement_sigs,
6192 } else if chan.context.is_usable() {
6193 // If we're sending an announcement_signatures, we'll send the (public)
6194 // channel_update after sending a channel_announcement when we receive our
6195 // counterparty's announcement_signatures. Thus, we only bother to send a
6196 // channel_update here if the channel is not public, i.e. we're not sending an
6197 // announcement_signatures.
6198 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6199 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6200 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6201 node_id: counterparty_node_id.clone(),
6208 let mut pending_events = self.pending_events.lock().unwrap();
6209 emit_channel_ready_event!(pending_events, chan);
6214 try_chan_phase_entry!(self, Err(ChannelError::Close(
6215 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6218 hash_map::Entry::Vacant(_) => {
6219 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6224 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6225 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6226 let mut finish_shutdown = None;
6228 let per_peer_state = self.per_peer_state.read().unwrap();
6229 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6231 debug_assert!(false);
6232 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6234 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6235 let peer_state = &mut *peer_state_lock;
6236 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6237 let phase = chan_phase_entry.get_mut();
6239 ChannelPhase::Funded(chan) => {
6240 if !chan.received_shutdown() {
6241 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6243 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6246 let funding_txo_opt = chan.context.get_funding_txo();
6247 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6248 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6249 dropped_htlcs = htlcs;
6251 if let Some(msg) = shutdown {
6252 // We can send the `shutdown` message before updating the `ChannelMonitor`
6253 // here as we don't need the monitor update to complete until we send a
6254 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6255 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6256 node_id: *counterparty_node_id,
6260 // Update the monitor with the shutdown script if necessary.
6261 if let Some(monitor_update) = monitor_update_opt {
6262 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6263 peer_state_lock, peer_state, per_peer_state, chan);
6266 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6267 let context = phase.context_mut();
6268 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6269 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6270 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6271 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6275 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6278 for htlc_source in dropped_htlcs.drain(..) {
6279 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6280 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6281 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6283 if let Some(shutdown_res) = finish_shutdown {
6284 self.finish_close_channel(shutdown_res);
6290 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6291 let per_peer_state = self.per_peer_state.read().unwrap();
6292 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6294 debug_assert!(false);
6295 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6297 let (tx, chan_option, shutdown_result) = {
6298 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6299 let peer_state = &mut *peer_state_lock;
6300 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6301 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6302 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6303 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6304 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6305 if let Some(msg) = closing_signed {
6306 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6307 node_id: counterparty_node_id.clone(),
6312 // We're done with this channel, we've got a signed closing transaction and
6313 // will send the closing_signed back to the remote peer upon return. This
6314 // also implies there are no pending HTLCs left on the channel, so we can
6315 // fully delete it from tracking (the channel monitor is still around to
6316 // watch for old state broadcasts)!
6317 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6318 } else { (tx, None, shutdown_result) }
6320 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6321 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6324 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6327 if let Some(broadcast_tx) = tx {
6328 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6329 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6331 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6332 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6333 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6334 let peer_state = &mut *peer_state_lock;
6335 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6339 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6341 mem::drop(per_peer_state);
6342 if let Some(shutdown_result) = shutdown_result {
6343 self.finish_close_channel(shutdown_result);
6348 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6349 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6350 //determine the state of the payment based on our response/if we forward anything/the time
6351 //we take to respond. We should take care to avoid allowing such an attack.
6353 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6354 //us repeatedly garbled in different ways, and compare our error messages, which are
6355 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6356 //but we should prevent it anyway.
6358 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6359 // closing a channel), so any changes are likely to be lost on restart!
6361 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6362 let per_peer_state = self.per_peer_state.read().unwrap();
6363 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6365 debug_assert!(false);
6366 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6368 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6369 let peer_state = &mut *peer_state_lock;
6370 match peer_state.channel_by_id.entry(msg.channel_id) {
6371 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6372 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6373 let pending_forward_info = match decoded_hop_res {
6374 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6375 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6376 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6377 Err(e) => PendingHTLCStatus::Fail(e)
6379 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6380 // If the update_add is completely bogus, the call will Err and we will close,
6381 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6382 // want to reject the new HTLC and fail it backwards instead of forwarding.
6383 match pending_forward_info {
6384 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6385 let reason = if (error_code & 0x1000) != 0 {
6386 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6387 HTLCFailReason::reason(real_code, error_data)
6389 HTLCFailReason::from_failure_code(error_code)
6390 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6391 let msg = msgs::UpdateFailHTLC {
6392 channel_id: msg.channel_id,
6393 htlc_id: msg.htlc_id,
6396 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6398 _ => pending_forward_info
6401 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6403 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6404 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6407 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6412 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6414 let (htlc_source, forwarded_htlc_value) = {
6415 let per_peer_state = self.per_peer_state.read().unwrap();
6416 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6418 debug_assert!(false);
6419 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6421 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6422 let peer_state = &mut *peer_state_lock;
6423 match peer_state.channel_by_id.entry(msg.channel_id) {
6424 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6425 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6426 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6427 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6428 log_trace!(self.logger,
6429 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6431 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6432 .or_insert_with(Vec::new)
6433 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6435 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6436 // entry here, even though we *do* need to block the next RAA monitor update.
6437 // We do this instead in the `claim_funds_internal` by attaching a
6438 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6439 // outbound HTLC is claimed. This is guaranteed to all complete before we
6440 // process the RAA as messages are processed from single peers serially.
6441 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6444 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6445 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6448 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6451 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6455 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6456 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6457 // closing a channel), so any changes are likely to be lost on restart!
6458 let per_peer_state = self.per_peer_state.read().unwrap();
6459 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6461 debug_assert!(false);
6462 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6464 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6465 let peer_state = &mut *peer_state_lock;
6466 match peer_state.channel_by_id.entry(msg.channel_id) {
6467 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6468 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6469 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6471 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6472 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6475 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6480 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6481 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6482 // closing a channel), so any changes are likely to be lost on restart!
6483 let per_peer_state = self.per_peer_state.read().unwrap();
6484 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6486 debug_assert!(false);
6487 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6489 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6490 let peer_state = &mut *peer_state_lock;
6491 match peer_state.channel_by_id.entry(msg.channel_id) {
6492 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6493 if (msg.failure_code & 0x8000) == 0 {
6494 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6495 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6497 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6498 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6500 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6501 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6505 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6509 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6510 let per_peer_state = self.per_peer_state.read().unwrap();
6511 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6513 debug_assert!(false);
6514 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6516 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6517 let peer_state = &mut *peer_state_lock;
6518 match peer_state.channel_by_id.entry(msg.channel_id) {
6519 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6520 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6521 let funding_txo = chan.context.get_funding_txo();
6522 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6523 if let Some(monitor_update) = monitor_update_opt {
6524 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6525 peer_state, per_peer_state, chan);
6529 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6530 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6533 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6538 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6539 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6540 let mut push_forward_event = false;
6541 let mut new_intercept_events = VecDeque::new();
6542 let mut failed_intercept_forwards = Vec::new();
6543 if !pending_forwards.is_empty() {
6544 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6545 let scid = match forward_info.routing {
6546 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6547 PendingHTLCRouting::Receive { .. } => 0,
6548 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6550 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6551 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6553 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6554 let forward_htlcs_empty = forward_htlcs.is_empty();
6555 match forward_htlcs.entry(scid) {
6556 hash_map::Entry::Occupied(mut entry) => {
6557 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6558 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6560 hash_map::Entry::Vacant(entry) => {
6561 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6562 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6564 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
6565 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6566 match pending_intercepts.entry(intercept_id) {
6567 hash_map::Entry::Vacant(entry) => {
6568 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6569 requested_next_hop_scid: scid,
6570 payment_hash: forward_info.payment_hash,
6571 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6572 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6575 entry.insert(PendingAddHTLCInfo {
6576 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6578 hash_map::Entry::Occupied(_) => {
6579 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6580 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6581 short_channel_id: prev_short_channel_id,
6582 user_channel_id: Some(prev_user_channel_id),
6583 outpoint: prev_funding_outpoint,
6584 htlc_id: prev_htlc_id,
6585 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6586 phantom_shared_secret: None,
6589 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6590 HTLCFailReason::from_failure_code(0x4000 | 10),
6591 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6596 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6597 // payments are being processed.
6598 if forward_htlcs_empty {
6599 push_forward_event = true;
6601 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6602 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6609 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6610 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6613 if !new_intercept_events.is_empty() {
6614 let mut events = self.pending_events.lock().unwrap();
6615 events.append(&mut new_intercept_events);
6617 if push_forward_event { self.push_pending_forwards_ev() }
6621 fn push_pending_forwards_ev(&self) {
6622 let mut pending_events = self.pending_events.lock().unwrap();
6623 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6624 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6625 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6627 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6628 // events is done in batches and they are not removed until we're done processing each
6629 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6630 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6631 // payments will need an additional forwarding event before being claimed to make them look
6632 // real by taking more time.
6633 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6634 pending_events.push_back((Event::PendingHTLCsForwardable {
6635 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6640 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6641 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6642 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6643 /// the [`ChannelMonitorUpdate`] in question.
6644 fn raa_monitor_updates_held(&self,
6645 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6646 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6648 actions_blocking_raa_monitor_updates
6649 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6650 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6651 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6652 channel_funding_outpoint,
6653 counterparty_node_id,
6658 #[cfg(any(test, feature = "_test_utils"))]
6659 pub(crate) fn test_raa_monitor_updates_held(&self,
6660 counterparty_node_id: PublicKey, channel_id: ChannelId
6662 let per_peer_state = self.per_peer_state.read().unwrap();
6663 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6664 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6665 let peer_state = &mut *peer_state_lck;
6667 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6668 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6669 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6675 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6676 let htlcs_to_fail = {
6677 let per_peer_state = self.per_peer_state.read().unwrap();
6678 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6680 debug_assert!(false);
6681 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6682 }).map(|mtx| mtx.lock().unwrap())?;
6683 let peer_state = &mut *peer_state_lock;
6684 match peer_state.channel_by_id.entry(msg.channel_id) {
6685 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6686 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6687 let funding_txo_opt = chan.context.get_funding_txo();
6688 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6689 self.raa_monitor_updates_held(
6690 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6691 *counterparty_node_id)
6693 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6694 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6695 if let Some(monitor_update) = monitor_update_opt {
6696 let funding_txo = funding_txo_opt
6697 .expect("Funding outpoint must have been set for RAA handling to succeed");
6698 handle_new_monitor_update!(self, funding_txo, monitor_update,
6699 peer_state_lock, peer_state, per_peer_state, chan);
6703 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6704 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6707 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6710 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6714 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6715 let per_peer_state = self.per_peer_state.read().unwrap();
6716 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6718 debug_assert!(false);
6719 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6721 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6722 let peer_state = &mut *peer_state_lock;
6723 match peer_state.channel_by_id.entry(msg.channel_id) {
6724 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6725 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6726 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6728 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6729 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6732 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6737 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6738 let per_peer_state = self.per_peer_state.read().unwrap();
6739 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6741 debug_assert!(false);
6742 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6744 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6745 let peer_state = &mut *peer_state_lock;
6746 match peer_state.channel_by_id.entry(msg.channel_id) {
6747 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6748 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6749 if !chan.context.is_usable() {
6750 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6753 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6754 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6755 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6756 msg, &self.default_configuration
6757 ), chan_phase_entry),
6758 // Note that announcement_signatures fails if the channel cannot be announced,
6759 // so get_channel_update_for_broadcast will never fail by the time we get here.
6760 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6763 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6764 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6767 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6772 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6773 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6774 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6775 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6777 // It's not a local channel
6778 return Ok(NotifyOption::SkipPersistNoEvents)
6781 let per_peer_state = self.per_peer_state.read().unwrap();
6782 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6783 if peer_state_mutex_opt.is_none() {
6784 return Ok(NotifyOption::SkipPersistNoEvents)
6786 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6787 let peer_state = &mut *peer_state_lock;
6788 match peer_state.channel_by_id.entry(chan_id) {
6789 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6790 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6791 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6792 if chan.context.should_announce() {
6793 // If the announcement is about a channel of ours which is public, some
6794 // other peer may simply be forwarding all its gossip to us. Don't provide
6795 // a scary-looking error message and return Ok instead.
6796 return Ok(NotifyOption::SkipPersistNoEvents);
6798 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6800 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6801 let msg_from_node_one = msg.contents.flags & 1 == 0;
6802 if were_node_one == msg_from_node_one {
6803 return Ok(NotifyOption::SkipPersistNoEvents);
6805 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6806 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6807 // If nothing changed after applying their update, we don't need to bother
6810 return Ok(NotifyOption::SkipPersistNoEvents);
6814 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6815 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
6818 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
6820 Ok(NotifyOption::DoPersist)
6823 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
6825 let need_lnd_workaround = {
6826 let per_peer_state = self.per_peer_state.read().unwrap();
6828 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6830 debug_assert!(false);
6831 MsgHandleErrInternal::send_err_msg_no_close(
6832 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
6836 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6837 let peer_state = &mut *peer_state_lock;
6838 match peer_state.channel_by_id.entry(msg.channel_id) {
6839 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6840 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6841 // Currently, we expect all holding cell update_adds to be dropped on peer
6842 // disconnect, so Channel's reestablish will never hand us any holding cell
6843 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6844 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6845 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
6846 msg, &self.logger, &self.node_signer, self.chain_hash,
6847 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
6848 let mut channel_update = None;
6849 if let Some(msg) = responses.shutdown_msg {
6850 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6851 node_id: counterparty_node_id.clone(),
6854 } else if chan.context.is_usable() {
6855 // If the channel is in a usable state (ie the channel is not being shut
6856 // down), send a unicast channel_update to our counterparty to make sure
6857 // they have the latest channel parameters.
6858 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6859 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6860 node_id: chan.context.get_counterparty_node_id(),
6865 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
6866 htlc_forwards = self.handle_channel_resumption(
6867 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
6868 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
6869 if let Some(upd) = channel_update {
6870 peer_state.pending_msg_events.push(upd);
6874 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6875 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
6878 hash_map::Entry::Vacant(_) => {
6879 log_debug!(self.logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
6880 log_bytes!(msg.channel_id.0));
6881 // Unfortunately, lnd doesn't force close on errors
6882 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
6883 // One of the few ways to get an lnd counterparty to force close is by
6884 // replicating what they do when restoring static channel backups (SCBs). They
6885 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
6886 // invalid `your_last_per_commitment_secret`.
6888 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
6889 // can assume it's likely the channel closed from our point of view, but it
6890 // remains open on the counterparty's side. By sending this bogus
6891 // `ChannelReestablish` message now as a response to theirs, we trigger them to
6892 // force close broadcasting their latest state. If the closing transaction from
6893 // our point of view remains unconfirmed, it'll enter a race with the
6894 // counterparty's to-be-broadcast latest commitment transaction.
6895 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
6896 node_id: *counterparty_node_id,
6897 msg: msgs::ChannelReestablish {
6898 channel_id: msg.channel_id,
6899 next_local_commitment_number: 0,
6900 next_remote_commitment_number: 0,
6901 your_last_per_commitment_secret: [1u8; 32],
6902 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
6903 next_funding_txid: None,
6906 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6907 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
6908 counterparty_node_id), msg.channel_id)
6914 let mut persist = NotifyOption::SkipPersistHandleEvents;
6915 if let Some(forwards) = htlc_forwards {
6916 self.forward_htlcs(&mut [forwards][..]);
6917 persist = NotifyOption::DoPersist;
6920 if let Some(channel_ready_msg) = need_lnd_workaround {
6921 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
6926 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
6927 fn process_pending_monitor_events(&self) -> bool {
6928 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6930 let mut failed_channels = Vec::new();
6931 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
6932 let has_pending_monitor_events = !pending_monitor_events.is_empty();
6933 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
6934 for monitor_event in monitor_events.drain(..) {
6935 match monitor_event {
6936 MonitorEvent::HTLCEvent(htlc_update) => {
6937 if let Some(preimage) = htlc_update.payment_preimage {
6938 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
6939 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
6941 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
6942 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
6943 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6944 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
6947 MonitorEvent::HolderForceClosed(funding_outpoint) => {
6948 let counterparty_node_id_opt = match counterparty_node_id {
6949 Some(cp_id) => Some(cp_id),
6951 // TODO: Once we can rely on the counterparty_node_id from the
6952 // monitor event, this and the id_to_peer map should be removed.
6953 let id_to_peer = self.id_to_peer.lock().unwrap();
6954 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
6957 if let Some(counterparty_node_id) = counterparty_node_id_opt {
6958 let per_peer_state = self.per_peer_state.read().unwrap();
6959 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
6960 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6961 let peer_state = &mut *peer_state_lock;
6962 let pending_msg_events = &mut peer_state.pending_msg_events;
6963 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
6964 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
6965 failed_channels.push(chan.context.force_shutdown(false));
6966 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6967 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6971 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
6972 pending_msg_events.push(events::MessageSendEvent::HandleError {
6973 node_id: chan.context.get_counterparty_node_id(),
6974 action: msgs::ErrorAction::DisconnectPeer {
6975 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
6983 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
6984 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
6990 for failure in failed_channels.drain(..) {
6991 self.finish_close_channel(failure);
6994 has_pending_monitor_events
6997 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
6998 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
6999 /// update events as a separate process method here.
7001 pub fn process_monitor_events(&self) {
7002 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7003 self.process_pending_monitor_events();
7006 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7007 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7008 /// update was applied.
7009 fn check_free_holding_cells(&self) -> bool {
7010 let mut has_monitor_update = false;
7011 let mut failed_htlcs = Vec::new();
7013 // Walk our list of channels and find any that need to update. Note that when we do find an
7014 // update, if it includes actions that must be taken afterwards, we have to drop the
7015 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7016 // manage to go through all our peers without finding a single channel to update.
7018 let per_peer_state = self.per_peer_state.read().unwrap();
7019 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7021 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7022 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7023 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7024 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7026 let counterparty_node_id = chan.context.get_counterparty_node_id();
7027 let funding_txo = chan.context.get_funding_txo();
7028 let (monitor_opt, holding_cell_failed_htlcs) =
7029 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
7030 if !holding_cell_failed_htlcs.is_empty() {
7031 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7033 if let Some(monitor_update) = monitor_opt {
7034 has_monitor_update = true;
7036 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7037 peer_state_lock, peer_state, per_peer_state, chan);
7038 continue 'peer_loop;
7047 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7048 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7049 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7055 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7056 /// is (temporarily) unavailable, and the operation should be retried later.
7058 /// This method allows for that retry - either checking for any signer-pending messages to be
7059 /// attempted in every channel, or in the specifically provided channel.
7061 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7062 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7063 // actually finish implementing it fully.
7064 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7065 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7067 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7068 let node_id = phase.context().get_counterparty_node_id();
7069 if let ChannelPhase::Funded(chan) = phase {
7070 let msgs = chan.signer_maybe_unblocked(&self.logger);
7071 if let Some(updates) = msgs.commitment_update {
7072 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7077 if let Some(msg) = msgs.funding_signed {
7078 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7083 if let Some(msg) = msgs.funding_created {
7084 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7089 if let Some(msg) = msgs.channel_ready {
7090 send_channel_ready!(self, pending_msg_events, chan, msg);
7095 let per_peer_state = self.per_peer_state.read().unwrap();
7096 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7097 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7098 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7099 let peer_state = &mut *peer_state_lock;
7100 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7101 unblock_chan(chan, &mut peer_state.pending_msg_events);
7105 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7106 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7107 let peer_state = &mut *peer_state_lock;
7108 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7109 unblock_chan(chan, &mut peer_state.pending_msg_events);
7115 /// Check whether any channels have finished removing all pending updates after a shutdown
7116 /// exchange and can now send a closing_signed.
7117 /// Returns whether any closing_signed messages were generated.
7118 fn maybe_generate_initial_closing_signed(&self) -> bool {
7119 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7120 let mut has_update = false;
7121 let mut shutdown_results = Vec::new();
7123 let per_peer_state = self.per_peer_state.read().unwrap();
7125 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7126 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7127 let peer_state = &mut *peer_state_lock;
7128 let pending_msg_events = &mut peer_state.pending_msg_events;
7129 peer_state.channel_by_id.retain(|channel_id, phase| {
7131 ChannelPhase::Funded(chan) => {
7132 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7133 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7134 if let Some(msg) = msg_opt {
7136 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7137 node_id: chan.context.get_counterparty_node_id(), msg,
7140 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7141 if let Some(shutdown_result) = shutdown_result_opt {
7142 shutdown_results.push(shutdown_result);
7144 if let Some(tx) = tx_opt {
7145 // We're done with this channel. We got a closing_signed and sent back
7146 // a closing_signed with a closing transaction to broadcast.
7147 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7148 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7153 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7155 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7156 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7157 update_maps_on_chan_removal!(self, &chan.context);
7163 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7164 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7169 _ => true, // Retain unfunded channels if present.
7175 for (counterparty_node_id, err) in handle_errors.drain(..) {
7176 let _ = handle_error!(self, err, counterparty_node_id);
7179 for shutdown_result in shutdown_results.drain(..) {
7180 self.finish_close_channel(shutdown_result);
7186 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7187 /// pushing the channel monitor update (if any) to the background events queue and removing the
7189 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7190 for mut failure in failed_channels.drain(..) {
7191 // Either a commitment transactions has been confirmed on-chain or
7192 // Channel::block_disconnected detected that the funding transaction has been
7193 // reorganized out of the main chain.
7194 // We cannot broadcast our latest local state via monitor update (as
7195 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7196 // so we track the update internally and handle it when the user next calls
7197 // timer_tick_occurred, guaranteeing we're running normally.
7198 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7199 assert_eq!(update.updates.len(), 1);
7200 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7201 assert!(should_broadcast);
7202 } else { unreachable!(); }
7203 self.pending_background_events.lock().unwrap().push(
7204 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7205 counterparty_node_id, funding_txo, update
7208 self.finish_close_channel(failure);
7212 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7213 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7214 /// not have an expiration unless otherwise set on the builder.
7218 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7219 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7220 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7221 /// node in order to send the [`InvoiceRequest`].
7225 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7228 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7230 /// [`Offer`]: crate::offers::offer::Offer
7231 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7232 pub fn create_offer_builder(
7233 &self, description: String
7234 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7235 let node_id = self.get_our_node_id();
7236 let expanded_key = &self.inbound_payment_key;
7237 let entropy = &*self.entropy_source;
7238 let secp_ctx = &self.secp_ctx;
7239 let path = self.create_one_hop_blinded_path();
7241 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7242 .chain_hash(self.chain_hash)
7246 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7247 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7251 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7252 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7254 /// The builder will have the provided expiration set. Any changes to the expiration on the
7255 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7256 /// block time minus two hours is used for the current time when determining if the refund has
7259 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7260 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7261 /// with an [`Event::InvoiceRequestFailed`].
7263 /// If `max_total_routing_fee_msat` is not specified, The default from
7264 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7268 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7269 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7270 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7271 /// in order to send the [`Bolt12Invoice`].
7275 /// Requires a direct connection to an introduction node in the responding
7276 /// [`Bolt12Invoice::payment_paths`].
7280 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7281 /// or if `amount_msats` is invalid.
7283 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7285 /// [`Refund`]: crate::offers::refund::Refund
7286 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7287 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7288 pub fn create_refund_builder(
7289 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7290 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7291 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7292 let node_id = self.get_our_node_id();
7293 let expanded_key = &self.inbound_payment_key;
7294 let entropy = &*self.entropy_source;
7295 let secp_ctx = &self.secp_ctx;
7296 let path = self.create_one_hop_blinded_path();
7298 let builder = RefundBuilder::deriving_payer_id(
7299 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7301 .chain_hash(self.chain_hash)
7302 .absolute_expiry(absolute_expiry)
7305 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7306 self.pending_outbound_payments
7307 .add_new_awaiting_invoice(
7308 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7310 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7315 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7316 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7317 /// [`Bolt12Invoice`] once it is received.
7319 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7320 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7321 /// The optional parameters are used in the builder, if `Some`:
7322 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7323 /// [`Offer::expects_quantity`] is `true`.
7324 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7325 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7327 /// If `max_total_routing_fee_msat` is not specified, The default from
7328 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7332 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7333 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7336 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7337 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7338 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7342 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7343 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7344 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7345 /// in order to send the [`Bolt12Invoice`].
7349 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7350 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7351 /// [`Bolt12Invoice::payment_paths`].
7355 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7356 /// or if the provided parameters are invalid for the offer.
7358 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7359 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7360 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7361 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7362 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7363 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7364 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7365 pub fn pay_for_offer(
7366 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7367 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7368 max_total_routing_fee_msat: Option<u64>
7369 ) -> Result<(), Bolt12SemanticError> {
7370 let expanded_key = &self.inbound_payment_key;
7371 let entropy = &*self.entropy_source;
7372 let secp_ctx = &self.secp_ctx;
7375 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7376 .chain_hash(self.chain_hash)?;
7377 let builder = match quantity {
7379 Some(quantity) => builder.quantity(quantity)?,
7381 let builder = match amount_msats {
7383 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7385 let builder = match payer_note {
7387 Some(payer_note) => builder.payer_note(payer_note),
7390 let invoice_request = builder.build_and_sign()?;
7391 let reply_path = self.create_one_hop_blinded_path();
7393 let expiration = StaleExpiration::TimerTicks(1);
7394 self.pending_outbound_payments
7395 .add_new_awaiting_invoice(
7396 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7398 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7400 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7401 if offer.paths().is_empty() {
7402 let message = new_pending_onion_message(
7403 OffersMessage::InvoiceRequest(invoice_request),
7404 Destination::Node(offer.signing_pubkey()),
7407 pending_offers_messages.push(message);
7409 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7410 // Using only one path could result in a failure if the path no longer exists. But only
7411 // one invoice for a given payment id will be paid, even if more than one is received.
7412 const REQUEST_LIMIT: usize = 10;
7413 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7414 let message = new_pending_onion_message(
7415 OffersMessage::InvoiceRequest(invoice_request.clone()),
7416 Destination::BlindedPath(path.clone()),
7417 Some(reply_path.clone()),
7419 pending_offers_messages.push(message);
7426 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7429 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7430 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7431 /// [`PaymentPreimage`].
7435 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7436 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7437 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7438 /// received and no retries will be made.
7440 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7441 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7442 let expanded_key = &self.inbound_payment_key;
7443 let entropy = &*self.entropy_source;
7444 let secp_ctx = &self.secp_ctx;
7446 let amount_msats = refund.amount_msats();
7447 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7449 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7450 Ok((payment_hash, payment_secret)) => {
7451 let payment_paths = vec![
7452 self.create_one_hop_blinded_payment_path(payment_secret),
7454 #[cfg(not(feature = "no-std"))]
7455 let builder = refund.respond_using_derived_keys(
7456 payment_paths, payment_hash, expanded_key, entropy
7458 #[cfg(feature = "no-std")]
7459 let created_at = Duration::from_secs(
7460 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7462 #[cfg(feature = "no-std")]
7463 let builder = refund.respond_using_derived_keys_no_std(
7464 payment_paths, payment_hash, created_at, expanded_key, entropy
7466 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7467 let reply_path = self.create_one_hop_blinded_path();
7469 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7470 if refund.paths().is_empty() {
7471 let message = new_pending_onion_message(
7472 OffersMessage::Invoice(invoice),
7473 Destination::Node(refund.payer_id()),
7476 pending_offers_messages.push(message);
7478 for path in refund.paths() {
7479 let message = new_pending_onion_message(
7480 OffersMessage::Invoice(invoice.clone()),
7481 Destination::BlindedPath(path.clone()),
7482 Some(reply_path.clone()),
7484 pending_offers_messages.push(message);
7490 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7494 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7497 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7498 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7500 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7501 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7502 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7503 /// passed directly to [`claim_funds`].
7505 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7507 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7508 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7512 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7513 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7515 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7517 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7518 /// on versions of LDK prior to 0.0.114.
7520 /// [`claim_funds`]: Self::claim_funds
7521 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7522 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7523 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7524 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7525 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7526 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7527 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7528 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7529 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7530 min_final_cltv_expiry_delta)
7533 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7534 /// stored external to LDK.
7536 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7537 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7538 /// the `min_value_msat` provided here, if one is provided.
7540 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7541 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7544 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7545 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7546 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7547 /// sender "proof-of-payment" unless they have paid the required amount.
7549 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7550 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7551 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7552 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7553 /// invoices when no timeout is set.
7555 /// Note that we use block header time to time-out pending inbound payments (with some margin
7556 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7557 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7558 /// If you need exact expiry semantics, you should enforce them upon receipt of
7559 /// [`PaymentClaimable`].
7561 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7562 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7564 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7565 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7569 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7570 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7572 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7574 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7575 /// on versions of LDK prior to 0.0.114.
7577 /// [`create_inbound_payment`]: Self::create_inbound_payment
7578 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7579 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7580 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7581 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7582 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7583 min_final_cltv_expiry)
7586 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7587 /// previously returned from [`create_inbound_payment`].
7589 /// [`create_inbound_payment`]: Self::create_inbound_payment
7590 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7591 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7594 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7596 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7597 let entropy_source = self.entropy_source.deref();
7598 let secp_ctx = &self.secp_ctx;
7599 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7602 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7604 fn create_one_hop_blinded_payment_path(
7605 &self, payment_secret: PaymentSecret
7606 ) -> (BlindedPayInfo, BlindedPath) {
7607 let entropy_source = self.entropy_source.deref();
7608 let secp_ctx = &self.secp_ctx;
7610 let payee_node_id = self.get_our_node_id();
7611 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7612 let payee_tlvs = ReceiveTlvs {
7614 payment_constraints: PaymentConstraints {
7616 htlc_minimum_msat: 1,
7619 // TODO: Err for overflow?
7620 BlindedPath::one_hop_for_payment(
7621 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7625 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7626 /// are used when constructing the phantom invoice's route hints.
7628 /// [phantom node payments]: crate::sign::PhantomKeysManager
7629 pub fn get_phantom_scid(&self) -> u64 {
7630 let best_block_height = self.best_block.read().unwrap().height();
7631 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7633 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7634 // Ensure the generated scid doesn't conflict with a real channel.
7635 match short_to_chan_info.get(&scid_candidate) {
7636 Some(_) => continue,
7637 None => return scid_candidate
7642 /// Gets route hints for use in receiving [phantom node payments].
7644 /// [phantom node payments]: crate::sign::PhantomKeysManager
7645 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7647 channels: self.list_usable_channels(),
7648 phantom_scid: self.get_phantom_scid(),
7649 real_node_pubkey: self.get_our_node_id(),
7653 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7654 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7655 /// [`ChannelManager::forward_intercepted_htlc`].
7657 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7658 /// times to get a unique scid.
7659 pub fn get_intercept_scid(&self) -> u64 {
7660 let best_block_height = self.best_block.read().unwrap().height();
7661 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7663 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7664 // Ensure the generated scid doesn't conflict with a real channel.
7665 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7666 return scid_candidate
7670 /// Gets inflight HTLC information by processing pending outbound payments that are in
7671 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7672 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7673 let mut inflight_htlcs = InFlightHtlcs::new();
7675 let per_peer_state = self.per_peer_state.read().unwrap();
7676 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7677 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7678 let peer_state = &mut *peer_state_lock;
7679 for chan in peer_state.channel_by_id.values().filter_map(
7680 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7682 for (htlc_source, _) in chan.inflight_htlc_sources() {
7683 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7684 inflight_htlcs.process_path(path, self.get_our_node_id());
7693 #[cfg(any(test, feature = "_test_utils"))]
7694 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7695 let events = core::cell::RefCell::new(Vec::new());
7696 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7697 self.process_pending_events(&event_handler);
7701 #[cfg(feature = "_test_utils")]
7702 pub fn push_pending_event(&self, event: events::Event) {
7703 let mut events = self.pending_events.lock().unwrap();
7704 events.push_back((event, None));
7708 pub fn pop_pending_event(&self) -> Option<events::Event> {
7709 let mut events = self.pending_events.lock().unwrap();
7710 events.pop_front().map(|(e, _)| e)
7714 pub fn has_pending_payments(&self) -> bool {
7715 self.pending_outbound_payments.has_pending_payments()
7719 pub fn clear_pending_payments(&self) {
7720 self.pending_outbound_payments.clear_pending_payments()
7723 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7724 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7725 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7726 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7727 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7729 let per_peer_state = self.per_peer_state.read().unwrap();
7730 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7731 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7732 let peer_state = &mut *peer_state_lck;
7734 if let Some(blocker) = completed_blocker.take() {
7735 // Only do this on the first iteration of the loop.
7736 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7737 .get_mut(&channel_funding_outpoint.to_channel_id())
7739 blockers.retain(|iter| iter != &blocker);
7743 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7744 channel_funding_outpoint, counterparty_node_id) {
7745 // Check that, while holding the peer lock, we don't have anything else
7746 // blocking monitor updates for this channel. If we do, release the monitor
7747 // update(s) when those blockers complete.
7748 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7749 &channel_funding_outpoint.to_channel_id());
7753 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7754 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7755 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7756 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7757 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7758 channel_funding_outpoint.to_channel_id());
7759 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7760 peer_state_lck, peer_state, per_peer_state, chan);
7761 if further_update_exists {
7762 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7767 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7768 channel_funding_outpoint.to_channel_id());
7773 log_debug!(self.logger,
7774 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7775 log_pubkey!(counterparty_node_id));
7781 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7782 for action in actions {
7784 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7785 channel_funding_outpoint, counterparty_node_id
7787 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7793 /// Processes any events asynchronously in the order they were generated since the last call
7794 /// using the given event handler.
7796 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7797 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7801 process_events_body!(self, ev, { handler(ev).await });
7805 fn create_fwd_pending_htlc_info(
7806 msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
7807 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
7808 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
7809 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
7810 debug_assert!(next_packet_pubkey_opt.is_some());
7811 let outgoing_packet = msgs::OnionPacket {
7813 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
7814 hop_data: new_packet_bytes,
7818 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
7819 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
7820 (short_channel_id, amt_to_forward, outgoing_cltv_value),
7821 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
7822 return Err(InboundOnionErr {
7823 msg: "Final Node OnionHopData provided for us as an intermediary node",
7824 err_code: 0x4000 | 22,
7825 err_data: Vec::new(),
7829 Ok(PendingHTLCInfo {
7830 routing: PendingHTLCRouting::Forward {
7831 onion_packet: outgoing_packet,
7834 payment_hash: msg.payment_hash,
7835 incoming_shared_secret: shared_secret,
7836 incoming_amt_msat: Some(msg.amount_msat),
7837 outgoing_amt_msat: amt_to_forward,
7838 outgoing_cltv_value,
7839 skimmed_fee_msat: None,
7843 fn create_recv_pending_htlc_info(
7844 hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
7845 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
7846 counterparty_skimmed_fee_msat: Option<u64>, current_height: u32, accept_mpp_keysend: bool,
7847 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
7848 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
7849 msgs::InboundOnionPayload::Receive {
7850 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
7852 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
7853 msgs::InboundOnionPayload::BlindedReceive {
7854 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
7856 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
7857 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
7859 msgs::InboundOnionPayload::Forward { .. } => {
7860 return Err(InboundOnionErr {
7861 err_code: 0x4000|22,
7862 err_data: Vec::new(),
7863 msg: "Got non final data with an HMAC of 0",
7867 // final_incorrect_cltv_expiry
7868 if outgoing_cltv_value > cltv_expiry {
7869 return Err(InboundOnionErr {
7870 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
7872 err_data: cltv_expiry.to_be_bytes().to_vec()
7875 // final_expiry_too_soon
7876 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
7877 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
7879 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
7880 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
7881 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
7882 if cltv_expiry <= current_height + HTLC_FAIL_BACK_BUFFER + 1 {
7883 let mut err_data = Vec::with_capacity(12);
7884 err_data.extend_from_slice(&amt_msat.to_be_bytes());
7885 err_data.extend_from_slice(¤t_height.to_be_bytes());
7886 return Err(InboundOnionErr {
7887 err_code: 0x4000 | 15, err_data,
7888 msg: "The final CLTV expiry is too soon to handle",
7891 if (!allow_underpay && onion_amt_msat > amt_msat) ||
7892 (allow_underpay && onion_amt_msat >
7893 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
7895 return Err(InboundOnionErr {
7897 err_data: amt_msat.to_be_bytes().to_vec(),
7898 msg: "Upstream node sent less than we were supposed to receive in payment",
7902 let routing = if let Some(payment_preimage) = keysend_preimage {
7903 // We need to check that the sender knows the keysend preimage before processing this
7904 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
7905 // could discover the final destination of X, by probing the adjacent nodes on the route
7906 // with a keysend payment of identical payment hash to X and observing the processing
7907 // time discrepancies due to a hash collision with X.
7908 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
7909 if hashed_preimage != payment_hash {
7910 return Err(InboundOnionErr {
7911 err_code: 0x4000|22,
7912 err_data: Vec::new(),
7913 msg: "Payment preimage didn't match payment hash",
7916 if !accept_mpp_keysend && payment_data.is_some() {
7917 return Err(InboundOnionErr {
7918 err_code: 0x4000|22,
7919 err_data: Vec::new(),
7920 msg: "We don't support MPP keysend payments",
7923 PendingHTLCRouting::ReceiveKeysend {
7927 incoming_cltv_expiry: outgoing_cltv_value,
7930 } else if let Some(data) = payment_data {
7931 PendingHTLCRouting::Receive {
7934 incoming_cltv_expiry: outgoing_cltv_value,
7935 phantom_shared_secret,
7939 return Err(InboundOnionErr {
7940 err_code: 0x4000|0x2000|3,
7941 err_data: Vec::new(),
7942 msg: "We require payment_secrets",
7945 Ok(PendingHTLCInfo {
7948 incoming_shared_secret: shared_secret,
7949 incoming_amt_msat: Some(amt_msat),
7950 outgoing_amt_msat: onion_amt_msat,
7951 outgoing_cltv_value,
7952 skimmed_fee_msat: counterparty_skimmed_fee_msat,
7956 /// Peel one layer off an incoming onion, returning [`PendingHTLCInfo`] (either Forward or Receive).
7957 /// This does all the relevant context-free checks that LDK requires for payment relay or
7958 /// acceptance. If the payment is to be received, and the amount matches the expected amount for
7959 /// a given invoice, this indicates the [`msgs::UpdateAddHTLC`], once fully committed in the
7960 /// channel, will generate an [`Event::PaymentClaimable`].
7961 pub fn peel_payment_onion<NS: Deref, L: Deref, T: secp256k1::Verification>(
7962 msg: &msgs::UpdateAddHTLC, node_signer: &NS, logger: &L, secp_ctx: &Secp256k1<T>,
7963 cur_height: u32, accept_mpp_keysend: bool,
7964 ) -> Result<PendingHTLCInfo, InboundOnionErr>
7966 NS::Target: NodeSigner,
7969 let (hop, shared_secret, next_packet_details_opt) =
7970 decode_incoming_update_add_htlc_onion(msg, node_signer, logger, secp_ctx
7972 let (err_code, err_data) = match e {
7973 HTLCFailureMsg::Malformed(m) => (m.failure_code, Vec::new()),
7974 HTLCFailureMsg::Relay(r) => (0x4000 | 22, r.reason.data),
7976 let msg = "Failed to decode update add htlc onion";
7977 InboundOnionErr { msg, err_code, err_data }
7980 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
7981 let NextPacketDetails {
7982 next_packet_pubkey, outgoing_amt_msat: _, outgoing_scid: _, outgoing_cltv_value
7983 } = match next_packet_details_opt {
7984 Some(next_packet_details) => next_packet_details,
7985 // Forward should always include the next hop details
7986 None => return Err(InboundOnionErr {
7987 msg: "Failed to decode update add htlc onion",
7988 err_code: 0x4000 | 22,
7989 err_data: Vec::new(),
7993 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
7994 cur_height, outgoing_cltv_value, msg.cltv_expiry
7996 return Err(InboundOnionErr {
7999 err_data: Vec::new(),
8002 create_fwd_pending_htlc_info(
8003 msg, next_hop_data, next_hop_hmac, new_packet_bytes, shared_secret,
8004 Some(next_packet_pubkey)
8007 onion_utils::Hop::Receive(received_data) => {
8008 create_recv_pending_htlc_info(
8009 received_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry,
8010 None, false, msg.skimmed_fee_msat, cur_height, accept_mpp_keysend,
8016 struct NextPacketDetails {
8017 next_packet_pubkey: Result<PublicKey, secp256k1::Error>,
8019 outgoing_amt_msat: u64,
8020 outgoing_cltv_value: u32,
8023 fn decode_incoming_update_add_htlc_onion<NS: Deref, L: Deref, T: secp256k1::Verification>(
8024 msg: &msgs::UpdateAddHTLC, node_signer: &NS, logger: &L, secp_ctx: &Secp256k1<T>,
8025 ) -> Result<(onion_utils::Hop, [u8; 32], Option<NextPacketDetails>), HTLCFailureMsg>
8027 NS::Target: NodeSigner,
8030 macro_rules! return_malformed_err {
8031 ($msg: expr, $err_code: expr) => {
8033 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
8034 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8035 channel_id: msg.channel_id,
8036 htlc_id: msg.htlc_id,
8037 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).to_byte_array(),
8038 failure_code: $err_code,
8044 if let Err(_) = msg.onion_routing_packet.public_key {
8045 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
8048 let shared_secret = node_signer.ecdh(
8049 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
8050 ).unwrap().secret_bytes();
8052 if msg.onion_routing_packet.version != 0 {
8053 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
8054 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
8055 //the hash doesn't really serve any purpose - in the case of hashing all data, the
8056 //receiving node would have to brute force to figure out which version was put in the
8057 //packet by the node that send us the message, in the case of hashing the hop_data, the
8058 //node knows the HMAC matched, so they already know what is there...
8059 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
8061 macro_rules! return_err {
8062 ($msg: expr, $err_code: expr, $data: expr) => {
8064 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
8065 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
8066 channel_id: msg.channel_id,
8067 htlc_id: msg.htlc_id,
8068 reason: HTLCFailReason::reason($err_code, $data.to_vec())
8069 .get_encrypted_failure_packet(&shared_secret, &None),
8075 let next_hop = match onion_utils::decode_next_payment_hop(
8076 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
8077 msg.payment_hash, node_signer
8080 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
8081 return_malformed_err!(err_msg, err_code);
8083 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
8084 return_err!(err_msg, err_code, &[0; 0]);
8088 let next_packet_details = match next_hop {
8089 onion_utils::Hop::Forward {
8090 next_hop_data: msgs::InboundOnionPayload::Forward {
8091 short_channel_id, amt_to_forward, outgoing_cltv_value
8094 let next_packet_pubkey = onion_utils::next_hop_pubkey(secp_ctx,
8095 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
8097 next_packet_pubkey, outgoing_scid: short_channel_id,
8098 outgoing_amt_msat: amt_to_forward, outgoing_cltv_value
8101 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
8102 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
8103 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
8105 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
8109 Ok((next_hop, shared_secret, Some(next_packet_details)))
8112 fn check_incoming_htlc_cltv(
8113 cur_height: u32, outgoing_cltv_value: u32, cltv_expiry: u32
8114 ) -> Result<(), (&'static str, u16)> {
8115 if (cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
8117 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
8118 0x1000 | 13, // incorrect_cltv_expiry
8121 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
8122 // but we want to be robust wrt to counterparty packet sanitization (see
8123 // HTLC_FAIL_BACK_BUFFER rationale).
8124 if cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
8125 return Err(("CLTV expiry is too close", 0x1000 | 14));
8127 if cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
8128 return Err(("CLTV expiry is too far in the future", 21));
8130 // If the HTLC expires ~now, don't bother trying to forward it to our
8131 // counterparty. They should fail it anyway, but we don't want to bother with
8132 // the round-trips or risk them deciding they definitely want the HTLC and
8133 // force-closing to ensure they get it if we're offline.
8134 // We previously had a much more aggressive check here which tried to ensure
8135 // our counterparty receives an HTLC which has *our* risk threshold met on it,
8136 // but there is no need to do that, and since we're a bit conservative with our
8137 // risk threshold it just results in failing to forward payments.
8138 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
8139 return Err(("Outgoing CLTV value is too soon", 0x1000 | 14));
8145 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8147 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8148 T::Target: BroadcasterInterface,
8149 ES::Target: EntropySource,
8150 NS::Target: NodeSigner,
8151 SP::Target: SignerProvider,
8152 F::Target: FeeEstimator,
8156 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8157 /// The returned array will contain `MessageSendEvent`s for different peers if
8158 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8159 /// is always placed next to each other.
8161 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8162 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8163 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8164 /// will randomly be placed first or last in the returned array.
8166 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8167 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8168 /// the `MessageSendEvent`s to the specific peer they were generated under.
8169 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8170 let events = RefCell::new(Vec::new());
8171 PersistenceNotifierGuard::optionally_notify(self, || {
8172 let mut result = NotifyOption::SkipPersistNoEvents;
8174 // TODO: This behavior should be documented. It's unintuitive that we query
8175 // ChannelMonitors when clearing other events.
8176 if self.process_pending_monitor_events() {
8177 result = NotifyOption::DoPersist;
8180 if self.check_free_holding_cells() {
8181 result = NotifyOption::DoPersist;
8183 if self.maybe_generate_initial_closing_signed() {
8184 result = NotifyOption::DoPersist;
8187 let mut pending_events = Vec::new();
8188 let per_peer_state = self.per_peer_state.read().unwrap();
8189 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8190 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8191 let peer_state = &mut *peer_state_lock;
8192 if peer_state.pending_msg_events.len() > 0 {
8193 pending_events.append(&mut peer_state.pending_msg_events);
8197 if !pending_events.is_empty() {
8198 events.replace(pending_events);
8207 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8209 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8210 T::Target: BroadcasterInterface,
8211 ES::Target: EntropySource,
8212 NS::Target: NodeSigner,
8213 SP::Target: SignerProvider,
8214 F::Target: FeeEstimator,
8218 /// Processes events that must be periodically handled.
8220 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8221 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8222 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8224 process_events_body!(self, ev, handler.handle_event(ev));
8228 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8230 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8231 T::Target: BroadcasterInterface,
8232 ES::Target: EntropySource,
8233 NS::Target: NodeSigner,
8234 SP::Target: SignerProvider,
8235 F::Target: FeeEstimator,
8239 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
8241 let best_block = self.best_block.read().unwrap();
8242 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8243 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8244 assert_eq!(best_block.height(), height - 1,
8245 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8248 self.transactions_confirmed(header, txdata, height);
8249 self.best_block_updated(header, height);
8252 fn block_disconnected(&self, header: &Header, height: u32) {
8253 let _persistence_guard =
8254 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8255 self, || -> NotifyOption { NotifyOption::DoPersist });
8256 let new_height = height - 1;
8258 let mut best_block = self.best_block.write().unwrap();
8259 assert_eq!(best_block.block_hash(), header.block_hash(),
8260 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8261 assert_eq!(best_block.height(), height,
8262 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8263 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8266 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8270 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8272 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8273 T::Target: BroadcasterInterface,
8274 ES::Target: EntropySource,
8275 NS::Target: NodeSigner,
8276 SP::Target: SignerProvider,
8277 F::Target: FeeEstimator,
8281 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
8282 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8283 // during initialization prior to the chain_monitor being fully configured in some cases.
8284 // See the docs for `ChannelManagerReadArgs` for more.
8286 let block_hash = header.block_hash();
8287 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8289 let _persistence_guard =
8290 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8291 self, || -> NotifyOption { NotifyOption::DoPersist });
8292 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger)
8293 .map(|(a, b)| (a, Vec::new(), b)));
8295 let last_best_block_height = self.best_block.read().unwrap().height();
8296 if height < last_best_block_height {
8297 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8298 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8302 fn best_block_updated(&self, header: &Header, height: u32) {
8303 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8304 // during initialization prior to the chain_monitor being fully configured in some cases.
8305 // See the docs for `ChannelManagerReadArgs` for more.
8307 let block_hash = header.block_hash();
8308 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8310 let _persistence_guard =
8311 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8312 self, || -> NotifyOption { NotifyOption::DoPersist });
8313 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8315 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8317 macro_rules! max_time {
8318 ($timestamp: expr) => {
8320 // Update $timestamp to be the max of its current value and the block
8321 // timestamp. This should keep us close to the current time without relying on
8322 // having an explicit local time source.
8323 // Just in case we end up in a race, we loop until we either successfully
8324 // update $timestamp or decide we don't need to.
8325 let old_serial = $timestamp.load(Ordering::Acquire);
8326 if old_serial >= header.time as usize { break; }
8327 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8333 max_time!(self.highest_seen_timestamp);
8334 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8335 payment_secrets.retain(|_, inbound_payment| {
8336 inbound_payment.expiry_time > header.time as u64
8340 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
8341 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8342 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8343 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8344 let peer_state = &mut *peer_state_lock;
8345 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8346 let txid_opt = chan.context.get_funding_txo();
8347 let height_opt = chan.context.get_funding_tx_confirmation_height();
8348 let hash_opt = chan.context.get_funding_tx_confirmed_in();
8349 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
8350 res.push((funding_txo.txid, conf_height, Some(block_hash)));
8357 fn transaction_unconfirmed(&self, txid: &Txid) {
8358 let _persistence_guard =
8359 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8360 self, || -> NotifyOption { NotifyOption::DoPersist });
8361 self.do_chain_event(None, |channel| {
8362 if let Some(funding_txo) = channel.context.get_funding_txo() {
8363 if funding_txo.txid == *txid {
8364 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
8365 } else { Ok((None, Vec::new(), None)) }
8366 } else { Ok((None, Vec::new(), None)) }
8371 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8373 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8374 T::Target: BroadcasterInterface,
8375 ES::Target: EntropySource,
8376 NS::Target: NodeSigner,
8377 SP::Target: SignerProvider,
8378 F::Target: FeeEstimator,
8382 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8383 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8385 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8386 (&self, height_opt: Option<u32>, f: FN) {
8387 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8388 // during initialization prior to the chain_monitor being fully configured in some cases.
8389 // See the docs for `ChannelManagerReadArgs` for more.
8391 let mut failed_channels = Vec::new();
8392 let mut timed_out_htlcs = Vec::new();
8394 let per_peer_state = self.per_peer_state.read().unwrap();
8395 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8396 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8397 let peer_state = &mut *peer_state_lock;
8398 let pending_msg_events = &mut peer_state.pending_msg_events;
8399 peer_state.channel_by_id.retain(|_, phase| {
8401 // Retain unfunded channels.
8402 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8403 ChannelPhase::Funded(channel) => {
8404 let res = f(channel);
8405 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8406 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8407 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8408 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8409 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8411 if let Some(channel_ready) = channel_ready_opt {
8412 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8413 if channel.context.is_usable() {
8414 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8415 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8416 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8417 node_id: channel.context.get_counterparty_node_id(),
8422 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8427 let mut pending_events = self.pending_events.lock().unwrap();
8428 emit_channel_ready_event!(pending_events, channel);
8431 if let Some(announcement_sigs) = announcement_sigs {
8432 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8433 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8434 node_id: channel.context.get_counterparty_node_id(),
8435 msg: announcement_sigs,
8437 if let Some(height) = height_opt {
8438 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8439 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8441 // Note that announcement_signatures fails if the channel cannot be announced,
8442 // so get_channel_update_for_broadcast will never fail by the time we get here.
8443 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8448 if channel.is_our_channel_ready() {
8449 if let Some(real_scid) = channel.context.get_short_channel_id() {
8450 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8451 // to the short_to_chan_info map here. Note that we check whether we
8452 // can relay using the real SCID at relay-time (i.e.
8453 // enforce option_scid_alias then), and if the funding tx is ever
8454 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8455 // is always consistent.
8456 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8457 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8458 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8459 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8460 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8463 } else if let Err(reason) = res {
8464 update_maps_on_chan_removal!(self, &channel.context);
8465 // It looks like our counterparty went on-chain or funding transaction was
8466 // reorged out of the main chain. Close the channel.
8467 failed_channels.push(channel.context.force_shutdown(true));
8468 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8469 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8473 let reason_message = format!("{}", reason);
8474 self.issue_channel_close_events(&channel.context, reason);
8475 pending_msg_events.push(events::MessageSendEvent::HandleError {
8476 node_id: channel.context.get_counterparty_node_id(),
8477 action: msgs::ErrorAction::DisconnectPeer {
8478 msg: Some(msgs::ErrorMessage {
8479 channel_id: channel.context.channel_id(),
8480 data: reason_message,
8493 if let Some(height) = height_opt {
8494 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8495 payment.htlcs.retain(|htlc| {
8496 // If height is approaching the number of blocks we think it takes us to get
8497 // our commitment transaction confirmed before the HTLC expires, plus the
8498 // number of blocks we generally consider it to take to do a commitment update,
8499 // just give up on it and fail the HTLC.
8500 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8501 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8502 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8504 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8505 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8506 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8510 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8513 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8514 intercepted_htlcs.retain(|_, htlc| {
8515 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8516 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8517 short_channel_id: htlc.prev_short_channel_id,
8518 user_channel_id: Some(htlc.prev_user_channel_id),
8519 htlc_id: htlc.prev_htlc_id,
8520 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8521 phantom_shared_secret: None,
8522 outpoint: htlc.prev_funding_outpoint,
8525 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8526 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8527 _ => unreachable!(),
8529 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8530 HTLCFailReason::from_failure_code(0x2000 | 2),
8531 HTLCDestination::InvalidForward { requested_forward_scid }));
8532 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8538 self.handle_init_event_channel_failures(failed_channels);
8540 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8541 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8545 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8546 /// may have events that need processing.
8548 /// In order to check if this [`ChannelManager`] needs persisting, call
8549 /// [`Self::get_and_clear_needs_persistence`].
8551 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8552 /// [`ChannelManager`] and should instead register actions to be taken later.
8553 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8554 self.event_persist_notifier.get_future()
8557 /// Returns true if this [`ChannelManager`] needs to be persisted.
8558 pub fn get_and_clear_needs_persistence(&self) -> bool {
8559 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8562 #[cfg(any(test, feature = "_test_utils"))]
8563 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8564 self.event_persist_notifier.notify_pending()
8567 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8568 /// [`chain::Confirm`] interfaces.
8569 pub fn current_best_block(&self) -> BestBlock {
8570 self.best_block.read().unwrap().clone()
8573 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8574 /// [`ChannelManager`].
8575 pub fn node_features(&self) -> NodeFeatures {
8576 provided_node_features(&self.default_configuration)
8579 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8580 /// [`ChannelManager`].
8582 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8583 /// or not. Thus, this method is not public.
8584 #[cfg(any(feature = "_test_utils", test))]
8585 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8586 provided_bolt11_invoice_features(&self.default_configuration)
8589 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8590 /// [`ChannelManager`].
8591 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8592 provided_bolt12_invoice_features(&self.default_configuration)
8595 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8596 /// [`ChannelManager`].
8597 pub fn channel_features(&self) -> ChannelFeatures {
8598 provided_channel_features(&self.default_configuration)
8601 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8602 /// [`ChannelManager`].
8603 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8604 provided_channel_type_features(&self.default_configuration)
8607 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8608 /// [`ChannelManager`].
8609 pub fn init_features(&self) -> InitFeatures {
8610 provided_init_features(&self.default_configuration)
8614 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8615 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8617 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8618 T::Target: BroadcasterInterface,
8619 ES::Target: EntropySource,
8620 NS::Target: NodeSigner,
8621 SP::Target: SignerProvider,
8622 F::Target: FeeEstimator,
8626 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8627 // Note that we never need to persist the updated ChannelManager for an inbound
8628 // open_channel message - pre-funded channels are never written so there should be no
8629 // change to the contents.
8630 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8631 let res = self.internal_open_channel(counterparty_node_id, msg);
8632 let persist = match &res {
8633 Err(e) if e.closes_channel() => {
8634 debug_assert!(false, "We shouldn't close a new channel");
8635 NotifyOption::DoPersist
8637 _ => NotifyOption::SkipPersistHandleEvents,
8639 let _ = handle_error!(self, res, *counterparty_node_id);
8644 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8645 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8646 "Dual-funded channels not supported".to_owned(),
8647 msg.temporary_channel_id.clone())), *counterparty_node_id);
8650 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8651 // Note that we never need to persist the updated ChannelManager for an inbound
8652 // accept_channel message - pre-funded channels are never written so there should be no
8653 // change to the contents.
8654 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8655 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8656 NotifyOption::SkipPersistHandleEvents
8660 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8661 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8662 "Dual-funded channels not supported".to_owned(),
8663 msg.temporary_channel_id.clone())), *counterparty_node_id);
8666 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8667 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8668 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8671 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8672 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8673 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8676 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8677 // Note that we never need to persist the updated ChannelManager for an inbound
8678 // channel_ready message - while the channel's state will change, any channel_ready message
8679 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8680 // will not force-close the channel on startup.
8681 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8682 let res = self.internal_channel_ready(counterparty_node_id, msg);
8683 let persist = match &res {
8684 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8685 _ => NotifyOption::SkipPersistHandleEvents,
8687 let _ = handle_error!(self, res, *counterparty_node_id);
8692 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8693 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8694 "Quiescence not supported".to_owned(),
8695 msg.channel_id.clone())), *counterparty_node_id);
8698 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8699 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8700 "Splicing not supported".to_owned(),
8701 msg.channel_id.clone())), *counterparty_node_id);
8704 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8705 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8706 "Splicing not supported (splice_ack)".to_owned(),
8707 msg.channel_id.clone())), *counterparty_node_id);
8710 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8711 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8712 "Splicing not supported (splice_locked)".to_owned(),
8713 msg.channel_id.clone())), *counterparty_node_id);
8716 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8717 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8718 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8721 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8722 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8723 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8726 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8727 // Note that we never need to persist the updated ChannelManager for an inbound
8728 // update_add_htlc message - the message itself doesn't change our channel state only the
8729 // `commitment_signed` message afterwards will.
8730 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8731 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8732 let persist = match &res {
8733 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8734 Err(_) => NotifyOption::SkipPersistHandleEvents,
8735 Ok(()) => NotifyOption::SkipPersistNoEvents,
8737 let _ = handle_error!(self, res, *counterparty_node_id);
8742 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8743 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8744 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8747 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8748 // Note that we never need to persist the updated ChannelManager for an inbound
8749 // update_fail_htlc message - the message itself doesn't change our channel state only the
8750 // `commitment_signed` message afterwards will.
8751 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8752 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8753 let persist = match &res {
8754 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8755 Err(_) => NotifyOption::SkipPersistHandleEvents,
8756 Ok(()) => NotifyOption::SkipPersistNoEvents,
8758 let _ = handle_error!(self, res, *counterparty_node_id);
8763 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8764 // Note that we never need to persist the updated ChannelManager for an inbound
8765 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8766 // only the `commitment_signed` message afterwards will.
8767 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8768 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8769 let persist = match &res {
8770 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8771 Err(_) => NotifyOption::SkipPersistHandleEvents,
8772 Ok(()) => NotifyOption::SkipPersistNoEvents,
8774 let _ = handle_error!(self, res, *counterparty_node_id);
8779 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8780 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8781 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8784 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8785 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8786 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8789 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8790 // Note that we never need to persist the updated ChannelManager for an inbound
8791 // update_fee message - the message itself doesn't change our channel state only the
8792 // `commitment_signed` message afterwards will.
8793 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8794 let res = self.internal_update_fee(counterparty_node_id, msg);
8795 let persist = match &res {
8796 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8797 Err(_) => NotifyOption::SkipPersistHandleEvents,
8798 Ok(()) => NotifyOption::SkipPersistNoEvents,
8800 let _ = handle_error!(self, res, *counterparty_node_id);
8805 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8806 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8807 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8810 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8811 PersistenceNotifierGuard::optionally_notify(self, || {
8812 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8815 NotifyOption::DoPersist
8820 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8821 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8822 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8823 let persist = match &res {
8824 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8825 Err(_) => NotifyOption::SkipPersistHandleEvents,
8826 Ok(persist) => *persist,
8828 let _ = handle_error!(self, res, *counterparty_node_id);
8833 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8834 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8835 self, || NotifyOption::SkipPersistHandleEvents);
8836 let mut failed_channels = Vec::new();
8837 let mut per_peer_state = self.per_peer_state.write().unwrap();
8839 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8840 log_pubkey!(counterparty_node_id));
8841 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8842 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8843 let peer_state = &mut *peer_state_lock;
8844 let pending_msg_events = &mut peer_state.pending_msg_events;
8845 peer_state.channel_by_id.retain(|_, phase| {
8846 let context = match phase {
8847 ChannelPhase::Funded(chan) => {
8848 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8849 // We only retain funded channels that are not shutdown.
8854 // Unfunded channels will always be removed.
8855 ChannelPhase::UnfundedOutboundV1(chan) => {
8858 ChannelPhase::UnfundedInboundV1(chan) => {
8862 // Clean up for removal.
8863 update_maps_on_chan_removal!(self, &context);
8864 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8865 failed_channels.push(context.force_shutdown(false));
8868 // Note that we don't bother generating any events for pre-accept channels -
8869 // they're not considered "channels" yet from the PoV of our events interface.
8870 peer_state.inbound_channel_request_by_id.clear();
8871 pending_msg_events.retain(|msg| {
8873 // V1 Channel Establishment
8874 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8875 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8876 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8877 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8878 // V2 Channel Establishment
8879 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8880 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8881 // Common Channel Establishment
8882 &events::MessageSendEvent::SendChannelReady { .. } => false,
8883 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8885 &events::MessageSendEvent::SendStfu { .. } => false,
8887 &events::MessageSendEvent::SendSplice { .. } => false,
8888 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8889 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8890 // Interactive Transaction Construction
8891 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8892 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8893 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8894 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8895 &events::MessageSendEvent::SendTxComplete { .. } => false,
8896 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8897 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8898 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8899 &events::MessageSendEvent::SendTxAbort { .. } => false,
8900 // Channel Operations
8901 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8902 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8903 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8904 &events::MessageSendEvent::SendShutdown { .. } => false,
8905 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8906 &events::MessageSendEvent::HandleError { .. } => false,
8908 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8909 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8910 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8911 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8912 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8913 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8914 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8915 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8916 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8919 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8920 peer_state.is_connected = false;
8921 peer_state.ok_to_remove(true)
8922 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8925 per_peer_state.remove(counterparty_node_id);
8927 mem::drop(per_peer_state);
8929 for failure in failed_channels.drain(..) {
8930 self.finish_close_channel(failure);
8934 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8935 if !init_msg.features.supports_static_remote_key() {
8936 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8940 let mut res = Ok(());
8942 PersistenceNotifierGuard::optionally_notify(self, || {
8943 // If we have too many peers connected which don't have funded channels, disconnect the
8944 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8945 // unfunded channels taking up space in memory for disconnected peers, we still let new
8946 // peers connect, but we'll reject new channels from them.
8947 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8948 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8951 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8952 match peer_state_lock.entry(counterparty_node_id.clone()) {
8953 hash_map::Entry::Vacant(e) => {
8954 if inbound_peer_limited {
8956 return NotifyOption::SkipPersistNoEvents;
8958 e.insert(Mutex::new(PeerState {
8959 channel_by_id: HashMap::new(),
8960 inbound_channel_request_by_id: HashMap::new(),
8961 latest_features: init_msg.features.clone(),
8962 pending_msg_events: Vec::new(),
8963 in_flight_monitor_updates: BTreeMap::new(),
8964 monitor_update_blocked_actions: BTreeMap::new(),
8965 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8969 hash_map::Entry::Occupied(e) => {
8970 let mut peer_state = e.get().lock().unwrap();
8971 peer_state.latest_features = init_msg.features.clone();
8973 let best_block_height = self.best_block.read().unwrap().height();
8974 if inbound_peer_limited &&
8975 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8976 peer_state.channel_by_id.len()
8979 return NotifyOption::SkipPersistNoEvents;
8982 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8983 peer_state.is_connected = true;
8988 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8990 let per_peer_state = self.per_peer_state.read().unwrap();
8991 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8992 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8993 let peer_state = &mut *peer_state_lock;
8994 let pending_msg_events = &mut peer_state.pending_msg_events;
8996 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8997 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8998 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8999 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
9000 // worry about closing and removing them.
9001 debug_assert!(false);
9005 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
9006 node_id: chan.context.get_counterparty_node_id(),
9007 msg: chan.get_channel_reestablish(&self.logger),
9012 return NotifyOption::SkipPersistHandleEvents;
9013 //TODO: Also re-broadcast announcement_signatures
9018 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
9019 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9021 match &msg.data as &str {
9022 "cannot co-op close channel w/ active htlcs"|
9023 "link failed to shutdown" =>
9025 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
9026 // send one while HTLCs are still present. The issue is tracked at
9027 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
9028 // to fix it but none so far have managed to land upstream. The issue appears to be
9029 // very low priority for the LND team despite being marked "P1".
9030 // We're not going to bother handling this in a sensible way, instead simply
9031 // repeating the Shutdown message on repeat until morale improves.
9032 if !msg.channel_id.is_zero() {
9033 let per_peer_state = self.per_peer_state.read().unwrap();
9034 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9035 if peer_state_mutex_opt.is_none() { return; }
9036 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
9037 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
9038 if let Some(msg) = chan.get_outbound_shutdown() {
9039 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
9040 node_id: *counterparty_node_id,
9044 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
9045 node_id: *counterparty_node_id,
9046 action: msgs::ErrorAction::SendWarningMessage {
9047 msg: msgs::WarningMessage {
9048 channel_id: msg.channel_id,
9049 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
9051 log_level: Level::Trace,
9061 if msg.channel_id.is_zero() {
9062 let channel_ids: Vec<ChannelId> = {
9063 let per_peer_state = self.per_peer_state.read().unwrap();
9064 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9065 if peer_state_mutex_opt.is_none() { return; }
9066 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
9067 let peer_state = &mut *peer_state_lock;
9068 // Note that we don't bother generating any events for pre-accept channels -
9069 // they're not considered "channels" yet from the PoV of our events interface.
9070 peer_state.inbound_channel_request_by_id.clear();
9071 peer_state.channel_by_id.keys().cloned().collect()
9073 for channel_id in channel_ids {
9074 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9075 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
9079 // First check if we can advance the channel type and try again.
9080 let per_peer_state = self.per_peer_state.read().unwrap();
9081 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9082 if peer_state_mutex_opt.is_none() { return; }
9083 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
9084 let peer_state = &mut *peer_state_lock;
9085 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
9086 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
9087 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
9088 node_id: *counterparty_node_id,
9096 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9097 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
9101 fn provided_node_features(&self) -> NodeFeatures {
9102 provided_node_features(&self.default_configuration)
9105 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
9106 provided_init_features(&self.default_configuration)
9109 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
9110 Some(vec![self.chain_hash])
9113 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
9114 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9115 "Dual-funded channels not supported".to_owned(),
9116 msg.channel_id.clone())), *counterparty_node_id);
9119 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
9120 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9121 "Dual-funded channels not supported".to_owned(),
9122 msg.channel_id.clone())), *counterparty_node_id);
9125 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
9126 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9127 "Dual-funded channels not supported".to_owned(),
9128 msg.channel_id.clone())), *counterparty_node_id);
9131 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
9132 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9133 "Dual-funded channels not supported".to_owned(),
9134 msg.channel_id.clone())), *counterparty_node_id);
9137 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
9138 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9139 "Dual-funded channels not supported".to_owned(),
9140 msg.channel_id.clone())), *counterparty_node_id);
9143 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
9144 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9145 "Dual-funded channels not supported".to_owned(),
9146 msg.channel_id.clone())), *counterparty_node_id);
9149 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
9150 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9151 "Dual-funded channels not supported".to_owned(),
9152 msg.channel_id.clone())), *counterparty_node_id);
9155 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
9156 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9157 "Dual-funded channels not supported".to_owned(),
9158 msg.channel_id.clone())), *counterparty_node_id);
9161 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9162 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9163 "Dual-funded channels not supported".to_owned(),
9164 msg.channel_id.clone())), *counterparty_node_id);
9168 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9169 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9171 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9172 T::Target: BroadcasterInterface,
9173 ES::Target: EntropySource,
9174 NS::Target: NodeSigner,
9175 SP::Target: SignerProvider,
9176 F::Target: FeeEstimator,
9180 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9181 let secp_ctx = &self.secp_ctx;
9182 let expanded_key = &self.inbound_payment_key;
9185 OffersMessage::InvoiceRequest(invoice_request) => {
9186 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9189 Ok(amount_msats) => Some(amount_msats),
9190 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9192 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9193 Ok(invoice_request) => invoice_request,
9195 let error = Bolt12SemanticError::InvalidMetadata;
9196 return Some(OffersMessage::InvoiceError(error.into()));
9199 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9201 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9202 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9203 let payment_paths = vec![
9204 self.create_one_hop_blinded_payment_path(payment_secret),
9206 #[cfg(not(feature = "no-std"))]
9207 let builder = invoice_request.respond_using_derived_keys(
9208 payment_paths, payment_hash
9210 #[cfg(feature = "no-std")]
9211 let created_at = Duration::from_secs(
9212 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9214 #[cfg(feature = "no-std")]
9215 let builder = invoice_request.respond_using_derived_keys_no_std(
9216 payment_paths, payment_hash, created_at
9218 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9219 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9220 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9223 Ok((payment_hash, payment_secret)) => {
9224 let payment_paths = vec![
9225 self.create_one_hop_blinded_payment_path(payment_secret),
9227 #[cfg(not(feature = "no-std"))]
9228 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9229 #[cfg(feature = "no-std")]
9230 let created_at = Duration::from_secs(
9231 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9233 #[cfg(feature = "no-std")]
9234 let builder = invoice_request.respond_with_no_std(
9235 payment_paths, payment_hash, created_at
9237 let response = builder.and_then(|builder| builder.allow_mpp().build())
9238 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9240 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9241 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9242 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9243 InvoiceError::from_string("Failed signing invoice".to_string())
9245 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9246 InvoiceError::from_string("Failed invoice signature verification".to_string())
9250 Ok(invoice) => Some(invoice),
9251 Err(error) => Some(error),
9255 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9259 OffersMessage::Invoice(invoice) => {
9260 match invoice.verify(expanded_key, secp_ctx) {
9262 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9264 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9265 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9268 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9269 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9270 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9277 OffersMessage::InvoiceError(invoice_error) => {
9278 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9284 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9285 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9289 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9290 /// [`ChannelManager`].
9291 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9292 let mut node_features = provided_init_features(config).to_context();
9293 node_features.set_keysend_optional();
9297 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9298 /// [`ChannelManager`].
9300 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9301 /// or not. Thus, this method is not public.
9302 #[cfg(any(feature = "_test_utils", test))]
9303 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9304 provided_init_features(config).to_context()
9307 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9308 /// [`ChannelManager`].
9309 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9310 provided_init_features(config).to_context()
9313 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9314 /// [`ChannelManager`].
9315 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9316 provided_init_features(config).to_context()
9319 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9320 /// [`ChannelManager`].
9321 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9322 ChannelTypeFeatures::from_init(&provided_init_features(config))
9325 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9326 /// [`ChannelManager`].
9327 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9328 // Note that if new features are added here which other peers may (eventually) require, we
9329 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9330 // [`ErroringMessageHandler`].
9331 let mut features = InitFeatures::empty();
9332 features.set_data_loss_protect_required();
9333 features.set_upfront_shutdown_script_optional();
9334 features.set_variable_length_onion_required();
9335 features.set_static_remote_key_required();
9336 features.set_payment_secret_required();
9337 features.set_basic_mpp_optional();
9338 features.set_wumbo_optional();
9339 features.set_shutdown_any_segwit_optional();
9340 features.set_channel_type_optional();
9341 features.set_scid_privacy_optional();
9342 features.set_zero_conf_optional();
9343 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9344 features.set_anchors_zero_fee_htlc_tx_optional();
9349 const SERIALIZATION_VERSION: u8 = 1;
9350 const MIN_SERIALIZATION_VERSION: u8 = 1;
9352 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9353 (2, fee_base_msat, required),
9354 (4, fee_proportional_millionths, required),
9355 (6, cltv_expiry_delta, required),
9358 impl_writeable_tlv_based!(ChannelCounterparty, {
9359 (2, node_id, required),
9360 (4, features, required),
9361 (6, unspendable_punishment_reserve, required),
9362 (8, forwarding_info, option),
9363 (9, outbound_htlc_minimum_msat, option),
9364 (11, outbound_htlc_maximum_msat, option),
9367 impl Writeable for ChannelDetails {
9368 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9369 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9370 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9371 let user_channel_id_low = self.user_channel_id as u64;
9372 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9373 write_tlv_fields!(writer, {
9374 (1, self.inbound_scid_alias, option),
9375 (2, self.channel_id, required),
9376 (3, self.channel_type, option),
9377 (4, self.counterparty, required),
9378 (5, self.outbound_scid_alias, option),
9379 (6, self.funding_txo, option),
9380 (7, self.config, option),
9381 (8, self.short_channel_id, option),
9382 (9, self.confirmations, option),
9383 (10, self.channel_value_satoshis, required),
9384 (12, self.unspendable_punishment_reserve, option),
9385 (14, user_channel_id_low, required),
9386 (16, self.balance_msat, required),
9387 (18, self.outbound_capacity_msat, required),
9388 (19, self.next_outbound_htlc_limit_msat, required),
9389 (20, self.inbound_capacity_msat, required),
9390 (21, self.next_outbound_htlc_minimum_msat, required),
9391 (22, self.confirmations_required, option),
9392 (24, self.force_close_spend_delay, option),
9393 (26, self.is_outbound, required),
9394 (28, self.is_channel_ready, required),
9395 (30, self.is_usable, required),
9396 (32, self.is_public, required),
9397 (33, self.inbound_htlc_minimum_msat, option),
9398 (35, self.inbound_htlc_maximum_msat, option),
9399 (37, user_channel_id_high_opt, option),
9400 (39, self.feerate_sat_per_1000_weight, option),
9401 (41, self.channel_shutdown_state, option),
9407 impl Readable for ChannelDetails {
9408 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9409 _init_and_read_len_prefixed_tlv_fields!(reader, {
9410 (1, inbound_scid_alias, option),
9411 (2, channel_id, required),
9412 (3, channel_type, option),
9413 (4, counterparty, required),
9414 (5, outbound_scid_alias, option),
9415 (6, funding_txo, option),
9416 (7, config, option),
9417 (8, short_channel_id, option),
9418 (9, confirmations, option),
9419 (10, channel_value_satoshis, required),
9420 (12, unspendable_punishment_reserve, option),
9421 (14, user_channel_id_low, required),
9422 (16, balance_msat, required),
9423 (18, outbound_capacity_msat, required),
9424 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9425 // filled in, so we can safely unwrap it here.
9426 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9427 (20, inbound_capacity_msat, required),
9428 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9429 (22, confirmations_required, option),
9430 (24, force_close_spend_delay, option),
9431 (26, is_outbound, required),
9432 (28, is_channel_ready, required),
9433 (30, is_usable, required),
9434 (32, is_public, required),
9435 (33, inbound_htlc_minimum_msat, option),
9436 (35, inbound_htlc_maximum_msat, option),
9437 (37, user_channel_id_high_opt, option),
9438 (39, feerate_sat_per_1000_weight, option),
9439 (41, channel_shutdown_state, option),
9442 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9443 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9444 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9445 let user_channel_id = user_channel_id_low as u128 +
9446 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9450 channel_id: channel_id.0.unwrap(),
9452 counterparty: counterparty.0.unwrap(),
9453 outbound_scid_alias,
9457 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9458 unspendable_punishment_reserve,
9460 balance_msat: balance_msat.0.unwrap(),
9461 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9462 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9463 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9464 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9465 confirmations_required,
9467 force_close_spend_delay,
9468 is_outbound: is_outbound.0.unwrap(),
9469 is_channel_ready: is_channel_ready.0.unwrap(),
9470 is_usable: is_usable.0.unwrap(),
9471 is_public: is_public.0.unwrap(),
9472 inbound_htlc_minimum_msat,
9473 inbound_htlc_maximum_msat,
9474 feerate_sat_per_1000_weight,
9475 channel_shutdown_state,
9480 impl_writeable_tlv_based!(PhantomRouteHints, {
9481 (2, channels, required_vec),
9482 (4, phantom_scid, required),
9483 (6, real_node_pubkey, required),
9486 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9488 (0, onion_packet, required),
9489 (2, short_channel_id, required),
9492 (0, payment_data, required),
9493 (1, phantom_shared_secret, option),
9494 (2, incoming_cltv_expiry, required),
9495 (3, payment_metadata, option),
9496 (5, custom_tlvs, optional_vec),
9498 (2, ReceiveKeysend) => {
9499 (0, payment_preimage, required),
9500 (2, incoming_cltv_expiry, required),
9501 (3, payment_metadata, option),
9502 (4, payment_data, option), // Added in 0.0.116
9503 (5, custom_tlvs, optional_vec),
9507 impl_writeable_tlv_based!(PendingHTLCInfo, {
9508 (0, routing, required),
9509 (2, incoming_shared_secret, required),
9510 (4, payment_hash, required),
9511 (6, outgoing_amt_msat, required),
9512 (8, outgoing_cltv_value, required),
9513 (9, incoming_amt_msat, option),
9514 (10, skimmed_fee_msat, option),
9518 impl Writeable for HTLCFailureMsg {
9519 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9521 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9523 channel_id.write(writer)?;
9524 htlc_id.write(writer)?;
9525 reason.write(writer)?;
9527 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9528 channel_id, htlc_id, sha256_of_onion, failure_code
9531 channel_id.write(writer)?;
9532 htlc_id.write(writer)?;
9533 sha256_of_onion.write(writer)?;
9534 failure_code.write(writer)?;
9541 impl Readable for HTLCFailureMsg {
9542 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9543 let id: u8 = Readable::read(reader)?;
9546 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9547 channel_id: Readable::read(reader)?,
9548 htlc_id: Readable::read(reader)?,
9549 reason: Readable::read(reader)?,
9553 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9554 channel_id: Readable::read(reader)?,
9555 htlc_id: Readable::read(reader)?,
9556 sha256_of_onion: Readable::read(reader)?,
9557 failure_code: Readable::read(reader)?,
9560 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9561 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9562 // messages contained in the variants.
9563 // In version 0.0.101, support for reading the variants with these types was added, and
9564 // we should migrate to writing these variants when UpdateFailHTLC or
9565 // UpdateFailMalformedHTLC get TLV fields.
9567 let length: BigSize = Readable::read(reader)?;
9568 let mut s = FixedLengthReader::new(reader, length.0);
9569 let res = Readable::read(&mut s)?;
9570 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9571 Ok(HTLCFailureMsg::Relay(res))
9574 let length: BigSize = Readable::read(reader)?;
9575 let mut s = FixedLengthReader::new(reader, length.0);
9576 let res = Readable::read(&mut s)?;
9577 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9578 Ok(HTLCFailureMsg::Malformed(res))
9580 _ => Err(DecodeError::UnknownRequiredFeature),
9585 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9590 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9591 (0, short_channel_id, required),
9592 (1, phantom_shared_secret, option),
9593 (2, outpoint, required),
9594 (4, htlc_id, required),
9595 (6, incoming_packet_shared_secret, required),
9596 (7, user_channel_id, option),
9599 impl Writeable for ClaimableHTLC {
9600 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9601 let (payment_data, keysend_preimage) = match &self.onion_payload {
9602 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9603 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9605 write_tlv_fields!(writer, {
9606 (0, self.prev_hop, required),
9607 (1, self.total_msat, required),
9608 (2, self.value, required),
9609 (3, self.sender_intended_value, required),
9610 (4, payment_data, option),
9611 (5, self.total_value_received, option),
9612 (6, self.cltv_expiry, required),
9613 (8, keysend_preimage, option),
9614 (10, self.counterparty_skimmed_fee_msat, option),
9620 impl Readable for ClaimableHTLC {
9621 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9622 _init_and_read_len_prefixed_tlv_fields!(reader, {
9623 (0, prev_hop, required),
9624 (1, total_msat, option),
9625 (2, value_ser, required),
9626 (3, sender_intended_value, option),
9627 (4, payment_data_opt, option),
9628 (5, total_value_received, option),
9629 (6, cltv_expiry, required),
9630 (8, keysend_preimage, option),
9631 (10, counterparty_skimmed_fee_msat, option),
9633 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9634 let value = value_ser.0.unwrap();
9635 let onion_payload = match keysend_preimage {
9637 if payment_data.is_some() {
9638 return Err(DecodeError::InvalidValue)
9640 if total_msat.is_none() {
9641 total_msat = Some(value);
9643 OnionPayload::Spontaneous(p)
9646 if total_msat.is_none() {
9647 if payment_data.is_none() {
9648 return Err(DecodeError::InvalidValue)
9650 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9652 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9656 prev_hop: prev_hop.0.unwrap(),
9659 sender_intended_value: sender_intended_value.unwrap_or(value),
9660 total_value_received,
9661 total_msat: total_msat.unwrap(),
9663 cltv_expiry: cltv_expiry.0.unwrap(),
9664 counterparty_skimmed_fee_msat,
9669 impl Readable for HTLCSource {
9670 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9671 let id: u8 = Readable::read(reader)?;
9674 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9675 let mut first_hop_htlc_msat: u64 = 0;
9676 let mut path_hops = Vec::new();
9677 let mut payment_id = None;
9678 let mut payment_params: Option<PaymentParameters> = None;
9679 let mut blinded_tail: Option<BlindedTail> = None;
9680 read_tlv_fields!(reader, {
9681 (0, session_priv, required),
9682 (1, payment_id, option),
9683 (2, first_hop_htlc_msat, required),
9684 (4, path_hops, required_vec),
9685 (5, payment_params, (option: ReadableArgs, 0)),
9686 (6, blinded_tail, option),
9688 if payment_id.is_none() {
9689 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9691 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9693 let path = Path { hops: path_hops, blinded_tail };
9694 if path.hops.len() == 0 {
9695 return Err(DecodeError::InvalidValue);
9697 if let Some(params) = payment_params.as_mut() {
9698 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9699 if final_cltv_expiry_delta == &0 {
9700 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9704 Ok(HTLCSource::OutboundRoute {
9705 session_priv: session_priv.0.unwrap(),
9706 first_hop_htlc_msat,
9708 payment_id: payment_id.unwrap(),
9711 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9712 _ => Err(DecodeError::UnknownRequiredFeature),
9717 impl Writeable for HTLCSource {
9718 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9720 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9722 let payment_id_opt = Some(payment_id);
9723 write_tlv_fields!(writer, {
9724 (0, session_priv, required),
9725 (1, payment_id_opt, option),
9726 (2, first_hop_htlc_msat, required),
9727 // 3 was previously used to write a PaymentSecret for the payment.
9728 (4, path.hops, required_vec),
9729 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9730 (6, path.blinded_tail, option),
9733 HTLCSource::PreviousHopData(ref field) => {
9735 field.write(writer)?;
9742 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9743 (0, forward_info, required),
9744 (1, prev_user_channel_id, (default_value, 0)),
9745 (2, prev_short_channel_id, required),
9746 (4, prev_htlc_id, required),
9747 (6, prev_funding_outpoint, required),
9750 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9752 (0, htlc_id, required),
9753 (2, err_packet, required),
9758 impl_writeable_tlv_based!(PendingInboundPayment, {
9759 (0, payment_secret, required),
9760 (2, expiry_time, required),
9761 (4, user_payment_id, required),
9762 (6, payment_preimage, required),
9763 (8, min_value_msat, required),
9766 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9768 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9769 T::Target: BroadcasterInterface,
9770 ES::Target: EntropySource,
9771 NS::Target: NodeSigner,
9772 SP::Target: SignerProvider,
9773 F::Target: FeeEstimator,
9777 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9778 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9780 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9782 self.chain_hash.write(writer)?;
9784 let best_block = self.best_block.read().unwrap();
9785 best_block.height().write(writer)?;
9786 best_block.block_hash().write(writer)?;
9789 let mut serializable_peer_count: u64 = 0;
9791 let per_peer_state = self.per_peer_state.read().unwrap();
9792 let mut number_of_funded_channels = 0;
9793 for (_, peer_state_mutex) in per_peer_state.iter() {
9794 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9795 let peer_state = &mut *peer_state_lock;
9796 if !peer_state.ok_to_remove(false) {
9797 serializable_peer_count += 1;
9800 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9801 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9805 (number_of_funded_channels as u64).write(writer)?;
9807 for (_, peer_state_mutex) in per_peer_state.iter() {
9808 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9809 let peer_state = &mut *peer_state_lock;
9810 for channel in peer_state.channel_by_id.iter().filter_map(
9811 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9812 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9815 channel.write(writer)?;
9821 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9822 (forward_htlcs.len() as u64).write(writer)?;
9823 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9824 short_channel_id.write(writer)?;
9825 (pending_forwards.len() as u64).write(writer)?;
9826 for forward in pending_forwards {
9827 forward.write(writer)?;
9832 let per_peer_state = self.per_peer_state.write().unwrap();
9834 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9835 let claimable_payments = self.claimable_payments.lock().unwrap();
9836 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9838 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9839 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9840 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9841 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9842 payment_hash.write(writer)?;
9843 (payment.htlcs.len() as u64).write(writer)?;
9844 for htlc in payment.htlcs.iter() {
9845 htlc.write(writer)?;
9847 htlc_purposes.push(&payment.purpose);
9848 htlc_onion_fields.push(&payment.onion_fields);
9851 let mut monitor_update_blocked_actions_per_peer = None;
9852 let mut peer_states = Vec::new();
9853 for (_, peer_state_mutex) in per_peer_state.iter() {
9854 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9855 // of a lockorder violation deadlock - no other thread can be holding any
9856 // per_peer_state lock at all.
9857 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9860 (serializable_peer_count).write(writer)?;
9861 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9862 // Peers which we have no channels to should be dropped once disconnected. As we
9863 // disconnect all peers when shutting down and serializing the ChannelManager, we
9864 // consider all peers as disconnected here. There's therefore no need write peers with
9866 if !peer_state.ok_to_remove(false) {
9867 peer_pubkey.write(writer)?;
9868 peer_state.latest_features.write(writer)?;
9869 if !peer_state.monitor_update_blocked_actions.is_empty() {
9870 monitor_update_blocked_actions_per_peer
9871 .get_or_insert_with(Vec::new)
9872 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9877 let events = self.pending_events.lock().unwrap();
9878 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9879 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9880 // refuse to read the new ChannelManager.
9881 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9882 if events_not_backwards_compatible {
9883 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9884 // well save the space and not write any events here.
9885 0u64.write(writer)?;
9887 (events.len() as u64).write(writer)?;
9888 for (event, _) in events.iter() {
9889 event.write(writer)?;
9893 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9894 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9895 // the closing monitor updates were always effectively replayed on startup (either directly
9896 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9897 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9898 0u64.write(writer)?;
9900 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9901 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9902 // likely to be identical.
9903 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9904 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9906 (pending_inbound_payments.len() as u64).write(writer)?;
9907 for (hash, pending_payment) in pending_inbound_payments.iter() {
9908 hash.write(writer)?;
9909 pending_payment.write(writer)?;
9912 // For backwards compat, write the session privs and their total length.
9913 let mut num_pending_outbounds_compat: u64 = 0;
9914 for (_, outbound) in pending_outbound_payments.iter() {
9915 if !outbound.is_fulfilled() && !outbound.abandoned() {
9916 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9919 num_pending_outbounds_compat.write(writer)?;
9920 for (_, outbound) in pending_outbound_payments.iter() {
9922 PendingOutboundPayment::Legacy { session_privs } |
9923 PendingOutboundPayment::Retryable { session_privs, .. } => {
9924 for session_priv in session_privs.iter() {
9925 session_priv.write(writer)?;
9928 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9929 PendingOutboundPayment::InvoiceReceived { .. } => {},
9930 PendingOutboundPayment::Fulfilled { .. } => {},
9931 PendingOutboundPayment::Abandoned { .. } => {},
9935 // Encode without retry info for 0.0.101 compatibility.
9936 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9937 for (id, outbound) in pending_outbound_payments.iter() {
9939 PendingOutboundPayment::Legacy { session_privs } |
9940 PendingOutboundPayment::Retryable { session_privs, .. } => {
9941 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9947 let mut pending_intercepted_htlcs = None;
9948 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9949 if our_pending_intercepts.len() != 0 {
9950 pending_intercepted_htlcs = Some(our_pending_intercepts);
9953 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9954 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9955 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9956 // map. Thus, if there are no entries we skip writing a TLV for it.
9957 pending_claiming_payments = None;
9960 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9961 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9962 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9963 if !updates.is_empty() {
9964 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9965 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9970 write_tlv_fields!(writer, {
9971 (1, pending_outbound_payments_no_retry, required),
9972 (2, pending_intercepted_htlcs, option),
9973 (3, pending_outbound_payments, required),
9974 (4, pending_claiming_payments, option),
9975 (5, self.our_network_pubkey, required),
9976 (6, monitor_update_blocked_actions_per_peer, option),
9977 (7, self.fake_scid_rand_bytes, required),
9978 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9979 (9, htlc_purposes, required_vec),
9980 (10, in_flight_monitor_updates, option),
9981 (11, self.probing_cookie_secret, required),
9982 (13, htlc_onion_fields, optional_vec),
9989 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9990 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9991 (self.len() as u64).write(w)?;
9992 for (event, action) in self.iter() {
9995 #[cfg(debug_assertions)] {
9996 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9997 // be persisted and are regenerated on restart. However, if such an event has a
9998 // post-event-handling action we'll write nothing for the event and would have to
9999 // either forget the action or fail on deserialization (which we do below). Thus,
10000 // check that the event is sane here.
10001 let event_encoded = event.encode();
10002 let event_read: Option<Event> =
10003 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
10004 if action.is_some() { assert!(event_read.is_some()); }
10010 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
10011 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10012 let len: u64 = Readable::read(reader)?;
10013 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
10014 let mut events: Self = VecDeque::with_capacity(cmp::min(
10015 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
10018 let ev_opt = MaybeReadable::read(reader)?;
10019 let action = Readable::read(reader)?;
10020 if let Some(ev) = ev_opt {
10021 events.push_back((ev, action));
10022 } else if action.is_some() {
10023 return Err(DecodeError::InvalidValue);
10030 impl_writeable_tlv_based_enum!(ChannelShutdownState,
10031 (0, NotShuttingDown) => {},
10032 (2, ShutdownInitiated) => {},
10033 (4, ResolvingHTLCs) => {},
10034 (6, NegotiatingClosingFee) => {},
10035 (8, ShutdownComplete) => {}, ;
10038 /// Arguments for the creation of a ChannelManager that are not deserialized.
10040 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
10042 /// 1) Deserialize all stored [`ChannelMonitor`]s.
10043 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
10044 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
10045 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
10046 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
10047 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
10048 /// same way you would handle a [`chain::Filter`] call using
10049 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
10050 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
10051 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
10052 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
10053 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
10054 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
10056 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
10057 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
10059 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
10060 /// call any other methods on the newly-deserialized [`ChannelManager`].
10062 /// Note that because some channels may be closed during deserialization, it is critical that you
10063 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
10064 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
10065 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
10066 /// not force-close the same channels but consider them live), you may end up revoking a state for
10067 /// which you've already broadcasted the transaction.
10069 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
10070 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10072 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10073 T::Target: BroadcasterInterface,
10074 ES::Target: EntropySource,
10075 NS::Target: NodeSigner,
10076 SP::Target: SignerProvider,
10077 F::Target: FeeEstimator,
10081 /// A cryptographically secure source of entropy.
10082 pub entropy_source: ES,
10084 /// A signer that is able to perform node-scoped cryptographic operations.
10085 pub node_signer: NS,
10087 /// The keys provider which will give us relevant keys. Some keys will be loaded during
10088 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
10090 pub signer_provider: SP,
10092 /// The fee_estimator for use in the ChannelManager in the future.
10094 /// No calls to the FeeEstimator will be made during deserialization.
10095 pub fee_estimator: F,
10096 /// The chain::Watch for use in the ChannelManager in the future.
10098 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
10099 /// you have deserialized ChannelMonitors separately and will add them to your
10100 /// chain::Watch after deserializing this ChannelManager.
10101 pub chain_monitor: M,
10103 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
10104 /// used to broadcast the latest local commitment transactions of channels which must be
10105 /// force-closed during deserialization.
10106 pub tx_broadcaster: T,
10107 /// The router which will be used in the ChannelManager in the future for finding routes
10108 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
10110 /// No calls to the router will be made during deserialization.
10112 /// The Logger for use in the ChannelManager and which may be used to log information during
10113 /// deserialization.
10115 /// Default settings used for new channels. Any existing channels will continue to use the
10116 /// runtime settings which were stored when the ChannelManager was serialized.
10117 pub default_config: UserConfig,
10119 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
10120 /// value.context.get_funding_txo() should be the key).
10122 /// If a monitor is inconsistent with the channel state during deserialization the channel will
10123 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
10124 /// is true for missing channels as well. If there is a monitor missing for which we find
10125 /// channel data Err(DecodeError::InvalidValue) will be returned.
10127 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
10130 /// This is not exported to bindings users because we have no HashMap bindings
10131 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
10134 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10135 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
10137 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10138 T::Target: BroadcasterInterface,
10139 ES::Target: EntropySource,
10140 NS::Target: NodeSigner,
10141 SP::Target: SignerProvider,
10142 F::Target: FeeEstimator,
10146 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
10147 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
10148 /// populate a HashMap directly from C.
10149 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
10150 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
10152 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
10153 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
10158 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10159 // SipmleArcChannelManager type:
10160 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10161 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10163 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10164 T::Target: BroadcasterInterface,
10165 ES::Target: EntropySource,
10166 NS::Target: NodeSigner,
10167 SP::Target: SignerProvider,
10168 F::Target: FeeEstimator,
10172 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10173 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10174 Ok((blockhash, Arc::new(chan_manager)))
10178 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10179 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10181 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10182 T::Target: BroadcasterInterface,
10183 ES::Target: EntropySource,
10184 NS::Target: NodeSigner,
10185 SP::Target: SignerProvider,
10186 F::Target: FeeEstimator,
10190 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10191 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10193 let chain_hash: ChainHash = Readable::read(reader)?;
10194 let best_block_height: u32 = Readable::read(reader)?;
10195 let best_block_hash: BlockHash = Readable::read(reader)?;
10197 let mut failed_htlcs = Vec::new();
10199 let channel_count: u64 = Readable::read(reader)?;
10200 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10201 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10202 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10203 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10204 let mut channel_closures = VecDeque::new();
10205 let mut close_background_events = Vec::new();
10206 for _ in 0..channel_count {
10207 let mut channel: Channel<SP> = Channel::read(reader, (
10208 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10210 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10211 funding_txo_set.insert(funding_txo.clone());
10212 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10213 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10214 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10215 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10216 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10217 // But if the channel is behind of the monitor, close the channel:
10218 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10219 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10220 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10221 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10222 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10224 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10225 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10226 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10228 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10229 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10230 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10232 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10233 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10234 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10236 let mut shutdown_result = channel.context.force_shutdown(true);
10237 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10238 return Err(DecodeError::InvalidValue);
10240 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10241 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10242 counterparty_node_id, funding_txo, update
10245 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10246 channel_closures.push_back((events::Event::ChannelClosed {
10247 channel_id: channel.context.channel_id(),
10248 user_channel_id: channel.context.get_user_id(),
10249 reason: ClosureReason::OutdatedChannelManager,
10250 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10251 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10253 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10254 let mut found_htlc = false;
10255 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10256 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10259 // If we have some HTLCs in the channel which are not present in the newer
10260 // ChannelMonitor, they have been removed and should be failed back to
10261 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10262 // were actually claimed we'd have generated and ensured the previous-hop
10263 // claim update ChannelMonitor updates were persisted prior to persising
10264 // the ChannelMonitor update for the forward leg, so attempting to fail the
10265 // backwards leg of the HTLC will simply be rejected.
10266 log_info!(args.logger,
10267 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10268 &channel.context.channel_id(), &payment_hash);
10269 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10273 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10274 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10275 monitor.get_latest_update_id());
10276 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10277 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10279 if channel.context.is_funding_broadcast() {
10280 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10282 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10283 hash_map::Entry::Occupied(mut entry) => {
10284 let by_id_map = entry.get_mut();
10285 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10287 hash_map::Entry::Vacant(entry) => {
10288 let mut by_id_map = HashMap::new();
10289 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10290 entry.insert(by_id_map);
10294 } else if channel.is_awaiting_initial_mon_persist() {
10295 // If we were persisted and shut down while the initial ChannelMonitor persistence
10296 // was in-progress, we never broadcasted the funding transaction and can still
10297 // safely discard the channel.
10298 let _ = channel.context.force_shutdown(false);
10299 channel_closures.push_back((events::Event::ChannelClosed {
10300 channel_id: channel.context.channel_id(),
10301 user_channel_id: channel.context.get_user_id(),
10302 reason: ClosureReason::DisconnectedPeer,
10303 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10304 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10307 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10308 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10309 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10310 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10311 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10312 return Err(DecodeError::InvalidValue);
10316 for (funding_txo, _) in args.channel_monitors.iter() {
10317 if !funding_txo_set.contains(funding_txo) {
10318 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
10319 &funding_txo.to_channel_id());
10320 let monitor_update = ChannelMonitorUpdate {
10321 update_id: CLOSED_CHANNEL_UPDATE_ID,
10322 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10324 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10328 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10329 let forward_htlcs_count: u64 = Readable::read(reader)?;
10330 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10331 for _ in 0..forward_htlcs_count {
10332 let short_channel_id = Readable::read(reader)?;
10333 let pending_forwards_count: u64 = Readable::read(reader)?;
10334 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10335 for _ in 0..pending_forwards_count {
10336 pending_forwards.push(Readable::read(reader)?);
10338 forward_htlcs.insert(short_channel_id, pending_forwards);
10341 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10342 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10343 for _ in 0..claimable_htlcs_count {
10344 let payment_hash = Readable::read(reader)?;
10345 let previous_hops_len: u64 = Readable::read(reader)?;
10346 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10347 for _ in 0..previous_hops_len {
10348 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10350 claimable_htlcs_list.push((payment_hash, previous_hops));
10353 let peer_state_from_chans = |channel_by_id| {
10356 inbound_channel_request_by_id: HashMap::new(),
10357 latest_features: InitFeatures::empty(),
10358 pending_msg_events: Vec::new(),
10359 in_flight_monitor_updates: BTreeMap::new(),
10360 monitor_update_blocked_actions: BTreeMap::new(),
10361 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10362 is_connected: false,
10366 let peer_count: u64 = Readable::read(reader)?;
10367 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10368 for _ in 0..peer_count {
10369 let peer_pubkey = Readable::read(reader)?;
10370 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10371 let mut peer_state = peer_state_from_chans(peer_chans);
10372 peer_state.latest_features = Readable::read(reader)?;
10373 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10376 let event_count: u64 = Readable::read(reader)?;
10377 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10378 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10379 for _ in 0..event_count {
10380 match MaybeReadable::read(reader)? {
10381 Some(event) => pending_events_read.push_back((event, None)),
10386 let background_event_count: u64 = Readable::read(reader)?;
10387 for _ in 0..background_event_count {
10388 match <u8 as Readable>::read(reader)? {
10390 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10391 // however we really don't (and never did) need them - we regenerate all
10392 // on-startup monitor updates.
10393 let _: OutPoint = Readable::read(reader)?;
10394 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10396 _ => return Err(DecodeError::InvalidValue),
10400 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10401 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10403 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10404 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10405 for _ in 0..pending_inbound_payment_count {
10406 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10407 return Err(DecodeError::InvalidValue);
10411 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10412 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10413 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10414 for _ in 0..pending_outbound_payments_count_compat {
10415 let session_priv = Readable::read(reader)?;
10416 let payment = PendingOutboundPayment::Legacy {
10417 session_privs: [session_priv].iter().cloned().collect()
10419 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10420 return Err(DecodeError::InvalidValue)
10424 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10425 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10426 let mut pending_outbound_payments = None;
10427 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10428 let mut received_network_pubkey: Option<PublicKey> = None;
10429 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10430 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10431 let mut claimable_htlc_purposes = None;
10432 let mut claimable_htlc_onion_fields = None;
10433 let mut pending_claiming_payments = Some(HashMap::new());
10434 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10435 let mut events_override = None;
10436 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10437 read_tlv_fields!(reader, {
10438 (1, pending_outbound_payments_no_retry, option),
10439 (2, pending_intercepted_htlcs, option),
10440 (3, pending_outbound_payments, option),
10441 (4, pending_claiming_payments, option),
10442 (5, received_network_pubkey, option),
10443 (6, monitor_update_blocked_actions_per_peer, option),
10444 (7, fake_scid_rand_bytes, option),
10445 (8, events_override, option),
10446 (9, claimable_htlc_purposes, optional_vec),
10447 (10, in_flight_monitor_updates, option),
10448 (11, probing_cookie_secret, option),
10449 (13, claimable_htlc_onion_fields, optional_vec),
10451 if fake_scid_rand_bytes.is_none() {
10452 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10455 if probing_cookie_secret.is_none() {
10456 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10459 if let Some(events) = events_override {
10460 pending_events_read = events;
10463 if !channel_closures.is_empty() {
10464 pending_events_read.append(&mut channel_closures);
10467 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10468 pending_outbound_payments = Some(pending_outbound_payments_compat);
10469 } else if pending_outbound_payments.is_none() {
10470 let mut outbounds = HashMap::new();
10471 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10472 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10474 pending_outbound_payments = Some(outbounds);
10476 let pending_outbounds = OutboundPayments {
10477 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10478 retry_lock: Mutex::new(())
10481 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10482 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10483 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10484 // replayed, and for each monitor update we have to replay we have to ensure there's a
10485 // `ChannelMonitor` for it.
10487 // In order to do so we first walk all of our live channels (so that we can check their
10488 // state immediately after doing the update replays, when we have the `update_id`s
10489 // available) and then walk any remaining in-flight updates.
10491 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10492 let mut pending_background_events = Vec::new();
10493 macro_rules! handle_in_flight_updates {
10494 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10495 $monitor: expr, $peer_state: expr, $channel_info_log: expr
10497 let mut max_in_flight_update_id = 0;
10498 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10499 for update in $chan_in_flight_upds.iter() {
10500 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10501 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10502 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10503 pending_background_events.push(
10504 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10505 counterparty_node_id: $counterparty_node_id,
10506 funding_txo: $funding_txo,
10507 update: update.clone(),
10510 if $chan_in_flight_upds.is_empty() {
10511 // We had some updates to apply, but it turns out they had completed before we
10512 // were serialized, we just weren't notified of that. Thus, we may have to run
10513 // the completion actions for any monitor updates, but otherwise are done.
10514 pending_background_events.push(
10515 BackgroundEvent::MonitorUpdatesComplete {
10516 counterparty_node_id: $counterparty_node_id,
10517 channel_id: $funding_txo.to_channel_id(),
10520 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10521 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
10522 return Err(DecodeError::InvalidValue);
10524 max_in_flight_update_id
10528 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10529 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10530 let peer_state = &mut *peer_state_lock;
10531 for phase in peer_state.channel_by_id.values() {
10532 if let ChannelPhase::Funded(chan) = phase {
10533 // Channels that were persisted have to be funded, otherwise they should have been
10535 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10536 let monitor = args.channel_monitors.get(&funding_txo)
10537 .expect("We already checked for monitor presence when loading channels");
10538 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10539 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10540 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10541 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10542 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10543 funding_txo, monitor, peer_state, ""));
10546 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10547 // If the channel is ahead of the monitor, return InvalidValue:
10548 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10549 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10550 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10551 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10552 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10553 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10554 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10555 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10556 return Err(DecodeError::InvalidValue);
10559 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10560 // created in this `channel_by_id` map.
10561 debug_assert!(false);
10562 return Err(DecodeError::InvalidValue);
10567 if let Some(in_flight_upds) = in_flight_monitor_updates {
10568 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10569 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10570 // Now that we've removed all the in-flight monitor updates for channels that are
10571 // still open, we need to replay any monitor updates that are for closed channels,
10572 // creating the neccessary peer_state entries as we go.
10573 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10574 Mutex::new(peer_state_from_chans(HashMap::new()))
10576 let mut peer_state = peer_state_mutex.lock().unwrap();
10577 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10578 funding_txo, monitor, peer_state, "closed ");
10580 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10581 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
10582 &funding_txo.to_channel_id());
10583 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10584 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10585 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10586 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10587 return Err(DecodeError::InvalidValue);
10592 // Note that we have to do the above replays before we push new monitor updates.
10593 pending_background_events.append(&mut close_background_events);
10595 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10596 // should ensure we try them again on the inbound edge. We put them here and do so after we
10597 // have a fully-constructed `ChannelManager` at the end.
10598 let mut pending_claims_to_replay = Vec::new();
10601 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10602 // ChannelMonitor data for any channels for which we do not have authorative state
10603 // (i.e. those for which we just force-closed above or we otherwise don't have a
10604 // corresponding `Channel` at all).
10605 // This avoids several edge-cases where we would otherwise "forget" about pending
10606 // payments which are still in-flight via their on-chain state.
10607 // We only rebuild the pending payments map if we were most recently serialized by
10609 for (_, monitor) in args.channel_monitors.iter() {
10610 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10611 if counterparty_opt.is_none() {
10612 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10613 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10614 if path.hops.is_empty() {
10615 log_error!(args.logger, "Got an empty path for a pending payment");
10616 return Err(DecodeError::InvalidValue);
10619 let path_amt = path.final_value_msat();
10620 let mut session_priv_bytes = [0; 32];
10621 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10622 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10623 hash_map::Entry::Occupied(mut entry) => {
10624 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10625 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10626 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
10628 hash_map::Entry::Vacant(entry) => {
10629 let path_fee = path.fee_msat();
10630 entry.insert(PendingOutboundPayment::Retryable {
10631 retry_strategy: None,
10632 attempts: PaymentAttempts::new(),
10633 payment_params: None,
10634 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10635 payment_hash: htlc.payment_hash,
10636 payment_secret: None, // only used for retries, and we'll never retry on startup
10637 payment_metadata: None, // only used for retries, and we'll never retry on startup
10638 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10639 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10640 pending_amt_msat: path_amt,
10641 pending_fee_msat: Some(path_fee),
10642 total_msat: path_amt,
10643 starting_block_height: best_block_height,
10644 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10646 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10647 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10652 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10653 match htlc_source {
10654 HTLCSource::PreviousHopData(prev_hop_data) => {
10655 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10656 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10657 info.prev_htlc_id == prev_hop_data.htlc_id
10659 // The ChannelMonitor is now responsible for this HTLC's
10660 // failure/success and will let us know what its outcome is. If we
10661 // still have an entry for this HTLC in `forward_htlcs` or
10662 // `pending_intercepted_htlcs`, we were apparently not persisted after
10663 // the monitor was when forwarding the payment.
10664 forward_htlcs.retain(|_, forwards| {
10665 forwards.retain(|forward| {
10666 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10667 if pending_forward_matches_htlc(&htlc_info) {
10668 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10669 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10674 !forwards.is_empty()
10676 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10677 if pending_forward_matches_htlc(&htlc_info) {
10678 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10679 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10680 pending_events_read.retain(|(event, _)| {
10681 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10682 intercepted_id != ev_id
10689 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10690 if let Some(preimage) = preimage_opt {
10691 let pending_events = Mutex::new(pending_events_read);
10692 // Note that we set `from_onchain` to "false" here,
10693 // deliberately keeping the pending payment around forever.
10694 // Given it should only occur when we have a channel we're
10695 // force-closing for being stale that's okay.
10696 // The alternative would be to wipe the state when claiming,
10697 // generating a `PaymentPathSuccessful` event but regenerating
10698 // it and the `PaymentSent` on every restart until the
10699 // `ChannelMonitor` is removed.
10701 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10702 channel_funding_outpoint: monitor.get_funding_txo().0,
10703 counterparty_node_id: path.hops[0].pubkey,
10705 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10706 path, false, compl_action, &pending_events, &args.logger);
10707 pending_events_read = pending_events.into_inner().unwrap();
10714 // Whether the downstream channel was closed or not, try to re-apply any payment
10715 // preimages from it which may be needed in upstream channels for forwarded
10717 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10719 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10720 if let HTLCSource::PreviousHopData(_) = htlc_source {
10721 if let Some(payment_preimage) = preimage_opt {
10722 Some((htlc_source, payment_preimage, htlc.amount_msat,
10723 // Check if `counterparty_opt.is_none()` to see if the
10724 // downstream chan is closed (because we don't have a
10725 // channel_id -> peer map entry).
10726 counterparty_opt.is_none(),
10727 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10728 monitor.get_funding_txo().0))
10731 // If it was an outbound payment, we've handled it above - if a preimage
10732 // came in and we persisted the `ChannelManager` we either handled it and
10733 // are good to go or the channel force-closed - we don't have to handle the
10734 // channel still live case here.
10738 for tuple in outbound_claimed_htlcs_iter {
10739 pending_claims_to_replay.push(tuple);
10744 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10745 // If we have pending HTLCs to forward, assume we either dropped a
10746 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10747 // shut down before the timer hit. Either way, set the time_forwardable to a small
10748 // constant as enough time has likely passed that we should simply handle the forwards
10749 // now, or at least after the user gets a chance to reconnect to our peers.
10750 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10751 time_forwardable: Duration::from_secs(2),
10755 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10756 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10758 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10759 if let Some(purposes) = claimable_htlc_purposes {
10760 if purposes.len() != claimable_htlcs_list.len() {
10761 return Err(DecodeError::InvalidValue);
10763 if let Some(onion_fields) = claimable_htlc_onion_fields {
10764 if onion_fields.len() != claimable_htlcs_list.len() {
10765 return Err(DecodeError::InvalidValue);
10767 for (purpose, (onion, (payment_hash, htlcs))) in
10768 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10770 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10771 purpose, htlcs, onion_fields: onion,
10773 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10776 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10777 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10778 purpose, htlcs, onion_fields: None,
10780 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10784 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10785 // include a `_legacy_hop_data` in the `OnionPayload`.
10786 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10787 if htlcs.is_empty() {
10788 return Err(DecodeError::InvalidValue);
10790 let purpose = match &htlcs[0].onion_payload {
10791 OnionPayload::Invoice { _legacy_hop_data } => {
10792 if let Some(hop_data) = _legacy_hop_data {
10793 events::PaymentPurpose::InvoicePayment {
10794 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10795 Some(inbound_payment) => inbound_payment.payment_preimage,
10796 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10797 Ok((payment_preimage, _)) => payment_preimage,
10799 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10800 return Err(DecodeError::InvalidValue);
10804 payment_secret: hop_data.payment_secret,
10806 } else { return Err(DecodeError::InvalidValue); }
10808 OnionPayload::Spontaneous(payment_preimage) =>
10809 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10811 claimable_payments.insert(payment_hash, ClaimablePayment {
10812 purpose, htlcs, onion_fields: None,
10817 let mut secp_ctx = Secp256k1::new();
10818 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10820 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10822 Err(()) => return Err(DecodeError::InvalidValue)
10824 if let Some(network_pubkey) = received_network_pubkey {
10825 if network_pubkey != our_network_pubkey {
10826 log_error!(args.logger, "Key that was generated does not match the existing key.");
10827 return Err(DecodeError::InvalidValue);
10831 let mut outbound_scid_aliases = HashSet::new();
10832 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10833 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10834 let peer_state = &mut *peer_state_lock;
10835 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10836 if let ChannelPhase::Funded(chan) = phase {
10837 if chan.context.outbound_scid_alias() == 0 {
10838 let mut outbound_scid_alias;
10840 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10841 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10842 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10844 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10845 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10846 // Note that in rare cases its possible to hit this while reading an older
10847 // channel if we just happened to pick a colliding outbound alias above.
10848 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10849 return Err(DecodeError::InvalidValue);
10851 if chan.context.is_usable() {
10852 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10853 // Note that in rare cases its possible to hit this while reading an older
10854 // channel if we just happened to pick a colliding outbound alias above.
10855 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10856 return Err(DecodeError::InvalidValue);
10860 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10861 // created in this `channel_by_id` map.
10862 debug_assert!(false);
10863 return Err(DecodeError::InvalidValue);
10868 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10870 for (_, monitor) in args.channel_monitors.iter() {
10871 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10872 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10873 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10874 let mut claimable_amt_msat = 0;
10875 let mut receiver_node_id = Some(our_network_pubkey);
10876 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10877 if phantom_shared_secret.is_some() {
10878 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10879 .expect("Failed to get node_id for phantom node recipient");
10880 receiver_node_id = Some(phantom_pubkey)
10882 for claimable_htlc in &payment.htlcs {
10883 claimable_amt_msat += claimable_htlc.value;
10885 // Add a holding-cell claim of the payment to the Channel, which should be
10886 // applied ~immediately on peer reconnection. Because it won't generate a
10887 // new commitment transaction we can just provide the payment preimage to
10888 // the corresponding ChannelMonitor and nothing else.
10890 // We do so directly instead of via the normal ChannelMonitor update
10891 // procedure as the ChainMonitor hasn't yet been initialized, implying
10892 // we're not allowed to call it directly yet. Further, we do the update
10893 // without incrementing the ChannelMonitor update ID as there isn't any
10895 // If we were to generate a new ChannelMonitor update ID here and then
10896 // crash before the user finishes block connect we'd end up force-closing
10897 // this channel as well. On the flip side, there's no harm in restarting
10898 // without the new monitor persisted - we'll end up right back here on
10900 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10901 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10902 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10903 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10904 let peer_state = &mut *peer_state_lock;
10905 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10906 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
10909 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10910 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10913 pending_events_read.push_back((events::Event::PaymentClaimed {
10916 purpose: payment.purpose,
10917 amount_msat: claimable_amt_msat,
10918 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10919 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10925 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10926 if let Some(peer_state) = per_peer_state.get(&node_id) {
10927 for (_, actions) in monitor_update_blocked_actions.iter() {
10928 for action in actions.iter() {
10929 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10930 downstream_counterparty_and_funding_outpoint:
10931 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10933 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10934 log_trace!(args.logger,
10935 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10936 blocked_channel_outpoint.to_channel_id());
10937 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10938 .entry(blocked_channel_outpoint.to_channel_id())
10939 .or_insert_with(Vec::new).push(blocking_action.clone());
10941 // If the channel we were blocking has closed, we don't need to
10942 // worry about it - the blocked monitor update should never have
10943 // been released from the `Channel` object so it can't have
10944 // completed, and if the channel closed there's no reason to bother
10948 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10949 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10953 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10955 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
10956 return Err(DecodeError::InvalidValue);
10960 let channel_manager = ChannelManager {
10962 fee_estimator: bounded_fee_estimator,
10963 chain_monitor: args.chain_monitor,
10964 tx_broadcaster: args.tx_broadcaster,
10965 router: args.router,
10967 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10969 inbound_payment_key: expanded_inbound_key,
10970 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10971 pending_outbound_payments: pending_outbounds,
10972 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10974 forward_htlcs: Mutex::new(forward_htlcs),
10975 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10976 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10977 id_to_peer: Mutex::new(id_to_peer),
10978 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10979 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10981 probing_cookie_secret: probing_cookie_secret.unwrap(),
10983 our_network_pubkey,
10986 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10988 per_peer_state: FairRwLock::new(per_peer_state),
10990 pending_events: Mutex::new(pending_events_read),
10991 pending_events_processor: AtomicBool::new(false),
10992 pending_background_events: Mutex::new(pending_background_events),
10993 total_consistency_lock: RwLock::new(()),
10994 background_events_processed_since_startup: AtomicBool::new(false),
10996 event_persist_notifier: Notifier::new(),
10997 needs_persist_flag: AtomicBool::new(false),
10999 funding_batch_states: Mutex::new(BTreeMap::new()),
11001 pending_offers_messages: Mutex::new(Vec::new()),
11003 entropy_source: args.entropy_source,
11004 node_signer: args.node_signer,
11005 signer_provider: args.signer_provider,
11007 logger: args.logger,
11008 default_configuration: args.default_config,
11011 for htlc_source in failed_htlcs.drain(..) {
11012 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
11013 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
11014 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
11015 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
11018 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
11019 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
11020 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
11021 // channel is closed we just assume that it probably came from an on-chain claim.
11022 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
11023 downstream_closed, true, downstream_node_id, downstream_funding);
11026 //TODO: Broadcast channel update for closed channels, but only after we've made a
11027 //connection or two.
11029 Ok((best_block_hash.clone(), channel_manager))
11035 use bitcoin::hashes::Hash;
11036 use bitcoin::hashes::sha256::Hash as Sha256;
11037 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
11038 use core::sync::atomic::Ordering;
11039 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
11040 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
11041 use crate::ln::ChannelId;
11042 use crate::ln::channelmanager::{create_recv_pending_htlc_info, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
11043 use crate::ln::features::{ChannelFeatures, NodeFeatures};
11044 use crate::ln::functional_test_utils::*;
11045 use crate::ln::msgs::{self, ErrorAction};
11046 use crate::ln::msgs::ChannelMessageHandler;
11047 use crate::routing::router::{Path, PaymentParameters, RouteHop, RouteParameters, find_route};
11048 use crate::util::errors::APIError;
11049 use crate::util::test_utils;
11050 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
11051 use crate::sign::EntropySource;
11054 fn test_notify_limits() {
11055 // Check that a few cases which don't require the persistence of a new ChannelManager,
11056 // indeed, do not cause the persistence of a new ChannelManager.
11057 let chanmon_cfgs = create_chanmon_cfgs(3);
11058 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11059 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
11060 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11062 // All nodes start with a persistable update pending as `create_network` connects each node
11063 // with all other nodes to make most tests simpler.
11064 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11065 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11066 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11068 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11070 // We check that the channel info nodes have doesn't change too early, even though we try
11071 // to connect messages with new values
11072 chan.0.contents.fee_base_msat *= 2;
11073 chan.1.contents.fee_base_msat *= 2;
11074 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
11075 &nodes[1].node.get_our_node_id()).pop().unwrap();
11076 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
11077 &nodes[0].node.get_our_node_id()).pop().unwrap();
11079 // The first two nodes (which opened a channel) should now require fresh persistence
11080 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11081 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11082 // ... but the last node should not.
11083 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11084 // After persisting the first two nodes they should no longer need fresh persistence.
11085 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11086 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11088 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
11089 // about the channel.
11090 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
11091 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
11092 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11094 // The nodes which are a party to the channel should also ignore messages from unrelated
11096 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11097 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11098 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11099 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11100 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11101 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11103 // At this point the channel info given by peers should still be the same.
11104 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11105 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11107 // An earlier version of handle_channel_update didn't check the directionality of the
11108 // update message and would always update the local fee info, even if our peer was
11109 // (spuriously) forwarding us our own channel_update.
11110 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
11111 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
11112 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
11114 // First deliver each peers' own message, checking that the node doesn't need to be
11115 // persisted and that its channel info remains the same.
11116 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
11117 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
11118 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11119 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11120 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11121 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11123 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
11124 // the channel info has updated.
11125 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
11126 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
11127 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11128 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11129 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
11130 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
11134 fn test_keysend_dup_hash_partial_mpp() {
11135 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
11137 let chanmon_cfgs = create_chanmon_cfgs(2);
11138 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11139 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11140 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11141 create_announced_chan_between_nodes(&nodes, 0, 1);
11143 // First, send a partial MPP payment.
11144 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
11145 let mut mpp_route = route.clone();
11146 mpp_route.paths.push(mpp_route.paths[0].clone());
11148 let payment_id = PaymentId([42; 32]);
11149 // Use the utility function send_payment_along_path to send the payment with MPP data which
11150 // indicates there are more HTLCs coming.
11151 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
11152 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
11153 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
11154 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
11155 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
11156 check_added_monitors!(nodes[0], 1);
11157 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11158 assert_eq!(events.len(), 1);
11159 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11161 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11162 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11163 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11164 check_added_monitors!(nodes[0], 1);
11165 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11166 assert_eq!(events.len(), 1);
11167 let ev = events.drain(..).next().unwrap();
11168 let payment_event = SendEvent::from_event(ev);
11169 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11170 check_added_monitors!(nodes[1], 0);
11171 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11172 expect_pending_htlcs_forwardable!(nodes[1]);
11173 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11174 check_added_monitors!(nodes[1], 1);
11175 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11176 assert!(updates.update_add_htlcs.is_empty());
11177 assert!(updates.update_fulfill_htlcs.is_empty());
11178 assert_eq!(updates.update_fail_htlcs.len(), 1);
11179 assert!(updates.update_fail_malformed_htlcs.is_empty());
11180 assert!(updates.update_fee.is_none());
11181 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11182 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11183 expect_payment_failed!(nodes[0], our_payment_hash, true);
11185 // Send the second half of the original MPP payment.
11186 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11187 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11188 check_added_monitors!(nodes[0], 1);
11189 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11190 assert_eq!(events.len(), 1);
11191 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11193 // Claim the full MPP payment. Note that we can't use a test utility like
11194 // claim_funds_along_route because the ordering of the messages causes the second half of the
11195 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11196 // lightning messages manually.
11197 nodes[1].node.claim_funds(payment_preimage);
11198 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11199 check_added_monitors!(nodes[1], 2);
11201 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11202 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11203 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11204 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11205 check_added_monitors!(nodes[0], 1);
11206 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11207 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11208 check_added_monitors!(nodes[1], 1);
11209 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11210 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11211 check_added_monitors!(nodes[1], 1);
11212 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11213 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11214 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11215 check_added_monitors!(nodes[0], 1);
11216 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11217 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11218 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11219 check_added_monitors!(nodes[0], 1);
11220 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11221 check_added_monitors!(nodes[1], 1);
11222 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11223 check_added_monitors!(nodes[1], 1);
11224 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11225 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11226 check_added_monitors!(nodes[0], 1);
11228 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11229 // path's success and a PaymentPathSuccessful event for each path's success.
11230 let events = nodes[0].node.get_and_clear_pending_events();
11231 assert_eq!(events.len(), 2);
11233 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11234 assert_eq!(payment_id, *actual_payment_id);
11235 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11236 assert_eq!(route.paths[0], *path);
11238 _ => panic!("Unexpected event"),
11241 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11242 assert_eq!(payment_id, *actual_payment_id);
11243 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11244 assert_eq!(route.paths[0], *path);
11246 _ => panic!("Unexpected event"),
11251 fn test_keysend_dup_payment_hash() {
11252 do_test_keysend_dup_payment_hash(false);
11253 do_test_keysend_dup_payment_hash(true);
11256 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11257 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11258 // outbound regular payment fails as expected.
11259 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11260 // fails as expected.
11261 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11262 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11263 // reject MPP keysend payments, since in this case where the payment has no payment
11264 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11265 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11266 // payment secrets and reject otherwise.
11267 let chanmon_cfgs = create_chanmon_cfgs(2);
11268 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11269 let mut mpp_keysend_cfg = test_default_channel_config();
11270 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11271 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11272 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11273 create_announced_chan_between_nodes(&nodes, 0, 1);
11274 let scorer = test_utils::TestScorer::new();
11275 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11277 // To start (1), send a regular payment but don't claim it.
11278 let expected_route = [&nodes[1]];
11279 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11281 // Next, attempt a keysend payment and make sure it fails.
11282 let route_params = RouteParameters::from_payment_params_and_value(
11283 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11284 TEST_FINAL_CLTV, false), 100_000);
11285 let route = find_route(
11286 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11287 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11289 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11290 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11291 check_added_monitors!(nodes[0], 1);
11292 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11293 assert_eq!(events.len(), 1);
11294 let ev = events.drain(..).next().unwrap();
11295 let payment_event = SendEvent::from_event(ev);
11296 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11297 check_added_monitors!(nodes[1], 0);
11298 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11299 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11300 // fails), the second will process the resulting failure and fail the HTLC backward
11301 expect_pending_htlcs_forwardable!(nodes[1]);
11302 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11303 check_added_monitors!(nodes[1], 1);
11304 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11305 assert!(updates.update_add_htlcs.is_empty());
11306 assert!(updates.update_fulfill_htlcs.is_empty());
11307 assert_eq!(updates.update_fail_htlcs.len(), 1);
11308 assert!(updates.update_fail_malformed_htlcs.is_empty());
11309 assert!(updates.update_fee.is_none());
11310 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11311 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11312 expect_payment_failed!(nodes[0], payment_hash, true);
11314 // Finally, claim the original payment.
11315 claim_payment(&nodes[0], &expected_route, payment_preimage);
11317 // To start (2), send a keysend payment but don't claim it.
11318 let payment_preimage = PaymentPreimage([42; 32]);
11319 let route = find_route(
11320 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11321 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11323 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11324 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11325 check_added_monitors!(nodes[0], 1);
11326 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11327 assert_eq!(events.len(), 1);
11328 let event = events.pop().unwrap();
11329 let path = vec![&nodes[1]];
11330 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11332 // Next, attempt a regular payment and make sure it fails.
11333 let payment_secret = PaymentSecret([43; 32]);
11334 nodes[0].node.send_payment_with_route(&route, payment_hash,
11335 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11336 check_added_monitors!(nodes[0], 1);
11337 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11338 assert_eq!(events.len(), 1);
11339 let ev = events.drain(..).next().unwrap();
11340 let payment_event = SendEvent::from_event(ev);
11341 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11342 check_added_monitors!(nodes[1], 0);
11343 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11344 expect_pending_htlcs_forwardable!(nodes[1]);
11345 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11346 check_added_monitors!(nodes[1], 1);
11347 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11348 assert!(updates.update_add_htlcs.is_empty());
11349 assert!(updates.update_fulfill_htlcs.is_empty());
11350 assert_eq!(updates.update_fail_htlcs.len(), 1);
11351 assert!(updates.update_fail_malformed_htlcs.is_empty());
11352 assert!(updates.update_fee.is_none());
11353 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11354 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11355 expect_payment_failed!(nodes[0], payment_hash, true);
11357 // Finally, succeed the keysend payment.
11358 claim_payment(&nodes[0], &expected_route, payment_preimage);
11360 // To start (3), send a keysend payment but don't claim it.
11361 let payment_id_1 = PaymentId([44; 32]);
11362 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11363 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11364 check_added_monitors!(nodes[0], 1);
11365 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11366 assert_eq!(events.len(), 1);
11367 let event = events.pop().unwrap();
11368 let path = vec![&nodes[1]];
11369 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11371 // Next, attempt a keysend payment and make sure it fails.
11372 let route_params = RouteParameters::from_payment_params_and_value(
11373 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11376 let route = find_route(
11377 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11378 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11380 let payment_id_2 = PaymentId([45; 32]);
11381 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11382 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11383 check_added_monitors!(nodes[0], 1);
11384 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11385 assert_eq!(events.len(), 1);
11386 let ev = events.drain(..).next().unwrap();
11387 let payment_event = SendEvent::from_event(ev);
11388 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11389 check_added_monitors!(nodes[1], 0);
11390 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11391 expect_pending_htlcs_forwardable!(nodes[1]);
11392 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11393 check_added_monitors!(nodes[1], 1);
11394 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11395 assert!(updates.update_add_htlcs.is_empty());
11396 assert!(updates.update_fulfill_htlcs.is_empty());
11397 assert_eq!(updates.update_fail_htlcs.len(), 1);
11398 assert!(updates.update_fail_malformed_htlcs.is_empty());
11399 assert!(updates.update_fee.is_none());
11400 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11401 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11402 expect_payment_failed!(nodes[0], payment_hash, true);
11404 // Finally, claim the original payment.
11405 claim_payment(&nodes[0], &expected_route, payment_preimage);
11409 fn test_keysend_hash_mismatch() {
11410 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11411 // preimage doesn't match the msg's payment hash.
11412 let chanmon_cfgs = create_chanmon_cfgs(2);
11413 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11414 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11415 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11417 let payer_pubkey = nodes[0].node.get_our_node_id();
11418 let payee_pubkey = nodes[1].node.get_our_node_id();
11420 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11421 let route_params = RouteParameters::from_payment_params_and_value(
11422 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11423 let network_graph = nodes[0].network_graph;
11424 let first_hops = nodes[0].node.list_usable_channels();
11425 let scorer = test_utils::TestScorer::new();
11426 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11427 let route = find_route(
11428 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11429 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11432 let test_preimage = PaymentPreimage([42; 32]);
11433 let mismatch_payment_hash = PaymentHash([43; 32]);
11434 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11435 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11436 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11437 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11438 check_added_monitors!(nodes[0], 1);
11440 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11441 assert_eq!(updates.update_add_htlcs.len(), 1);
11442 assert!(updates.update_fulfill_htlcs.is_empty());
11443 assert!(updates.update_fail_htlcs.is_empty());
11444 assert!(updates.update_fail_malformed_htlcs.is_empty());
11445 assert!(updates.update_fee.is_none());
11446 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11448 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11452 fn test_keysend_msg_with_secret_err() {
11453 // Test that we error as expected if we receive a keysend payment that includes a payment
11454 // secret when we don't support MPP keysend.
11455 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11456 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11457 let chanmon_cfgs = create_chanmon_cfgs(2);
11458 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11459 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11460 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11462 let payer_pubkey = nodes[0].node.get_our_node_id();
11463 let payee_pubkey = nodes[1].node.get_our_node_id();
11465 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11466 let route_params = RouteParameters::from_payment_params_and_value(
11467 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11468 let network_graph = nodes[0].network_graph;
11469 let first_hops = nodes[0].node.list_usable_channels();
11470 let scorer = test_utils::TestScorer::new();
11471 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11472 let route = find_route(
11473 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11474 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11477 let test_preimage = PaymentPreimage([42; 32]);
11478 let test_secret = PaymentSecret([43; 32]);
11479 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
11480 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11481 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11482 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11483 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11484 PaymentId(payment_hash.0), None, session_privs).unwrap();
11485 check_added_monitors!(nodes[0], 1);
11487 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11488 assert_eq!(updates.update_add_htlcs.len(), 1);
11489 assert!(updates.update_fulfill_htlcs.is_empty());
11490 assert!(updates.update_fail_htlcs.is_empty());
11491 assert!(updates.update_fail_malformed_htlcs.is_empty());
11492 assert!(updates.update_fee.is_none());
11493 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11495 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11499 fn test_multi_hop_missing_secret() {
11500 let chanmon_cfgs = create_chanmon_cfgs(4);
11501 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11502 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11503 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11505 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11506 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11507 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11508 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11510 // Marshall an MPP route.
11511 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11512 let path = route.paths[0].clone();
11513 route.paths.push(path);
11514 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11515 route.paths[0].hops[0].short_channel_id = chan_1_id;
11516 route.paths[0].hops[1].short_channel_id = chan_3_id;
11517 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11518 route.paths[1].hops[0].short_channel_id = chan_2_id;
11519 route.paths[1].hops[1].short_channel_id = chan_4_id;
11521 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11522 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11524 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11525 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11527 _ => panic!("unexpected error")
11532 fn test_drop_disconnected_peers_when_removing_channels() {
11533 let chanmon_cfgs = create_chanmon_cfgs(2);
11534 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11535 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11536 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11538 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11540 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11541 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11543 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11544 check_closed_broadcast!(nodes[0], true);
11545 check_added_monitors!(nodes[0], 1);
11546 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11549 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11550 // disconnected and the channel between has been force closed.
11551 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11552 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11553 assert_eq!(nodes_0_per_peer_state.len(), 1);
11554 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11557 nodes[0].node.timer_tick_occurred();
11560 // Assert that nodes[1] has now been removed.
11561 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11566 fn bad_inbound_payment_hash() {
11567 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11568 let chanmon_cfgs = create_chanmon_cfgs(2);
11569 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11570 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11571 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11573 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11574 let payment_data = msgs::FinalOnionHopData {
11576 total_msat: 100_000,
11579 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11580 // payment verification fails as expected.
11581 let mut bad_payment_hash = payment_hash.clone();
11582 bad_payment_hash.0[0] += 1;
11583 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11584 Ok(_) => panic!("Unexpected ok"),
11586 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11590 // Check that using the original payment hash succeeds.
11591 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11595 fn test_id_to_peer_coverage() {
11596 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11597 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11598 // the channel is successfully closed.
11599 let chanmon_cfgs = create_chanmon_cfgs(2);
11600 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11601 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11602 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11604 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11605 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11606 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11607 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11608 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11610 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11611 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
11613 // Ensure that the `id_to_peer` map is empty until either party has received the
11614 // funding transaction, and have the real `channel_id`.
11615 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11616 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11619 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11621 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11622 // as it has the funding transaction.
11623 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11624 assert_eq!(nodes_0_lock.len(), 1);
11625 assert!(nodes_0_lock.contains_key(&channel_id));
11628 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11630 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11632 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11634 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11635 assert_eq!(nodes_0_lock.len(), 1);
11636 assert!(nodes_0_lock.contains_key(&channel_id));
11638 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11641 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11642 // as it has the funding transaction.
11643 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11644 assert_eq!(nodes_1_lock.len(), 1);
11645 assert!(nodes_1_lock.contains_key(&channel_id));
11647 check_added_monitors!(nodes[1], 1);
11648 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11649 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11650 check_added_monitors!(nodes[0], 1);
11651 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11652 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11653 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11654 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11656 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11657 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11658 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11659 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11661 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11662 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11664 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11665 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11666 // fee for the closing transaction has been negotiated and the parties has the other
11667 // party's signature for the fee negotiated closing transaction.)
11668 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11669 assert_eq!(nodes_0_lock.len(), 1);
11670 assert!(nodes_0_lock.contains_key(&channel_id));
11674 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11675 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11676 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11677 // kept in the `nodes[1]`'s `id_to_peer` map.
11678 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11679 assert_eq!(nodes_1_lock.len(), 1);
11680 assert!(nodes_1_lock.contains_key(&channel_id));
11683 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11685 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11686 // therefore has all it needs to fully close the channel (both signatures for the
11687 // closing transaction).
11688 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11689 // fully closed by `nodes[0]`.
11690 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11692 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11693 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11694 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11695 assert_eq!(nodes_1_lock.len(), 1);
11696 assert!(nodes_1_lock.contains_key(&channel_id));
11699 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11701 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11703 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11704 // they both have everything required to fully close the channel.
11705 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11707 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11709 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11710 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11713 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11714 let expected_message = format!("Not connected to node: {}", expected_public_key);
11715 check_api_error_message(expected_message, res_err)
11718 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11719 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11720 check_api_error_message(expected_message, res_err)
11723 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11724 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11725 check_api_error_message(expected_message, res_err)
11728 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11729 let expected_message = "No such channel awaiting to be accepted.".to_string();
11730 check_api_error_message(expected_message, res_err)
11733 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11735 Err(APIError::APIMisuseError { err }) => {
11736 assert_eq!(err, expected_err_message);
11738 Err(APIError::ChannelUnavailable { err }) => {
11739 assert_eq!(err, expected_err_message);
11741 Ok(_) => panic!("Unexpected Ok"),
11742 Err(_) => panic!("Unexpected Error"),
11747 fn test_api_calls_with_unkown_counterparty_node() {
11748 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11749 // expected if the `counterparty_node_id` is an unkown peer in the
11750 // `ChannelManager::per_peer_state` map.
11751 let chanmon_cfg = create_chanmon_cfgs(2);
11752 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11753 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11754 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11757 let channel_id = ChannelId::from_bytes([4; 32]);
11758 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11759 let intercept_id = InterceptId([0; 32]);
11761 // Test the API functions.
11762 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11764 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11766 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11768 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11770 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11772 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11774 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11778 fn test_api_calls_with_unavailable_channel() {
11779 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11780 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11781 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11782 // the given `channel_id`.
11783 let chanmon_cfg = create_chanmon_cfgs(2);
11784 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11785 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11786 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11788 let counterparty_node_id = nodes[1].node.get_our_node_id();
11791 let channel_id = ChannelId::from_bytes([4; 32]);
11793 // Test the API functions.
11794 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11796 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11798 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11800 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11802 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11804 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11808 fn test_connection_limiting() {
11809 // Test that we limit un-channel'd peers and un-funded channels properly.
11810 let chanmon_cfgs = create_chanmon_cfgs(2);
11811 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11812 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11813 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11815 // Note that create_network connects the nodes together for us
11817 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11818 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11820 let mut funding_tx = None;
11821 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11822 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11823 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11826 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11827 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11828 funding_tx = Some(tx.clone());
11829 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11830 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11832 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11833 check_added_monitors!(nodes[1], 1);
11834 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11836 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11838 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11839 check_added_monitors!(nodes[0], 1);
11840 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11842 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11845 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11846 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11847 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11848 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11849 open_channel_msg.temporary_channel_id);
11851 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11852 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11854 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11855 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11856 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11857 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11858 peer_pks.push(random_pk);
11859 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11860 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11863 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11864 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11865 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11866 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11867 }, true).unwrap_err();
11869 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11870 // them if we have too many un-channel'd peers.
11871 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11872 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11873 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11874 for ev in chan_closed_events {
11875 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11877 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11878 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11880 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11881 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11882 }, true).unwrap_err();
11884 // but of course if the connection is outbound its allowed...
11885 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11886 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11887 }, false).unwrap();
11888 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11890 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11891 // Even though we accept one more connection from new peers, we won't actually let them
11893 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11894 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11895 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11896 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11897 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11899 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11900 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11901 open_channel_msg.temporary_channel_id);
11903 // Of course, however, outbound channels are always allowed
11904 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11905 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11907 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11908 // "protected" and can connect again.
11909 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11910 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11911 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11913 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11915 // Further, because the first channel was funded, we can open another channel with
11917 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11918 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11922 fn test_outbound_chans_unlimited() {
11923 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11924 let chanmon_cfgs = create_chanmon_cfgs(2);
11925 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11926 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11927 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11929 // Note that create_network connects the nodes together for us
11931 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11932 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11934 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11935 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11936 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11937 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11940 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11942 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11943 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11944 open_channel_msg.temporary_channel_id);
11946 // but we can still open an outbound channel.
11947 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11948 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11950 // but even with such an outbound channel, additional inbound channels will still fail.
11951 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11952 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11953 open_channel_msg.temporary_channel_id);
11957 fn test_0conf_limiting() {
11958 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11959 // flag set and (sometimes) accept channels as 0conf.
11960 let chanmon_cfgs = create_chanmon_cfgs(2);
11961 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11962 let mut settings = test_default_channel_config();
11963 settings.manually_accept_inbound_channels = true;
11964 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11965 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11967 // Note that create_network connects the nodes together for us
11969 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11970 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11972 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11973 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11974 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11975 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11976 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11977 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11980 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11981 let events = nodes[1].node.get_and_clear_pending_events();
11983 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11984 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11986 _ => panic!("Unexpected event"),
11988 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11989 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11992 // If we try to accept a channel from another peer non-0conf it will fail.
11993 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11994 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11995 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11996 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11998 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11999 let events = nodes[1].node.get_and_clear_pending_events();
12001 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12002 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
12003 Err(APIError::APIMisuseError { err }) =>
12004 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
12008 _ => panic!("Unexpected event"),
12010 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
12011 open_channel_msg.temporary_channel_id);
12013 // ...however if we accept the same channel 0conf it should work just fine.
12014 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12015 let events = nodes[1].node.get_and_clear_pending_events();
12017 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12018 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
12020 _ => panic!("Unexpected event"),
12022 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
12026 fn reject_excessively_underpaying_htlcs() {
12027 let chanmon_cfg = create_chanmon_cfgs(1);
12028 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12029 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12030 let node = create_network(1, &node_cfg, &node_chanmgr);
12031 let sender_intended_amt_msat = 100;
12032 let extra_fee_msat = 10;
12033 let hop_data = msgs::InboundOnionPayload::Receive {
12035 outgoing_cltv_value: 42,
12036 payment_metadata: None,
12037 keysend_preimage: None,
12038 payment_data: Some(msgs::FinalOnionHopData {
12039 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12041 custom_tlvs: Vec::new(),
12043 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
12044 // intended amount, we fail the payment.
12045 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12046 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
12047 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12048 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
12049 current_height, node[0].node.default_configuration.accept_mpp_keysend)
12051 assert_eq!(err_code, 19);
12052 } else { panic!(); }
12054 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
12055 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
12057 outgoing_cltv_value: 42,
12058 payment_metadata: None,
12059 keysend_preimage: None,
12060 payment_data: Some(msgs::FinalOnionHopData {
12061 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12063 custom_tlvs: Vec::new(),
12065 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12066 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12067 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
12068 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
12072 fn test_final_incorrect_cltv(){
12073 let chanmon_cfg = create_chanmon_cfgs(1);
12074 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12075 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12076 let node = create_network(1, &node_cfg, &node_chanmgr);
12078 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12079 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
12081 outgoing_cltv_value: 22,
12082 payment_metadata: None,
12083 keysend_preimage: None,
12084 payment_data: Some(msgs::FinalOnionHopData {
12085 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
12087 custom_tlvs: Vec::new(),
12088 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
12089 node[0].node.default_configuration.accept_mpp_keysend);
12091 // Should not return an error as this condition:
12092 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
12093 // is not satisfied.
12094 assert!(result.is_ok());
12098 fn test_inbound_anchors_manual_acceptance() {
12099 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
12100 // flag set and (sometimes) accept channels as 0conf.
12101 let mut anchors_cfg = test_default_channel_config();
12102 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12104 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
12105 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
12107 let chanmon_cfgs = create_chanmon_cfgs(3);
12108 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12109 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
12110 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
12111 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12113 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12114 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12116 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12117 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12118 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
12119 match &msg_events[0] {
12120 MessageSendEvent::HandleError { node_id, action } => {
12121 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
12123 ErrorAction::SendErrorMessage { msg } =>
12124 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
12125 _ => panic!("Unexpected error action"),
12128 _ => panic!("Unexpected event"),
12131 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12132 let events = nodes[2].node.get_and_clear_pending_events();
12134 Event::OpenChannelRequest { temporary_channel_id, .. } =>
12135 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
12136 _ => panic!("Unexpected event"),
12138 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12142 fn test_anchors_zero_fee_htlc_tx_fallback() {
12143 // Tests that if both nodes support anchors, but the remote node does not want to accept
12144 // anchor channels at the moment, an error it sent to the local node such that it can retry
12145 // the channel without the anchors feature.
12146 let chanmon_cfgs = create_chanmon_cfgs(2);
12147 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12148 let mut anchors_config = test_default_channel_config();
12149 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12150 anchors_config.manually_accept_inbound_channels = true;
12151 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
12152 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12154 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
12155 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12156 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
12158 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12159 let events = nodes[1].node.get_and_clear_pending_events();
12161 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12162 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
12164 _ => panic!("Unexpected event"),
12167 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12168 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12170 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12171 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12173 // Since nodes[1] should not have accepted the channel, it should
12174 // not have generated any events.
12175 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12179 fn test_update_channel_config() {
12180 let chanmon_cfg = create_chanmon_cfgs(2);
12181 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12182 let mut user_config = test_default_channel_config();
12183 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12184 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12185 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12186 let channel = &nodes[0].node.list_channels()[0];
12188 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12189 let events = nodes[0].node.get_and_clear_pending_msg_events();
12190 assert_eq!(events.len(), 0);
12192 user_config.channel_config.forwarding_fee_base_msat += 10;
12193 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12194 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12195 let events = nodes[0].node.get_and_clear_pending_msg_events();
12196 assert_eq!(events.len(), 1);
12198 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12199 _ => panic!("expected BroadcastChannelUpdate event"),
12202 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12203 let events = nodes[0].node.get_and_clear_pending_msg_events();
12204 assert_eq!(events.len(), 0);
12206 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12207 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12208 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12209 ..Default::default()
12211 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12212 let events = nodes[0].node.get_and_clear_pending_msg_events();
12213 assert_eq!(events.len(), 1);
12215 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12216 _ => panic!("expected BroadcastChannelUpdate event"),
12219 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12220 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12221 forwarding_fee_proportional_millionths: Some(new_fee),
12222 ..Default::default()
12224 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12225 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12226 let events = nodes[0].node.get_and_clear_pending_msg_events();
12227 assert_eq!(events.len(), 1);
12229 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12230 _ => panic!("expected BroadcastChannelUpdate event"),
12233 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12234 // should be applied to ensure update atomicity as specified in the API docs.
12235 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12236 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12237 let new_fee = current_fee + 100;
12240 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12241 forwarding_fee_proportional_millionths: Some(new_fee),
12242 ..Default::default()
12244 Err(APIError::ChannelUnavailable { err: _ }),
12247 // Check that the fee hasn't changed for the channel that exists.
12248 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12249 let events = nodes[0].node.get_and_clear_pending_msg_events();
12250 assert_eq!(events.len(), 0);
12254 fn test_payment_display() {
12255 let payment_id = PaymentId([42; 32]);
12256 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12257 let payment_hash = PaymentHash([42; 32]);
12258 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12259 let payment_preimage = PaymentPreimage([42; 32]);
12260 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12264 fn test_trigger_lnd_force_close() {
12265 let chanmon_cfg = create_chanmon_cfgs(2);
12266 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12267 let user_config = test_default_channel_config();
12268 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12269 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12271 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12272 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12273 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12274 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12275 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12276 check_closed_broadcast(&nodes[0], 1, true);
12277 check_added_monitors(&nodes[0], 1);
12278 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12280 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12281 assert_eq!(txn.len(), 1);
12282 check_spends!(txn[0], funding_tx);
12285 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12286 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12288 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12289 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12291 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12292 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12293 }, false).unwrap();
12294 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12295 let channel_reestablish = get_event_msg!(
12296 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12298 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12300 // Alice should respond with an error since the channel isn't known, but a bogus
12301 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12302 // close even if it was an lnd node.
12303 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12304 assert_eq!(msg_events.len(), 2);
12305 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12306 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12307 assert_eq!(msg.next_local_commitment_number, 0);
12308 assert_eq!(msg.next_remote_commitment_number, 0);
12309 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12310 } else { panic!() };
12311 check_closed_broadcast(&nodes[1], 1, true);
12312 check_added_monitors(&nodes[1], 1);
12313 let expected_close_reason = ClosureReason::ProcessingError {
12314 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12316 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12318 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12319 assert_eq!(txn.len(), 1);
12320 check_spends!(txn[0], funding_tx);
12325 fn test_peel_payment_onion() {
12327 let secp_ctx = Secp256k1::new();
12329 let bob = crate::sign::KeysManager::new(&[2; 32], 42, 42);
12330 let bob_pk = PublicKey::from_secret_key(&secp_ctx, &bob.get_node_secret_key());
12331 let charlie = crate::sign::KeysManager::new(&[3; 32], 42, 42);
12332 let charlie_pk = PublicKey::from_secret_key(&secp_ctx, &charlie.get_node_secret_key());
12334 let (session_priv, total_amt_msat, cur_height, recipient_onion, preimage, payment_hash,
12335 prng_seed, hops, recipient_amount, pay_secret) = payment_onion_args(bob_pk, charlie_pk);
12339 blinded_tail: None,
12342 let (amount_msat, cltv_expiry, onion) = create_payment_onion(
12343 &secp_ctx, &path, &session_priv, total_amt_msat, recipient_onion, cur_height,
12344 payment_hash, Some(preimage), prng_seed
12347 let msg = make_update_add_msg(amount_msat, cltv_expiry, payment_hash, onion);
12348 let logger = test_utils::TestLogger::with_id("bob".to_string());
12350 let peeled = peel_payment_onion(&msg, &&bob, &&logger, &secp_ctx, cur_height, true)
12351 .map_err(|e| e.msg).unwrap();
12353 let next_onion = match peeled.routing {
12354 PendingHTLCRouting::Forward { onion_packet, short_channel_id: _ } => {
12357 _ => panic!("expected a forwarded onion"),
12360 let msg2 = make_update_add_msg(amount_msat, cltv_expiry, payment_hash, next_onion);
12361 let peeled2 = peel_payment_onion(&msg2, &&charlie, &&logger, &secp_ctx, cur_height, true)
12362 .map_err(|e| e.msg).unwrap();
12364 match peeled2.routing {
12365 PendingHTLCRouting::ReceiveKeysend { payment_preimage, payment_data, incoming_cltv_expiry, .. } => {
12366 assert_eq!(payment_preimage, preimage);
12367 assert_eq!(peeled2.outgoing_amt_msat, recipient_amount);
12368 assert_eq!(incoming_cltv_expiry, peeled2.outgoing_cltv_value);
12369 let msgs::FinalOnionHopData{total_msat, payment_secret} = payment_data.unwrap();
12370 assert_eq!(total_msat, total_amt_msat);
12371 assert_eq!(payment_secret, pay_secret);
12373 _ => panic!("expected a received keysend"),
12377 fn make_update_add_msg(
12378 amount_msat: u64, cltv_expiry: u32, payment_hash: PaymentHash,
12379 onion_routing_packet: msgs::OnionPacket
12380 ) -> msgs::UpdateAddHTLC {
12381 msgs::UpdateAddHTLC {
12382 channel_id: ChannelId::from_bytes([0; 32]),
12387 onion_routing_packet,
12388 skimmed_fee_msat: None,
12392 fn payment_onion_args(hop_pk: PublicKey, recipient_pk: PublicKey) -> (
12393 SecretKey, u64, u32, RecipientOnionFields, PaymentPreimage, PaymentHash, [u8; 32],
12394 Vec<RouteHop>, u64, PaymentSecret,
12396 let session_priv_bytes = [42; 32];
12397 let session_priv = SecretKey::from_slice(&session_priv_bytes).unwrap();
12398 let total_amt_msat = 1000;
12399 let cur_height = 1000;
12400 let pay_secret = PaymentSecret([99; 32]);
12401 let recipient_onion = RecipientOnionFields::secret_only(pay_secret);
12402 let preimage_bytes = [43; 32];
12403 let preimage = PaymentPreimage(preimage_bytes);
12404 let rhash_bytes = Sha256::hash(&preimage_bytes).to_byte_array();
12405 let payment_hash = PaymentHash(rhash_bytes);
12406 let prng_seed = [44; 32];
12408 // make a route alice -> bob -> charlie
12410 let recipient_amount = total_amt_msat - hop_fee;
12415 cltv_expiry_delta: 42,
12416 short_channel_id: 1,
12417 node_features: NodeFeatures::empty(),
12418 channel_features: ChannelFeatures::empty(),
12419 maybe_announced_channel: false,
12422 pubkey: recipient_pk,
12423 fee_msat: recipient_amount,
12424 cltv_expiry_delta: 42,
12425 short_channel_id: 2,
12426 node_features: NodeFeatures::empty(),
12427 channel_features: ChannelFeatures::empty(),
12428 maybe_announced_channel: false,
12432 (session_priv, total_amt_msat, cur_height, recipient_onion, preimage, payment_hash,
12433 prng_seed, hops, recipient_amount, pay_secret)
12436 pub fn create_payment_onion<T: bitcoin::secp256k1::Signing>(
12437 secp_ctx: &Secp256k1<T>, path: &Path, session_priv: &SecretKey, total_msat: u64,
12438 recipient_onion: RecipientOnionFields, best_block_height: u32, payment_hash: PaymentHash,
12439 keysend_preimage: Option<PaymentPreimage>, prng_seed: [u8; 32]
12440 ) -> Result<(u64, u32, msgs::OnionPacket), ()> {
12441 let onion_keys = super::onion_utils::construct_onion_keys(&secp_ctx, &path, &session_priv).map_err(|_| ())?;
12442 let (onion_payloads, htlc_msat, htlc_cltv) = super::onion_utils::build_onion_payloads(
12446 best_block_height + 1,
12448 ).map_err(|_| ())?;
12449 let onion_packet = super::onion_utils::construct_onion_packet(
12450 onion_payloads, onion_keys, prng_seed, &payment_hash
12452 Ok((htlc_msat, htlc_cltv, onion_packet))
12458 use crate::chain::Listen;
12459 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12460 use crate::sign::{KeysManager, InMemorySigner};
12461 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12462 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12463 use crate::ln::functional_test_utils::*;
12464 use crate::ln::msgs::{ChannelMessageHandler, Init};
12465 use crate::routing::gossip::NetworkGraph;
12466 use crate::routing::router::{PaymentParameters, RouteParameters};
12467 use crate::util::test_utils;
12468 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12470 use bitcoin::blockdata::locktime::absolute::LockTime;
12471 use bitcoin::hashes::Hash;
12472 use bitcoin::hashes::sha256::Hash as Sha256;
12473 use bitcoin::{Block, Transaction, TxOut};
12475 use crate::sync::{Arc, Mutex, RwLock};
12477 use criterion::Criterion;
12479 type Manager<'a, P> = ChannelManager<
12480 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12481 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12482 &'a test_utils::TestLogger, &'a P>,
12483 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12484 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12485 &'a test_utils::TestLogger>;
12487 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12488 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12490 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12491 type CM = Manager<'chan_mon_cfg, P>;
12493 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12495 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12498 pub fn bench_sends(bench: &mut Criterion) {
12499 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12502 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12503 // Do a simple benchmark of sending a payment back and forth between two nodes.
12504 // Note that this is unrealistic as each payment send will require at least two fsync
12506 let network = bitcoin::Network::Testnet;
12507 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12509 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12510 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12511 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12512 let scorer = RwLock::new(test_utils::TestScorer::new());
12513 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12515 let mut config: UserConfig = Default::default();
12516 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12517 config.channel_handshake_config.minimum_depth = 1;
12519 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12520 let seed_a = [1u8; 32];
12521 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12522 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12524 best_block: BestBlock::from_network(network),
12525 }, genesis_block.header.time);
12526 let node_a_holder = ANodeHolder { node: &node_a };
12528 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12529 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12530 let seed_b = [2u8; 32];
12531 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12532 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12534 best_block: BestBlock::from_network(network),
12535 }, genesis_block.header.time);
12536 let node_b_holder = ANodeHolder { node: &node_b };
12538 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12539 features: node_b.init_features(), networks: None, remote_network_address: None
12541 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12542 features: node_a.init_features(), networks: None, remote_network_address: None
12543 }, false).unwrap();
12544 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12545 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12546 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12549 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12550 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12551 value: 8_000_000, script_pubkey: output_script,
12553 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12554 } else { panic!(); }
12556 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12557 let events_b = node_b.get_and_clear_pending_events();
12558 assert_eq!(events_b.len(), 1);
12559 match events_b[0] {
12560 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12561 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12563 _ => panic!("Unexpected event"),
12566 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12567 let events_a = node_a.get_and_clear_pending_events();
12568 assert_eq!(events_a.len(), 1);
12569 match events_a[0] {
12570 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12571 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12573 _ => panic!("Unexpected event"),
12576 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12578 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12579 Listen::block_connected(&node_a, &block, 1);
12580 Listen::block_connected(&node_b, &block, 1);
12582 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12583 let msg_events = node_a.get_and_clear_pending_msg_events();
12584 assert_eq!(msg_events.len(), 2);
12585 match msg_events[0] {
12586 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12587 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12588 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12592 match msg_events[1] {
12593 MessageSendEvent::SendChannelUpdate { .. } => {},
12597 let events_a = node_a.get_and_clear_pending_events();
12598 assert_eq!(events_a.len(), 1);
12599 match events_a[0] {
12600 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12601 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12603 _ => panic!("Unexpected event"),
12606 let events_b = node_b.get_and_clear_pending_events();
12607 assert_eq!(events_b.len(), 1);
12608 match events_b[0] {
12609 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12610 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12612 _ => panic!("Unexpected event"),
12615 let mut payment_count: u64 = 0;
12616 macro_rules! send_payment {
12617 ($node_a: expr, $node_b: expr) => {
12618 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12619 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12620 let mut payment_preimage = PaymentPreimage([0; 32]);
12621 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12622 payment_count += 1;
12623 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
12624 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12626 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12627 PaymentId(payment_hash.0),
12628 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12629 Retry::Attempts(0)).unwrap();
12630 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12631 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12632 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12633 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12634 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12635 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12636 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12638 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12639 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12640 $node_b.claim_funds(payment_preimage);
12641 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12643 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12644 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12645 assert_eq!(node_id, $node_a.get_our_node_id());
12646 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12647 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12649 _ => panic!("Failed to generate claim event"),
12652 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12653 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12654 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12655 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12657 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12661 bench.bench_function(bench_name, |b| b.iter(|| {
12662 send_payment!(node_a, node_b);
12663 send_payment!(node_b, node_a);