1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::{genesis_block, ChainHash};
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::Bolt11InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
49 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs};
57 use crate::ln::wire::Encode;
58 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::{btree_map, BTreeMap};
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
81 use crate::ln::script::ShutdownScript;
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
103 onion_packet: msgs::OnionPacket,
104 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
109 payment_data: msgs::FinalOnionHopData,
110 payment_metadata: Option<Vec<u8>>,
111 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
112 phantom_shared_secret: Option<[u8; 32]>,
113 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
114 custom_tlvs: Vec<(u64, Vec<u8>)>,
117 /// This was added in 0.0.116 and will break deserialization on downgrades.
118 payment_data: Option<msgs::FinalOnionHopData>,
119 payment_preimage: PaymentPreimage,
120 payment_metadata: Option<Vec<u8>>,
121 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) struct PendingHTLCInfo {
129 pub(super) routing: PendingHTLCRouting,
130 pub(super) incoming_shared_secret: [u8; 32],
131 payment_hash: PaymentHash,
133 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
134 /// Sender intended amount to forward or receive (actual amount received
135 /// may overshoot this in either case)
136 pub(super) outgoing_amt_msat: u64,
137 pub(super) outgoing_cltv_value: u32,
138 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
139 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
140 pub(super) skimmed_fee_msat: Option<u64>,
143 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
144 pub(super) enum HTLCFailureMsg {
145 Relay(msgs::UpdateFailHTLC),
146 Malformed(msgs::UpdateFailMalformedHTLC),
149 /// Stores whether we can't forward an HTLC or relevant forwarding info
150 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
151 pub(super) enum PendingHTLCStatus {
152 Forward(PendingHTLCInfo),
153 Fail(HTLCFailureMsg),
156 pub(super) struct PendingAddHTLCInfo {
157 pub(super) forward_info: PendingHTLCInfo,
159 // These fields are produced in `forward_htlcs()` and consumed in
160 // `process_pending_htlc_forwards()` for constructing the
161 // `HTLCSource::PreviousHopData` for failed and forwarded
164 // Note that this may be an outbound SCID alias for the associated channel.
165 prev_short_channel_id: u64,
167 prev_funding_outpoint: OutPoint,
168 prev_user_channel_id: u128,
171 pub(super) enum HTLCForwardInfo {
172 AddHTLC(PendingAddHTLCInfo),
175 err_packet: msgs::OnionErrorPacket,
179 /// Tracks the inbound corresponding to an outbound HTLC
180 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
181 pub(crate) struct HTLCPreviousHopData {
182 // Note that this may be an outbound SCID alias for the associated channel.
183 short_channel_id: u64,
184 user_channel_id: Option<u128>,
186 incoming_packet_shared_secret: [u8; 32],
187 phantom_shared_secret: Option<[u8; 32]>,
189 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
190 // channel with a preimage provided by the forward channel.
195 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
197 /// This is only here for backwards-compatibility in serialization, in the future it can be
198 /// removed, breaking clients running 0.0.106 and earlier.
199 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
201 /// Contains the payer-provided preimage.
202 Spontaneous(PaymentPreimage),
205 /// HTLCs that are to us and can be failed/claimed by the user
206 struct ClaimableHTLC {
207 prev_hop: HTLCPreviousHopData,
209 /// The amount (in msats) of this MPP part
211 /// The amount (in msats) that the sender intended to be sent in this MPP
212 /// part (used for validating total MPP amount)
213 sender_intended_value: u64,
214 onion_payload: OnionPayload,
216 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
217 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
218 total_value_received: Option<u64>,
219 /// The sender intended sum total of all MPP parts specified in the onion
221 /// The extra fee our counterparty skimmed off the top of this HTLC.
222 counterparty_skimmed_fee_msat: Option<u64>,
225 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
226 fn from(val: &ClaimableHTLC) -> Self {
227 events::ClaimedHTLC {
228 channel_id: val.prev_hop.outpoint.to_channel_id(),
229 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
230 cltv_expiry: val.cltv_expiry,
231 value_msat: val.value,
236 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
237 /// a payment and ensure idempotency in LDK.
239 /// This is not exported to bindings users as we just use [u8; 32] directly
240 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
241 pub struct PaymentId(pub [u8; Self::LENGTH]);
244 /// Number of bytes in the id.
245 pub const LENGTH: usize = 32;
248 impl Writeable for PaymentId {
249 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
254 impl Readable for PaymentId {
255 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
256 let buf: [u8; 32] = Readable::read(r)?;
261 impl core::fmt::Display for PaymentId {
262 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
263 crate::util::logger::DebugBytes(&self.0).fmt(f)
267 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
269 /// This is not exported to bindings users as we just use [u8; 32] directly
270 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
271 pub struct InterceptId(pub [u8; 32]);
273 impl Writeable for InterceptId {
274 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
279 impl Readable for InterceptId {
280 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
281 let buf: [u8; 32] = Readable::read(r)?;
286 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
287 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
288 pub(crate) enum SentHTLCId {
289 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
290 OutboundRoute { session_priv: SecretKey },
293 pub(crate) fn from_source(source: &HTLCSource) -> Self {
295 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
296 short_channel_id: hop_data.short_channel_id,
297 htlc_id: hop_data.htlc_id,
299 HTLCSource::OutboundRoute { session_priv, .. } =>
300 Self::OutboundRoute { session_priv: *session_priv },
304 impl_writeable_tlv_based_enum!(SentHTLCId,
305 (0, PreviousHopData) => {
306 (0, short_channel_id, required),
307 (2, htlc_id, required),
309 (2, OutboundRoute) => {
310 (0, session_priv, required),
315 /// Tracks the inbound corresponding to an outbound HTLC
316 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
317 #[derive(Clone, Debug, PartialEq, Eq)]
318 pub(crate) enum HTLCSource {
319 PreviousHopData(HTLCPreviousHopData),
322 session_priv: SecretKey,
323 /// Technically we can recalculate this from the route, but we cache it here to avoid
324 /// doing a double-pass on route when we get a failure back
325 first_hop_htlc_msat: u64,
326 payment_id: PaymentId,
329 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
330 impl core::hash::Hash for HTLCSource {
331 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
333 HTLCSource::PreviousHopData(prev_hop_data) => {
335 prev_hop_data.hash(hasher);
337 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
340 session_priv[..].hash(hasher);
341 payment_id.hash(hasher);
342 first_hop_htlc_msat.hash(hasher);
348 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
350 pub fn dummy() -> Self {
351 HTLCSource::OutboundRoute {
352 path: Path { hops: Vec::new(), blinded_tail: None },
353 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
354 first_hop_htlc_msat: 0,
355 payment_id: PaymentId([2; 32]),
359 #[cfg(debug_assertions)]
360 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
361 /// transaction. Useful to ensure different datastructures match up.
362 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
363 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
364 *first_hop_htlc_msat == htlc.amount_msat
366 // There's nothing we can check for forwarded HTLCs
372 struct InboundOnionErr {
378 /// This enum is used to specify which error data to send to peers when failing back an HTLC
379 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
381 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
382 #[derive(Clone, Copy)]
383 pub enum FailureCode {
384 /// We had a temporary error processing the payment. Useful if no other error codes fit
385 /// and you want to indicate that the payer may want to retry.
386 TemporaryNodeFailure,
387 /// We have a required feature which was not in this onion. For example, you may require
388 /// some additional metadata that was not provided with this payment.
389 RequiredNodeFeatureMissing,
390 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
391 /// the HTLC is too close to the current block height for safe handling.
392 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
393 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
394 IncorrectOrUnknownPaymentDetails,
395 /// We failed to process the payload after the onion was decrypted. You may wish to
396 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
398 /// If available, the tuple data may include the type number and byte offset in the
399 /// decrypted byte stream where the failure occurred.
400 InvalidOnionPayload(Option<(u64, u16)>),
403 impl Into<u16> for FailureCode {
404 fn into(self) -> u16 {
406 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
407 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
408 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
409 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
414 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
415 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
416 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
417 /// peer_state lock. We then return the set of things that need to be done outside the lock in
418 /// this struct and call handle_error!() on it.
420 struct MsgHandleErrInternal {
421 err: msgs::LightningError,
422 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
423 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
424 channel_capacity: Option<u64>,
426 impl MsgHandleErrInternal {
428 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
430 err: LightningError {
432 action: msgs::ErrorAction::SendErrorMessage {
433 msg: msgs::ErrorMessage {
440 shutdown_finish: None,
441 channel_capacity: None,
445 fn from_no_close(err: msgs::LightningError) -> Self {
446 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
449 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
451 err: LightningError {
453 action: msgs::ErrorAction::SendErrorMessage {
454 msg: msgs::ErrorMessage {
460 chan_id: Some((channel_id, user_channel_id)),
461 shutdown_finish: Some((shutdown_res, channel_update)),
462 channel_capacity: Some(channel_capacity)
466 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
469 ChannelError::Warn(msg) => LightningError {
471 action: msgs::ErrorAction::SendWarningMessage {
472 msg: msgs::WarningMessage {
476 log_level: Level::Warn,
479 ChannelError::Ignore(msg) => LightningError {
481 action: msgs::ErrorAction::IgnoreError,
483 ChannelError::Close(msg) => LightningError {
485 action: msgs::ErrorAction::SendErrorMessage {
486 msg: msgs::ErrorMessage {
494 shutdown_finish: None,
495 channel_capacity: None,
499 fn closes_channel(&self) -> bool {
500 self.chan_id.is_some()
504 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
505 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
506 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
507 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
508 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
510 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
511 /// be sent in the order they appear in the return value, however sometimes the order needs to be
512 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
513 /// they were originally sent). In those cases, this enum is also returned.
514 #[derive(Clone, PartialEq)]
515 pub(super) enum RAACommitmentOrder {
516 /// Send the CommitmentUpdate messages first
518 /// Send the RevokeAndACK message first
522 /// Information about a payment which is currently being claimed.
523 struct ClaimingPayment {
525 payment_purpose: events::PaymentPurpose,
526 receiver_node_id: PublicKey,
527 htlcs: Vec<events::ClaimedHTLC>,
528 sender_intended_value: Option<u64>,
530 impl_writeable_tlv_based!(ClaimingPayment, {
531 (0, amount_msat, required),
532 (2, payment_purpose, required),
533 (4, receiver_node_id, required),
534 (5, htlcs, optional_vec),
535 (7, sender_intended_value, option),
538 struct ClaimablePayment {
539 purpose: events::PaymentPurpose,
540 onion_fields: Option<RecipientOnionFields>,
541 htlcs: Vec<ClaimableHTLC>,
544 /// Information about claimable or being-claimed payments
545 struct ClaimablePayments {
546 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
547 /// failed/claimed by the user.
549 /// Note that, no consistency guarantees are made about the channels given here actually
550 /// existing anymore by the time you go to read them!
552 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
553 /// we don't get a duplicate payment.
554 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
556 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
557 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
558 /// as an [`events::Event::PaymentClaimed`].
559 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
562 /// Events which we process internally but cannot be processed immediately at the generation site
563 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
564 /// running normally, and specifically must be processed before any other non-background
565 /// [`ChannelMonitorUpdate`]s are applied.
566 enum BackgroundEvent {
567 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
568 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
569 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
570 /// channel has been force-closed we do not need the counterparty node_id.
572 /// Note that any such events are lost on shutdown, so in general they must be updates which
573 /// are regenerated on startup.
574 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
575 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
576 /// channel to continue normal operation.
578 /// In general this should be used rather than
579 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
580 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
581 /// error the other variant is acceptable.
583 /// Note that any such events are lost on shutdown, so in general they must be updates which
584 /// are regenerated on startup.
585 MonitorUpdateRegeneratedOnStartup {
586 counterparty_node_id: PublicKey,
587 funding_txo: OutPoint,
588 update: ChannelMonitorUpdate
590 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
591 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
593 MonitorUpdatesComplete {
594 counterparty_node_id: PublicKey,
595 channel_id: ChannelId,
600 pub(crate) enum MonitorUpdateCompletionAction {
601 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
602 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
603 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
604 /// event can be generated.
605 PaymentClaimed { payment_hash: PaymentHash },
606 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
607 /// operation of another channel.
609 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
610 /// from completing a monitor update which removes the payment preimage until the inbound edge
611 /// completes a monitor update containing the payment preimage. In that case, after the inbound
612 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
614 EmitEventAndFreeOtherChannel {
615 event: events::Event,
616 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
618 /// Indicates we should immediately resume the operation of another channel, unless there is
619 /// some other reason why the channel is blocked. In practice this simply means immediately
620 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
622 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
623 /// from completing a monitor update which removes the payment preimage until the inbound edge
624 /// completes a monitor update containing the payment preimage. However, we use this variant
625 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
626 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
628 /// This variant should thus never be written to disk, as it is processed inline rather than
629 /// stored for later processing.
630 FreeOtherChannelImmediately {
631 downstream_counterparty_node_id: PublicKey,
632 downstream_funding_outpoint: OutPoint,
633 blocking_action: RAAMonitorUpdateBlockingAction,
637 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
638 (0, PaymentClaimed) => { (0, payment_hash, required) },
639 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
640 // *immediately*. However, for simplicity we implement read/write here.
641 (1, FreeOtherChannelImmediately) => {
642 (0, downstream_counterparty_node_id, required),
643 (2, downstream_funding_outpoint, required),
644 (4, blocking_action, required),
646 (2, EmitEventAndFreeOtherChannel) => {
647 (0, event, upgradable_required),
648 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
649 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
650 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
651 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
652 // downgrades to prior versions.
653 (1, downstream_counterparty_and_funding_outpoint, option),
657 #[derive(Clone, Debug, PartialEq, Eq)]
658 pub(crate) enum EventCompletionAction {
659 ReleaseRAAChannelMonitorUpdate {
660 counterparty_node_id: PublicKey,
661 channel_funding_outpoint: OutPoint,
664 impl_writeable_tlv_based_enum!(EventCompletionAction,
665 (0, ReleaseRAAChannelMonitorUpdate) => {
666 (0, channel_funding_outpoint, required),
667 (2, counterparty_node_id, required),
671 #[derive(Clone, PartialEq, Eq, Debug)]
672 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
673 /// the blocked action here. See enum variants for more info.
674 pub(crate) enum RAAMonitorUpdateBlockingAction {
675 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
676 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
678 ForwardedPaymentInboundClaim {
679 /// The upstream channel ID (i.e. the inbound edge).
680 channel_id: ChannelId,
681 /// The HTLC ID on the inbound edge.
686 impl RAAMonitorUpdateBlockingAction {
687 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
688 Self::ForwardedPaymentInboundClaim {
689 channel_id: prev_hop.outpoint.to_channel_id(),
690 htlc_id: prev_hop.htlc_id,
695 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
696 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
700 /// State we hold per-peer.
701 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
702 /// `channel_id` -> `ChannelPhase`
704 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
705 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
706 /// `temporary_channel_id` -> `InboundChannelRequest`.
708 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
709 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
710 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
711 /// the channel is rejected, then the entry is simply removed.
712 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
713 /// The latest `InitFeatures` we heard from the peer.
714 latest_features: InitFeatures,
715 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
716 /// for broadcast messages, where ordering isn't as strict).
717 pub(super) pending_msg_events: Vec<MessageSendEvent>,
718 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
719 /// user but which have not yet completed.
721 /// Note that the channel may no longer exist. For example if the channel was closed but we
722 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
723 /// for a missing channel.
724 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
725 /// Map from a specific channel to some action(s) that should be taken when all pending
726 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
728 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
729 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
730 /// channels with a peer this will just be one allocation and will amount to a linear list of
731 /// channels to walk, avoiding the whole hashing rigmarole.
733 /// Note that the channel may no longer exist. For example, if a channel was closed but we
734 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
735 /// for a missing channel. While a malicious peer could construct a second channel with the
736 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
737 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
738 /// duplicates do not occur, so such channels should fail without a monitor update completing.
739 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
740 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
741 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
742 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
743 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
744 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
745 /// The peer is currently connected (i.e. we've seen a
746 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
747 /// [`ChannelMessageHandler::peer_disconnected`].
751 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
752 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
753 /// If true is passed for `require_disconnected`, the function will return false if we haven't
754 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
755 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
756 if require_disconnected && self.is_connected {
759 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
760 && self.monitor_update_blocked_actions.is_empty()
761 && self.in_flight_monitor_updates.is_empty()
764 // Returns a count of all channels we have with this peer, including unfunded channels.
765 fn total_channel_count(&self) -> usize {
766 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
769 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
770 fn has_channel(&self, channel_id: &ChannelId) -> bool {
771 self.channel_by_id.contains_key(channel_id) ||
772 self.inbound_channel_request_by_id.contains_key(channel_id)
776 /// A not-yet-accepted inbound (from counterparty) channel. Once
777 /// accepted, the parameters will be used to construct a channel.
778 pub(super) struct InboundChannelRequest {
779 /// The original OpenChannel message.
780 pub open_channel_msg: msgs::OpenChannel,
781 /// The number of ticks remaining before the request expires.
782 pub ticks_remaining: i32,
785 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
786 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
787 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
789 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
790 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
792 /// For users who don't want to bother doing their own payment preimage storage, we also store that
795 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
796 /// and instead encoding it in the payment secret.
797 struct PendingInboundPayment {
798 /// The payment secret that the sender must use for us to accept this payment
799 payment_secret: PaymentSecret,
800 /// Time at which this HTLC expires - blocks with a header time above this value will result in
801 /// this payment being removed.
803 /// Arbitrary identifier the user specifies (or not)
804 user_payment_id: u64,
805 // Other required attributes of the payment, optionally enforced:
806 payment_preimage: Option<PaymentPreimage>,
807 min_value_msat: Option<u64>,
810 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
811 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
812 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
813 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
814 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
815 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
816 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
817 /// of [`KeysManager`] and [`DefaultRouter`].
819 /// This is not exported to bindings users as Arcs don't make sense in bindings
820 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
828 Arc<NetworkGraph<Arc<L>>>,
830 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
831 ProbabilisticScoringFeeParameters,
832 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
837 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
838 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
839 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
840 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
841 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
842 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
843 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
844 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
845 /// of [`KeysManager`] and [`DefaultRouter`].
847 /// This is not exported to bindings users as Arcs don't make sense in bindings
848 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
857 &'f NetworkGraph<&'g L>,
859 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
860 ProbabilisticScoringFeeParameters,
861 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
866 /// A trivial trait which describes any [`ChannelManager`].
868 /// This is not exported to bindings users as general cover traits aren't useful in other
870 pub trait AChannelManager {
871 /// A type implementing [`chain::Watch`].
872 type Watch: chain::Watch<Self::Signer> + ?Sized;
873 /// A type that may be dereferenced to [`Self::Watch`].
874 type M: Deref<Target = Self::Watch>;
875 /// A type implementing [`BroadcasterInterface`].
876 type Broadcaster: BroadcasterInterface + ?Sized;
877 /// A type that may be dereferenced to [`Self::Broadcaster`].
878 type T: Deref<Target = Self::Broadcaster>;
879 /// A type implementing [`EntropySource`].
880 type EntropySource: EntropySource + ?Sized;
881 /// A type that may be dereferenced to [`Self::EntropySource`].
882 type ES: Deref<Target = Self::EntropySource>;
883 /// A type implementing [`NodeSigner`].
884 type NodeSigner: NodeSigner + ?Sized;
885 /// A type that may be dereferenced to [`Self::NodeSigner`].
886 type NS: Deref<Target = Self::NodeSigner>;
887 /// A type implementing [`WriteableEcdsaChannelSigner`].
888 type Signer: WriteableEcdsaChannelSigner + Sized;
889 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
890 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
891 /// A type that may be dereferenced to [`Self::SignerProvider`].
892 type SP: Deref<Target = Self::SignerProvider>;
893 /// A type implementing [`FeeEstimator`].
894 type FeeEstimator: FeeEstimator + ?Sized;
895 /// A type that may be dereferenced to [`Self::FeeEstimator`].
896 type F: Deref<Target = Self::FeeEstimator>;
897 /// A type implementing [`Router`].
898 type Router: Router + ?Sized;
899 /// A type that may be dereferenced to [`Self::Router`].
900 type R: Deref<Target = Self::Router>;
901 /// A type implementing [`Logger`].
902 type Logger: Logger + ?Sized;
903 /// A type that may be dereferenced to [`Self::Logger`].
904 type L: Deref<Target = Self::Logger>;
905 /// Returns a reference to the actual [`ChannelManager`] object.
906 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
909 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
910 for ChannelManager<M, T, ES, NS, SP, F, R, L>
912 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
913 T::Target: BroadcasterInterface,
914 ES::Target: EntropySource,
915 NS::Target: NodeSigner,
916 SP::Target: SignerProvider,
917 F::Target: FeeEstimator,
921 type Watch = M::Target;
923 type Broadcaster = T::Target;
925 type EntropySource = ES::Target;
927 type NodeSigner = NS::Target;
929 type Signer = <SP::Target as SignerProvider>::Signer;
930 type SignerProvider = SP::Target;
932 type FeeEstimator = F::Target;
934 type Router = R::Target;
936 type Logger = L::Target;
938 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
941 /// Manager which keeps track of a number of channels and sends messages to the appropriate
942 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
944 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
945 /// to individual Channels.
947 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
948 /// all peers during write/read (though does not modify this instance, only the instance being
949 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
950 /// called [`funding_transaction_generated`] for outbound channels) being closed.
952 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
953 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
954 /// [`ChannelMonitorUpdate`] before returning from
955 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
956 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
957 /// `ChannelManager` operations from occurring during the serialization process). If the
958 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
959 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
960 /// will be lost (modulo on-chain transaction fees).
962 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
963 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
964 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
966 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
967 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
968 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
969 /// offline for a full minute. In order to track this, you must call
970 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
972 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
973 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
974 /// not have a channel with being unable to connect to us or open new channels with us if we have
975 /// many peers with unfunded channels.
977 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
978 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
979 /// never limited. Please ensure you limit the count of such channels yourself.
981 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
982 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
983 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
984 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
985 /// you're using lightning-net-tokio.
987 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
988 /// [`funding_created`]: msgs::FundingCreated
989 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
990 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
991 /// [`update_channel`]: chain::Watch::update_channel
992 /// [`ChannelUpdate`]: msgs::ChannelUpdate
993 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
994 /// [`read`]: ReadableArgs::read
997 // The tree structure below illustrates the lock order requirements for the different locks of the
998 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
999 // and should then be taken in the order of the lowest to the highest level in the tree.
1000 // Note that locks on different branches shall not be taken at the same time, as doing so will
1001 // create a new lock order for those specific locks in the order they were taken.
1005 // `total_consistency_lock`
1007 // |__`forward_htlcs`
1009 // | |__`pending_intercepted_htlcs`
1011 // |__`per_peer_state`
1013 // | |__`pending_inbound_payments`
1015 // | |__`claimable_payments`
1017 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1019 // | |__`peer_state`
1021 // | |__`id_to_peer`
1023 // | |__`short_to_chan_info`
1025 // | |__`outbound_scid_aliases`
1027 // | |__`best_block`
1029 // | |__`pending_events`
1031 // | |__`pending_background_events`
1033 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1035 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1036 T::Target: BroadcasterInterface,
1037 ES::Target: EntropySource,
1038 NS::Target: NodeSigner,
1039 SP::Target: SignerProvider,
1040 F::Target: FeeEstimator,
1044 default_configuration: UserConfig,
1045 genesis_hash: BlockHash,
1046 fee_estimator: LowerBoundedFeeEstimator<F>,
1052 /// See `ChannelManager` struct-level documentation for lock order requirements.
1054 pub(super) best_block: RwLock<BestBlock>,
1056 best_block: RwLock<BestBlock>,
1057 secp_ctx: Secp256k1<secp256k1::All>,
1059 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1060 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1061 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1062 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1064 /// See `ChannelManager` struct-level documentation for lock order requirements.
1065 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1067 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1068 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1069 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1070 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1071 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1072 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1073 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1074 /// after reloading from disk while replaying blocks against ChannelMonitors.
1076 /// See `PendingOutboundPayment` documentation for more info.
1078 /// See `ChannelManager` struct-level documentation for lock order requirements.
1079 pending_outbound_payments: OutboundPayments,
1081 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1083 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1084 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1085 /// and via the classic SCID.
1087 /// Note that no consistency guarantees are made about the existence of a channel with the
1088 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1090 /// See `ChannelManager` struct-level documentation for lock order requirements.
1092 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1094 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1095 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1096 /// until the user tells us what we should do with them.
1098 /// See `ChannelManager` struct-level documentation for lock order requirements.
1099 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1101 /// The sets of payments which are claimable or currently being claimed. See
1102 /// [`ClaimablePayments`]' individual field docs for more info.
1104 /// See `ChannelManager` struct-level documentation for lock order requirements.
1105 claimable_payments: Mutex<ClaimablePayments>,
1107 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1108 /// and some closed channels which reached a usable state prior to being closed. This is used
1109 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1110 /// active channel list on load.
1112 /// See `ChannelManager` struct-level documentation for lock order requirements.
1113 outbound_scid_aliases: Mutex<HashSet<u64>>,
1115 /// `channel_id` -> `counterparty_node_id`.
1117 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1118 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1119 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1121 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1122 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1123 /// the handling of the events.
1125 /// Note that no consistency guarantees are made about the existence of a peer with the
1126 /// `counterparty_node_id` in our other maps.
1129 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1130 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1131 /// would break backwards compatability.
1132 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1133 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1134 /// required to access the channel with the `counterparty_node_id`.
1136 /// See `ChannelManager` struct-level documentation for lock order requirements.
1137 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1139 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1141 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1142 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1143 /// confirmation depth.
1145 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1146 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1147 /// channel with the `channel_id` in our other maps.
1149 /// See `ChannelManager` struct-level documentation for lock order requirements.
1151 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1153 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1155 our_network_pubkey: PublicKey,
1157 inbound_payment_key: inbound_payment::ExpandedKey,
1159 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1160 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1161 /// we encrypt the namespace identifier using these bytes.
1163 /// [fake scids]: crate::util::scid_utils::fake_scid
1164 fake_scid_rand_bytes: [u8; 32],
1166 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1167 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1168 /// keeping additional state.
1169 probing_cookie_secret: [u8; 32],
1171 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1172 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1173 /// very far in the past, and can only ever be up to two hours in the future.
1174 highest_seen_timestamp: AtomicUsize,
1176 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1177 /// basis, as well as the peer's latest features.
1179 /// If we are connected to a peer we always at least have an entry here, even if no channels
1180 /// are currently open with that peer.
1182 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1183 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1186 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1188 /// See `ChannelManager` struct-level documentation for lock order requirements.
1189 #[cfg(not(any(test, feature = "_test_utils")))]
1190 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1191 #[cfg(any(test, feature = "_test_utils"))]
1192 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1194 /// The set of events which we need to give to the user to handle. In some cases an event may
1195 /// require some further action after the user handles it (currently only blocking a monitor
1196 /// update from being handed to the user to ensure the included changes to the channel state
1197 /// are handled by the user before they're persisted durably to disk). In that case, the second
1198 /// element in the tuple is set to `Some` with further details of the action.
1200 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1201 /// could be in the middle of being processed without the direct mutex held.
1203 /// See `ChannelManager` struct-level documentation for lock order requirements.
1204 #[cfg(not(any(test, feature = "_test_utils")))]
1205 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1206 #[cfg(any(test, feature = "_test_utils"))]
1207 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1209 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1210 pending_events_processor: AtomicBool,
1212 /// If we are running during init (either directly during the deserialization method or in
1213 /// block connection methods which run after deserialization but before normal operation) we
1214 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1215 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1216 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1218 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1220 /// See `ChannelManager` struct-level documentation for lock order requirements.
1222 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1223 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1224 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1225 /// Essentially just when we're serializing ourselves out.
1226 /// Taken first everywhere where we are making changes before any other locks.
1227 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1228 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1229 /// Notifier the lock contains sends out a notification when the lock is released.
1230 total_consistency_lock: RwLock<()>,
1231 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1232 /// received and the monitor has been persisted.
1234 /// This information does not need to be persisted as funding nodes can forget
1235 /// unfunded channels upon disconnection.
1236 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1238 background_events_processed_since_startup: AtomicBool,
1240 event_persist_notifier: Notifier,
1241 needs_persist_flag: AtomicBool,
1245 signer_provider: SP,
1250 /// Chain-related parameters used to construct a new `ChannelManager`.
1252 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1253 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1254 /// are not needed when deserializing a previously constructed `ChannelManager`.
1255 #[derive(Clone, Copy, PartialEq)]
1256 pub struct ChainParameters {
1257 /// The network for determining the `chain_hash` in Lightning messages.
1258 pub network: Network,
1260 /// The hash and height of the latest block successfully connected.
1262 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1263 pub best_block: BestBlock,
1266 #[derive(Copy, Clone, PartialEq)]
1270 SkipPersistHandleEvents,
1271 SkipPersistNoEvents,
1274 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1275 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1276 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1277 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1278 /// sending the aforementioned notification (since the lock being released indicates that the
1279 /// updates are ready for persistence).
1281 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1282 /// notify or not based on whether relevant changes have been made, providing a closure to
1283 /// `optionally_notify` which returns a `NotifyOption`.
1284 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1285 event_persist_notifier: &'a Notifier,
1286 needs_persist_flag: &'a AtomicBool,
1288 // We hold onto this result so the lock doesn't get released immediately.
1289 _read_guard: RwLockReadGuard<'a, ()>,
1292 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1293 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1294 /// events to handle.
1296 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1297 /// other cases where losing the changes on restart may result in a force-close or otherwise
1299 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1300 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1303 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1304 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1305 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1306 let force_notify = cm.get_cm().process_background_events();
1308 PersistenceNotifierGuard {
1309 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1310 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1311 should_persist: move || {
1312 // Pick the "most" action between `persist_check` and the background events
1313 // processing and return that.
1314 let notify = persist_check();
1315 match (notify, force_notify) {
1316 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1317 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1318 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1319 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1320 _ => NotifyOption::SkipPersistNoEvents,
1323 _read_guard: read_guard,
1327 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1328 /// [`ChannelManager::process_background_events`] MUST be called first (or
1329 /// [`Self::optionally_notify`] used).
1330 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1331 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1332 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1334 PersistenceNotifierGuard {
1335 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1336 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1337 should_persist: persist_check,
1338 _read_guard: read_guard,
1343 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1344 fn drop(&mut self) {
1345 match (self.should_persist)() {
1346 NotifyOption::DoPersist => {
1347 self.needs_persist_flag.store(true, Ordering::Release);
1348 self.event_persist_notifier.notify()
1350 NotifyOption::SkipPersistHandleEvents =>
1351 self.event_persist_notifier.notify(),
1352 NotifyOption::SkipPersistNoEvents => {},
1357 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1358 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1360 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1362 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1363 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1364 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1365 /// the maximum required amount in lnd as of March 2021.
1366 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1368 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1369 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1371 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1373 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1374 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1375 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1376 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1377 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1378 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1379 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1380 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1381 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1382 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1383 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1384 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1385 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1387 /// Minimum CLTV difference between the current block height and received inbound payments.
1388 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1390 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1391 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1392 // a payment was being routed, so we add an extra block to be safe.
1393 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1395 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1396 // ie that if the next-hop peer fails the HTLC within
1397 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1398 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1399 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1400 // LATENCY_GRACE_PERIOD_BLOCKS.
1403 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1405 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1406 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1409 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1411 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1412 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1414 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1415 /// until we mark the channel disabled and gossip the update.
1416 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1418 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1419 /// we mark the channel enabled and gossip the update.
1420 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1422 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1423 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1424 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1425 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1427 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1428 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1429 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1431 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1432 /// many peers we reject new (inbound) connections.
1433 const MAX_NO_CHANNEL_PEERS: usize = 250;
1435 /// Information needed for constructing an invoice route hint for this channel.
1436 #[derive(Clone, Debug, PartialEq)]
1437 pub struct CounterpartyForwardingInfo {
1438 /// Base routing fee in millisatoshis.
1439 pub fee_base_msat: u32,
1440 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1441 pub fee_proportional_millionths: u32,
1442 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1443 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1444 /// `cltv_expiry_delta` for more details.
1445 pub cltv_expiry_delta: u16,
1448 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1449 /// to better separate parameters.
1450 #[derive(Clone, Debug, PartialEq)]
1451 pub struct ChannelCounterparty {
1452 /// The node_id of our counterparty
1453 pub node_id: PublicKey,
1454 /// The Features the channel counterparty provided upon last connection.
1455 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1456 /// many routing-relevant features are present in the init context.
1457 pub features: InitFeatures,
1458 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1459 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1460 /// claiming at least this value on chain.
1462 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1464 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1465 pub unspendable_punishment_reserve: u64,
1466 /// Information on the fees and requirements that the counterparty requires when forwarding
1467 /// payments to us through this channel.
1468 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1469 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1470 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1471 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1472 pub outbound_htlc_minimum_msat: Option<u64>,
1473 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1474 pub outbound_htlc_maximum_msat: Option<u64>,
1477 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1478 #[derive(Clone, Debug, PartialEq)]
1479 pub struct ChannelDetails {
1480 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1481 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1482 /// Note that this means this value is *not* persistent - it can change once during the
1483 /// lifetime of the channel.
1484 pub channel_id: ChannelId,
1485 /// Parameters which apply to our counterparty. See individual fields for more information.
1486 pub counterparty: ChannelCounterparty,
1487 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1488 /// our counterparty already.
1490 /// Note that, if this has been set, `channel_id` will be equivalent to
1491 /// `funding_txo.unwrap().to_channel_id()`.
1492 pub funding_txo: Option<OutPoint>,
1493 /// The features which this channel operates with. See individual features for more info.
1495 /// `None` until negotiation completes and the channel type is finalized.
1496 pub channel_type: Option<ChannelTypeFeatures>,
1497 /// The position of the funding transaction in the chain. None if the funding transaction has
1498 /// not yet been confirmed and the channel fully opened.
1500 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1501 /// payments instead of this. See [`get_inbound_payment_scid`].
1503 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1504 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1506 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1507 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1508 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1509 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1510 /// [`confirmations_required`]: Self::confirmations_required
1511 pub short_channel_id: Option<u64>,
1512 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1513 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1514 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1517 /// This will be `None` as long as the channel is not available for routing outbound payments.
1519 /// [`short_channel_id`]: Self::short_channel_id
1520 /// [`confirmations_required`]: Self::confirmations_required
1521 pub outbound_scid_alias: Option<u64>,
1522 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1523 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1524 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1525 /// when they see a payment to be routed to us.
1527 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1528 /// previous values for inbound payment forwarding.
1530 /// [`short_channel_id`]: Self::short_channel_id
1531 pub inbound_scid_alias: Option<u64>,
1532 /// The value, in satoshis, of this channel as appears in the funding output
1533 pub channel_value_satoshis: u64,
1534 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1535 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1536 /// this value on chain.
1538 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1540 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1542 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1543 pub unspendable_punishment_reserve: Option<u64>,
1544 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1545 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1546 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1547 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1548 /// serialized with LDK versions prior to 0.0.113.
1550 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1551 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1552 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1553 pub user_channel_id: u128,
1554 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1555 /// which is applied to commitment and HTLC transactions.
1557 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1558 pub feerate_sat_per_1000_weight: Option<u32>,
1559 /// Our total balance. This is the amount we would get if we close the channel.
1560 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1561 /// amount is not likely to be recoverable on close.
1563 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1564 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1565 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1566 /// This does not consider any on-chain fees.
1568 /// See also [`ChannelDetails::outbound_capacity_msat`]
1569 pub balance_msat: u64,
1570 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1571 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1572 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1573 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1575 /// See also [`ChannelDetails::balance_msat`]
1577 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1578 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1579 /// should be able to spend nearly this amount.
1580 pub outbound_capacity_msat: u64,
1581 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1582 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1583 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1584 /// to use a limit as close as possible to the HTLC limit we can currently send.
1586 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1587 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1588 pub next_outbound_htlc_limit_msat: u64,
1589 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1590 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1591 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1592 /// route which is valid.
1593 pub next_outbound_htlc_minimum_msat: u64,
1594 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1595 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1596 /// available for inclusion in new inbound HTLCs).
1597 /// Note that there are some corner cases not fully handled here, so the actual available
1598 /// inbound capacity may be slightly higher than this.
1600 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1601 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1602 /// However, our counterparty should be able to spend nearly this amount.
1603 pub inbound_capacity_msat: u64,
1604 /// The number of required confirmations on the funding transaction before the funding will be
1605 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1606 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1607 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1608 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1610 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1612 /// [`is_outbound`]: ChannelDetails::is_outbound
1613 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1614 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1615 pub confirmations_required: Option<u32>,
1616 /// The current number of confirmations on the funding transaction.
1618 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1619 pub confirmations: Option<u32>,
1620 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1621 /// until we can claim our funds after we force-close the channel. During this time our
1622 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1623 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1624 /// time to claim our non-HTLC-encumbered funds.
1626 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1627 pub force_close_spend_delay: Option<u16>,
1628 /// True if the channel was initiated (and thus funded) by us.
1629 pub is_outbound: bool,
1630 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1631 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1632 /// required confirmation count has been reached (and we were connected to the peer at some
1633 /// point after the funding transaction received enough confirmations). The required
1634 /// confirmation count is provided in [`confirmations_required`].
1636 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1637 pub is_channel_ready: bool,
1638 /// The stage of the channel's shutdown.
1639 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1640 pub channel_shutdown_state: Option<ChannelShutdownState>,
1641 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1642 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1644 /// This is a strict superset of `is_channel_ready`.
1645 pub is_usable: bool,
1646 /// True if this channel is (or will be) publicly-announced.
1647 pub is_public: bool,
1648 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1649 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1650 pub inbound_htlc_minimum_msat: Option<u64>,
1651 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1652 pub inbound_htlc_maximum_msat: Option<u64>,
1653 /// Set of configurable parameters that affect channel operation.
1655 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1656 pub config: Option<ChannelConfig>,
1659 impl ChannelDetails {
1660 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1661 /// This should be used for providing invoice hints or in any other context where our
1662 /// counterparty will forward a payment to us.
1664 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1665 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1666 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1667 self.inbound_scid_alias.or(self.short_channel_id)
1670 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1671 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1672 /// we're sending or forwarding a payment outbound over this channel.
1674 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1675 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1676 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1677 self.short_channel_id.or(self.outbound_scid_alias)
1680 fn from_channel_context<SP: Deref, F: Deref>(
1681 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1682 fee_estimator: &LowerBoundedFeeEstimator<F>
1685 SP::Target: SignerProvider,
1686 F::Target: FeeEstimator
1688 let balance = context.get_available_balances(fee_estimator);
1689 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1690 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1692 channel_id: context.channel_id(),
1693 counterparty: ChannelCounterparty {
1694 node_id: context.get_counterparty_node_id(),
1695 features: latest_features,
1696 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1697 forwarding_info: context.counterparty_forwarding_info(),
1698 // Ensures that we have actually received the `htlc_minimum_msat` value
1699 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1700 // message (as they are always the first message from the counterparty).
1701 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1702 // default `0` value set by `Channel::new_outbound`.
1703 outbound_htlc_minimum_msat: if context.have_received_message() {
1704 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1705 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1707 funding_txo: context.get_funding_txo(),
1708 // Note that accept_channel (or open_channel) is always the first message, so
1709 // `have_received_message` indicates that type negotiation has completed.
1710 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1711 short_channel_id: context.get_short_channel_id(),
1712 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1713 inbound_scid_alias: context.latest_inbound_scid_alias(),
1714 channel_value_satoshis: context.get_value_satoshis(),
1715 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1716 unspendable_punishment_reserve: to_self_reserve_satoshis,
1717 balance_msat: balance.balance_msat,
1718 inbound_capacity_msat: balance.inbound_capacity_msat,
1719 outbound_capacity_msat: balance.outbound_capacity_msat,
1720 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1721 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1722 user_channel_id: context.get_user_id(),
1723 confirmations_required: context.minimum_depth(),
1724 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1725 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1726 is_outbound: context.is_outbound(),
1727 is_channel_ready: context.is_usable(),
1728 is_usable: context.is_live(),
1729 is_public: context.should_announce(),
1730 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1731 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1732 config: Some(context.config()),
1733 channel_shutdown_state: Some(context.shutdown_state()),
1738 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1739 /// Further information on the details of the channel shutdown.
1740 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1741 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1742 /// the channel will be removed shortly.
1743 /// Also note, that in normal operation, peers could disconnect at any of these states
1744 /// and require peer re-connection before making progress onto other states
1745 pub enum ChannelShutdownState {
1746 /// Channel has not sent or received a shutdown message.
1748 /// Local node has sent a shutdown message for this channel.
1750 /// Shutdown message exchanges have concluded and the channels are in the midst of
1751 /// resolving all existing open HTLCs before closing can continue.
1753 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1754 NegotiatingClosingFee,
1755 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1756 /// to drop the channel.
1760 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1761 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1762 #[derive(Debug, PartialEq)]
1763 pub enum RecentPaymentDetails {
1764 /// When an invoice was requested and thus a payment has not yet been sent.
1766 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1767 /// a payment and ensure idempotency in LDK.
1768 payment_id: PaymentId,
1770 /// When a payment is still being sent and awaiting successful delivery.
1772 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1773 /// a payment and ensure idempotency in LDK.
1774 payment_id: PaymentId,
1775 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1777 payment_hash: PaymentHash,
1778 /// Total amount (in msat, excluding fees) across all paths for this payment,
1779 /// not just the amount currently inflight.
1782 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1783 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1784 /// payment is removed from tracking.
1786 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1787 /// a payment and ensure idempotency in LDK.
1788 payment_id: PaymentId,
1789 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1790 /// made before LDK version 0.0.104.
1791 payment_hash: Option<PaymentHash>,
1793 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1794 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1795 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1797 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1798 /// a payment and ensure idempotency in LDK.
1799 payment_id: PaymentId,
1800 /// Hash of the payment that we have given up trying to send.
1801 payment_hash: PaymentHash,
1805 /// Route hints used in constructing invoices for [phantom node payents].
1807 /// [phantom node payments]: crate::sign::PhantomKeysManager
1809 pub struct PhantomRouteHints {
1810 /// The list of channels to be included in the invoice route hints.
1811 pub channels: Vec<ChannelDetails>,
1812 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1814 pub phantom_scid: u64,
1815 /// The pubkey of the real backing node that would ultimately receive the payment.
1816 pub real_node_pubkey: PublicKey,
1819 macro_rules! handle_error {
1820 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1821 // In testing, ensure there are no deadlocks where the lock is already held upon
1822 // entering the macro.
1823 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1824 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1828 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1829 let mut msg_events = Vec::with_capacity(2);
1831 if let Some((shutdown_res, update_option)) = shutdown_finish {
1832 $self.finish_close_channel(shutdown_res);
1833 if let Some(update) = update_option {
1834 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1838 if let Some((channel_id, user_channel_id)) = chan_id {
1839 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1840 channel_id, user_channel_id,
1841 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1842 counterparty_node_id: Some($counterparty_node_id),
1843 channel_capacity_sats: channel_capacity,
1848 log_error!($self.logger, "{}", err.err);
1849 if let msgs::ErrorAction::IgnoreError = err.action {
1851 msg_events.push(events::MessageSendEvent::HandleError {
1852 node_id: $counterparty_node_id,
1853 action: err.action.clone()
1857 if !msg_events.is_empty() {
1858 let per_peer_state = $self.per_peer_state.read().unwrap();
1859 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1860 let mut peer_state = peer_state_mutex.lock().unwrap();
1861 peer_state.pending_msg_events.append(&mut msg_events);
1865 // Return error in case higher-API need one
1870 ($self: ident, $internal: expr) => {
1873 Err((chan, msg_handle_err)) => {
1874 let counterparty_node_id = chan.get_counterparty_node_id();
1875 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1881 macro_rules! update_maps_on_chan_removal {
1882 ($self: expr, $channel_context: expr) => {{
1883 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1884 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1885 if let Some(short_id) = $channel_context.get_short_channel_id() {
1886 short_to_chan_info.remove(&short_id);
1888 // If the channel was never confirmed on-chain prior to its closure, remove the
1889 // outbound SCID alias we used for it from the collision-prevention set. While we
1890 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1891 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1892 // opening a million channels with us which are closed before we ever reach the funding
1894 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1895 debug_assert!(alias_removed);
1897 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1901 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1902 macro_rules! convert_chan_phase_err {
1903 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1905 ChannelError::Warn(msg) => {
1906 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1908 ChannelError::Ignore(msg) => {
1909 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1911 ChannelError::Close(msg) => {
1912 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1913 update_maps_on_chan_removal!($self, $channel.context);
1914 let shutdown_res = $channel.context.force_shutdown(true);
1915 let user_id = $channel.context.get_user_id();
1916 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1918 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1919 shutdown_res, $channel_update, channel_capacity_satoshis))
1923 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1924 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1926 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1927 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1929 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1930 match $channel_phase {
1931 ChannelPhase::Funded(channel) => {
1932 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1934 ChannelPhase::UnfundedOutboundV1(channel) => {
1935 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1937 ChannelPhase::UnfundedInboundV1(channel) => {
1938 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1944 macro_rules! break_chan_phase_entry {
1945 ($self: ident, $res: expr, $entry: expr) => {
1949 let key = *$entry.key();
1950 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1952 $entry.remove_entry();
1960 macro_rules! try_chan_phase_entry {
1961 ($self: ident, $res: expr, $entry: expr) => {
1965 let key = *$entry.key();
1966 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1968 $entry.remove_entry();
1976 macro_rules! remove_channel_phase {
1977 ($self: expr, $entry: expr) => {
1979 let channel = $entry.remove_entry().1;
1980 update_maps_on_chan_removal!($self, &channel.context());
1986 macro_rules! send_channel_ready {
1987 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1988 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1989 node_id: $channel.context.get_counterparty_node_id(),
1990 msg: $channel_ready_msg,
1992 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1993 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1994 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1995 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1996 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1997 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1998 if let Some(real_scid) = $channel.context.get_short_channel_id() {
1999 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2000 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2001 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2006 macro_rules! emit_channel_pending_event {
2007 ($locked_events: expr, $channel: expr) => {
2008 if $channel.context.should_emit_channel_pending_event() {
2009 $locked_events.push_back((events::Event::ChannelPending {
2010 channel_id: $channel.context.channel_id(),
2011 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2012 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2013 user_channel_id: $channel.context.get_user_id(),
2014 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2016 $channel.context.set_channel_pending_event_emitted();
2021 macro_rules! emit_channel_ready_event {
2022 ($locked_events: expr, $channel: expr) => {
2023 if $channel.context.should_emit_channel_ready_event() {
2024 debug_assert!($channel.context.channel_pending_event_emitted());
2025 $locked_events.push_back((events::Event::ChannelReady {
2026 channel_id: $channel.context.channel_id(),
2027 user_channel_id: $channel.context.get_user_id(),
2028 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2029 channel_type: $channel.context.get_channel_type().clone(),
2031 $channel.context.set_channel_ready_event_emitted();
2036 macro_rules! handle_monitor_update_completion {
2037 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2038 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2039 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
2040 $self.best_block.read().unwrap().height());
2041 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2042 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2043 // We only send a channel_update in the case where we are just now sending a
2044 // channel_ready and the channel is in a usable state. We may re-send a
2045 // channel_update later through the announcement_signatures process for public
2046 // channels, but there's no reason not to just inform our counterparty of our fees
2048 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2049 Some(events::MessageSendEvent::SendChannelUpdate {
2050 node_id: counterparty_node_id,
2056 let update_actions = $peer_state.monitor_update_blocked_actions
2057 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2059 let htlc_forwards = $self.handle_channel_resumption(
2060 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2061 updates.commitment_update, updates.order, updates.accepted_htlcs,
2062 updates.funding_broadcastable, updates.channel_ready,
2063 updates.announcement_sigs);
2064 if let Some(upd) = channel_update {
2065 $peer_state.pending_msg_events.push(upd);
2068 let channel_id = $chan.context.channel_id();
2069 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2070 core::mem::drop($peer_state_lock);
2071 core::mem::drop($per_peer_state_lock);
2073 // If the channel belongs to a batch funding transaction, the progress of the batch
2074 // should be updated as we have received funding_signed and persisted the monitor.
2075 if let Some(txid) = unbroadcasted_batch_funding_txid {
2076 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2077 let mut batch_completed = false;
2078 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2079 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2080 *chan_id == channel_id &&
2081 *pubkey == counterparty_node_id
2083 if let Some(channel_state) = channel_state {
2084 channel_state.2 = true;
2086 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2088 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2090 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2093 // When all channels in a batched funding transaction have become ready, it is not necessary
2094 // to track the progress of the batch anymore and the state of the channels can be updated.
2095 if batch_completed {
2096 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2097 let per_peer_state = $self.per_peer_state.read().unwrap();
2098 let mut batch_funding_tx = None;
2099 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2100 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2101 let mut peer_state = peer_state_mutex.lock().unwrap();
2102 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2103 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2104 chan.set_batch_ready();
2105 let mut pending_events = $self.pending_events.lock().unwrap();
2106 emit_channel_pending_event!(pending_events, chan);
2110 if let Some(tx) = batch_funding_tx {
2111 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2112 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2117 $self.handle_monitor_update_completion_actions(update_actions);
2119 if let Some(forwards) = htlc_forwards {
2120 $self.forward_htlcs(&mut [forwards][..]);
2122 $self.finalize_claims(updates.finalized_claimed_htlcs);
2123 for failure in updates.failed_htlcs.drain(..) {
2124 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2125 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2130 macro_rules! handle_new_monitor_update {
2131 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2132 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2134 ChannelMonitorUpdateStatus::UnrecoverableError => {
2135 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2136 log_error!($self.logger, "{}", err_str);
2137 panic!("{}", err_str);
2139 ChannelMonitorUpdateStatus::InProgress => {
2140 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2141 &$chan.context.channel_id());
2144 ChannelMonitorUpdateStatus::Completed => {
2150 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2151 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2152 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2154 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2155 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2156 .or_insert_with(Vec::new);
2157 // During startup, we push monitor updates as background events through to here in
2158 // order to replay updates that were in-flight when we shut down. Thus, we have to
2159 // filter for uniqueness here.
2160 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2161 .unwrap_or_else(|| {
2162 in_flight_updates.push($update);
2163 in_flight_updates.len() - 1
2165 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2166 handle_new_monitor_update!($self, update_res, $chan, _internal,
2168 let _ = in_flight_updates.remove(idx);
2169 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2170 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2176 macro_rules! process_events_body {
2177 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2178 let mut processed_all_events = false;
2179 while !processed_all_events {
2180 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2187 // We'll acquire our total consistency lock so that we can be sure no other
2188 // persists happen while processing monitor events.
2189 let _read_guard = $self.total_consistency_lock.read().unwrap();
2191 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2192 // ensure any startup-generated background events are handled first.
2193 result = $self.process_background_events();
2195 // TODO: This behavior should be documented. It's unintuitive that we query
2196 // ChannelMonitors when clearing other events.
2197 if $self.process_pending_monitor_events() {
2198 result = NotifyOption::DoPersist;
2202 let pending_events = $self.pending_events.lock().unwrap().clone();
2203 let num_events = pending_events.len();
2204 if !pending_events.is_empty() {
2205 result = NotifyOption::DoPersist;
2208 let mut post_event_actions = Vec::new();
2210 for (event, action_opt) in pending_events {
2211 $event_to_handle = event;
2213 if let Some(action) = action_opt {
2214 post_event_actions.push(action);
2219 let mut pending_events = $self.pending_events.lock().unwrap();
2220 pending_events.drain(..num_events);
2221 processed_all_events = pending_events.is_empty();
2222 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2223 // updated here with the `pending_events` lock acquired.
2224 $self.pending_events_processor.store(false, Ordering::Release);
2227 if !post_event_actions.is_empty() {
2228 $self.handle_post_event_actions(post_event_actions);
2229 // If we had some actions, go around again as we may have more events now
2230 processed_all_events = false;
2234 NotifyOption::DoPersist => {
2235 $self.needs_persist_flag.store(true, Ordering::Release);
2236 $self.event_persist_notifier.notify();
2238 NotifyOption::SkipPersistHandleEvents =>
2239 $self.event_persist_notifier.notify(),
2240 NotifyOption::SkipPersistNoEvents => {},
2246 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2248 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2249 T::Target: BroadcasterInterface,
2250 ES::Target: EntropySource,
2251 NS::Target: NodeSigner,
2252 SP::Target: SignerProvider,
2253 F::Target: FeeEstimator,
2257 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2259 /// The current time or latest block header time can be provided as the `current_timestamp`.
2261 /// This is the main "logic hub" for all channel-related actions, and implements
2262 /// [`ChannelMessageHandler`].
2264 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2266 /// Users need to notify the new `ChannelManager` when a new block is connected or
2267 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2268 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2271 /// [`block_connected`]: chain::Listen::block_connected
2272 /// [`block_disconnected`]: chain::Listen::block_disconnected
2273 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2275 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2276 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2277 current_timestamp: u32,
2279 let mut secp_ctx = Secp256k1::new();
2280 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2281 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2282 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2284 default_configuration: config.clone(),
2285 genesis_hash: genesis_block(params.network).header.block_hash(),
2286 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2291 best_block: RwLock::new(params.best_block),
2293 outbound_scid_aliases: Mutex::new(HashSet::new()),
2294 pending_inbound_payments: Mutex::new(HashMap::new()),
2295 pending_outbound_payments: OutboundPayments::new(),
2296 forward_htlcs: Mutex::new(HashMap::new()),
2297 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2298 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2299 id_to_peer: Mutex::new(HashMap::new()),
2300 short_to_chan_info: FairRwLock::new(HashMap::new()),
2302 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2305 inbound_payment_key: expanded_inbound_key,
2306 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2308 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2310 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2312 per_peer_state: FairRwLock::new(HashMap::new()),
2314 pending_events: Mutex::new(VecDeque::new()),
2315 pending_events_processor: AtomicBool::new(false),
2316 pending_background_events: Mutex::new(Vec::new()),
2317 total_consistency_lock: RwLock::new(()),
2318 background_events_processed_since_startup: AtomicBool::new(false),
2319 event_persist_notifier: Notifier::new(),
2320 needs_persist_flag: AtomicBool::new(false),
2321 funding_batch_states: Mutex::new(BTreeMap::new()),
2331 /// Gets the current configuration applied to all new channels.
2332 pub fn get_current_default_configuration(&self) -> &UserConfig {
2333 &self.default_configuration
2336 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2337 let height = self.best_block.read().unwrap().height();
2338 let mut outbound_scid_alias = 0;
2341 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2342 outbound_scid_alias += 1;
2344 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2346 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2350 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2355 /// Creates a new outbound channel to the given remote node and with the given value.
2357 /// `user_channel_id` will be provided back as in
2358 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2359 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2360 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2361 /// is simply copied to events and otherwise ignored.
2363 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2364 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2366 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2367 /// generate a shutdown scriptpubkey or destination script set by
2368 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2370 /// Note that we do not check if you are currently connected to the given peer. If no
2371 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2372 /// the channel eventually being silently forgotten (dropped on reload).
2374 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2375 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2376 /// [`ChannelDetails::channel_id`] until after
2377 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2378 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2379 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2381 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2382 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2383 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2384 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2385 if channel_value_satoshis < 1000 {
2386 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2389 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2390 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2391 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2393 let per_peer_state = self.per_peer_state.read().unwrap();
2395 let peer_state_mutex = per_peer_state.get(&their_network_key)
2396 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2398 let mut peer_state = peer_state_mutex.lock().unwrap();
2400 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2401 let their_features = &peer_state.latest_features;
2402 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2403 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2404 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2405 self.best_block.read().unwrap().height(), outbound_scid_alias)
2409 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2414 let res = channel.get_open_channel(self.genesis_hash.clone());
2416 let temporary_channel_id = channel.context.channel_id();
2417 match peer_state.channel_by_id.entry(temporary_channel_id) {
2418 hash_map::Entry::Occupied(_) => {
2420 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2422 panic!("RNG is bad???");
2425 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2428 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2429 node_id: their_network_key,
2432 Ok(temporary_channel_id)
2435 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2436 // Allocate our best estimate of the number of channels we have in the `res`
2437 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2438 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2439 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2440 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2441 // the same channel.
2442 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2444 let best_block_height = self.best_block.read().unwrap().height();
2445 let per_peer_state = self.per_peer_state.read().unwrap();
2446 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2447 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2448 let peer_state = &mut *peer_state_lock;
2449 res.extend(peer_state.channel_by_id.iter()
2450 .filter_map(|(chan_id, phase)| match phase {
2451 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2452 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2456 .map(|(_channel_id, channel)| {
2457 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2458 peer_state.latest_features.clone(), &self.fee_estimator)
2466 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2467 /// more information.
2468 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2469 // Allocate our best estimate of the number of channels we have in the `res`
2470 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2471 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2472 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2473 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2474 // the same channel.
2475 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2477 let best_block_height = self.best_block.read().unwrap().height();
2478 let per_peer_state = self.per_peer_state.read().unwrap();
2479 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2480 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2481 let peer_state = &mut *peer_state_lock;
2482 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2483 let details = ChannelDetails::from_channel_context(context, best_block_height,
2484 peer_state.latest_features.clone(), &self.fee_estimator);
2492 /// Gets the list of usable channels, in random order. Useful as an argument to
2493 /// [`Router::find_route`] to ensure non-announced channels are used.
2495 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2496 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2498 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2499 // Note we use is_live here instead of usable which leads to somewhat confused
2500 // internal/external nomenclature, but that's ok cause that's probably what the user
2501 // really wanted anyway.
2502 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2505 /// Gets the list of channels we have with a given counterparty, in random order.
2506 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2507 let best_block_height = self.best_block.read().unwrap().height();
2508 let per_peer_state = self.per_peer_state.read().unwrap();
2510 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2511 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2512 let peer_state = &mut *peer_state_lock;
2513 let features = &peer_state.latest_features;
2514 let context_to_details = |context| {
2515 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2517 return peer_state.channel_by_id
2519 .map(|(_, phase)| phase.context())
2520 .map(context_to_details)
2526 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2527 /// successful path, or have unresolved HTLCs.
2529 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2530 /// result of a crash. If such a payment exists, is not listed here, and an
2531 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2533 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2534 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2535 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2536 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2537 PendingOutboundPayment::AwaitingInvoice { .. } => {
2538 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2540 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2541 PendingOutboundPayment::InvoiceReceived { .. } => {
2542 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2544 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2545 Some(RecentPaymentDetails::Pending {
2546 payment_id: *payment_id,
2547 payment_hash: *payment_hash,
2548 total_msat: *total_msat,
2551 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2552 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2554 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2555 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2557 PendingOutboundPayment::Legacy { .. } => None
2562 /// Helper function that issues the channel close events
2563 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2564 let mut pending_events_lock = self.pending_events.lock().unwrap();
2565 match context.unbroadcasted_funding() {
2566 Some(transaction) => {
2567 pending_events_lock.push_back((events::Event::DiscardFunding {
2568 channel_id: context.channel_id(), transaction
2573 pending_events_lock.push_back((events::Event::ChannelClosed {
2574 channel_id: context.channel_id(),
2575 user_channel_id: context.get_user_id(),
2576 reason: closure_reason,
2577 counterparty_node_id: Some(context.get_counterparty_node_id()),
2578 channel_capacity_sats: Some(context.get_value_satoshis()),
2582 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2583 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2585 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2586 let mut shutdown_result = None;
2588 let per_peer_state = self.per_peer_state.read().unwrap();
2590 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2591 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2593 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2594 let peer_state = &mut *peer_state_lock;
2596 match peer_state.channel_by_id.entry(channel_id.clone()) {
2597 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2598 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2599 let funding_txo_opt = chan.context.get_funding_txo();
2600 let their_features = &peer_state.latest_features;
2601 let unbroadcasted_batch_funding_txid = chan.context.unbroadcasted_batch_funding_txid();
2602 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2603 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2604 failed_htlcs = htlcs;
2606 // We can send the `shutdown` message before updating the `ChannelMonitor`
2607 // here as we don't need the monitor update to complete until we send a
2608 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2609 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2610 node_id: *counterparty_node_id,
2614 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2615 "We can't both complete shutdown and generate a monitor update");
2617 // Update the monitor with the shutdown script if necessary.
2618 if let Some(monitor_update) = monitor_update_opt.take() {
2619 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2620 peer_state_lock, peer_state, per_peer_state, chan);
2624 if chan.is_shutdown() {
2625 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2626 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2627 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2631 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2632 shutdown_result = Some((None, Vec::new(), unbroadcasted_batch_funding_txid));
2638 hash_map::Entry::Vacant(_) => {
2639 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2640 // it does not exist for this peer. Either way, we can attempt to force-close it.
2642 // An appropriate error will be returned for non-existence of the channel if that's the case.
2643 mem::drop(peer_state_lock);
2644 mem::drop(per_peer_state);
2645 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2650 for htlc_source in failed_htlcs.drain(..) {
2651 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2652 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2653 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2656 if let Some(shutdown_result) = shutdown_result {
2657 self.finish_close_channel(shutdown_result);
2663 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2664 /// will be accepted on the given channel, and after additional timeout/the closing of all
2665 /// pending HTLCs, the channel will be closed on chain.
2667 /// * If we are the channel initiator, we will pay between our [`Background`] and
2668 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2670 /// * If our counterparty is the channel initiator, we will require a channel closing
2671 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2672 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2673 /// counterparty to pay as much fee as they'd like, however.
2675 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2677 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2678 /// generate a shutdown scriptpubkey or destination script set by
2679 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2682 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2683 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2684 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2685 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2686 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2687 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2690 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2691 /// will be accepted on the given channel, and after additional timeout/the closing of all
2692 /// pending HTLCs, the channel will be closed on chain.
2694 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2695 /// the channel being closed or not:
2696 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2697 /// transaction. The upper-bound is set by
2698 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2699 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2700 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2701 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2702 /// will appear on a force-closure transaction, whichever is lower).
2704 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2705 /// Will fail if a shutdown script has already been set for this channel by
2706 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2707 /// also be compatible with our and the counterparty's features.
2709 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2711 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2712 /// generate a shutdown scriptpubkey or destination script set by
2713 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2716 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2717 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2718 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2719 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2720 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2721 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2724 fn finish_close_channel(&self, shutdown_res: ShutdownResult) {
2725 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2726 #[cfg(debug_assertions)]
2727 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2728 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2731 let (monitor_update_option, mut failed_htlcs, unbroadcasted_batch_funding_txid) = shutdown_res;
2732 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2733 for htlc_source in failed_htlcs.drain(..) {
2734 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2735 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2736 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2737 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2739 if let Some((_, funding_txo, monitor_update)) = monitor_update_option {
2740 // There isn't anything we can do if we get an update failure - we're already
2741 // force-closing. The monitor update on the required in-memory copy should broadcast
2742 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2743 // ignore the result here.
2744 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2746 let mut shutdown_results = Vec::new();
2747 if let Some(txid) = unbroadcasted_batch_funding_txid {
2748 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2749 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2750 let per_peer_state = self.per_peer_state.read().unwrap();
2751 let mut has_uncompleted_channel = None;
2752 for (channel_id, counterparty_node_id, state) in affected_channels {
2753 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2754 let mut peer_state = peer_state_mutex.lock().unwrap();
2755 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2756 update_maps_on_chan_removal!(self, &chan.context());
2757 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2758 shutdown_results.push(chan.context_mut().force_shutdown(false));
2761 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2764 has_uncompleted_channel.unwrap_or(true),
2765 "Closing a batch where all channels have completed initial monitor update",
2768 for shutdown_result in shutdown_results.drain(..) {
2769 self.finish_close_channel(shutdown_result);
2773 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2774 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2775 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2776 -> Result<PublicKey, APIError> {
2777 let per_peer_state = self.per_peer_state.read().unwrap();
2778 let peer_state_mutex = per_peer_state.get(peer_node_id)
2779 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2780 let (update_opt, counterparty_node_id) = {
2781 let mut peer_state = peer_state_mutex.lock().unwrap();
2782 let closure_reason = if let Some(peer_msg) = peer_msg {
2783 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2785 ClosureReason::HolderForceClosed
2787 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2788 log_error!(self.logger, "Force-closing channel {}", channel_id);
2789 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2790 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2791 mem::drop(peer_state);
2792 mem::drop(per_peer_state);
2794 ChannelPhase::Funded(mut chan) => {
2795 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2796 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2798 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2799 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2800 // Unfunded channel has no update
2801 (None, chan_phase.context().get_counterparty_node_id())
2804 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2805 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2806 // N.B. that we don't send any channel close event here: we
2807 // don't have a user_channel_id, and we never sent any opening
2809 (None, *peer_node_id)
2811 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2814 if let Some(update) = update_opt {
2815 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2816 // not try to broadcast it via whatever peer we have.
2817 let per_peer_state = self.per_peer_state.read().unwrap();
2818 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2819 .ok_or(per_peer_state.values().next());
2820 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2821 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2822 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2828 Ok(counterparty_node_id)
2831 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2832 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2833 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2834 Ok(counterparty_node_id) => {
2835 let per_peer_state = self.per_peer_state.read().unwrap();
2836 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2837 let mut peer_state = peer_state_mutex.lock().unwrap();
2838 peer_state.pending_msg_events.push(
2839 events::MessageSendEvent::HandleError {
2840 node_id: counterparty_node_id,
2841 action: msgs::ErrorAction::SendErrorMessage {
2842 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2853 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2854 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2855 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2857 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2858 -> Result<(), APIError> {
2859 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2862 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2863 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2864 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2866 /// You can always get the latest local transaction(s) to broadcast from
2867 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2868 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2869 -> Result<(), APIError> {
2870 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2873 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2874 /// for each to the chain and rejecting new HTLCs on each.
2875 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2876 for chan in self.list_channels() {
2877 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2881 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2882 /// local transaction(s).
2883 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2884 for chan in self.list_channels() {
2885 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2889 fn construct_fwd_pending_htlc_info(
2890 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2891 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2892 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2893 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2894 debug_assert!(next_packet_pubkey_opt.is_some());
2895 let outgoing_packet = msgs::OnionPacket {
2897 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2898 hop_data: new_packet_bytes,
2902 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2903 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2904 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2905 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2906 return Err(InboundOnionErr {
2907 msg: "Final Node OnionHopData provided for us as an intermediary node",
2908 err_code: 0x4000 | 22,
2909 err_data: Vec::new(),
2913 Ok(PendingHTLCInfo {
2914 routing: PendingHTLCRouting::Forward {
2915 onion_packet: outgoing_packet,
2918 payment_hash: msg.payment_hash,
2919 incoming_shared_secret: shared_secret,
2920 incoming_amt_msat: Some(msg.amount_msat),
2921 outgoing_amt_msat: amt_to_forward,
2922 outgoing_cltv_value,
2923 skimmed_fee_msat: None,
2927 fn construct_recv_pending_htlc_info(
2928 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2929 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2930 counterparty_skimmed_fee_msat: Option<u64>,
2931 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2932 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2933 msgs::InboundOnionPayload::Receive {
2934 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2936 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2937 msgs::InboundOnionPayload::BlindedReceive {
2938 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2940 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2941 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2943 msgs::InboundOnionPayload::Forward { .. } => {
2944 return Err(InboundOnionErr {
2945 err_code: 0x4000|22,
2946 err_data: Vec::new(),
2947 msg: "Got non final data with an HMAC of 0",
2951 // final_incorrect_cltv_expiry
2952 if outgoing_cltv_value > cltv_expiry {
2953 return Err(InboundOnionErr {
2954 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2956 err_data: cltv_expiry.to_be_bytes().to_vec()
2959 // final_expiry_too_soon
2960 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2961 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2963 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2964 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2965 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2966 let current_height: u32 = self.best_block.read().unwrap().height();
2967 if (outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2968 let mut err_data = Vec::with_capacity(12);
2969 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2970 err_data.extend_from_slice(¤t_height.to_be_bytes());
2971 return Err(InboundOnionErr {
2972 err_code: 0x4000 | 15, err_data,
2973 msg: "The final CLTV expiry is too soon to handle",
2976 if (!allow_underpay && onion_amt_msat > amt_msat) ||
2977 (allow_underpay && onion_amt_msat >
2978 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
2980 return Err(InboundOnionErr {
2982 err_data: amt_msat.to_be_bytes().to_vec(),
2983 msg: "Upstream node sent less than we were supposed to receive in payment",
2987 let routing = if let Some(payment_preimage) = keysend_preimage {
2988 // We need to check that the sender knows the keysend preimage before processing this
2989 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2990 // could discover the final destination of X, by probing the adjacent nodes on the route
2991 // with a keysend payment of identical payment hash to X and observing the processing
2992 // time discrepancies due to a hash collision with X.
2993 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2994 if hashed_preimage != payment_hash {
2995 return Err(InboundOnionErr {
2996 err_code: 0x4000|22,
2997 err_data: Vec::new(),
2998 msg: "Payment preimage didn't match payment hash",
3001 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
3002 return Err(InboundOnionErr {
3003 err_code: 0x4000|22,
3004 err_data: Vec::new(),
3005 msg: "We don't support MPP keysend payments",
3008 PendingHTLCRouting::ReceiveKeysend {
3012 incoming_cltv_expiry: outgoing_cltv_value,
3015 } else if let Some(data) = payment_data {
3016 PendingHTLCRouting::Receive {
3019 incoming_cltv_expiry: outgoing_cltv_value,
3020 phantom_shared_secret,
3024 return Err(InboundOnionErr {
3025 err_code: 0x4000|0x2000|3,
3026 err_data: Vec::new(),
3027 msg: "We require payment_secrets",
3030 Ok(PendingHTLCInfo {
3033 incoming_shared_secret: shared_secret,
3034 incoming_amt_msat: Some(amt_msat),
3035 outgoing_amt_msat: onion_amt_msat,
3036 outgoing_cltv_value,
3037 skimmed_fee_msat: counterparty_skimmed_fee_msat,
3041 fn decode_update_add_htlc_onion(
3042 &self, msg: &msgs::UpdateAddHTLC
3043 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
3044 macro_rules! return_malformed_err {
3045 ($msg: expr, $err_code: expr) => {
3047 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3048 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3049 channel_id: msg.channel_id,
3050 htlc_id: msg.htlc_id,
3051 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
3052 failure_code: $err_code,
3058 if let Err(_) = msg.onion_routing_packet.public_key {
3059 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
3062 let shared_secret = self.node_signer.ecdh(
3063 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
3064 ).unwrap().secret_bytes();
3066 if msg.onion_routing_packet.version != 0 {
3067 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
3068 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
3069 //the hash doesn't really serve any purpose - in the case of hashing all data, the
3070 //receiving node would have to brute force to figure out which version was put in the
3071 //packet by the node that send us the message, in the case of hashing the hop_data, the
3072 //node knows the HMAC matched, so they already know what is there...
3073 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
3075 macro_rules! return_err {
3076 ($msg: expr, $err_code: expr, $data: expr) => {
3078 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3079 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3080 channel_id: msg.channel_id,
3081 htlc_id: msg.htlc_id,
3082 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3083 .get_encrypted_failure_packet(&shared_secret, &None),
3089 let next_hop = match onion_utils::decode_next_payment_hop(
3090 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
3091 msg.payment_hash, &self.node_signer
3094 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3095 return_malformed_err!(err_msg, err_code);
3097 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3098 return_err!(err_msg, err_code, &[0; 0]);
3101 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
3102 onion_utils::Hop::Forward {
3103 next_hop_data: msgs::InboundOnionPayload::Forward {
3104 short_channel_id, amt_to_forward, outgoing_cltv_value
3107 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
3108 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
3109 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
3111 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
3112 // inbound channel's state.
3113 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
3114 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
3115 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
3117 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
3121 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3122 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3123 if let Some((err, mut code, chan_update)) = loop {
3124 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3125 let forwarding_chan_info_opt = match id_option {
3126 None => { // unknown_next_peer
3127 // Note that this is likely a timing oracle for detecting whether an scid is a
3128 // phantom or an intercept.
3129 if (self.default_configuration.accept_intercept_htlcs &&
3130 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)) ||
3131 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)
3135 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3138 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3140 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3141 let per_peer_state = self.per_peer_state.read().unwrap();
3142 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3143 if peer_state_mutex_opt.is_none() {
3144 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3146 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3147 let peer_state = &mut *peer_state_lock;
3148 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3149 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3152 // Channel was removed. The short_to_chan_info and channel_by_id maps
3153 // have no consistency guarantees.
3154 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3158 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3159 // Note that the behavior here should be identical to the above block - we
3160 // should NOT reveal the existence or non-existence of a private channel if
3161 // we don't allow forwards outbound over them.
3162 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3164 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3165 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3166 // "refuse to forward unless the SCID alias was used", so we pretend
3167 // we don't have the channel here.
3168 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3170 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3172 // Note that we could technically not return an error yet here and just hope
3173 // that the connection is reestablished or monitor updated by the time we get
3174 // around to doing the actual forward, but better to fail early if we can and
3175 // hopefully an attacker trying to path-trace payments cannot make this occur
3176 // on a small/per-node/per-channel scale.
3177 if !chan.context.is_live() { // channel_disabled
3178 // If the channel_update we're going to return is disabled (i.e. the
3179 // peer has been disabled for some time), return `channel_disabled`,
3180 // otherwise return `temporary_channel_failure`.
3181 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3182 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3184 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3187 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3188 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3190 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3191 break Some((err, code, chan_update_opt));
3195 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3196 // We really should set `incorrect_cltv_expiry` here but as we're not
3197 // forwarding over a real channel we can't generate a channel_update
3198 // for it. Instead we just return a generic temporary_node_failure.
3200 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3207 let cur_height = self.best_block.read().unwrap().height() + 1;
3208 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3209 // but we want to be robust wrt to counterparty packet sanitization (see
3210 // HTLC_FAIL_BACK_BUFFER rationale).
3211 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3212 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3214 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3215 break Some(("CLTV expiry is too far in the future", 21, None));
3217 // If the HTLC expires ~now, don't bother trying to forward it to our
3218 // counterparty. They should fail it anyway, but we don't want to bother with
3219 // the round-trips or risk them deciding they definitely want the HTLC and
3220 // force-closing to ensure they get it if we're offline.
3221 // We previously had a much more aggressive check here which tried to ensure
3222 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3223 // but there is no need to do that, and since we're a bit conservative with our
3224 // risk threshold it just results in failing to forward payments.
3225 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3226 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3232 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3233 if let Some(chan_update) = chan_update {
3234 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3235 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3237 else if code == 0x1000 | 13 {
3238 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3240 else if code == 0x1000 | 20 {
3241 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3242 0u16.write(&mut res).expect("Writes cannot fail");
3244 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3245 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3246 chan_update.write(&mut res).expect("Writes cannot fail");
3247 } else if code & 0x1000 == 0x1000 {
3248 // If we're trying to return an error that requires a `channel_update` but
3249 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3250 // generate an update), just use the generic "temporary_node_failure"
3254 return_err!(err, code, &res.0[..]);
3256 Ok((next_hop, shared_secret, next_packet_pk_opt))
3259 fn construct_pending_htlc_status<'a>(
3260 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3261 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3262 ) -> PendingHTLCStatus {
3263 macro_rules! return_err {
3264 ($msg: expr, $err_code: expr, $data: expr) => {
3266 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3267 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3268 channel_id: msg.channel_id,
3269 htlc_id: msg.htlc_id,
3270 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3271 .get_encrypted_failure_packet(&shared_secret, &None),
3277 onion_utils::Hop::Receive(next_hop_data) => {
3279 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3280 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3283 // Note that we could obviously respond immediately with an update_fulfill_htlc
3284 // message, however that would leak that we are the recipient of this payment, so
3285 // instead we stay symmetric with the forwarding case, only responding (after a
3286 // delay) once they've send us a commitment_signed!
3287 PendingHTLCStatus::Forward(info)
3289 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3292 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3293 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3294 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3295 Ok(info) => PendingHTLCStatus::Forward(info),
3296 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3302 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3303 /// public, and thus should be called whenever the result is going to be passed out in a
3304 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3306 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3307 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3308 /// storage and the `peer_state` lock has been dropped.
3310 /// [`channel_update`]: msgs::ChannelUpdate
3311 /// [`internal_closing_signed`]: Self::internal_closing_signed
3312 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3313 if !chan.context.should_announce() {
3314 return Err(LightningError {
3315 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3316 action: msgs::ErrorAction::IgnoreError
3319 if chan.context.get_short_channel_id().is_none() {
3320 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3322 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3323 self.get_channel_update_for_unicast(chan)
3326 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3327 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3328 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3329 /// provided evidence that they know about the existence of the channel.
3331 /// Note that through [`internal_closing_signed`], this function is called without the
3332 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3333 /// removed from the storage and the `peer_state` lock has been dropped.
3335 /// [`channel_update`]: msgs::ChannelUpdate
3336 /// [`internal_closing_signed`]: Self::internal_closing_signed
3337 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3338 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3339 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3340 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3344 self.get_channel_update_for_onion(short_channel_id, chan)
3347 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3348 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3349 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3351 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3352 ChannelUpdateStatus::Enabled => true,
3353 ChannelUpdateStatus::DisabledStaged(_) => true,
3354 ChannelUpdateStatus::Disabled => false,
3355 ChannelUpdateStatus::EnabledStaged(_) => false,
3358 let unsigned = msgs::UnsignedChannelUpdate {
3359 chain_hash: self.genesis_hash,
3361 timestamp: chan.context.get_update_time_counter(),
3362 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3363 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3364 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3365 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3366 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3367 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3368 excess_data: Vec::new(),
3370 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3371 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3372 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3374 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3376 Ok(msgs::ChannelUpdate {
3383 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3384 let _lck = self.total_consistency_lock.read().unwrap();
3385 self.send_payment_along_path(SendAlongPathArgs {
3386 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3391 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3392 let SendAlongPathArgs {
3393 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3396 // The top-level caller should hold the total_consistency_lock read lock.
3397 debug_assert!(self.total_consistency_lock.try_write().is_err());
3399 log_trace!(self.logger,
3400 "Attempting to send payment with payment hash {} along path with next hop {}",
3401 payment_hash, path.hops.first().unwrap().short_channel_id);
3402 let prng_seed = self.entropy_source.get_secure_random_bytes();
3403 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3405 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
3406 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
3407 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
3409 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
3410 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
3412 let err: Result<(), _> = loop {
3413 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3414 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3415 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3418 let per_peer_state = self.per_peer_state.read().unwrap();
3419 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3420 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3421 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3422 let peer_state = &mut *peer_state_lock;
3423 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3424 match chan_phase_entry.get_mut() {
3425 ChannelPhase::Funded(chan) => {
3426 if !chan.context.is_live() {
3427 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3429 let funding_txo = chan.context.get_funding_txo().unwrap();
3430 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3431 htlc_cltv, HTLCSource::OutboundRoute {
3433 session_priv: session_priv.clone(),
3434 first_hop_htlc_msat: htlc_msat,
3436 }, onion_packet, None, &self.fee_estimator, &self.logger);
3437 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3438 Some(monitor_update) => {
3439 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3441 // Note that MonitorUpdateInProgress here indicates (per function
3442 // docs) that we will resend the commitment update once monitor
3443 // updating completes. Therefore, we must return an error
3444 // indicating that it is unsafe to retry the payment wholesale,
3445 // which we do in the send_payment check for
3446 // MonitorUpdateInProgress, below.
3447 return Err(APIError::MonitorUpdateInProgress);
3455 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3458 // The channel was likely removed after we fetched the id from the
3459 // `short_to_chan_info` map, but before we successfully locked the
3460 // `channel_by_id` map.
3461 // This can occur as no consistency guarantees exists between the two maps.
3462 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3467 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3468 Ok(_) => unreachable!(),
3470 Err(APIError::ChannelUnavailable { err: e.err })
3475 /// Sends a payment along a given route.
3477 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3478 /// fields for more info.
3480 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3481 /// [`PeerManager::process_events`]).
3483 /// # Avoiding Duplicate Payments
3485 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3486 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3487 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3488 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3489 /// second payment with the same [`PaymentId`].
3491 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3492 /// tracking of payments, including state to indicate once a payment has completed. Because you
3493 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3494 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3495 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3497 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3498 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3499 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3500 /// [`ChannelManager::list_recent_payments`] for more information.
3502 /// # Possible Error States on [`PaymentSendFailure`]
3504 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3505 /// each entry matching the corresponding-index entry in the route paths, see
3506 /// [`PaymentSendFailure`] for more info.
3508 /// In general, a path may raise:
3509 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3510 /// node public key) is specified.
3511 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3512 /// closed, doesn't exist, or the peer is currently disconnected.
3513 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3514 /// relevant updates.
3516 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3517 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3518 /// different route unless you intend to pay twice!
3520 /// [`RouteHop`]: crate::routing::router::RouteHop
3521 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3522 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3523 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3524 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3525 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3526 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3527 let best_block_height = self.best_block.read().unwrap().height();
3528 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3529 self.pending_outbound_payments
3530 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3531 &self.entropy_source, &self.node_signer, best_block_height,
3532 |args| self.send_payment_along_path(args))
3535 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3536 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3537 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3538 let best_block_height = self.best_block.read().unwrap().height();
3539 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3540 self.pending_outbound_payments
3541 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3542 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3543 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3544 &self.pending_events, |args| self.send_payment_along_path(args))
3548 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3549 let best_block_height = self.best_block.read().unwrap().height();
3550 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3551 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3552 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3553 best_block_height, |args| self.send_payment_along_path(args))
3557 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3558 let best_block_height = self.best_block.read().unwrap().height();
3559 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3563 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3564 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3568 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3569 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3570 /// retries are exhausted.
3572 /// # Event Generation
3574 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3575 /// as there are no remaining pending HTLCs for this payment.
3577 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3578 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3579 /// determine the ultimate status of a payment.
3581 /// # Restart Behavior
3583 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3584 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated.
3585 pub fn abandon_payment(&self, payment_id: PaymentId) {
3586 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3587 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3590 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3591 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3592 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3593 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3594 /// never reach the recipient.
3596 /// See [`send_payment`] documentation for more details on the return value of this function
3597 /// and idempotency guarantees provided by the [`PaymentId`] key.
3599 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3600 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3602 /// [`send_payment`]: Self::send_payment
3603 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3604 let best_block_height = self.best_block.read().unwrap().height();
3605 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3606 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3607 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3608 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3611 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3612 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3614 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3617 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3618 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3619 let best_block_height = self.best_block.read().unwrap().height();
3620 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3621 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3622 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3623 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3624 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3627 /// Send a payment that is probing the given route for liquidity. We calculate the
3628 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3629 /// us to easily discern them from real payments.
3630 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3631 let best_block_height = self.best_block.read().unwrap().height();
3632 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3633 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3634 &self.entropy_source, &self.node_signer, best_block_height,
3635 |args| self.send_payment_along_path(args))
3638 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3641 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3642 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3645 /// Sends payment probes over all paths of a route that would be used to pay the given
3646 /// amount to the given `node_id`.
3648 /// See [`ChannelManager::send_preflight_probes`] for more information.
3649 pub fn send_spontaneous_preflight_probes(
3650 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3651 liquidity_limit_multiplier: Option<u64>,
3652 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3653 let payment_params =
3654 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3656 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3658 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3661 /// Sends payment probes over all paths of a route that would be used to pay a route found
3662 /// according to the given [`RouteParameters`].
3664 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3665 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3666 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3667 /// confirmation in a wallet UI.
3669 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3670 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3671 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3672 /// payment. To mitigate this issue, channels with available liquidity less than the required
3673 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3674 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3675 pub fn send_preflight_probes(
3676 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3677 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3678 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3680 let payer = self.get_our_node_id();
3681 let usable_channels = self.list_usable_channels();
3682 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3683 let inflight_htlcs = self.compute_inflight_htlcs();
3687 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3689 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3690 ProbeSendFailure::RouteNotFound
3693 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3695 let mut res = Vec::new();
3697 for mut path in route.paths {
3698 // If the last hop is probably an unannounced channel we refrain from probing all the
3699 // way through to the end and instead probe up to the second-to-last channel.
3700 while let Some(last_path_hop) = path.hops.last() {
3701 if last_path_hop.maybe_announced_channel {
3702 // We found a potentially announced last hop.
3705 // Drop the last hop, as it's likely unannounced.
3708 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3709 last_path_hop.short_channel_id
3711 let final_value_msat = path.final_value_msat();
3713 if let Some(new_last) = path.hops.last_mut() {
3714 new_last.fee_msat += final_value_msat;
3719 if path.hops.len() < 2 {
3722 "Skipped sending payment probe over path with less than two hops."
3727 if let Some(first_path_hop) = path.hops.first() {
3728 if let Some(first_hop) = first_hops.iter().find(|h| {
3729 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3731 let path_value = path.final_value_msat() + path.fee_msat();
3732 let used_liquidity =
3733 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3735 if first_hop.next_outbound_htlc_limit_msat
3736 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3738 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3741 *used_liquidity += path_value;
3746 res.push(self.send_probe(path).map_err(|e| {
3747 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3748 ProbeSendFailure::SendingFailed(e)
3755 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3756 /// which checks the correctness of the funding transaction given the associated channel.
3757 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3758 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3759 mut find_funding_output: FundingOutput,
3760 ) -> Result<(), APIError> {
3761 let per_peer_state = self.per_peer_state.read().unwrap();
3762 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3763 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3765 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3766 let peer_state = &mut *peer_state_lock;
3767 let (chan, msg) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3768 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3769 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3771 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3772 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3773 let channel_id = chan.context.channel_id();
3774 let user_id = chan.context.get_user_id();
3775 let shutdown_res = chan.context.force_shutdown(false);
3776 let channel_capacity = chan.context.get_value_satoshis();
3777 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3778 } else { unreachable!(); });
3780 Ok((chan, funding_msg)) => (chan, funding_msg),
3781 Err((chan, err)) => {
3782 mem::drop(peer_state_lock);
3783 mem::drop(per_peer_state);
3785 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3786 return Err(APIError::ChannelUnavailable {
3787 err: "Signer refused to sign the initial commitment transaction".to_owned()
3793 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3794 return Err(APIError::APIMisuseError {
3796 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3797 temporary_channel_id, counterparty_node_id),
3800 None => return Err(APIError::ChannelUnavailable {err: format!(
3801 "Channel with id {} not found for the passed counterparty node_id {}",
3802 temporary_channel_id, counterparty_node_id),
3806 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3807 node_id: chan.context.get_counterparty_node_id(),
3810 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3811 hash_map::Entry::Occupied(_) => {
3812 panic!("Generated duplicate funding txid?");
3814 hash_map::Entry::Vacant(e) => {
3815 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3816 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3817 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3819 e.insert(ChannelPhase::Funded(chan));
3826 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3827 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3828 Ok(OutPoint { txid: tx.txid(), index: output_index })
3832 /// Call this upon creation of a funding transaction for the given channel.
3834 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3835 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3837 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3838 /// across the p2p network.
3840 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3841 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3843 /// May panic if the output found in the funding transaction is duplicative with some other
3844 /// channel (note that this should be trivially prevented by using unique funding transaction
3845 /// keys per-channel).
3847 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3848 /// counterparty's signature the funding transaction will automatically be broadcast via the
3849 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3851 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3852 /// not currently support replacing a funding transaction on an existing channel. Instead,
3853 /// create a new channel with a conflicting funding transaction.
3855 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3856 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3857 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3858 /// for more details.
3860 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3861 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3862 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3863 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3866 /// Call this upon creation of a batch funding transaction for the given channels.
3868 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3869 /// each individual channel and transaction output.
3871 /// Do NOT broadcast the funding transaction yourself. This batch funding transcaction
3872 /// will only be broadcast when we have safely received and persisted the counterparty's
3873 /// signature for each channel.
3875 /// If there is an error, all channels in the batch are to be considered closed.
3876 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3877 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3878 let mut result = Ok(());
3880 if !funding_transaction.is_coin_base() {
3881 for inp in funding_transaction.input.iter() {
3882 if inp.witness.is_empty() {
3883 result = result.and(Err(APIError::APIMisuseError {
3884 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3889 if funding_transaction.output.len() > u16::max_value() as usize {
3890 result = result.and(Err(APIError::APIMisuseError {
3891 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3895 let height = self.best_block.read().unwrap().height();
3896 // Transactions are evaluated as final by network mempools if their locktime is strictly
3897 // lower than the next block height. However, the modules constituting our Lightning
3898 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3899 // module is ahead of LDK, only allow one more block of headroom.
3900 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3901 result = result.and(Err(APIError::APIMisuseError {
3902 err: "Funding transaction absolute timelock is non-final".to_owned()
3907 let txid = funding_transaction.txid();
3908 let is_batch_funding = temporary_channels.len() > 1;
3909 let mut funding_batch_states = if is_batch_funding {
3910 Some(self.funding_batch_states.lock().unwrap())
3914 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3915 match states.entry(txid) {
3916 btree_map::Entry::Occupied(_) => {
3917 result = result.clone().and(Err(APIError::APIMisuseError {
3918 err: "Batch funding transaction with the same txid already exists".to_owned()
3922 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3925 for &(temporary_channel_id, counterparty_node_id) in temporary_channels.iter() {
3926 result = result.and_then(|_| self.funding_transaction_generated_intern(
3927 temporary_channel_id,
3928 counterparty_node_id,
3929 funding_transaction.clone(),
3932 let mut output_index = None;
3933 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3934 for (idx, outp) in tx.output.iter().enumerate() {
3935 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3936 if output_index.is_some() {
3937 return Err(APIError::APIMisuseError {
3938 err: "Multiple outputs matched the expected script and value".to_owned()
3941 output_index = Some(idx as u16);
3944 if output_index.is_none() {
3945 return Err(APIError::APIMisuseError {
3946 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3949 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3950 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3951 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3957 if let Err(ref e) = result {
3958 // Remaining channels need to be removed on any error.
3959 let e = format!("Error in transaction funding: {:?}", e);
3960 let mut channels_to_remove = Vec::new();
3961 channels_to_remove.extend(funding_batch_states.as_mut()
3962 .and_then(|states| states.remove(&txid))
3963 .into_iter().flatten()
3964 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3966 channels_to_remove.extend(temporary_channels.iter()
3967 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3969 let mut shutdown_results = Vec::new();
3971 let per_peer_state = self.per_peer_state.read().unwrap();
3972 for (channel_id, counterparty_node_id) in channels_to_remove {
3973 per_peer_state.get(&counterparty_node_id)
3974 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3975 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3977 update_maps_on_chan_removal!(self, &chan.context());
3978 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3979 shutdown_results.push(chan.context_mut().force_shutdown(false));
3983 for shutdown_result in shutdown_results.drain(..) {
3984 self.finish_close_channel(shutdown_result);
3990 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3992 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3993 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3994 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3995 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3997 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3998 /// `counterparty_node_id` is provided.
4000 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4001 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4003 /// If an error is returned, none of the updates should be considered applied.
4005 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4006 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4007 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4008 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4009 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4010 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4011 /// [`APIMisuseError`]: APIError::APIMisuseError
4012 pub fn update_partial_channel_config(
4013 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4014 ) -> Result<(), APIError> {
4015 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4016 return Err(APIError::APIMisuseError {
4017 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4021 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4022 let per_peer_state = self.per_peer_state.read().unwrap();
4023 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4024 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4025 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4026 let peer_state = &mut *peer_state_lock;
4027 for channel_id in channel_ids {
4028 if !peer_state.has_channel(channel_id) {
4029 return Err(APIError::ChannelUnavailable {
4030 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4034 for channel_id in channel_ids {
4035 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4036 let mut config = channel_phase.context().config();
4037 config.apply(config_update);
4038 if !channel_phase.context_mut().update_config(&config) {
4041 if let ChannelPhase::Funded(channel) = channel_phase {
4042 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4043 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4044 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4045 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4046 node_id: channel.context.get_counterparty_node_id(),
4053 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4054 debug_assert!(false);
4055 return Err(APIError::ChannelUnavailable {
4057 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4058 channel_id, counterparty_node_id),
4065 /// Atomically updates the [`ChannelConfig`] for the given channels.
4067 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4068 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4069 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4070 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4072 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4073 /// `counterparty_node_id` is provided.
4075 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4076 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4078 /// If an error is returned, none of the updates should be considered applied.
4080 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4081 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4082 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4083 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4084 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4085 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4086 /// [`APIMisuseError`]: APIError::APIMisuseError
4087 pub fn update_channel_config(
4088 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4089 ) -> Result<(), APIError> {
4090 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4093 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4094 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4096 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4097 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4099 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4100 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4101 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4102 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4103 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4105 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4106 /// you from forwarding more than you received. See
4107 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4110 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4113 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4114 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4115 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4116 // TODO: when we move to deciding the best outbound channel at forward time, only take
4117 // `next_node_id` and not `next_hop_channel_id`
4118 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4119 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4121 let next_hop_scid = {
4122 let peer_state_lock = self.per_peer_state.read().unwrap();
4123 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4124 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4125 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4126 let peer_state = &mut *peer_state_lock;
4127 match peer_state.channel_by_id.get(next_hop_channel_id) {
4128 Some(ChannelPhase::Funded(chan)) => {
4129 if !chan.context.is_usable() {
4130 return Err(APIError::ChannelUnavailable {
4131 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4134 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4136 Some(_) => return Err(APIError::ChannelUnavailable {
4137 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4138 next_hop_channel_id, next_node_id)
4140 None => return Err(APIError::ChannelUnavailable {
4141 err: format!("Channel with id {} not found for the passed counterparty node_id {}",
4142 next_hop_channel_id, next_node_id)
4147 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4148 .ok_or_else(|| APIError::APIMisuseError {
4149 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4152 let routing = match payment.forward_info.routing {
4153 PendingHTLCRouting::Forward { onion_packet, .. } => {
4154 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4156 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4158 let skimmed_fee_msat =
4159 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4160 let pending_htlc_info = PendingHTLCInfo {
4161 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4162 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4165 let mut per_source_pending_forward = [(
4166 payment.prev_short_channel_id,
4167 payment.prev_funding_outpoint,
4168 payment.prev_user_channel_id,
4169 vec![(pending_htlc_info, payment.prev_htlc_id)]
4171 self.forward_htlcs(&mut per_source_pending_forward);
4175 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4176 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4178 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4181 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4182 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4183 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4185 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4186 .ok_or_else(|| APIError::APIMisuseError {
4187 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4190 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4191 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4192 short_channel_id: payment.prev_short_channel_id,
4193 user_channel_id: Some(payment.prev_user_channel_id),
4194 outpoint: payment.prev_funding_outpoint,
4195 htlc_id: payment.prev_htlc_id,
4196 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4197 phantom_shared_secret: None,
4200 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4201 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4202 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4203 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4208 /// Processes HTLCs which are pending waiting on random forward delay.
4210 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4211 /// Will likely generate further events.
4212 pub fn process_pending_htlc_forwards(&self) {
4213 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4215 let mut new_events = VecDeque::new();
4216 let mut failed_forwards = Vec::new();
4217 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4219 let mut forward_htlcs = HashMap::new();
4220 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4222 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4223 if short_chan_id != 0 {
4224 macro_rules! forwarding_channel_not_found {
4226 for forward_info in pending_forwards.drain(..) {
4227 match forward_info {
4228 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4229 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4230 forward_info: PendingHTLCInfo {
4231 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4232 outgoing_cltv_value, ..
4235 macro_rules! failure_handler {
4236 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4237 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4239 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4240 short_channel_id: prev_short_channel_id,
4241 user_channel_id: Some(prev_user_channel_id),
4242 outpoint: prev_funding_outpoint,
4243 htlc_id: prev_htlc_id,
4244 incoming_packet_shared_secret: incoming_shared_secret,
4245 phantom_shared_secret: $phantom_ss,
4248 let reason = if $next_hop_unknown {
4249 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4251 HTLCDestination::FailedPayment{ payment_hash }
4254 failed_forwards.push((htlc_source, payment_hash,
4255 HTLCFailReason::reason($err_code, $err_data),
4261 macro_rules! fail_forward {
4262 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4264 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4268 macro_rules! failed_payment {
4269 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4271 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4275 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4276 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4277 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
4278 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4279 let next_hop = match onion_utils::decode_next_payment_hop(
4280 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4281 payment_hash, &self.node_signer
4284 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4285 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4286 // In this scenario, the phantom would have sent us an
4287 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4288 // if it came from us (the second-to-last hop) but contains the sha256
4290 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4292 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4293 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4297 onion_utils::Hop::Receive(hop_data) => {
4298 match self.construct_recv_pending_htlc_info(hop_data,
4299 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4300 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4302 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4303 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4309 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4312 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4315 HTLCForwardInfo::FailHTLC { .. } => {
4316 // Channel went away before we could fail it. This implies
4317 // the channel is now on chain and our counterparty is
4318 // trying to broadcast the HTLC-Timeout, but that's their
4319 // problem, not ours.
4325 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
4326 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4328 forwarding_channel_not_found!();
4332 let per_peer_state = self.per_peer_state.read().unwrap();
4333 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4334 if peer_state_mutex_opt.is_none() {
4335 forwarding_channel_not_found!();
4338 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4339 let peer_state = &mut *peer_state_lock;
4340 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4341 for forward_info in pending_forwards.drain(..) {
4342 match forward_info {
4343 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4344 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4345 forward_info: PendingHTLCInfo {
4346 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4347 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4350 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4351 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4352 short_channel_id: prev_short_channel_id,
4353 user_channel_id: Some(prev_user_channel_id),
4354 outpoint: prev_funding_outpoint,
4355 htlc_id: prev_htlc_id,
4356 incoming_packet_shared_secret: incoming_shared_secret,
4357 // Phantom payments are only PendingHTLCRouting::Receive.
4358 phantom_shared_secret: None,
4360 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4361 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4362 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4365 if let ChannelError::Ignore(msg) = e {
4366 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4368 panic!("Stated return value requirements in send_htlc() were not met");
4370 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4371 failed_forwards.push((htlc_source, payment_hash,
4372 HTLCFailReason::reason(failure_code, data),
4373 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4378 HTLCForwardInfo::AddHTLC { .. } => {
4379 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4381 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4382 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4383 if let Err(e) = chan.queue_fail_htlc(
4384 htlc_id, err_packet, &self.logger
4386 if let ChannelError::Ignore(msg) = e {
4387 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4389 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4391 // fail-backs are best-effort, we probably already have one
4392 // pending, and if not that's OK, if not, the channel is on
4393 // the chain and sending the HTLC-Timeout is their problem.
4400 forwarding_channel_not_found!();
4404 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4405 match forward_info {
4406 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4407 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4408 forward_info: PendingHTLCInfo {
4409 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4410 skimmed_fee_msat, ..
4413 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4414 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4415 let _legacy_hop_data = Some(payment_data.clone());
4416 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4417 payment_metadata, custom_tlvs };
4418 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4419 Some(payment_data), phantom_shared_secret, onion_fields)
4421 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4422 let onion_fields = RecipientOnionFields {
4423 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4427 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4428 payment_data, None, onion_fields)
4431 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4434 let claimable_htlc = ClaimableHTLC {
4435 prev_hop: HTLCPreviousHopData {
4436 short_channel_id: prev_short_channel_id,
4437 user_channel_id: Some(prev_user_channel_id),
4438 outpoint: prev_funding_outpoint,
4439 htlc_id: prev_htlc_id,
4440 incoming_packet_shared_secret: incoming_shared_secret,
4441 phantom_shared_secret,
4443 // We differentiate the received value from the sender intended value
4444 // if possible so that we don't prematurely mark MPP payments complete
4445 // if routing nodes overpay
4446 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4447 sender_intended_value: outgoing_amt_msat,
4449 total_value_received: None,
4450 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4453 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4456 let mut committed_to_claimable = false;
4458 macro_rules! fail_htlc {
4459 ($htlc: expr, $payment_hash: expr) => {
4460 debug_assert!(!committed_to_claimable);
4461 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4462 htlc_msat_height_data.extend_from_slice(
4463 &self.best_block.read().unwrap().height().to_be_bytes(),
4465 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4466 short_channel_id: $htlc.prev_hop.short_channel_id,
4467 user_channel_id: $htlc.prev_hop.user_channel_id,
4468 outpoint: prev_funding_outpoint,
4469 htlc_id: $htlc.prev_hop.htlc_id,
4470 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4471 phantom_shared_secret,
4473 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4474 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4476 continue 'next_forwardable_htlc;
4479 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4480 let mut receiver_node_id = self.our_network_pubkey;
4481 if phantom_shared_secret.is_some() {
4482 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4483 .expect("Failed to get node_id for phantom node recipient");
4486 macro_rules! check_total_value {
4487 ($purpose: expr) => {{
4488 let mut payment_claimable_generated = false;
4489 let is_keysend = match $purpose {
4490 events::PaymentPurpose::SpontaneousPayment(_) => true,
4491 events::PaymentPurpose::InvoicePayment { .. } => false,
4493 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4494 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4495 fail_htlc!(claimable_htlc, payment_hash);
4497 let ref mut claimable_payment = claimable_payments.claimable_payments
4498 .entry(payment_hash)
4499 // Note that if we insert here we MUST NOT fail_htlc!()
4500 .or_insert_with(|| {
4501 committed_to_claimable = true;
4503 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4506 if $purpose != claimable_payment.purpose {
4507 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4508 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4509 fail_htlc!(claimable_htlc, payment_hash);
4511 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4512 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4513 fail_htlc!(claimable_htlc, payment_hash);
4515 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4516 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4517 fail_htlc!(claimable_htlc, payment_hash);
4520 claimable_payment.onion_fields = Some(onion_fields);
4522 let ref mut htlcs = &mut claimable_payment.htlcs;
4523 let mut total_value = claimable_htlc.sender_intended_value;
4524 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4525 for htlc in htlcs.iter() {
4526 total_value += htlc.sender_intended_value;
4527 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4528 if htlc.total_msat != claimable_htlc.total_msat {
4529 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4530 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4531 total_value = msgs::MAX_VALUE_MSAT;
4533 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4535 // The condition determining whether an MPP is complete must
4536 // match exactly the condition used in `timer_tick_occurred`
4537 if total_value >= msgs::MAX_VALUE_MSAT {
4538 fail_htlc!(claimable_htlc, payment_hash);
4539 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4540 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4542 fail_htlc!(claimable_htlc, payment_hash);
4543 } else if total_value >= claimable_htlc.total_msat {
4544 #[allow(unused_assignments)] {
4545 committed_to_claimable = true;
4547 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4548 htlcs.push(claimable_htlc);
4549 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4550 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4551 let counterparty_skimmed_fee_msat = htlcs.iter()
4552 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4553 debug_assert!(total_value.saturating_sub(amount_msat) <=
4554 counterparty_skimmed_fee_msat);
4555 new_events.push_back((events::Event::PaymentClaimable {
4556 receiver_node_id: Some(receiver_node_id),
4560 counterparty_skimmed_fee_msat,
4561 via_channel_id: Some(prev_channel_id),
4562 via_user_channel_id: Some(prev_user_channel_id),
4563 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4564 onion_fields: claimable_payment.onion_fields.clone(),
4566 payment_claimable_generated = true;
4568 // Nothing to do - we haven't reached the total
4569 // payment value yet, wait until we receive more
4571 htlcs.push(claimable_htlc);
4572 #[allow(unused_assignments)] {
4573 committed_to_claimable = true;
4576 payment_claimable_generated
4580 // Check that the payment hash and secret are known. Note that we
4581 // MUST take care to handle the "unknown payment hash" and
4582 // "incorrect payment secret" cases here identically or we'd expose
4583 // that we are the ultimate recipient of the given payment hash.
4584 // Further, we must not expose whether we have any other HTLCs
4585 // associated with the same payment_hash pending or not.
4586 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4587 match payment_secrets.entry(payment_hash) {
4588 hash_map::Entry::Vacant(_) => {
4589 match claimable_htlc.onion_payload {
4590 OnionPayload::Invoice { .. } => {
4591 let payment_data = payment_data.unwrap();
4592 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4593 Ok(result) => result,
4595 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4596 fail_htlc!(claimable_htlc, payment_hash);
4599 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4600 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4601 if (cltv_expiry as u64) < expected_min_expiry_height {
4602 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4603 &payment_hash, cltv_expiry, expected_min_expiry_height);
4604 fail_htlc!(claimable_htlc, payment_hash);
4607 let purpose = events::PaymentPurpose::InvoicePayment {
4608 payment_preimage: payment_preimage.clone(),
4609 payment_secret: payment_data.payment_secret,
4611 check_total_value!(purpose);
4613 OnionPayload::Spontaneous(preimage) => {
4614 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4615 check_total_value!(purpose);
4619 hash_map::Entry::Occupied(inbound_payment) => {
4620 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4621 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4622 fail_htlc!(claimable_htlc, payment_hash);
4624 let payment_data = payment_data.unwrap();
4625 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4626 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4627 fail_htlc!(claimable_htlc, payment_hash);
4628 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4629 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4630 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4631 fail_htlc!(claimable_htlc, payment_hash);
4633 let purpose = events::PaymentPurpose::InvoicePayment {
4634 payment_preimage: inbound_payment.get().payment_preimage,
4635 payment_secret: payment_data.payment_secret,
4637 let payment_claimable_generated = check_total_value!(purpose);
4638 if payment_claimable_generated {
4639 inbound_payment.remove_entry();
4645 HTLCForwardInfo::FailHTLC { .. } => {
4646 panic!("Got pending fail of our own HTLC");
4654 let best_block_height = self.best_block.read().unwrap().height();
4655 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4656 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4657 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4659 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4660 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4662 self.forward_htlcs(&mut phantom_receives);
4664 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4665 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4666 // nice to do the work now if we can rather than while we're trying to get messages in the
4668 self.check_free_holding_cells();
4670 if new_events.is_empty() { return }
4671 let mut events = self.pending_events.lock().unwrap();
4672 events.append(&mut new_events);
4675 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4677 /// Expects the caller to have a total_consistency_lock read lock.
4678 fn process_background_events(&self) -> NotifyOption {
4679 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4681 self.background_events_processed_since_startup.store(true, Ordering::Release);
4683 let mut background_events = Vec::new();
4684 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4685 if background_events.is_empty() {
4686 return NotifyOption::SkipPersistNoEvents;
4689 for event in background_events.drain(..) {
4691 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4692 // The channel has already been closed, so no use bothering to care about the
4693 // monitor updating completing.
4694 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4696 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4697 let mut updated_chan = false;
4699 let per_peer_state = self.per_peer_state.read().unwrap();
4700 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4701 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4702 let peer_state = &mut *peer_state_lock;
4703 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4704 hash_map::Entry::Occupied(mut chan_phase) => {
4705 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4706 updated_chan = true;
4707 handle_new_monitor_update!(self, funding_txo, update.clone(),
4708 peer_state_lock, peer_state, per_peer_state, chan);
4710 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4713 hash_map::Entry::Vacant(_) => {},
4718 // TODO: Track this as in-flight even though the channel is closed.
4719 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4722 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4723 let per_peer_state = self.per_peer_state.read().unwrap();
4724 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4725 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4726 let peer_state = &mut *peer_state_lock;
4727 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4728 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4730 let update_actions = peer_state.monitor_update_blocked_actions
4731 .remove(&channel_id).unwrap_or(Vec::new());
4732 mem::drop(peer_state_lock);
4733 mem::drop(per_peer_state);
4734 self.handle_monitor_update_completion_actions(update_actions);
4740 NotifyOption::DoPersist
4743 #[cfg(any(test, feature = "_test_utils"))]
4744 /// Process background events, for functional testing
4745 pub fn test_process_background_events(&self) {
4746 let _lck = self.total_consistency_lock.read().unwrap();
4747 let _ = self.process_background_events();
4750 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4751 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4752 // If the feerate has decreased by less than half, don't bother
4753 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4754 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4755 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4756 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4758 return NotifyOption::SkipPersistNoEvents;
4760 if !chan.context.is_live() {
4761 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4762 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4763 return NotifyOption::SkipPersistNoEvents;
4765 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4766 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4768 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4769 NotifyOption::DoPersist
4773 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4774 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4775 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4776 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4777 pub fn maybe_update_chan_fees(&self) {
4778 PersistenceNotifierGuard::optionally_notify(self, || {
4779 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4781 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4782 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4784 let per_peer_state = self.per_peer_state.read().unwrap();
4785 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4786 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4787 let peer_state = &mut *peer_state_lock;
4788 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4789 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4791 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4796 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4797 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4805 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4807 /// This currently includes:
4808 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4809 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4810 /// than a minute, informing the network that they should no longer attempt to route over
4812 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4813 /// with the current [`ChannelConfig`].
4814 /// * Removing peers which have disconnected but and no longer have any channels.
4815 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4817 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4818 /// estimate fetches.
4820 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4821 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4822 pub fn timer_tick_occurred(&self) {
4823 PersistenceNotifierGuard::optionally_notify(self, || {
4824 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4826 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4827 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4829 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4830 let mut timed_out_mpp_htlcs = Vec::new();
4831 let mut pending_peers_awaiting_removal = Vec::new();
4832 let mut shutdown_channels = Vec::new();
4834 let mut process_unfunded_channel_tick = |
4835 chan_id: &ChannelId,
4836 context: &mut ChannelContext<SP>,
4837 unfunded_context: &mut UnfundedChannelContext,
4838 pending_msg_events: &mut Vec<MessageSendEvent>,
4839 counterparty_node_id: PublicKey,
4841 context.maybe_expire_prev_config();
4842 if unfunded_context.should_expire_unfunded_channel() {
4843 log_error!(self.logger,
4844 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4845 update_maps_on_chan_removal!(self, &context);
4846 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4847 shutdown_channels.push(context.force_shutdown(false));
4848 pending_msg_events.push(MessageSendEvent::HandleError {
4849 node_id: counterparty_node_id,
4850 action: msgs::ErrorAction::SendErrorMessage {
4851 msg: msgs::ErrorMessage {
4852 channel_id: *chan_id,
4853 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4864 let per_peer_state = self.per_peer_state.read().unwrap();
4865 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4866 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4867 let peer_state = &mut *peer_state_lock;
4868 let pending_msg_events = &mut peer_state.pending_msg_events;
4869 let counterparty_node_id = *counterparty_node_id;
4870 peer_state.channel_by_id.retain(|chan_id, phase| {
4872 ChannelPhase::Funded(chan) => {
4873 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4878 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4879 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4881 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4882 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4883 handle_errors.push((Err(err), counterparty_node_id));
4884 if needs_close { return false; }
4887 match chan.channel_update_status() {
4888 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4889 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4890 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4891 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4892 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4893 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4894 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4896 if n >= DISABLE_GOSSIP_TICKS {
4897 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4898 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4899 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4903 should_persist = NotifyOption::DoPersist;
4905 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4908 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4910 if n >= ENABLE_GOSSIP_TICKS {
4911 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4912 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4913 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4917 should_persist = NotifyOption::DoPersist;
4919 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4925 chan.context.maybe_expire_prev_config();
4927 if chan.should_disconnect_peer_awaiting_response() {
4928 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4929 counterparty_node_id, chan_id);
4930 pending_msg_events.push(MessageSendEvent::HandleError {
4931 node_id: counterparty_node_id,
4932 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4933 msg: msgs::WarningMessage {
4934 channel_id: *chan_id,
4935 data: "Disconnecting due to timeout awaiting response".to_owned(),
4943 ChannelPhase::UnfundedInboundV1(chan) => {
4944 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4945 pending_msg_events, counterparty_node_id)
4947 ChannelPhase::UnfundedOutboundV1(chan) => {
4948 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4949 pending_msg_events, counterparty_node_id)
4954 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4955 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4956 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4957 peer_state.pending_msg_events.push(
4958 events::MessageSendEvent::HandleError {
4959 node_id: counterparty_node_id,
4960 action: msgs::ErrorAction::SendErrorMessage {
4961 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4967 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4969 if peer_state.ok_to_remove(true) {
4970 pending_peers_awaiting_removal.push(counterparty_node_id);
4975 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4976 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4977 // of to that peer is later closed while still being disconnected (i.e. force closed),
4978 // we therefore need to remove the peer from `peer_state` separately.
4979 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4980 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4981 // negative effects on parallelism as much as possible.
4982 if pending_peers_awaiting_removal.len() > 0 {
4983 let mut per_peer_state = self.per_peer_state.write().unwrap();
4984 for counterparty_node_id in pending_peers_awaiting_removal {
4985 match per_peer_state.entry(counterparty_node_id) {
4986 hash_map::Entry::Occupied(entry) => {
4987 // Remove the entry if the peer is still disconnected and we still
4988 // have no channels to the peer.
4989 let remove_entry = {
4990 let peer_state = entry.get().lock().unwrap();
4991 peer_state.ok_to_remove(true)
4994 entry.remove_entry();
4997 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5002 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5003 if payment.htlcs.is_empty() {
5004 // This should be unreachable
5005 debug_assert!(false);
5008 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5009 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5010 // In this case we're not going to handle any timeouts of the parts here.
5011 // This condition determining whether the MPP is complete here must match
5012 // exactly the condition used in `process_pending_htlc_forwards`.
5013 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5014 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5017 } else if payment.htlcs.iter_mut().any(|htlc| {
5018 htlc.timer_ticks += 1;
5019 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5021 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5022 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5029 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5030 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5031 let reason = HTLCFailReason::from_failure_code(23);
5032 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5033 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5036 for (err, counterparty_node_id) in handle_errors.drain(..) {
5037 let _ = handle_error!(self, err, counterparty_node_id);
5040 for shutdown_res in shutdown_channels {
5041 self.finish_close_channel(shutdown_res);
5044 self.pending_outbound_payments.remove_stale_payments(&self.pending_events);
5046 // Technically we don't need to do this here, but if we have holding cell entries in a
5047 // channel that need freeing, it's better to do that here and block a background task
5048 // than block the message queueing pipeline.
5049 if self.check_free_holding_cells() {
5050 should_persist = NotifyOption::DoPersist;
5057 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5058 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5059 /// along the path (including in our own channel on which we received it).
5061 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5062 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5063 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5064 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5066 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5067 /// [`ChannelManager::claim_funds`]), you should still monitor for
5068 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5069 /// startup during which time claims that were in-progress at shutdown may be replayed.
5070 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5071 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5074 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5075 /// reason for the failure.
5077 /// See [`FailureCode`] for valid failure codes.
5078 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5079 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5081 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5082 if let Some(payment) = removed_source {
5083 for htlc in payment.htlcs {
5084 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5085 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5086 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5087 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5092 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5093 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5094 match failure_code {
5095 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5096 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5097 FailureCode::IncorrectOrUnknownPaymentDetails => {
5098 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5099 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5100 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5102 FailureCode::InvalidOnionPayload(data) => {
5103 let fail_data = match data {
5104 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5107 HTLCFailReason::reason(failure_code.into(), fail_data)
5112 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5113 /// that we want to return and a channel.
5115 /// This is for failures on the channel on which the HTLC was *received*, not failures
5117 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5118 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5119 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5120 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5121 // an inbound SCID alias before the real SCID.
5122 let scid_pref = if chan.context.should_announce() {
5123 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5125 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5127 if let Some(scid) = scid_pref {
5128 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5130 (0x4000|10, Vec::new())
5135 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5136 /// that we want to return and a channel.
5137 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5138 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5139 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5140 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5141 if desired_err_code == 0x1000 | 20 {
5142 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5143 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5144 0u16.write(&mut enc).expect("Writes cannot fail");
5146 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5147 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5148 upd.write(&mut enc).expect("Writes cannot fail");
5149 (desired_err_code, enc.0)
5151 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5152 // which means we really shouldn't have gotten a payment to be forwarded over this
5153 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5154 // PERM|no_such_channel should be fine.
5155 (0x4000|10, Vec::new())
5159 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5160 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5161 // be surfaced to the user.
5162 fn fail_holding_cell_htlcs(
5163 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5164 counterparty_node_id: &PublicKey
5166 let (failure_code, onion_failure_data) = {
5167 let per_peer_state = self.per_peer_state.read().unwrap();
5168 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5169 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5170 let peer_state = &mut *peer_state_lock;
5171 match peer_state.channel_by_id.entry(channel_id) {
5172 hash_map::Entry::Occupied(chan_phase_entry) => {
5173 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5174 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5176 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5177 debug_assert!(false);
5178 (0x4000|10, Vec::new())
5181 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5183 } else { (0x4000|10, Vec::new()) }
5186 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5187 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5188 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5189 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5193 /// Fails an HTLC backwards to the sender of it to us.
5194 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5195 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5196 // Ensure that no peer state channel storage lock is held when calling this function.
5197 // This ensures that future code doesn't introduce a lock-order requirement for
5198 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5199 // this function with any `per_peer_state` peer lock acquired would.
5200 #[cfg(debug_assertions)]
5201 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5202 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5205 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5206 //identify whether we sent it or not based on the (I presume) very different runtime
5207 //between the branches here. We should make this async and move it into the forward HTLCs
5210 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5211 // from block_connected which may run during initialization prior to the chain_monitor
5212 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5214 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5215 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5216 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5217 &self.pending_events, &self.logger)
5218 { self.push_pending_forwards_ev(); }
5220 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5221 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5222 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5224 let mut push_forward_ev = false;
5225 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5226 if forward_htlcs.is_empty() {
5227 push_forward_ev = true;
5229 match forward_htlcs.entry(*short_channel_id) {
5230 hash_map::Entry::Occupied(mut entry) => {
5231 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5233 hash_map::Entry::Vacant(entry) => {
5234 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5237 mem::drop(forward_htlcs);
5238 if push_forward_ev { self.push_pending_forwards_ev(); }
5239 let mut pending_events = self.pending_events.lock().unwrap();
5240 pending_events.push_back((events::Event::HTLCHandlingFailed {
5241 prev_channel_id: outpoint.to_channel_id(),
5242 failed_next_destination: destination,
5248 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5249 /// [`MessageSendEvent`]s needed to claim the payment.
5251 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5252 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5253 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5254 /// successful. It will generally be available in the next [`process_pending_events`] call.
5256 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5257 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5258 /// event matches your expectation. If you fail to do so and call this method, you may provide
5259 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5261 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5262 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5263 /// [`claim_funds_with_known_custom_tlvs`].
5265 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5266 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5267 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5268 /// [`process_pending_events`]: EventsProvider::process_pending_events
5269 /// [`create_inbound_payment`]: Self::create_inbound_payment
5270 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5271 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5272 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5273 self.claim_payment_internal(payment_preimage, false);
5276 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5277 /// even type numbers.
5281 /// You MUST check you've understood all even TLVs before using this to
5282 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5284 /// [`claim_funds`]: Self::claim_funds
5285 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5286 self.claim_payment_internal(payment_preimage, true);
5289 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5290 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5292 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5295 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5296 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5297 let mut receiver_node_id = self.our_network_pubkey;
5298 for htlc in payment.htlcs.iter() {
5299 if htlc.prev_hop.phantom_shared_secret.is_some() {
5300 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5301 .expect("Failed to get node_id for phantom node recipient");
5302 receiver_node_id = phantom_pubkey;
5307 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5308 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5309 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5310 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5311 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5313 if dup_purpose.is_some() {
5314 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5315 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5319 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5320 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5321 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5322 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5323 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5324 mem::drop(claimable_payments);
5325 for htlc in payment.htlcs {
5326 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5327 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5328 let receiver = HTLCDestination::FailedPayment { payment_hash };
5329 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5338 debug_assert!(!sources.is_empty());
5340 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5341 // and when we got here we need to check that the amount we're about to claim matches the
5342 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5343 // the MPP parts all have the same `total_msat`.
5344 let mut claimable_amt_msat = 0;
5345 let mut prev_total_msat = None;
5346 let mut expected_amt_msat = None;
5347 let mut valid_mpp = true;
5348 let mut errs = Vec::new();
5349 let per_peer_state = self.per_peer_state.read().unwrap();
5350 for htlc in sources.iter() {
5351 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5352 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5353 debug_assert!(false);
5357 prev_total_msat = Some(htlc.total_msat);
5359 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5360 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5361 debug_assert!(false);
5365 expected_amt_msat = htlc.total_value_received;
5366 claimable_amt_msat += htlc.value;
5368 mem::drop(per_peer_state);
5369 if sources.is_empty() || expected_amt_msat.is_none() {
5370 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5371 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5374 if claimable_amt_msat != expected_amt_msat.unwrap() {
5375 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5376 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5377 expected_amt_msat.unwrap(), claimable_amt_msat);
5381 for htlc in sources.drain(..) {
5382 if let Err((pk, err)) = self.claim_funds_from_hop(
5383 htlc.prev_hop, payment_preimage,
5384 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
5386 if let msgs::ErrorAction::IgnoreError = err.err.action {
5387 // We got a temporary failure updating monitor, but will claim the
5388 // HTLC when the monitor updating is restored (or on chain).
5389 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5390 } else { errs.push((pk, err)); }
5395 for htlc in sources.drain(..) {
5396 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5397 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5398 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5399 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5400 let receiver = HTLCDestination::FailedPayment { payment_hash };
5401 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5403 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5406 // Now we can handle any errors which were generated.
5407 for (counterparty_node_id, err) in errs.drain(..) {
5408 let res: Result<(), _> = Err(err);
5409 let _ = handle_error!(self, res, counterparty_node_id);
5413 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
5414 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5415 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5416 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5418 // If we haven't yet run background events assume we're still deserializing and shouldn't
5419 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5420 // `BackgroundEvent`s.
5421 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5424 let per_peer_state = self.per_peer_state.read().unwrap();
5425 let chan_id = prev_hop.outpoint.to_channel_id();
5426 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5427 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5431 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5432 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5433 .map(|peer_mutex| peer_mutex.lock().unwrap())
5436 if peer_state_opt.is_some() {
5437 let mut peer_state_lock = peer_state_opt.unwrap();
5438 let peer_state = &mut *peer_state_lock;
5439 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5440 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5441 let counterparty_node_id = chan.context.get_counterparty_node_id();
5442 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5444 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
5445 if let Some(action) = completion_action(Some(htlc_value_msat)) {
5446 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5448 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5451 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5452 peer_state, per_peer_state, chan);
5454 // If we're running during init we cannot update a monitor directly -
5455 // they probably haven't actually been loaded yet. Instead, push the
5456 // monitor update as a background event.
5457 self.pending_background_events.lock().unwrap().push(
5458 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5459 counterparty_node_id,
5460 funding_txo: prev_hop.outpoint,
5461 update: monitor_update.clone(),
5470 let preimage_update = ChannelMonitorUpdate {
5471 update_id: CLOSED_CHANNEL_UPDATE_ID,
5472 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5478 // We update the ChannelMonitor on the backward link, after
5479 // receiving an `update_fulfill_htlc` from the forward link.
5480 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5481 if update_res != ChannelMonitorUpdateStatus::Completed {
5482 // TODO: This needs to be handled somehow - if we receive a monitor update
5483 // with a preimage we *must* somehow manage to propagate it to the upstream
5484 // channel, or we must have an ability to receive the same event and try
5485 // again on restart.
5486 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5487 payment_preimage, update_res);
5490 // If we're running during init we cannot update a monitor directly - they probably
5491 // haven't actually been loaded yet. Instead, push the monitor update as a background
5493 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5494 // channel is already closed) we need to ultimately handle the monitor update
5495 // completion action only after we've completed the monitor update. This is the only
5496 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5497 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5498 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5499 // complete the monitor update completion action from `completion_action`.
5500 self.pending_background_events.lock().unwrap().push(
5501 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5502 prev_hop.outpoint, preimage_update,
5505 // Note that we do process the completion action here. This totally could be a
5506 // duplicate claim, but we have no way of knowing without interrogating the
5507 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5508 // generally always allowed to be duplicative (and it's specifically noted in
5509 // `PaymentForwarded`).
5510 self.handle_monitor_update_completion_actions(completion_action(None));
5514 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5515 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5518 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5519 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5520 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5523 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5524 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5525 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5526 if let Some(pubkey) = next_channel_counterparty_node_id {
5527 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5529 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5530 channel_funding_outpoint: next_channel_outpoint,
5531 counterparty_node_id: path.hops[0].pubkey,
5533 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5534 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5537 HTLCSource::PreviousHopData(hop_data) => {
5538 let prev_outpoint = hop_data.outpoint;
5539 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5540 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5541 |htlc_claim_value_msat| {
5542 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5543 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5544 Some(claimed_htlc_value - forwarded_htlc_value)
5547 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5548 event: events::Event::PaymentForwarded {
5550 claim_from_onchain_tx: from_onchain,
5551 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5552 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5553 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5555 downstream_counterparty_and_funding_outpoint:
5556 if let Some(node_id) = next_channel_counterparty_node_id {
5557 Some((node_id, next_channel_outpoint, completed_blocker))
5559 // We can only get `None` here if we are processing a
5560 // `ChannelMonitor`-originated event, in which case we
5561 // don't care about ensuring we wake the downstream
5562 // channel's monitor updating - the channel is already
5569 if let Err((pk, err)) = res {
5570 let result: Result<(), _> = Err(err);
5571 let _ = handle_error!(self, result, pk);
5577 /// Gets the node_id held by this ChannelManager
5578 pub fn get_our_node_id(&self) -> PublicKey {
5579 self.our_network_pubkey.clone()
5582 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5583 for action in actions.into_iter() {
5585 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5586 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5587 if let Some(ClaimingPayment {
5589 payment_purpose: purpose,
5592 sender_intended_value: sender_intended_total_msat,
5594 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5598 receiver_node_id: Some(receiver_node_id),
5600 sender_intended_total_msat,
5604 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5605 event, downstream_counterparty_and_funding_outpoint
5607 self.pending_events.lock().unwrap().push_back((event, None));
5608 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5609 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5612 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5613 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5615 self.handle_monitor_update_release(
5616 downstream_counterparty_node_id,
5617 downstream_funding_outpoint,
5618 Some(blocking_action),
5625 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5626 /// update completion.
5627 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5628 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5629 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5630 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5631 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5632 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5633 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5634 &channel.context.channel_id(),
5635 if raa.is_some() { "an" } else { "no" },
5636 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5637 if funding_broadcastable.is_some() { "" } else { "not " },
5638 if channel_ready.is_some() { "sending" } else { "without" },
5639 if announcement_sigs.is_some() { "sending" } else { "without" });
5641 let mut htlc_forwards = None;
5643 let counterparty_node_id = channel.context.get_counterparty_node_id();
5644 if !pending_forwards.is_empty() {
5645 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5646 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5649 if let Some(msg) = channel_ready {
5650 send_channel_ready!(self, pending_msg_events, channel, msg);
5652 if let Some(msg) = announcement_sigs {
5653 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5654 node_id: counterparty_node_id,
5659 macro_rules! handle_cs { () => {
5660 if let Some(update) = commitment_update {
5661 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5662 node_id: counterparty_node_id,
5667 macro_rules! handle_raa { () => {
5668 if let Some(revoke_and_ack) = raa {
5669 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5670 node_id: counterparty_node_id,
5671 msg: revoke_and_ack,
5676 RAACommitmentOrder::CommitmentFirst => {
5680 RAACommitmentOrder::RevokeAndACKFirst => {
5686 if let Some(tx) = funding_broadcastable {
5687 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5688 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5692 let mut pending_events = self.pending_events.lock().unwrap();
5693 emit_channel_pending_event!(pending_events, channel);
5694 emit_channel_ready_event!(pending_events, channel);
5700 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5701 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5703 let counterparty_node_id = match counterparty_node_id {
5704 Some(cp_id) => cp_id.clone(),
5706 // TODO: Once we can rely on the counterparty_node_id from the
5707 // monitor event, this and the id_to_peer map should be removed.
5708 let id_to_peer = self.id_to_peer.lock().unwrap();
5709 match id_to_peer.get(&funding_txo.to_channel_id()) {
5710 Some(cp_id) => cp_id.clone(),
5715 let per_peer_state = self.per_peer_state.read().unwrap();
5716 let mut peer_state_lock;
5717 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5718 if peer_state_mutex_opt.is_none() { return }
5719 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5720 let peer_state = &mut *peer_state_lock;
5722 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5725 let update_actions = peer_state.monitor_update_blocked_actions
5726 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5727 mem::drop(peer_state_lock);
5728 mem::drop(per_peer_state);
5729 self.handle_monitor_update_completion_actions(update_actions);
5732 let remaining_in_flight =
5733 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5734 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5737 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5738 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5739 remaining_in_flight);
5740 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5743 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5746 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5748 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5749 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5752 /// The `user_channel_id` parameter will be provided back in
5753 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5754 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5756 /// Note that this method will return an error and reject the channel, if it requires support
5757 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5758 /// used to accept such channels.
5760 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5761 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5762 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5763 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5766 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5767 /// it as confirmed immediately.
5769 /// The `user_channel_id` parameter will be provided back in
5770 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5771 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5773 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5774 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5776 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5777 /// transaction and blindly assumes that it will eventually confirm.
5779 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5780 /// does not pay to the correct script the correct amount, *you will lose funds*.
5782 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5783 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5784 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5785 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5788 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5789 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5791 let peers_without_funded_channels =
5792 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5793 let per_peer_state = self.per_peer_state.read().unwrap();
5794 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5795 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5796 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5797 let peer_state = &mut *peer_state_lock;
5798 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5800 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5801 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5802 // that we can delay allocating the SCID until after we're sure that the checks below will
5804 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5805 Some(unaccepted_channel) => {
5806 let best_block_height = self.best_block.read().unwrap().height();
5807 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5808 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5809 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5810 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5812 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5816 // This should have been correctly configured by the call to InboundV1Channel::new.
5817 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5818 } else if channel.context.get_channel_type().requires_zero_conf() {
5819 let send_msg_err_event = events::MessageSendEvent::HandleError {
5820 node_id: channel.context.get_counterparty_node_id(),
5821 action: msgs::ErrorAction::SendErrorMessage{
5822 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5825 peer_state.pending_msg_events.push(send_msg_err_event);
5826 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5828 // If this peer already has some channels, a new channel won't increase our number of peers
5829 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5830 // channels per-peer we can accept channels from a peer with existing ones.
5831 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5832 let send_msg_err_event = events::MessageSendEvent::HandleError {
5833 node_id: channel.context.get_counterparty_node_id(),
5834 action: msgs::ErrorAction::SendErrorMessage{
5835 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5838 peer_state.pending_msg_events.push(send_msg_err_event);
5839 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5843 // Now that we know we have a channel, assign an outbound SCID alias.
5844 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5845 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5847 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5848 node_id: channel.context.get_counterparty_node_id(),
5849 msg: channel.accept_inbound_channel(),
5852 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
5857 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5858 /// or 0-conf channels.
5860 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5861 /// non-0-conf channels we have with the peer.
5862 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5863 where Filter: Fn(&PeerState<SP>) -> bool {
5864 let mut peers_without_funded_channels = 0;
5865 let best_block_height = self.best_block.read().unwrap().height();
5867 let peer_state_lock = self.per_peer_state.read().unwrap();
5868 for (_, peer_mtx) in peer_state_lock.iter() {
5869 let peer = peer_mtx.lock().unwrap();
5870 if !maybe_count_peer(&*peer) { continue; }
5871 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5872 if num_unfunded_channels == peer.total_channel_count() {
5873 peers_without_funded_channels += 1;
5877 return peers_without_funded_channels;
5880 fn unfunded_channel_count(
5881 peer: &PeerState<SP>, best_block_height: u32
5883 let mut num_unfunded_channels = 0;
5884 for (_, phase) in peer.channel_by_id.iter() {
5886 ChannelPhase::Funded(chan) => {
5887 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5888 // which have not yet had any confirmations on-chain.
5889 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5890 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5892 num_unfunded_channels += 1;
5895 ChannelPhase::UnfundedInboundV1(chan) => {
5896 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5897 num_unfunded_channels += 1;
5900 ChannelPhase::UnfundedOutboundV1(_) => {
5901 // Outbound channels don't contribute to the unfunded count in the DoS context.
5906 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
5909 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5910 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5911 // likely to be lost on restart!
5912 if msg.chain_hash != self.genesis_hash {
5913 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5916 if !self.default_configuration.accept_inbound_channels {
5917 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5920 // Get the number of peers with channels, but without funded ones. We don't care too much
5921 // about peers that never open a channel, so we filter by peers that have at least one
5922 // channel, and then limit the number of those with unfunded channels.
5923 let channeled_peers_without_funding =
5924 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5926 let per_peer_state = self.per_peer_state.read().unwrap();
5927 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5929 debug_assert!(false);
5930 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5932 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5933 let peer_state = &mut *peer_state_lock;
5935 // If this peer already has some channels, a new channel won't increase our number of peers
5936 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5937 // channels per-peer we can accept channels from a peer with existing ones.
5938 if peer_state.total_channel_count() == 0 &&
5939 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5940 !self.default_configuration.manually_accept_inbound_channels
5942 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5943 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5944 msg.temporary_channel_id.clone()));
5947 let best_block_height = self.best_block.read().unwrap().height();
5948 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5949 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5950 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5951 msg.temporary_channel_id.clone()));
5954 let channel_id = msg.temporary_channel_id;
5955 let channel_exists = peer_state.has_channel(&channel_id);
5957 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
5960 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
5961 if self.default_configuration.manually_accept_inbound_channels {
5962 let mut pending_events = self.pending_events.lock().unwrap();
5963 pending_events.push_back((events::Event::OpenChannelRequest {
5964 temporary_channel_id: msg.temporary_channel_id.clone(),
5965 counterparty_node_id: counterparty_node_id.clone(),
5966 funding_satoshis: msg.funding_satoshis,
5967 push_msat: msg.push_msat,
5968 channel_type: msg.channel_type.clone().unwrap(),
5970 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
5971 open_channel_msg: msg.clone(),
5972 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
5977 // Otherwise create the channel right now.
5978 let mut random_bytes = [0u8; 16];
5979 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5980 let user_channel_id = u128::from_be_bytes(random_bytes);
5981 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5982 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5983 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
5986 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5991 let channel_type = channel.context.get_channel_type();
5992 if channel_type.requires_zero_conf() {
5993 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5995 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5996 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5999 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6000 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6002 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6003 node_id: counterparty_node_id.clone(),
6004 msg: channel.accept_inbound_channel(),
6006 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6010 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6011 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6012 // likely to be lost on restart!
6013 let (value, output_script, user_id) = {
6014 let per_peer_state = self.per_peer_state.read().unwrap();
6015 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6017 debug_assert!(false);
6018 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6020 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6021 let peer_state = &mut *peer_state_lock;
6022 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6023 hash_map::Entry::Occupied(mut phase) => {
6024 match phase.get_mut() {
6025 ChannelPhase::UnfundedOutboundV1(chan) => {
6026 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6027 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6030 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6034 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6037 let mut pending_events = self.pending_events.lock().unwrap();
6038 pending_events.push_back((events::Event::FundingGenerationReady {
6039 temporary_channel_id: msg.temporary_channel_id,
6040 counterparty_node_id: *counterparty_node_id,
6041 channel_value_satoshis: value,
6043 user_channel_id: user_id,
6048 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6049 let best_block = *self.best_block.read().unwrap();
6051 let per_peer_state = self.per_peer_state.read().unwrap();
6052 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6054 debug_assert!(false);
6055 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6058 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6059 let peer_state = &mut *peer_state_lock;
6060 let (chan, funding_msg, monitor) =
6061 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6062 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6063 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6065 Err((mut inbound_chan, err)) => {
6066 // We've already removed this inbound channel from the map in `PeerState`
6067 // above so at this point we just need to clean up any lingering entries
6068 // concerning this channel as it is safe to do so.
6069 update_maps_on_chan_removal!(self, &inbound_chan.context);
6070 let user_id = inbound_chan.context.get_user_id();
6071 let shutdown_res = inbound_chan.context.force_shutdown(false);
6072 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6073 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6077 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6078 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6080 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6083 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
6084 hash_map::Entry::Occupied(_) => {
6085 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
6087 hash_map::Entry::Vacant(e) => {
6088 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6089 match id_to_peer_lock.entry(chan.context.channel_id()) {
6090 hash_map::Entry::Occupied(_) => {
6091 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6092 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6093 funding_msg.channel_id))
6095 hash_map::Entry::Vacant(i_e) => {
6096 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6097 if let Ok(persist_state) = monitor_res {
6098 i_e.insert(chan.context.get_counterparty_node_id());
6099 mem::drop(id_to_peer_lock);
6101 // There's no problem signing a counterparty's funding transaction if our monitor
6102 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6103 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6104 // until we have persisted our monitor.
6105 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6106 node_id: counterparty_node_id.clone(),
6110 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6111 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6112 per_peer_state, chan, INITIAL_MONITOR);
6114 unreachable!("This must be a funded channel as we just inserted it.");
6118 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6119 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6120 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6121 funding_msg.channel_id));
6129 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6130 let best_block = *self.best_block.read().unwrap();
6131 let per_peer_state = self.per_peer_state.read().unwrap();
6132 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6134 debug_assert!(false);
6135 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6138 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6139 let peer_state = &mut *peer_state_lock;
6140 match peer_state.channel_by_id.entry(msg.channel_id) {
6141 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6142 match chan_phase_entry.get_mut() {
6143 ChannelPhase::Funded(ref mut chan) => {
6144 let monitor = try_chan_phase_entry!(self,
6145 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6146 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6147 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6150 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6154 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6158 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6162 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6163 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6164 // closing a channel), so any changes are likely to be lost on restart!
6165 let per_peer_state = self.per_peer_state.read().unwrap();
6166 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6168 debug_assert!(false);
6169 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6171 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6172 let peer_state = &mut *peer_state_lock;
6173 match peer_state.channel_by_id.entry(msg.channel_id) {
6174 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6175 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6176 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6177 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6178 if let Some(announcement_sigs) = announcement_sigs_opt {
6179 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6180 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6181 node_id: counterparty_node_id.clone(),
6182 msg: announcement_sigs,
6184 } else if chan.context.is_usable() {
6185 // If we're sending an announcement_signatures, we'll send the (public)
6186 // channel_update after sending a channel_announcement when we receive our
6187 // counterparty's announcement_signatures. Thus, we only bother to send a
6188 // channel_update here if the channel is not public, i.e. we're not sending an
6189 // announcement_signatures.
6190 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6191 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6192 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6193 node_id: counterparty_node_id.clone(),
6200 let mut pending_events = self.pending_events.lock().unwrap();
6201 emit_channel_ready_event!(pending_events, chan);
6206 try_chan_phase_entry!(self, Err(ChannelError::Close(
6207 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6210 hash_map::Entry::Vacant(_) => {
6211 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6216 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6217 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6218 let mut finish_shutdown = None;
6220 let per_peer_state = self.per_peer_state.read().unwrap();
6221 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6223 debug_assert!(false);
6224 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6226 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6227 let peer_state = &mut *peer_state_lock;
6228 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6229 let phase = chan_phase_entry.get_mut();
6231 ChannelPhase::Funded(chan) => {
6232 if !chan.received_shutdown() {
6233 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6235 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6238 let funding_txo_opt = chan.context.get_funding_txo();
6239 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6240 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6241 dropped_htlcs = htlcs;
6243 if let Some(msg) = shutdown {
6244 // We can send the `shutdown` message before updating the `ChannelMonitor`
6245 // here as we don't need the monitor update to complete until we send a
6246 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6247 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6248 node_id: *counterparty_node_id,
6252 // Update the monitor with the shutdown script if necessary.
6253 if let Some(monitor_update) = monitor_update_opt {
6254 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6255 peer_state_lock, peer_state, per_peer_state, chan);
6258 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6259 let context = phase.context_mut();
6260 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6261 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6262 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6263 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6267 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6270 for htlc_source in dropped_htlcs.drain(..) {
6271 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6272 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6273 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6275 if let Some(shutdown_res) = finish_shutdown {
6276 self.finish_close_channel(shutdown_res);
6282 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6283 let mut shutdown_result = None;
6284 let unbroadcasted_batch_funding_txid;
6285 let per_peer_state = self.per_peer_state.read().unwrap();
6286 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6288 debug_assert!(false);
6289 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6291 let (tx, chan_option) = {
6292 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6293 let peer_state = &mut *peer_state_lock;
6294 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6295 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6296 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6297 unbroadcasted_batch_funding_txid = chan.context.unbroadcasted_batch_funding_txid();
6298 let (closing_signed, tx) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6299 if let Some(msg) = closing_signed {
6300 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6301 node_id: counterparty_node_id.clone(),
6306 // We're done with this channel, we've got a signed closing transaction and
6307 // will send the closing_signed back to the remote peer upon return. This
6308 // also implies there are no pending HTLCs left on the channel, so we can
6309 // fully delete it from tracking (the channel monitor is still around to
6310 // watch for old state broadcasts)!
6311 (tx, Some(remove_channel_phase!(self, chan_phase_entry)))
6312 } else { (tx, None) }
6314 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6315 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6318 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6321 if let Some(broadcast_tx) = tx {
6322 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6323 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6325 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6326 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6327 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6328 let peer_state = &mut *peer_state_lock;
6329 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6333 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6334 shutdown_result = Some((None, Vec::new(), unbroadcasted_batch_funding_txid));
6336 mem::drop(per_peer_state);
6337 if let Some(shutdown_result) = shutdown_result {
6338 self.finish_close_channel(shutdown_result);
6343 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6344 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6345 //determine the state of the payment based on our response/if we forward anything/the time
6346 //we take to respond. We should take care to avoid allowing such an attack.
6348 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6349 //us repeatedly garbled in different ways, and compare our error messages, which are
6350 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6351 //but we should prevent it anyway.
6353 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6354 // closing a channel), so any changes are likely to be lost on restart!
6356 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6357 let per_peer_state = self.per_peer_state.read().unwrap();
6358 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6360 debug_assert!(false);
6361 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6363 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6364 let peer_state = &mut *peer_state_lock;
6365 match peer_state.channel_by_id.entry(msg.channel_id) {
6366 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6367 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6368 let pending_forward_info = match decoded_hop_res {
6369 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6370 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6371 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6372 Err(e) => PendingHTLCStatus::Fail(e)
6374 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6375 // If the update_add is completely bogus, the call will Err and we will close,
6376 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6377 // want to reject the new HTLC and fail it backwards instead of forwarding.
6378 match pending_forward_info {
6379 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6380 let reason = if (error_code & 0x1000) != 0 {
6381 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6382 HTLCFailReason::reason(real_code, error_data)
6384 HTLCFailReason::from_failure_code(error_code)
6385 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6386 let msg = msgs::UpdateFailHTLC {
6387 channel_id: msg.channel_id,
6388 htlc_id: msg.htlc_id,
6391 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6393 _ => pending_forward_info
6396 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6398 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6399 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6402 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6407 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6409 let (htlc_source, forwarded_htlc_value) = {
6410 let per_peer_state = self.per_peer_state.read().unwrap();
6411 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6413 debug_assert!(false);
6414 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6416 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6417 let peer_state = &mut *peer_state_lock;
6418 match peer_state.channel_by_id.entry(msg.channel_id) {
6419 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6420 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6421 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6422 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6423 log_trace!(self.logger,
6424 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6426 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6427 .or_insert_with(Vec::new)
6428 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6430 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6431 // entry here, even though we *do* need to block the next RAA monitor update.
6432 // We do this instead in the `claim_funds_internal` by attaching a
6433 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6434 // outbound HTLC is claimed. This is guaranteed to all complete before we
6435 // process the RAA as messages are processed from single peers serially.
6436 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6439 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6440 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6443 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6446 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6450 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6451 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6452 // closing a channel), so any changes are likely to be lost on restart!
6453 let per_peer_state = self.per_peer_state.read().unwrap();
6454 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6456 debug_assert!(false);
6457 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6459 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6460 let peer_state = &mut *peer_state_lock;
6461 match peer_state.channel_by_id.entry(msg.channel_id) {
6462 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6463 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6464 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6466 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6467 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6470 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6475 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6476 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6477 // closing a channel), so any changes are likely to be lost on restart!
6478 let per_peer_state = self.per_peer_state.read().unwrap();
6479 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6481 debug_assert!(false);
6482 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6484 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6485 let peer_state = &mut *peer_state_lock;
6486 match peer_state.channel_by_id.entry(msg.channel_id) {
6487 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6488 if (msg.failure_code & 0x8000) == 0 {
6489 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6490 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6492 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6493 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6495 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6496 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6500 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6504 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6505 let per_peer_state = self.per_peer_state.read().unwrap();
6506 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6508 debug_assert!(false);
6509 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6511 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6512 let peer_state = &mut *peer_state_lock;
6513 match peer_state.channel_by_id.entry(msg.channel_id) {
6514 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6515 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6516 let funding_txo = chan.context.get_funding_txo();
6517 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6518 if let Some(monitor_update) = monitor_update_opt {
6519 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6520 peer_state, per_peer_state, chan);
6524 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6525 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6528 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6533 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6534 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6535 let mut push_forward_event = false;
6536 let mut new_intercept_events = VecDeque::new();
6537 let mut failed_intercept_forwards = Vec::new();
6538 if !pending_forwards.is_empty() {
6539 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6540 let scid = match forward_info.routing {
6541 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6542 PendingHTLCRouting::Receive { .. } => 0,
6543 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6545 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6546 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6548 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6549 let forward_htlcs_empty = forward_htlcs.is_empty();
6550 match forward_htlcs.entry(scid) {
6551 hash_map::Entry::Occupied(mut entry) => {
6552 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6553 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6555 hash_map::Entry::Vacant(entry) => {
6556 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6557 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
6559 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6560 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6561 match pending_intercepts.entry(intercept_id) {
6562 hash_map::Entry::Vacant(entry) => {
6563 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6564 requested_next_hop_scid: scid,
6565 payment_hash: forward_info.payment_hash,
6566 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6567 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6570 entry.insert(PendingAddHTLCInfo {
6571 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6573 hash_map::Entry::Occupied(_) => {
6574 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6575 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6576 short_channel_id: prev_short_channel_id,
6577 user_channel_id: Some(prev_user_channel_id),
6578 outpoint: prev_funding_outpoint,
6579 htlc_id: prev_htlc_id,
6580 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6581 phantom_shared_secret: None,
6584 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6585 HTLCFailReason::from_failure_code(0x4000 | 10),
6586 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6591 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6592 // payments are being processed.
6593 if forward_htlcs_empty {
6594 push_forward_event = true;
6596 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6597 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6604 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6605 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6608 if !new_intercept_events.is_empty() {
6609 let mut events = self.pending_events.lock().unwrap();
6610 events.append(&mut new_intercept_events);
6612 if push_forward_event { self.push_pending_forwards_ev() }
6616 fn push_pending_forwards_ev(&self) {
6617 let mut pending_events = self.pending_events.lock().unwrap();
6618 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6619 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6620 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6622 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6623 // events is done in batches and they are not removed until we're done processing each
6624 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6625 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6626 // payments will need an additional forwarding event before being claimed to make them look
6627 // real by taking more time.
6628 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6629 pending_events.push_back((Event::PendingHTLCsForwardable {
6630 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6635 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6636 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6637 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6638 /// the [`ChannelMonitorUpdate`] in question.
6639 fn raa_monitor_updates_held(&self,
6640 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6641 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6643 actions_blocking_raa_monitor_updates
6644 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6645 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6646 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6647 channel_funding_outpoint,
6648 counterparty_node_id,
6653 #[cfg(any(test, feature = "_test_utils"))]
6654 pub(crate) fn test_raa_monitor_updates_held(&self,
6655 counterparty_node_id: PublicKey, channel_id: ChannelId
6657 let per_peer_state = self.per_peer_state.read().unwrap();
6658 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6659 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6660 let peer_state = &mut *peer_state_lck;
6662 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6663 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6664 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6670 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6671 let htlcs_to_fail = {
6672 let per_peer_state = self.per_peer_state.read().unwrap();
6673 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6675 debug_assert!(false);
6676 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6677 }).map(|mtx| mtx.lock().unwrap())?;
6678 let peer_state = &mut *peer_state_lock;
6679 match peer_state.channel_by_id.entry(msg.channel_id) {
6680 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6681 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6682 let funding_txo_opt = chan.context.get_funding_txo();
6683 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6684 self.raa_monitor_updates_held(
6685 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6686 *counterparty_node_id)
6688 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6689 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6690 if let Some(monitor_update) = monitor_update_opt {
6691 let funding_txo = funding_txo_opt
6692 .expect("Funding outpoint must have been set for RAA handling to succeed");
6693 handle_new_monitor_update!(self, funding_txo, monitor_update,
6694 peer_state_lock, peer_state, per_peer_state, chan);
6698 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6699 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6702 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6705 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6709 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6710 let per_peer_state = self.per_peer_state.read().unwrap();
6711 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6713 debug_assert!(false);
6714 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6716 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6717 let peer_state = &mut *peer_state_lock;
6718 match peer_state.channel_by_id.entry(msg.channel_id) {
6719 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6720 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6721 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6723 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6724 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6727 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6732 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6733 let per_peer_state = self.per_peer_state.read().unwrap();
6734 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6736 debug_assert!(false);
6737 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6739 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6740 let peer_state = &mut *peer_state_lock;
6741 match peer_state.channel_by_id.entry(msg.channel_id) {
6742 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6743 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6744 if !chan.context.is_usable() {
6745 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6748 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6749 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6750 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
6751 msg, &self.default_configuration
6752 ), chan_phase_entry),
6753 // Note that announcement_signatures fails if the channel cannot be announced,
6754 // so get_channel_update_for_broadcast will never fail by the time we get here.
6755 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6758 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6759 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6762 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6767 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6768 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6769 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6770 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6772 // It's not a local channel
6773 return Ok(NotifyOption::SkipPersistNoEvents)
6776 let per_peer_state = self.per_peer_state.read().unwrap();
6777 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6778 if peer_state_mutex_opt.is_none() {
6779 return Ok(NotifyOption::SkipPersistNoEvents)
6781 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6782 let peer_state = &mut *peer_state_lock;
6783 match peer_state.channel_by_id.entry(chan_id) {
6784 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6785 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6786 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6787 if chan.context.should_announce() {
6788 // If the announcement is about a channel of ours which is public, some
6789 // other peer may simply be forwarding all its gossip to us. Don't provide
6790 // a scary-looking error message and return Ok instead.
6791 return Ok(NotifyOption::SkipPersistNoEvents);
6793 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6795 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6796 let msg_from_node_one = msg.contents.flags & 1 == 0;
6797 if were_node_one == msg_from_node_one {
6798 return Ok(NotifyOption::SkipPersistNoEvents);
6800 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6801 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6802 // If nothing changed after applying their update, we don't need to bother
6805 return Ok(NotifyOption::SkipPersistNoEvents);
6809 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6810 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
6813 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
6815 Ok(NotifyOption::DoPersist)
6818 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
6820 let need_lnd_workaround = {
6821 let per_peer_state = self.per_peer_state.read().unwrap();
6823 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6825 debug_assert!(false);
6826 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6828 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6829 let peer_state = &mut *peer_state_lock;
6830 match peer_state.channel_by_id.entry(msg.channel_id) {
6831 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6832 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6833 // Currently, we expect all holding cell update_adds to be dropped on peer
6834 // disconnect, so Channel's reestablish will never hand us any holding cell
6835 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6836 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6837 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
6838 msg, &self.logger, &self.node_signer, self.genesis_hash,
6839 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
6840 let mut channel_update = None;
6841 if let Some(msg) = responses.shutdown_msg {
6842 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6843 node_id: counterparty_node_id.clone(),
6846 } else if chan.context.is_usable() {
6847 // If the channel is in a usable state (ie the channel is not being shut
6848 // down), send a unicast channel_update to our counterparty to make sure
6849 // they have the latest channel parameters.
6850 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6851 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6852 node_id: chan.context.get_counterparty_node_id(),
6857 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
6858 htlc_forwards = self.handle_channel_resumption(
6859 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
6860 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
6861 if let Some(upd) = channel_update {
6862 peer_state.pending_msg_events.push(upd);
6866 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6867 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
6870 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6874 let mut persist = NotifyOption::SkipPersistHandleEvents;
6875 if let Some(forwards) = htlc_forwards {
6876 self.forward_htlcs(&mut [forwards][..]);
6877 persist = NotifyOption::DoPersist;
6880 if let Some(channel_ready_msg) = need_lnd_workaround {
6881 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
6886 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
6887 fn process_pending_monitor_events(&self) -> bool {
6888 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6890 let mut failed_channels = Vec::new();
6891 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
6892 let has_pending_monitor_events = !pending_monitor_events.is_empty();
6893 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
6894 for monitor_event in monitor_events.drain(..) {
6895 match monitor_event {
6896 MonitorEvent::HTLCEvent(htlc_update) => {
6897 if let Some(preimage) = htlc_update.payment_preimage {
6898 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
6899 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
6901 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
6902 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
6903 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6904 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
6907 MonitorEvent::HolderForceClosed(funding_outpoint) => {
6908 let counterparty_node_id_opt = match counterparty_node_id {
6909 Some(cp_id) => Some(cp_id),
6911 // TODO: Once we can rely on the counterparty_node_id from the
6912 // monitor event, this and the id_to_peer map should be removed.
6913 let id_to_peer = self.id_to_peer.lock().unwrap();
6914 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
6917 if let Some(counterparty_node_id) = counterparty_node_id_opt {
6918 let per_peer_state = self.per_peer_state.read().unwrap();
6919 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
6920 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6921 let peer_state = &mut *peer_state_lock;
6922 let pending_msg_events = &mut peer_state.pending_msg_events;
6923 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
6924 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
6925 failed_channels.push(chan.context.force_shutdown(false));
6926 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6927 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6931 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
6932 pending_msg_events.push(events::MessageSendEvent::HandleError {
6933 node_id: chan.context.get_counterparty_node_id(),
6934 action: msgs::ErrorAction::SendErrorMessage {
6935 msg: msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() }
6943 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
6944 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
6950 for failure in failed_channels.drain(..) {
6951 self.finish_close_channel(failure);
6954 has_pending_monitor_events
6957 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
6958 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
6959 /// update events as a separate process method here.
6961 pub fn process_monitor_events(&self) {
6962 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6963 self.process_pending_monitor_events();
6966 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
6967 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
6968 /// update was applied.
6969 fn check_free_holding_cells(&self) -> bool {
6970 let mut has_monitor_update = false;
6971 let mut failed_htlcs = Vec::new();
6973 // Walk our list of channels and find any that need to update. Note that when we do find an
6974 // update, if it includes actions that must be taken afterwards, we have to drop the
6975 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
6976 // manage to go through all our peers without finding a single channel to update.
6978 let per_peer_state = self.per_peer_state.read().unwrap();
6979 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6981 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6982 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
6983 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
6984 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
6986 let counterparty_node_id = chan.context.get_counterparty_node_id();
6987 let funding_txo = chan.context.get_funding_txo();
6988 let (monitor_opt, holding_cell_failed_htlcs) =
6989 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
6990 if !holding_cell_failed_htlcs.is_empty() {
6991 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
6993 if let Some(monitor_update) = monitor_opt {
6994 has_monitor_update = true;
6996 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
6997 peer_state_lock, peer_state, per_peer_state, chan);
6998 continue 'peer_loop;
7007 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7008 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7009 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7015 /// Check whether any channels have finished removing all pending updates after a shutdown
7016 /// exchange and can now send a closing_signed.
7017 /// Returns whether any closing_signed messages were generated.
7018 fn maybe_generate_initial_closing_signed(&self) -> bool {
7019 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7020 let mut has_update = false;
7021 let mut shutdown_results = Vec::new();
7023 let per_peer_state = self.per_peer_state.read().unwrap();
7025 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7026 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7027 let peer_state = &mut *peer_state_lock;
7028 let pending_msg_events = &mut peer_state.pending_msg_events;
7029 peer_state.channel_by_id.retain(|channel_id, phase| {
7031 ChannelPhase::Funded(chan) => {
7032 let unbroadcasted_batch_funding_txid = chan.context.unbroadcasted_batch_funding_txid();
7033 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7034 Ok((msg_opt, tx_opt)) => {
7035 if let Some(msg) = msg_opt {
7037 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7038 node_id: chan.context.get_counterparty_node_id(), msg,
7041 if let Some(tx) = tx_opt {
7042 // We're done with this channel. We got a closing_signed and sent back
7043 // a closing_signed with a closing transaction to broadcast.
7044 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7045 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7050 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7052 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7053 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7054 update_maps_on_chan_removal!(self, &chan.context);
7055 shutdown_results.push((None, Vec::new(), unbroadcasted_batch_funding_txid));
7061 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7062 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7067 _ => true, // Retain unfunded channels if present.
7073 for (counterparty_node_id, err) in handle_errors.drain(..) {
7074 let _ = handle_error!(self, err, counterparty_node_id);
7077 for shutdown_result in shutdown_results.drain(..) {
7078 self.finish_close_channel(shutdown_result);
7084 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7085 /// pushing the channel monitor update (if any) to the background events queue and removing the
7087 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7088 for mut failure in failed_channels.drain(..) {
7089 // Either a commitment transactions has been confirmed on-chain or
7090 // Channel::block_disconnected detected that the funding transaction has been
7091 // reorganized out of the main chain.
7092 // We cannot broadcast our latest local state via monitor update (as
7093 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7094 // so we track the update internally and handle it when the user next calls
7095 // timer_tick_occurred, guaranteeing we're running normally.
7096 if let Some((counterparty_node_id, funding_txo, update)) = failure.0.take() {
7097 assert_eq!(update.updates.len(), 1);
7098 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7099 assert!(should_broadcast);
7100 } else { unreachable!(); }
7101 self.pending_background_events.lock().unwrap().push(
7102 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7103 counterparty_node_id, funding_txo, update
7106 self.finish_close_channel(failure);
7110 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7113 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7114 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7116 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7117 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7118 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7119 /// passed directly to [`claim_funds`].
7121 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7123 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7124 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7128 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7129 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7131 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7133 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7134 /// on versions of LDK prior to 0.0.114.
7136 /// [`claim_funds`]: Self::claim_funds
7137 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7138 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7139 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7140 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7141 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7142 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7143 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7144 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7145 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7146 min_final_cltv_expiry_delta)
7149 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7150 /// stored external to LDK.
7152 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7153 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7154 /// the `min_value_msat` provided here, if one is provided.
7156 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7157 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7160 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7161 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7162 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7163 /// sender "proof-of-payment" unless they have paid the required amount.
7165 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7166 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7167 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7168 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7169 /// invoices when no timeout is set.
7171 /// Note that we use block header time to time-out pending inbound payments (with some margin
7172 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7173 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7174 /// If you need exact expiry semantics, you should enforce them upon receipt of
7175 /// [`PaymentClaimable`].
7177 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7178 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7180 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7181 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7185 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7186 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7188 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7190 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7191 /// on versions of LDK prior to 0.0.114.
7193 /// [`create_inbound_payment`]: Self::create_inbound_payment
7194 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7195 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7196 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7197 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7198 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7199 min_final_cltv_expiry)
7202 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7203 /// previously returned from [`create_inbound_payment`].
7205 /// [`create_inbound_payment`]: Self::create_inbound_payment
7206 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7207 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7210 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7211 /// are used when constructing the phantom invoice's route hints.
7213 /// [phantom node payments]: crate::sign::PhantomKeysManager
7214 pub fn get_phantom_scid(&self) -> u64 {
7215 let best_block_height = self.best_block.read().unwrap().height();
7216 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7218 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7219 // Ensure the generated scid doesn't conflict with a real channel.
7220 match short_to_chan_info.get(&scid_candidate) {
7221 Some(_) => continue,
7222 None => return scid_candidate
7227 /// Gets route hints for use in receiving [phantom node payments].
7229 /// [phantom node payments]: crate::sign::PhantomKeysManager
7230 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7232 channels: self.list_usable_channels(),
7233 phantom_scid: self.get_phantom_scid(),
7234 real_node_pubkey: self.get_our_node_id(),
7238 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7239 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7240 /// [`ChannelManager::forward_intercepted_htlc`].
7242 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7243 /// times to get a unique scid.
7244 pub fn get_intercept_scid(&self) -> u64 {
7245 let best_block_height = self.best_block.read().unwrap().height();
7246 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7248 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7249 // Ensure the generated scid doesn't conflict with a real channel.
7250 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7251 return scid_candidate
7255 /// Gets inflight HTLC information by processing pending outbound payments that are in
7256 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7257 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7258 let mut inflight_htlcs = InFlightHtlcs::new();
7260 let per_peer_state = self.per_peer_state.read().unwrap();
7261 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7262 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7263 let peer_state = &mut *peer_state_lock;
7264 for chan in peer_state.channel_by_id.values().filter_map(
7265 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7267 for (htlc_source, _) in chan.inflight_htlc_sources() {
7268 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7269 inflight_htlcs.process_path(path, self.get_our_node_id());
7278 #[cfg(any(test, feature = "_test_utils"))]
7279 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7280 let events = core::cell::RefCell::new(Vec::new());
7281 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7282 self.process_pending_events(&event_handler);
7286 #[cfg(feature = "_test_utils")]
7287 pub fn push_pending_event(&self, event: events::Event) {
7288 let mut events = self.pending_events.lock().unwrap();
7289 events.push_back((event, None));
7293 pub fn pop_pending_event(&self) -> Option<events::Event> {
7294 let mut events = self.pending_events.lock().unwrap();
7295 events.pop_front().map(|(e, _)| e)
7299 pub fn has_pending_payments(&self) -> bool {
7300 self.pending_outbound_payments.has_pending_payments()
7304 pub fn clear_pending_payments(&self) {
7305 self.pending_outbound_payments.clear_pending_payments()
7308 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7309 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7310 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7311 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7312 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7314 let per_peer_state = self.per_peer_state.read().unwrap();
7315 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7316 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7317 let peer_state = &mut *peer_state_lck;
7319 if let Some(blocker) = completed_blocker.take() {
7320 // Only do this on the first iteration of the loop.
7321 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7322 .get_mut(&channel_funding_outpoint.to_channel_id())
7324 blockers.retain(|iter| iter != &blocker);
7328 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7329 channel_funding_outpoint, counterparty_node_id) {
7330 // Check that, while holding the peer lock, we don't have anything else
7331 // blocking monitor updates for this channel. If we do, release the monitor
7332 // update(s) when those blockers complete.
7333 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7334 &channel_funding_outpoint.to_channel_id());
7338 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7339 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7340 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7341 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7342 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7343 channel_funding_outpoint.to_channel_id());
7344 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7345 peer_state_lck, peer_state, per_peer_state, chan);
7346 if further_update_exists {
7347 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7352 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7353 channel_funding_outpoint.to_channel_id());
7358 log_debug!(self.logger,
7359 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7360 log_pubkey!(counterparty_node_id));
7366 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7367 for action in actions {
7369 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7370 channel_funding_outpoint, counterparty_node_id
7372 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7378 /// Processes any events asynchronously in the order they were generated since the last call
7379 /// using the given event handler.
7381 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7382 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7386 process_events_body!(self, ev, { handler(ev).await });
7390 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7392 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7393 T::Target: BroadcasterInterface,
7394 ES::Target: EntropySource,
7395 NS::Target: NodeSigner,
7396 SP::Target: SignerProvider,
7397 F::Target: FeeEstimator,
7401 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
7402 /// The returned array will contain `MessageSendEvent`s for different peers if
7403 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
7404 /// is always placed next to each other.
7406 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
7407 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
7408 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
7409 /// will randomly be placed first or last in the returned array.
7411 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
7412 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
7413 /// the `MessageSendEvent`s to the specific peer they were generated under.
7414 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
7415 let events = RefCell::new(Vec::new());
7416 PersistenceNotifierGuard::optionally_notify(self, || {
7417 let mut result = NotifyOption::SkipPersistNoEvents;
7419 // TODO: This behavior should be documented. It's unintuitive that we query
7420 // ChannelMonitors when clearing other events.
7421 if self.process_pending_monitor_events() {
7422 result = NotifyOption::DoPersist;
7425 if self.check_free_holding_cells() {
7426 result = NotifyOption::DoPersist;
7428 if self.maybe_generate_initial_closing_signed() {
7429 result = NotifyOption::DoPersist;
7432 let mut pending_events = Vec::new();
7433 let per_peer_state = self.per_peer_state.read().unwrap();
7434 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7435 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7436 let peer_state = &mut *peer_state_lock;
7437 if peer_state.pending_msg_events.len() > 0 {
7438 pending_events.append(&mut peer_state.pending_msg_events);
7442 if !pending_events.is_empty() {
7443 events.replace(pending_events);
7452 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7454 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7455 T::Target: BroadcasterInterface,
7456 ES::Target: EntropySource,
7457 NS::Target: NodeSigner,
7458 SP::Target: SignerProvider,
7459 F::Target: FeeEstimator,
7463 /// Processes events that must be periodically handled.
7465 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
7466 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
7467 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
7469 process_events_body!(self, ev, handler.handle_event(ev));
7473 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
7475 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7476 T::Target: BroadcasterInterface,
7477 ES::Target: EntropySource,
7478 NS::Target: NodeSigner,
7479 SP::Target: SignerProvider,
7480 F::Target: FeeEstimator,
7484 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7486 let best_block = self.best_block.read().unwrap();
7487 assert_eq!(best_block.block_hash(), header.prev_blockhash,
7488 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
7489 assert_eq!(best_block.height(), height - 1,
7490 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
7493 self.transactions_confirmed(header, txdata, height);
7494 self.best_block_updated(header, height);
7497 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
7498 let _persistence_guard =
7499 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7500 self, || -> NotifyOption { NotifyOption::DoPersist });
7501 let new_height = height - 1;
7503 let mut best_block = self.best_block.write().unwrap();
7504 assert_eq!(best_block.block_hash(), header.block_hash(),
7505 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
7506 assert_eq!(best_block.height(), height,
7507 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
7508 *best_block = BestBlock::new(header.prev_blockhash, new_height)
7511 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7515 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
7517 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7518 T::Target: BroadcasterInterface,
7519 ES::Target: EntropySource,
7520 NS::Target: NodeSigner,
7521 SP::Target: SignerProvider,
7522 F::Target: FeeEstimator,
7526 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7527 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7528 // during initialization prior to the chain_monitor being fully configured in some cases.
7529 // See the docs for `ChannelManagerReadArgs` for more.
7531 let block_hash = header.block_hash();
7532 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
7534 let _persistence_guard =
7535 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7536 self, || -> NotifyOption { NotifyOption::DoPersist });
7537 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
7538 .map(|(a, b)| (a, Vec::new(), b)));
7540 let last_best_block_height = self.best_block.read().unwrap().height();
7541 if height < last_best_block_height {
7542 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
7543 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7547 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
7548 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7549 // during initialization prior to the chain_monitor being fully configured in some cases.
7550 // See the docs for `ChannelManagerReadArgs` for more.
7552 let block_hash = header.block_hash();
7553 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
7555 let _persistence_guard =
7556 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7557 self, || -> NotifyOption { NotifyOption::DoPersist });
7558 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
7560 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7562 macro_rules! max_time {
7563 ($timestamp: expr) => {
7565 // Update $timestamp to be the max of its current value and the block
7566 // timestamp. This should keep us close to the current time without relying on
7567 // having an explicit local time source.
7568 // Just in case we end up in a race, we loop until we either successfully
7569 // update $timestamp or decide we don't need to.
7570 let old_serial = $timestamp.load(Ordering::Acquire);
7571 if old_serial >= header.time as usize { break; }
7572 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
7578 max_time!(self.highest_seen_timestamp);
7579 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
7580 payment_secrets.retain(|_, inbound_payment| {
7581 inbound_payment.expiry_time > header.time as u64
7585 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
7586 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
7587 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
7588 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7589 let peer_state = &mut *peer_state_lock;
7590 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
7591 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
7592 res.push((funding_txo.txid, Some(block_hash)));
7599 fn transaction_unconfirmed(&self, txid: &Txid) {
7600 let _persistence_guard =
7601 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7602 self, || -> NotifyOption { NotifyOption::DoPersist });
7603 self.do_chain_event(None, |channel| {
7604 if let Some(funding_txo) = channel.context.get_funding_txo() {
7605 if funding_txo.txid == *txid {
7606 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
7607 } else { Ok((None, Vec::new(), None)) }
7608 } else { Ok((None, Vec::new(), None)) }
7613 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
7615 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7616 T::Target: BroadcasterInterface,
7617 ES::Target: EntropySource,
7618 NS::Target: NodeSigner,
7619 SP::Target: SignerProvider,
7620 F::Target: FeeEstimator,
7624 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
7625 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
7627 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
7628 (&self, height_opt: Option<u32>, f: FN) {
7629 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7630 // during initialization prior to the chain_monitor being fully configured in some cases.
7631 // See the docs for `ChannelManagerReadArgs` for more.
7633 let mut failed_channels = Vec::new();
7634 let mut timed_out_htlcs = Vec::new();
7636 let per_peer_state = self.per_peer_state.read().unwrap();
7637 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7638 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7639 let peer_state = &mut *peer_state_lock;
7640 let pending_msg_events = &mut peer_state.pending_msg_events;
7641 peer_state.channel_by_id.retain(|_, phase| {
7643 // Retain unfunded channels.
7644 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
7645 ChannelPhase::Funded(channel) => {
7646 let res = f(channel);
7647 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
7648 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
7649 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
7650 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
7651 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
7653 if let Some(channel_ready) = channel_ready_opt {
7654 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
7655 if channel.context.is_usable() {
7656 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
7657 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
7658 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7659 node_id: channel.context.get_counterparty_node_id(),
7664 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
7669 let mut pending_events = self.pending_events.lock().unwrap();
7670 emit_channel_ready_event!(pending_events, channel);
7673 if let Some(announcement_sigs) = announcement_sigs {
7674 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
7675 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7676 node_id: channel.context.get_counterparty_node_id(),
7677 msg: announcement_sigs,
7679 if let Some(height) = height_opt {
7680 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
7681 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
7683 // Note that announcement_signatures fails if the channel cannot be announced,
7684 // so get_channel_update_for_broadcast will never fail by the time we get here.
7685 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
7690 if channel.is_our_channel_ready() {
7691 if let Some(real_scid) = channel.context.get_short_channel_id() {
7692 // If we sent a 0conf channel_ready, and now have an SCID, we add it
7693 // to the short_to_chan_info map here. Note that we check whether we
7694 // can relay using the real SCID at relay-time (i.e.
7695 // enforce option_scid_alias then), and if the funding tx is ever
7696 // un-confirmed we force-close the channel, ensuring short_to_chan_info
7697 // is always consistent.
7698 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
7699 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
7700 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
7701 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
7702 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
7705 } else if let Err(reason) = res {
7706 update_maps_on_chan_removal!(self, &channel.context);
7707 // It looks like our counterparty went on-chain or funding transaction was
7708 // reorged out of the main chain. Close the channel.
7709 failed_channels.push(channel.context.force_shutdown(true));
7710 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
7711 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7715 let reason_message = format!("{}", reason);
7716 self.issue_channel_close_events(&channel.context, reason);
7717 pending_msg_events.push(events::MessageSendEvent::HandleError {
7718 node_id: channel.context.get_counterparty_node_id(),
7719 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
7720 channel_id: channel.context.channel_id(),
7721 data: reason_message,
7733 if let Some(height) = height_opt {
7734 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
7735 payment.htlcs.retain(|htlc| {
7736 // If height is approaching the number of blocks we think it takes us to get
7737 // our commitment transaction confirmed before the HTLC expires, plus the
7738 // number of blocks we generally consider it to take to do a commitment update,
7739 // just give up on it and fail the HTLC.
7740 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
7741 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
7742 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
7744 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
7745 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
7746 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
7750 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
7753 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
7754 intercepted_htlcs.retain(|_, htlc| {
7755 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
7756 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7757 short_channel_id: htlc.prev_short_channel_id,
7758 user_channel_id: Some(htlc.prev_user_channel_id),
7759 htlc_id: htlc.prev_htlc_id,
7760 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
7761 phantom_shared_secret: None,
7762 outpoint: htlc.prev_funding_outpoint,
7765 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
7766 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7767 _ => unreachable!(),
7769 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
7770 HTLCFailReason::from_failure_code(0x2000 | 2),
7771 HTLCDestination::InvalidForward { requested_forward_scid }));
7772 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
7778 self.handle_init_event_channel_failures(failed_channels);
7780 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
7781 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
7785 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
7786 /// may have events that need processing.
7788 /// In order to check if this [`ChannelManager`] needs persisting, call
7789 /// [`Self::get_and_clear_needs_persistence`].
7791 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
7792 /// [`ChannelManager`] and should instead register actions to be taken later.
7793 pub fn get_event_or_persistence_needed_future(&self) -> Future {
7794 self.event_persist_notifier.get_future()
7797 /// Returns true if this [`ChannelManager`] needs to be persisted.
7798 pub fn get_and_clear_needs_persistence(&self) -> bool {
7799 self.needs_persist_flag.swap(false, Ordering::AcqRel)
7802 #[cfg(any(test, feature = "_test_utils"))]
7803 pub fn get_event_or_persist_condvar_value(&self) -> bool {
7804 self.event_persist_notifier.notify_pending()
7807 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
7808 /// [`chain::Confirm`] interfaces.
7809 pub fn current_best_block(&self) -> BestBlock {
7810 self.best_block.read().unwrap().clone()
7813 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
7814 /// [`ChannelManager`].
7815 pub fn node_features(&self) -> NodeFeatures {
7816 provided_node_features(&self.default_configuration)
7819 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
7820 /// [`ChannelManager`].
7822 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
7823 /// or not. Thus, this method is not public.
7824 #[cfg(any(feature = "_test_utils", test))]
7825 pub fn invoice_features(&self) -> Bolt11InvoiceFeatures {
7826 provided_invoice_features(&self.default_configuration)
7829 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
7830 /// [`ChannelManager`].
7831 pub fn channel_features(&self) -> ChannelFeatures {
7832 provided_channel_features(&self.default_configuration)
7835 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
7836 /// [`ChannelManager`].
7837 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
7838 provided_channel_type_features(&self.default_configuration)
7841 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
7842 /// [`ChannelManager`].
7843 pub fn init_features(&self) -> InitFeatures {
7844 provided_init_features(&self.default_configuration)
7848 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7849 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
7851 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7852 T::Target: BroadcasterInterface,
7853 ES::Target: EntropySource,
7854 NS::Target: NodeSigner,
7855 SP::Target: SignerProvider,
7856 F::Target: FeeEstimator,
7860 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
7861 // Note that we never need to persist the updated ChannelManager for an inbound
7862 // open_channel message - pre-funded channels are never written so there should be no
7863 // change to the contents.
7864 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7865 let res = self.internal_open_channel(counterparty_node_id, msg);
7866 let persist = match &res {
7867 Err(e) if e.closes_channel() => {
7868 debug_assert!(false, "We shouldn't close a new channel");
7869 NotifyOption::DoPersist
7871 _ => NotifyOption::SkipPersistHandleEvents,
7873 let _ = handle_error!(self, res, *counterparty_node_id);
7878 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
7879 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7880 "Dual-funded channels not supported".to_owned(),
7881 msg.temporary_channel_id.clone())), *counterparty_node_id);
7884 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
7885 // Note that we never need to persist the updated ChannelManager for an inbound
7886 // accept_channel message - pre-funded channels are never written so there should be no
7887 // change to the contents.
7888 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7889 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
7890 NotifyOption::SkipPersistHandleEvents
7894 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
7895 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7896 "Dual-funded channels not supported".to_owned(),
7897 msg.temporary_channel_id.clone())), *counterparty_node_id);
7900 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
7901 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7902 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
7905 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
7906 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7907 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
7910 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
7911 // Note that we never need to persist the updated ChannelManager for an inbound
7912 // channel_ready message - while the channel's state will change, any channel_ready message
7913 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
7914 // will not force-close the channel on startup.
7915 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7916 let res = self.internal_channel_ready(counterparty_node_id, msg);
7917 let persist = match &res {
7918 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7919 _ => NotifyOption::SkipPersistHandleEvents,
7921 let _ = handle_error!(self, res, *counterparty_node_id);
7926 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
7927 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7928 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
7931 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
7932 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7933 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
7936 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
7937 // Note that we never need to persist the updated ChannelManager for an inbound
7938 // update_add_htlc message - the message itself doesn't change our channel state only the
7939 // `commitment_signed` message afterwards will.
7940 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7941 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
7942 let persist = match &res {
7943 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7944 Err(_) => NotifyOption::SkipPersistHandleEvents,
7945 Ok(()) => NotifyOption::SkipPersistNoEvents,
7947 let _ = handle_error!(self, res, *counterparty_node_id);
7952 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
7953 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7954 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
7957 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
7958 // Note that we never need to persist the updated ChannelManager for an inbound
7959 // update_fail_htlc message - the message itself doesn't change our channel state only the
7960 // `commitment_signed` message afterwards will.
7961 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7962 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
7963 let persist = match &res {
7964 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7965 Err(_) => NotifyOption::SkipPersistHandleEvents,
7966 Ok(()) => NotifyOption::SkipPersistNoEvents,
7968 let _ = handle_error!(self, res, *counterparty_node_id);
7973 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
7974 // Note that we never need to persist the updated ChannelManager for an inbound
7975 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
7976 // only the `commitment_signed` message afterwards will.
7977 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7978 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
7979 let persist = match &res {
7980 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7981 Err(_) => NotifyOption::SkipPersistHandleEvents,
7982 Ok(()) => NotifyOption::SkipPersistNoEvents,
7984 let _ = handle_error!(self, res, *counterparty_node_id);
7989 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
7990 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7991 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
7994 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
7995 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7996 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
7999 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8000 // Note that we never need to persist the updated ChannelManager for an inbound
8001 // update_fee message - the message itself doesn't change our channel state only the
8002 // `commitment_signed` message afterwards will.
8003 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8004 let res = self.internal_update_fee(counterparty_node_id, msg);
8005 let persist = match &res {
8006 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8007 Err(_) => NotifyOption::SkipPersistHandleEvents,
8008 Ok(()) => NotifyOption::SkipPersistNoEvents,
8010 let _ = handle_error!(self, res, *counterparty_node_id);
8015 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8016 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8017 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8020 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8021 PersistenceNotifierGuard::optionally_notify(self, || {
8022 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8025 NotifyOption::DoPersist
8030 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8031 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8032 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8033 let persist = match &res {
8034 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8035 Err(_) => NotifyOption::SkipPersistHandleEvents,
8036 Ok(persist) => *persist,
8038 let _ = handle_error!(self, res, *counterparty_node_id);
8043 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8044 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8045 self, || NotifyOption::SkipPersistHandleEvents);
8046 let mut failed_channels = Vec::new();
8047 let mut per_peer_state = self.per_peer_state.write().unwrap();
8049 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8050 log_pubkey!(counterparty_node_id));
8051 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8052 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8053 let peer_state = &mut *peer_state_lock;
8054 let pending_msg_events = &mut peer_state.pending_msg_events;
8055 peer_state.channel_by_id.retain(|_, phase| {
8056 let context = match phase {
8057 ChannelPhase::Funded(chan) => {
8058 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8059 // We only retain funded channels that are not shutdown.
8064 // Unfunded channels will always be removed.
8065 ChannelPhase::UnfundedOutboundV1(chan) => {
8068 ChannelPhase::UnfundedInboundV1(chan) => {
8072 // Clean up for removal.
8073 update_maps_on_chan_removal!(self, &context);
8074 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8075 failed_channels.push(context.force_shutdown(false));
8078 // Note that we don't bother generating any events for pre-accept channels -
8079 // they're not considered "channels" yet from the PoV of our events interface.
8080 peer_state.inbound_channel_request_by_id.clear();
8081 pending_msg_events.retain(|msg| {
8083 // V1 Channel Establishment
8084 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8085 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8086 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8087 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8088 // V2 Channel Establishment
8089 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8090 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8091 // Common Channel Establishment
8092 &events::MessageSendEvent::SendChannelReady { .. } => false,
8093 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8094 // Interactive Transaction Construction
8095 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8096 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8097 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8098 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8099 &events::MessageSendEvent::SendTxComplete { .. } => false,
8100 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8101 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8102 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8103 &events::MessageSendEvent::SendTxAbort { .. } => false,
8104 // Channel Operations
8105 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8106 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8107 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8108 &events::MessageSendEvent::SendShutdown { .. } => false,
8109 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8110 &events::MessageSendEvent::HandleError { .. } => false,
8112 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8113 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8114 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8115 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8116 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8117 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8118 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8119 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8120 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8123 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8124 peer_state.is_connected = false;
8125 peer_state.ok_to_remove(true)
8126 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8129 per_peer_state.remove(counterparty_node_id);
8131 mem::drop(per_peer_state);
8133 for failure in failed_channels.drain(..) {
8134 self.finish_close_channel(failure);
8138 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8139 if !init_msg.features.supports_static_remote_key() {
8140 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8144 let mut res = Ok(());
8146 PersistenceNotifierGuard::optionally_notify(self, || {
8147 // If we have too many peers connected which don't have funded channels, disconnect the
8148 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8149 // unfunded channels taking up space in memory for disconnected peers, we still let new
8150 // peers connect, but we'll reject new channels from them.
8151 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8152 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8155 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8156 match peer_state_lock.entry(counterparty_node_id.clone()) {
8157 hash_map::Entry::Vacant(e) => {
8158 if inbound_peer_limited {
8160 return NotifyOption::SkipPersistNoEvents;
8162 e.insert(Mutex::new(PeerState {
8163 channel_by_id: HashMap::new(),
8164 inbound_channel_request_by_id: HashMap::new(),
8165 latest_features: init_msg.features.clone(),
8166 pending_msg_events: Vec::new(),
8167 in_flight_monitor_updates: BTreeMap::new(),
8168 monitor_update_blocked_actions: BTreeMap::new(),
8169 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8173 hash_map::Entry::Occupied(e) => {
8174 let mut peer_state = e.get().lock().unwrap();
8175 peer_state.latest_features = init_msg.features.clone();
8177 let best_block_height = self.best_block.read().unwrap().height();
8178 if inbound_peer_limited &&
8179 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8180 peer_state.channel_by_id.len()
8183 return NotifyOption::SkipPersistNoEvents;
8186 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8187 peer_state.is_connected = true;
8192 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8194 let per_peer_state = self.per_peer_state.read().unwrap();
8195 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8196 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8197 let peer_state = &mut *peer_state_lock;
8198 let pending_msg_events = &mut peer_state.pending_msg_events;
8200 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8201 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8202 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8203 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8204 // worry about closing and removing them.
8205 debug_assert!(false);
8209 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8210 node_id: chan.context.get_counterparty_node_id(),
8211 msg: chan.get_channel_reestablish(&self.logger),
8216 return NotifyOption::SkipPersistHandleEvents;
8217 //TODO: Also re-broadcast announcement_signatures
8222 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8223 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8225 match &msg.data as &str {
8226 "cannot co-op close channel w/ active htlcs"|
8227 "link failed to shutdown" =>
8229 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8230 // send one while HTLCs are still present. The issue is tracked at
8231 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8232 // to fix it but none so far have managed to land upstream. The issue appears to be
8233 // very low priority for the LND team despite being marked "P1".
8234 // We're not going to bother handling this in a sensible way, instead simply
8235 // repeating the Shutdown message on repeat until morale improves.
8236 if !msg.channel_id.is_zero() {
8237 let per_peer_state = self.per_peer_state.read().unwrap();
8238 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8239 if peer_state_mutex_opt.is_none() { return; }
8240 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8241 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8242 if let Some(msg) = chan.get_outbound_shutdown() {
8243 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8244 node_id: *counterparty_node_id,
8248 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8249 node_id: *counterparty_node_id,
8250 action: msgs::ErrorAction::SendWarningMessage {
8251 msg: msgs::WarningMessage {
8252 channel_id: msg.channel_id,
8253 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8255 log_level: Level::Trace,
8265 if msg.channel_id.is_zero() {
8266 let channel_ids: Vec<ChannelId> = {
8267 let per_peer_state = self.per_peer_state.read().unwrap();
8268 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8269 if peer_state_mutex_opt.is_none() { return; }
8270 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8271 let peer_state = &mut *peer_state_lock;
8272 // Note that we don't bother generating any events for pre-accept channels -
8273 // they're not considered "channels" yet from the PoV of our events interface.
8274 peer_state.inbound_channel_request_by_id.clear();
8275 peer_state.channel_by_id.keys().cloned().collect()
8277 for channel_id in channel_ids {
8278 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8279 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8283 // First check if we can advance the channel type and try again.
8284 let per_peer_state = self.per_peer_state.read().unwrap();
8285 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8286 if peer_state_mutex_opt.is_none() { return; }
8287 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8288 let peer_state = &mut *peer_state_lock;
8289 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8290 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash, &self.fee_estimator) {
8291 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8292 node_id: *counterparty_node_id,
8300 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8301 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8305 fn provided_node_features(&self) -> NodeFeatures {
8306 provided_node_features(&self.default_configuration)
8309 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8310 provided_init_features(&self.default_configuration)
8313 fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
8314 Some(vec![ChainHash::from(&self.genesis_hash[..])])
8317 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8318 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8319 "Dual-funded channels not supported".to_owned(),
8320 msg.channel_id.clone())), *counterparty_node_id);
8323 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8324 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8325 "Dual-funded channels not supported".to_owned(),
8326 msg.channel_id.clone())), *counterparty_node_id);
8329 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8330 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8331 "Dual-funded channels not supported".to_owned(),
8332 msg.channel_id.clone())), *counterparty_node_id);
8335 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8336 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8337 "Dual-funded channels not supported".to_owned(),
8338 msg.channel_id.clone())), *counterparty_node_id);
8341 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8342 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8343 "Dual-funded channels not supported".to_owned(),
8344 msg.channel_id.clone())), *counterparty_node_id);
8347 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8348 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8349 "Dual-funded channels not supported".to_owned(),
8350 msg.channel_id.clone())), *counterparty_node_id);
8353 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8354 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8355 "Dual-funded channels not supported".to_owned(),
8356 msg.channel_id.clone())), *counterparty_node_id);
8359 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8360 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8361 "Dual-funded channels not supported".to_owned(),
8362 msg.channel_id.clone())), *counterparty_node_id);
8365 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
8366 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8367 "Dual-funded channels not supported".to_owned(),
8368 msg.channel_id.clone())), *counterparty_node_id);
8372 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
8373 /// [`ChannelManager`].
8374 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
8375 let mut node_features = provided_init_features(config).to_context();
8376 node_features.set_keysend_optional();
8380 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
8381 /// [`ChannelManager`].
8383 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8384 /// or not. Thus, this method is not public.
8385 #[cfg(any(feature = "_test_utils", test))]
8386 pub(crate) fn provided_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
8387 provided_init_features(config).to_context()
8390 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
8391 /// [`ChannelManager`].
8392 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
8393 provided_init_features(config).to_context()
8396 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
8397 /// [`ChannelManager`].
8398 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
8399 ChannelTypeFeatures::from_init(&provided_init_features(config))
8402 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
8403 /// [`ChannelManager`].
8404 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
8405 // Note that if new features are added here which other peers may (eventually) require, we
8406 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
8407 // [`ErroringMessageHandler`].
8408 let mut features = InitFeatures::empty();
8409 features.set_data_loss_protect_required();
8410 features.set_upfront_shutdown_script_optional();
8411 features.set_variable_length_onion_required();
8412 features.set_static_remote_key_required();
8413 features.set_payment_secret_required();
8414 features.set_basic_mpp_optional();
8415 features.set_wumbo_optional();
8416 features.set_shutdown_any_segwit_optional();
8417 features.set_channel_type_optional();
8418 features.set_scid_privacy_optional();
8419 features.set_zero_conf_optional();
8420 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
8421 features.set_anchors_zero_fee_htlc_tx_optional();
8426 const SERIALIZATION_VERSION: u8 = 1;
8427 const MIN_SERIALIZATION_VERSION: u8 = 1;
8429 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
8430 (2, fee_base_msat, required),
8431 (4, fee_proportional_millionths, required),
8432 (6, cltv_expiry_delta, required),
8435 impl_writeable_tlv_based!(ChannelCounterparty, {
8436 (2, node_id, required),
8437 (4, features, required),
8438 (6, unspendable_punishment_reserve, required),
8439 (8, forwarding_info, option),
8440 (9, outbound_htlc_minimum_msat, option),
8441 (11, outbound_htlc_maximum_msat, option),
8444 impl Writeable for ChannelDetails {
8445 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8446 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8447 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8448 let user_channel_id_low = self.user_channel_id as u64;
8449 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
8450 write_tlv_fields!(writer, {
8451 (1, self.inbound_scid_alias, option),
8452 (2, self.channel_id, required),
8453 (3, self.channel_type, option),
8454 (4, self.counterparty, required),
8455 (5, self.outbound_scid_alias, option),
8456 (6, self.funding_txo, option),
8457 (7, self.config, option),
8458 (8, self.short_channel_id, option),
8459 (9, self.confirmations, option),
8460 (10, self.channel_value_satoshis, required),
8461 (12, self.unspendable_punishment_reserve, option),
8462 (14, user_channel_id_low, required),
8463 (16, self.balance_msat, required),
8464 (18, self.outbound_capacity_msat, required),
8465 (19, self.next_outbound_htlc_limit_msat, required),
8466 (20, self.inbound_capacity_msat, required),
8467 (21, self.next_outbound_htlc_minimum_msat, required),
8468 (22, self.confirmations_required, option),
8469 (24, self.force_close_spend_delay, option),
8470 (26, self.is_outbound, required),
8471 (28, self.is_channel_ready, required),
8472 (30, self.is_usable, required),
8473 (32, self.is_public, required),
8474 (33, self.inbound_htlc_minimum_msat, option),
8475 (35, self.inbound_htlc_maximum_msat, option),
8476 (37, user_channel_id_high_opt, option),
8477 (39, self.feerate_sat_per_1000_weight, option),
8478 (41, self.channel_shutdown_state, option),
8484 impl Readable for ChannelDetails {
8485 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8486 _init_and_read_len_prefixed_tlv_fields!(reader, {
8487 (1, inbound_scid_alias, option),
8488 (2, channel_id, required),
8489 (3, channel_type, option),
8490 (4, counterparty, required),
8491 (5, outbound_scid_alias, option),
8492 (6, funding_txo, option),
8493 (7, config, option),
8494 (8, short_channel_id, option),
8495 (9, confirmations, option),
8496 (10, channel_value_satoshis, required),
8497 (12, unspendable_punishment_reserve, option),
8498 (14, user_channel_id_low, required),
8499 (16, balance_msat, required),
8500 (18, outbound_capacity_msat, required),
8501 // Note that by the time we get past the required read above, outbound_capacity_msat will be
8502 // filled in, so we can safely unwrap it here.
8503 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
8504 (20, inbound_capacity_msat, required),
8505 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
8506 (22, confirmations_required, option),
8507 (24, force_close_spend_delay, option),
8508 (26, is_outbound, required),
8509 (28, is_channel_ready, required),
8510 (30, is_usable, required),
8511 (32, is_public, required),
8512 (33, inbound_htlc_minimum_msat, option),
8513 (35, inbound_htlc_maximum_msat, option),
8514 (37, user_channel_id_high_opt, option),
8515 (39, feerate_sat_per_1000_weight, option),
8516 (41, channel_shutdown_state, option),
8519 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8520 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8521 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
8522 let user_channel_id = user_channel_id_low as u128 +
8523 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
8527 channel_id: channel_id.0.unwrap(),
8529 counterparty: counterparty.0.unwrap(),
8530 outbound_scid_alias,
8534 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
8535 unspendable_punishment_reserve,
8537 balance_msat: balance_msat.0.unwrap(),
8538 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
8539 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
8540 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
8541 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
8542 confirmations_required,
8544 force_close_spend_delay,
8545 is_outbound: is_outbound.0.unwrap(),
8546 is_channel_ready: is_channel_ready.0.unwrap(),
8547 is_usable: is_usable.0.unwrap(),
8548 is_public: is_public.0.unwrap(),
8549 inbound_htlc_minimum_msat,
8550 inbound_htlc_maximum_msat,
8551 feerate_sat_per_1000_weight,
8552 channel_shutdown_state,
8557 impl_writeable_tlv_based!(PhantomRouteHints, {
8558 (2, channels, required_vec),
8559 (4, phantom_scid, required),
8560 (6, real_node_pubkey, required),
8563 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
8565 (0, onion_packet, required),
8566 (2, short_channel_id, required),
8569 (0, payment_data, required),
8570 (1, phantom_shared_secret, option),
8571 (2, incoming_cltv_expiry, required),
8572 (3, payment_metadata, option),
8573 (5, custom_tlvs, optional_vec),
8575 (2, ReceiveKeysend) => {
8576 (0, payment_preimage, required),
8577 (2, incoming_cltv_expiry, required),
8578 (3, payment_metadata, option),
8579 (4, payment_data, option), // Added in 0.0.116
8580 (5, custom_tlvs, optional_vec),
8584 impl_writeable_tlv_based!(PendingHTLCInfo, {
8585 (0, routing, required),
8586 (2, incoming_shared_secret, required),
8587 (4, payment_hash, required),
8588 (6, outgoing_amt_msat, required),
8589 (8, outgoing_cltv_value, required),
8590 (9, incoming_amt_msat, option),
8591 (10, skimmed_fee_msat, option),
8595 impl Writeable for HTLCFailureMsg {
8596 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8598 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
8600 channel_id.write(writer)?;
8601 htlc_id.write(writer)?;
8602 reason.write(writer)?;
8604 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8605 channel_id, htlc_id, sha256_of_onion, failure_code
8608 channel_id.write(writer)?;
8609 htlc_id.write(writer)?;
8610 sha256_of_onion.write(writer)?;
8611 failure_code.write(writer)?;
8618 impl Readable for HTLCFailureMsg {
8619 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8620 let id: u8 = Readable::read(reader)?;
8623 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
8624 channel_id: Readable::read(reader)?,
8625 htlc_id: Readable::read(reader)?,
8626 reason: Readable::read(reader)?,
8630 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8631 channel_id: Readable::read(reader)?,
8632 htlc_id: Readable::read(reader)?,
8633 sha256_of_onion: Readable::read(reader)?,
8634 failure_code: Readable::read(reader)?,
8637 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
8638 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
8639 // messages contained in the variants.
8640 // In version 0.0.101, support for reading the variants with these types was added, and
8641 // we should migrate to writing these variants when UpdateFailHTLC or
8642 // UpdateFailMalformedHTLC get TLV fields.
8644 let length: BigSize = Readable::read(reader)?;
8645 let mut s = FixedLengthReader::new(reader, length.0);
8646 let res = Readable::read(&mut s)?;
8647 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8648 Ok(HTLCFailureMsg::Relay(res))
8651 let length: BigSize = Readable::read(reader)?;
8652 let mut s = FixedLengthReader::new(reader, length.0);
8653 let res = Readable::read(&mut s)?;
8654 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8655 Ok(HTLCFailureMsg::Malformed(res))
8657 _ => Err(DecodeError::UnknownRequiredFeature),
8662 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
8667 impl_writeable_tlv_based!(HTLCPreviousHopData, {
8668 (0, short_channel_id, required),
8669 (1, phantom_shared_secret, option),
8670 (2, outpoint, required),
8671 (4, htlc_id, required),
8672 (6, incoming_packet_shared_secret, required),
8673 (7, user_channel_id, option),
8676 impl Writeable for ClaimableHTLC {
8677 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8678 let (payment_data, keysend_preimage) = match &self.onion_payload {
8679 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
8680 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
8682 write_tlv_fields!(writer, {
8683 (0, self.prev_hop, required),
8684 (1, self.total_msat, required),
8685 (2, self.value, required),
8686 (3, self.sender_intended_value, required),
8687 (4, payment_data, option),
8688 (5, self.total_value_received, option),
8689 (6, self.cltv_expiry, required),
8690 (8, keysend_preimage, option),
8691 (10, self.counterparty_skimmed_fee_msat, option),
8697 impl Readable for ClaimableHTLC {
8698 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8699 _init_and_read_len_prefixed_tlv_fields!(reader, {
8700 (0, prev_hop, required),
8701 (1, total_msat, option),
8702 (2, value_ser, required),
8703 (3, sender_intended_value, option),
8704 (4, payment_data_opt, option),
8705 (5, total_value_received, option),
8706 (6, cltv_expiry, required),
8707 (8, keysend_preimage, option),
8708 (10, counterparty_skimmed_fee_msat, option),
8710 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
8711 let value = value_ser.0.unwrap();
8712 let onion_payload = match keysend_preimage {
8714 if payment_data.is_some() {
8715 return Err(DecodeError::InvalidValue)
8717 if total_msat.is_none() {
8718 total_msat = Some(value);
8720 OnionPayload::Spontaneous(p)
8723 if total_msat.is_none() {
8724 if payment_data.is_none() {
8725 return Err(DecodeError::InvalidValue)
8727 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
8729 OnionPayload::Invoice { _legacy_hop_data: payment_data }
8733 prev_hop: prev_hop.0.unwrap(),
8736 sender_intended_value: sender_intended_value.unwrap_or(value),
8737 total_value_received,
8738 total_msat: total_msat.unwrap(),
8740 cltv_expiry: cltv_expiry.0.unwrap(),
8741 counterparty_skimmed_fee_msat,
8746 impl Readable for HTLCSource {
8747 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8748 let id: u8 = Readable::read(reader)?;
8751 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
8752 let mut first_hop_htlc_msat: u64 = 0;
8753 let mut path_hops = Vec::new();
8754 let mut payment_id = None;
8755 let mut payment_params: Option<PaymentParameters> = None;
8756 let mut blinded_tail: Option<BlindedTail> = None;
8757 read_tlv_fields!(reader, {
8758 (0, session_priv, required),
8759 (1, payment_id, option),
8760 (2, first_hop_htlc_msat, required),
8761 (4, path_hops, required_vec),
8762 (5, payment_params, (option: ReadableArgs, 0)),
8763 (6, blinded_tail, option),
8765 if payment_id.is_none() {
8766 // For backwards compat, if there was no payment_id written, use the session_priv bytes
8768 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
8770 let path = Path { hops: path_hops, blinded_tail };
8771 if path.hops.len() == 0 {
8772 return Err(DecodeError::InvalidValue);
8774 if let Some(params) = payment_params.as_mut() {
8775 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
8776 if final_cltv_expiry_delta == &0 {
8777 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
8781 Ok(HTLCSource::OutboundRoute {
8782 session_priv: session_priv.0.unwrap(),
8783 first_hop_htlc_msat,
8785 payment_id: payment_id.unwrap(),
8788 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
8789 _ => Err(DecodeError::UnknownRequiredFeature),
8794 impl Writeable for HTLCSource {
8795 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
8797 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
8799 let payment_id_opt = Some(payment_id);
8800 write_tlv_fields!(writer, {
8801 (0, session_priv, required),
8802 (1, payment_id_opt, option),
8803 (2, first_hop_htlc_msat, required),
8804 // 3 was previously used to write a PaymentSecret for the payment.
8805 (4, path.hops, required_vec),
8806 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
8807 (6, path.blinded_tail, option),
8810 HTLCSource::PreviousHopData(ref field) => {
8812 field.write(writer)?;
8819 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
8820 (0, forward_info, required),
8821 (1, prev_user_channel_id, (default_value, 0)),
8822 (2, prev_short_channel_id, required),
8823 (4, prev_htlc_id, required),
8824 (6, prev_funding_outpoint, required),
8827 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
8829 (0, htlc_id, required),
8830 (2, err_packet, required),
8835 impl_writeable_tlv_based!(PendingInboundPayment, {
8836 (0, payment_secret, required),
8837 (2, expiry_time, required),
8838 (4, user_payment_id, required),
8839 (6, payment_preimage, required),
8840 (8, min_value_msat, required),
8843 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
8845 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8846 T::Target: BroadcasterInterface,
8847 ES::Target: EntropySource,
8848 NS::Target: NodeSigner,
8849 SP::Target: SignerProvider,
8850 F::Target: FeeEstimator,
8854 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8855 let _consistency_lock = self.total_consistency_lock.write().unwrap();
8857 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
8859 self.genesis_hash.write(writer)?;
8861 let best_block = self.best_block.read().unwrap();
8862 best_block.height().write(writer)?;
8863 best_block.block_hash().write(writer)?;
8866 let mut serializable_peer_count: u64 = 0;
8868 let per_peer_state = self.per_peer_state.read().unwrap();
8869 let mut number_of_funded_channels = 0;
8870 for (_, peer_state_mutex) in per_peer_state.iter() {
8871 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8872 let peer_state = &mut *peer_state_lock;
8873 if !peer_state.ok_to_remove(false) {
8874 serializable_peer_count += 1;
8877 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
8878 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
8882 (number_of_funded_channels as u64).write(writer)?;
8884 for (_, peer_state_mutex) in per_peer_state.iter() {
8885 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8886 let peer_state = &mut *peer_state_lock;
8887 for channel in peer_state.channel_by_id.iter().filter_map(
8888 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
8889 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
8892 channel.write(writer)?;
8898 let forward_htlcs = self.forward_htlcs.lock().unwrap();
8899 (forward_htlcs.len() as u64).write(writer)?;
8900 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
8901 short_channel_id.write(writer)?;
8902 (pending_forwards.len() as u64).write(writer)?;
8903 for forward in pending_forwards {
8904 forward.write(writer)?;
8909 let per_peer_state = self.per_peer_state.write().unwrap();
8911 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
8912 let claimable_payments = self.claimable_payments.lock().unwrap();
8913 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
8915 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
8916 let mut htlc_onion_fields: Vec<&_> = Vec::new();
8917 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
8918 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
8919 payment_hash.write(writer)?;
8920 (payment.htlcs.len() as u64).write(writer)?;
8921 for htlc in payment.htlcs.iter() {
8922 htlc.write(writer)?;
8924 htlc_purposes.push(&payment.purpose);
8925 htlc_onion_fields.push(&payment.onion_fields);
8928 let mut monitor_update_blocked_actions_per_peer = None;
8929 let mut peer_states = Vec::new();
8930 for (_, peer_state_mutex) in per_peer_state.iter() {
8931 // Because we're holding the owning `per_peer_state` write lock here there's no chance
8932 // of a lockorder violation deadlock - no other thread can be holding any
8933 // per_peer_state lock at all.
8934 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
8937 (serializable_peer_count).write(writer)?;
8938 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
8939 // Peers which we have no channels to should be dropped once disconnected. As we
8940 // disconnect all peers when shutting down and serializing the ChannelManager, we
8941 // consider all peers as disconnected here. There's therefore no need write peers with
8943 if !peer_state.ok_to_remove(false) {
8944 peer_pubkey.write(writer)?;
8945 peer_state.latest_features.write(writer)?;
8946 if !peer_state.monitor_update_blocked_actions.is_empty() {
8947 monitor_update_blocked_actions_per_peer
8948 .get_or_insert_with(Vec::new)
8949 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
8954 let events = self.pending_events.lock().unwrap();
8955 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
8956 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
8957 // refuse to read the new ChannelManager.
8958 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
8959 if events_not_backwards_compatible {
8960 // If we're gonna write a even TLV that will overwrite our events anyway we might as
8961 // well save the space and not write any events here.
8962 0u64.write(writer)?;
8964 (events.len() as u64).write(writer)?;
8965 for (event, _) in events.iter() {
8966 event.write(writer)?;
8970 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
8971 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
8972 // the closing monitor updates were always effectively replayed on startup (either directly
8973 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
8974 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
8975 0u64.write(writer)?;
8977 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
8978 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
8979 // likely to be identical.
8980 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8981 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8983 (pending_inbound_payments.len() as u64).write(writer)?;
8984 for (hash, pending_payment) in pending_inbound_payments.iter() {
8985 hash.write(writer)?;
8986 pending_payment.write(writer)?;
8989 // For backwards compat, write the session privs and their total length.
8990 let mut num_pending_outbounds_compat: u64 = 0;
8991 for (_, outbound) in pending_outbound_payments.iter() {
8992 if !outbound.is_fulfilled() && !outbound.abandoned() {
8993 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
8996 num_pending_outbounds_compat.write(writer)?;
8997 for (_, outbound) in pending_outbound_payments.iter() {
8999 PendingOutboundPayment::Legacy { session_privs } |
9000 PendingOutboundPayment::Retryable { session_privs, .. } => {
9001 for session_priv in session_privs.iter() {
9002 session_priv.write(writer)?;
9005 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9006 PendingOutboundPayment::InvoiceReceived { .. } => {},
9007 PendingOutboundPayment::Fulfilled { .. } => {},
9008 PendingOutboundPayment::Abandoned { .. } => {},
9012 // Encode without retry info for 0.0.101 compatibility.
9013 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9014 for (id, outbound) in pending_outbound_payments.iter() {
9016 PendingOutboundPayment::Legacy { session_privs } |
9017 PendingOutboundPayment::Retryable { session_privs, .. } => {
9018 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9024 let mut pending_intercepted_htlcs = None;
9025 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9026 if our_pending_intercepts.len() != 0 {
9027 pending_intercepted_htlcs = Some(our_pending_intercepts);
9030 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9031 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9032 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9033 // map. Thus, if there are no entries we skip writing a TLV for it.
9034 pending_claiming_payments = None;
9037 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9038 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9039 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9040 if !updates.is_empty() {
9041 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9042 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9047 write_tlv_fields!(writer, {
9048 (1, pending_outbound_payments_no_retry, required),
9049 (2, pending_intercepted_htlcs, option),
9050 (3, pending_outbound_payments, required),
9051 (4, pending_claiming_payments, option),
9052 (5, self.our_network_pubkey, required),
9053 (6, monitor_update_blocked_actions_per_peer, option),
9054 (7, self.fake_scid_rand_bytes, required),
9055 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9056 (9, htlc_purposes, required_vec),
9057 (10, in_flight_monitor_updates, option),
9058 (11, self.probing_cookie_secret, required),
9059 (13, htlc_onion_fields, optional_vec),
9066 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9067 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9068 (self.len() as u64).write(w)?;
9069 for (event, action) in self.iter() {
9072 #[cfg(debug_assertions)] {
9073 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9074 // be persisted and are regenerated on restart. However, if such an event has a
9075 // post-event-handling action we'll write nothing for the event and would have to
9076 // either forget the action or fail on deserialization (which we do below). Thus,
9077 // check that the event is sane here.
9078 let event_encoded = event.encode();
9079 let event_read: Option<Event> =
9080 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9081 if action.is_some() { assert!(event_read.is_some()); }
9087 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9088 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9089 let len: u64 = Readable::read(reader)?;
9090 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9091 let mut events: Self = VecDeque::with_capacity(cmp::min(
9092 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9095 let ev_opt = MaybeReadable::read(reader)?;
9096 let action = Readable::read(reader)?;
9097 if let Some(ev) = ev_opt {
9098 events.push_back((ev, action));
9099 } else if action.is_some() {
9100 return Err(DecodeError::InvalidValue);
9107 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9108 (0, NotShuttingDown) => {},
9109 (2, ShutdownInitiated) => {},
9110 (4, ResolvingHTLCs) => {},
9111 (6, NegotiatingClosingFee) => {},
9112 (8, ShutdownComplete) => {}, ;
9115 /// Arguments for the creation of a ChannelManager that are not deserialized.
9117 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9119 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9120 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9121 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9122 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9123 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9124 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9125 /// same way you would handle a [`chain::Filter`] call using
9126 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9127 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9128 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9129 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9130 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9131 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9133 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9134 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9136 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9137 /// call any other methods on the newly-deserialized [`ChannelManager`].
9139 /// Note that because some channels may be closed during deserialization, it is critical that you
9140 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9141 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9142 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9143 /// not force-close the same channels but consider them live), you may end up revoking a state for
9144 /// which you've already broadcasted the transaction.
9146 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9147 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9149 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9150 T::Target: BroadcasterInterface,
9151 ES::Target: EntropySource,
9152 NS::Target: NodeSigner,
9153 SP::Target: SignerProvider,
9154 F::Target: FeeEstimator,
9158 /// A cryptographically secure source of entropy.
9159 pub entropy_source: ES,
9161 /// A signer that is able to perform node-scoped cryptographic operations.
9162 pub node_signer: NS,
9164 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9165 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9167 pub signer_provider: SP,
9169 /// The fee_estimator for use in the ChannelManager in the future.
9171 /// No calls to the FeeEstimator will be made during deserialization.
9172 pub fee_estimator: F,
9173 /// The chain::Watch for use in the ChannelManager in the future.
9175 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9176 /// you have deserialized ChannelMonitors separately and will add them to your
9177 /// chain::Watch after deserializing this ChannelManager.
9178 pub chain_monitor: M,
9180 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9181 /// used to broadcast the latest local commitment transactions of channels which must be
9182 /// force-closed during deserialization.
9183 pub tx_broadcaster: T,
9184 /// The router which will be used in the ChannelManager in the future for finding routes
9185 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9187 /// No calls to the router will be made during deserialization.
9189 /// The Logger for use in the ChannelManager and which may be used to log information during
9190 /// deserialization.
9192 /// Default settings used for new channels. Any existing channels will continue to use the
9193 /// runtime settings which were stored when the ChannelManager was serialized.
9194 pub default_config: UserConfig,
9196 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
9197 /// value.context.get_funding_txo() should be the key).
9199 /// If a monitor is inconsistent with the channel state during deserialization the channel will
9200 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
9201 /// is true for missing channels as well. If there is a monitor missing for which we find
9202 /// channel data Err(DecodeError::InvalidValue) will be returned.
9204 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
9207 /// This is not exported to bindings users because we have no HashMap bindings
9208 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
9211 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9212 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
9214 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9215 T::Target: BroadcasterInterface,
9216 ES::Target: EntropySource,
9217 NS::Target: NodeSigner,
9218 SP::Target: SignerProvider,
9219 F::Target: FeeEstimator,
9223 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9224 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9225 /// populate a HashMap directly from C.
9226 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9227 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
9229 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9230 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
9235 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
9236 // SipmleArcChannelManager type:
9237 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9238 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
9240 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9241 T::Target: BroadcasterInterface,
9242 ES::Target: EntropySource,
9243 NS::Target: NodeSigner,
9244 SP::Target: SignerProvider,
9245 F::Target: FeeEstimator,
9249 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9250 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
9251 Ok((blockhash, Arc::new(chan_manager)))
9255 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9256 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
9258 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9259 T::Target: BroadcasterInterface,
9260 ES::Target: EntropySource,
9261 NS::Target: NodeSigner,
9262 SP::Target: SignerProvider,
9263 F::Target: FeeEstimator,
9267 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9268 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
9270 let genesis_hash: BlockHash = Readable::read(reader)?;
9271 let best_block_height: u32 = Readable::read(reader)?;
9272 let best_block_hash: BlockHash = Readable::read(reader)?;
9274 let mut failed_htlcs = Vec::new();
9276 let channel_count: u64 = Readable::read(reader)?;
9277 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
9278 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9279 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9280 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9281 let mut channel_closures = VecDeque::new();
9282 let mut close_background_events = Vec::new();
9283 for _ in 0..channel_count {
9284 let mut channel: Channel<SP> = Channel::read(reader, (
9285 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
9287 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9288 funding_txo_set.insert(funding_txo.clone());
9289 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
9290 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
9291 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
9292 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
9293 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9294 // But if the channel is behind of the monitor, close the channel:
9295 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
9296 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
9297 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9298 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
9299 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
9301 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
9302 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
9303 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
9305 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
9306 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
9307 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
9309 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
9310 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
9311 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
9313 let (monitor_update, mut new_failed_htlcs, batch_funding_txid) = channel.context.force_shutdown(true);
9314 if batch_funding_txid.is_some() {
9315 return Err(DecodeError::InvalidValue);
9317 if let Some((counterparty_node_id, funding_txo, update)) = monitor_update {
9318 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9319 counterparty_node_id, funding_txo, update
9322 failed_htlcs.append(&mut new_failed_htlcs);
9323 channel_closures.push_back((events::Event::ChannelClosed {
9324 channel_id: channel.context.channel_id(),
9325 user_channel_id: channel.context.get_user_id(),
9326 reason: ClosureReason::OutdatedChannelManager,
9327 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9328 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9330 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
9331 let mut found_htlc = false;
9332 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
9333 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
9336 // If we have some HTLCs in the channel which are not present in the newer
9337 // ChannelMonitor, they have been removed and should be failed back to
9338 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
9339 // were actually claimed we'd have generated and ensured the previous-hop
9340 // claim update ChannelMonitor updates were persisted prior to persising
9341 // the ChannelMonitor update for the forward leg, so attempting to fail the
9342 // backwards leg of the HTLC will simply be rejected.
9343 log_info!(args.logger,
9344 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
9345 &channel.context.channel_id(), &payment_hash);
9346 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9350 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
9351 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
9352 monitor.get_latest_update_id());
9353 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
9354 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9356 if channel.context.is_funding_broadcast() {
9357 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
9359 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
9360 hash_map::Entry::Occupied(mut entry) => {
9361 let by_id_map = entry.get_mut();
9362 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9364 hash_map::Entry::Vacant(entry) => {
9365 let mut by_id_map = HashMap::new();
9366 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9367 entry.insert(by_id_map);
9371 } else if channel.is_awaiting_initial_mon_persist() {
9372 // If we were persisted and shut down while the initial ChannelMonitor persistence
9373 // was in-progress, we never broadcasted the funding transaction and can still
9374 // safely discard the channel.
9375 let _ = channel.context.force_shutdown(false);
9376 channel_closures.push_back((events::Event::ChannelClosed {
9377 channel_id: channel.context.channel_id(),
9378 user_channel_id: channel.context.get_user_id(),
9379 reason: ClosureReason::DisconnectedPeer,
9380 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9381 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9384 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
9385 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9386 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9387 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
9388 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9389 return Err(DecodeError::InvalidValue);
9393 for (funding_txo, _) in args.channel_monitors.iter() {
9394 if !funding_txo_set.contains(funding_txo) {
9395 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
9396 &funding_txo.to_channel_id());
9397 let monitor_update = ChannelMonitorUpdate {
9398 update_id: CLOSED_CHANNEL_UPDATE_ID,
9399 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
9401 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
9405 const MAX_ALLOC_SIZE: usize = 1024 * 64;
9406 let forward_htlcs_count: u64 = Readable::read(reader)?;
9407 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
9408 for _ in 0..forward_htlcs_count {
9409 let short_channel_id = Readable::read(reader)?;
9410 let pending_forwards_count: u64 = Readable::read(reader)?;
9411 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
9412 for _ in 0..pending_forwards_count {
9413 pending_forwards.push(Readable::read(reader)?);
9415 forward_htlcs.insert(short_channel_id, pending_forwards);
9418 let claimable_htlcs_count: u64 = Readable::read(reader)?;
9419 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
9420 for _ in 0..claimable_htlcs_count {
9421 let payment_hash = Readable::read(reader)?;
9422 let previous_hops_len: u64 = Readable::read(reader)?;
9423 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
9424 for _ in 0..previous_hops_len {
9425 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
9427 claimable_htlcs_list.push((payment_hash, previous_hops));
9430 let peer_state_from_chans = |channel_by_id| {
9433 inbound_channel_request_by_id: HashMap::new(),
9434 latest_features: InitFeatures::empty(),
9435 pending_msg_events: Vec::new(),
9436 in_flight_monitor_updates: BTreeMap::new(),
9437 monitor_update_blocked_actions: BTreeMap::new(),
9438 actions_blocking_raa_monitor_updates: BTreeMap::new(),
9439 is_connected: false,
9443 let peer_count: u64 = Readable::read(reader)?;
9444 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
9445 for _ in 0..peer_count {
9446 let peer_pubkey = Readable::read(reader)?;
9447 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
9448 let mut peer_state = peer_state_from_chans(peer_chans);
9449 peer_state.latest_features = Readable::read(reader)?;
9450 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
9453 let event_count: u64 = Readable::read(reader)?;
9454 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
9455 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
9456 for _ in 0..event_count {
9457 match MaybeReadable::read(reader)? {
9458 Some(event) => pending_events_read.push_back((event, None)),
9463 let background_event_count: u64 = Readable::read(reader)?;
9464 for _ in 0..background_event_count {
9465 match <u8 as Readable>::read(reader)? {
9467 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
9468 // however we really don't (and never did) need them - we regenerate all
9469 // on-startup monitor updates.
9470 let _: OutPoint = Readable::read(reader)?;
9471 let _: ChannelMonitorUpdate = Readable::read(reader)?;
9473 _ => return Err(DecodeError::InvalidValue),
9477 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
9478 let highest_seen_timestamp: u32 = Readable::read(reader)?;
9480 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
9481 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
9482 for _ in 0..pending_inbound_payment_count {
9483 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
9484 return Err(DecodeError::InvalidValue);
9488 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
9489 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
9490 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
9491 for _ in 0..pending_outbound_payments_count_compat {
9492 let session_priv = Readable::read(reader)?;
9493 let payment = PendingOutboundPayment::Legacy {
9494 session_privs: [session_priv].iter().cloned().collect()
9496 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
9497 return Err(DecodeError::InvalidValue)
9501 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
9502 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
9503 let mut pending_outbound_payments = None;
9504 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
9505 let mut received_network_pubkey: Option<PublicKey> = None;
9506 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
9507 let mut probing_cookie_secret: Option<[u8; 32]> = None;
9508 let mut claimable_htlc_purposes = None;
9509 let mut claimable_htlc_onion_fields = None;
9510 let mut pending_claiming_payments = Some(HashMap::new());
9511 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
9512 let mut events_override = None;
9513 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
9514 read_tlv_fields!(reader, {
9515 (1, pending_outbound_payments_no_retry, option),
9516 (2, pending_intercepted_htlcs, option),
9517 (3, pending_outbound_payments, option),
9518 (4, pending_claiming_payments, option),
9519 (5, received_network_pubkey, option),
9520 (6, monitor_update_blocked_actions_per_peer, option),
9521 (7, fake_scid_rand_bytes, option),
9522 (8, events_override, option),
9523 (9, claimable_htlc_purposes, optional_vec),
9524 (10, in_flight_monitor_updates, option),
9525 (11, probing_cookie_secret, option),
9526 (13, claimable_htlc_onion_fields, optional_vec),
9528 if fake_scid_rand_bytes.is_none() {
9529 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
9532 if probing_cookie_secret.is_none() {
9533 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
9536 if let Some(events) = events_override {
9537 pending_events_read = events;
9540 if !channel_closures.is_empty() {
9541 pending_events_read.append(&mut channel_closures);
9544 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
9545 pending_outbound_payments = Some(pending_outbound_payments_compat);
9546 } else if pending_outbound_payments.is_none() {
9547 let mut outbounds = HashMap::new();
9548 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
9549 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
9551 pending_outbound_payments = Some(outbounds);
9553 let pending_outbounds = OutboundPayments {
9554 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
9555 retry_lock: Mutex::new(())
9558 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
9559 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
9560 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
9561 // replayed, and for each monitor update we have to replay we have to ensure there's a
9562 // `ChannelMonitor` for it.
9564 // In order to do so we first walk all of our live channels (so that we can check their
9565 // state immediately after doing the update replays, when we have the `update_id`s
9566 // available) and then walk any remaining in-flight updates.
9568 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
9569 let mut pending_background_events = Vec::new();
9570 macro_rules! handle_in_flight_updates {
9571 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
9572 $monitor: expr, $peer_state: expr, $channel_info_log: expr
9574 let mut max_in_flight_update_id = 0;
9575 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
9576 for update in $chan_in_flight_upds.iter() {
9577 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
9578 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
9579 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
9580 pending_background_events.push(
9581 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9582 counterparty_node_id: $counterparty_node_id,
9583 funding_txo: $funding_txo,
9584 update: update.clone(),
9587 if $chan_in_flight_upds.is_empty() {
9588 // We had some updates to apply, but it turns out they had completed before we
9589 // were serialized, we just weren't notified of that. Thus, we may have to run
9590 // the completion actions for any monitor updates, but otherwise are done.
9591 pending_background_events.push(
9592 BackgroundEvent::MonitorUpdatesComplete {
9593 counterparty_node_id: $counterparty_node_id,
9594 channel_id: $funding_txo.to_channel_id(),
9597 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
9598 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
9599 return Err(DecodeError::InvalidValue);
9601 max_in_flight_update_id
9605 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
9606 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
9607 let peer_state = &mut *peer_state_lock;
9608 for phase in peer_state.channel_by_id.values() {
9609 if let ChannelPhase::Funded(chan) = phase {
9610 // Channels that were persisted have to be funded, otherwise they should have been
9612 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9613 let monitor = args.channel_monitors.get(&funding_txo)
9614 .expect("We already checked for monitor presence when loading channels");
9615 let mut max_in_flight_update_id = monitor.get_latest_update_id();
9616 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
9617 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
9618 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
9619 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
9620 funding_txo, monitor, peer_state, ""));
9623 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
9624 // If the channel is ahead of the monitor, return InvalidValue:
9625 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
9626 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
9627 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
9628 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
9629 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9630 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9631 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9632 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9633 return Err(DecodeError::InvalidValue);
9636 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9637 // created in this `channel_by_id` map.
9638 debug_assert!(false);
9639 return Err(DecodeError::InvalidValue);
9644 if let Some(in_flight_upds) = in_flight_monitor_updates {
9645 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
9646 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
9647 // Now that we've removed all the in-flight monitor updates for channels that are
9648 // still open, we need to replay any monitor updates that are for closed channels,
9649 // creating the neccessary peer_state entries as we go.
9650 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
9651 Mutex::new(peer_state_from_chans(HashMap::new()))
9653 let mut peer_state = peer_state_mutex.lock().unwrap();
9654 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
9655 funding_txo, monitor, peer_state, "closed ");
9657 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
9658 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
9659 &funding_txo.to_channel_id());
9660 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9661 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9662 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9663 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9664 return Err(DecodeError::InvalidValue);
9669 // Note that we have to do the above replays before we push new monitor updates.
9670 pending_background_events.append(&mut close_background_events);
9672 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
9673 // should ensure we try them again on the inbound edge. We put them here and do so after we
9674 // have a fully-constructed `ChannelManager` at the end.
9675 let mut pending_claims_to_replay = Vec::new();
9678 // If we're tracking pending payments, ensure we haven't lost any by looking at the
9679 // ChannelMonitor data for any channels for which we do not have authorative state
9680 // (i.e. those for which we just force-closed above or we otherwise don't have a
9681 // corresponding `Channel` at all).
9682 // This avoids several edge-cases where we would otherwise "forget" about pending
9683 // payments which are still in-flight via their on-chain state.
9684 // We only rebuild the pending payments map if we were most recently serialized by
9686 for (_, monitor) in args.channel_monitors.iter() {
9687 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
9688 if counterparty_opt.is_none() {
9689 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
9690 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
9691 if path.hops.is_empty() {
9692 log_error!(args.logger, "Got an empty path for a pending payment");
9693 return Err(DecodeError::InvalidValue);
9696 let path_amt = path.final_value_msat();
9697 let mut session_priv_bytes = [0; 32];
9698 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
9699 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
9700 hash_map::Entry::Occupied(mut entry) => {
9701 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
9702 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
9703 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
9705 hash_map::Entry::Vacant(entry) => {
9706 let path_fee = path.fee_msat();
9707 entry.insert(PendingOutboundPayment::Retryable {
9708 retry_strategy: None,
9709 attempts: PaymentAttempts::new(),
9710 payment_params: None,
9711 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
9712 payment_hash: htlc.payment_hash,
9713 payment_secret: None, // only used for retries, and we'll never retry on startup
9714 payment_metadata: None, // only used for retries, and we'll never retry on startup
9715 keysend_preimage: None, // only used for retries, and we'll never retry on startup
9716 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
9717 pending_amt_msat: path_amt,
9718 pending_fee_msat: Some(path_fee),
9719 total_msat: path_amt,
9720 starting_block_height: best_block_height,
9721 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
9723 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
9724 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
9729 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
9731 HTLCSource::PreviousHopData(prev_hop_data) => {
9732 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
9733 info.prev_funding_outpoint == prev_hop_data.outpoint &&
9734 info.prev_htlc_id == prev_hop_data.htlc_id
9736 // The ChannelMonitor is now responsible for this HTLC's
9737 // failure/success and will let us know what its outcome is. If we
9738 // still have an entry for this HTLC in `forward_htlcs` or
9739 // `pending_intercepted_htlcs`, we were apparently not persisted after
9740 // the monitor was when forwarding the payment.
9741 forward_htlcs.retain(|_, forwards| {
9742 forwards.retain(|forward| {
9743 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
9744 if pending_forward_matches_htlc(&htlc_info) {
9745 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
9746 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9751 !forwards.is_empty()
9753 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
9754 if pending_forward_matches_htlc(&htlc_info) {
9755 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
9756 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9757 pending_events_read.retain(|(event, _)| {
9758 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
9759 intercepted_id != ev_id
9766 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
9767 if let Some(preimage) = preimage_opt {
9768 let pending_events = Mutex::new(pending_events_read);
9769 // Note that we set `from_onchain` to "false" here,
9770 // deliberately keeping the pending payment around forever.
9771 // Given it should only occur when we have a channel we're
9772 // force-closing for being stale that's okay.
9773 // The alternative would be to wipe the state when claiming,
9774 // generating a `PaymentPathSuccessful` event but regenerating
9775 // it and the `PaymentSent` on every restart until the
9776 // `ChannelMonitor` is removed.
9778 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9779 channel_funding_outpoint: monitor.get_funding_txo().0,
9780 counterparty_node_id: path.hops[0].pubkey,
9782 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
9783 path, false, compl_action, &pending_events, &args.logger);
9784 pending_events_read = pending_events.into_inner().unwrap();
9791 // Whether the downstream channel was closed or not, try to re-apply any payment
9792 // preimages from it which may be needed in upstream channels for forwarded
9794 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
9796 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
9797 if let HTLCSource::PreviousHopData(_) = htlc_source {
9798 if let Some(payment_preimage) = preimage_opt {
9799 Some((htlc_source, payment_preimage, htlc.amount_msat,
9800 // Check if `counterparty_opt.is_none()` to see if the
9801 // downstream chan is closed (because we don't have a
9802 // channel_id -> peer map entry).
9803 counterparty_opt.is_none(),
9804 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
9805 monitor.get_funding_txo().0))
9808 // If it was an outbound payment, we've handled it above - if a preimage
9809 // came in and we persisted the `ChannelManager` we either handled it and
9810 // are good to go or the channel force-closed - we don't have to handle the
9811 // channel still live case here.
9815 for tuple in outbound_claimed_htlcs_iter {
9816 pending_claims_to_replay.push(tuple);
9821 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
9822 // If we have pending HTLCs to forward, assume we either dropped a
9823 // `PendingHTLCsForwardable` or the user received it but never processed it as they
9824 // shut down before the timer hit. Either way, set the time_forwardable to a small
9825 // constant as enough time has likely passed that we should simply handle the forwards
9826 // now, or at least after the user gets a chance to reconnect to our peers.
9827 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
9828 time_forwardable: Duration::from_secs(2),
9832 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
9833 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
9835 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
9836 if let Some(purposes) = claimable_htlc_purposes {
9837 if purposes.len() != claimable_htlcs_list.len() {
9838 return Err(DecodeError::InvalidValue);
9840 if let Some(onion_fields) = claimable_htlc_onion_fields {
9841 if onion_fields.len() != claimable_htlcs_list.len() {
9842 return Err(DecodeError::InvalidValue);
9844 for (purpose, (onion, (payment_hash, htlcs))) in
9845 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
9847 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9848 purpose, htlcs, onion_fields: onion,
9850 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9853 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
9854 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9855 purpose, htlcs, onion_fields: None,
9857 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9861 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
9862 // include a `_legacy_hop_data` in the `OnionPayload`.
9863 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
9864 if htlcs.is_empty() {
9865 return Err(DecodeError::InvalidValue);
9867 let purpose = match &htlcs[0].onion_payload {
9868 OnionPayload::Invoice { _legacy_hop_data } => {
9869 if let Some(hop_data) = _legacy_hop_data {
9870 events::PaymentPurpose::InvoicePayment {
9871 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
9872 Some(inbound_payment) => inbound_payment.payment_preimage,
9873 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
9874 Ok((payment_preimage, _)) => payment_preimage,
9876 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
9877 return Err(DecodeError::InvalidValue);
9881 payment_secret: hop_data.payment_secret,
9883 } else { return Err(DecodeError::InvalidValue); }
9885 OnionPayload::Spontaneous(payment_preimage) =>
9886 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
9888 claimable_payments.insert(payment_hash, ClaimablePayment {
9889 purpose, htlcs, onion_fields: None,
9894 let mut secp_ctx = Secp256k1::new();
9895 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
9897 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
9899 Err(()) => return Err(DecodeError::InvalidValue)
9901 if let Some(network_pubkey) = received_network_pubkey {
9902 if network_pubkey != our_network_pubkey {
9903 log_error!(args.logger, "Key that was generated does not match the existing key.");
9904 return Err(DecodeError::InvalidValue);
9908 let mut outbound_scid_aliases = HashSet::new();
9909 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
9910 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9911 let peer_state = &mut *peer_state_lock;
9912 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
9913 if let ChannelPhase::Funded(chan) = phase {
9914 if chan.context.outbound_scid_alias() == 0 {
9915 let mut outbound_scid_alias;
9917 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
9918 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
9919 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
9921 chan.context.set_outbound_scid_alias(outbound_scid_alias);
9922 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
9923 // Note that in rare cases its possible to hit this while reading an older
9924 // channel if we just happened to pick a colliding outbound alias above.
9925 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9926 return Err(DecodeError::InvalidValue);
9928 if chan.context.is_usable() {
9929 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
9930 // Note that in rare cases its possible to hit this while reading an older
9931 // channel if we just happened to pick a colliding outbound alias above.
9932 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9933 return Err(DecodeError::InvalidValue);
9937 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9938 // created in this `channel_by_id` map.
9939 debug_assert!(false);
9940 return Err(DecodeError::InvalidValue);
9945 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
9947 for (_, monitor) in args.channel_monitors.iter() {
9948 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
9949 if let Some(payment) = claimable_payments.remove(&payment_hash) {
9950 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
9951 let mut claimable_amt_msat = 0;
9952 let mut receiver_node_id = Some(our_network_pubkey);
9953 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
9954 if phantom_shared_secret.is_some() {
9955 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
9956 .expect("Failed to get node_id for phantom node recipient");
9957 receiver_node_id = Some(phantom_pubkey)
9959 for claimable_htlc in &payment.htlcs {
9960 claimable_amt_msat += claimable_htlc.value;
9962 // Add a holding-cell claim of the payment to the Channel, which should be
9963 // applied ~immediately on peer reconnection. Because it won't generate a
9964 // new commitment transaction we can just provide the payment preimage to
9965 // the corresponding ChannelMonitor and nothing else.
9967 // We do so directly instead of via the normal ChannelMonitor update
9968 // procedure as the ChainMonitor hasn't yet been initialized, implying
9969 // we're not allowed to call it directly yet. Further, we do the update
9970 // without incrementing the ChannelMonitor update ID as there isn't any
9972 // If we were to generate a new ChannelMonitor update ID here and then
9973 // crash before the user finishes block connect we'd end up force-closing
9974 // this channel as well. On the flip side, there's no harm in restarting
9975 // without the new monitor persisted - we'll end up right back here on
9977 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
9978 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
9979 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
9980 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9981 let peer_state = &mut *peer_state_lock;
9982 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
9983 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
9986 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
9987 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
9990 pending_events_read.push_back((events::Event::PaymentClaimed {
9993 purpose: payment.purpose,
9994 amount_msat: claimable_amt_msat,
9995 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
9996 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10002 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10003 if let Some(peer_state) = per_peer_state.get(&node_id) {
10004 for (_, actions) in monitor_update_blocked_actions.iter() {
10005 for action in actions.iter() {
10006 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10007 downstream_counterparty_and_funding_outpoint:
10008 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10010 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10011 log_trace!(args.logger,
10012 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10013 blocked_channel_outpoint.to_channel_id());
10014 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10015 .entry(blocked_channel_outpoint.to_channel_id())
10016 .or_insert_with(Vec::new).push(blocking_action.clone());
10018 // If the channel we were blocking has closed, we don't need to
10019 // worry about it - the blocked monitor update should never have
10020 // been released from the `Channel` object so it can't have
10021 // completed, and if the channel closed there's no reason to bother
10025 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10026 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10030 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10032 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
10033 return Err(DecodeError::InvalidValue);
10037 let channel_manager = ChannelManager {
10039 fee_estimator: bounded_fee_estimator,
10040 chain_monitor: args.chain_monitor,
10041 tx_broadcaster: args.tx_broadcaster,
10042 router: args.router,
10044 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10046 inbound_payment_key: expanded_inbound_key,
10047 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10048 pending_outbound_payments: pending_outbounds,
10049 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10051 forward_htlcs: Mutex::new(forward_htlcs),
10052 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10053 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10054 id_to_peer: Mutex::new(id_to_peer),
10055 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10056 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10058 probing_cookie_secret: probing_cookie_secret.unwrap(),
10060 our_network_pubkey,
10063 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10065 per_peer_state: FairRwLock::new(per_peer_state),
10067 pending_events: Mutex::new(pending_events_read),
10068 pending_events_processor: AtomicBool::new(false),
10069 pending_background_events: Mutex::new(pending_background_events),
10070 total_consistency_lock: RwLock::new(()),
10071 background_events_processed_since_startup: AtomicBool::new(false),
10073 event_persist_notifier: Notifier::new(),
10074 needs_persist_flag: AtomicBool::new(false),
10076 funding_batch_states: Mutex::new(BTreeMap::new()),
10078 entropy_source: args.entropy_source,
10079 node_signer: args.node_signer,
10080 signer_provider: args.signer_provider,
10082 logger: args.logger,
10083 default_configuration: args.default_config,
10086 for htlc_source in failed_htlcs.drain(..) {
10087 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10088 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10089 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10090 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10093 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10094 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10095 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10096 // channel is closed we just assume that it probably came from an on-chain claim.
10097 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10098 downstream_closed, true, downstream_node_id, downstream_funding);
10101 //TODO: Broadcast channel update for closed channels, but only after we've made a
10102 //connection or two.
10104 Ok((best_block_hash.clone(), channel_manager))
10110 use bitcoin::hashes::Hash;
10111 use bitcoin::hashes::sha256::Hash as Sha256;
10112 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10113 use core::sync::atomic::Ordering;
10114 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10115 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10116 use crate::ln::ChannelId;
10117 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10118 use crate::ln::functional_test_utils::*;
10119 use crate::ln::msgs::{self, ErrorAction};
10120 use crate::ln::msgs::ChannelMessageHandler;
10121 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10122 use crate::util::errors::APIError;
10123 use crate::util::test_utils;
10124 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10125 use crate::sign::EntropySource;
10128 fn test_notify_limits() {
10129 // Check that a few cases which don't require the persistence of a new ChannelManager,
10130 // indeed, do not cause the persistence of a new ChannelManager.
10131 let chanmon_cfgs = create_chanmon_cfgs(3);
10132 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10133 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10134 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10136 // All nodes start with a persistable update pending as `create_network` connects each node
10137 // with all other nodes to make most tests simpler.
10138 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10139 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10140 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10142 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10144 // We check that the channel info nodes have doesn't change too early, even though we try
10145 // to connect messages with new values
10146 chan.0.contents.fee_base_msat *= 2;
10147 chan.1.contents.fee_base_msat *= 2;
10148 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10149 &nodes[1].node.get_our_node_id()).pop().unwrap();
10150 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10151 &nodes[0].node.get_our_node_id()).pop().unwrap();
10153 // The first two nodes (which opened a channel) should now require fresh persistence
10154 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10155 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10156 // ... but the last node should not.
10157 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10158 // After persisting the first two nodes they should no longer need fresh persistence.
10159 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10160 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10162 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10163 // about the channel.
10164 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10165 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10166 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10168 // The nodes which are a party to the channel should also ignore messages from unrelated
10170 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10171 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10172 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10173 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10174 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10175 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10177 // At this point the channel info given by peers should still be the same.
10178 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10179 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10181 // An earlier version of handle_channel_update didn't check the directionality of the
10182 // update message and would always update the local fee info, even if our peer was
10183 // (spuriously) forwarding us our own channel_update.
10184 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
10185 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
10186 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
10188 // First deliver each peers' own message, checking that the node doesn't need to be
10189 // persisted and that its channel info remains the same.
10190 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
10191 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
10192 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10193 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10194 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10195 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10197 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
10198 // the channel info has updated.
10199 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
10200 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
10201 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10202 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10203 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
10204 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
10208 fn test_keysend_dup_hash_partial_mpp() {
10209 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
10211 let chanmon_cfgs = create_chanmon_cfgs(2);
10212 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10213 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10214 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10215 create_announced_chan_between_nodes(&nodes, 0, 1);
10217 // First, send a partial MPP payment.
10218 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
10219 let mut mpp_route = route.clone();
10220 mpp_route.paths.push(mpp_route.paths[0].clone());
10222 let payment_id = PaymentId([42; 32]);
10223 // Use the utility function send_payment_along_path to send the payment with MPP data which
10224 // indicates there are more HTLCs coming.
10225 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
10226 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
10227 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
10228 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
10229 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
10230 check_added_monitors!(nodes[0], 1);
10231 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10232 assert_eq!(events.len(), 1);
10233 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
10235 // Next, send a keysend payment with the same payment_hash and make sure it fails.
10236 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10237 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10238 check_added_monitors!(nodes[0], 1);
10239 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10240 assert_eq!(events.len(), 1);
10241 let ev = events.drain(..).next().unwrap();
10242 let payment_event = SendEvent::from_event(ev);
10243 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10244 check_added_monitors!(nodes[1], 0);
10245 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10246 expect_pending_htlcs_forwardable!(nodes[1]);
10247 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
10248 check_added_monitors!(nodes[1], 1);
10249 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10250 assert!(updates.update_add_htlcs.is_empty());
10251 assert!(updates.update_fulfill_htlcs.is_empty());
10252 assert_eq!(updates.update_fail_htlcs.len(), 1);
10253 assert!(updates.update_fail_malformed_htlcs.is_empty());
10254 assert!(updates.update_fee.is_none());
10255 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10256 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10257 expect_payment_failed!(nodes[0], our_payment_hash, true);
10259 // Send the second half of the original MPP payment.
10260 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
10261 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
10262 check_added_monitors!(nodes[0], 1);
10263 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10264 assert_eq!(events.len(), 1);
10265 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
10267 // Claim the full MPP payment. Note that we can't use a test utility like
10268 // claim_funds_along_route because the ordering of the messages causes the second half of the
10269 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
10270 // lightning messages manually.
10271 nodes[1].node.claim_funds(payment_preimage);
10272 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
10273 check_added_monitors!(nodes[1], 2);
10275 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10276 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
10277 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
10278 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
10279 check_added_monitors!(nodes[0], 1);
10280 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10281 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
10282 check_added_monitors!(nodes[1], 1);
10283 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10284 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
10285 check_added_monitors!(nodes[1], 1);
10286 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10287 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
10288 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
10289 check_added_monitors!(nodes[0], 1);
10290 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
10291 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
10292 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10293 check_added_monitors!(nodes[0], 1);
10294 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
10295 check_added_monitors!(nodes[1], 1);
10296 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
10297 check_added_monitors!(nodes[1], 1);
10298 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10299 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
10300 check_added_monitors!(nodes[0], 1);
10302 // Note that successful MPP payments will generate a single PaymentSent event upon the first
10303 // path's success and a PaymentPathSuccessful event for each path's success.
10304 let events = nodes[0].node.get_and_clear_pending_events();
10305 assert_eq!(events.len(), 2);
10307 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10308 assert_eq!(payment_id, *actual_payment_id);
10309 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10310 assert_eq!(route.paths[0], *path);
10312 _ => panic!("Unexpected event"),
10315 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10316 assert_eq!(payment_id, *actual_payment_id);
10317 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10318 assert_eq!(route.paths[0], *path);
10320 _ => panic!("Unexpected event"),
10325 fn test_keysend_dup_payment_hash() {
10326 do_test_keysend_dup_payment_hash(false);
10327 do_test_keysend_dup_payment_hash(true);
10330 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
10331 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
10332 // outbound regular payment fails as expected.
10333 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
10334 // fails as expected.
10335 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
10336 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
10337 // reject MPP keysend payments, since in this case where the payment has no payment
10338 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
10339 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
10340 // payment secrets and reject otherwise.
10341 let chanmon_cfgs = create_chanmon_cfgs(2);
10342 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10343 let mut mpp_keysend_cfg = test_default_channel_config();
10344 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
10345 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
10346 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10347 create_announced_chan_between_nodes(&nodes, 0, 1);
10348 let scorer = test_utils::TestScorer::new();
10349 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10351 // To start (1), send a regular payment but don't claim it.
10352 let expected_route = [&nodes[1]];
10353 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
10355 // Next, attempt a keysend payment and make sure it fails.
10356 let route_params = RouteParameters::from_payment_params_and_value(
10357 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
10358 TEST_FINAL_CLTV, false), 100_000);
10359 let route = find_route(
10360 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10361 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10363 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10364 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10365 check_added_monitors!(nodes[0], 1);
10366 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10367 assert_eq!(events.len(), 1);
10368 let ev = events.drain(..).next().unwrap();
10369 let payment_event = SendEvent::from_event(ev);
10370 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10371 check_added_monitors!(nodes[1], 0);
10372 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10373 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
10374 // fails), the second will process the resulting failure and fail the HTLC backward
10375 expect_pending_htlcs_forwardable!(nodes[1]);
10376 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10377 check_added_monitors!(nodes[1], 1);
10378 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10379 assert!(updates.update_add_htlcs.is_empty());
10380 assert!(updates.update_fulfill_htlcs.is_empty());
10381 assert_eq!(updates.update_fail_htlcs.len(), 1);
10382 assert!(updates.update_fail_malformed_htlcs.is_empty());
10383 assert!(updates.update_fee.is_none());
10384 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10385 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10386 expect_payment_failed!(nodes[0], payment_hash, true);
10388 // Finally, claim the original payment.
10389 claim_payment(&nodes[0], &expected_route, payment_preimage);
10391 // To start (2), send a keysend payment but don't claim it.
10392 let payment_preimage = PaymentPreimage([42; 32]);
10393 let route = find_route(
10394 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10395 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10397 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10398 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10399 check_added_monitors!(nodes[0], 1);
10400 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10401 assert_eq!(events.len(), 1);
10402 let event = events.pop().unwrap();
10403 let path = vec![&nodes[1]];
10404 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10406 // Next, attempt a regular payment and make sure it fails.
10407 let payment_secret = PaymentSecret([43; 32]);
10408 nodes[0].node.send_payment_with_route(&route, payment_hash,
10409 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
10410 check_added_monitors!(nodes[0], 1);
10411 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10412 assert_eq!(events.len(), 1);
10413 let ev = events.drain(..).next().unwrap();
10414 let payment_event = SendEvent::from_event(ev);
10415 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10416 check_added_monitors!(nodes[1], 0);
10417 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10418 expect_pending_htlcs_forwardable!(nodes[1]);
10419 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10420 check_added_monitors!(nodes[1], 1);
10421 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10422 assert!(updates.update_add_htlcs.is_empty());
10423 assert!(updates.update_fulfill_htlcs.is_empty());
10424 assert_eq!(updates.update_fail_htlcs.len(), 1);
10425 assert!(updates.update_fail_malformed_htlcs.is_empty());
10426 assert!(updates.update_fee.is_none());
10427 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10428 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10429 expect_payment_failed!(nodes[0], payment_hash, true);
10431 // Finally, succeed the keysend payment.
10432 claim_payment(&nodes[0], &expected_route, payment_preimage);
10434 // To start (3), send a keysend payment but don't claim it.
10435 let payment_id_1 = PaymentId([44; 32]);
10436 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10437 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
10438 check_added_monitors!(nodes[0], 1);
10439 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10440 assert_eq!(events.len(), 1);
10441 let event = events.pop().unwrap();
10442 let path = vec![&nodes[1]];
10443 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10445 // Next, attempt a keysend payment and make sure it fails.
10446 let route_params = RouteParameters::from_payment_params_and_value(
10447 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
10450 let route = find_route(
10451 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10452 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10454 let payment_id_2 = PaymentId([45; 32]);
10455 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10456 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
10457 check_added_monitors!(nodes[0], 1);
10458 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10459 assert_eq!(events.len(), 1);
10460 let ev = events.drain(..).next().unwrap();
10461 let payment_event = SendEvent::from_event(ev);
10462 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10463 check_added_monitors!(nodes[1], 0);
10464 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10465 expect_pending_htlcs_forwardable!(nodes[1]);
10466 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10467 check_added_monitors!(nodes[1], 1);
10468 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10469 assert!(updates.update_add_htlcs.is_empty());
10470 assert!(updates.update_fulfill_htlcs.is_empty());
10471 assert_eq!(updates.update_fail_htlcs.len(), 1);
10472 assert!(updates.update_fail_malformed_htlcs.is_empty());
10473 assert!(updates.update_fee.is_none());
10474 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10475 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10476 expect_payment_failed!(nodes[0], payment_hash, true);
10478 // Finally, claim the original payment.
10479 claim_payment(&nodes[0], &expected_route, payment_preimage);
10483 fn test_keysend_hash_mismatch() {
10484 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
10485 // preimage doesn't match the msg's payment hash.
10486 let chanmon_cfgs = create_chanmon_cfgs(2);
10487 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10488 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10489 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10491 let payer_pubkey = nodes[0].node.get_our_node_id();
10492 let payee_pubkey = nodes[1].node.get_our_node_id();
10494 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10495 let route_params = RouteParameters::from_payment_params_and_value(
10496 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10497 let network_graph = nodes[0].network_graph.clone();
10498 let first_hops = nodes[0].node.list_usable_channels();
10499 let scorer = test_utils::TestScorer::new();
10500 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10501 let route = find_route(
10502 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10503 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10506 let test_preimage = PaymentPreimage([42; 32]);
10507 let mismatch_payment_hash = PaymentHash([43; 32]);
10508 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
10509 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
10510 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
10511 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
10512 check_added_monitors!(nodes[0], 1);
10514 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10515 assert_eq!(updates.update_add_htlcs.len(), 1);
10516 assert!(updates.update_fulfill_htlcs.is_empty());
10517 assert!(updates.update_fail_htlcs.is_empty());
10518 assert!(updates.update_fail_malformed_htlcs.is_empty());
10519 assert!(updates.update_fee.is_none());
10520 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10522 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
10526 fn test_keysend_msg_with_secret_err() {
10527 // Test that we error as expected if we receive a keysend payment that includes a payment
10528 // secret when we don't support MPP keysend.
10529 let mut reject_mpp_keysend_cfg = test_default_channel_config();
10530 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
10531 let chanmon_cfgs = create_chanmon_cfgs(2);
10532 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10533 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
10534 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10536 let payer_pubkey = nodes[0].node.get_our_node_id();
10537 let payee_pubkey = nodes[1].node.get_our_node_id();
10539 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10540 let route_params = RouteParameters::from_payment_params_and_value(
10541 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10542 let network_graph = nodes[0].network_graph.clone();
10543 let first_hops = nodes[0].node.list_usable_channels();
10544 let scorer = test_utils::TestScorer::new();
10545 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10546 let route = find_route(
10547 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10548 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10551 let test_preimage = PaymentPreimage([42; 32]);
10552 let test_secret = PaymentSecret([43; 32]);
10553 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
10554 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
10555 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
10556 nodes[0].node.test_send_payment_internal(&route, payment_hash,
10557 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
10558 PaymentId(payment_hash.0), None, session_privs).unwrap();
10559 check_added_monitors!(nodes[0], 1);
10561 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10562 assert_eq!(updates.update_add_htlcs.len(), 1);
10563 assert!(updates.update_fulfill_htlcs.is_empty());
10564 assert!(updates.update_fail_htlcs.is_empty());
10565 assert!(updates.update_fail_malformed_htlcs.is_empty());
10566 assert!(updates.update_fee.is_none());
10567 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10569 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
10573 fn test_multi_hop_missing_secret() {
10574 let chanmon_cfgs = create_chanmon_cfgs(4);
10575 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
10576 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
10577 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
10579 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
10580 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
10581 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
10582 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
10584 // Marshall an MPP route.
10585 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
10586 let path = route.paths[0].clone();
10587 route.paths.push(path);
10588 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
10589 route.paths[0].hops[0].short_channel_id = chan_1_id;
10590 route.paths[0].hops[1].short_channel_id = chan_3_id;
10591 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
10592 route.paths[1].hops[0].short_channel_id = chan_2_id;
10593 route.paths[1].hops[1].short_channel_id = chan_4_id;
10595 match nodes[0].node.send_payment_with_route(&route, payment_hash,
10596 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
10598 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
10599 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
10601 _ => panic!("unexpected error")
10606 fn test_drop_disconnected_peers_when_removing_channels() {
10607 let chanmon_cfgs = create_chanmon_cfgs(2);
10608 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10609 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10610 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10612 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10614 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
10615 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10617 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
10618 check_closed_broadcast!(nodes[0], true);
10619 check_added_monitors!(nodes[0], 1);
10620 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
10623 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
10624 // disconnected and the channel between has been force closed.
10625 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
10626 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
10627 assert_eq!(nodes_0_per_peer_state.len(), 1);
10628 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
10631 nodes[0].node.timer_tick_occurred();
10634 // Assert that nodes[1] has now been removed.
10635 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
10640 fn bad_inbound_payment_hash() {
10641 // Add coverage for checking that a user-provided payment hash matches the payment secret.
10642 let chanmon_cfgs = create_chanmon_cfgs(2);
10643 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10644 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10645 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10647 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
10648 let payment_data = msgs::FinalOnionHopData {
10650 total_msat: 100_000,
10653 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
10654 // payment verification fails as expected.
10655 let mut bad_payment_hash = payment_hash.clone();
10656 bad_payment_hash.0[0] += 1;
10657 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
10658 Ok(_) => panic!("Unexpected ok"),
10660 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
10664 // Check that using the original payment hash succeeds.
10665 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
10669 fn test_id_to_peer_coverage() {
10670 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
10671 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
10672 // the channel is successfully closed.
10673 let chanmon_cfgs = create_chanmon_cfgs(2);
10674 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10675 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10676 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10678 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
10679 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10680 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
10681 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10682 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10684 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
10685 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
10687 // Ensure that the `id_to_peer` map is empty until either party has received the
10688 // funding transaction, and have the real `channel_id`.
10689 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10690 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10693 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
10695 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
10696 // as it has the funding transaction.
10697 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10698 assert_eq!(nodes_0_lock.len(), 1);
10699 assert!(nodes_0_lock.contains_key(&channel_id));
10702 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10704 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10706 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10708 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10709 assert_eq!(nodes_0_lock.len(), 1);
10710 assert!(nodes_0_lock.contains_key(&channel_id));
10712 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10715 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
10716 // as it has the funding transaction.
10717 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10718 assert_eq!(nodes_1_lock.len(), 1);
10719 assert!(nodes_1_lock.contains_key(&channel_id));
10721 check_added_monitors!(nodes[1], 1);
10722 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10723 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10724 check_added_monitors!(nodes[0], 1);
10725 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10726 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
10727 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
10728 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
10730 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
10731 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
10732 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
10733 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
10735 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
10736 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
10738 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
10739 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
10740 // fee for the closing transaction has been negotiated and the parties has the other
10741 // party's signature for the fee negotiated closing transaction.)
10742 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10743 assert_eq!(nodes_0_lock.len(), 1);
10744 assert!(nodes_0_lock.contains_key(&channel_id));
10748 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
10749 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
10750 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
10751 // kept in the `nodes[1]`'s `id_to_peer` map.
10752 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10753 assert_eq!(nodes_1_lock.len(), 1);
10754 assert!(nodes_1_lock.contains_key(&channel_id));
10757 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
10759 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
10760 // therefore has all it needs to fully close the channel (both signatures for the
10761 // closing transaction).
10762 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
10763 // fully closed by `nodes[0]`.
10764 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10766 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
10767 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
10768 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10769 assert_eq!(nodes_1_lock.len(), 1);
10770 assert!(nodes_1_lock.contains_key(&channel_id));
10773 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
10775 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
10777 // Assert that the channel has now been removed from both parties `id_to_peer` map once
10778 // they both have everything required to fully close the channel.
10779 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10781 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
10783 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
10784 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
10787 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10788 let expected_message = format!("Not connected to node: {}", expected_public_key);
10789 check_api_error_message(expected_message, res_err)
10792 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10793 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
10794 check_api_error_message(expected_message, res_err)
10797 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
10798 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
10799 check_api_error_message(expected_message, res_err)
10802 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
10803 let expected_message = "No such channel awaiting to be accepted.".to_string();
10804 check_api_error_message(expected_message, res_err)
10807 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
10809 Err(APIError::APIMisuseError { err }) => {
10810 assert_eq!(err, expected_err_message);
10812 Err(APIError::ChannelUnavailable { err }) => {
10813 assert_eq!(err, expected_err_message);
10815 Ok(_) => panic!("Unexpected Ok"),
10816 Err(_) => panic!("Unexpected Error"),
10821 fn test_api_calls_with_unkown_counterparty_node() {
10822 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
10823 // expected if the `counterparty_node_id` is an unkown peer in the
10824 // `ChannelManager::per_peer_state` map.
10825 let chanmon_cfg = create_chanmon_cfgs(2);
10826 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10827 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10828 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10831 let channel_id = ChannelId::from_bytes([4; 32]);
10832 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
10833 let intercept_id = InterceptId([0; 32]);
10835 // Test the API functions.
10836 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
10838 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
10840 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
10842 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
10844 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
10846 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
10848 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
10852 fn test_api_calls_with_unavailable_channel() {
10853 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
10854 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
10855 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
10856 // the given `channel_id`.
10857 let chanmon_cfg = create_chanmon_cfgs(2);
10858 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10859 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10860 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10862 let counterparty_node_id = nodes[1].node.get_our_node_id();
10865 let channel_id = ChannelId::from_bytes([4; 32]);
10867 // Test the API functions.
10868 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
10870 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10872 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10874 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10876 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
10878 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
10882 fn test_connection_limiting() {
10883 // Test that we limit un-channel'd peers and un-funded channels properly.
10884 let chanmon_cfgs = create_chanmon_cfgs(2);
10885 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10886 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10887 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10889 // Note that create_network connects the nodes together for us
10891 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10892 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10894 let mut funding_tx = None;
10895 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10896 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10897 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10900 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10901 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
10902 funding_tx = Some(tx.clone());
10903 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
10904 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10906 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10907 check_added_monitors!(nodes[1], 1);
10908 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10910 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10912 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10913 check_added_monitors!(nodes[0], 1);
10914 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10916 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10919 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
10920 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10921 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10922 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10923 open_channel_msg.temporary_channel_id);
10925 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
10926 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
10928 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
10929 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
10930 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10931 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10932 peer_pks.push(random_pk);
10933 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
10934 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10937 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10938 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10939 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10940 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10941 }, true).unwrap_err();
10943 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
10944 // them if we have too many un-channel'd peers.
10945 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10946 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
10947 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
10948 for ev in chan_closed_events {
10949 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
10951 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10952 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10954 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10955 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10956 }, true).unwrap_err();
10958 // but of course if the connection is outbound its allowed...
10959 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10960 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10961 }, false).unwrap();
10962 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10964 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
10965 // Even though we accept one more connection from new peers, we won't actually let them
10967 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
10968 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
10969 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
10970 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
10971 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10973 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10974 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
10975 open_channel_msg.temporary_channel_id);
10977 // Of course, however, outbound channels are always allowed
10978 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
10979 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
10981 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
10982 // "protected" and can connect again.
10983 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
10984 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10985 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10987 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
10989 // Further, because the first channel was funded, we can open another channel with
10991 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10992 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
10996 fn test_outbound_chans_unlimited() {
10997 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
10998 let chanmon_cfgs = create_chanmon_cfgs(2);
10999 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11000 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11001 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11003 // Note that create_network connects the nodes together for us
11005 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11006 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11008 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11009 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11010 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11011 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11014 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11016 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11017 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11018 open_channel_msg.temporary_channel_id);
11020 // but we can still open an outbound channel.
11021 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11022 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11024 // but even with such an outbound channel, additional inbound channels will still fail.
11025 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11026 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11027 open_channel_msg.temporary_channel_id);
11031 fn test_0conf_limiting() {
11032 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11033 // flag set and (sometimes) accept channels as 0conf.
11034 let chanmon_cfgs = create_chanmon_cfgs(2);
11035 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11036 let mut settings = test_default_channel_config();
11037 settings.manually_accept_inbound_channels = true;
11038 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11039 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11041 // Note that create_network connects the nodes together for us
11043 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11044 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11046 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11047 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11048 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11049 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11050 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11051 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11054 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11055 let events = nodes[1].node.get_and_clear_pending_events();
11057 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11058 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11060 _ => panic!("Unexpected event"),
11062 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11063 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11066 // If we try to accept a channel from another peer non-0conf it will fail.
11067 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11068 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11069 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11070 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11072 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11073 let events = nodes[1].node.get_and_clear_pending_events();
11075 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11076 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11077 Err(APIError::APIMisuseError { err }) =>
11078 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11082 _ => panic!("Unexpected event"),
11084 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11085 open_channel_msg.temporary_channel_id);
11087 // ...however if we accept the same channel 0conf it should work just fine.
11088 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11089 let events = nodes[1].node.get_and_clear_pending_events();
11091 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11092 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11094 _ => panic!("Unexpected event"),
11096 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11100 fn reject_excessively_underpaying_htlcs() {
11101 let chanmon_cfg = create_chanmon_cfgs(1);
11102 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11103 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11104 let node = create_network(1, &node_cfg, &node_chanmgr);
11105 let sender_intended_amt_msat = 100;
11106 let extra_fee_msat = 10;
11107 let hop_data = msgs::InboundOnionPayload::Receive {
11109 outgoing_cltv_value: 42,
11110 payment_metadata: None,
11111 keysend_preimage: None,
11112 payment_data: Some(msgs::FinalOnionHopData {
11113 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11115 custom_tlvs: Vec::new(),
11117 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11118 // intended amount, we fail the payment.
11119 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11120 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11121 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
11123 assert_eq!(err_code, 19);
11124 } else { panic!(); }
11126 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11127 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11129 outgoing_cltv_value: 42,
11130 payment_metadata: None,
11131 keysend_preimage: None,
11132 payment_data: Some(msgs::FinalOnionHopData {
11133 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11135 custom_tlvs: Vec::new(),
11137 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11138 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
11142 fn test_inbound_anchors_manual_acceptance() {
11143 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11144 // flag set and (sometimes) accept channels as 0conf.
11145 let mut anchors_cfg = test_default_channel_config();
11146 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11148 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11149 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11151 let chanmon_cfgs = create_chanmon_cfgs(3);
11152 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11153 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
11154 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
11155 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11157 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11158 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11160 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11161 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11162 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
11163 match &msg_events[0] {
11164 MessageSendEvent::HandleError { node_id, action } => {
11165 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
11167 ErrorAction::SendErrorMessage { msg } =>
11168 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
11169 _ => panic!("Unexpected error action"),
11172 _ => panic!("Unexpected event"),
11175 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11176 let events = nodes[2].node.get_and_clear_pending_events();
11178 Event::OpenChannelRequest { temporary_channel_id, .. } =>
11179 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
11180 _ => panic!("Unexpected event"),
11182 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11186 fn test_anchors_zero_fee_htlc_tx_fallback() {
11187 // Tests that if both nodes support anchors, but the remote node does not want to accept
11188 // anchor channels at the moment, an error it sent to the local node such that it can retry
11189 // the channel without the anchors feature.
11190 let chanmon_cfgs = create_chanmon_cfgs(2);
11191 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11192 let mut anchors_config = test_default_channel_config();
11193 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11194 anchors_config.manually_accept_inbound_channels = true;
11195 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
11196 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11198 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
11199 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11200 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
11202 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11203 let events = nodes[1].node.get_and_clear_pending_events();
11205 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11206 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
11208 _ => panic!("Unexpected event"),
11211 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
11212 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
11214 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11215 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
11217 // Since nodes[1] should not have accepted the channel, it should
11218 // not have generated any events.
11219 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11223 fn test_update_channel_config() {
11224 let chanmon_cfg = create_chanmon_cfgs(2);
11225 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11226 let mut user_config = test_default_channel_config();
11227 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
11228 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11229 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
11230 let channel = &nodes[0].node.list_channels()[0];
11232 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
11233 let events = nodes[0].node.get_and_clear_pending_msg_events();
11234 assert_eq!(events.len(), 0);
11236 user_config.channel_config.forwarding_fee_base_msat += 10;
11237 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
11238 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
11239 let events = nodes[0].node.get_and_clear_pending_msg_events();
11240 assert_eq!(events.len(), 1);
11242 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11243 _ => panic!("expected BroadcastChannelUpdate event"),
11246 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
11247 let events = nodes[0].node.get_and_clear_pending_msg_events();
11248 assert_eq!(events.len(), 0);
11250 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
11251 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
11252 cltv_expiry_delta: Some(new_cltv_expiry_delta),
11253 ..Default::default()
11255 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
11256 let events = nodes[0].node.get_and_clear_pending_msg_events();
11257 assert_eq!(events.len(), 1);
11259 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11260 _ => panic!("expected BroadcastChannelUpdate event"),
11263 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
11264 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
11265 forwarding_fee_proportional_millionths: Some(new_fee),
11266 ..Default::default()
11268 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
11269 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
11270 let events = nodes[0].node.get_and_clear_pending_msg_events();
11271 assert_eq!(events.len(), 1);
11273 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11274 _ => panic!("expected BroadcastChannelUpdate event"),
11277 // If we provide a channel_id not associated with the peer, we should get an error and no updates
11278 // should be applied to ensure update atomicity as specified in the API docs.
11279 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
11280 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
11281 let new_fee = current_fee + 100;
11284 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
11285 forwarding_fee_proportional_millionths: Some(new_fee),
11286 ..Default::default()
11288 Err(APIError::ChannelUnavailable { err: _ }),
11291 // Check that the fee hasn't changed for the channel that exists.
11292 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
11293 let events = nodes[0].node.get_and_clear_pending_msg_events();
11294 assert_eq!(events.len(), 0);
11298 fn test_payment_display() {
11299 let payment_id = PaymentId([42; 32]);
11300 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11301 let payment_hash = PaymentHash([42; 32]);
11302 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11303 let payment_preimage = PaymentPreimage([42; 32]);
11304 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11310 use crate::chain::Listen;
11311 use crate::chain::chainmonitor::{ChainMonitor, Persist};
11312 use crate::sign::{KeysManager, InMemorySigner};
11313 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
11314 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
11315 use crate::ln::functional_test_utils::*;
11316 use crate::ln::msgs::{ChannelMessageHandler, Init};
11317 use crate::routing::gossip::NetworkGraph;
11318 use crate::routing::router::{PaymentParameters, RouteParameters};
11319 use crate::util::test_utils;
11320 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
11322 use bitcoin::hashes::Hash;
11323 use bitcoin::hashes::sha256::Hash as Sha256;
11324 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
11326 use crate::sync::{Arc, Mutex, RwLock};
11328 use criterion::Criterion;
11330 type Manager<'a, P> = ChannelManager<
11331 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
11332 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
11333 &'a test_utils::TestLogger, &'a P>,
11334 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
11335 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
11336 &'a test_utils::TestLogger>;
11338 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
11339 node: &'node_cfg Manager<'chan_mon_cfg, P>,
11341 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
11342 type CM = Manager<'chan_mon_cfg, P>;
11344 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
11346 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
11349 pub fn bench_sends(bench: &mut Criterion) {
11350 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
11353 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
11354 // Do a simple benchmark of sending a payment back and forth between two nodes.
11355 // Note that this is unrealistic as each payment send will require at least two fsync
11357 let network = bitcoin::Network::Testnet;
11358 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
11360 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
11361 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
11362 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
11363 let scorer = RwLock::new(test_utils::TestScorer::new());
11364 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
11366 let mut config: UserConfig = Default::default();
11367 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
11368 config.channel_handshake_config.minimum_depth = 1;
11370 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
11371 let seed_a = [1u8; 32];
11372 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
11373 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
11375 best_block: BestBlock::from_network(network),
11376 }, genesis_block.header.time);
11377 let node_a_holder = ANodeHolder { node: &node_a };
11379 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
11380 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
11381 let seed_b = [2u8; 32];
11382 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
11383 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
11385 best_block: BestBlock::from_network(network),
11386 }, genesis_block.header.time);
11387 let node_b_holder = ANodeHolder { node: &node_b };
11389 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
11390 features: node_b.init_features(), networks: None, remote_network_address: None
11392 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
11393 features: node_a.init_features(), networks: None, remote_network_address: None
11394 }, false).unwrap();
11395 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
11396 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
11397 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
11400 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
11401 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
11402 value: 8_000_000, script_pubkey: output_script,
11404 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
11405 } else { panic!(); }
11407 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
11408 let events_b = node_b.get_and_clear_pending_events();
11409 assert_eq!(events_b.len(), 1);
11410 match events_b[0] {
11411 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11412 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11414 _ => panic!("Unexpected event"),
11417 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
11418 let events_a = node_a.get_and_clear_pending_events();
11419 assert_eq!(events_a.len(), 1);
11420 match events_a[0] {
11421 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11422 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11424 _ => panic!("Unexpected event"),
11427 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
11429 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
11430 Listen::block_connected(&node_a, &block, 1);
11431 Listen::block_connected(&node_b, &block, 1);
11433 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
11434 let msg_events = node_a.get_and_clear_pending_msg_events();
11435 assert_eq!(msg_events.len(), 2);
11436 match msg_events[0] {
11437 MessageSendEvent::SendChannelReady { ref msg, .. } => {
11438 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
11439 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
11443 match msg_events[1] {
11444 MessageSendEvent::SendChannelUpdate { .. } => {},
11448 let events_a = node_a.get_and_clear_pending_events();
11449 assert_eq!(events_a.len(), 1);
11450 match events_a[0] {
11451 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11452 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11454 _ => panic!("Unexpected event"),
11457 let events_b = node_b.get_and_clear_pending_events();
11458 assert_eq!(events_b.len(), 1);
11459 match events_b[0] {
11460 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11461 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11463 _ => panic!("Unexpected event"),
11466 let mut payment_count: u64 = 0;
11467 macro_rules! send_payment {
11468 ($node_a: expr, $node_b: expr) => {
11469 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
11470 .with_bolt11_features($node_b.invoice_features()).unwrap();
11471 let mut payment_preimage = PaymentPreimage([0; 32]);
11472 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
11473 payment_count += 1;
11474 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
11475 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
11477 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
11478 PaymentId(payment_hash.0),
11479 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
11480 Retry::Attempts(0)).unwrap();
11481 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
11482 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
11483 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
11484 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
11485 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
11486 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
11487 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
11489 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
11490 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
11491 $node_b.claim_funds(payment_preimage);
11492 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
11494 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
11495 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
11496 assert_eq!(node_id, $node_a.get_our_node_id());
11497 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
11498 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
11500 _ => panic!("Failed to generate claim event"),
11503 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
11504 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
11505 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
11506 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
11508 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
11512 bench.bench_function(bench_name, |b| b.iter(|| {
11513 send_payment!(node_a, node_b);
11514 send_payment!(node_b, node_a);