1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
48 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
49 #[cfg(any(feature = "_test_utils", test))]
50 use crate::ln::features::Bolt11InvoiceFeatures;
51 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::merkle::SignError;
64 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::messenger::{Destination, MessageRouter, PendingOnionMessage, new_pending_onion_message};
68 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
69 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
78 #[cfg(not(c_bindings))]
80 crate::routing::router::DefaultRouter,
81 crate::routing::gossip::NetworkGraph,
82 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
83 crate::sign::KeysManager,
86 use alloc::collections::{btree_map, BTreeMap};
89 use crate::prelude::*;
91 use core::cell::RefCell;
93 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
94 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
95 use core::time::Duration;
98 // Re-export this for use in the public API.
99 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
100 use crate::ln::script::ShutdownScript;
102 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
104 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
105 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
106 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
108 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
109 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
110 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
111 // before we forward it.
113 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
114 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
115 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
116 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
117 // our payment, which we can use to decode errors or inform the user that the payment was sent.
119 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 #[cfg_attr(test, derive(Debug, PartialEq))]
122 pub enum PendingHTLCRouting {
123 /// An HTLC which should be forwarded on to another node.
125 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
126 /// do with the HTLC.
127 onion_packet: msgs::OnionPacket,
128 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
130 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
131 /// to the receiving node, such as one returned from
132 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
133 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
134 /// Set if this HTLC is being forwarded within a blinded path.
135 blinded: Option<BlindedForward>,
137 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
139 /// Note that at this point, we have not checked that the invoice being paid was actually
140 /// generated by us, but rather it's claiming to pay an invoice of ours.
142 /// Information about the amount the sender intended to pay and (potential) proof that this
143 /// is a payment for an invoice we generated. This proof of payment is is also used for
144 /// linking MPP parts of a larger payment.
145 payment_data: msgs::FinalOnionHopData,
146 /// Additional data which we (allegedly) instructed the sender to include in the onion.
148 /// For HTLCs received by LDK, this will ultimately be exposed in
149 /// [`Event::PaymentClaimable::onion_fields`] as
150 /// [`RecipientOnionFields::payment_metadata`].
151 payment_metadata: Option<Vec<u8>>,
152 /// CLTV expiry of the received HTLC.
154 /// Used to track when we should expire pending HTLCs that go unclaimed.
155 incoming_cltv_expiry: u32,
156 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
157 /// provide the onion shared secret used to decrypt the next level of forwarding
159 phantom_shared_secret: Option<[u8; 32]>,
160 /// Custom TLVs which were set by the sender.
162 /// For HTLCs received by LDK, this will ultimately be exposed in
163 /// [`Event::PaymentClaimable::onion_fields`] as
164 /// [`RecipientOnionFields::custom_tlvs`].
165 custom_tlvs: Vec<(u64, Vec<u8>)>,
166 /// Set if this HTLC is the final hop in a multi-hop blinded path.
167 requires_blinded_error: bool,
169 /// The onion indicates that this is for payment to us but which contains the preimage for
170 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
171 /// "keysend" or "spontaneous" payment).
173 /// Information about the amount the sender intended to pay and possibly a token to
174 /// associate MPP parts of a larger payment.
176 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
177 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
178 payment_data: Option<msgs::FinalOnionHopData>,
179 /// Preimage for this onion payment. This preimage is provided by the sender and will be
180 /// used to settle the spontaneous payment.
181 payment_preimage: PaymentPreimage,
182 /// Additional data which we (allegedly) instructed the sender to include in the onion.
184 /// For HTLCs received by LDK, this will ultimately bubble back up as
185 /// [`RecipientOnionFields::payment_metadata`].
186 payment_metadata: Option<Vec<u8>>,
187 /// CLTV expiry of the received HTLC.
189 /// Used to track when we should expire pending HTLCs that go unclaimed.
190 incoming_cltv_expiry: u32,
191 /// Custom TLVs which were set by the sender.
193 /// For HTLCs received by LDK, these will ultimately bubble back up as
194 /// [`RecipientOnionFields::custom_tlvs`].
195 custom_tlvs: Vec<(u64, Vec<u8>)>,
199 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
200 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
201 pub struct BlindedForward {
202 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
203 /// onion payload if we're the introduction node. Useful for calculating the next hop's
204 /// [`msgs::UpdateAddHTLC::blinding_point`].
205 pub inbound_blinding_point: PublicKey,
206 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
207 /// the introduction node.
208 pub failure: BlindedFailure,
211 impl PendingHTLCRouting {
212 // Used to override the onion failure code and data if the HTLC is blinded.
213 fn blinded_failure(&self) -> Option<BlindedFailure> {
215 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
216 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
222 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
224 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
225 #[cfg_attr(test, derive(Debug, PartialEq))]
226 pub struct PendingHTLCInfo {
227 /// Further routing details based on whether the HTLC is being forwarded or received.
228 pub routing: PendingHTLCRouting,
229 /// The onion shared secret we build with the sender used to decrypt the onion.
231 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
232 pub incoming_shared_secret: [u8; 32],
233 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
234 pub payment_hash: PaymentHash,
235 /// Amount received in the incoming HTLC.
237 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
239 pub incoming_amt_msat: Option<u64>,
240 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
241 /// intended for us to receive for received payments.
243 /// If the received amount is less than this for received payments, an intermediary hop has
244 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
245 /// it along another path).
247 /// Because nodes can take less than their required fees, and because senders may wish to
248 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
249 /// received payments. In such cases, recipients must handle this HTLC as if it had received
250 /// [`Self::outgoing_amt_msat`].
251 pub outgoing_amt_msat: u64,
252 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
253 /// should have been set on the received HTLC for received payments).
254 pub outgoing_cltv_value: u32,
255 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
257 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
260 /// If this is a received payment, this is the fee that our counterparty took.
262 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
264 pub skimmed_fee_msat: Option<u64>,
267 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
268 pub(super) enum HTLCFailureMsg {
269 Relay(msgs::UpdateFailHTLC),
270 Malformed(msgs::UpdateFailMalformedHTLC),
273 /// Stores whether we can't forward an HTLC or relevant forwarding info
274 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
275 pub(super) enum PendingHTLCStatus {
276 Forward(PendingHTLCInfo),
277 Fail(HTLCFailureMsg),
280 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
281 pub(super) struct PendingAddHTLCInfo {
282 pub(super) forward_info: PendingHTLCInfo,
284 // These fields are produced in `forward_htlcs()` and consumed in
285 // `process_pending_htlc_forwards()` for constructing the
286 // `HTLCSource::PreviousHopData` for failed and forwarded
289 // Note that this may be an outbound SCID alias for the associated channel.
290 prev_short_channel_id: u64,
292 prev_channel_id: ChannelId,
293 prev_funding_outpoint: OutPoint,
294 prev_user_channel_id: u128,
297 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
298 pub(super) enum HTLCForwardInfo {
299 AddHTLC(PendingAddHTLCInfo),
302 err_packet: msgs::OnionErrorPacket,
307 sha256_of_onion: [u8; 32],
311 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
312 /// which determines the failure message that should be used.
313 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
314 pub enum BlindedFailure {
315 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
316 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
317 FromIntroductionNode,
318 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
319 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
323 /// Tracks the inbound corresponding to an outbound HTLC
324 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
325 pub(crate) struct HTLCPreviousHopData {
326 // Note that this may be an outbound SCID alias for the associated channel.
327 short_channel_id: u64,
328 user_channel_id: Option<u128>,
330 incoming_packet_shared_secret: [u8; 32],
331 phantom_shared_secret: Option<[u8; 32]>,
332 blinded_failure: Option<BlindedFailure>,
333 channel_id: ChannelId,
335 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
336 // channel with a preimage provided by the forward channel.
341 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
343 /// This is only here for backwards-compatibility in serialization, in the future it can be
344 /// removed, breaking clients running 0.0.106 and earlier.
345 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
347 /// Contains the payer-provided preimage.
348 Spontaneous(PaymentPreimage),
351 /// HTLCs that are to us and can be failed/claimed by the user
352 struct ClaimableHTLC {
353 prev_hop: HTLCPreviousHopData,
355 /// The amount (in msats) of this MPP part
357 /// The amount (in msats) that the sender intended to be sent in this MPP
358 /// part (used for validating total MPP amount)
359 sender_intended_value: u64,
360 onion_payload: OnionPayload,
362 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
363 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
364 total_value_received: Option<u64>,
365 /// The sender intended sum total of all MPP parts specified in the onion
367 /// The extra fee our counterparty skimmed off the top of this HTLC.
368 counterparty_skimmed_fee_msat: Option<u64>,
371 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
372 fn from(val: &ClaimableHTLC) -> Self {
373 events::ClaimedHTLC {
374 channel_id: val.prev_hop.channel_id,
375 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
376 cltv_expiry: val.cltv_expiry,
377 value_msat: val.value,
378 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
383 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
384 /// a payment and ensure idempotency in LDK.
386 /// This is not exported to bindings users as we just use [u8; 32] directly
387 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
388 pub struct PaymentId(pub [u8; Self::LENGTH]);
391 /// Number of bytes in the id.
392 pub const LENGTH: usize = 32;
395 impl Writeable for PaymentId {
396 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
401 impl Readable for PaymentId {
402 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
403 let buf: [u8; 32] = Readable::read(r)?;
408 impl core::fmt::Display for PaymentId {
409 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
410 crate::util::logger::DebugBytes(&self.0).fmt(f)
414 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
416 /// This is not exported to bindings users as we just use [u8; 32] directly
417 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
418 pub struct InterceptId(pub [u8; 32]);
420 impl Writeable for InterceptId {
421 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
426 impl Readable for InterceptId {
427 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
428 let buf: [u8; 32] = Readable::read(r)?;
433 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
434 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
435 pub(crate) enum SentHTLCId {
436 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
437 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
440 pub(crate) fn from_source(source: &HTLCSource) -> Self {
442 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
443 short_channel_id: hop_data.short_channel_id,
444 htlc_id: hop_data.htlc_id,
446 HTLCSource::OutboundRoute { session_priv, .. } =>
447 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
451 impl_writeable_tlv_based_enum!(SentHTLCId,
452 (0, PreviousHopData) => {
453 (0, short_channel_id, required),
454 (2, htlc_id, required),
456 (2, OutboundRoute) => {
457 (0, session_priv, required),
462 /// Tracks the inbound corresponding to an outbound HTLC
463 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
464 #[derive(Clone, Debug, PartialEq, Eq)]
465 pub(crate) enum HTLCSource {
466 PreviousHopData(HTLCPreviousHopData),
469 session_priv: SecretKey,
470 /// Technically we can recalculate this from the route, but we cache it here to avoid
471 /// doing a double-pass on route when we get a failure back
472 first_hop_htlc_msat: u64,
473 payment_id: PaymentId,
476 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
477 impl core::hash::Hash for HTLCSource {
478 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
480 HTLCSource::PreviousHopData(prev_hop_data) => {
482 prev_hop_data.hash(hasher);
484 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
487 session_priv[..].hash(hasher);
488 payment_id.hash(hasher);
489 first_hop_htlc_msat.hash(hasher);
495 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
497 pub fn dummy() -> Self {
498 HTLCSource::OutboundRoute {
499 path: Path { hops: Vec::new(), blinded_tail: None },
500 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
501 first_hop_htlc_msat: 0,
502 payment_id: PaymentId([2; 32]),
506 #[cfg(debug_assertions)]
507 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
508 /// transaction. Useful to ensure different datastructures match up.
509 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
510 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
511 *first_hop_htlc_msat == htlc.amount_msat
513 // There's nothing we can check for forwarded HTLCs
519 /// This enum is used to specify which error data to send to peers when failing back an HTLC
520 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
522 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
523 #[derive(Clone, Copy)]
524 pub enum FailureCode {
525 /// We had a temporary error processing the payment. Useful if no other error codes fit
526 /// and you want to indicate that the payer may want to retry.
527 TemporaryNodeFailure,
528 /// We have a required feature which was not in this onion. For example, you may require
529 /// some additional metadata that was not provided with this payment.
530 RequiredNodeFeatureMissing,
531 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
532 /// the HTLC is too close to the current block height for safe handling.
533 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
534 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
535 IncorrectOrUnknownPaymentDetails,
536 /// We failed to process the payload after the onion was decrypted. You may wish to
537 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
539 /// If available, the tuple data may include the type number and byte offset in the
540 /// decrypted byte stream where the failure occurred.
541 InvalidOnionPayload(Option<(u64, u16)>),
544 impl Into<u16> for FailureCode {
545 fn into(self) -> u16 {
547 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
548 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
549 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
550 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
555 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
556 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
557 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
558 /// peer_state lock. We then return the set of things that need to be done outside the lock in
559 /// this struct and call handle_error!() on it.
561 struct MsgHandleErrInternal {
562 err: msgs::LightningError,
563 closes_channel: bool,
564 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
566 impl MsgHandleErrInternal {
568 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
570 err: LightningError {
572 action: msgs::ErrorAction::SendErrorMessage {
573 msg: msgs::ErrorMessage {
579 closes_channel: false,
580 shutdown_finish: None,
584 fn from_no_close(err: msgs::LightningError) -> Self {
585 Self { err, closes_channel: false, shutdown_finish: None }
588 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
589 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
590 let action = if shutdown_res.monitor_update.is_some() {
591 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
592 // should disconnect our peer such that we force them to broadcast their latest
593 // commitment upon reconnecting.
594 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
596 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
599 err: LightningError { err, action },
600 closes_channel: true,
601 shutdown_finish: Some((shutdown_res, channel_update)),
605 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
608 ChannelError::Warn(msg) => LightningError {
610 action: msgs::ErrorAction::SendWarningMessage {
611 msg: msgs::WarningMessage {
615 log_level: Level::Warn,
618 ChannelError::Ignore(msg) => LightningError {
620 action: msgs::ErrorAction::IgnoreError,
622 ChannelError::Close(msg) => LightningError {
624 action: msgs::ErrorAction::SendErrorMessage {
625 msg: msgs::ErrorMessage {
632 closes_channel: false,
633 shutdown_finish: None,
637 fn closes_channel(&self) -> bool {
642 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
643 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
644 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
645 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
646 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
648 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
649 /// be sent in the order they appear in the return value, however sometimes the order needs to be
650 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
651 /// they were originally sent). In those cases, this enum is also returned.
652 #[derive(Clone, PartialEq)]
653 pub(super) enum RAACommitmentOrder {
654 /// Send the CommitmentUpdate messages first
656 /// Send the RevokeAndACK message first
660 /// Information about a payment which is currently being claimed.
661 struct ClaimingPayment {
663 payment_purpose: events::PaymentPurpose,
664 receiver_node_id: PublicKey,
665 htlcs: Vec<events::ClaimedHTLC>,
666 sender_intended_value: Option<u64>,
668 impl_writeable_tlv_based!(ClaimingPayment, {
669 (0, amount_msat, required),
670 (2, payment_purpose, required),
671 (4, receiver_node_id, required),
672 (5, htlcs, optional_vec),
673 (7, sender_intended_value, option),
676 struct ClaimablePayment {
677 purpose: events::PaymentPurpose,
678 onion_fields: Option<RecipientOnionFields>,
679 htlcs: Vec<ClaimableHTLC>,
682 /// Information about claimable or being-claimed payments
683 struct ClaimablePayments {
684 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
685 /// failed/claimed by the user.
687 /// Note that, no consistency guarantees are made about the channels given here actually
688 /// existing anymore by the time you go to read them!
690 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
691 /// we don't get a duplicate payment.
692 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
694 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
695 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
696 /// as an [`events::Event::PaymentClaimed`].
697 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
700 /// Events which we process internally but cannot be processed immediately at the generation site
701 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
702 /// running normally, and specifically must be processed before any other non-background
703 /// [`ChannelMonitorUpdate`]s are applied.
705 enum BackgroundEvent {
706 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
707 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
708 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
709 /// channel has been force-closed we do not need the counterparty node_id.
711 /// Note that any such events are lost on shutdown, so in general they must be updates which
712 /// are regenerated on startup.
713 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
714 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
715 /// channel to continue normal operation.
717 /// In general this should be used rather than
718 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
719 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
720 /// error the other variant is acceptable.
722 /// Note that any such events are lost on shutdown, so in general they must be updates which
723 /// are regenerated on startup.
724 MonitorUpdateRegeneratedOnStartup {
725 counterparty_node_id: PublicKey,
726 funding_txo: OutPoint,
727 channel_id: ChannelId,
728 update: ChannelMonitorUpdate
730 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
731 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
733 MonitorUpdatesComplete {
734 counterparty_node_id: PublicKey,
735 channel_id: ChannelId,
740 pub(crate) enum MonitorUpdateCompletionAction {
741 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
742 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
743 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
744 /// event can be generated.
745 PaymentClaimed { payment_hash: PaymentHash },
746 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
747 /// operation of another channel.
749 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
750 /// from completing a monitor update which removes the payment preimage until the inbound edge
751 /// completes a monitor update containing the payment preimage. In that case, after the inbound
752 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
754 EmitEventAndFreeOtherChannel {
755 event: events::Event,
756 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
758 /// Indicates we should immediately resume the operation of another channel, unless there is
759 /// some other reason why the channel is blocked. In practice this simply means immediately
760 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
762 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
763 /// from completing a monitor update which removes the payment preimage until the inbound edge
764 /// completes a monitor update containing the payment preimage. However, we use this variant
765 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
766 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
768 /// This variant should thus never be written to disk, as it is processed inline rather than
769 /// stored for later processing.
770 FreeOtherChannelImmediately {
771 downstream_counterparty_node_id: PublicKey,
772 downstream_funding_outpoint: OutPoint,
773 blocking_action: RAAMonitorUpdateBlockingAction,
774 downstream_channel_id: ChannelId,
778 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
779 (0, PaymentClaimed) => { (0, payment_hash, required) },
780 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
781 // *immediately*. However, for simplicity we implement read/write here.
782 (1, FreeOtherChannelImmediately) => {
783 (0, downstream_counterparty_node_id, required),
784 (2, downstream_funding_outpoint, required),
785 (4, blocking_action, required),
786 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
787 // filled in, so we can safely unwrap it here.
788 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
790 (2, EmitEventAndFreeOtherChannel) => {
791 (0, event, upgradable_required),
792 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
793 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
794 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
795 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
796 // downgrades to prior versions.
797 (1, downstream_counterparty_and_funding_outpoint, option),
801 #[derive(Clone, Debug, PartialEq, Eq)]
802 pub(crate) enum EventCompletionAction {
803 ReleaseRAAChannelMonitorUpdate {
804 counterparty_node_id: PublicKey,
805 channel_funding_outpoint: OutPoint,
806 channel_id: ChannelId,
809 impl_writeable_tlv_based_enum!(EventCompletionAction,
810 (0, ReleaseRAAChannelMonitorUpdate) => {
811 (0, channel_funding_outpoint, required),
812 (2, counterparty_node_id, required),
813 // Note that by the time we get past the required read above, channel_funding_outpoint will be
814 // filled in, so we can safely unwrap it here.
815 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
819 #[derive(Clone, PartialEq, Eq, Debug)]
820 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
821 /// the blocked action here. See enum variants for more info.
822 pub(crate) enum RAAMonitorUpdateBlockingAction {
823 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
824 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
826 ForwardedPaymentInboundClaim {
827 /// The upstream channel ID (i.e. the inbound edge).
828 channel_id: ChannelId,
829 /// The HTLC ID on the inbound edge.
834 impl RAAMonitorUpdateBlockingAction {
835 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
836 Self::ForwardedPaymentInboundClaim {
837 channel_id: prev_hop.channel_id,
838 htlc_id: prev_hop.htlc_id,
843 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
844 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
848 /// State we hold per-peer.
849 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
850 /// `channel_id` -> `ChannelPhase`
852 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
853 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
854 /// `temporary_channel_id` -> `InboundChannelRequest`.
856 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
857 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
858 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
859 /// the channel is rejected, then the entry is simply removed.
860 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
861 /// The latest `InitFeatures` we heard from the peer.
862 latest_features: InitFeatures,
863 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
864 /// for broadcast messages, where ordering isn't as strict).
865 pub(super) pending_msg_events: Vec<MessageSendEvent>,
866 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
867 /// user but which have not yet completed.
869 /// Note that the channel may no longer exist. For example if the channel was closed but we
870 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
871 /// for a missing channel.
872 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
873 /// Map from a specific channel to some action(s) that should be taken when all pending
874 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
876 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
877 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
878 /// channels with a peer this will just be one allocation and will amount to a linear list of
879 /// channels to walk, avoiding the whole hashing rigmarole.
881 /// Note that the channel may no longer exist. For example, if a channel was closed but we
882 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
883 /// for a missing channel. While a malicious peer could construct a second channel with the
884 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
885 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
886 /// duplicates do not occur, so such channels should fail without a monitor update completing.
887 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
888 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
889 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
890 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
891 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
892 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
893 /// The peer is currently connected (i.e. we've seen a
894 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
895 /// [`ChannelMessageHandler::peer_disconnected`].
899 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
900 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
901 /// If true is passed for `require_disconnected`, the function will return false if we haven't
902 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
903 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
904 if require_disconnected && self.is_connected {
907 !self.channel_by_id.iter().any(|(_, phase)|
909 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
910 ChannelPhase::UnfundedInboundV1(_) => false,
912 ChannelPhase::UnfundedOutboundV2(_) => true,
914 ChannelPhase::UnfundedInboundV2(_) => false,
917 && self.monitor_update_blocked_actions.is_empty()
918 && self.in_flight_monitor_updates.is_empty()
921 // Returns a count of all channels we have with this peer, including unfunded channels.
922 fn total_channel_count(&self) -> usize {
923 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
926 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
927 fn has_channel(&self, channel_id: &ChannelId) -> bool {
928 self.channel_by_id.contains_key(channel_id) ||
929 self.inbound_channel_request_by_id.contains_key(channel_id)
933 /// A not-yet-accepted inbound (from counterparty) channel. Once
934 /// accepted, the parameters will be used to construct a channel.
935 pub(super) struct InboundChannelRequest {
936 /// The original OpenChannel message.
937 pub open_channel_msg: msgs::OpenChannel,
938 /// The number of ticks remaining before the request expires.
939 pub ticks_remaining: i32,
942 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
943 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
944 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
946 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
947 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
949 /// For users who don't want to bother doing their own payment preimage storage, we also store that
952 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
953 /// and instead encoding it in the payment secret.
954 struct PendingInboundPayment {
955 /// The payment secret that the sender must use for us to accept this payment
956 payment_secret: PaymentSecret,
957 /// Time at which this HTLC expires - blocks with a header time above this value will result in
958 /// this payment being removed.
960 /// Arbitrary identifier the user specifies (or not)
961 user_payment_id: u64,
962 // Other required attributes of the payment, optionally enforced:
963 payment_preimage: Option<PaymentPreimage>,
964 min_value_msat: Option<u64>,
967 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
968 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
969 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
970 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
971 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
972 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
973 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
974 /// of [`KeysManager`] and [`DefaultRouter`].
976 /// This is not exported to bindings users as type aliases aren't supported in most languages.
977 #[cfg(not(c_bindings))]
978 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
986 Arc<NetworkGraph<Arc<L>>>,
989 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
990 ProbabilisticScoringFeeParameters,
991 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
996 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
997 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
998 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
999 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1000 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1001 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1002 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1003 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1004 /// of [`KeysManager`] and [`DefaultRouter`].
1006 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1007 #[cfg(not(c_bindings))]
1008 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1017 &'f NetworkGraph<&'g L>,
1020 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1021 ProbabilisticScoringFeeParameters,
1022 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1027 /// A trivial trait which describes any [`ChannelManager`].
1029 /// This is not exported to bindings users as general cover traits aren't useful in other
1031 pub trait AChannelManager {
1032 /// A type implementing [`chain::Watch`].
1033 type Watch: chain::Watch<Self::Signer> + ?Sized;
1034 /// A type that may be dereferenced to [`Self::Watch`].
1035 type M: Deref<Target = Self::Watch>;
1036 /// A type implementing [`BroadcasterInterface`].
1037 type Broadcaster: BroadcasterInterface + ?Sized;
1038 /// A type that may be dereferenced to [`Self::Broadcaster`].
1039 type T: Deref<Target = Self::Broadcaster>;
1040 /// A type implementing [`EntropySource`].
1041 type EntropySource: EntropySource + ?Sized;
1042 /// A type that may be dereferenced to [`Self::EntropySource`].
1043 type ES: Deref<Target = Self::EntropySource>;
1044 /// A type implementing [`NodeSigner`].
1045 type NodeSigner: NodeSigner + ?Sized;
1046 /// A type that may be dereferenced to [`Self::NodeSigner`].
1047 type NS: Deref<Target = Self::NodeSigner>;
1048 /// A type implementing [`WriteableEcdsaChannelSigner`].
1049 type Signer: WriteableEcdsaChannelSigner + Sized;
1050 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1051 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1052 /// A type that may be dereferenced to [`Self::SignerProvider`].
1053 type SP: Deref<Target = Self::SignerProvider>;
1054 /// A type implementing [`FeeEstimator`].
1055 type FeeEstimator: FeeEstimator + ?Sized;
1056 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1057 type F: Deref<Target = Self::FeeEstimator>;
1058 /// A type implementing [`Router`].
1059 type Router: Router + ?Sized;
1060 /// A type that may be dereferenced to [`Self::Router`].
1061 type R: Deref<Target = Self::Router>;
1062 /// A type implementing [`Logger`].
1063 type Logger: Logger + ?Sized;
1064 /// A type that may be dereferenced to [`Self::Logger`].
1065 type L: Deref<Target = Self::Logger>;
1066 /// Returns a reference to the actual [`ChannelManager`] object.
1067 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1070 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1071 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1073 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1074 T::Target: BroadcasterInterface,
1075 ES::Target: EntropySource,
1076 NS::Target: NodeSigner,
1077 SP::Target: SignerProvider,
1078 F::Target: FeeEstimator,
1082 type Watch = M::Target;
1084 type Broadcaster = T::Target;
1086 type EntropySource = ES::Target;
1088 type NodeSigner = NS::Target;
1090 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1091 type SignerProvider = SP::Target;
1093 type FeeEstimator = F::Target;
1095 type Router = R::Target;
1097 type Logger = L::Target;
1099 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1102 /// Manager which keeps track of a number of channels and sends messages to the appropriate
1103 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
1105 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
1106 /// to individual Channels.
1108 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1109 /// all peers during write/read (though does not modify this instance, only the instance being
1110 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1111 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1113 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1114 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1115 /// [`ChannelMonitorUpdate`] before returning from
1116 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1117 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1118 /// `ChannelManager` operations from occurring during the serialization process). If the
1119 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1120 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1121 /// will be lost (modulo on-chain transaction fees).
1123 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1124 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1125 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1127 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1128 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1129 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1130 /// offline for a full minute. In order to track this, you must call
1131 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1133 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1134 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1135 /// not have a channel with being unable to connect to us or open new channels with us if we have
1136 /// many peers with unfunded channels.
1138 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1139 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1140 /// never limited. Please ensure you limit the count of such channels yourself.
1142 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1143 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1144 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1145 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1146 /// you're using lightning-net-tokio.
1148 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1149 /// [`funding_created`]: msgs::FundingCreated
1150 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1151 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1152 /// [`update_channel`]: chain::Watch::update_channel
1153 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1154 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1155 /// [`read`]: ReadableArgs::read
1158 // The tree structure below illustrates the lock order requirements for the different locks of the
1159 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1160 // and should then be taken in the order of the lowest to the highest level in the tree.
1161 // Note that locks on different branches shall not be taken at the same time, as doing so will
1162 // create a new lock order for those specific locks in the order they were taken.
1166 // `pending_offers_messages`
1168 // `total_consistency_lock`
1170 // |__`forward_htlcs`
1172 // | |__`pending_intercepted_htlcs`
1174 // |__`per_peer_state`
1176 // |__`pending_inbound_payments`
1178 // |__`claimable_payments`
1180 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1184 // |__`outpoint_to_peer`
1186 // |__`short_to_chan_info`
1188 // |__`outbound_scid_aliases`
1192 // |__`pending_events`
1194 // |__`pending_background_events`
1196 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1198 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1199 T::Target: BroadcasterInterface,
1200 ES::Target: EntropySource,
1201 NS::Target: NodeSigner,
1202 SP::Target: SignerProvider,
1203 F::Target: FeeEstimator,
1207 default_configuration: UserConfig,
1208 chain_hash: ChainHash,
1209 fee_estimator: LowerBoundedFeeEstimator<F>,
1215 /// See `ChannelManager` struct-level documentation for lock order requirements.
1217 pub(super) best_block: RwLock<BestBlock>,
1219 best_block: RwLock<BestBlock>,
1220 secp_ctx: Secp256k1<secp256k1::All>,
1222 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1223 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1224 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1225 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1227 /// See `ChannelManager` struct-level documentation for lock order requirements.
1228 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1230 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1231 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1232 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1233 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1234 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1235 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1236 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1237 /// after reloading from disk while replaying blocks against ChannelMonitors.
1239 /// See `PendingOutboundPayment` documentation for more info.
1241 /// See `ChannelManager` struct-level documentation for lock order requirements.
1242 pending_outbound_payments: OutboundPayments,
1244 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1246 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1247 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1248 /// and via the classic SCID.
1250 /// Note that no consistency guarantees are made about the existence of a channel with the
1251 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1253 /// See `ChannelManager` struct-level documentation for lock order requirements.
1255 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1257 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1258 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1259 /// until the user tells us what we should do with them.
1261 /// See `ChannelManager` struct-level documentation for lock order requirements.
1262 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1264 /// The sets of payments which are claimable or currently being claimed. See
1265 /// [`ClaimablePayments`]' individual field docs for more info.
1267 /// See `ChannelManager` struct-level documentation for lock order requirements.
1268 claimable_payments: Mutex<ClaimablePayments>,
1270 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1271 /// and some closed channels which reached a usable state prior to being closed. This is used
1272 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1273 /// active channel list on load.
1275 /// See `ChannelManager` struct-level documentation for lock order requirements.
1276 outbound_scid_aliases: Mutex<HashSet<u64>>,
1278 /// Channel funding outpoint -> `counterparty_node_id`.
1280 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1281 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1282 /// the handling of the events.
1284 /// Note that no consistency guarantees are made about the existence of a peer with the
1285 /// `counterparty_node_id` in our other maps.
1288 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1289 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1290 /// would break backwards compatability.
1291 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1292 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1293 /// required to access the channel with the `counterparty_node_id`.
1295 /// See `ChannelManager` struct-level documentation for lock order requirements.
1297 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1299 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1301 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1303 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1304 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1305 /// confirmation depth.
1307 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1308 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1309 /// channel with the `channel_id` in our other maps.
1311 /// See `ChannelManager` struct-level documentation for lock order requirements.
1313 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1315 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1317 our_network_pubkey: PublicKey,
1319 inbound_payment_key: inbound_payment::ExpandedKey,
1321 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1322 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1323 /// we encrypt the namespace identifier using these bytes.
1325 /// [fake scids]: crate::util::scid_utils::fake_scid
1326 fake_scid_rand_bytes: [u8; 32],
1328 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1329 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1330 /// keeping additional state.
1331 probing_cookie_secret: [u8; 32],
1333 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1334 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1335 /// very far in the past, and can only ever be up to two hours in the future.
1336 highest_seen_timestamp: AtomicUsize,
1338 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1339 /// basis, as well as the peer's latest features.
1341 /// If we are connected to a peer we always at least have an entry here, even if no channels
1342 /// are currently open with that peer.
1344 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1345 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1348 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1350 /// See `ChannelManager` struct-level documentation for lock order requirements.
1351 #[cfg(not(any(test, feature = "_test_utils")))]
1352 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1353 #[cfg(any(test, feature = "_test_utils"))]
1354 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1356 /// The set of events which we need to give to the user to handle. In some cases an event may
1357 /// require some further action after the user handles it (currently only blocking a monitor
1358 /// update from being handed to the user to ensure the included changes to the channel state
1359 /// are handled by the user before they're persisted durably to disk). In that case, the second
1360 /// element in the tuple is set to `Some` with further details of the action.
1362 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1363 /// could be in the middle of being processed without the direct mutex held.
1365 /// See `ChannelManager` struct-level documentation for lock order requirements.
1366 #[cfg(not(any(test, feature = "_test_utils")))]
1367 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1368 #[cfg(any(test, feature = "_test_utils"))]
1369 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1371 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1372 pending_events_processor: AtomicBool,
1374 /// If we are running during init (either directly during the deserialization method or in
1375 /// block connection methods which run after deserialization but before normal operation) we
1376 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1377 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1378 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1380 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1382 /// See `ChannelManager` struct-level documentation for lock order requirements.
1384 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1385 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1386 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1387 /// Essentially just when we're serializing ourselves out.
1388 /// Taken first everywhere where we are making changes before any other locks.
1389 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1390 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1391 /// Notifier the lock contains sends out a notification when the lock is released.
1392 total_consistency_lock: RwLock<()>,
1393 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1394 /// received and the monitor has been persisted.
1396 /// This information does not need to be persisted as funding nodes can forget
1397 /// unfunded channels upon disconnection.
1398 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1400 background_events_processed_since_startup: AtomicBool,
1402 event_persist_notifier: Notifier,
1403 needs_persist_flag: AtomicBool,
1405 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1409 signer_provider: SP,
1414 /// Chain-related parameters used to construct a new `ChannelManager`.
1416 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1417 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1418 /// are not needed when deserializing a previously constructed `ChannelManager`.
1419 #[derive(Clone, Copy, PartialEq)]
1420 pub struct ChainParameters {
1421 /// The network for determining the `chain_hash` in Lightning messages.
1422 pub network: Network,
1424 /// The hash and height of the latest block successfully connected.
1426 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1427 pub best_block: BestBlock,
1430 #[derive(Copy, Clone, PartialEq)]
1434 SkipPersistHandleEvents,
1435 SkipPersistNoEvents,
1438 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1439 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1440 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1441 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1442 /// sending the aforementioned notification (since the lock being released indicates that the
1443 /// updates are ready for persistence).
1445 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1446 /// notify or not based on whether relevant changes have been made, providing a closure to
1447 /// `optionally_notify` which returns a `NotifyOption`.
1448 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1449 event_persist_notifier: &'a Notifier,
1450 needs_persist_flag: &'a AtomicBool,
1452 // We hold onto this result so the lock doesn't get released immediately.
1453 _read_guard: RwLockReadGuard<'a, ()>,
1456 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1457 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1458 /// events to handle.
1460 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1461 /// other cases where losing the changes on restart may result in a force-close or otherwise
1463 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1464 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1467 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1468 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1469 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1470 let force_notify = cm.get_cm().process_background_events();
1472 PersistenceNotifierGuard {
1473 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1474 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1475 should_persist: move || {
1476 // Pick the "most" action between `persist_check` and the background events
1477 // processing and return that.
1478 let notify = persist_check();
1479 match (notify, force_notify) {
1480 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1481 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1482 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1483 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1484 _ => NotifyOption::SkipPersistNoEvents,
1487 _read_guard: read_guard,
1491 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1492 /// [`ChannelManager::process_background_events`] MUST be called first (or
1493 /// [`Self::optionally_notify`] used).
1494 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1495 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1496 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1498 PersistenceNotifierGuard {
1499 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1500 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1501 should_persist: persist_check,
1502 _read_guard: read_guard,
1507 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1508 fn drop(&mut self) {
1509 match (self.should_persist)() {
1510 NotifyOption::DoPersist => {
1511 self.needs_persist_flag.store(true, Ordering::Release);
1512 self.event_persist_notifier.notify()
1514 NotifyOption::SkipPersistHandleEvents =>
1515 self.event_persist_notifier.notify(),
1516 NotifyOption::SkipPersistNoEvents => {},
1521 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1522 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1524 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1526 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1527 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1528 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1529 /// the maximum required amount in lnd as of March 2021.
1530 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1532 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1533 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1535 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1537 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1538 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1539 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1540 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1541 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1542 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1543 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1544 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1545 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1546 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1547 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1548 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1549 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1551 /// Minimum CLTV difference between the current block height and received inbound payments.
1552 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1554 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1555 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1556 // a payment was being routed, so we add an extra block to be safe.
1557 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1559 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1560 // ie that if the next-hop peer fails the HTLC within
1561 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1562 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1563 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1564 // LATENCY_GRACE_PERIOD_BLOCKS.
1566 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1568 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1569 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1571 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1573 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1574 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1576 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1577 /// until we mark the channel disabled and gossip the update.
1578 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1580 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1581 /// we mark the channel enabled and gossip the update.
1582 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1584 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1585 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1586 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1587 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1589 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1590 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1591 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1593 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1594 /// many peers we reject new (inbound) connections.
1595 const MAX_NO_CHANNEL_PEERS: usize = 250;
1597 /// Information needed for constructing an invoice route hint for this channel.
1598 #[derive(Clone, Debug, PartialEq)]
1599 pub struct CounterpartyForwardingInfo {
1600 /// Base routing fee in millisatoshis.
1601 pub fee_base_msat: u32,
1602 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1603 pub fee_proportional_millionths: u32,
1604 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1605 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1606 /// `cltv_expiry_delta` for more details.
1607 pub cltv_expiry_delta: u16,
1610 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1611 /// to better separate parameters.
1612 #[derive(Clone, Debug, PartialEq)]
1613 pub struct ChannelCounterparty {
1614 /// The node_id of our counterparty
1615 pub node_id: PublicKey,
1616 /// The Features the channel counterparty provided upon last connection.
1617 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1618 /// many routing-relevant features are present in the init context.
1619 pub features: InitFeatures,
1620 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1621 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1622 /// claiming at least this value on chain.
1624 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1626 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1627 pub unspendable_punishment_reserve: u64,
1628 /// Information on the fees and requirements that the counterparty requires when forwarding
1629 /// payments to us through this channel.
1630 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1631 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1632 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1633 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1634 pub outbound_htlc_minimum_msat: Option<u64>,
1635 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1636 pub outbound_htlc_maximum_msat: Option<u64>,
1639 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1640 #[derive(Clone, Debug, PartialEq)]
1641 pub struct ChannelDetails {
1642 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1643 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1644 /// Note that this means this value is *not* persistent - it can change once during the
1645 /// lifetime of the channel.
1646 pub channel_id: ChannelId,
1647 /// Parameters which apply to our counterparty. See individual fields for more information.
1648 pub counterparty: ChannelCounterparty,
1649 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1650 /// our counterparty already.
1651 pub funding_txo: Option<OutPoint>,
1652 /// The features which this channel operates with. See individual features for more info.
1654 /// `None` until negotiation completes and the channel type is finalized.
1655 pub channel_type: Option<ChannelTypeFeatures>,
1656 /// The position of the funding transaction in the chain. None if the funding transaction has
1657 /// not yet been confirmed and the channel fully opened.
1659 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1660 /// payments instead of this. See [`get_inbound_payment_scid`].
1662 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1663 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1665 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1666 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1667 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1668 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1669 /// [`confirmations_required`]: Self::confirmations_required
1670 pub short_channel_id: Option<u64>,
1671 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1672 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1673 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1676 /// This will be `None` as long as the channel is not available for routing outbound payments.
1678 /// [`short_channel_id`]: Self::short_channel_id
1679 /// [`confirmations_required`]: Self::confirmations_required
1680 pub outbound_scid_alias: Option<u64>,
1681 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1682 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1683 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1684 /// when they see a payment to be routed to us.
1686 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1687 /// previous values for inbound payment forwarding.
1689 /// [`short_channel_id`]: Self::short_channel_id
1690 pub inbound_scid_alias: Option<u64>,
1691 /// The value, in satoshis, of this channel as appears in the funding output
1692 pub channel_value_satoshis: u64,
1693 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1694 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1695 /// this value on chain.
1697 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1699 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1701 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1702 pub unspendable_punishment_reserve: Option<u64>,
1703 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1704 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1705 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1706 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1707 /// serialized with LDK versions prior to 0.0.113.
1709 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1710 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1711 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1712 pub user_channel_id: u128,
1713 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1714 /// which is applied to commitment and HTLC transactions.
1716 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1717 pub feerate_sat_per_1000_weight: Option<u32>,
1718 /// Our total balance. This is the amount we would get if we close the channel.
1719 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1720 /// amount is not likely to be recoverable on close.
1722 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1723 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1724 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1725 /// This does not consider any on-chain fees.
1727 /// See also [`ChannelDetails::outbound_capacity_msat`]
1728 pub balance_msat: u64,
1729 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1730 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1731 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1732 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1734 /// See also [`ChannelDetails::balance_msat`]
1736 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1737 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1738 /// should be able to spend nearly this amount.
1739 pub outbound_capacity_msat: u64,
1740 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1741 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1742 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1743 /// to use a limit as close as possible to the HTLC limit we can currently send.
1745 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1746 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1747 pub next_outbound_htlc_limit_msat: u64,
1748 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1749 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1750 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1751 /// route which is valid.
1752 pub next_outbound_htlc_minimum_msat: u64,
1753 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1754 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1755 /// available for inclusion in new inbound HTLCs).
1756 /// Note that there are some corner cases not fully handled here, so the actual available
1757 /// inbound capacity may be slightly higher than this.
1759 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1760 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1761 /// However, our counterparty should be able to spend nearly this amount.
1762 pub inbound_capacity_msat: u64,
1763 /// The number of required confirmations on the funding transaction before the funding will be
1764 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1765 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1766 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1767 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1769 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1771 /// [`is_outbound`]: ChannelDetails::is_outbound
1772 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1773 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1774 pub confirmations_required: Option<u32>,
1775 /// The current number of confirmations on the funding transaction.
1777 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1778 pub confirmations: Option<u32>,
1779 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1780 /// until we can claim our funds after we force-close the channel. During this time our
1781 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1782 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1783 /// time to claim our non-HTLC-encumbered funds.
1785 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1786 pub force_close_spend_delay: Option<u16>,
1787 /// True if the channel was initiated (and thus funded) by us.
1788 pub is_outbound: bool,
1789 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1790 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1791 /// required confirmation count has been reached (and we were connected to the peer at some
1792 /// point after the funding transaction received enough confirmations). The required
1793 /// confirmation count is provided in [`confirmations_required`].
1795 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1796 pub is_channel_ready: bool,
1797 /// The stage of the channel's shutdown.
1798 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1799 pub channel_shutdown_state: Option<ChannelShutdownState>,
1800 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1801 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1803 /// This is a strict superset of `is_channel_ready`.
1804 pub is_usable: bool,
1805 /// True if this channel is (or will be) publicly-announced.
1806 pub is_public: bool,
1807 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1808 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1809 pub inbound_htlc_minimum_msat: Option<u64>,
1810 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1811 pub inbound_htlc_maximum_msat: Option<u64>,
1812 /// Set of configurable parameters that affect channel operation.
1814 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1815 pub config: Option<ChannelConfig>,
1816 /// Pending inbound HTLCs.
1818 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
1819 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
1820 /// Pending outbound HTLCs.
1822 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
1823 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
1826 impl ChannelDetails {
1827 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1828 /// This should be used for providing invoice hints or in any other context where our
1829 /// counterparty will forward a payment to us.
1831 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1832 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1833 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1834 self.inbound_scid_alias.or(self.short_channel_id)
1837 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1838 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1839 /// we're sending or forwarding a payment outbound over this channel.
1841 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1842 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1843 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1844 self.short_channel_id.or(self.outbound_scid_alias)
1847 fn from_channel_context<SP: Deref, F: Deref>(
1848 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1849 fee_estimator: &LowerBoundedFeeEstimator<F>
1852 SP::Target: SignerProvider,
1853 F::Target: FeeEstimator
1855 let balance = context.get_available_balances(fee_estimator);
1856 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1857 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1859 channel_id: context.channel_id(),
1860 counterparty: ChannelCounterparty {
1861 node_id: context.get_counterparty_node_id(),
1862 features: latest_features,
1863 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1864 forwarding_info: context.counterparty_forwarding_info(),
1865 // Ensures that we have actually received the `htlc_minimum_msat` value
1866 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1867 // message (as they are always the first message from the counterparty).
1868 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1869 // default `0` value set by `Channel::new_outbound`.
1870 outbound_htlc_minimum_msat: if context.have_received_message() {
1871 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1872 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1874 funding_txo: context.get_funding_txo(),
1875 // Note that accept_channel (or open_channel) is always the first message, so
1876 // `have_received_message` indicates that type negotiation has completed.
1877 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1878 short_channel_id: context.get_short_channel_id(),
1879 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1880 inbound_scid_alias: context.latest_inbound_scid_alias(),
1881 channel_value_satoshis: context.get_value_satoshis(),
1882 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1883 unspendable_punishment_reserve: to_self_reserve_satoshis,
1884 balance_msat: balance.balance_msat,
1885 inbound_capacity_msat: balance.inbound_capacity_msat,
1886 outbound_capacity_msat: balance.outbound_capacity_msat,
1887 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1888 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1889 user_channel_id: context.get_user_id(),
1890 confirmations_required: context.minimum_depth(),
1891 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1892 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1893 is_outbound: context.is_outbound(),
1894 is_channel_ready: context.is_usable(),
1895 is_usable: context.is_live(),
1896 is_public: context.should_announce(),
1897 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1898 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1899 config: Some(context.config()),
1900 channel_shutdown_state: Some(context.shutdown_state()),
1901 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
1902 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
1907 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1908 /// Further information on the details of the channel shutdown.
1909 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1910 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1911 /// the channel will be removed shortly.
1912 /// Also note, that in normal operation, peers could disconnect at any of these states
1913 /// and require peer re-connection before making progress onto other states
1914 pub enum ChannelShutdownState {
1915 /// Channel has not sent or received a shutdown message.
1917 /// Local node has sent a shutdown message for this channel.
1919 /// Shutdown message exchanges have concluded and the channels are in the midst of
1920 /// resolving all existing open HTLCs before closing can continue.
1922 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1923 NegotiatingClosingFee,
1924 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1925 /// to drop the channel.
1929 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1930 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1931 #[derive(Debug, PartialEq)]
1932 pub enum RecentPaymentDetails {
1933 /// When an invoice was requested and thus a payment has not yet been sent.
1935 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1936 /// a payment and ensure idempotency in LDK.
1937 payment_id: PaymentId,
1939 /// When a payment is still being sent and awaiting successful delivery.
1941 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1942 /// a payment and ensure idempotency in LDK.
1943 payment_id: PaymentId,
1944 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1946 payment_hash: PaymentHash,
1947 /// Total amount (in msat, excluding fees) across all paths for this payment,
1948 /// not just the amount currently inflight.
1951 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1952 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1953 /// payment is removed from tracking.
1955 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1956 /// a payment and ensure idempotency in LDK.
1957 payment_id: PaymentId,
1958 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1959 /// made before LDK version 0.0.104.
1960 payment_hash: Option<PaymentHash>,
1962 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1963 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1964 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1966 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1967 /// a payment and ensure idempotency in LDK.
1968 payment_id: PaymentId,
1969 /// Hash of the payment that we have given up trying to send.
1970 payment_hash: PaymentHash,
1974 /// Route hints used in constructing invoices for [phantom node payents].
1976 /// [phantom node payments]: crate::sign::PhantomKeysManager
1978 pub struct PhantomRouteHints {
1979 /// The list of channels to be included in the invoice route hints.
1980 pub channels: Vec<ChannelDetails>,
1981 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1983 pub phantom_scid: u64,
1984 /// The pubkey of the real backing node that would ultimately receive the payment.
1985 pub real_node_pubkey: PublicKey,
1988 macro_rules! handle_error {
1989 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1990 // In testing, ensure there are no deadlocks where the lock is already held upon
1991 // entering the macro.
1992 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1993 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1997 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
1998 let mut msg_events = Vec::with_capacity(2);
2000 if let Some((shutdown_res, update_option)) = shutdown_finish {
2001 let counterparty_node_id = shutdown_res.counterparty_node_id;
2002 let channel_id = shutdown_res.channel_id;
2003 let logger = WithContext::from(
2004 &$self.logger, Some(counterparty_node_id), Some(channel_id),
2006 log_error!(logger, "Force-closing channel: {}", err.err);
2008 $self.finish_close_channel(shutdown_res);
2009 if let Some(update) = update_option {
2010 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2015 log_error!($self.logger, "Got non-closing error: {}", err.err);
2018 if let msgs::ErrorAction::IgnoreError = err.action {
2020 msg_events.push(events::MessageSendEvent::HandleError {
2021 node_id: $counterparty_node_id,
2022 action: err.action.clone()
2026 if !msg_events.is_empty() {
2027 let per_peer_state = $self.per_peer_state.read().unwrap();
2028 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2029 let mut peer_state = peer_state_mutex.lock().unwrap();
2030 peer_state.pending_msg_events.append(&mut msg_events);
2034 // Return error in case higher-API need one
2041 macro_rules! update_maps_on_chan_removal {
2042 ($self: expr, $channel_context: expr) => {{
2043 if let Some(outpoint) = $channel_context.get_funding_txo() {
2044 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2046 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2047 if let Some(short_id) = $channel_context.get_short_channel_id() {
2048 short_to_chan_info.remove(&short_id);
2050 // If the channel was never confirmed on-chain prior to its closure, remove the
2051 // outbound SCID alias we used for it from the collision-prevention set. While we
2052 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2053 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2054 // opening a million channels with us which are closed before we ever reach the funding
2056 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2057 debug_assert!(alias_removed);
2059 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2063 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2064 macro_rules! convert_chan_phase_err {
2065 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2067 ChannelError::Warn(msg) => {
2068 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2070 ChannelError::Ignore(msg) => {
2071 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2073 ChannelError::Close(msg) => {
2074 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2075 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2076 update_maps_on_chan_removal!($self, $channel.context);
2077 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2078 let shutdown_res = $channel.context.force_shutdown(true, reason);
2080 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2085 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2086 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2088 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2089 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2091 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2092 match $channel_phase {
2093 ChannelPhase::Funded(channel) => {
2094 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2096 ChannelPhase::UnfundedOutboundV1(channel) => {
2097 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2099 ChannelPhase::UnfundedInboundV1(channel) => {
2100 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2102 #[cfg(dual_funding)]
2103 ChannelPhase::UnfundedOutboundV2(channel) => {
2104 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2106 #[cfg(dual_funding)]
2107 ChannelPhase::UnfundedInboundV2(channel) => {
2108 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2114 macro_rules! break_chan_phase_entry {
2115 ($self: ident, $res: expr, $entry: expr) => {
2119 let key = *$entry.key();
2120 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2122 $entry.remove_entry();
2130 macro_rules! try_chan_phase_entry {
2131 ($self: ident, $res: expr, $entry: expr) => {
2135 let key = *$entry.key();
2136 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2138 $entry.remove_entry();
2146 macro_rules! remove_channel_phase {
2147 ($self: expr, $entry: expr) => {
2149 let channel = $entry.remove_entry().1;
2150 update_maps_on_chan_removal!($self, &channel.context());
2156 macro_rules! send_channel_ready {
2157 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2158 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2159 node_id: $channel.context.get_counterparty_node_id(),
2160 msg: $channel_ready_msg,
2162 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2163 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2164 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2165 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2166 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2167 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2168 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2169 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2170 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2171 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2176 macro_rules! emit_channel_pending_event {
2177 ($locked_events: expr, $channel: expr) => {
2178 if $channel.context.should_emit_channel_pending_event() {
2179 $locked_events.push_back((events::Event::ChannelPending {
2180 channel_id: $channel.context.channel_id(),
2181 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2182 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2183 user_channel_id: $channel.context.get_user_id(),
2184 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2185 channel_type: Some($channel.context.get_channel_type().clone()),
2187 $channel.context.set_channel_pending_event_emitted();
2192 macro_rules! emit_channel_ready_event {
2193 ($locked_events: expr, $channel: expr) => {
2194 if $channel.context.should_emit_channel_ready_event() {
2195 debug_assert!($channel.context.channel_pending_event_emitted());
2196 $locked_events.push_back((events::Event::ChannelReady {
2197 channel_id: $channel.context.channel_id(),
2198 user_channel_id: $channel.context.get_user_id(),
2199 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2200 channel_type: $channel.context.get_channel_type().clone(),
2202 $channel.context.set_channel_ready_event_emitted();
2207 macro_rules! handle_monitor_update_completion {
2208 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2209 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2210 let mut updates = $chan.monitor_updating_restored(&&logger,
2211 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2212 $self.best_block.read().unwrap().height());
2213 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2214 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2215 // We only send a channel_update in the case where we are just now sending a
2216 // channel_ready and the channel is in a usable state. We may re-send a
2217 // channel_update later through the announcement_signatures process for public
2218 // channels, but there's no reason not to just inform our counterparty of our fees
2220 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2221 Some(events::MessageSendEvent::SendChannelUpdate {
2222 node_id: counterparty_node_id,
2228 let update_actions = $peer_state.monitor_update_blocked_actions
2229 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2231 let htlc_forwards = $self.handle_channel_resumption(
2232 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2233 updates.commitment_update, updates.order, updates.accepted_htlcs,
2234 updates.funding_broadcastable, updates.channel_ready,
2235 updates.announcement_sigs);
2236 if let Some(upd) = channel_update {
2237 $peer_state.pending_msg_events.push(upd);
2240 let channel_id = $chan.context.channel_id();
2241 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2242 core::mem::drop($peer_state_lock);
2243 core::mem::drop($per_peer_state_lock);
2245 // If the channel belongs to a batch funding transaction, the progress of the batch
2246 // should be updated as we have received funding_signed and persisted the monitor.
2247 if let Some(txid) = unbroadcasted_batch_funding_txid {
2248 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2249 let mut batch_completed = false;
2250 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2251 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2252 *chan_id == channel_id &&
2253 *pubkey == counterparty_node_id
2255 if let Some(channel_state) = channel_state {
2256 channel_state.2 = true;
2258 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2260 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2262 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2265 // When all channels in a batched funding transaction have become ready, it is not necessary
2266 // to track the progress of the batch anymore and the state of the channels can be updated.
2267 if batch_completed {
2268 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2269 let per_peer_state = $self.per_peer_state.read().unwrap();
2270 let mut batch_funding_tx = None;
2271 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2272 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2273 let mut peer_state = peer_state_mutex.lock().unwrap();
2274 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2275 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2276 chan.set_batch_ready();
2277 let mut pending_events = $self.pending_events.lock().unwrap();
2278 emit_channel_pending_event!(pending_events, chan);
2282 if let Some(tx) = batch_funding_tx {
2283 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2284 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2289 $self.handle_monitor_update_completion_actions(update_actions);
2291 if let Some(forwards) = htlc_forwards {
2292 $self.forward_htlcs(&mut [forwards][..]);
2294 $self.finalize_claims(updates.finalized_claimed_htlcs);
2295 for failure in updates.failed_htlcs.drain(..) {
2296 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2297 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2302 macro_rules! handle_new_monitor_update {
2303 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2304 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2305 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2307 ChannelMonitorUpdateStatus::UnrecoverableError => {
2308 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2309 log_error!(logger, "{}", err_str);
2310 panic!("{}", err_str);
2312 ChannelMonitorUpdateStatus::InProgress => {
2313 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2314 &$chan.context.channel_id());
2317 ChannelMonitorUpdateStatus::Completed => {
2323 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2324 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2325 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2327 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2328 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2329 .or_insert_with(Vec::new);
2330 // During startup, we push monitor updates as background events through to here in
2331 // order to replay updates that were in-flight when we shut down. Thus, we have to
2332 // filter for uniqueness here.
2333 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2334 .unwrap_or_else(|| {
2335 in_flight_updates.push($update);
2336 in_flight_updates.len() - 1
2338 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2339 handle_new_monitor_update!($self, update_res, $chan, _internal,
2341 let _ = in_flight_updates.remove(idx);
2342 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2343 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2349 macro_rules! process_events_body {
2350 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2351 let mut processed_all_events = false;
2352 while !processed_all_events {
2353 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2360 // We'll acquire our total consistency lock so that we can be sure no other
2361 // persists happen while processing monitor events.
2362 let _read_guard = $self.total_consistency_lock.read().unwrap();
2364 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2365 // ensure any startup-generated background events are handled first.
2366 result = $self.process_background_events();
2368 // TODO: This behavior should be documented. It's unintuitive that we query
2369 // ChannelMonitors when clearing other events.
2370 if $self.process_pending_monitor_events() {
2371 result = NotifyOption::DoPersist;
2375 let pending_events = $self.pending_events.lock().unwrap().clone();
2376 let num_events = pending_events.len();
2377 if !pending_events.is_empty() {
2378 result = NotifyOption::DoPersist;
2381 let mut post_event_actions = Vec::new();
2383 for (event, action_opt) in pending_events {
2384 $event_to_handle = event;
2386 if let Some(action) = action_opt {
2387 post_event_actions.push(action);
2392 let mut pending_events = $self.pending_events.lock().unwrap();
2393 pending_events.drain(..num_events);
2394 processed_all_events = pending_events.is_empty();
2395 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2396 // updated here with the `pending_events` lock acquired.
2397 $self.pending_events_processor.store(false, Ordering::Release);
2400 if !post_event_actions.is_empty() {
2401 $self.handle_post_event_actions(post_event_actions);
2402 // If we had some actions, go around again as we may have more events now
2403 processed_all_events = false;
2407 NotifyOption::DoPersist => {
2408 $self.needs_persist_flag.store(true, Ordering::Release);
2409 $self.event_persist_notifier.notify();
2411 NotifyOption::SkipPersistHandleEvents =>
2412 $self.event_persist_notifier.notify(),
2413 NotifyOption::SkipPersistNoEvents => {},
2419 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2421 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
2422 T::Target: BroadcasterInterface,
2423 ES::Target: EntropySource,
2424 NS::Target: NodeSigner,
2425 SP::Target: SignerProvider,
2426 F::Target: FeeEstimator,
2430 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2432 /// The current time or latest block header time can be provided as the `current_timestamp`.
2434 /// This is the main "logic hub" for all channel-related actions, and implements
2435 /// [`ChannelMessageHandler`].
2437 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2439 /// Users need to notify the new `ChannelManager` when a new block is connected or
2440 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2441 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2444 /// [`block_connected`]: chain::Listen::block_connected
2445 /// [`block_disconnected`]: chain::Listen::block_disconnected
2446 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2448 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2449 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2450 current_timestamp: u32,
2452 let mut secp_ctx = Secp256k1::new();
2453 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2454 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2455 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2457 default_configuration: config.clone(),
2458 chain_hash: ChainHash::using_genesis_block(params.network),
2459 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2464 best_block: RwLock::new(params.best_block),
2466 outbound_scid_aliases: Mutex::new(new_hash_set()),
2467 pending_inbound_payments: Mutex::new(new_hash_map()),
2468 pending_outbound_payments: OutboundPayments::new(),
2469 forward_htlcs: Mutex::new(new_hash_map()),
2470 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
2471 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
2472 outpoint_to_peer: Mutex::new(new_hash_map()),
2473 short_to_chan_info: FairRwLock::new(new_hash_map()),
2475 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2478 inbound_payment_key: expanded_inbound_key,
2479 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2481 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2483 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2485 per_peer_state: FairRwLock::new(new_hash_map()),
2487 pending_events: Mutex::new(VecDeque::new()),
2488 pending_events_processor: AtomicBool::new(false),
2489 pending_background_events: Mutex::new(Vec::new()),
2490 total_consistency_lock: RwLock::new(()),
2491 background_events_processed_since_startup: AtomicBool::new(false),
2492 event_persist_notifier: Notifier::new(),
2493 needs_persist_flag: AtomicBool::new(false),
2494 funding_batch_states: Mutex::new(BTreeMap::new()),
2496 pending_offers_messages: Mutex::new(Vec::new()),
2506 /// Gets the current configuration applied to all new channels.
2507 pub fn get_current_default_configuration(&self) -> &UserConfig {
2508 &self.default_configuration
2511 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2512 let height = self.best_block.read().unwrap().height();
2513 let mut outbound_scid_alias = 0;
2516 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2517 outbound_scid_alias += 1;
2519 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2521 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2525 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2530 /// Creates a new outbound channel to the given remote node and with the given value.
2532 /// `user_channel_id` will be provided back as in
2533 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2534 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2535 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2536 /// is simply copied to events and otherwise ignored.
2538 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2539 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2541 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2542 /// generate a shutdown scriptpubkey or destination script set by
2543 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2545 /// Note that we do not check if you are currently connected to the given peer. If no
2546 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2547 /// the channel eventually being silently forgotten (dropped on reload).
2549 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2550 /// channel. Otherwise, a random one will be generated for you.
2552 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2553 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2554 /// [`ChannelDetails::channel_id`] until after
2555 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2556 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2557 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2559 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2560 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2561 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2562 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2563 if channel_value_satoshis < 1000 {
2564 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2567 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2568 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2569 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2571 let per_peer_state = self.per_peer_state.read().unwrap();
2573 let peer_state_mutex = per_peer_state.get(&their_network_key)
2574 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2576 let mut peer_state = peer_state_mutex.lock().unwrap();
2578 if let Some(temporary_channel_id) = temporary_channel_id {
2579 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2580 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2585 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2586 let their_features = &peer_state.latest_features;
2587 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2588 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2589 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2590 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2594 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2599 let res = channel.get_open_channel(self.chain_hash);
2601 let temporary_channel_id = channel.context.channel_id();
2602 match peer_state.channel_by_id.entry(temporary_channel_id) {
2603 hash_map::Entry::Occupied(_) => {
2605 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2607 panic!("RNG is bad???");
2610 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2613 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2614 node_id: their_network_key,
2617 Ok(temporary_channel_id)
2620 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2621 // Allocate our best estimate of the number of channels we have in the `res`
2622 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2623 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
2624 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2625 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2626 // the same channel.
2627 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2629 let best_block_height = self.best_block.read().unwrap().height();
2630 let per_peer_state = self.per_peer_state.read().unwrap();
2631 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2632 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2633 let peer_state = &mut *peer_state_lock;
2634 res.extend(peer_state.channel_by_id.iter()
2635 .filter_map(|(chan_id, phase)| match phase {
2636 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2637 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2641 .map(|(_channel_id, channel)| {
2642 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2643 peer_state.latest_features.clone(), &self.fee_estimator)
2651 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2652 /// more information.
2653 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2654 // Allocate our best estimate of the number of channels we have in the `res`
2655 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2656 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
2657 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2658 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2659 // the same channel.
2660 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2662 let best_block_height = self.best_block.read().unwrap().height();
2663 let per_peer_state = self.per_peer_state.read().unwrap();
2664 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2665 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2666 let peer_state = &mut *peer_state_lock;
2667 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2668 let details = ChannelDetails::from_channel_context(context, best_block_height,
2669 peer_state.latest_features.clone(), &self.fee_estimator);
2677 /// Gets the list of usable channels, in random order. Useful as an argument to
2678 /// [`Router::find_route`] to ensure non-announced channels are used.
2680 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2681 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2683 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2684 // Note we use is_live here instead of usable which leads to somewhat confused
2685 // internal/external nomenclature, but that's ok cause that's probably what the user
2686 // really wanted anyway.
2687 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2690 /// Gets the list of channels we have with a given counterparty, in random order.
2691 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2692 let best_block_height = self.best_block.read().unwrap().height();
2693 let per_peer_state = self.per_peer_state.read().unwrap();
2695 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2696 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2697 let peer_state = &mut *peer_state_lock;
2698 let features = &peer_state.latest_features;
2699 let context_to_details = |context| {
2700 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2702 return peer_state.channel_by_id
2704 .map(|(_, phase)| phase.context())
2705 .map(context_to_details)
2711 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2712 /// successful path, or have unresolved HTLCs.
2714 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2715 /// result of a crash. If such a payment exists, is not listed here, and an
2716 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2718 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2719 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2720 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2721 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2722 PendingOutboundPayment::AwaitingInvoice { .. } => {
2723 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2725 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2726 PendingOutboundPayment::InvoiceReceived { .. } => {
2727 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2729 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2730 Some(RecentPaymentDetails::Pending {
2731 payment_id: *payment_id,
2732 payment_hash: *payment_hash,
2733 total_msat: *total_msat,
2736 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2737 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2739 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2740 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2742 PendingOutboundPayment::Legacy { .. } => None
2747 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2748 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2750 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
2751 let mut shutdown_result = None;
2754 let per_peer_state = self.per_peer_state.read().unwrap();
2756 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2757 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2759 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2760 let peer_state = &mut *peer_state_lock;
2762 match peer_state.channel_by_id.entry(channel_id.clone()) {
2763 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2764 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2765 let funding_txo_opt = chan.context.get_funding_txo();
2766 let their_features = &peer_state.latest_features;
2767 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2768 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2769 failed_htlcs = htlcs;
2771 // We can send the `shutdown` message before updating the `ChannelMonitor`
2772 // here as we don't need the monitor update to complete until we send a
2773 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2774 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2775 node_id: *counterparty_node_id,
2779 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2780 "We can't both complete shutdown and generate a monitor update");
2782 // Update the monitor with the shutdown script if necessary.
2783 if let Some(monitor_update) = monitor_update_opt.take() {
2784 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2785 peer_state_lock, peer_state, per_peer_state, chan);
2788 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2789 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
2792 hash_map::Entry::Vacant(_) => {
2793 return Err(APIError::ChannelUnavailable {
2795 "Channel with id {} not found for the passed counterparty node_id {}",
2796 channel_id, counterparty_node_id,
2803 for htlc_source in failed_htlcs.drain(..) {
2804 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2805 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2806 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2809 if let Some(shutdown_result) = shutdown_result {
2810 self.finish_close_channel(shutdown_result);
2816 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2817 /// will be accepted on the given channel, and after additional timeout/the closing of all
2818 /// pending HTLCs, the channel will be closed on chain.
2820 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2821 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2823 /// * If our counterparty is the channel initiator, we will require a channel closing
2824 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2825 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2826 /// counterparty to pay as much fee as they'd like, however.
2828 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2830 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2831 /// generate a shutdown scriptpubkey or destination script set by
2832 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2835 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2836 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2837 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2838 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2839 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2840 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2843 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2844 /// will be accepted on the given channel, and after additional timeout/the closing of all
2845 /// pending HTLCs, the channel will be closed on chain.
2847 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2848 /// the channel being closed or not:
2849 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2850 /// transaction. The upper-bound is set by
2851 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2852 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2853 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2854 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2855 /// will appear on a force-closure transaction, whichever is lower).
2857 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2858 /// Will fail if a shutdown script has already been set for this channel by
2859 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2860 /// also be compatible with our and the counterparty's features.
2862 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2864 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2865 /// generate a shutdown scriptpubkey or destination script set by
2866 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2869 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2870 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2871 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2872 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2873 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2876 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2877 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2878 #[cfg(debug_assertions)]
2879 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2880 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2883 let logger = WithContext::from(
2884 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
2887 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
2888 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
2889 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2890 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2891 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2892 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2893 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2895 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
2896 // There isn't anything we can do if we get an update failure - we're already
2897 // force-closing. The monitor update on the required in-memory copy should broadcast
2898 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2899 // ignore the result here.
2900 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2902 let mut shutdown_results = Vec::new();
2903 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2904 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2905 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2906 let per_peer_state = self.per_peer_state.read().unwrap();
2907 let mut has_uncompleted_channel = None;
2908 for (channel_id, counterparty_node_id, state) in affected_channels {
2909 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2910 let mut peer_state = peer_state_mutex.lock().unwrap();
2911 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2912 update_maps_on_chan_removal!(self, &chan.context());
2913 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
2916 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2919 has_uncompleted_channel.unwrap_or(true),
2920 "Closing a batch where all channels have completed initial monitor update",
2925 let mut pending_events = self.pending_events.lock().unwrap();
2926 pending_events.push_back((events::Event::ChannelClosed {
2927 channel_id: shutdown_res.channel_id,
2928 user_channel_id: shutdown_res.user_channel_id,
2929 reason: shutdown_res.closure_reason,
2930 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
2931 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
2932 channel_funding_txo: shutdown_res.channel_funding_txo,
2935 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
2936 pending_events.push_back((events::Event::DiscardFunding {
2937 channel_id: shutdown_res.channel_id, transaction
2941 for shutdown_result in shutdown_results.drain(..) {
2942 self.finish_close_channel(shutdown_result);
2946 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2947 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2948 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2949 -> Result<PublicKey, APIError> {
2950 let per_peer_state = self.per_peer_state.read().unwrap();
2951 let peer_state_mutex = per_peer_state.get(peer_node_id)
2952 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2953 let (update_opt, counterparty_node_id) = {
2954 let mut peer_state = peer_state_mutex.lock().unwrap();
2955 let closure_reason = if let Some(peer_msg) = peer_msg {
2956 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2958 ClosureReason::HolderForceClosed
2960 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
2961 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2962 log_error!(logger, "Force-closing channel {}", channel_id);
2963 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2964 mem::drop(peer_state);
2965 mem::drop(per_peer_state);
2967 ChannelPhase::Funded(mut chan) => {
2968 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
2969 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2971 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2972 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
2973 // Unfunded channel has no update
2974 (None, chan_phase.context().get_counterparty_node_id())
2976 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
2977 #[cfg(dual_funding)]
2978 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
2979 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
2980 // Unfunded channel has no update
2981 (None, chan_phase.context().get_counterparty_node_id())
2984 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2985 log_error!(logger, "Force-closing channel {}", &channel_id);
2986 // N.B. that we don't send any channel close event here: we
2987 // don't have a user_channel_id, and we never sent any opening
2989 (None, *peer_node_id)
2991 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2994 if let Some(update) = update_opt {
2995 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2996 // not try to broadcast it via whatever peer we have.
2997 let per_peer_state = self.per_peer_state.read().unwrap();
2998 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2999 .ok_or(per_peer_state.values().next());
3000 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
3001 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
3002 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3008 Ok(counterparty_node_id)
3011 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3012 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3013 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3014 Ok(counterparty_node_id) => {
3015 let per_peer_state = self.per_peer_state.read().unwrap();
3016 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3017 let mut peer_state = peer_state_mutex.lock().unwrap();
3018 peer_state.pending_msg_events.push(
3019 events::MessageSendEvent::HandleError {
3020 node_id: counterparty_node_id,
3021 action: msgs::ErrorAction::DisconnectPeer {
3022 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3033 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3034 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3035 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3037 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3038 -> Result<(), APIError> {
3039 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3042 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3043 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3044 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3046 /// You can always broadcast the latest local transaction(s) via
3047 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3048 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3049 -> Result<(), APIError> {
3050 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3053 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3054 /// for each to the chain and rejecting new HTLCs on each.
3055 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3056 for chan in self.list_channels() {
3057 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3061 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3062 /// local transaction(s).
3063 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3064 for chan in self.list_channels() {
3065 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3069 fn decode_update_add_htlc_onion(
3070 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3072 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3074 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3075 msg, &self.node_signer, &self.logger, &self.secp_ctx
3078 let is_intro_node_forward = match next_hop {
3079 onion_utils::Hop::Forward {
3080 next_hop_data: msgs::InboundOnionPayload::BlindedForward {
3081 intro_node_blinding_point: Some(_), ..
3087 macro_rules! return_err {
3088 ($msg: expr, $err_code: expr, $data: expr) => {
3091 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3092 "Failed to accept/forward incoming HTLC: {}", $msg
3094 // If `msg.blinding_point` is set, we must always fail with malformed.
3095 if msg.blinding_point.is_some() {
3096 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3097 channel_id: msg.channel_id,
3098 htlc_id: msg.htlc_id,
3099 sha256_of_onion: [0; 32],
3100 failure_code: INVALID_ONION_BLINDING,
3104 let (err_code, err_data) = if is_intro_node_forward {
3105 (INVALID_ONION_BLINDING, &[0; 32][..])
3106 } else { ($err_code, $data) };
3107 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3108 channel_id: msg.channel_id,
3109 htlc_id: msg.htlc_id,
3110 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3111 .get_encrypted_failure_packet(&shared_secret, &None),
3117 let NextPacketDetails {
3118 next_packet_pubkey, outgoing_amt_msat, outgoing_scid, outgoing_cltv_value
3119 } = match next_packet_details_opt {
3120 Some(next_packet_details) => next_packet_details,
3121 // it is a receive, so no need for outbound checks
3122 None => return Ok((next_hop, shared_secret, None)),
3125 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3126 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3127 if let Some((err, mut code, chan_update)) = loop {
3128 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3129 let forwarding_chan_info_opt = match id_option {
3130 None => { // unknown_next_peer
3131 // Note that this is likely a timing oracle for detecting whether an scid is a
3132 // phantom or an intercept.
3133 if (self.default_configuration.accept_intercept_htlcs &&
3134 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3135 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3139 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3142 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3144 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3145 let per_peer_state = self.per_peer_state.read().unwrap();
3146 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3147 if peer_state_mutex_opt.is_none() {
3148 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3150 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3151 let peer_state = &mut *peer_state_lock;
3152 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3153 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3156 // Channel was removed. The short_to_chan_info and channel_by_id maps
3157 // have no consistency guarantees.
3158 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3162 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3163 // Note that the behavior here should be identical to the above block - we
3164 // should NOT reveal the existence or non-existence of a private channel if
3165 // we don't allow forwards outbound over them.
3166 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3168 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3169 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3170 // "refuse to forward unless the SCID alias was used", so we pretend
3171 // we don't have the channel here.
3172 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3174 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3176 // Note that we could technically not return an error yet here and just hope
3177 // that the connection is reestablished or monitor updated by the time we get
3178 // around to doing the actual forward, but better to fail early if we can and
3179 // hopefully an attacker trying to path-trace payments cannot make this occur
3180 // on a small/per-node/per-channel scale.
3181 if !chan.context.is_live() { // channel_disabled
3182 // If the channel_update we're going to return is disabled (i.e. the
3183 // peer has been disabled for some time), return `channel_disabled`,
3184 // otherwise return `temporary_channel_failure`.
3185 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3186 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3188 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3191 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3192 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3194 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3195 break Some((err, code, chan_update_opt));
3202 let cur_height = self.best_block.read().unwrap().height() + 1;
3204 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
3205 cur_height, outgoing_cltv_value, msg.cltv_expiry
3207 if code & 0x1000 != 0 && chan_update_opt.is_none() {
3208 // We really should set `incorrect_cltv_expiry` here but as we're not
3209 // forwarding over a real channel we can't generate a channel_update
3210 // for it. Instead we just return a generic temporary_node_failure.
3211 break Some((err_msg, 0x2000 | 2, None))
3213 let chan_update_opt = if code & 0x1000 != 0 { chan_update_opt } else { None };
3214 break Some((err_msg, code, chan_update_opt));
3220 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3221 if let Some(chan_update) = chan_update {
3222 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3223 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3225 else if code == 0x1000 | 13 {
3226 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3228 else if code == 0x1000 | 20 {
3229 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3230 0u16.write(&mut res).expect("Writes cannot fail");
3232 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3233 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3234 chan_update.write(&mut res).expect("Writes cannot fail");
3235 } else if code & 0x1000 == 0x1000 {
3236 // If we're trying to return an error that requires a `channel_update` but
3237 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3238 // generate an update), just use the generic "temporary_node_failure"
3242 return_err!(err, code, &res.0[..]);
3244 Ok((next_hop, shared_secret, Some(next_packet_pubkey)))
3247 fn construct_pending_htlc_status<'a>(
3248 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3249 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3250 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3251 ) -> PendingHTLCStatus {
3252 macro_rules! return_err {
3253 ($msg: expr, $err_code: expr, $data: expr) => {
3255 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3256 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3257 if msg.blinding_point.is_some() {
3258 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3259 msgs::UpdateFailMalformedHTLC {
3260 channel_id: msg.channel_id,
3261 htlc_id: msg.htlc_id,
3262 sha256_of_onion: [0; 32],
3263 failure_code: INVALID_ONION_BLINDING,
3267 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3268 channel_id: msg.channel_id,
3269 htlc_id: msg.htlc_id,
3270 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3271 .get_encrypted_failure_packet(&shared_secret, &None),
3277 onion_utils::Hop::Receive(next_hop_data) => {
3279 let current_height: u32 = self.best_block.read().unwrap().height();
3280 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3281 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3282 current_height, self.default_configuration.accept_mpp_keysend)
3285 // Note that we could obviously respond immediately with an update_fulfill_htlc
3286 // message, however that would leak that we are the recipient of this payment, so
3287 // instead we stay symmetric with the forwarding case, only responding (after a
3288 // delay) once they've send us a commitment_signed!
3289 PendingHTLCStatus::Forward(info)
3291 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3294 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3295 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3296 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3297 Ok(info) => PendingHTLCStatus::Forward(info),
3298 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3304 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3305 /// public, and thus should be called whenever the result is going to be passed out in a
3306 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3308 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3309 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3310 /// storage and the `peer_state` lock has been dropped.
3312 /// [`channel_update`]: msgs::ChannelUpdate
3313 /// [`internal_closing_signed`]: Self::internal_closing_signed
3314 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3315 if !chan.context.should_announce() {
3316 return Err(LightningError {
3317 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3318 action: msgs::ErrorAction::IgnoreError
3321 if chan.context.get_short_channel_id().is_none() {
3322 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3324 let logger = WithChannelContext::from(&self.logger, &chan.context);
3325 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3326 self.get_channel_update_for_unicast(chan)
3329 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3330 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3331 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3332 /// provided evidence that they know about the existence of the channel.
3334 /// Note that through [`internal_closing_signed`], this function is called without the
3335 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3336 /// removed from the storage and the `peer_state` lock has been dropped.
3338 /// [`channel_update`]: msgs::ChannelUpdate
3339 /// [`internal_closing_signed`]: Self::internal_closing_signed
3340 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3341 let logger = WithChannelContext::from(&self.logger, &chan.context);
3342 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
3343 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3344 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3348 self.get_channel_update_for_onion(short_channel_id, chan)
3351 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3352 let logger = WithChannelContext::from(&self.logger, &chan.context);
3353 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
3354 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3356 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3357 ChannelUpdateStatus::Enabled => true,
3358 ChannelUpdateStatus::DisabledStaged(_) => true,
3359 ChannelUpdateStatus::Disabled => false,
3360 ChannelUpdateStatus::EnabledStaged(_) => false,
3363 let unsigned = msgs::UnsignedChannelUpdate {
3364 chain_hash: self.chain_hash,
3366 timestamp: chan.context.get_update_time_counter(),
3367 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3368 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3369 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3370 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3371 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3372 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3373 excess_data: Vec::new(),
3375 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3376 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3377 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3379 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3381 Ok(msgs::ChannelUpdate {
3388 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3389 let _lck = self.total_consistency_lock.read().unwrap();
3390 self.send_payment_along_path(SendAlongPathArgs {
3391 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3396 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3397 let SendAlongPathArgs {
3398 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3401 // The top-level caller should hold the total_consistency_lock read lock.
3402 debug_assert!(self.total_consistency_lock.try_write().is_err());
3403 let prng_seed = self.entropy_source.get_secure_random_bytes();
3404 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3406 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3407 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3408 payment_hash, keysend_preimage, prng_seed
3410 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3411 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
3415 let err: Result<(), _> = loop {
3416 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3418 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3419 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
3420 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
3422 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3425 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
3427 "Attempting to send payment with payment hash {} along path with next hop {}",
3428 payment_hash, path.hops.first().unwrap().short_channel_id);
3430 let per_peer_state = self.per_peer_state.read().unwrap();
3431 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3432 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3433 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3434 let peer_state = &mut *peer_state_lock;
3435 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3436 match chan_phase_entry.get_mut() {
3437 ChannelPhase::Funded(chan) => {
3438 if !chan.context.is_live() {
3439 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3441 let funding_txo = chan.context.get_funding_txo().unwrap();
3442 let logger = WithChannelContext::from(&self.logger, &chan.context);
3443 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3444 htlc_cltv, HTLCSource::OutboundRoute {
3446 session_priv: session_priv.clone(),
3447 first_hop_htlc_msat: htlc_msat,
3449 }, onion_packet, None, &self.fee_estimator, &&logger);
3450 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3451 Some(monitor_update) => {
3452 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3454 // Note that MonitorUpdateInProgress here indicates (per function
3455 // docs) that we will resend the commitment update once monitor
3456 // updating completes. Therefore, we must return an error
3457 // indicating that it is unsafe to retry the payment wholesale,
3458 // which we do in the send_payment check for
3459 // MonitorUpdateInProgress, below.
3460 return Err(APIError::MonitorUpdateInProgress);
3468 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3471 // The channel was likely removed after we fetched the id from the
3472 // `short_to_chan_info` map, but before we successfully locked the
3473 // `channel_by_id` map.
3474 // This can occur as no consistency guarantees exists between the two maps.
3475 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3479 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3480 Ok(_) => unreachable!(),
3482 Err(APIError::ChannelUnavailable { err: e.err })
3487 /// Sends a payment along a given route.
3489 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3490 /// fields for more info.
3492 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3493 /// [`PeerManager::process_events`]).
3495 /// # Avoiding Duplicate Payments
3497 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3498 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3499 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3500 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3501 /// second payment with the same [`PaymentId`].
3503 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3504 /// tracking of payments, including state to indicate once a payment has completed. Because you
3505 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3506 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3507 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3509 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3510 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3511 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3512 /// [`ChannelManager::list_recent_payments`] for more information.
3514 /// # Possible Error States on [`PaymentSendFailure`]
3516 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3517 /// each entry matching the corresponding-index entry in the route paths, see
3518 /// [`PaymentSendFailure`] for more info.
3520 /// In general, a path may raise:
3521 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3522 /// node public key) is specified.
3523 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3524 /// closed, doesn't exist, or the peer is currently disconnected.
3525 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3526 /// relevant updates.
3528 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3529 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3530 /// different route unless you intend to pay twice!
3532 /// [`RouteHop`]: crate::routing::router::RouteHop
3533 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3534 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3535 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3536 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3537 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3538 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3539 let best_block_height = self.best_block.read().unwrap().height();
3540 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3541 self.pending_outbound_payments
3542 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3543 &self.entropy_source, &self.node_signer, best_block_height,
3544 |args| self.send_payment_along_path(args))
3547 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3548 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3549 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3550 let best_block_height = self.best_block.read().unwrap().height();
3551 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3552 self.pending_outbound_payments
3553 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3554 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3555 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3556 &self.pending_events, |args| self.send_payment_along_path(args))
3560 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3561 let best_block_height = self.best_block.read().unwrap().height();
3562 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3563 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3564 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3565 best_block_height, |args| self.send_payment_along_path(args))
3569 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3570 let best_block_height = self.best_block.read().unwrap().height();
3571 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3575 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3576 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3579 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3580 let best_block_height = self.best_block.read().unwrap().height();
3581 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3582 self.pending_outbound_payments
3583 .send_payment_for_bolt12_invoice(
3584 invoice, payment_id, &self.router, self.list_usable_channels(),
3585 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3586 best_block_height, &self.logger, &self.pending_events,
3587 |args| self.send_payment_along_path(args)
3591 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3592 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3593 /// retries are exhausted.
3595 /// # Event Generation
3597 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3598 /// as there are no remaining pending HTLCs for this payment.
3600 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3601 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3602 /// determine the ultimate status of a payment.
3604 /// # Requested Invoices
3606 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3607 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3608 /// and prevent any attempts at paying it once received. The other events may only be generated
3609 /// once the invoice has been received.
3611 /// # Restart Behavior
3613 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3614 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3615 /// [`Event::InvoiceRequestFailed`].
3617 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3618 pub fn abandon_payment(&self, payment_id: PaymentId) {
3619 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3620 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3623 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3624 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3625 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3626 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3627 /// never reach the recipient.
3629 /// See [`send_payment`] documentation for more details on the return value of this function
3630 /// and idempotency guarantees provided by the [`PaymentId`] key.
3632 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3633 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3635 /// [`send_payment`]: Self::send_payment
3636 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3637 let best_block_height = self.best_block.read().unwrap().height();
3638 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3639 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3640 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3641 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3644 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3645 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3647 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3650 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3651 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3652 let best_block_height = self.best_block.read().unwrap().height();
3653 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3654 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3655 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3656 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3657 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3660 /// Send a payment that is probing the given route for liquidity. We calculate the
3661 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3662 /// us to easily discern them from real payments.
3663 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3664 let best_block_height = self.best_block.read().unwrap().height();
3665 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3666 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3667 &self.entropy_source, &self.node_signer, best_block_height,
3668 |args| self.send_payment_along_path(args))
3671 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3674 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3675 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3678 /// Sends payment probes over all paths of a route that would be used to pay the given
3679 /// amount to the given `node_id`.
3681 /// See [`ChannelManager::send_preflight_probes`] for more information.
3682 pub fn send_spontaneous_preflight_probes(
3683 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3684 liquidity_limit_multiplier: Option<u64>,
3685 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3686 let payment_params =
3687 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3689 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3691 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3694 /// Sends payment probes over all paths of a route that would be used to pay a route found
3695 /// according to the given [`RouteParameters`].
3697 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3698 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3699 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3700 /// confirmation in a wallet UI.
3702 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3703 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3704 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3705 /// payment. To mitigate this issue, channels with available liquidity less than the required
3706 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3707 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3708 pub fn send_preflight_probes(
3709 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3710 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3711 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3713 let payer = self.get_our_node_id();
3714 let usable_channels = self.list_usable_channels();
3715 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3716 let inflight_htlcs = self.compute_inflight_htlcs();
3720 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3722 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3723 ProbeSendFailure::RouteNotFound
3726 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
3728 let mut res = Vec::new();
3730 for mut path in route.paths {
3731 // If the last hop is probably an unannounced channel we refrain from probing all the
3732 // way through to the end and instead probe up to the second-to-last channel.
3733 while let Some(last_path_hop) = path.hops.last() {
3734 if last_path_hop.maybe_announced_channel {
3735 // We found a potentially announced last hop.
3738 // Drop the last hop, as it's likely unannounced.
3741 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3742 last_path_hop.short_channel_id
3744 let final_value_msat = path.final_value_msat();
3746 if let Some(new_last) = path.hops.last_mut() {
3747 new_last.fee_msat += final_value_msat;
3752 if path.hops.len() < 2 {
3755 "Skipped sending payment probe over path with less than two hops."
3760 if let Some(first_path_hop) = path.hops.first() {
3761 if let Some(first_hop) = first_hops.iter().find(|h| {
3762 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3764 let path_value = path.final_value_msat() + path.fee_msat();
3765 let used_liquidity =
3766 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3768 if first_hop.next_outbound_htlc_limit_msat
3769 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3771 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3774 *used_liquidity += path_value;
3779 res.push(self.send_probe(path).map_err(|e| {
3780 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3781 ProbeSendFailure::SendingFailed(e)
3788 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3789 /// which checks the correctness of the funding transaction given the associated channel.
3790 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3791 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3792 mut find_funding_output: FundingOutput,
3793 ) -> Result<(), APIError> {
3794 let per_peer_state = self.per_peer_state.read().unwrap();
3795 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3796 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3798 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3799 let peer_state = &mut *peer_state_lock;
3801 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3802 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
3803 funding_txo = find_funding_output(&chan, &funding_transaction)?;
3805 let logger = WithChannelContext::from(&self.logger, &chan.context);
3806 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
3807 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3808 let channel_id = chan.context.channel_id();
3809 let reason = ClosureReason::ProcessingError { err: msg.clone() };
3810 let shutdown_res = chan.context.force_shutdown(false, reason);
3811 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None))
3812 } else { unreachable!(); });
3814 Ok(funding_msg) => (chan, funding_msg),
3815 Err((chan, err)) => {
3816 mem::drop(peer_state_lock);
3817 mem::drop(per_peer_state);
3818 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3819 return Err(APIError::ChannelUnavailable {
3820 err: "Signer refused to sign the initial commitment transaction".to_owned()
3826 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3827 return Err(APIError::APIMisuseError {
3829 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3830 temporary_channel_id, counterparty_node_id),
3833 None => return Err(APIError::ChannelUnavailable {err: format!(
3834 "Channel with id {} not found for the passed counterparty node_id {}",
3835 temporary_channel_id, counterparty_node_id),
3839 if let Some(msg) = msg_opt {
3840 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3841 node_id: chan.context.get_counterparty_node_id(),
3845 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3846 hash_map::Entry::Occupied(_) => {
3847 panic!("Generated duplicate funding txid?");
3849 hash_map::Entry::Vacant(e) => {
3850 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
3851 match outpoint_to_peer.entry(funding_txo) {
3852 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
3853 hash_map::Entry::Occupied(o) => {
3855 "An existing channel using outpoint {} is open with peer {}",
3856 funding_txo, o.get()
3858 mem::drop(outpoint_to_peer);
3859 mem::drop(peer_state_lock);
3860 mem::drop(per_peer_state);
3861 let reason = ClosureReason::ProcessingError { err: err.clone() };
3862 self.finish_close_channel(chan.context.force_shutdown(true, reason));
3863 return Err(APIError::ChannelUnavailable { err });
3866 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
3873 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3874 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3875 Ok(OutPoint { txid: tx.txid(), index: output_index })
3879 /// Call this upon creation of a funding transaction for the given channel.
3881 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3882 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3884 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3885 /// across the p2p network.
3887 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3888 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3890 /// May panic if the output found in the funding transaction is duplicative with some other
3891 /// channel (note that this should be trivially prevented by using unique funding transaction
3892 /// keys per-channel).
3894 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3895 /// counterparty's signature the funding transaction will automatically be broadcast via the
3896 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3898 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3899 /// not currently support replacing a funding transaction on an existing channel. Instead,
3900 /// create a new channel with a conflicting funding transaction.
3902 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3903 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3904 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3905 /// for more details.
3907 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3908 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3909 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3910 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3913 /// Call this upon creation of a batch funding transaction for the given channels.
3915 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3916 /// each individual channel and transaction output.
3918 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3919 /// will only be broadcast when we have safely received and persisted the counterparty's
3920 /// signature for each channel.
3922 /// If there is an error, all channels in the batch are to be considered closed.
3923 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3924 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3925 let mut result = Ok(());
3927 if !funding_transaction.is_coin_base() {
3928 for inp in funding_transaction.input.iter() {
3929 if inp.witness.is_empty() {
3930 result = result.and(Err(APIError::APIMisuseError {
3931 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3936 if funding_transaction.output.len() > u16::max_value() as usize {
3937 result = result.and(Err(APIError::APIMisuseError {
3938 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3942 let height = self.best_block.read().unwrap().height();
3943 // Transactions are evaluated as final by network mempools if their locktime is strictly
3944 // lower than the next block height. However, the modules constituting our Lightning
3945 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3946 // module is ahead of LDK, only allow one more block of headroom.
3947 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
3948 funding_transaction.lock_time.is_block_height() &&
3949 funding_transaction.lock_time.to_consensus_u32() > height + 1
3951 result = result.and(Err(APIError::APIMisuseError {
3952 err: "Funding transaction absolute timelock is non-final".to_owned()
3957 let txid = funding_transaction.txid();
3958 let is_batch_funding = temporary_channels.len() > 1;
3959 let mut funding_batch_states = if is_batch_funding {
3960 Some(self.funding_batch_states.lock().unwrap())
3964 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3965 match states.entry(txid) {
3966 btree_map::Entry::Occupied(_) => {
3967 result = result.clone().and(Err(APIError::APIMisuseError {
3968 err: "Batch funding transaction with the same txid already exists".to_owned()
3972 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3975 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3976 result = result.and_then(|_| self.funding_transaction_generated_intern(
3977 temporary_channel_id,
3978 counterparty_node_id,
3979 funding_transaction.clone(),
3982 let mut output_index = None;
3983 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3984 for (idx, outp) in tx.output.iter().enumerate() {
3985 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3986 if output_index.is_some() {
3987 return Err(APIError::APIMisuseError {
3988 err: "Multiple outputs matched the expected script and value".to_owned()
3991 output_index = Some(idx as u16);
3994 if output_index.is_none() {
3995 return Err(APIError::APIMisuseError {
3996 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3999 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4000 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4001 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4002 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4003 // want to support V2 batching here as well.
4004 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4010 if let Err(ref e) = result {
4011 // Remaining channels need to be removed on any error.
4012 let e = format!("Error in transaction funding: {:?}", e);
4013 let mut channels_to_remove = Vec::new();
4014 channels_to_remove.extend(funding_batch_states.as_mut()
4015 .and_then(|states| states.remove(&txid))
4016 .into_iter().flatten()
4017 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4019 channels_to_remove.extend(temporary_channels.iter()
4020 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4022 let mut shutdown_results = Vec::new();
4024 let per_peer_state = self.per_peer_state.read().unwrap();
4025 for (channel_id, counterparty_node_id) in channels_to_remove {
4026 per_peer_state.get(&counterparty_node_id)
4027 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4028 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4030 update_maps_on_chan_removal!(self, &chan.context());
4031 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4032 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4036 mem::drop(funding_batch_states);
4037 for shutdown_result in shutdown_results.drain(..) {
4038 self.finish_close_channel(shutdown_result);
4044 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4046 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4047 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4048 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4049 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4051 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4052 /// `counterparty_node_id` is provided.
4054 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4055 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4057 /// If an error is returned, none of the updates should be considered applied.
4059 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4060 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4061 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4062 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4063 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4064 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4065 /// [`APIMisuseError`]: APIError::APIMisuseError
4066 pub fn update_partial_channel_config(
4067 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4068 ) -> Result<(), APIError> {
4069 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4070 return Err(APIError::APIMisuseError {
4071 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4075 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4076 let per_peer_state = self.per_peer_state.read().unwrap();
4077 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4078 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4079 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4080 let peer_state = &mut *peer_state_lock;
4081 for channel_id in channel_ids {
4082 if !peer_state.has_channel(channel_id) {
4083 return Err(APIError::ChannelUnavailable {
4084 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4088 for channel_id in channel_ids {
4089 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4090 let mut config = channel_phase.context().config();
4091 config.apply(config_update);
4092 if !channel_phase.context_mut().update_config(&config) {
4095 if let ChannelPhase::Funded(channel) = channel_phase {
4096 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4097 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4098 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4099 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4100 node_id: channel.context.get_counterparty_node_id(),
4107 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4108 debug_assert!(false);
4109 return Err(APIError::ChannelUnavailable {
4111 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4112 channel_id, counterparty_node_id),
4119 /// Atomically updates the [`ChannelConfig`] for the given channels.
4121 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4122 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4123 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4124 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4126 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4127 /// `counterparty_node_id` is provided.
4129 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4130 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4132 /// If an error is returned, none of the updates should be considered applied.
4134 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4135 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4136 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4137 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4138 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4139 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4140 /// [`APIMisuseError`]: APIError::APIMisuseError
4141 pub fn update_channel_config(
4142 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4143 ) -> Result<(), APIError> {
4144 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4147 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4148 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4150 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4151 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4153 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4154 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4155 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4156 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4157 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4159 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4160 /// you from forwarding more than you received. See
4161 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4164 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4167 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4168 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4169 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4170 // TODO: when we move to deciding the best outbound channel at forward time, only take
4171 // `next_node_id` and not `next_hop_channel_id`
4172 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4173 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4175 let next_hop_scid = {
4176 let peer_state_lock = self.per_peer_state.read().unwrap();
4177 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4178 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4179 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4180 let peer_state = &mut *peer_state_lock;
4181 match peer_state.channel_by_id.get(next_hop_channel_id) {
4182 Some(ChannelPhase::Funded(chan)) => {
4183 if !chan.context.is_usable() {
4184 return Err(APIError::ChannelUnavailable {
4185 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4188 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4190 Some(_) => return Err(APIError::ChannelUnavailable {
4191 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4192 next_hop_channel_id, next_node_id)
4195 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4196 next_hop_channel_id, next_node_id);
4197 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4198 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4199 return Err(APIError::ChannelUnavailable {
4206 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4207 .ok_or_else(|| APIError::APIMisuseError {
4208 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4211 let routing = match payment.forward_info.routing {
4212 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4213 PendingHTLCRouting::Forward {
4214 onion_packet, blinded, short_channel_id: next_hop_scid
4217 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4219 let skimmed_fee_msat =
4220 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4221 let pending_htlc_info = PendingHTLCInfo {
4222 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4223 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4226 let mut per_source_pending_forward = [(
4227 payment.prev_short_channel_id,
4228 payment.prev_funding_outpoint,
4229 payment.prev_channel_id,
4230 payment.prev_user_channel_id,
4231 vec![(pending_htlc_info, payment.prev_htlc_id)]
4233 self.forward_htlcs(&mut per_source_pending_forward);
4237 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4238 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4240 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4243 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4244 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4245 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4247 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4248 .ok_or_else(|| APIError::APIMisuseError {
4249 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4252 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4253 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4254 short_channel_id: payment.prev_short_channel_id,
4255 user_channel_id: Some(payment.prev_user_channel_id),
4256 outpoint: payment.prev_funding_outpoint,
4257 channel_id: payment.prev_channel_id,
4258 htlc_id: payment.prev_htlc_id,
4259 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4260 phantom_shared_secret: None,
4261 blinded_failure: payment.forward_info.routing.blinded_failure(),
4264 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4265 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4266 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4267 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4272 /// Processes HTLCs which are pending waiting on random forward delay.
4274 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4275 /// Will likely generate further events.
4276 pub fn process_pending_htlc_forwards(&self) {
4277 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4279 let mut new_events = VecDeque::new();
4280 let mut failed_forwards = Vec::new();
4281 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4283 let mut forward_htlcs = new_hash_map();
4284 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4286 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4287 if short_chan_id != 0 {
4288 let mut forwarding_counterparty = None;
4289 macro_rules! forwarding_channel_not_found {
4291 for forward_info in pending_forwards.drain(..) {
4292 match forward_info {
4293 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4294 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
4295 prev_user_channel_id, forward_info: PendingHTLCInfo {
4296 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4297 outgoing_cltv_value, ..
4300 macro_rules! failure_handler {
4301 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4302 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id));
4303 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4305 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4306 short_channel_id: prev_short_channel_id,
4307 user_channel_id: Some(prev_user_channel_id),
4308 channel_id: prev_channel_id,
4309 outpoint: prev_funding_outpoint,
4310 htlc_id: prev_htlc_id,
4311 incoming_packet_shared_secret: incoming_shared_secret,
4312 phantom_shared_secret: $phantom_ss,
4313 blinded_failure: routing.blinded_failure(),
4316 let reason = if $next_hop_unknown {
4317 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4319 HTLCDestination::FailedPayment{ payment_hash }
4322 failed_forwards.push((htlc_source, payment_hash,
4323 HTLCFailReason::reason($err_code, $err_data),
4329 macro_rules! fail_forward {
4330 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4332 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4336 macro_rules! failed_payment {
4337 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4339 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4343 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
4344 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4345 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4346 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4347 let next_hop = match onion_utils::decode_next_payment_hop(
4348 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4349 payment_hash, None, &self.node_signer
4352 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4353 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
4354 // In this scenario, the phantom would have sent us an
4355 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4356 // if it came from us (the second-to-last hop) but contains the sha256
4358 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4360 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4361 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4365 onion_utils::Hop::Receive(hop_data) => {
4366 let current_height: u32 = self.best_block.read().unwrap().height();
4367 match create_recv_pending_htlc_info(hop_data,
4368 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4369 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
4370 current_height, self.default_configuration.accept_mpp_keysend)
4372 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4373 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4379 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4382 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4385 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
4386 // Channel went away before we could fail it. This implies
4387 // the channel is now on chain and our counterparty is
4388 // trying to broadcast the HTLC-Timeout, but that's their
4389 // problem, not ours.
4395 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4396 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4397 Some((cp_id, chan_id)) => (cp_id, chan_id),
4399 forwarding_channel_not_found!();
4403 forwarding_counterparty = Some(counterparty_node_id);
4404 let per_peer_state = self.per_peer_state.read().unwrap();
4405 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4406 if peer_state_mutex_opt.is_none() {
4407 forwarding_channel_not_found!();
4410 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4411 let peer_state = &mut *peer_state_lock;
4412 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4413 let logger = WithChannelContext::from(&self.logger, &chan.context);
4414 for forward_info in pending_forwards.drain(..) {
4415 let queue_fail_htlc_res = match forward_info {
4416 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4417 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
4418 prev_user_channel_id, forward_info: PendingHTLCInfo {
4419 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4420 routing: PendingHTLCRouting::Forward {
4421 onion_packet, blinded, ..
4422 }, skimmed_fee_msat, ..
4425 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4426 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4427 short_channel_id: prev_short_channel_id,
4428 user_channel_id: Some(prev_user_channel_id),
4429 channel_id: prev_channel_id,
4430 outpoint: prev_funding_outpoint,
4431 htlc_id: prev_htlc_id,
4432 incoming_packet_shared_secret: incoming_shared_secret,
4433 // Phantom payments are only PendingHTLCRouting::Receive.
4434 phantom_shared_secret: None,
4435 blinded_failure: blinded.map(|b| b.failure),
4437 let next_blinding_point = blinded.and_then(|b| {
4438 let encrypted_tlvs_ss = self.node_signer.ecdh(
4439 Recipient::Node, &b.inbound_blinding_point, None
4440 ).unwrap().secret_bytes();
4441 onion_utils::next_hop_pubkey(
4442 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
4445 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4446 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4447 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
4450 if let ChannelError::Ignore(msg) = e {
4451 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4453 panic!("Stated return value requirements in send_htlc() were not met");
4455 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4456 failed_forwards.push((htlc_source, payment_hash,
4457 HTLCFailReason::reason(failure_code, data),
4458 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4464 HTLCForwardInfo::AddHTLC { .. } => {
4465 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4467 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4468 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4469 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
4471 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
4472 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4473 let res = chan.queue_fail_malformed_htlc(
4474 htlc_id, failure_code, sha256_of_onion, &&logger
4476 Some((res, htlc_id))
4479 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
4480 if let Err(e) = queue_fail_htlc_res {
4481 if let ChannelError::Ignore(msg) = e {
4482 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4484 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
4486 // fail-backs are best-effort, we probably already have one
4487 // pending, and if not that's OK, if not, the channel is on
4488 // the chain and sending the HTLC-Timeout is their problem.
4494 forwarding_channel_not_found!();
4498 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4499 match forward_info {
4500 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4501 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
4502 prev_user_channel_id, forward_info: PendingHTLCInfo {
4503 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4504 skimmed_fee_msat, ..
4507 let blinded_failure = routing.blinded_failure();
4508 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4509 PendingHTLCRouting::Receive {
4510 payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret,
4511 custom_tlvs, requires_blinded_error: _
4513 let _legacy_hop_data = Some(payment_data.clone());
4514 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4515 payment_metadata, custom_tlvs };
4516 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4517 Some(payment_data), phantom_shared_secret, onion_fields)
4519 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4520 let onion_fields = RecipientOnionFields {
4521 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4525 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4526 payment_data, None, onion_fields)
4529 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4532 let claimable_htlc = ClaimableHTLC {
4533 prev_hop: HTLCPreviousHopData {
4534 short_channel_id: prev_short_channel_id,
4535 user_channel_id: Some(prev_user_channel_id),
4536 channel_id: prev_channel_id,
4537 outpoint: prev_funding_outpoint,
4538 htlc_id: prev_htlc_id,
4539 incoming_packet_shared_secret: incoming_shared_secret,
4540 phantom_shared_secret,
4543 // We differentiate the received value from the sender intended value
4544 // if possible so that we don't prematurely mark MPP payments complete
4545 // if routing nodes overpay
4546 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4547 sender_intended_value: outgoing_amt_msat,
4549 total_value_received: None,
4550 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4553 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4556 let mut committed_to_claimable = false;
4558 macro_rules! fail_htlc {
4559 ($htlc: expr, $payment_hash: expr) => {
4560 debug_assert!(!committed_to_claimable);
4561 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4562 htlc_msat_height_data.extend_from_slice(
4563 &self.best_block.read().unwrap().height().to_be_bytes(),
4565 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4566 short_channel_id: $htlc.prev_hop.short_channel_id,
4567 user_channel_id: $htlc.prev_hop.user_channel_id,
4568 channel_id: prev_channel_id,
4569 outpoint: prev_funding_outpoint,
4570 htlc_id: $htlc.prev_hop.htlc_id,
4571 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4572 phantom_shared_secret,
4575 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4576 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4578 continue 'next_forwardable_htlc;
4581 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4582 let mut receiver_node_id = self.our_network_pubkey;
4583 if phantom_shared_secret.is_some() {
4584 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4585 .expect("Failed to get node_id for phantom node recipient");
4588 macro_rules! check_total_value {
4589 ($purpose: expr) => {{
4590 let mut payment_claimable_generated = false;
4591 let is_keysend = match $purpose {
4592 events::PaymentPurpose::SpontaneousPayment(_) => true,
4593 events::PaymentPurpose::InvoicePayment { .. } => false,
4595 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4596 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4597 fail_htlc!(claimable_htlc, payment_hash);
4599 let ref mut claimable_payment = claimable_payments.claimable_payments
4600 .entry(payment_hash)
4601 // Note that if we insert here we MUST NOT fail_htlc!()
4602 .or_insert_with(|| {
4603 committed_to_claimable = true;
4605 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4608 if $purpose != claimable_payment.purpose {
4609 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4610 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4611 fail_htlc!(claimable_htlc, payment_hash);
4613 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4614 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4615 fail_htlc!(claimable_htlc, payment_hash);
4617 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4618 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4619 fail_htlc!(claimable_htlc, payment_hash);
4622 claimable_payment.onion_fields = Some(onion_fields);
4624 let ref mut htlcs = &mut claimable_payment.htlcs;
4625 let mut total_value = claimable_htlc.sender_intended_value;
4626 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4627 for htlc in htlcs.iter() {
4628 total_value += htlc.sender_intended_value;
4629 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4630 if htlc.total_msat != claimable_htlc.total_msat {
4631 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4632 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4633 total_value = msgs::MAX_VALUE_MSAT;
4635 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4637 // The condition determining whether an MPP is complete must
4638 // match exactly the condition used in `timer_tick_occurred`
4639 if total_value >= msgs::MAX_VALUE_MSAT {
4640 fail_htlc!(claimable_htlc, payment_hash);
4641 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4642 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4644 fail_htlc!(claimable_htlc, payment_hash);
4645 } else if total_value >= claimable_htlc.total_msat {
4646 #[allow(unused_assignments)] {
4647 committed_to_claimable = true;
4649 htlcs.push(claimable_htlc);
4650 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4651 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4652 let counterparty_skimmed_fee_msat = htlcs.iter()
4653 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4654 debug_assert!(total_value.saturating_sub(amount_msat) <=
4655 counterparty_skimmed_fee_msat);
4656 new_events.push_back((events::Event::PaymentClaimable {
4657 receiver_node_id: Some(receiver_node_id),
4661 counterparty_skimmed_fee_msat,
4662 via_channel_id: Some(prev_channel_id),
4663 via_user_channel_id: Some(prev_user_channel_id),
4664 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4665 onion_fields: claimable_payment.onion_fields.clone(),
4667 payment_claimable_generated = true;
4669 // Nothing to do - we haven't reached the total
4670 // payment value yet, wait until we receive more
4672 htlcs.push(claimable_htlc);
4673 #[allow(unused_assignments)] {
4674 committed_to_claimable = true;
4677 payment_claimable_generated
4681 // Check that the payment hash and secret are known. Note that we
4682 // MUST take care to handle the "unknown payment hash" and
4683 // "incorrect payment secret" cases here identically or we'd expose
4684 // that we are the ultimate recipient of the given payment hash.
4685 // Further, we must not expose whether we have any other HTLCs
4686 // associated with the same payment_hash pending or not.
4687 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4688 match payment_secrets.entry(payment_hash) {
4689 hash_map::Entry::Vacant(_) => {
4690 match claimable_htlc.onion_payload {
4691 OnionPayload::Invoice { .. } => {
4692 let payment_data = payment_data.unwrap();
4693 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4694 Ok(result) => result,
4696 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4697 fail_htlc!(claimable_htlc, payment_hash);
4700 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4701 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4702 if (cltv_expiry as u64) < expected_min_expiry_height {
4703 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4704 &payment_hash, cltv_expiry, expected_min_expiry_height);
4705 fail_htlc!(claimable_htlc, payment_hash);
4708 let purpose = events::PaymentPurpose::InvoicePayment {
4709 payment_preimage: payment_preimage.clone(),
4710 payment_secret: payment_data.payment_secret,
4712 check_total_value!(purpose);
4714 OnionPayload::Spontaneous(preimage) => {
4715 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4716 check_total_value!(purpose);
4720 hash_map::Entry::Occupied(inbound_payment) => {
4721 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4722 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4723 fail_htlc!(claimable_htlc, payment_hash);
4725 let payment_data = payment_data.unwrap();
4726 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4727 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4728 fail_htlc!(claimable_htlc, payment_hash);
4729 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4730 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4731 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4732 fail_htlc!(claimable_htlc, payment_hash);
4734 let purpose = events::PaymentPurpose::InvoicePayment {
4735 payment_preimage: inbound_payment.get().payment_preimage,
4736 payment_secret: payment_data.payment_secret,
4738 let payment_claimable_generated = check_total_value!(purpose);
4739 if payment_claimable_generated {
4740 inbound_payment.remove_entry();
4746 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
4747 panic!("Got pending fail of our own HTLC");
4755 let best_block_height = self.best_block.read().unwrap().height();
4756 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4757 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4758 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4760 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4761 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4763 self.forward_htlcs(&mut phantom_receives);
4765 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4766 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4767 // nice to do the work now if we can rather than while we're trying to get messages in the
4769 self.check_free_holding_cells();
4771 if new_events.is_empty() { return }
4772 let mut events = self.pending_events.lock().unwrap();
4773 events.append(&mut new_events);
4776 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4778 /// Expects the caller to have a total_consistency_lock read lock.
4779 fn process_background_events(&self) -> NotifyOption {
4780 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4782 self.background_events_processed_since_startup.store(true, Ordering::Release);
4784 let mut background_events = Vec::new();
4785 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4786 if background_events.is_empty() {
4787 return NotifyOption::SkipPersistNoEvents;
4790 for event in background_events.drain(..) {
4792 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
4793 // The channel has already been closed, so no use bothering to care about the
4794 // monitor updating completing.
4795 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4797 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
4798 let mut updated_chan = false;
4800 let per_peer_state = self.per_peer_state.read().unwrap();
4801 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4802 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4803 let peer_state = &mut *peer_state_lock;
4804 match peer_state.channel_by_id.entry(channel_id) {
4805 hash_map::Entry::Occupied(mut chan_phase) => {
4806 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4807 updated_chan = true;
4808 handle_new_monitor_update!(self, funding_txo, update.clone(),
4809 peer_state_lock, peer_state, per_peer_state, chan);
4811 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4814 hash_map::Entry::Vacant(_) => {},
4819 // TODO: Track this as in-flight even though the channel is closed.
4820 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4823 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4824 let per_peer_state = self.per_peer_state.read().unwrap();
4825 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4826 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4827 let peer_state = &mut *peer_state_lock;
4828 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4829 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4831 let update_actions = peer_state.monitor_update_blocked_actions
4832 .remove(&channel_id).unwrap_or(Vec::new());
4833 mem::drop(peer_state_lock);
4834 mem::drop(per_peer_state);
4835 self.handle_monitor_update_completion_actions(update_actions);
4841 NotifyOption::DoPersist
4844 #[cfg(any(test, feature = "_test_utils"))]
4845 /// Process background events, for functional testing
4846 pub fn test_process_background_events(&self) {
4847 let _lck = self.total_consistency_lock.read().unwrap();
4848 let _ = self.process_background_events();
4851 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4852 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4854 let logger = WithChannelContext::from(&self.logger, &chan.context);
4856 // If the feerate has decreased by less than half, don't bother
4857 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4858 return NotifyOption::SkipPersistNoEvents;
4860 if !chan.context.is_live() {
4861 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4862 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4863 return NotifyOption::SkipPersistNoEvents;
4865 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
4866 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4868 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
4869 NotifyOption::DoPersist
4873 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4874 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4875 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4876 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4877 pub fn maybe_update_chan_fees(&self) {
4878 PersistenceNotifierGuard::optionally_notify(self, || {
4879 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4881 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4882 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4884 let per_peer_state = self.per_peer_state.read().unwrap();
4885 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4886 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4887 let peer_state = &mut *peer_state_lock;
4888 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4889 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4891 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4896 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4897 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4905 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4907 /// This currently includes:
4908 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4909 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4910 /// than a minute, informing the network that they should no longer attempt to route over
4912 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4913 /// with the current [`ChannelConfig`].
4914 /// * Removing peers which have disconnected but and no longer have any channels.
4915 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4916 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4917 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4918 /// The latter is determined using the system clock in `std` and the highest seen block time
4919 /// minus two hours in `no-std`.
4921 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4922 /// estimate fetches.
4924 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4925 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4926 pub fn timer_tick_occurred(&self) {
4927 PersistenceNotifierGuard::optionally_notify(self, || {
4928 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4930 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4931 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4933 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4934 let mut timed_out_mpp_htlcs = Vec::new();
4935 let mut pending_peers_awaiting_removal = Vec::new();
4936 let mut shutdown_channels = Vec::new();
4938 let mut process_unfunded_channel_tick = |
4939 chan_id: &ChannelId,
4940 context: &mut ChannelContext<SP>,
4941 unfunded_context: &mut UnfundedChannelContext,
4942 pending_msg_events: &mut Vec<MessageSendEvent>,
4943 counterparty_node_id: PublicKey,
4945 context.maybe_expire_prev_config();
4946 if unfunded_context.should_expire_unfunded_channel() {
4947 let logger = WithChannelContext::from(&self.logger, context);
4949 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4950 update_maps_on_chan_removal!(self, &context);
4951 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
4952 pending_msg_events.push(MessageSendEvent::HandleError {
4953 node_id: counterparty_node_id,
4954 action: msgs::ErrorAction::SendErrorMessage {
4955 msg: msgs::ErrorMessage {
4956 channel_id: *chan_id,
4957 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4968 let per_peer_state = self.per_peer_state.read().unwrap();
4969 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4970 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4971 let peer_state = &mut *peer_state_lock;
4972 let pending_msg_events = &mut peer_state.pending_msg_events;
4973 let counterparty_node_id = *counterparty_node_id;
4974 peer_state.channel_by_id.retain(|chan_id, phase| {
4976 ChannelPhase::Funded(chan) => {
4977 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4982 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4983 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4985 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4986 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4987 handle_errors.push((Err(err), counterparty_node_id));
4988 if needs_close { return false; }
4991 match chan.channel_update_status() {
4992 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4993 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4994 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4995 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4996 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4997 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4998 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5000 if n >= DISABLE_GOSSIP_TICKS {
5001 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5002 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5003 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5007 should_persist = NotifyOption::DoPersist;
5009 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5012 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5014 if n >= ENABLE_GOSSIP_TICKS {
5015 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5016 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5017 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5021 should_persist = NotifyOption::DoPersist;
5023 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5029 chan.context.maybe_expire_prev_config();
5031 if chan.should_disconnect_peer_awaiting_response() {
5032 let logger = WithChannelContext::from(&self.logger, &chan.context);
5033 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5034 counterparty_node_id, chan_id);
5035 pending_msg_events.push(MessageSendEvent::HandleError {
5036 node_id: counterparty_node_id,
5037 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5038 msg: msgs::WarningMessage {
5039 channel_id: *chan_id,
5040 data: "Disconnecting due to timeout awaiting response".to_owned(),
5048 ChannelPhase::UnfundedInboundV1(chan) => {
5049 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5050 pending_msg_events, counterparty_node_id)
5052 ChannelPhase::UnfundedOutboundV1(chan) => {
5053 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5054 pending_msg_events, counterparty_node_id)
5056 #[cfg(dual_funding)]
5057 ChannelPhase::UnfundedInboundV2(chan) => {
5058 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5059 pending_msg_events, counterparty_node_id)
5061 #[cfg(dual_funding)]
5062 ChannelPhase::UnfundedOutboundV2(chan) => {
5063 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5064 pending_msg_events, counterparty_node_id)
5069 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5070 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5071 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5072 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5073 peer_state.pending_msg_events.push(
5074 events::MessageSendEvent::HandleError {
5075 node_id: counterparty_node_id,
5076 action: msgs::ErrorAction::SendErrorMessage {
5077 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5083 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5085 if peer_state.ok_to_remove(true) {
5086 pending_peers_awaiting_removal.push(counterparty_node_id);
5091 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5092 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5093 // of to that peer is later closed while still being disconnected (i.e. force closed),
5094 // we therefore need to remove the peer from `peer_state` separately.
5095 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5096 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5097 // negative effects on parallelism as much as possible.
5098 if pending_peers_awaiting_removal.len() > 0 {
5099 let mut per_peer_state = self.per_peer_state.write().unwrap();
5100 for counterparty_node_id in pending_peers_awaiting_removal {
5101 match per_peer_state.entry(counterparty_node_id) {
5102 hash_map::Entry::Occupied(entry) => {
5103 // Remove the entry if the peer is still disconnected and we still
5104 // have no channels to the peer.
5105 let remove_entry = {
5106 let peer_state = entry.get().lock().unwrap();
5107 peer_state.ok_to_remove(true)
5110 entry.remove_entry();
5113 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5118 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5119 if payment.htlcs.is_empty() {
5120 // This should be unreachable
5121 debug_assert!(false);
5124 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5125 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5126 // In this case we're not going to handle any timeouts of the parts here.
5127 // This condition determining whether the MPP is complete here must match
5128 // exactly the condition used in `process_pending_htlc_forwards`.
5129 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5130 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5133 } else if payment.htlcs.iter_mut().any(|htlc| {
5134 htlc.timer_ticks += 1;
5135 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5137 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5138 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5145 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5146 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5147 let reason = HTLCFailReason::from_failure_code(23);
5148 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5149 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5152 for (err, counterparty_node_id) in handle_errors.drain(..) {
5153 let _ = handle_error!(self, err, counterparty_node_id);
5156 for shutdown_res in shutdown_channels {
5157 self.finish_close_channel(shutdown_res);
5160 #[cfg(feature = "std")]
5161 let duration_since_epoch = std::time::SystemTime::now()
5162 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5163 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5164 #[cfg(not(feature = "std"))]
5165 let duration_since_epoch = Duration::from_secs(
5166 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5169 self.pending_outbound_payments.remove_stale_payments(
5170 duration_since_epoch, &self.pending_events
5173 // Technically we don't need to do this here, but if we have holding cell entries in a
5174 // channel that need freeing, it's better to do that here and block a background task
5175 // than block the message queueing pipeline.
5176 if self.check_free_holding_cells() {
5177 should_persist = NotifyOption::DoPersist;
5184 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5185 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5186 /// along the path (including in our own channel on which we received it).
5188 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5189 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5190 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5191 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5193 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5194 /// [`ChannelManager::claim_funds`]), you should still monitor for
5195 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5196 /// startup during which time claims that were in-progress at shutdown may be replayed.
5197 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5198 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5201 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5202 /// reason for the failure.
5204 /// See [`FailureCode`] for valid failure codes.
5205 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5206 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5208 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5209 if let Some(payment) = removed_source {
5210 for htlc in payment.htlcs {
5211 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5212 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5213 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5214 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5219 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5220 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5221 match failure_code {
5222 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5223 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5224 FailureCode::IncorrectOrUnknownPaymentDetails => {
5225 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5226 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5227 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5229 FailureCode::InvalidOnionPayload(data) => {
5230 let fail_data = match data {
5231 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5234 HTLCFailReason::reason(failure_code.into(), fail_data)
5239 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5240 /// that we want to return and a channel.
5242 /// This is for failures on the channel on which the HTLC was *received*, not failures
5244 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5245 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5246 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5247 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5248 // an inbound SCID alias before the real SCID.
5249 let scid_pref = if chan.context.should_announce() {
5250 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5252 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5254 if let Some(scid) = scid_pref {
5255 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5257 (0x4000|10, Vec::new())
5262 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5263 /// that we want to return and a channel.
5264 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5265 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5266 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5267 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5268 if desired_err_code == 0x1000 | 20 {
5269 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5270 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5271 0u16.write(&mut enc).expect("Writes cannot fail");
5273 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5274 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5275 upd.write(&mut enc).expect("Writes cannot fail");
5276 (desired_err_code, enc.0)
5278 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5279 // which means we really shouldn't have gotten a payment to be forwarded over this
5280 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5281 // PERM|no_such_channel should be fine.
5282 (0x4000|10, Vec::new())
5286 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5287 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5288 // be surfaced to the user.
5289 fn fail_holding_cell_htlcs(
5290 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5291 counterparty_node_id: &PublicKey
5293 let (failure_code, onion_failure_data) = {
5294 let per_peer_state = self.per_peer_state.read().unwrap();
5295 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5296 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5297 let peer_state = &mut *peer_state_lock;
5298 match peer_state.channel_by_id.entry(channel_id) {
5299 hash_map::Entry::Occupied(chan_phase_entry) => {
5300 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5301 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5303 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5304 debug_assert!(false);
5305 (0x4000|10, Vec::new())
5308 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5310 } else { (0x4000|10, Vec::new()) }
5313 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5314 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5315 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5316 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5320 /// Fails an HTLC backwards to the sender of it to us.
5321 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5322 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5323 // Ensure that no peer state channel storage lock is held when calling this function.
5324 // This ensures that future code doesn't introduce a lock-order requirement for
5325 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5326 // this function with any `per_peer_state` peer lock acquired would.
5327 #[cfg(debug_assertions)]
5328 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5329 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5332 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5333 //identify whether we sent it or not based on the (I presume) very different runtime
5334 //between the branches here. We should make this async and move it into the forward HTLCs
5337 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5338 // from block_connected which may run during initialization prior to the chain_monitor
5339 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5341 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5342 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5343 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5344 &self.pending_events, &self.logger)
5345 { self.push_pending_forwards_ev(); }
5347 HTLCSource::PreviousHopData(HTLCPreviousHopData {
5348 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
5349 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
5352 WithContext::from(&self.logger, None, Some(*channel_id)),
5353 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
5354 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
5356 let failure = match blinded_failure {
5357 Some(BlindedFailure::FromIntroductionNode) => {
5358 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
5359 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
5360 incoming_packet_shared_secret, phantom_shared_secret
5362 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
5364 Some(BlindedFailure::FromBlindedNode) => {
5365 HTLCForwardInfo::FailMalformedHTLC {
5367 failure_code: INVALID_ONION_BLINDING,
5368 sha256_of_onion: [0; 32]
5372 let err_packet = onion_error.get_encrypted_failure_packet(
5373 incoming_packet_shared_secret, phantom_shared_secret
5375 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
5379 let mut push_forward_ev = false;
5380 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5381 if forward_htlcs.is_empty() {
5382 push_forward_ev = true;
5384 match forward_htlcs.entry(*short_channel_id) {
5385 hash_map::Entry::Occupied(mut entry) => {
5386 entry.get_mut().push(failure);
5388 hash_map::Entry::Vacant(entry) => {
5389 entry.insert(vec!(failure));
5392 mem::drop(forward_htlcs);
5393 if push_forward_ev { self.push_pending_forwards_ev(); }
5394 let mut pending_events = self.pending_events.lock().unwrap();
5395 pending_events.push_back((events::Event::HTLCHandlingFailed {
5396 prev_channel_id: *channel_id,
5397 failed_next_destination: destination,
5403 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5404 /// [`MessageSendEvent`]s needed to claim the payment.
5406 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5407 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5408 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5409 /// successful. It will generally be available in the next [`process_pending_events`] call.
5411 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5412 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5413 /// event matches your expectation. If you fail to do so and call this method, you may provide
5414 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5416 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5417 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5418 /// [`claim_funds_with_known_custom_tlvs`].
5420 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5421 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5422 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5423 /// [`process_pending_events`]: EventsProvider::process_pending_events
5424 /// [`create_inbound_payment`]: Self::create_inbound_payment
5425 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5426 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5427 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5428 self.claim_payment_internal(payment_preimage, false);
5431 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5432 /// even type numbers.
5436 /// You MUST check you've understood all even TLVs before using this to
5437 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5439 /// [`claim_funds`]: Self::claim_funds
5440 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5441 self.claim_payment_internal(payment_preimage, true);
5444 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5445 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
5447 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5450 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5451 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5452 let mut receiver_node_id = self.our_network_pubkey;
5453 for htlc in payment.htlcs.iter() {
5454 if htlc.prev_hop.phantom_shared_secret.is_some() {
5455 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5456 .expect("Failed to get node_id for phantom node recipient");
5457 receiver_node_id = phantom_pubkey;
5462 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5463 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5464 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5465 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5466 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5468 if dup_purpose.is_some() {
5469 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5470 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5474 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5475 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5476 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5477 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5478 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5479 mem::drop(claimable_payments);
5480 for htlc in payment.htlcs {
5481 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5482 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5483 let receiver = HTLCDestination::FailedPayment { payment_hash };
5484 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5493 debug_assert!(!sources.is_empty());
5495 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5496 // and when we got here we need to check that the amount we're about to claim matches the
5497 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5498 // the MPP parts all have the same `total_msat`.
5499 let mut claimable_amt_msat = 0;
5500 let mut prev_total_msat = None;
5501 let mut expected_amt_msat = None;
5502 let mut valid_mpp = true;
5503 let mut errs = Vec::new();
5504 let per_peer_state = self.per_peer_state.read().unwrap();
5505 for htlc in sources.iter() {
5506 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5507 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5508 debug_assert!(false);
5512 prev_total_msat = Some(htlc.total_msat);
5514 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5515 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5516 debug_assert!(false);
5520 expected_amt_msat = htlc.total_value_received;
5521 claimable_amt_msat += htlc.value;
5523 mem::drop(per_peer_state);
5524 if sources.is_empty() || expected_amt_msat.is_none() {
5525 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5526 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5529 if claimable_amt_msat != expected_amt_msat.unwrap() {
5530 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5531 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5532 expected_amt_msat.unwrap(), claimable_amt_msat);
5536 for htlc in sources.drain(..) {
5537 let prev_hop_chan_id = htlc.prev_hop.channel_id;
5538 if let Err((pk, err)) = self.claim_funds_from_hop(
5539 htlc.prev_hop, payment_preimage,
5540 |_, definitely_duplicate| {
5541 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5542 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5545 if let msgs::ErrorAction::IgnoreError = err.err.action {
5546 // We got a temporary failure updating monitor, but will claim the
5547 // HTLC when the monitor updating is restored (or on chain).
5548 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
5549 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5550 } else { errs.push((pk, err)); }
5555 for htlc in sources.drain(..) {
5556 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5557 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5558 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5559 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5560 let receiver = HTLCDestination::FailedPayment { payment_hash };
5561 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5563 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5566 // Now we can handle any errors which were generated.
5567 for (counterparty_node_id, err) in errs.drain(..) {
5568 let res: Result<(), _> = Err(err);
5569 let _ = handle_error!(self, res, counterparty_node_id);
5573 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5574 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5575 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5576 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5578 // If we haven't yet run background events assume we're still deserializing and shouldn't
5579 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5580 // `BackgroundEvent`s.
5581 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5583 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5584 // the required mutexes are not held before we start.
5585 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5586 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5589 let per_peer_state = self.per_peer_state.read().unwrap();
5590 let chan_id = prev_hop.channel_id;
5591 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5592 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5596 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5597 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5598 .map(|peer_mutex| peer_mutex.lock().unwrap())
5601 if peer_state_opt.is_some() {
5602 let mut peer_state_lock = peer_state_opt.unwrap();
5603 let peer_state = &mut *peer_state_lock;
5604 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5605 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5606 let counterparty_node_id = chan.context.get_counterparty_node_id();
5607 let logger = WithChannelContext::from(&self.logger, &chan.context);
5608 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
5611 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5612 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5613 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
5615 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5618 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5619 peer_state, per_peer_state, chan);
5621 // If we're running during init we cannot update a monitor directly -
5622 // they probably haven't actually been loaded yet. Instead, push the
5623 // monitor update as a background event.
5624 self.pending_background_events.lock().unwrap().push(
5625 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5626 counterparty_node_id,
5627 funding_txo: prev_hop.outpoint,
5628 channel_id: prev_hop.channel_id,
5629 update: monitor_update.clone(),
5633 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5634 let action = if let Some(action) = completion_action(None, true) {
5639 mem::drop(peer_state_lock);
5641 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5643 let (node_id, _funding_outpoint, channel_id, blocker) =
5644 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5645 downstream_counterparty_node_id: node_id,
5646 downstream_funding_outpoint: funding_outpoint,
5647 blocking_action: blocker, downstream_channel_id: channel_id,
5649 (node_id, funding_outpoint, channel_id, blocker)
5651 debug_assert!(false,
5652 "Duplicate claims should always free another channel immediately");
5655 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5656 let mut peer_state = peer_state_mtx.lock().unwrap();
5657 if let Some(blockers) = peer_state
5658 .actions_blocking_raa_monitor_updates
5659 .get_mut(&channel_id)
5661 let mut found_blocker = false;
5662 blockers.retain(|iter| {
5663 // Note that we could actually be blocked, in
5664 // which case we need to only remove the one
5665 // blocker which was added duplicatively.
5666 let first_blocker = !found_blocker;
5667 if *iter == blocker { found_blocker = true; }
5668 *iter != blocker || !first_blocker
5670 debug_assert!(found_blocker);
5673 debug_assert!(false);
5682 let preimage_update = ChannelMonitorUpdate {
5683 update_id: CLOSED_CHANNEL_UPDATE_ID,
5684 counterparty_node_id: None,
5685 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5688 channel_id: Some(prev_hop.channel_id),
5692 // We update the ChannelMonitor on the backward link, after
5693 // receiving an `update_fulfill_htlc` from the forward link.
5694 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5695 if update_res != ChannelMonitorUpdateStatus::Completed {
5696 // TODO: This needs to be handled somehow - if we receive a monitor update
5697 // with a preimage we *must* somehow manage to propagate it to the upstream
5698 // channel, or we must have an ability to receive the same event and try
5699 // again on restart.
5700 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id)),
5701 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5702 payment_preimage, update_res);
5705 // If we're running during init we cannot update a monitor directly - they probably
5706 // haven't actually been loaded yet. Instead, push the monitor update as a background
5708 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5709 // channel is already closed) we need to ultimately handle the monitor update
5710 // completion action only after we've completed the monitor update. This is the only
5711 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5712 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5713 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5714 // complete the monitor update completion action from `completion_action`.
5715 self.pending_background_events.lock().unwrap().push(
5716 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5717 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
5720 // Note that we do process the completion action here. This totally could be a
5721 // duplicate claim, but we have no way of knowing without interrogating the
5722 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5723 // generally always allowed to be duplicative (and it's specifically noted in
5724 // `PaymentForwarded`).
5725 self.handle_monitor_update_completion_actions(completion_action(None, false));
5729 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5730 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5733 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5734 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
5735 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
5736 next_channel_outpoint: OutPoint, next_channel_id: ChannelId,
5739 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5740 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5741 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5742 if let Some(pubkey) = next_channel_counterparty_node_id {
5743 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5745 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5746 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
5747 counterparty_node_id: path.hops[0].pubkey,
5749 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5750 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5753 HTLCSource::PreviousHopData(hop_data) => {
5754 let prev_channel_id = hop_data.channel_id;
5755 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5756 #[cfg(debug_assertions)]
5757 let claiming_chan_funding_outpoint = hop_data.outpoint;
5758 #[cfg(debug_assertions)]
5759 let claiming_channel_id = hop_data.channel_id;
5760 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5761 |htlc_claim_value_msat, definitely_duplicate| {
5762 let chan_to_release =
5763 if let Some(node_id) = next_channel_counterparty_node_id {
5764 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
5766 // We can only get `None` here if we are processing a
5767 // `ChannelMonitor`-originated event, in which case we
5768 // don't care about ensuring we wake the downstream
5769 // channel's monitor updating - the channel is already
5774 if definitely_duplicate && startup_replay {
5775 // On startup we may get redundant claims which are related to
5776 // monitor updates still in flight. In that case, we shouldn't
5777 // immediately free, but instead let that monitor update complete
5778 // in the background.
5779 #[cfg(debug_assertions)] {
5780 let background_events = self.pending_background_events.lock().unwrap();
5781 // There should be a `BackgroundEvent` pending...
5782 assert!(background_events.iter().any(|ev| {
5784 // to apply a monitor update that blocked the claiming channel,
5785 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5786 funding_txo, update, ..
5788 if *funding_txo == claiming_chan_funding_outpoint {
5789 assert!(update.updates.iter().any(|upd|
5790 if let ChannelMonitorUpdateStep::PaymentPreimage {
5791 payment_preimage: update_preimage
5793 payment_preimage == *update_preimage
5799 // or the channel we'd unblock is already closed,
5800 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5801 (funding_txo, _channel_id, monitor_update)
5803 if *funding_txo == next_channel_outpoint {
5804 assert_eq!(monitor_update.updates.len(), 1);
5806 monitor_update.updates[0],
5807 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5812 // or the monitor update has completed and will unblock
5813 // immediately once we get going.
5814 BackgroundEvent::MonitorUpdatesComplete {
5817 *channel_id == claiming_channel_id,
5819 }), "{:?}", *background_events);
5822 } else if definitely_duplicate {
5823 if let Some(other_chan) = chan_to_release {
5824 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5825 downstream_counterparty_node_id: other_chan.0,
5826 downstream_funding_outpoint: other_chan.1,
5827 downstream_channel_id: other_chan.2,
5828 blocking_action: other_chan.3,
5832 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5833 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5834 Some(claimed_htlc_value - forwarded_htlc_value)
5837 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
5838 "skimmed_fee_msat must always be included in total_fee_earned_msat");
5839 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5840 event: events::Event::PaymentForwarded {
5841 total_fee_earned_msat,
5842 claim_from_onchain_tx: from_onchain,
5843 prev_channel_id: Some(prev_channel_id),
5844 next_channel_id: Some(next_channel_id),
5845 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5848 downstream_counterparty_and_funding_outpoint: chan_to_release,
5852 if let Err((pk, err)) = res {
5853 let result: Result<(), _> = Err(err);
5854 let _ = handle_error!(self, result, pk);
5860 /// Gets the node_id held by this ChannelManager
5861 pub fn get_our_node_id(&self) -> PublicKey {
5862 self.our_network_pubkey.clone()
5865 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5866 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5867 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5868 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5870 for action in actions.into_iter() {
5872 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5873 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5874 if let Some(ClaimingPayment {
5876 payment_purpose: purpose,
5879 sender_intended_value: sender_intended_total_msat,
5881 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5885 receiver_node_id: Some(receiver_node_id),
5887 sender_intended_total_msat,
5891 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5892 event, downstream_counterparty_and_funding_outpoint
5894 self.pending_events.lock().unwrap().push_back((event, None));
5895 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
5896 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
5899 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5900 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
5902 self.handle_monitor_update_release(
5903 downstream_counterparty_node_id,
5904 downstream_funding_outpoint,
5905 downstream_channel_id,
5906 Some(blocking_action),
5913 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5914 /// update completion.
5915 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5916 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5917 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5918 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5919 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5920 -> Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> {
5921 let logger = WithChannelContext::from(&self.logger, &channel.context);
5922 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5923 &channel.context.channel_id(),
5924 if raa.is_some() { "an" } else { "no" },
5925 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5926 if funding_broadcastable.is_some() { "" } else { "not " },
5927 if channel_ready.is_some() { "sending" } else { "without" },
5928 if announcement_sigs.is_some() { "sending" } else { "without" });
5930 let mut htlc_forwards = None;
5932 let counterparty_node_id = channel.context.get_counterparty_node_id();
5933 if !pending_forwards.is_empty() {
5934 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5935 channel.context.get_funding_txo().unwrap(), channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
5938 if let Some(msg) = channel_ready {
5939 send_channel_ready!(self, pending_msg_events, channel, msg);
5941 if let Some(msg) = announcement_sigs {
5942 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5943 node_id: counterparty_node_id,
5948 macro_rules! handle_cs { () => {
5949 if let Some(update) = commitment_update {
5950 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5951 node_id: counterparty_node_id,
5956 macro_rules! handle_raa { () => {
5957 if let Some(revoke_and_ack) = raa {
5958 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5959 node_id: counterparty_node_id,
5960 msg: revoke_and_ack,
5965 RAACommitmentOrder::CommitmentFirst => {
5969 RAACommitmentOrder::RevokeAndACKFirst => {
5975 if let Some(tx) = funding_broadcastable {
5976 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
5977 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5981 let mut pending_events = self.pending_events.lock().unwrap();
5982 emit_channel_pending_event!(pending_events, channel);
5983 emit_channel_ready_event!(pending_events, channel);
5989 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5990 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5992 let counterparty_node_id = match counterparty_node_id {
5993 Some(cp_id) => cp_id.clone(),
5995 // TODO: Once we can rely on the counterparty_node_id from the
5996 // monitor event, this and the outpoint_to_peer map should be removed.
5997 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
5998 match outpoint_to_peer.get(funding_txo) {
5999 Some(cp_id) => cp_id.clone(),
6004 let per_peer_state = self.per_peer_state.read().unwrap();
6005 let mut peer_state_lock;
6006 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6007 if peer_state_mutex_opt.is_none() { return }
6008 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6009 let peer_state = &mut *peer_state_lock;
6011 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6014 let update_actions = peer_state.monitor_update_blocked_actions
6015 .remove(&channel_id).unwrap_or(Vec::new());
6016 mem::drop(peer_state_lock);
6017 mem::drop(per_peer_state);
6018 self.handle_monitor_update_completion_actions(update_actions);
6021 let remaining_in_flight =
6022 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6023 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6026 let logger = WithChannelContext::from(&self.logger, &channel.context);
6027 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6028 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6029 remaining_in_flight);
6030 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6033 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6036 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6038 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6039 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6042 /// The `user_channel_id` parameter will be provided back in
6043 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6044 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6046 /// Note that this method will return an error and reject the channel, if it requires support
6047 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6048 /// used to accept such channels.
6050 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6051 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6052 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6053 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6056 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6057 /// it as confirmed immediately.
6059 /// The `user_channel_id` parameter will be provided back in
6060 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6061 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6063 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6064 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6066 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6067 /// transaction and blindly assumes that it will eventually confirm.
6069 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6070 /// does not pay to the correct script the correct amount, *you will lose funds*.
6072 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6073 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6074 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6075 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6078 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6080 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6081 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6083 let peers_without_funded_channels =
6084 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6085 let per_peer_state = self.per_peer_state.read().unwrap();
6086 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6088 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6089 log_error!(logger, "{}", err_str);
6091 APIError::ChannelUnavailable { err: err_str }
6093 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6094 let peer_state = &mut *peer_state_lock;
6095 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6097 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6098 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6099 // that we can delay allocating the SCID until after we're sure that the checks below will
6101 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6102 Some(unaccepted_channel) => {
6103 let best_block_height = self.best_block.read().unwrap().height();
6104 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6105 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6106 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6107 &self.logger, accept_0conf).map_err(|e| {
6108 let err_str = e.to_string();
6109 log_error!(logger, "{}", err_str);
6111 APIError::ChannelUnavailable { err: err_str }
6115 let err_str = "No such channel awaiting to be accepted.".to_owned();
6116 log_error!(logger, "{}", err_str);
6118 Err(APIError::APIMisuseError { err: err_str })
6123 // This should have been correctly configured by the call to InboundV1Channel::new.
6124 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6125 } else if channel.context.get_channel_type().requires_zero_conf() {
6126 let send_msg_err_event = events::MessageSendEvent::HandleError {
6127 node_id: channel.context.get_counterparty_node_id(),
6128 action: msgs::ErrorAction::SendErrorMessage{
6129 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6132 peer_state.pending_msg_events.push(send_msg_err_event);
6133 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
6134 log_error!(logger, "{}", err_str);
6136 return Err(APIError::APIMisuseError { err: err_str });
6138 // If this peer already has some channels, a new channel won't increase our number of peers
6139 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6140 // channels per-peer we can accept channels from a peer with existing ones.
6141 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6142 let send_msg_err_event = events::MessageSendEvent::HandleError {
6143 node_id: channel.context.get_counterparty_node_id(),
6144 action: msgs::ErrorAction::SendErrorMessage{
6145 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
6148 peer_state.pending_msg_events.push(send_msg_err_event);
6149 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
6150 log_error!(logger, "{}", err_str);
6152 return Err(APIError::APIMisuseError { err: err_str });
6156 // Now that we know we have a channel, assign an outbound SCID alias.
6157 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6158 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6160 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6161 node_id: channel.context.get_counterparty_node_id(),
6162 msg: channel.accept_inbound_channel(),
6165 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6170 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6171 /// or 0-conf channels.
6173 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6174 /// non-0-conf channels we have with the peer.
6175 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6176 where Filter: Fn(&PeerState<SP>) -> bool {
6177 let mut peers_without_funded_channels = 0;
6178 let best_block_height = self.best_block.read().unwrap().height();
6180 let peer_state_lock = self.per_peer_state.read().unwrap();
6181 for (_, peer_mtx) in peer_state_lock.iter() {
6182 let peer = peer_mtx.lock().unwrap();
6183 if !maybe_count_peer(&*peer) { continue; }
6184 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6185 if num_unfunded_channels == peer.total_channel_count() {
6186 peers_without_funded_channels += 1;
6190 return peers_without_funded_channels;
6193 fn unfunded_channel_count(
6194 peer: &PeerState<SP>, best_block_height: u32
6196 let mut num_unfunded_channels = 0;
6197 for (_, phase) in peer.channel_by_id.iter() {
6199 ChannelPhase::Funded(chan) => {
6200 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6201 // which have not yet had any confirmations on-chain.
6202 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6203 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6205 num_unfunded_channels += 1;
6208 ChannelPhase::UnfundedInboundV1(chan) => {
6209 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6210 num_unfunded_channels += 1;
6213 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
6214 #[cfg(dual_funding)]
6215 ChannelPhase::UnfundedInboundV2(chan) => {
6216 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
6217 // included in the unfunded count.
6218 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
6219 chan.dual_funding_context.our_funding_satoshis == 0 {
6220 num_unfunded_channels += 1;
6223 ChannelPhase::UnfundedOutboundV1(_) => {
6224 // Outbound channels don't contribute to the unfunded count in the DoS context.
6227 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
6228 #[cfg(dual_funding)]
6229 ChannelPhase::UnfundedOutboundV2(_) => {
6230 // Outbound channels don't contribute to the unfunded count in the DoS context.
6235 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6238 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6239 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6240 // likely to be lost on restart!
6241 if msg.common_fields.chain_hash != self.chain_hash {
6242 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
6243 msg.common_fields.temporary_channel_id.clone()));
6246 if !self.default_configuration.accept_inbound_channels {
6247 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
6248 msg.common_fields.temporary_channel_id.clone()));
6251 // Get the number of peers with channels, but without funded ones. We don't care too much
6252 // about peers that never open a channel, so we filter by peers that have at least one
6253 // channel, and then limit the number of those with unfunded channels.
6254 let channeled_peers_without_funding =
6255 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6257 let per_peer_state = self.per_peer_state.read().unwrap();
6258 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6260 debug_assert!(false);
6261 MsgHandleErrInternal::send_err_msg_no_close(
6262 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
6263 msg.common_fields.temporary_channel_id.clone())
6265 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6266 let peer_state = &mut *peer_state_lock;
6268 // If this peer already has some channels, a new channel won't increase our number of peers
6269 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6270 // channels per-peer we can accept channels from a peer with existing ones.
6271 if peer_state.total_channel_count() == 0 &&
6272 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6273 !self.default_configuration.manually_accept_inbound_channels
6275 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6276 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6277 msg.common_fields.temporary_channel_id.clone()));
6280 let best_block_height = self.best_block.read().unwrap().height();
6281 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6282 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6283 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6284 msg.common_fields.temporary_channel_id.clone()));
6287 let channel_id = msg.common_fields.temporary_channel_id;
6288 let channel_exists = peer_state.has_channel(&channel_id);
6290 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6291 "temporary_channel_id collision for the same peer!".to_owned(),
6292 msg.common_fields.temporary_channel_id.clone()));
6295 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6296 if self.default_configuration.manually_accept_inbound_channels {
6297 let channel_type = channel::channel_type_from_open_channel(
6298 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
6300 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
6302 let mut pending_events = self.pending_events.lock().unwrap();
6303 pending_events.push_back((events::Event::OpenChannelRequest {
6304 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
6305 counterparty_node_id: counterparty_node_id.clone(),
6306 funding_satoshis: msg.common_fields.funding_satoshis,
6307 push_msat: msg.push_msat,
6310 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6311 open_channel_msg: msg.clone(),
6312 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6317 // Otherwise create the channel right now.
6318 let mut random_bytes = [0u8; 16];
6319 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6320 let user_channel_id = u128::from_be_bytes(random_bytes);
6321 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6322 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6323 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6326 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
6331 let channel_type = channel.context.get_channel_type();
6332 if channel_type.requires_zero_conf() {
6333 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6334 "No zero confirmation channels accepted".to_owned(),
6335 msg.common_fields.temporary_channel_id.clone()));
6337 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6338 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6339 "No channels with anchor outputs accepted".to_owned(),
6340 msg.common_fields.temporary_channel_id.clone()));
6343 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6344 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6346 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6347 node_id: counterparty_node_id.clone(),
6348 msg: channel.accept_inbound_channel(),
6350 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6354 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6355 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6356 // likely to be lost on restart!
6357 let (value, output_script, user_id) = {
6358 let per_peer_state = self.per_peer_state.read().unwrap();
6359 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6361 debug_assert!(false);
6362 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
6364 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6365 let peer_state = &mut *peer_state_lock;
6366 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
6367 hash_map::Entry::Occupied(mut phase) => {
6368 match phase.get_mut() {
6369 ChannelPhase::UnfundedOutboundV1(chan) => {
6370 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6371 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6374 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
6378 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
6381 let mut pending_events = self.pending_events.lock().unwrap();
6382 pending_events.push_back((events::Event::FundingGenerationReady {
6383 temporary_channel_id: msg.common_fields.temporary_channel_id,
6384 counterparty_node_id: *counterparty_node_id,
6385 channel_value_satoshis: value,
6387 user_channel_id: user_id,
6392 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6393 let best_block = *self.best_block.read().unwrap();
6395 let per_peer_state = self.per_peer_state.read().unwrap();
6396 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6398 debug_assert!(false);
6399 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6402 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6403 let peer_state = &mut *peer_state_lock;
6404 let (mut chan, funding_msg_opt, monitor) =
6405 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6406 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6407 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
6408 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
6410 Err((inbound_chan, err)) => {
6411 // We've already removed this inbound channel from the map in `PeerState`
6412 // above so at this point we just need to clean up any lingering entries
6413 // concerning this channel as it is safe to do so.
6414 debug_assert!(matches!(err, ChannelError::Close(_)));
6415 // Really we should be returning the channel_id the peer expects based
6416 // on their funding info here, but they're horribly confused anyway, so
6417 // there's not a lot we can do to save them.
6418 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
6422 Some(mut phase) => {
6423 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
6424 let err = ChannelError::Close(err_msg);
6425 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
6427 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6430 let funded_channel_id = chan.context.channel_id();
6432 macro_rules! fail_chan { ($err: expr) => { {
6433 // Note that at this point we've filled in the funding outpoint on our
6434 // channel, but its actually in conflict with another channel. Thus, if
6435 // we call `convert_chan_phase_err` immediately (thus calling
6436 // `update_maps_on_chan_removal`), we'll remove the existing channel
6437 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
6439 let err = ChannelError::Close($err.to_owned());
6440 chan.unset_funding_info(msg.temporary_channel_id);
6441 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
6444 match peer_state.channel_by_id.entry(funded_channel_id) {
6445 hash_map::Entry::Occupied(_) => {
6446 fail_chan!("Already had channel with the new channel_id");
6448 hash_map::Entry::Vacant(e) => {
6449 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
6450 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
6451 hash_map::Entry::Occupied(_) => {
6452 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
6454 hash_map::Entry::Vacant(i_e) => {
6455 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6456 if let Ok(persist_state) = monitor_res {
6457 i_e.insert(chan.context.get_counterparty_node_id());
6458 mem::drop(outpoint_to_peer_lock);
6460 // There's no problem signing a counterparty's funding transaction if our monitor
6461 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6462 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6463 // until we have persisted our monitor.
6464 if let Some(msg) = funding_msg_opt {
6465 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6466 node_id: counterparty_node_id.clone(),
6471 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6472 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6473 per_peer_state, chan, INITIAL_MONITOR);
6475 unreachable!("This must be a funded channel as we just inserted it.");
6479 let logger = WithChannelContext::from(&self.logger, &chan.context);
6480 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6481 fail_chan!("Duplicate funding outpoint");
6489 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6490 let best_block = *self.best_block.read().unwrap();
6491 let per_peer_state = self.per_peer_state.read().unwrap();
6492 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6494 debug_assert!(false);
6495 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6498 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6499 let peer_state = &mut *peer_state_lock;
6500 match peer_state.channel_by_id.entry(msg.channel_id) {
6501 hash_map::Entry::Occupied(chan_phase_entry) => {
6502 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
6503 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
6504 let logger = WithContext::from(
6506 Some(chan.context.get_counterparty_node_id()),
6507 Some(chan.context.channel_id())
6510 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
6512 Ok((mut chan, monitor)) => {
6513 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6514 // We really should be able to insert here without doing a second
6515 // lookup, but sadly rust stdlib doesn't currently allow keeping
6516 // the original Entry around with the value removed.
6517 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
6518 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
6519 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6520 } else { unreachable!(); }
6523 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
6524 // We weren't able to watch the channel to begin with, so no
6525 // updates should be made on it. Previously, full_stack_target
6526 // found an (unreachable) panic when the monitor update contained
6527 // within `shutdown_finish` was applied.
6528 chan.unset_funding_info(msg.channel_id);
6529 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
6533 debug_assert!(matches!(e, ChannelError::Close(_)),
6534 "We don't have a channel anymore, so the error better have expected close");
6535 // We've already removed this outbound channel from the map in
6536 // `PeerState` above so at this point we just need to clean up any
6537 // lingering entries concerning this channel as it is safe to do so.
6538 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
6542 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6545 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6549 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6550 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6551 // closing a channel), so any changes are likely to be lost on restart!
6552 let per_peer_state = self.per_peer_state.read().unwrap();
6553 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6555 debug_assert!(false);
6556 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6558 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6559 let peer_state = &mut *peer_state_lock;
6560 match peer_state.channel_by_id.entry(msg.channel_id) {
6561 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6562 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6563 let logger = WithChannelContext::from(&self.logger, &chan.context);
6564 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6565 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
6566 if let Some(announcement_sigs) = announcement_sigs_opt {
6567 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6568 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6569 node_id: counterparty_node_id.clone(),
6570 msg: announcement_sigs,
6572 } else if chan.context.is_usable() {
6573 // If we're sending an announcement_signatures, we'll send the (public)
6574 // channel_update after sending a channel_announcement when we receive our
6575 // counterparty's announcement_signatures. Thus, we only bother to send a
6576 // channel_update here if the channel is not public, i.e. we're not sending an
6577 // announcement_signatures.
6578 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6579 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6580 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6581 node_id: counterparty_node_id.clone(),
6588 let mut pending_events = self.pending_events.lock().unwrap();
6589 emit_channel_ready_event!(pending_events, chan);
6594 try_chan_phase_entry!(self, Err(ChannelError::Close(
6595 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6598 hash_map::Entry::Vacant(_) => {
6599 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6604 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6605 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6606 let mut finish_shutdown = None;
6608 let per_peer_state = self.per_peer_state.read().unwrap();
6609 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6611 debug_assert!(false);
6612 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6614 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6615 let peer_state = &mut *peer_state_lock;
6616 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6617 let phase = chan_phase_entry.get_mut();
6619 ChannelPhase::Funded(chan) => {
6620 if !chan.received_shutdown() {
6621 let logger = WithChannelContext::from(&self.logger, &chan.context);
6622 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
6624 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6627 let funding_txo_opt = chan.context.get_funding_txo();
6628 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6629 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6630 dropped_htlcs = htlcs;
6632 if let Some(msg) = shutdown {
6633 // We can send the `shutdown` message before updating the `ChannelMonitor`
6634 // here as we don't need the monitor update to complete until we send a
6635 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6636 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6637 node_id: *counterparty_node_id,
6641 // Update the monitor with the shutdown script if necessary.
6642 if let Some(monitor_update) = monitor_update_opt {
6643 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6644 peer_state_lock, peer_state, per_peer_state, chan);
6647 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6648 let context = phase.context_mut();
6649 let logger = WithChannelContext::from(&self.logger, context);
6650 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6651 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6652 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
6654 // TODO(dual_funding): Combine this match arm with above.
6655 #[cfg(dual_funding)]
6656 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
6657 let context = phase.context_mut();
6658 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6659 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6660 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
6664 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6667 for htlc_source in dropped_htlcs.drain(..) {
6668 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6669 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6670 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6672 if let Some(shutdown_res) = finish_shutdown {
6673 self.finish_close_channel(shutdown_res);
6679 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6680 let per_peer_state = self.per_peer_state.read().unwrap();
6681 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6683 debug_assert!(false);
6684 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6686 let (tx, chan_option, shutdown_result) = {
6687 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6688 let peer_state = &mut *peer_state_lock;
6689 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6690 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6691 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6692 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6693 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6694 if let Some(msg) = closing_signed {
6695 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6696 node_id: counterparty_node_id.clone(),
6701 // We're done with this channel, we've got a signed closing transaction and
6702 // will send the closing_signed back to the remote peer upon return. This
6703 // also implies there are no pending HTLCs left on the channel, so we can
6704 // fully delete it from tracking (the channel monitor is still around to
6705 // watch for old state broadcasts)!
6706 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6707 } else { (tx, None, shutdown_result) }
6709 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6710 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6713 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6716 if let Some(broadcast_tx) = tx {
6717 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
6718 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
6719 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6721 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6722 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6723 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6724 let peer_state = &mut *peer_state_lock;
6725 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6730 mem::drop(per_peer_state);
6731 if let Some(shutdown_result) = shutdown_result {
6732 self.finish_close_channel(shutdown_result);
6737 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6738 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6739 //determine the state of the payment based on our response/if we forward anything/the time
6740 //we take to respond. We should take care to avoid allowing such an attack.
6742 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6743 //us repeatedly garbled in different ways, and compare our error messages, which are
6744 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6745 //but we should prevent it anyway.
6747 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6748 // closing a channel), so any changes are likely to be lost on restart!
6750 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
6751 let per_peer_state = self.per_peer_state.read().unwrap();
6752 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6754 debug_assert!(false);
6755 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6757 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6758 let peer_state = &mut *peer_state_lock;
6759 match peer_state.channel_by_id.entry(msg.channel_id) {
6760 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6761 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6762 let pending_forward_info = match decoded_hop_res {
6763 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6764 self.construct_pending_htlc_status(
6765 msg, counterparty_node_id, shared_secret, next_hop,
6766 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
6768 Err(e) => PendingHTLCStatus::Fail(e)
6770 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6771 if msg.blinding_point.is_some() {
6772 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
6773 msgs::UpdateFailMalformedHTLC {
6774 channel_id: msg.channel_id,
6775 htlc_id: msg.htlc_id,
6776 sha256_of_onion: [0; 32],
6777 failure_code: INVALID_ONION_BLINDING,
6781 // If the update_add is completely bogus, the call will Err and we will close,
6782 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6783 // want to reject the new HTLC and fail it backwards instead of forwarding.
6784 match pending_forward_info {
6785 PendingHTLCStatus::Forward(PendingHTLCInfo {
6786 ref incoming_shared_secret, ref routing, ..
6788 let reason = if routing.blinded_failure().is_some() {
6789 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
6790 } else if (error_code & 0x1000) != 0 {
6791 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6792 HTLCFailReason::reason(real_code, error_data)
6794 HTLCFailReason::from_failure_code(error_code)
6795 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6796 let msg = msgs::UpdateFailHTLC {
6797 channel_id: msg.channel_id,
6798 htlc_id: msg.htlc_id,
6801 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6803 _ => pending_forward_info
6806 let logger = WithChannelContext::from(&self.logger, &chan.context);
6807 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &&logger), chan_phase_entry);
6809 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6810 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6813 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6818 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6820 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
6821 let per_peer_state = self.per_peer_state.read().unwrap();
6822 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6824 debug_assert!(false);
6825 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6827 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6828 let peer_state = &mut *peer_state_lock;
6829 match peer_state.channel_by_id.entry(msg.channel_id) {
6830 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6831 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6832 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6833 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6834 let logger = WithChannelContext::from(&self.logger, &chan.context);
6836 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6838 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6839 .or_insert_with(Vec::new)
6840 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6842 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6843 // entry here, even though we *do* need to block the next RAA monitor update.
6844 // We do this instead in the `claim_funds_internal` by attaching a
6845 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6846 // outbound HTLC is claimed. This is guaranteed to all complete before we
6847 // process the RAA as messages are processed from single peers serially.
6848 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6851 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6852 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6855 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6858 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
6859 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
6860 funding_txo, msg.channel_id
6866 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6867 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6868 // closing a channel), so any changes are likely to be lost on restart!
6869 let per_peer_state = self.per_peer_state.read().unwrap();
6870 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6872 debug_assert!(false);
6873 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6875 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6876 let peer_state = &mut *peer_state_lock;
6877 match peer_state.channel_by_id.entry(msg.channel_id) {
6878 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6879 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6880 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6882 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6883 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6886 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6891 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6892 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6893 // closing a channel), so any changes are likely to be lost on restart!
6894 let per_peer_state = self.per_peer_state.read().unwrap();
6895 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6897 debug_assert!(false);
6898 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6900 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6901 let peer_state = &mut *peer_state_lock;
6902 match peer_state.channel_by_id.entry(msg.channel_id) {
6903 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6904 if (msg.failure_code & 0x8000) == 0 {
6905 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6906 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6908 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6909 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6911 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6912 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6916 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6920 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6921 let per_peer_state = self.per_peer_state.read().unwrap();
6922 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6924 debug_assert!(false);
6925 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6927 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6928 let peer_state = &mut *peer_state_lock;
6929 match peer_state.channel_by_id.entry(msg.channel_id) {
6930 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6931 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6932 let logger = WithChannelContext::from(&self.logger, &chan.context);
6933 let funding_txo = chan.context.get_funding_txo();
6934 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
6935 if let Some(monitor_update) = monitor_update_opt {
6936 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6937 peer_state, per_peer_state, chan);
6941 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6942 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6945 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6950 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6951 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6952 let mut push_forward_event = false;
6953 let mut new_intercept_events = VecDeque::new();
6954 let mut failed_intercept_forwards = Vec::new();
6955 if !pending_forwards.is_empty() {
6956 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6957 let scid = match forward_info.routing {
6958 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6959 PendingHTLCRouting::Receive { .. } => 0,
6960 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6962 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6963 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6965 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6966 let forward_htlcs_empty = forward_htlcs.is_empty();
6967 match forward_htlcs.entry(scid) {
6968 hash_map::Entry::Occupied(mut entry) => {
6969 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6970 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
6972 hash_map::Entry::Vacant(entry) => {
6973 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6974 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6976 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
6977 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6978 match pending_intercepts.entry(intercept_id) {
6979 hash_map::Entry::Vacant(entry) => {
6980 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6981 requested_next_hop_scid: scid,
6982 payment_hash: forward_info.payment_hash,
6983 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6984 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6987 entry.insert(PendingAddHTLCInfo {
6988 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
6990 hash_map::Entry::Occupied(_) => {
6991 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id));
6992 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6993 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6994 short_channel_id: prev_short_channel_id,
6995 user_channel_id: Some(prev_user_channel_id),
6996 outpoint: prev_funding_outpoint,
6997 channel_id: prev_channel_id,
6998 htlc_id: prev_htlc_id,
6999 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7000 phantom_shared_secret: None,
7001 blinded_failure: forward_info.routing.blinded_failure(),
7004 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7005 HTLCFailReason::from_failure_code(0x4000 | 10),
7006 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7011 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7012 // payments are being processed.
7013 if forward_htlcs_empty {
7014 push_forward_event = true;
7016 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7017 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7024 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7025 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
7028 if !new_intercept_events.is_empty() {
7029 let mut events = self.pending_events.lock().unwrap();
7030 events.append(&mut new_intercept_events);
7032 if push_forward_event { self.push_pending_forwards_ev() }
7036 fn push_pending_forwards_ev(&self) {
7037 let mut pending_events = self.pending_events.lock().unwrap();
7038 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7039 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7040 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7042 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7043 // events is done in batches and they are not removed until we're done processing each
7044 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7045 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7046 // payments will need an additional forwarding event before being claimed to make them look
7047 // real by taking more time.
7048 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7049 pending_events.push_back((Event::PendingHTLCsForwardable {
7050 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7055 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7056 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7057 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7058 /// the [`ChannelMonitorUpdate`] in question.
7059 fn raa_monitor_updates_held(&self,
7060 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7061 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7063 actions_blocking_raa_monitor_updates
7064 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7065 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7066 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7067 channel_funding_outpoint,
7069 counterparty_node_id,
7074 #[cfg(any(test, feature = "_test_utils"))]
7075 pub(crate) fn test_raa_monitor_updates_held(&self,
7076 counterparty_node_id: PublicKey, channel_id: ChannelId
7078 let per_peer_state = self.per_peer_state.read().unwrap();
7079 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7080 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7081 let peer_state = &mut *peer_state_lck;
7083 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7084 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7085 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7091 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7092 let htlcs_to_fail = {
7093 let per_peer_state = self.per_peer_state.read().unwrap();
7094 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7096 debug_assert!(false);
7097 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7098 }).map(|mtx| mtx.lock().unwrap())?;
7099 let peer_state = &mut *peer_state_lock;
7100 match peer_state.channel_by_id.entry(msg.channel_id) {
7101 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7102 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7103 let logger = WithChannelContext::from(&self.logger, &chan.context);
7104 let funding_txo_opt = chan.context.get_funding_txo();
7105 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
7106 self.raa_monitor_updates_held(
7107 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
7108 *counterparty_node_id)
7110 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
7111 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
7112 if let Some(monitor_update) = monitor_update_opt {
7113 let funding_txo = funding_txo_opt
7114 .expect("Funding outpoint must have been set for RAA handling to succeed");
7115 handle_new_monitor_update!(self, funding_txo, monitor_update,
7116 peer_state_lock, peer_state, per_peer_state, chan);
7120 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7121 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
7124 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7127 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
7131 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
7132 let per_peer_state = self.per_peer_state.read().unwrap();
7133 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7135 debug_assert!(false);
7136 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7138 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7139 let peer_state = &mut *peer_state_lock;
7140 match peer_state.channel_by_id.entry(msg.channel_id) {
7141 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7142 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7143 let logger = WithChannelContext::from(&self.logger, &chan.context);
7144 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
7146 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7147 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
7150 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7155 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
7156 let per_peer_state = self.per_peer_state.read().unwrap();
7157 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7159 debug_assert!(false);
7160 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7162 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7163 let peer_state = &mut *peer_state_lock;
7164 match peer_state.channel_by_id.entry(msg.channel_id) {
7165 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7166 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7167 if !chan.context.is_usable() {
7168 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
7171 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
7172 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
7173 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
7174 msg, &self.default_configuration
7175 ), chan_phase_entry),
7176 // Note that announcement_signatures fails if the channel cannot be announced,
7177 // so get_channel_update_for_broadcast will never fail by the time we get here.
7178 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
7181 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7182 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
7185 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7190 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
7191 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
7192 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
7193 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
7195 // It's not a local channel
7196 return Ok(NotifyOption::SkipPersistNoEvents)
7199 let per_peer_state = self.per_peer_state.read().unwrap();
7200 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
7201 if peer_state_mutex_opt.is_none() {
7202 return Ok(NotifyOption::SkipPersistNoEvents)
7204 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
7205 let peer_state = &mut *peer_state_lock;
7206 match peer_state.channel_by_id.entry(chan_id) {
7207 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7208 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7209 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
7210 if chan.context.should_announce() {
7211 // If the announcement is about a channel of ours which is public, some
7212 // other peer may simply be forwarding all its gossip to us. Don't provide
7213 // a scary-looking error message and return Ok instead.
7214 return Ok(NotifyOption::SkipPersistNoEvents);
7216 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
7218 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
7219 let msg_from_node_one = msg.contents.flags & 1 == 0;
7220 if were_node_one == msg_from_node_one {
7221 return Ok(NotifyOption::SkipPersistNoEvents);
7223 let logger = WithChannelContext::from(&self.logger, &chan.context);
7224 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
7225 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
7226 // If nothing changed after applying their update, we don't need to bother
7229 return Ok(NotifyOption::SkipPersistNoEvents);
7233 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7234 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7237 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7239 Ok(NotifyOption::DoPersist)
7242 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7244 let need_lnd_workaround = {
7245 let per_peer_state = self.per_peer_state.read().unwrap();
7247 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7249 debug_assert!(false);
7250 MsgHandleErrInternal::send_err_msg_no_close(
7251 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7255 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
7256 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7257 let peer_state = &mut *peer_state_lock;
7258 match peer_state.channel_by_id.entry(msg.channel_id) {
7259 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7260 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7261 // Currently, we expect all holding cell update_adds to be dropped on peer
7262 // disconnect, so Channel's reestablish will never hand us any holding cell
7263 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7264 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7265 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7266 msg, &&logger, &self.node_signer, self.chain_hash,
7267 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7268 let mut channel_update = None;
7269 if let Some(msg) = responses.shutdown_msg {
7270 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7271 node_id: counterparty_node_id.clone(),
7274 } else if chan.context.is_usable() {
7275 // If the channel is in a usable state (ie the channel is not being shut
7276 // down), send a unicast channel_update to our counterparty to make sure
7277 // they have the latest channel parameters.
7278 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7279 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7280 node_id: chan.context.get_counterparty_node_id(),
7285 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7286 htlc_forwards = self.handle_channel_resumption(
7287 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7288 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7289 if let Some(upd) = channel_update {
7290 peer_state.pending_msg_events.push(upd);
7294 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7295 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7298 hash_map::Entry::Vacant(_) => {
7299 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7301 // Unfortunately, lnd doesn't force close on errors
7302 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7303 // One of the few ways to get an lnd counterparty to force close is by
7304 // replicating what they do when restoring static channel backups (SCBs). They
7305 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7306 // invalid `your_last_per_commitment_secret`.
7308 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7309 // can assume it's likely the channel closed from our point of view, but it
7310 // remains open on the counterparty's side. By sending this bogus
7311 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7312 // force close broadcasting their latest state. If the closing transaction from
7313 // our point of view remains unconfirmed, it'll enter a race with the
7314 // counterparty's to-be-broadcast latest commitment transaction.
7315 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7316 node_id: *counterparty_node_id,
7317 msg: msgs::ChannelReestablish {
7318 channel_id: msg.channel_id,
7319 next_local_commitment_number: 0,
7320 next_remote_commitment_number: 0,
7321 your_last_per_commitment_secret: [1u8; 32],
7322 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7323 next_funding_txid: None,
7326 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7327 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7328 counterparty_node_id), msg.channel_id)
7334 let mut persist = NotifyOption::SkipPersistHandleEvents;
7335 if let Some(forwards) = htlc_forwards {
7336 self.forward_htlcs(&mut [forwards][..]);
7337 persist = NotifyOption::DoPersist;
7340 if let Some(channel_ready_msg) = need_lnd_workaround {
7341 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7346 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7347 fn process_pending_monitor_events(&self) -> bool {
7348 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7350 let mut failed_channels = Vec::new();
7351 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7352 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7353 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7354 for monitor_event in monitor_events.drain(..) {
7355 match monitor_event {
7356 MonitorEvent::HTLCEvent(htlc_update) => {
7357 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id));
7358 if let Some(preimage) = htlc_update.payment_preimage {
7359 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7360 self.claim_funds_internal(htlc_update.source, preimage,
7361 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
7362 false, counterparty_node_id, funding_outpoint, channel_id);
7364 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7365 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
7366 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7367 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7370 MonitorEvent::HolderForceClosed(_funding_outpoint) => {
7371 let counterparty_node_id_opt = match counterparty_node_id {
7372 Some(cp_id) => Some(cp_id),
7374 // TODO: Once we can rely on the counterparty_node_id from the
7375 // monitor event, this and the outpoint_to_peer map should be removed.
7376 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
7377 outpoint_to_peer.get(&funding_outpoint).cloned()
7380 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7381 let per_peer_state = self.per_peer_state.read().unwrap();
7382 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7383 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7384 let peer_state = &mut *peer_state_lock;
7385 let pending_msg_events = &mut peer_state.pending_msg_events;
7386 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
7387 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7388 failed_channels.push(chan.context.force_shutdown(false, ClosureReason::HolderForceClosed));
7389 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7390 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7394 pending_msg_events.push(events::MessageSendEvent::HandleError {
7395 node_id: chan.context.get_counterparty_node_id(),
7396 action: msgs::ErrorAction::DisconnectPeer {
7397 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7405 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
7406 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
7412 for failure in failed_channels.drain(..) {
7413 self.finish_close_channel(failure);
7416 has_pending_monitor_events
7419 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7420 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7421 /// update events as a separate process method here.
7423 pub fn process_monitor_events(&self) {
7424 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7425 self.process_pending_monitor_events();
7428 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7429 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7430 /// update was applied.
7431 fn check_free_holding_cells(&self) -> bool {
7432 let mut has_monitor_update = false;
7433 let mut failed_htlcs = Vec::new();
7435 // Walk our list of channels and find any that need to update. Note that when we do find an
7436 // update, if it includes actions that must be taken afterwards, we have to drop the
7437 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7438 // manage to go through all our peers without finding a single channel to update.
7440 let per_peer_state = self.per_peer_state.read().unwrap();
7441 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7443 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7444 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7445 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7446 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7448 let counterparty_node_id = chan.context.get_counterparty_node_id();
7449 let funding_txo = chan.context.get_funding_txo();
7450 let (monitor_opt, holding_cell_failed_htlcs) =
7451 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
7452 if !holding_cell_failed_htlcs.is_empty() {
7453 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7455 if let Some(monitor_update) = monitor_opt {
7456 has_monitor_update = true;
7458 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7459 peer_state_lock, peer_state, per_peer_state, chan);
7460 continue 'peer_loop;
7469 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7470 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7471 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7477 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7478 /// is (temporarily) unavailable, and the operation should be retried later.
7480 /// This method allows for that retry - either checking for any signer-pending messages to be
7481 /// attempted in every channel, or in the specifically provided channel.
7483 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7484 #[cfg(async_signing)]
7485 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7486 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7488 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7489 let node_id = phase.context().get_counterparty_node_id();
7491 ChannelPhase::Funded(chan) => {
7492 let msgs = chan.signer_maybe_unblocked(&self.logger);
7493 if let Some(updates) = msgs.commitment_update {
7494 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7499 if let Some(msg) = msgs.funding_signed {
7500 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7505 if let Some(msg) = msgs.channel_ready {
7506 send_channel_ready!(self, pending_msg_events, chan, msg);
7509 ChannelPhase::UnfundedOutboundV1(chan) => {
7510 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
7511 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7517 ChannelPhase::UnfundedInboundV1(_) => {},
7521 let per_peer_state = self.per_peer_state.read().unwrap();
7522 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7523 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7524 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7525 let peer_state = &mut *peer_state_lock;
7526 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7527 unblock_chan(chan, &mut peer_state.pending_msg_events);
7531 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7532 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7533 let peer_state = &mut *peer_state_lock;
7534 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7535 unblock_chan(chan, &mut peer_state.pending_msg_events);
7541 /// Check whether any channels have finished removing all pending updates after a shutdown
7542 /// exchange and can now send a closing_signed.
7543 /// Returns whether any closing_signed messages were generated.
7544 fn maybe_generate_initial_closing_signed(&self) -> bool {
7545 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7546 let mut has_update = false;
7547 let mut shutdown_results = Vec::new();
7549 let per_peer_state = self.per_peer_state.read().unwrap();
7551 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7552 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7553 let peer_state = &mut *peer_state_lock;
7554 let pending_msg_events = &mut peer_state.pending_msg_events;
7555 peer_state.channel_by_id.retain(|channel_id, phase| {
7557 ChannelPhase::Funded(chan) => {
7558 let logger = WithChannelContext::from(&self.logger, &chan.context);
7559 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
7560 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7561 if let Some(msg) = msg_opt {
7563 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7564 node_id: chan.context.get_counterparty_node_id(), msg,
7567 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7568 if let Some(shutdown_result) = shutdown_result_opt {
7569 shutdown_results.push(shutdown_result);
7571 if let Some(tx) = tx_opt {
7572 // We're done with this channel. We got a closing_signed and sent back
7573 // a closing_signed with a closing transaction to broadcast.
7574 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7575 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7580 log_info!(logger, "Broadcasting {}", log_tx!(tx));
7581 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7582 update_maps_on_chan_removal!(self, &chan.context);
7588 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7589 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7594 _ => true, // Retain unfunded channels if present.
7600 for (counterparty_node_id, err) in handle_errors.drain(..) {
7601 let _ = handle_error!(self, err, counterparty_node_id);
7604 for shutdown_result in shutdown_results.drain(..) {
7605 self.finish_close_channel(shutdown_result);
7611 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7612 /// pushing the channel monitor update (if any) to the background events queue and removing the
7614 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7615 for mut failure in failed_channels.drain(..) {
7616 // Either a commitment transactions has been confirmed on-chain or
7617 // Channel::block_disconnected detected that the funding transaction has been
7618 // reorganized out of the main chain.
7619 // We cannot broadcast our latest local state via monitor update (as
7620 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7621 // so we track the update internally and handle it when the user next calls
7622 // timer_tick_occurred, guaranteeing we're running normally.
7623 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
7624 assert_eq!(update.updates.len(), 1);
7625 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7626 assert!(should_broadcast);
7627 } else { unreachable!(); }
7628 self.pending_background_events.lock().unwrap().push(
7629 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7630 counterparty_node_id, funding_txo, update, channel_id,
7633 self.finish_close_channel(failure);
7637 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7638 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7639 /// not have an expiration unless otherwise set on the builder.
7643 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
7644 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
7645 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
7646 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
7647 /// order to send the [`InvoiceRequest`].
7649 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
7653 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7658 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
7660 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7662 /// [`Offer`]: crate::offers::offer::Offer
7663 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7664 pub fn create_offer_builder(
7665 &self, description: String
7666 ) -> Result<OfferBuilder<DerivedMetadata, secp256k1::All>, Bolt12SemanticError> {
7667 let node_id = self.get_our_node_id();
7668 let expanded_key = &self.inbound_payment_key;
7669 let entropy = &*self.entropy_source;
7670 let secp_ctx = &self.secp_ctx;
7672 let path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
7673 let builder = OfferBuilder::deriving_signing_pubkey(
7674 description, node_id, expanded_key, entropy, secp_ctx
7676 .chain_hash(self.chain_hash)
7682 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7683 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7687 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7688 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7690 /// The builder will have the provided expiration set. Any changes to the expiration on the
7691 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7692 /// block time minus two hours is used for the current time when determining if the refund has
7695 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7696 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7697 /// with an [`Event::InvoiceRequestFailed`].
7699 /// If `max_total_routing_fee_msat` is not specified, The default from
7700 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7704 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
7705 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
7706 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
7707 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
7708 /// order to send the [`Bolt12Invoice`].
7710 /// Also, uses a derived payer id in the refund for payer privacy.
7714 /// Requires a direct connection to an introduction node in the responding
7715 /// [`Bolt12Invoice::payment_paths`].
7720 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
7721 /// - `amount_msats` is invalid, or
7722 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
7724 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7726 /// [`Refund`]: crate::offers::refund::Refund
7727 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7728 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7729 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7730 pub fn create_refund_builder(
7731 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7732 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7733 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7734 let node_id = self.get_our_node_id();
7735 let expanded_key = &self.inbound_payment_key;
7736 let entropy = &*self.entropy_source;
7737 let secp_ctx = &self.secp_ctx;
7739 let path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
7740 let builder = RefundBuilder::deriving_payer_id(
7741 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7743 .chain_hash(self.chain_hash)
7744 .absolute_expiry(absolute_expiry)
7747 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7748 self.pending_outbound_payments
7749 .add_new_awaiting_invoice(
7750 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7752 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7757 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7758 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7759 /// [`Bolt12Invoice`] once it is received.
7761 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7762 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7763 /// The optional parameters are used in the builder, if `Some`:
7764 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7765 /// [`Offer::expects_quantity`] is `true`.
7766 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7767 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7769 /// If `max_total_routing_fee_msat` is not specified, The default from
7770 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7774 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7775 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7778 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7779 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7780 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7784 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7785 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7786 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7787 /// in order to send the [`Bolt12Invoice`].
7791 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7792 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7793 /// [`Bolt12Invoice::payment_paths`].
7798 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
7799 /// - the provided parameters are invalid for the offer,
7800 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
7803 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7804 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7805 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7806 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7807 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7808 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7809 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7810 pub fn pay_for_offer(
7811 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7812 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7813 max_total_routing_fee_msat: Option<u64>
7814 ) -> Result<(), Bolt12SemanticError> {
7815 let expanded_key = &self.inbound_payment_key;
7816 let entropy = &*self.entropy_source;
7817 let secp_ctx = &self.secp_ctx;
7820 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7821 .chain_hash(self.chain_hash)?;
7822 let builder = match quantity {
7824 Some(quantity) => builder.quantity(quantity)?,
7826 let builder = match amount_msats {
7828 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7830 let builder = match payer_note {
7832 Some(payer_note) => builder.payer_note(payer_note),
7834 let invoice_request = builder.build_and_sign()?;
7835 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
7837 let expiration = StaleExpiration::TimerTicks(1);
7838 self.pending_outbound_payments
7839 .add_new_awaiting_invoice(
7840 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7842 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7844 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7845 if offer.paths().is_empty() {
7846 let message = new_pending_onion_message(
7847 OffersMessage::InvoiceRequest(invoice_request),
7848 Destination::Node(offer.signing_pubkey()),
7851 pending_offers_messages.push(message);
7853 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7854 // Using only one path could result in a failure if the path no longer exists. But only
7855 // one invoice for a given payment id will be paid, even if more than one is received.
7856 const REQUEST_LIMIT: usize = 10;
7857 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7858 let message = new_pending_onion_message(
7859 OffersMessage::InvoiceRequest(invoice_request.clone()),
7860 Destination::BlindedPath(path.clone()),
7861 Some(reply_path.clone()),
7863 pending_offers_messages.push(message);
7870 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7873 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7874 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7875 /// [`PaymentPreimage`].
7879 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7880 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7881 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7882 /// received and no retries will be made.
7886 /// Errors if the parameterized [`Router`] is unable to create a blinded payment path or reply
7887 /// path for the invoice.
7889 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7890 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7891 let expanded_key = &self.inbound_payment_key;
7892 let entropy = &*self.entropy_source;
7893 let secp_ctx = &self.secp_ctx;
7895 let amount_msats = refund.amount_msats();
7896 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7898 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7899 Ok((payment_hash, payment_secret)) => {
7900 let payment_paths = self.create_blinded_payment_paths(amount_msats, payment_secret)
7901 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
7903 #[cfg(feature = "std")]
7904 let builder = refund.respond_using_derived_keys(
7905 payment_paths, payment_hash, expanded_key, entropy
7907 #[cfg(not(feature = "std"))]
7908 let created_at = Duration::from_secs(
7909 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7911 #[cfg(not(feature = "std"))]
7912 let builder = refund.respond_using_derived_keys_no_std(
7913 payment_paths, payment_hash, created_at, expanded_key, entropy
7915 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7916 let reply_path = self.create_blinded_path()
7917 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
7919 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7920 if refund.paths().is_empty() {
7921 let message = new_pending_onion_message(
7922 OffersMessage::Invoice(invoice),
7923 Destination::Node(refund.payer_id()),
7926 pending_offers_messages.push(message);
7928 for path in refund.paths() {
7929 let message = new_pending_onion_message(
7930 OffersMessage::Invoice(invoice.clone()),
7931 Destination::BlindedPath(path.clone()),
7932 Some(reply_path.clone()),
7934 pending_offers_messages.push(message);
7940 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7944 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7947 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7948 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7950 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7951 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7952 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7953 /// passed directly to [`claim_funds`].
7955 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7957 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7958 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7962 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7963 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7965 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7967 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7968 /// on versions of LDK prior to 0.0.114.
7970 /// [`claim_funds`]: Self::claim_funds
7971 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7972 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7973 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7974 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7975 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7976 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7977 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7978 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7979 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7980 min_final_cltv_expiry_delta)
7983 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7984 /// stored external to LDK.
7986 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7987 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7988 /// the `min_value_msat` provided here, if one is provided.
7990 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7991 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7994 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7995 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7996 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7997 /// sender "proof-of-payment" unless they have paid the required amount.
7999 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8000 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8001 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8002 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8003 /// invoices when no timeout is set.
8005 /// Note that we use block header time to time-out pending inbound payments (with some margin
8006 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8007 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8008 /// If you need exact expiry semantics, you should enforce them upon receipt of
8009 /// [`PaymentClaimable`].
8011 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8012 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8014 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8015 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8019 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8020 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8022 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8024 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8025 /// on versions of LDK prior to 0.0.114.
8027 /// [`create_inbound_payment`]: Self::create_inbound_payment
8028 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8029 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8030 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8031 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8032 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8033 min_final_cltv_expiry)
8036 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8037 /// previously returned from [`create_inbound_payment`].
8039 /// [`create_inbound_payment`]: Self::create_inbound_payment
8040 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8041 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8044 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8046 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8047 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8048 let recipient = self.get_our_node_id();
8049 let secp_ctx = &self.secp_ctx;
8051 let peers = self.per_peer_state.read().unwrap()
8053 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
8054 .map(|(node_id, _)| *node_id)
8055 .collect::<Vec<_>>();
8058 .create_blinded_paths(recipient, peers, secp_ctx)
8059 .and_then(|paths| paths.into_iter().next().ok_or(()))
8062 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
8063 /// [`Router::create_blinded_payment_paths`].
8064 fn create_blinded_payment_paths(
8065 &self, amount_msats: u64, payment_secret: PaymentSecret
8066 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
8067 let secp_ctx = &self.secp_ctx;
8069 let first_hops = self.list_usable_channels();
8070 let payee_node_id = self.get_our_node_id();
8071 let max_cltv_expiry = self.best_block.read().unwrap().height() + CLTV_FAR_FAR_AWAY
8072 + LATENCY_GRACE_PERIOD_BLOCKS;
8073 let payee_tlvs = ReceiveTlvs {
8075 payment_constraints: PaymentConstraints {
8077 htlc_minimum_msat: 1,
8080 self.router.create_blinded_payment_paths(
8081 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
8085 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
8086 /// are used when constructing the phantom invoice's route hints.
8088 /// [phantom node payments]: crate::sign::PhantomKeysManager
8089 pub fn get_phantom_scid(&self) -> u64 {
8090 let best_block_height = self.best_block.read().unwrap().height();
8091 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
8093 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
8094 // Ensure the generated scid doesn't conflict with a real channel.
8095 match short_to_chan_info.get(&scid_candidate) {
8096 Some(_) => continue,
8097 None => return scid_candidate
8102 /// Gets route hints for use in receiving [phantom node payments].
8104 /// [phantom node payments]: crate::sign::PhantomKeysManager
8105 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
8107 channels: self.list_usable_channels(),
8108 phantom_scid: self.get_phantom_scid(),
8109 real_node_pubkey: self.get_our_node_id(),
8113 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
8114 /// used when constructing the route hints for HTLCs intended to be intercepted. See
8115 /// [`ChannelManager::forward_intercepted_htlc`].
8117 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
8118 /// times to get a unique scid.
8119 pub fn get_intercept_scid(&self) -> u64 {
8120 let best_block_height = self.best_block.read().unwrap().height();
8121 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
8123 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
8124 // Ensure the generated scid doesn't conflict with a real channel.
8125 if short_to_chan_info.contains_key(&scid_candidate) { continue }
8126 return scid_candidate
8130 /// Gets inflight HTLC information by processing pending outbound payments that are in
8131 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
8132 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
8133 let mut inflight_htlcs = InFlightHtlcs::new();
8135 let per_peer_state = self.per_peer_state.read().unwrap();
8136 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8137 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8138 let peer_state = &mut *peer_state_lock;
8139 for chan in peer_state.channel_by_id.values().filter_map(
8140 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
8142 for (htlc_source, _) in chan.inflight_htlc_sources() {
8143 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
8144 inflight_htlcs.process_path(path, self.get_our_node_id());
8153 #[cfg(any(test, feature = "_test_utils"))]
8154 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
8155 let events = core::cell::RefCell::new(Vec::new());
8156 let event_handler = |event: events::Event| events.borrow_mut().push(event);
8157 self.process_pending_events(&event_handler);
8161 #[cfg(feature = "_test_utils")]
8162 pub fn push_pending_event(&self, event: events::Event) {
8163 let mut events = self.pending_events.lock().unwrap();
8164 events.push_back((event, None));
8168 pub fn pop_pending_event(&self) -> Option<events::Event> {
8169 let mut events = self.pending_events.lock().unwrap();
8170 events.pop_front().map(|(e, _)| e)
8174 pub fn has_pending_payments(&self) -> bool {
8175 self.pending_outbound_payments.has_pending_payments()
8179 pub fn clear_pending_payments(&self) {
8180 self.pending_outbound_payments.clear_pending_payments()
8183 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
8184 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
8185 /// operation. It will double-check that nothing *else* is also blocking the same channel from
8186 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
8187 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
8188 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
8189 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
8191 let logger = WithContext::from(
8192 &self.logger, Some(counterparty_node_id), Some(channel_id),
8195 let per_peer_state = self.per_peer_state.read().unwrap();
8196 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
8197 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
8198 let peer_state = &mut *peer_state_lck;
8199 if let Some(blocker) = completed_blocker.take() {
8200 // Only do this on the first iteration of the loop.
8201 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
8202 .get_mut(&channel_id)
8204 blockers.retain(|iter| iter != &blocker);
8208 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
8209 channel_funding_outpoint, channel_id, counterparty_node_id) {
8210 // Check that, while holding the peer lock, we don't have anything else
8211 // blocking monitor updates for this channel. If we do, release the monitor
8212 // update(s) when those blockers complete.
8213 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
8218 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
8220 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8221 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
8222 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
8223 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
8225 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
8226 peer_state_lck, peer_state, per_peer_state, chan);
8227 if further_update_exists {
8228 // If there are more `ChannelMonitorUpdate`s to process, restart at the
8233 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
8240 "Got a release post-RAA monitor update for peer {} but the channel is gone",
8241 log_pubkey!(counterparty_node_id));
8247 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
8248 for action in actions {
8250 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
8251 channel_funding_outpoint, channel_id, counterparty_node_id
8253 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
8259 /// Processes any events asynchronously in the order they were generated since the last call
8260 /// using the given event handler.
8262 /// See the trait-level documentation of [`EventsProvider`] for requirements.
8263 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
8267 process_events_body!(self, ev, { handler(ev).await });
8271 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8273 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8274 T::Target: BroadcasterInterface,
8275 ES::Target: EntropySource,
8276 NS::Target: NodeSigner,
8277 SP::Target: SignerProvider,
8278 F::Target: FeeEstimator,
8282 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8283 /// The returned array will contain `MessageSendEvent`s for different peers if
8284 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8285 /// is always placed next to each other.
8287 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8288 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8289 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8290 /// will randomly be placed first or last in the returned array.
8292 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8293 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8294 /// the `MessageSendEvent`s to the specific peer they were generated under.
8295 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8296 let events = RefCell::new(Vec::new());
8297 PersistenceNotifierGuard::optionally_notify(self, || {
8298 let mut result = NotifyOption::SkipPersistNoEvents;
8300 // TODO: This behavior should be documented. It's unintuitive that we query
8301 // ChannelMonitors when clearing other events.
8302 if self.process_pending_monitor_events() {
8303 result = NotifyOption::DoPersist;
8306 if self.check_free_holding_cells() {
8307 result = NotifyOption::DoPersist;
8309 if self.maybe_generate_initial_closing_signed() {
8310 result = NotifyOption::DoPersist;
8313 let mut pending_events = Vec::new();
8314 let per_peer_state = self.per_peer_state.read().unwrap();
8315 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8316 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8317 let peer_state = &mut *peer_state_lock;
8318 if peer_state.pending_msg_events.len() > 0 {
8319 pending_events.append(&mut peer_state.pending_msg_events);
8323 if !pending_events.is_empty() {
8324 events.replace(pending_events);
8333 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8335 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8336 T::Target: BroadcasterInterface,
8337 ES::Target: EntropySource,
8338 NS::Target: NodeSigner,
8339 SP::Target: SignerProvider,
8340 F::Target: FeeEstimator,
8344 /// Processes events that must be periodically handled.
8346 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8347 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8348 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8350 process_events_body!(self, ev, handler.handle_event(ev));
8354 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8356 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8357 T::Target: BroadcasterInterface,
8358 ES::Target: EntropySource,
8359 NS::Target: NodeSigner,
8360 SP::Target: SignerProvider,
8361 F::Target: FeeEstimator,
8365 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
8367 let best_block = self.best_block.read().unwrap();
8368 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8369 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8370 assert_eq!(best_block.height(), height - 1,
8371 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8374 self.transactions_confirmed(header, txdata, height);
8375 self.best_block_updated(header, height);
8378 fn block_disconnected(&self, header: &Header, height: u32) {
8379 let _persistence_guard =
8380 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8381 self, || -> NotifyOption { NotifyOption::DoPersist });
8382 let new_height = height - 1;
8384 let mut best_block = self.best_block.write().unwrap();
8385 assert_eq!(best_block.block_hash(), header.block_hash(),
8386 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8387 assert_eq!(best_block.height(), height,
8388 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8389 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8392 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8396 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8398 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8399 T::Target: BroadcasterInterface,
8400 ES::Target: EntropySource,
8401 NS::Target: NodeSigner,
8402 SP::Target: SignerProvider,
8403 F::Target: FeeEstimator,
8407 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
8408 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8409 // during initialization prior to the chain_monitor being fully configured in some cases.
8410 // See the docs for `ChannelManagerReadArgs` for more.
8412 let block_hash = header.block_hash();
8413 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8415 let _persistence_guard =
8416 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8417 self, || -> NotifyOption { NotifyOption::DoPersist });
8418 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
8419 .map(|(a, b)| (a, Vec::new(), b)));
8421 let last_best_block_height = self.best_block.read().unwrap().height();
8422 if height < last_best_block_height {
8423 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8424 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8428 fn best_block_updated(&self, header: &Header, height: u32) {
8429 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8430 // during initialization prior to the chain_monitor being fully configured in some cases.
8431 // See the docs for `ChannelManagerReadArgs` for more.
8433 let block_hash = header.block_hash();
8434 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8436 let _persistence_guard =
8437 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8438 self, || -> NotifyOption { NotifyOption::DoPersist });
8439 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8441 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8443 macro_rules! max_time {
8444 ($timestamp: expr) => {
8446 // Update $timestamp to be the max of its current value and the block
8447 // timestamp. This should keep us close to the current time without relying on
8448 // having an explicit local time source.
8449 // Just in case we end up in a race, we loop until we either successfully
8450 // update $timestamp or decide we don't need to.
8451 let old_serial = $timestamp.load(Ordering::Acquire);
8452 if old_serial >= header.time as usize { break; }
8453 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8459 max_time!(self.highest_seen_timestamp);
8460 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8461 payment_secrets.retain(|_, inbound_payment| {
8462 inbound_payment.expiry_time > header.time as u64
8466 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
8467 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8468 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8469 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8470 let peer_state = &mut *peer_state_lock;
8471 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8472 let txid_opt = chan.context.get_funding_txo();
8473 let height_opt = chan.context.get_funding_tx_confirmation_height();
8474 let hash_opt = chan.context.get_funding_tx_confirmed_in();
8475 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
8476 res.push((funding_txo.txid, conf_height, Some(block_hash)));
8483 fn transaction_unconfirmed(&self, txid: &Txid) {
8484 let _persistence_guard =
8485 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8486 self, || -> NotifyOption { NotifyOption::DoPersist });
8487 self.do_chain_event(None, |channel| {
8488 if let Some(funding_txo) = channel.context.get_funding_txo() {
8489 if funding_txo.txid == *txid {
8490 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
8491 } else { Ok((None, Vec::new(), None)) }
8492 } else { Ok((None, Vec::new(), None)) }
8497 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8499 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8500 T::Target: BroadcasterInterface,
8501 ES::Target: EntropySource,
8502 NS::Target: NodeSigner,
8503 SP::Target: SignerProvider,
8504 F::Target: FeeEstimator,
8508 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8509 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8511 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8512 (&self, height_opt: Option<u32>, f: FN) {
8513 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8514 // during initialization prior to the chain_monitor being fully configured in some cases.
8515 // See the docs for `ChannelManagerReadArgs` for more.
8517 let mut failed_channels = Vec::new();
8518 let mut timed_out_htlcs = Vec::new();
8520 let per_peer_state = self.per_peer_state.read().unwrap();
8521 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8522 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8523 let peer_state = &mut *peer_state_lock;
8524 let pending_msg_events = &mut peer_state.pending_msg_events;
8525 peer_state.channel_by_id.retain(|_, phase| {
8527 // Retain unfunded channels.
8528 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8529 // TODO(dual_funding): Combine this match arm with above.
8530 #[cfg(dual_funding)]
8531 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
8532 ChannelPhase::Funded(channel) => {
8533 let res = f(channel);
8534 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8535 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8536 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8537 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8538 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8540 let logger = WithChannelContext::from(&self.logger, &channel.context);
8541 if let Some(channel_ready) = channel_ready_opt {
8542 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8543 if channel.context.is_usable() {
8544 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8545 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8546 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8547 node_id: channel.context.get_counterparty_node_id(),
8552 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8557 let mut pending_events = self.pending_events.lock().unwrap();
8558 emit_channel_ready_event!(pending_events, channel);
8561 if let Some(announcement_sigs) = announcement_sigs {
8562 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8563 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8564 node_id: channel.context.get_counterparty_node_id(),
8565 msg: announcement_sigs,
8567 if let Some(height) = height_opt {
8568 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8569 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8571 // Note that announcement_signatures fails if the channel cannot be announced,
8572 // so get_channel_update_for_broadcast will never fail by the time we get here.
8573 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8578 if channel.is_our_channel_ready() {
8579 if let Some(real_scid) = channel.context.get_short_channel_id() {
8580 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8581 // to the short_to_chan_info map here. Note that we check whether we
8582 // can relay using the real SCID at relay-time (i.e.
8583 // enforce option_scid_alias then), and if the funding tx is ever
8584 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8585 // is always consistent.
8586 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8587 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8588 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8589 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8590 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8593 } else if let Err(reason) = res {
8594 update_maps_on_chan_removal!(self, &channel.context);
8595 // It looks like our counterparty went on-chain or funding transaction was
8596 // reorged out of the main chain. Close the channel.
8597 let reason_message = format!("{}", reason);
8598 failed_channels.push(channel.context.force_shutdown(true, reason));
8599 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8600 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8604 pending_msg_events.push(events::MessageSendEvent::HandleError {
8605 node_id: channel.context.get_counterparty_node_id(),
8606 action: msgs::ErrorAction::DisconnectPeer {
8607 msg: Some(msgs::ErrorMessage {
8608 channel_id: channel.context.channel_id(),
8609 data: reason_message,
8622 if let Some(height) = height_opt {
8623 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8624 payment.htlcs.retain(|htlc| {
8625 // If height is approaching the number of blocks we think it takes us to get
8626 // our commitment transaction confirmed before the HTLC expires, plus the
8627 // number of blocks we generally consider it to take to do a commitment update,
8628 // just give up on it and fail the HTLC.
8629 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8630 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8631 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8633 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8634 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8635 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8639 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8642 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8643 intercepted_htlcs.retain(|_, htlc| {
8644 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8645 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8646 short_channel_id: htlc.prev_short_channel_id,
8647 user_channel_id: Some(htlc.prev_user_channel_id),
8648 htlc_id: htlc.prev_htlc_id,
8649 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8650 phantom_shared_secret: None,
8651 outpoint: htlc.prev_funding_outpoint,
8652 channel_id: htlc.prev_channel_id,
8653 blinded_failure: htlc.forward_info.routing.blinded_failure(),
8656 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8657 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8658 _ => unreachable!(),
8660 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8661 HTLCFailReason::from_failure_code(0x2000 | 2),
8662 HTLCDestination::InvalidForward { requested_forward_scid }));
8663 let logger = WithContext::from(
8664 &self.logger, None, Some(htlc.prev_channel_id)
8666 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8672 self.handle_init_event_channel_failures(failed_channels);
8674 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8675 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8679 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8680 /// may have events that need processing.
8682 /// In order to check if this [`ChannelManager`] needs persisting, call
8683 /// [`Self::get_and_clear_needs_persistence`].
8685 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8686 /// [`ChannelManager`] and should instead register actions to be taken later.
8687 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8688 self.event_persist_notifier.get_future()
8691 /// Returns true if this [`ChannelManager`] needs to be persisted.
8692 pub fn get_and_clear_needs_persistence(&self) -> bool {
8693 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8696 #[cfg(any(test, feature = "_test_utils"))]
8697 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8698 self.event_persist_notifier.notify_pending()
8701 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8702 /// [`chain::Confirm`] interfaces.
8703 pub fn current_best_block(&self) -> BestBlock {
8704 self.best_block.read().unwrap().clone()
8707 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8708 /// [`ChannelManager`].
8709 pub fn node_features(&self) -> NodeFeatures {
8710 provided_node_features(&self.default_configuration)
8713 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8714 /// [`ChannelManager`].
8716 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8717 /// or not. Thus, this method is not public.
8718 #[cfg(any(feature = "_test_utils", test))]
8719 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8720 provided_bolt11_invoice_features(&self.default_configuration)
8723 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8724 /// [`ChannelManager`].
8725 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8726 provided_bolt12_invoice_features(&self.default_configuration)
8729 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8730 /// [`ChannelManager`].
8731 pub fn channel_features(&self) -> ChannelFeatures {
8732 provided_channel_features(&self.default_configuration)
8735 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8736 /// [`ChannelManager`].
8737 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8738 provided_channel_type_features(&self.default_configuration)
8741 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8742 /// [`ChannelManager`].
8743 pub fn init_features(&self) -> InitFeatures {
8744 provided_init_features(&self.default_configuration)
8748 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8749 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8751 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8752 T::Target: BroadcasterInterface,
8753 ES::Target: EntropySource,
8754 NS::Target: NodeSigner,
8755 SP::Target: SignerProvider,
8756 F::Target: FeeEstimator,
8760 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8761 // Note that we never need to persist the updated ChannelManager for an inbound
8762 // open_channel message - pre-funded channels are never written so there should be no
8763 // change to the contents.
8764 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8765 let res = self.internal_open_channel(counterparty_node_id, msg);
8766 let persist = match &res {
8767 Err(e) if e.closes_channel() => {
8768 debug_assert!(false, "We shouldn't close a new channel");
8769 NotifyOption::DoPersist
8771 _ => NotifyOption::SkipPersistHandleEvents,
8773 let _ = handle_error!(self, res, *counterparty_node_id);
8778 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8779 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8780 "Dual-funded channels not supported".to_owned(),
8781 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
8784 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8785 // Note that we never need to persist the updated ChannelManager for an inbound
8786 // accept_channel message - pre-funded channels are never written so there should be no
8787 // change to the contents.
8788 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8789 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8790 NotifyOption::SkipPersistHandleEvents
8794 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8795 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8796 "Dual-funded channels not supported".to_owned(),
8797 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
8800 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8801 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8802 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8805 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8806 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8807 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8810 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8811 // Note that we never need to persist the updated ChannelManager for an inbound
8812 // channel_ready message - while the channel's state will change, any channel_ready message
8813 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8814 // will not force-close the channel on startup.
8815 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8816 let res = self.internal_channel_ready(counterparty_node_id, msg);
8817 let persist = match &res {
8818 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8819 _ => NotifyOption::SkipPersistHandleEvents,
8821 let _ = handle_error!(self, res, *counterparty_node_id);
8826 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8827 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8828 "Quiescence not supported".to_owned(),
8829 msg.channel_id.clone())), *counterparty_node_id);
8832 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8833 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8834 "Splicing not supported".to_owned(),
8835 msg.channel_id.clone())), *counterparty_node_id);
8838 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8839 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8840 "Splicing not supported (splice_ack)".to_owned(),
8841 msg.channel_id.clone())), *counterparty_node_id);
8844 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8845 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8846 "Splicing not supported (splice_locked)".to_owned(),
8847 msg.channel_id.clone())), *counterparty_node_id);
8850 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8851 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8852 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8855 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8856 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8857 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8860 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8861 // Note that we never need to persist the updated ChannelManager for an inbound
8862 // update_add_htlc message - the message itself doesn't change our channel state only the
8863 // `commitment_signed` message afterwards will.
8864 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8865 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8866 let persist = match &res {
8867 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8868 Err(_) => NotifyOption::SkipPersistHandleEvents,
8869 Ok(()) => NotifyOption::SkipPersistNoEvents,
8871 let _ = handle_error!(self, res, *counterparty_node_id);
8876 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8877 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8878 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8881 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8882 // Note that we never need to persist the updated ChannelManager for an inbound
8883 // update_fail_htlc message - the message itself doesn't change our channel state only the
8884 // `commitment_signed` message afterwards will.
8885 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8886 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8887 let persist = match &res {
8888 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8889 Err(_) => NotifyOption::SkipPersistHandleEvents,
8890 Ok(()) => NotifyOption::SkipPersistNoEvents,
8892 let _ = handle_error!(self, res, *counterparty_node_id);
8897 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8898 // Note that we never need to persist the updated ChannelManager for an inbound
8899 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8900 // only the `commitment_signed` message afterwards will.
8901 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8902 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8903 let persist = match &res {
8904 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8905 Err(_) => NotifyOption::SkipPersistHandleEvents,
8906 Ok(()) => NotifyOption::SkipPersistNoEvents,
8908 let _ = handle_error!(self, res, *counterparty_node_id);
8913 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8914 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8915 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8918 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8919 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8920 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8923 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8924 // Note that we never need to persist the updated ChannelManager for an inbound
8925 // update_fee message - the message itself doesn't change our channel state only the
8926 // `commitment_signed` message afterwards will.
8927 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8928 let res = self.internal_update_fee(counterparty_node_id, msg);
8929 let persist = match &res {
8930 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8931 Err(_) => NotifyOption::SkipPersistHandleEvents,
8932 Ok(()) => NotifyOption::SkipPersistNoEvents,
8934 let _ = handle_error!(self, res, *counterparty_node_id);
8939 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8940 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8941 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8944 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8945 PersistenceNotifierGuard::optionally_notify(self, || {
8946 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8949 NotifyOption::DoPersist
8954 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8955 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8956 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8957 let persist = match &res {
8958 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8959 Err(_) => NotifyOption::SkipPersistHandleEvents,
8960 Ok(persist) => *persist,
8962 let _ = handle_error!(self, res, *counterparty_node_id);
8967 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8968 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8969 self, || NotifyOption::SkipPersistHandleEvents);
8970 let mut failed_channels = Vec::new();
8971 let mut per_peer_state = self.per_peer_state.write().unwrap();
8974 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
8975 "Marking channels with {} disconnected and generating channel_updates.",
8976 log_pubkey!(counterparty_node_id)
8978 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8979 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8980 let peer_state = &mut *peer_state_lock;
8981 let pending_msg_events = &mut peer_state.pending_msg_events;
8982 peer_state.channel_by_id.retain(|_, phase| {
8983 let context = match phase {
8984 ChannelPhase::Funded(chan) => {
8985 let logger = WithChannelContext::from(&self.logger, &chan.context);
8986 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
8987 // We only retain funded channels that are not shutdown.
8992 // We retain UnfundedOutboundV1 channel for some time in case
8993 // peer unexpectedly disconnects, and intends to reconnect again.
8994 ChannelPhase::UnfundedOutboundV1(_) => {
8997 // Unfunded inbound channels will always be removed.
8998 ChannelPhase::UnfundedInboundV1(chan) => {
9001 #[cfg(dual_funding)]
9002 ChannelPhase::UnfundedOutboundV2(chan) => {
9005 #[cfg(dual_funding)]
9006 ChannelPhase::UnfundedInboundV2(chan) => {
9010 // Clean up for removal.
9011 update_maps_on_chan_removal!(self, &context);
9012 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9015 // Note that we don't bother generating any events for pre-accept channels -
9016 // they're not considered "channels" yet from the PoV of our events interface.
9017 peer_state.inbound_channel_request_by_id.clear();
9018 pending_msg_events.retain(|msg| {
9020 // V1 Channel Establishment
9021 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9022 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9023 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9024 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9025 // V2 Channel Establishment
9026 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9027 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9028 // Common Channel Establishment
9029 &events::MessageSendEvent::SendChannelReady { .. } => false,
9030 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9032 &events::MessageSendEvent::SendStfu { .. } => false,
9034 &events::MessageSendEvent::SendSplice { .. } => false,
9035 &events::MessageSendEvent::SendSpliceAck { .. } => false,
9036 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
9037 // Interactive Transaction Construction
9038 &events::MessageSendEvent::SendTxAddInput { .. } => false,
9039 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
9040 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
9041 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
9042 &events::MessageSendEvent::SendTxComplete { .. } => false,
9043 &events::MessageSendEvent::SendTxSignatures { .. } => false,
9044 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
9045 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
9046 &events::MessageSendEvent::SendTxAbort { .. } => false,
9047 // Channel Operations
9048 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
9049 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
9050 &events::MessageSendEvent::SendClosingSigned { .. } => false,
9051 &events::MessageSendEvent::SendShutdown { .. } => false,
9052 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
9053 &events::MessageSendEvent::HandleError { .. } => false,
9055 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
9056 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
9057 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
9058 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
9059 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
9060 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
9061 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
9062 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
9063 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
9066 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
9067 peer_state.is_connected = false;
9068 peer_state.ok_to_remove(true)
9069 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
9072 per_peer_state.remove(counterparty_node_id);
9074 mem::drop(per_peer_state);
9076 for failure in failed_channels.drain(..) {
9077 self.finish_close_channel(failure);
9081 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
9082 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
9083 if !init_msg.features.supports_static_remote_key() {
9084 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
9088 let mut res = Ok(());
9090 PersistenceNotifierGuard::optionally_notify(self, || {
9091 // If we have too many peers connected which don't have funded channels, disconnect the
9092 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
9093 // unfunded channels taking up space in memory for disconnected peers, we still let new
9094 // peers connect, but we'll reject new channels from them.
9095 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
9096 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
9099 let mut peer_state_lock = self.per_peer_state.write().unwrap();
9100 match peer_state_lock.entry(counterparty_node_id.clone()) {
9101 hash_map::Entry::Vacant(e) => {
9102 if inbound_peer_limited {
9104 return NotifyOption::SkipPersistNoEvents;
9106 e.insert(Mutex::new(PeerState {
9107 channel_by_id: new_hash_map(),
9108 inbound_channel_request_by_id: new_hash_map(),
9109 latest_features: init_msg.features.clone(),
9110 pending_msg_events: Vec::new(),
9111 in_flight_monitor_updates: BTreeMap::new(),
9112 monitor_update_blocked_actions: BTreeMap::new(),
9113 actions_blocking_raa_monitor_updates: BTreeMap::new(),
9117 hash_map::Entry::Occupied(e) => {
9118 let mut peer_state = e.get().lock().unwrap();
9119 peer_state.latest_features = init_msg.features.clone();
9121 let best_block_height = self.best_block.read().unwrap().height();
9122 if inbound_peer_limited &&
9123 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
9124 peer_state.channel_by_id.len()
9127 return NotifyOption::SkipPersistNoEvents;
9130 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
9131 peer_state.is_connected = true;
9136 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
9138 let per_peer_state = self.per_peer_state.read().unwrap();
9139 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9140 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9141 let peer_state = &mut *peer_state_lock;
9142 let pending_msg_events = &mut peer_state.pending_msg_events;
9144 for (_, phase) in peer_state.channel_by_id.iter_mut() {
9146 ChannelPhase::Funded(chan) => {
9147 let logger = WithChannelContext::from(&self.logger, &chan.context);
9148 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
9149 node_id: chan.context.get_counterparty_node_id(),
9150 msg: chan.get_channel_reestablish(&&logger),
9154 ChannelPhase::UnfundedOutboundV1(chan) => {
9155 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
9156 node_id: chan.context.get_counterparty_node_id(),
9157 msg: chan.get_open_channel(self.chain_hash),
9161 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
9162 #[cfg(dual_funding)]
9163 ChannelPhase::UnfundedOutboundV2(chan) => {
9164 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
9165 node_id: chan.context.get_counterparty_node_id(),
9166 msg: chan.get_open_channel_v2(self.chain_hash),
9170 ChannelPhase::UnfundedInboundV1(_) => {
9171 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
9172 // they are not persisted and won't be recovered after a crash.
9173 // Therefore, they shouldn't exist at this point.
9174 debug_assert!(false);
9177 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
9178 #[cfg(dual_funding)]
9179 ChannelPhase::UnfundedInboundV2(channel) => {
9180 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
9181 // they are not persisted and won't be recovered after a crash.
9182 // Therefore, they shouldn't exist at this point.
9183 debug_assert!(false);
9189 return NotifyOption::SkipPersistHandleEvents;
9190 //TODO: Also re-broadcast announcement_signatures
9195 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
9196 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9198 match &msg.data as &str {
9199 "cannot co-op close channel w/ active htlcs"|
9200 "link failed to shutdown" =>
9202 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
9203 // send one while HTLCs are still present. The issue is tracked at
9204 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
9205 // to fix it but none so far have managed to land upstream. The issue appears to be
9206 // very low priority for the LND team despite being marked "P1".
9207 // We're not going to bother handling this in a sensible way, instead simply
9208 // repeating the Shutdown message on repeat until morale improves.
9209 if !msg.channel_id.is_zero() {
9210 let per_peer_state = self.per_peer_state.read().unwrap();
9211 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9212 if peer_state_mutex_opt.is_none() { return; }
9213 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
9214 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
9215 if let Some(msg) = chan.get_outbound_shutdown() {
9216 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
9217 node_id: *counterparty_node_id,
9221 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
9222 node_id: *counterparty_node_id,
9223 action: msgs::ErrorAction::SendWarningMessage {
9224 msg: msgs::WarningMessage {
9225 channel_id: msg.channel_id,
9226 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
9228 log_level: Level::Trace,
9238 if msg.channel_id.is_zero() {
9239 let channel_ids: Vec<ChannelId> = {
9240 let per_peer_state = self.per_peer_state.read().unwrap();
9241 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9242 if peer_state_mutex_opt.is_none() { return; }
9243 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
9244 let peer_state = &mut *peer_state_lock;
9245 // Note that we don't bother generating any events for pre-accept channels -
9246 // they're not considered "channels" yet from the PoV of our events interface.
9247 peer_state.inbound_channel_request_by_id.clear();
9248 peer_state.channel_by_id.keys().cloned().collect()
9250 for channel_id in channel_ids {
9251 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9252 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
9256 // First check if we can advance the channel type and try again.
9257 let per_peer_state = self.per_peer_state.read().unwrap();
9258 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9259 if peer_state_mutex_opt.is_none() { return; }
9260 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
9261 let peer_state = &mut *peer_state_lock;
9262 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
9263 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
9264 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
9265 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
9266 node_id: *counterparty_node_id,
9272 #[cfg(dual_funding)]
9273 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
9274 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
9275 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
9276 node_id: *counterparty_node_id,
9282 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
9283 #[cfg(dual_funding)]
9284 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
9288 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9289 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
9293 fn provided_node_features(&self) -> NodeFeatures {
9294 provided_node_features(&self.default_configuration)
9297 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
9298 provided_init_features(&self.default_configuration)
9301 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
9302 Some(vec![self.chain_hash])
9305 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
9306 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9307 "Dual-funded channels not supported".to_owned(),
9308 msg.channel_id.clone())), *counterparty_node_id);
9311 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
9312 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9313 "Dual-funded channels not supported".to_owned(),
9314 msg.channel_id.clone())), *counterparty_node_id);
9317 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
9318 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9319 "Dual-funded channels not supported".to_owned(),
9320 msg.channel_id.clone())), *counterparty_node_id);
9323 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
9324 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9325 "Dual-funded channels not supported".to_owned(),
9326 msg.channel_id.clone())), *counterparty_node_id);
9329 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
9330 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9331 "Dual-funded channels not supported".to_owned(),
9332 msg.channel_id.clone())), *counterparty_node_id);
9335 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
9336 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9337 "Dual-funded channels not supported".to_owned(),
9338 msg.channel_id.clone())), *counterparty_node_id);
9341 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
9342 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9343 "Dual-funded channels not supported".to_owned(),
9344 msg.channel_id.clone())), *counterparty_node_id);
9347 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
9348 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9349 "Dual-funded channels not supported".to_owned(),
9350 msg.channel_id.clone())), *counterparty_node_id);
9353 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9354 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9355 "Dual-funded channels not supported".to_owned(),
9356 msg.channel_id.clone())), *counterparty_node_id);
9360 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9361 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9363 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9364 T::Target: BroadcasterInterface,
9365 ES::Target: EntropySource,
9366 NS::Target: NodeSigner,
9367 SP::Target: SignerProvider,
9368 F::Target: FeeEstimator,
9372 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9373 let secp_ctx = &self.secp_ctx;
9374 let expanded_key = &self.inbound_payment_key;
9377 OffersMessage::InvoiceRequest(invoice_request) => {
9378 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9381 Ok(amount_msats) => amount_msats,
9382 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9384 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9385 Ok(invoice_request) => invoice_request,
9387 let error = Bolt12SemanticError::InvalidMetadata;
9388 return Some(OffersMessage::InvoiceError(error.into()));
9392 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9393 let (payment_hash, payment_secret) = match self.create_inbound_payment(
9394 Some(amount_msats), relative_expiry, None
9396 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
9398 let error = Bolt12SemanticError::InvalidAmount;
9399 return Some(OffersMessage::InvoiceError(error.into()));
9403 let payment_paths = match self.create_blinded_payment_paths(
9404 amount_msats, payment_secret
9406 Ok(payment_paths) => payment_paths,
9408 let error = Bolt12SemanticError::MissingPaths;
9409 return Some(OffersMessage::InvoiceError(error.into()));
9413 #[cfg(not(feature = "std"))]
9414 let created_at = Duration::from_secs(
9415 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9418 if invoice_request.keys.is_some() {
9419 #[cfg(feature = "std")]
9420 let builder = invoice_request.respond_using_derived_keys(
9421 payment_paths, payment_hash
9423 #[cfg(not(feature = "std"))]
9424 let builder = invoice_request.respond_using_derived_keys_no_std(
9425 payment_paths, payment_hash, created_at
9427 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9428 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9429 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9432 #[cfg(feature = "std")]
9433 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9434 #[cfg(not(feature = "std"))]
9435 let builder = invoice_request.respond_with_no_std(
9436 payment_paths, payment_hash, created_at
9438 let response = builder.and_then(|builder| builder.allow_mpp().build())
9439 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9441 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9442 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9443 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9444 InvoiceError::from_string("Failed signing invoice".to_string())
9446 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9447 InvoiceError::from_string("Failed invoice signature verification".to_string())
9451 Ok(invoice) => Some(invoice),
9452 Err(error) => Some(error),
9456 OffersMessage::Invoice(invoice) => {
9457 match invoice.verify(expanded_key, secp_ctx) {
9459 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9461 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9462 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9465 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9466 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9467 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9474 OffersMessage::InvoiceError(invoice_error) => {
9475 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9481 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9482 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9486 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9487 /// [`ChannelManager`].
9488 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9489 let mut node_features = provided_init_features(config).to_context();
9490 node_features.set_keysend_optional();
9494 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9495 /// [`ChannelManager`].
9497 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9498 /// or not. Thus, this method is not public.
9499 #[cfg(any(feature = "_test_utils", test))]
9500 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9501 provided_init_features(config).to_context()
9504 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9505 /// [`ChannelManager`].
9506 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9507 provided_init_features(config).to_context()
9510 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9511 /// [`ChannelManager`].
9512 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9513 provided_init_features(config).to_context()
9516 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9517 /// [`ChannelManager`].
9518 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9519 ChannelTypeFeatures::from_init(&provided_init_features(config))
9522 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9523 /// [`ChannelManager`].
9524 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9525 // Note that if new features are added here which other peers may (eventually) require, we
9526 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9527 // [`ErroringMessageHandler`].
9528 let mut features = InitFeatures::empty();
9529 features.set_data_loss_protect_required();
9530 features.set_upfront_shutdown_script_optional();
9531 features.set_variable_length_onion_required();
9532 features.set_static_remote_key_required();
9533 features.set_payment_secret_required();
9534 features.set_basic_mpp_optional();
9535 features.set_wumbo_optional();
9536 features.set_shutdown_any_segwit_optional();
9537 features.set_channel_type_optional();
9538 features.set_scid_privacy_optional();
9539 features.set_zero_conf_optional();
9540 features.set_route_blinding_optional();
9541 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9542 features.set_anchors_zero_fee_htlc_tx_optional();
9547 const SERIALIZATION_VERSION: u8 = 1;
9548 const MIN_SERIALIZATION_VERSION: u8 = 1;
9550 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9551 (2, fee_base_msat, required),
9552 (4, fee_proportional_millionths, required),
9553 (6, cltv_expiry_delta, required),
9556 impl_writeable_tlv_based!(ChannelCounterparty, {
9557 (2, node_id, required),
9558 (4, features, required),
9559 (6, unspendable_punishment_reserve, required),
9560 (8, forwarding_info, option),
9561 (9, outbound_htlc_minimum_msat, option),
9562 (11, outbound_htlc_maximum_msat, option),
9565 impl Writeable for ChannelDetails {
9566 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9567 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9568 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9569 let user_channel_id_low = self.user_channel_id as u64;
9570 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9571 write_tlv_fields!(writer, {
9572 (1, self.inbound_scid_alias, option),
9573 (2, self.channel_id, required),
9574 (3, self.channel_type, option),
9575 (4, self.counterparty, required),
9576 (5, self.outbound_scid_alias, option),
9577 (6, self.funding_txo, option),
9578 (7, self.config, option),
9579 (8, self.short_channel_id, option),
9580 (9, self.confirmations, option),
9581 (10, self.channel_value_satoshis, required),
9582 (12, self.unspendable_punishment_reserve, option),
9583 (14, user_channel_id_low, required),
9584 (16, self.balance_msat, required),
9585 (18, self.outbound_capacity_msat, required),
9586 (19, self.next_outbound_htlc_limit_msat, required),
9587 (20, self.inbound_capacity_msat, required),
9588 (21, self.next_outbound_htlc_minimum_msat, required),
9589 (22, self.confirmations_required, option),
9590 (24, self.force_close_spend_delay, option),
9591 (26, self.is_outbound, required),
9592 (28, self.is_channel_ready, required),
9593 (30, self.is_usable, required),
9594 (32, self.is_public, required),
9595 (33, self.inbound_htlc_minimum_msat, option),
9596 (35, self.inbound_htlc_maximum_msat, option),
9597 (37, user_channel_id_high_opt, option),
9598 (39, self.feerate_sat_per_1000_weight, option),
9599 (41, self.channel_shutdown_state, option),
9600 (43, self.pending_inbound_htlcs, optional_vec),
9601 (45, self.pending_outbound_htlcs, optional_vec),
9607 impl Readable for ChannelDetails {
9608 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9609 _init_and_read_len_prefixed_tlv_fields!(reader, {
9610 (1, inbound_scid_alias, option),
9611 (2, channel_id, required),
9612 (3, channel_type, option),
9613 (4, counterparty, required),
9614 (5, outbound_scid_alias, option),
9615 (6, funding_txo, option),
9616 (7, config, option),
9617 (8, short_channel_id, option),
9618 (9, confirmations, option),
9619 (10, channel_value_satoshis, required),
9620 (12, unspendable_punishment_reserve, option),
9621 (14, user_channel_id_low, required),
9622 (16, balance_msat, required),
9623 (18, outbound_capacity_msat, required),
9624 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9625 // filled in, so we can safely unwrap it here.
9626 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9627 (20, inbound_capacity_msat, required),
9628 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9629 (22, confirmations_required, option),
9630 (24, force_close_spend_delay, option),
9631 (26, is_outbound, required),
9632 (28, is_channel_ready, required),
9633 (30, is_usable, required),
9634 (32, is_public, required),
9635 (33, inbound_htlc_minimum_msat, option),
9636 (35, inbound_htlc_maximum_msat, option),
9637 (37, user_channel_id_high_opt, option),
9638 (39, feerate_sat_per_1000_weight, option),
9639 (41, channel_shutdown_state, option),
9640 (43, pending_inbound_htlcs, optional_vec),
9641 (45, pending_outbound_htlcs, optional_vec),
9644 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9645 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9646 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9647 let user_channel_id = user_channel_id_low as u128 +
9648 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9652 channel_id: channel_id.0.unwrap(),
9654 counterparty: counterparty.0.unwrap(),
9655 outbound_scid_alias,
9659 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9660 unspendable_punishment_reserve,
9662 balance_msat: balance_msat.0.unwrap(),
9663 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9664 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9665 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9666 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9667 confirmations_required,
9669 force_close_spend_delay,
9670 is_outbound: is_outbound.0.unwrap(),
9671 is_channel_ready: is_channel_ready.0.unwrap(),
9672 is_usable: is_usable.0.unwrap(),
9673 is_public: is_public.0.unwrap(),
9674 inbound_htlc_minimum_msat,
9675 inbound_htlc_maximum_msat,
9676 feerate_sat_per_1000_weight,
9677 channel_shutdown_state,
9678 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
9679 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
9684 impl_writeable_tlv_based!(PhantomRouteHints, {
9685 (2, channels, required_vec),
9686 (4, phantom_scid, required),
9687 (6, real_node_pubkey, required),
9690 impl_writeable_tlv_based!(BlindedForward, {
9691 (0, inbound_blinding_point, required),
9692 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
9695 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9697 (0, onion_packet, required),
9698 (1, blinded, option),
9699 (2, short_channel_id, required),
9702 (0, payment_data, required),
9703 (1, phantom_shared_secret, option),
9704 (2, incoming_cltv_expiry, required),
9705 (3, payment_metadata, option),
9706 (5, custom_tlvs, optional_vec),
9707 (7, requires_blinded_error, (default_value, false)),
9709 (2, ReceiveKeysend) => {
9710 (0, payment_preimage, required),
9711 (2, incoming_cltv_expiry, required),
9712 (3, payment_metadata, option),
9713 (4, payment_data, option), // Added in 0.0.116
9714 (5, custom_tlvs, optional_vec),
9718 impl_writeable_tlv_based!(PendingHTLCInfo, {
9719 (0, routing, required),
9720 (2, incoming_shared_secret, required),
9721 (4, payment_hash, required),
9722 (6, outgoing_amt_msat, required),
9723 (8, outgoing_cltv_value, required),
9724 (9, incoming_amt_msat, option),
9725 (10, skimmed_fee_msat, option),
9729 impl Writeable for HTLCFailureMsg {
9730 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9732 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9734 channel_id.write(writer)?;
9735 htlc_id.write(writer)?;
9736 reason.write(writer)?;
9738 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9739 channel_id, htlc_id, sha256_of_onion, failure_code
9742 channel_id.write(writer)?;
9743 htlc_id.write(writer)?;
9744 sha256_of_onion.write(writer)?;
9745 failure_code.write(writer)?;
9752 impl Readable for HTLCFailureMsg {
9753 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9754 let id: u8 = Readable::read(reader)?;
9757 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9758 channel_id: Readable::read(reader)?,
9759 htlc_id: Readable::read(reader)?,
9760 reason: Readable::read(reader)?,
9764 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9765 channel_id: Readable::read(reader)?,
9766 htlc_id: Readable::read(reader)?,
9767 sha256_of_onion: Readable::read(reader)?,
9768 failure_code: Readable::read(reader)?,
9771 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9772 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9773 // messages contained in the variants.
9774 // In version 0.0.101, support for reading the variants with these types was added, and
9775 // we should migrate to writing these variants when UpdateFailHTLC or
9776 // UpdateFailMalformedHTLC get TLV fields.
9778 let length: BigSize = Readable::read(reader)?;
9779 let mut s = FixedLengthReader::new(reader, length.0);
9780 let res = Readable::read(&mut s)?;
9781 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9782 Ok(HTLCFailureMsg::Relay(res))
9785 let length: BigSize = Readable::read(reader)?;
9786 let mut s = FixedLengthReader::new(reader, length.0);
9787 let res = Readable::read(&mut s)?;
9788 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9789 Ok(HTLCFailureMsg::Malformed(res))
9791 _ => Err(DecodeError::UnknownRequiredFeature),
9796 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9801 impl_writeable_tlv_based_enum!(BlindedFailure,
9802 (0, FromIntroductionNode) => {},
9803 (2, FromBlindedNode) => {}, ;
9806 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9807 (0, short_channel_id, required),
9808 (1, phantom_shared_secret, option),
9809 (2, outpoint, required),
9810 (3, blinded_failure, option),
9811 (4, htlc_id, required),
9812 (6, incoming_packet_shared_secret, required),
9813 (7, user_channel_id, option),
9814 // Note that by the time we get past the required read for type 2 above, outpoint will be
9815 // filled in, so we can safely unwrap it here.
9816 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
9819 impl Writeable for ClaimableHTLC {
9820 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9821 let (payment_data, keysend_preimage) = match &self.onion_payload {
9822 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9823 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9825 write_tlv_fields!(writer, {
9826 (0, self.prev_hop, required),
9827 (1, self.total_msat, required),
9828 (2, self.value, required),
9829 (3, self.sender_intended_value, required),
9830 (4, payment_data, option),
9831 (5, self.total_value_received, option),
9832 (6, self.cltv_expiry, required),
9833 (8, keysend_preimage, option),
9834 (10, self.counterparty_skimmed_fee_msat, option),
9840 impl Readable for ClaimableHTLC {
9841 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9842 _init_and_read_len_prefixed_tlv_fields!(reader, {
9843 (0, prev_hop, required),
9844 (1, total_msat, option),
9845 (2, value_ser, required),
9846 (3, sender_intended_value, option),
9847 (4, payment_data_opt, option),
9848 (5, total_value_received, option),
9849 (6, cltv_expiry, required),
9850 (8, keysend_preimage, option),
9851 (10, counterparty_skimmed_fee_msat, option),
9853 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9854 let value = value_ser.0.unwrap();
9855 let onion_payload = match keysend_preimage {
9857 if payment_data.is_some() {
9858 return Err(DecodeError::InvalidValue)
9860 if total_msat.is_none() {
9861 total_msat = Some(value);
9863 OnionPayload::Spontaneous(p)
9866 if total_msat.is_none() {
9867 if payment_data.is_none() {
9868 return Err(DecodeError::InvalidValue)
9870 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9872 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9876 prev_hop: prev_hop.0.unwrap(),
9879 sender_intended_value: sender_intended_value.unwrap_or(value),
9880 total_value_received,
9881 total_msat: total_msat.unwrap(),
9883 cltv_expiry: cltv_expiry.0.unwrap(),
9884 counterparty_skimmed_fee_msat,
9889 impl Readable for HTLCSource {
9890 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9891 let id: u8 = Readable::read(reader)?;
9894 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9895 let mut first_hop_htlc_msat: u64 = 0;
9896 let mut path_hops = Vec::new();
9897 let mut payment_id = None;
9898 let mut payment_params: Option<PaymentParameters> = None;
9899 let mut blinded_tail: Option<BlindedTail> = None;
9900 read_tlv_fields!(reader, {
9901 (0, session_priv, required),
9902 (1, payment_id, option),
9903 (2, first_hop_htlc_msat, required),
9904 (4, path_hops, required_vec),
9905 (5, payment_params, (option: ReadableArgs, 0)),
9906 (6, blinded_tail, option),
9908 if payment_id.is_none() {
9909 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9911 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9913 let path = Path { hops: path_hops, blinded_tail };
9914 if path.hops.len() == 0 {
9915 return Err(DecodeError::InvalidValue);
9917 if let Some(params) = payment_params.as_mut() {
9918 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9919 if final_cltv_expiry_delta == &0 {
9920 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9924 Ok(HTLCSource::OutboundRoute {
9925 session_priv: session_priv.0.unwrap(),
9926 first_hop_htlc_msat,
9928 payment_id: payment_id.unwrap(),
9931 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9932 _ => Err(DecodeError::UnknownRequiredFeature),
9937 impl Writeable for HTLCSource {
9938 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9940 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9942 let payment_id_opt = Some(payment_id);
9943 write_tlv_fields!(writer, {
9944 (0, session_priv, required),
9945 (1, payment_id_opt, option),
9946 (2, first_hop_htlc_msat, required),
9947 // 3 was previously used to write a PaymentSecret for the payment.
9948 (4, path.hops, required_vec),
9949 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9950 (6, path.blinded_tail, option),
9953 HTLCSource::PreviousHopData(ref field) => {
9955 field.write(writer)?;
9962 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9963 (0, forward_info, required),
9964 (1, prev_user_channel_id, (default_value, 0)),
9965 (2, prev_short_channel_id, required),
9966 (4, prev_htlc_id, required),
9967 (6, prev_funding_outpoint, required),
9968 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
9969 // filled in, so we can safely unwrap it here.
9970 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
9973 impl Writeable for HTLCForwardInfo {
9974 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9975 const FAIL_HTLC_VARIANT_ID: u8 = 1;
9977 Self::AddHTLC(info) => {
9981 Self::FailHTLC { htlc_id, err_packet } => {
9982 FAIL_HTLC_VARIANT_ID.write(w)?;
9983 write_tlv_fields!(w, {
9984 (0, htlc_id, required),
9985 (2, err_packet, required),
9988 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
9989 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
9990 // packet so older versions have something to fail back with, but serialize the real data as
9991 // optional TLVs for the benefit of newer versions.
9992 FAIL_HTLC_VARIANT_ID.write(w)?;
9993 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
9994 write_tlv_fields!(w, {
9995 (0, htlc_id, required),
9996 (1, failure_code, required),
9997 (2, dummy_err_packet, required),
9998 (3, sha256_of_onion, required),
10006 impl Readable for HTLCForwardInfo {
10007 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
10008 let id: u8 = Readable::read(r)?;
10010 0 => Self::AddHTLC(Readable::read(r)?),
10012 _init_and_read_len_prefixed_tlv_fields!(r, {
10013 (0, htlc_id, required),
10014 (1, malformed_htlc_failure_code, option),
10015 (2, err_packet, required),
10016 (3, sha256_of_onion, option),
10018 if let Some(failure_code) = malformed_htlc_failure_code {
10019 Self::FailMalformedHTLC {
10020 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
10022 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
10026 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
10027 err_packet: _init_tlv_based_struct_field!(err_packet, required),
10031 _ => return Err(DecodeError::InvalidValue),
10036 impl_writeable_tlv_based!(PendingInboundPayment, {
10037 (0, payment_secret, required),
10038 (2, expiry_time, required),
10039 (4, user_payment_id, required),
10040 (6, payment_preimage, required),
10041 (8, min_value_msat, required),
10044 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
10046 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10047 T::Target: BroadcasterInterface,
10048 ES::Target: EntropySource,
10049 NS::Target: NodeSigner,
10050 SP::Target: SignerProvider,
10051 F::Target: FeeEstimator,
10055 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10056 let _consistency_lock = self.total_consistency_lock.write().unwrap();
10058 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
10060 self.chain_hash.write(writer)?;
10062 let best_block = self.best_block.read().unwrap();
10063 best_block.height().write(writer)?;
10064 best_block.block_hash().write(writer)?;
10067 let mut serializable_peer_count: u64 = 0;
10069 let per_peer_state = self.per_peer_state.read().unwrap();
10070 let mut number_of_funded_channels = 0;
10071 for (_, peer_state_mutex) in per_peer_state.iter() {
10072 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10073 let peer_state = &mut *peer_state_lock;
10074 if !peer_state.ok_to_remove(false) {
10075 serializable_peer_count += 1;
10078 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
10079 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
10083 (number_of_funded_channels as u64).write(writer)?;
10085 for (_, peer_state_mutex) in per_peer_state.iter() {
10086 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10087 let peer_state = &mut *peer_state_lock;
10088 for channel in peer_state.channel_by_id.iter().filter_map(
10089 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
10090 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
10093 channel.write(writer)?;
10099 let forward_htlcs = self.forward_htlcs.lock().unwrap();
10100 (forward_htlcs.len() as u64).write(writer)?;
10101 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
10102 short_channel_id.write(writer)?;
10103 (pending_forwards.len() as u64).write(writer)?;
10104 for forward in pending_forwards {
10105 forward.write(writer)?;
10110 let per_peer_state = self.per_peer_state.write().unwrap();
10112 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
10113 let claimable_payments = self.claimable_payments.lock().unwrap();
10114 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
10116 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
10117 let mut htlc_onion_fields: Vec<&_> = Vec::new();
10118 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
10119 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
10120 payment_hash.write(writer)?;
10121 (payment.htlcs.len() as u64).write(writer)?;
10122 for htlc in payment.htlcs.iter() {
10123 htlc.write(writer)?;
10125 htlc_purposes.push(&payment.purpose);
10126 htlc_onion_fields.push(&payment.onion_fields);
10129 let mut monitor_update_blocked_actions_per_peer = None;
10130 let mut peer_states = Vec::new();
10131 for (_, peer_state_mutex) in per_peer_state.iter() {
10132 // Because we're holding the owning `per_peer_state` write lock here there's no chance
10133 // of a lockorder violation deadlock - no other thread can be holding any
10134 // per_peer_state lock at all.
10135 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
10138 (serializable_peer_count).write(writer)?;
10139 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
10140 // Peers which we have no channels to should be dropped once disconnected. As we
10141 // disconnect all peers when shutting down and serializing the ChannelManager, we
10142 // consider all peers as disconnected here. There's therefore no need write peers with
10144 if !peer_state.ok_to_remove(false) {
10145 peer_pubkey.write(writer)?;
10146 peer_state.latest_features.write(writer)?;
10147 if !peer_state.monitor_update_blocked_actions.is_empty() {
10148 monitor_update_blocked_actions_per_peer
10149 .get_or_insert_with(Vec::new)
10150 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
10155 let events = self.pending_events.lock().unwrap();
10156 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
10157 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
10158 // refuse to read the new ChannelManager.
10159 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
10160 if events_not_backwards_compatible {
10161 // If we're gonna write a even TLV that will overwrite our events anyway we might as
10162 // well save the space and not write any events here.
10163 0u64.write(writer)?;
10165 (events.len() as u64).write(writer)?;
10166 for (event, _) in events.iter() {
10167 event.write(writer)?;
10171 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
10172 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
10173 // the closing monitor updates were always effectively replayed on startup (either directly
10174 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
10175 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
10176 0u64.write(writer)?;
10178 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
10179 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
10180 // likely to be identical.
10181 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
10182 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
10184 (pending_inbound_payments.len() as u64).write(writer)?;
10185 for (hash, pending_payment) in pending_inbound_payments.iter() {
10186 hash.write(writer)?;
10187 pending_payment.write(writer)?;
10190 // For backwards compat, write the session privs and their total length.
10191 let mut num_pending_outbounds_compat: u64 = 0;
10192 for (_, outbound) in pending_outbound_payments.iter() {
10193 if !outbound.is_fulfilled() && !outbound.abandoned() {
10194 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
10197 num_pending_outbounds_compat.write(writer)?;
10198 for (_, outbound) in pending_outbound_payments.iter() {
10200 PendingOutboundPayment::Legacy { session_privs } |
10201 PendingOutboundPayment::Retryable { session_privs, .. } => {
10202 for session_priv in session_privs.iter() {
10203 session_priv.write(writer)?;
10206 PendingOutboundPayment::AwaitingInvoice { .. } => {},
10207 PendingOutboundPayment::InvoiceReceived { .. } => {},
10208 PendingOutboundPayment::Fulfilled { .. } => {},
10209 PendingOutboundPayment::Abandoned { .. } => {},
10213 // Encode without retry info for 0.0.101 compatibility.
10214 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
10215 for (id, outbound) in pending_outbound_payments.iter() {
10217 PendingOutboundPayment::Legacy { session_privs } |
10218 PendingOutboundPayment::Retryable { session_privs, .. } => {
10219 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
10225 let mut pending_intercepted_htlcs = None;
10226 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
10227 if our_pending_intercepts.len() != 0 {
10228 pending_intercepted_htlcs = Some(our_pending_intercepts);
10231 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
10232 if pending_claiming_payments.as_ref().unwrap().is_empty() {
10233 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
10234 // map. Thus, if there are no entries we skip writing a TLV for it.
10235 pending_claiming_payments = None;
10238 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
10239 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
10240 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
10241 if !updates.is_empty() {
10242 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
10243 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
10248 write_tlv_fields!(writer, {
10249 (1, pending_outbound_payments_no_retry, required),
10250 (2, pending_intercepted_htlcs, option),
10251 (3, pending_outbound_payments, required),
10252 (4, pending_claiming_payments, option),
10253 (5, self.our_network_pubkey, required),
10254 (6, monitor_update_blocked_actions_per_peer, option),
10255 (7, self.fake_scid_rand_bytes, required),
10256 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
10257 (9, htlc_purposes, required_vec),
10258 (10, in_flight_monitor_updates, option),
10259 (11, self.probing_cookie_secret, required),
10260 (13, htlc_onion_fields, optional_vec),
10267 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
10268 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10269 (self.len() as u64).write(w)?;
10270 for (event, action) in self.iter() {
10273 #[cfg(debug_assertions)] {
10274 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
10275 // be persisted and are regenerated on restart. However, if such an event has a
10276 // post-event-handling action we'll write nothing for the event and would have to
10277 // either forget the action or fail on deserialization (which we do below). Thus,
10278 // check that the event is sane here.
10279 let event_encoded = event.encode();
10280 let event_read: Option<Event> =
10281 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
10282 if action.is_some() { assert!(event_read.is_some()); }
10288 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
10289 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10290 let len: u64 = Readable::read(reader)?;
10291 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
10292 let mut events: Self = VecDeque::with_capacity(cmp::min(
10293 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
10296 let ev_opt = MaybeReadable::read(reader)?;
10297 let action = Readable::read(reader)?;
10298 if let Some(ev) = ev_opt {
10299 events.push_back((ev, action));
10300 } else if action.is_some() {
10301 return Err(DecodeError::InvalidValue);
10308 impl_writeable_tlv_based_enum!(ChannelShutdownState,
10309 (0, NotShuttingDown) => {},
10310 (2, ShutdownInitiated) => {},
10311 (4, ResolvingHTLCs) => {},
10312 (6, NegotiatingClosingFee) => {},
10313 (8, ShutdownComplete) => {}, ;
10316 /// Arguments for the creation of a ChannelManager that are not deserialized.
10318 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
10320 /// 1) Deserialize all stored [`ChannelMonitor`]s.
10321 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
10322 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
10323 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
10324 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
10325 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
10326 /// same way you would handle a [`chain::Filter`] call using
10327 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
10328 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
10329 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
10330 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
10331 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
10332 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
10334 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
10335 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
10337 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
10338 /// call any other methods on the newly-deserialized [`ChannelManager`].
10340 /// Note that because some channels may be closed during deserialization, it is critical that you
10341 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
10342 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
10343 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
10344 /// not force-close the same channels but consider them live), you may end up revoking a state for
10345 /// which you've already broadcasted the transaction.
10347 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
10348 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10350 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10351 T::Target: BroadcasterInterface,
10352 ES::Target: EntropySource,
10353 NS::Target: NodeSigner,
10354 SP::Target: SignerProvider,
10355 F::Target: FeeEstimator,
10359 /// A cryptographically secure source of entropy.
10360 pub entropy_source: ES,
10362 /// A signer that is able to perform node-scoped cryptographic operations.
10363 pub node_signer: NS,
10365 /// The keys provider which will give us relevant keys. Some keys will be loaded during
10366 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
10368 pub signer_provider: SP,
10370 /// The fee_estimator for use in the ChannelManager in the future.
10372 /// No calls to the FeeEstimator will be made during deserialization.
10373 pub fee_estimator: F,
10374 /// The chain::Watch for use in the ChannelManager in the future.
10376 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
10377 /// you have deserialized ChannelMonitors separately and will add them to your
10378 /// chain::Watch after deserializing this ChannelManager.
10379 pub chain_monitor: M,
10381 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
10382 /// used to broadcast the latest local commitment transactions of channels which must be
10383 /// force-closed during deserialization.
10384 pub tx_broadcaster: T,
10385 /// The router which will be used in the ChannelManager in the future for finding routes
10386 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
10388 /// No calls to the router will be made during deserialization.
10390 /// The Logger for use in the ChannelManager and which may be used to log information during
10391 /// deserialization.
10393 /// Default settings used for new channels. Any existing channels will continue to use the
10394 /// runtime settings which were stored when the ChannelManager was serialized.
10395 pub default_config: UserConfig,
10397 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
10398 /// value.context.get_funding_txo() should be the key).
10400 /// If a monitor is inconsistent with the channel state during deserialization the channel will
10401 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
10402 /// is true for missing channels as well. If there is a monitor missing for which we find
10403 /// channel data Err(DecodeError::InvalidValue) will be returned.
10405 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
10408 /// This is not exported to bindings users because we have no HashMap bindings
10409 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
10412 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10413 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
10415 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10416 T::Target: BroadcasterInterface,
10417 ES::Target: EntropySource,
10418 NS::Target: NodeSigner,
10419 SP::Target: SignerProvider,
10420 F::Target: FeeEstimator,
10424 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
10425 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
10426 /// populate a HashMap directly from C.
10427 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
10428 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
10430 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
10431 channel_monitors: hash_map_from_iter(
10432 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
10438 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10439 // SipmleArcChannelManager type:
10440 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10441 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10443 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10444 T::Target: BroadcasterInterface,
10445 ES::Target: EntropySource,
10446 NS::Target: NodeSigner,
10447 SP::Target: SignerProvider,
10448 F::Target: FeeEstimator,
10452 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10453 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10454 Ok((blockhash, Arc::new(chan_manager)))
10458 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10459 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10461 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10462 T::Target: BroadcasterInterface,
10463 ES::Target: EntropySource,
10464 NS::Target: NodeSigner,
10465 SP::Target: SignerProvider,
10466 F::Target: FeeEstimator,
10470 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10471 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10473 let chain_hash: ChainHash = Readable::read(reader)?;
10474 let best_block_height: u32 = Readable::read(reader)?;
10475 let best_block_hash: BlockHash = Readable::read(reader)?;
10477 let mut failed_htlcs = Vec::new();
10479 let channel_count: u64 = Readable::read(reader)?;
10480 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
10481 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
10482 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
10483 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
10484 let mut channel_closures = VecDeque::new();
10485 let mut close_background_events = Vec::new();
10486 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
10487 for _ in 0..channel_count {
10488 let mut channel: Channel<SP> = Channel::read(reader, (
10489 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10491 let logger = WithChannelContext::from(&args.logger, &channel.context);
10492 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10493 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
10494 funding_txo_set.insert(funding_txo.clone());
10495 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10496 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10497 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10498 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10499 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10500 // But if the channel is behind of the monitor, close the channel:
10501 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10502 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10503 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10504 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10505 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10507 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10508 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10509 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10511 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10512 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10513 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10515 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10516 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10517 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10519 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
10520 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10521 return Err(DecodeError::InvalidValue);
10523 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
10524 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10525 counterparty_node_id, funding_txo, channel_id, update
10528 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10529 channel_closures.push_back((events::Event::ChannelClosed {
10530 channel_id: channel.context.channel_id(),
10531 user_channel_id: channel.context.get_user_id(),
10532 reason: ClosureReason::OutdatedChannelManager,
10533 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10534 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10535 channel_funding_txo: channel.context.get_funding_txo(),
10537 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10538 let mut found_htlc = false;
10539 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10540 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10543 // If we have some HTLCs in the channel which are not present in the newer
10544 // ChannelMonitor, they have been removed and should be failed back to
10545 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10546 // were actually claimed we'd have generated and ensured the previous-hop
10547 // claim update ChannelMonitor updates were persisted prior to persising
10548 // the ChannelMonitor update for the forward leg, so attempting to fail the
10549 // backwards leg of the HTLC will simply be rejected.
10551 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10552 &channel.context.channel_id(), &payment_hash);
10553 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10557 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10558 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10559 monitor.get_latest_update_id());
10560 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10561 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10563 if let Some(funding_txo) = channel.context.get_funding_txo() {
10564 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
10566 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10567 hash_map::Entry::Occupied(mut entry) => {
10568 let by_id_map = entry.get_mut();
10569 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10571 hash_map::Entry::Vacant(entry) => {
10572 let mut by_id_map = new_hash_map();
10573 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10574 entry.insert(by_id_map);
10578 } else if channel.is_awaiting_initial_mon_persist() {
10579 // If we were persisted and shut down while the initial ChannelMonitor persistence
10580 // was in-progress, we never broadcasted the funding transaction and can still
10581 // safely discard the channel.
10582 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
10583 channel_closures.push_back((events::Event::ChannelClosed {
10584 channel_id: channel.context.channel_id(),
10585 user_channel_id: channel.context.get_user_id(),
10586 reason: ClosureReason::DisconnectedPeer,
10587 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10588 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10589 channel_funding_txo: channel.context.get_funding_txo(),
10592 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10593 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10594 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10595 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10596 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10597 return Err(DecodeError::InvalidValue);
10601 for (funding_txo, monitor) in args.channel_monitors.iter() {
10602 if !funding_txo_set.contains(funding_txo) {
10603 let logger = WithChannelMonitor::from(&args.logger, monitor);
10604 let channel_id = monitor.channel_id();
10605 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
10607 let monitor_update = ChannelMonitorUpdate {
10608 update_id: CLOSED_CHANNEL_UPDATE_ID,
10609 counterparty_node_id: None,
10610 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10611 channel_id: Some(monitor.channel_id()),
10613 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
10617 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10618 let forward_htlcs_count: u64 = Readable::read(reader)?;
10619 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10620 for _ in 0..forward_htlcs_count {
10621 let short_channel_id = Readable::read(reader)?;
10622 let pending_forwards_count: u64 = Readable::read(reader)?;
10623 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10624 for _ in 0..pending_forwards_count {
10625 pending_forwards.push(Readable::read(reader)?);
10627 forward_htlcs.insert(short_channel_id, pending_forwards);
10630 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10631 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10632 for _ in 0..claimable_htlcs_count {
10633 let payment_hash = Readable::read(reader)?;
10634 let previous_hops_len: u64 = Readable::read(reader)?;
10635 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10636 for _ in 0..previous_hops_len {
10637 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10639 claimable_htlcs_list.push((payment_hash, previous_hops));
10642 let peer_state_from_chans = |channel_by_id| {
10645 inbound_channel_request_by_id: new_hash_map(),
10646 latest_features: InitFeatures::empty(),
10647 pending_msg_events: Vec::new(),
10648 in_flight_monitor_updates: BTreeMap::new(),
10649 monitor_update_blocked_actions: BTreeMap::new(),
10650 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10651 is_connected: false,
10655 let peer_count: u64 = Readable::read(reader)?;
10656 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10657 for _ in 0..peer_count {
10658 let peer_pubkey = Readable::read(reader)?;
10659 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
10660 let mut peer_state = peer_state_from_chans(peer_chans);
10661 peer_state.latest_features = Readable::read(reader)?;
10662 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10665 let event_count: u64 = Readable::read(reader)?;
10666 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10667 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10668 for _ in 0..event_count {
10669 match MaybeReadable::read(reader)? {
10670 Some(event) => pending_events_read.push_back((event, None)),
10675 let background_event_count: u64 = Readable::read(reader)?;
10676 for _ in 0..background_event_count {
10677 match <u8 as Readable>::read(reader)? {
10679 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10680 // however we really don't (and never did) need them - we regenerate all
10681 // on-startup monitor updates.
10682 let _: OutPoint = Readable::read(reader)?;
10683 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10685 _ => return Err(DecodeError::InvalidValue),
10689 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10690 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10692 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10693 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10694 for _ in 0..pending_inbound_payment_count {
10695 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10696 return Err(DecodeError::InvalidValue);
10700 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10701 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10702 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10703 for _ in 0..pending_outbound_payments_count_compat {
10704 let session_priv = Readable::read(reader)?;
10705 let payment = PendingOutboundPayment::Legacy {
10706 session_privs: hash_set_from_iter([session_priv]),
10708 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10709 return Err(DecodeError::InvalidValue)
10713 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10714 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10715 let mut pending_outbound_payments = None;
10716 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
10717 let mut received_network_pubkey: Option<PublicKey> = None;
10718 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10719 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10720 let mut claimable_htlc_purposes = None;
10721 let mut claimable_htlc_onion_fields = None;
10722 let mut pending_claiming_payments = Some(new_hash_map());
10723 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10724 let mut events_override = None;
10725 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10726 read_tlv_fields!(reader, {
10727 (1, pending_outbound_payments_no_retry, option),
10728 (2, pending_intercepted_htlcs, option),
10729 (3, pending_outbound_payments, option),
10730 (4, pending_claiming_payments, option),
10731 (5, received_network_pubkey, option),
10732 (6, monitor_update_blocked_actions_per_peer, option),
10733 (7, fake_scid_rand_bytes, option),
10734 (8, events_override, option),
10735 (9, claimable_htlc_purposes, optional_vec),
10736 (10, in_flight_monitor_updates, option),
10737 (11, probing_cookie_secret, option),
10738 (13, claimable_htlc_onion_fields, optional_vec),
10740 if fake_scid_rand_bytes.is_none() {
10741 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10744 if probing_cookie_secret.is_none() {
10745 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10748 if let Some(events) = events_override {
10749 pending_events_read = events;
10752 if !channel_closures.is_empty() {
10753 pending_events_read.append(&mut channel_closures);
10756 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10757 pending_outbound_payments = Some(pending_outbound_payments_compat);
10758 } else if pending_outbound_payments.is_none() {
10759 let mut outbounds = new_hash_map();
10760 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10761 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10763 pending_outbound_payments = Some(outbounds);
10765 let pending_outbounds = OutboundPayments {
10766 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10767 retry_lock: Mutex::new(())
10770 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10771 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10772 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10773 // replayed, and for each monitor update we have to replay we have to ensure there's a
10774 // `ChannelMonitor` for it.
10776 // In order to do so we first walk all of our live channels (so that we can check their
10777 // state immediately after doing the update replays, when we have the `update_id`s
10778 // available) and then walk any remaining in-flight updates.
10780 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10781 let mut pending_background_events = Vec::new();
10782 macro_rules! handle_in_flight_updates {
10783 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10784 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
10786 let mut max_in_flight_update_id = 0;
10787 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10788 for update in $chan_in_flight_upds.iter() {
10789 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10790 update.update_id, $channel_info_log, &$monitor.channel_id());
10791 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10792 pending_background_events.push(
10793 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10794 counterparty_node_id: $counterparty_node_id,
10795 funding_txo: $funding_txo,
10796 channel_id: $monitor.channel_id(),
10797 update: update.clone(),
10800 if $chan_in_flight_upds.is_empty() {
10801 // We had some updates to apply, but it turns out they had completed before we
10802 // were serialized, we just weren't notified of that. Thus, we may have to run
10803 // the completion actions for any monitor updates, but otherwise are done.
10804 pending_background_events.push(
10805 BackgroundEvent::MonitorUpdatesComplete {
10806 counterparty_node_id: $counterparty_node_id,
10807 channel_id: $monitor.channel_id(),
10810 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10811 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
10812 return Err(DecodeError::InvalidValue);
10814 max_in_flight_update_id
10818 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10819 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10820 let peer_state = &mut *peer_state_lock;
10821 for phase in peer_state.channel_by_id.values() {
10822 if let ChannelPhase::Funded(chan) = phase {
10823 let logger = WithChannelContext::from(&args.logger, &chan.context);
10825 // Channels that were persisted have to be funded, otherwise they should have been
10827 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10828 let monitor = args.channel_monitors.get(&funding_txo)
10829 .expect("We already checked for monitor presence when loading channels");
10830 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10831 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10832 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10833 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10834 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10835 funding_txo, monitor, peer_state, logger, ""));
10838 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10839 // If the channel is ahead of the monitor, return InvalidValue:
10840 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10841 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10842 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10843 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10844 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10845 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10846 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10847 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10848 return Err(DecodeError::InvalidValue);
10851 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10852 // created in this `channel_by_id` map.
10853 debug_assert!(false);
10854 return Err(DecodeError::InvalidValue);
10859 if let Some(in_flight_upds) = in_flight_monitor_updates {
10860 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10861 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
10862 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id);
10863 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10864 // Now that we've removed all the in-flight monitor updates for channels that are
10865 // still open, we need to replay any monitor updates that are for closed channels,
10866 // creating the neccessary peer_state entries as we go.
10867 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10868 Mutex::new(peer_state_from_chans(new_hash_map()))
10870 let mut peer_state = peer_state_mutex.lock().unwrap();
10871 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10872 funding_txo, monitor, peer_state, logger, "closed ");
10874 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10875 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
10876 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
10877 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10878 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10879 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10880 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10881 return Err(DecodeError::InvalidValue);
10886 // Note that we have to do the above replays before we push new monitor updates.
10887 pending_background_events.append(&mut close_background_events);
10889 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10890 // should ensure we try them again on the inbound edge. We put them here and do so after we
10891 // have a fully-constructed `ChannelManager` at the end.
10892 let mut pending_claims_to_replay = Vec::new();
10895 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10896 // ChannelMonitor data for any channels for which we do not have authorative state
10897 // (i.e. those for which we just force-closed above or we otherwise don't have a
10898 // corresponding `Channel` at all).
10899 // This avoids several edge-cases where we would otherwise "forget" about pending
10900 // payments which are still in-flight via their on-chain state.
10901 // We only rebuild the pending payments map if we were most recently serialized by
10903 for (_, monitor) in args.channel_monitors.iter() {
10904 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
10905 if counterparty_opt.is_none() {
10906 let logger = WithChannelMonitor::from(&args.logger, monitor);
10907 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10908 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10909 if path.hops.is_empty() {
10910 log_error!(logger, "Got an empty path for a pending payment");
10911 return Err(DecodeError::InvalidValue);
10914 let path_amt = path.final_value_msat();
10915 let mut session_priv_bytes = [0; 32];
10916 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10917 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10918 hash_map::Entry::Occupied(mut entry) => {
10919 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10920 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10921 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
10923 hash_map::Entry::Vacant(entry) => {
10924 let path_fee = path.fee_msat();
10925 entry.insert(PendingOutboundPayment::Retryable {
10926 retry_strategy: None,
10927 attempts: PaymentAttempts::new(),
10928 payment_params: None,
10929 session_privs: hash_set_from_iter([session_priv_bytes]),
10930 payment_hash: htlc.payment_hash,
10931 payment_secret: None, // only used for retries, and we'll never retry on startup
10932 payment_metadata: None, // only used for retries, and we'll never retry on startup
10933 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10934 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10935 pending_amt_msat: path_amt,
10936 pending_fee_msat: Some(path_fee),
10937 total_msat: path_amt,
10938 starting_block_height: best_block_height,
10939 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10941 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10942 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10947 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10948 match htlc_source {
10949 HTLCSource::PreviousHopData(prev_hop_data) => {
10950 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10951 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10952 info.prev_htlc_id == prev_hop_data.htlc_id
10954 // The ChannelMonitor is now responsible for this HTLC's
10955 // failure/success and will let us know what its outcome is. If we
10956 // still have an entry for this HTLC in `forward_htlcs` or
10957 // `pending_intercepted_htlcs`, we were apparently not persisted after
10958 // the monitor was when forwarding the payment.
10959 forward_htlcs.retain(|_, forwards| {
10960 forwards.retain(|forward| {
10961 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10962 if pending_forward_matches_htlc(&htlc_info) {
10963 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10964 &htlc.payment_hash, &monitor.channel_id());
10969 !forwards.is_empty()
10971 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10972 if pending_forward_matches_htlc(&htlc_info) {
10973 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10974 &htlc.payment_hash, &monitor.channel_id());
10975 pending_events_read.retain(|(event, _)| {
10976 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10977 intercepted_id != ev_id
10984 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10985 if let Some(preimage) = preimage_opt {
10986 let pending_events = Mutex::new(pending_events_read);
10987 // Note that we set `from_onchain` to "false" here,
10988 // deliberately keeping the pending payment around forever.
10989 // Given it should only occur when we have a channel we're
10990 // force-closing for being stale that's okay.
10991 // The alternative would be to wipe the state when claiming,
10992 // generating a `PaymentPathSuccessful` event but regenerating
10993 // it and the `PaymentSent` on every restart until the
10994 // `ChannelMonitor` is removed.
10996 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10997 channel_funding_outpoint: monitor.get_funding_txo().0,
10998 channel_id: monitor.channel_id(),
10999 counterparty_node_id: path.hops[0].pubkey,
11001 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
11002 path, false, compl_action, &pending_events, &&logger);
11003 pending_events_read = pending_events.into_inner().unwrap();
11010 // Whether the downstream channel was closed or not, try to re-apply any payment
11011 // preimages from it which may be needed in upstream channels for forwarded
11013 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
11015 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
11016 if let HTLCSource::PreviousHopData(_) = htlc_source {
11017 if let Some(payment_preimage) = preimage_opt {
11018 Some((htlc_source, payment_preimage, htlc.amount_msat,
11019 // Check if `counterparty_opt.is_none()` to see if the
11020 // downstream chan is closed (because we don't have a
11021 // channel_id -> peer map entry).
11022 counterparty_opt.is_none(),
11023 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
11024 monitor.get_funding_txo().0, monitor.channel_id()))
11027 // If it was an outbound payment, we've handled it above - if a preimage
11028 // came in and we persisted the `ChannelManager` we either handled it and
11029 // are good to go or the channel force-closed - we don't have to handle the
11030 // channel still live case here.
11034 for tuple in outbound_claimed_htlcs_iter {
11035 pending_claims_to_replay.push(tuple);
11040 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
11041 // If we have pending HTLCs to forward, assume we either dropped a
11042 // `PendingHTLCsForwardable` or the user received it but never processed it as they
11043 // shut down before the timer hit. Either way, set the time_forwardable to a small
11044 // constant as enough time has likely passed that we should simply handle the forwards
11045 // now, or at least after the user gets a chance to reconnect to our peers.
11046 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
11047 time_forwardable: Duration::from_secs(2),
11051 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
11052 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
11054 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
11055 if let Some(purposes) = claimable_htlc_purposes {
11056 if purposes.len() != claimable_htlcs_list.len() {
11057 return Err(DecodeError::InvalidValue);
11059 if let Some(onion_fields) = claimable_htlc_onion_fields {
11060 if onion_fields.len() != claimable_htlcs_list.len() {
11061 return Err(DecodeError::InvalidValue);
11063 for (purpose, (onion, (payment_hash, htlcs))) in
11064 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
11066 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
11067 purpose, htlcs, onion_fields: onion,
11069 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
11072 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
11073 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
11074 purpose, htlcs, onion_fields: None,
11076 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
11080 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
11081 // include a `_legacy_hop_data` in the `OnionPayload`.
11082 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
11083 if htlcs.is_empty() {
11084 return Err(DecodeError::InvalidValue);
11086 let purpose = match &htlcs[0].onion_payload {
11087 OnionPayload::Invoice { _legacy_hop_data } => {
11088 if let Some(hop_data) = _legacy_hop_data {
11089 events::PaymentPurpose::InvoicePayment {
11090 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
11091 Some(inbound_payment) => inbound_payment.payment_preimage,
11092 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
11093 Ok((payment_preimage, _)) => payment_preimage,
11095 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
11096 return Err(DecodeError::InvalidValue);
11100 payment_secret: hop_data.payment_secret,
11102 } else { return Err(DecodeError::InvalidValue); }
11104 OnionPayload::Spontaneous(payment_preimage) =>
11105 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
11107 claimable_payments.insert(payment_hash, ClaimablePayment {
11108 purpose, htlcs, onion_fields: None,
11113 let mut secp_ctx = Secp256k1::new();
11114 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
11116 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
11118 Err(()) => return Err(DecodeError::InvalidValue)
11120 if let Some(network_pubkey) = received_network_pubkey {
11121 if network_pubkey != our_network_pubkey {
11122 log_error!(args.logger, "Key that was generated does not match the existing key.");
11123 return Err(DecodeError::InvalidValue);
11127 let mut outbound_scid_aliases = new_hash_set();
11128 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
11129 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11130 let peer_state = &mut *peer_state_lock;
11131 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
11132 if let ChannelPhase::Funded(chan) = phase {
11133 let logger = WithChannelContext::from(&args.logger, &chan.context);
11134 if chan.context.outbound_scid_alias() == 0 {
11135 let mut outbound_scid_alias;
11137 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
11138 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
11139 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
11141 chan.context.set_outbound_scid_alias(outbound_scid_alias);
11142 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
11143 // Note that in rare cases its possible to hit this while reading an older
11144 // channel if we just happened to pick a colliding outbound alias above.
11145 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
11146 return Err(DecodeError::InvalidValue);
11148 if chan.context.is_usable() {
11149 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
11150 // Note that in rare cases its possible to hit this while reading an older
11151 // channel if we just happened to pick a colliding outbound alias above.
11152 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
11153 return Err(DecodeError::InvalidValue);
11157 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11158 // created in this `channel_by_id` map.
11159 debug_assert!(false);
11160 return Err(DecodeError::InvalidValue);
11165 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
11167 for (_, monitor) in args.channel_monitors.iter() {
11168 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
11169 if let Some(payment) = claimable_payments.remove(&payment_hash) {
11170 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
11171 let mut claimable_amt_msat = 0;
11172 let mut receiver_node_id = Some(our_network_pubkey);
11173 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
11174 if phantom_shared_secret.is_some() {
11175 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
11176 .expect("Failed to get node_id for phantom node recipient");
11177 receiver_node_id = Some(phantom_pubkey)
11179 for claimable_htlc in &payment.htlcs {
11180 claimable_amt_msat += claimable_htlc.value;
11182 // Add a holding-cell claim of the payment to the Channel, which should be
11183 // applied ~immediately on peer reconnection. Because it won't generate a
11184 // new commitment transaction we can just provide the payment preimage to
11185 // the corresponding ChannelMonitor and nothing else.
11187 // We do so directly instead of via the normal ChannelMonitor update
11188 // procedure as the ChainMonitor hasn't yet been initialized, implying
11189 // we're not allowed to call it directly yet. Further, we do the update
11190 // without incrementing the ChannelMonitor update ID as there isn't any
11192 // If we were to generate a new ChannelMonitor update ID here and then
11193 // crash before the user finishes block connect we'd end up force-closing
11194 // this channel as well. On the flip side, there's no harm in restarting
11195 // without the new monitor persisted - we'll end up right back here on
11197 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
11198 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
11199 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
11200 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11201 let peer_state = &mut *peer_state_lock;
11202 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
11203 let logger = WithChannelContext::from(&args.logger, &channel.context);
11204 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
11207 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
11208 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
11211 pending_events_read.push_back((events::Event::PaymentClaimed {
11214 purpose: payment.purpose,
11215 amount_msat: claimable_amt_msat,
11216 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
11217 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
11223 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
11224 if let Some(peer_state) = per_peer_state.get(&node_id) {
11225 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
11226 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
11227 for action in actions.iter() {
11228 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
11229 downstream_counterparty_and_funding_outpoint:
11230 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
11232 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
11234 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
11235 blocked_channel_id);
11236 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
11237 .entry(*blocked_channel_id)
11238 .or_insert_with(Vec::new).push(blocking_action.clone());
11240 // If the channel we were blocking has closed, we don't need to
11241 // worry about it - the blocked monitor update should never have
11242 // been released from the `Channel` object so it can't have
11243 // completed, and if the channel closed there's no reason to bother
11247 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
11248 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
11252 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
11254 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
11255 return Err(DecodeError::InvalidValue);
11259 let channel_manager = ChannelManager {
11261 fee_estimator: bounded_fee_estimator,
11262 chain_monitor: args.chain_monitor,
11263 tx_broadcaster: args.tx_broadcaster,
11264 router: args.router,
11266 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
11268 inbound_payment_key: expanded_inbound_key,
11269 pending_inbound_payments: Mutex::new(pending_inbound_payments),
11270 pending_outbound_payments: pending_outbounds,
11271 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
11273 forward_htlcs: Mutex::new(forward_htlcs),
11274 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
11275 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
11276 outpoint_to_peer: Mutex::new(outpoint_to_peer),
11277 short_to_chan_info: FairRwLock::new(short_to_chan_info),
11278 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
11280 probing_cookie_secret: probing_cookie_secret.unwrap(),
11282 our_network_pubkey,
11285 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
11287 per_peer_state: FairRwLock::new(per_peer_state),
11289 pending_events: Mutex::new(pending_events_read),
11290 pending_events_processor: AtomicBool::new(false),
11291 pending_background_events: Mutex::new(pending_background_events),
11292 total_consistency_lock: RwLock::new(()),
11293 background_events_processed_since_startup: AtomicBool::new(false),
11295 event_persist_notifier: Notifier::new(),
11296 needs_persist_flag: AtomicBool::new(false),
11298 funding_batch_states: Mutex::new(BTreeMap::new()),
11300 pending_offers_messages: Mutex::new(Vec::new()),
11302 entropy_source: args.entropy_source,
11303 node_signer: args.node_signer,
11304 signer_provider: args.signer_provider,
11306 logger: args.logger,
11307 default_configuration: args.default_config,
11310 for htlc_source in failed_htlcs.drain(..) {
11311 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
11312 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
11313 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
11314 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
11317 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
11318 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
11319 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
11320 // channel is closed we just assume that it probably came from an on-chain claim.
11321 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
11322 downstream_closed, true, downstream_node_id, downstream_funding, downstream_channel_id);
11325 //TODO: Broadcast channel update for closed channels, but only after we've made a
11326 //connection or two.
11328 Ok((best_block_hash.clone(), channel_manager))
11334 use bitcoin::hashes::Hash;
11335 use bitcoin::hashes::sha256::Hash as Sha256;
11336 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
11337 use core::sync::atomic::Ordering;
11338 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
11339 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
11340 use crate::ln::ChannelId;
11341 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
11342 use crate::ln::functional_test_utils::*;
11343 use crate::ln::msgs::{self, ErrorAction};
11344 use crate::ln::msgs::ChannelMessageHandler;
11345 use crate::prelude::*;
11346 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
11347 use crate::util::errors::APIError;
11348 use crate::util::ser::Writeable;
11349 use crate::util::test_utils;
11350 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
11351 use crate::sign::EntropySource;
11354 fn test_notify_limits() {
11355 // Check that a few cases which don't require the persistence of a new ChannelManager,
11356 // indeed, do not cause the persistence of a new ChannelManager.
11357 let chanmon_cfgs = create_chanmon_cfgs(3);
11358 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11359 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
11360 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11362 // All nodes start with a persistable update pending as `create_network` connects each node
11363 // with all other nodes to make most tests simpler.
11364 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11365 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11366 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11368 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11370 // We check that the channel info nodes have doesn't change too early, even though we try
11371 // to connect messages with new values
11372 chan.0.contents.fee_base_msat *= 2;
11373 chan.1.contents.fee_base_msat *= 2;
11374 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
11375 &nodes[1].node.get_our_node_id()).pop().unwrap();
11376 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
11377 &nodes[0].node.get_our_node_id()).pop().unwrap();
11379 // The first two nodes (which opened a channel) should now require fresh persistence
11380 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11381 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11382 // ... but the last node should not.
11383 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11384 // After persisting the first two nodes they should no longer need fresh persistence.
11385 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11386 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11388 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
11389 // about the channel.
11390 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
11391 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
11392 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11394 // The nodes which are a party to the channel should also ignore messages from unrelated
11396 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11397 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11398 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11399 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11400 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11401 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11403 // At this point the channel info given by peers should still be the same.
11404 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11405 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11407 // An earlier version of handle_channel_update didn't check the directionality of the
11408 // update message and would always update the local fee info, even if our peer was
11409 // (spuriously) forwarding us our own channel_update.
11410 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
11411 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
11412 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
11414 // First deliver each peers' own message, checking that the node doesn't need to be
11415 // persisted and that its channel info remains the same.
11416 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
11417 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
11418 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11419 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11420 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11421 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11423 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
11424 // the channel info has updated.
11425 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
11426 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
11427 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11428 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11429 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
11430 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
11434 fn test_keysend_dup_hash_partial_mpp() {
11435 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
11437 let chanmon_cfgs = create_chanmon_cfgs(2);
11438 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11439 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11440 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11441 create_announced_chan_between_nodes(&nodes, 0, 1);
11443 // First, send a partial MPP payment.
11444 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
11445 let mut mpp_route = route.clone();
11446 mpp_route.paths.push(mpp_route.paths[0].clone());
11448 let payment_id = PaymentId([42; 32]);
11449 // Use the utility function send_payment_along_path to send the payment with MPP data which
11450 // indicates there are more HTLCs coming.
11451 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
11452 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
11453 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
11454 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
11455 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
11456 check_added_monitors!(nodes[0], 1);
11457 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11458 assert_eq!(events.len(), 1);
11459 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11461 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11462 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11463 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11464 check_added_monitors!(nodes[0], 1);
11465 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11466 assert_eq!(events.len(), 1);
11467 let ev = events.drain(..).next().unwrap();
11468 let payment_event = SendEvent::from_event(ev);
11469 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11470 check_added_monitors!(nodes[1], 0);
11471 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11472 expect_pending_htlcs_forwardable!(nodes[1]);
11473 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11474 check_added_monitors!(nodes[1], 1);
11475 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11476 assert!(updates.update_add_htlcs.is_empty());
11477 assert!(updates.update_fulfill_htlcs.is_empty());
11478 assert_eq!(updates.update_fail_htlcs.len(), 1);
11479 assert!(updates.update_fail_malformed_htlcs.is_empty());
11480 assert!(updates.update_fee.is_none());
11481 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11482 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11483 expect_payment_failed!(nodes[0], our_payment_hash, true);
11485 // Send the second half of the original MPP payment.
11486 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11487 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11488 check_added_monitors!(nodes[0], 1);
11489 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11490 assert_eq!(events.len(), 1);
11491 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11493 // Claim the full MPP payment. Note that we can't use a test utility like
11494 // claim_funds_along_route because the ordering of the messages causes the second half of the
11495 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11496 // lightning messages manually.
11497 nodes[1].node.claim_funds(payment_preimage);
11498 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11499 check_added_monitors!(nodes[1], 2);
11501 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11502 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11503 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11504 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11505 check_added_monitors!(nodes[0], 1);
11506 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11507 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11508 check_added_monitors!(nodes[1], 1);
11509 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11510 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11511 check_added_monitors!(nodes[1], 1);
11512 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11513 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11514 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11515 check_added_monitors!(nodes[0], 1);
11516 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11517 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11518 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11519 check_added_monitors!(nodes[0], 1);
11520 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11521 check_added_monitors!(nodes[1], 1);
11522 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11523 check_added_monitors!(nodes[1], 1);
11524 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11525 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11526 check_added_monitors!(nodes[0], 1);
11528 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11529 // path's success and a PaymentPathSuccessful event for each path's success.
11530 let events = nodes[0].node.get_and_clear_pending_events();
11531 assert_eq!(events.len(), 2);
11533 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11534 assert_eq!(payment_id, *actual_payment_id);
11535 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11536 assert_eq!(route.paths[0], *path);
11538 _ => panic!("Unexpected event"),
11541 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11542 assert_eq!(payment_id, *actual_payment_id);
11543 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11544 assert_eq!(route.paths[0], *path);
11546 _ => panic!("Unexpected event"),
11551 fn test_keysend_dup_payment_hash() {
11552 do_test_keysend_dup_payment_hash(false);
11553 do_test_keysend_dup_payment_hash(true);
11556 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11557 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11558 // outbound regular payment fails as expected.
11559 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11560 // fails as expected.
11561 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11562 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11563 // reject MPP keysend payments, since in this case where the payment has no payment
11564 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11565 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11566 // payment secrets and reject otherwise.
11567 let chanmon_cfgs = create_chanmon_cfgs(2);
11568 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11569 let mut mpp_keysend_cfg = test_default_channel_config();
11570 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11571 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11572 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11573 create_announced_chan_between_nodes(&nodes, 0, 1);
11574 let scorer = test_utils::TestScorer::new();
11575 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11577 // To start (1), send a regular payment but don't claim it.
11578 let expected_route = [&nodes[1]];
11579 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11581 // Next, attempt a keysend payment and make sure it fails.
11582 let route_params = RouteParameters::from_payment_params_and_value(
11583 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11584 TEST_FINAL_CLTV, false), 100_000);
11585 let route = find_route(
11586 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11587 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11589 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11590 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11591 check_added_monitors!(nodes[0], 1);
11592 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11593 assert_eq!(events.len(), 1);
11594 let ev = events.drain(..).next().unwrap();
11595 let payment_event = SendEvent::from_event(ev);
11596 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11597 check_added_monitors!(nodes[1], 0);
11598 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11599 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11600 // fails), the second will process the resulting failure and fail the HTLC backward
11601 expect_pending_htlcs_forwardable!(nodes[1]);
11602 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11603 check_added_monitors!(nodes[1], 1);
11604 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11605 assert!(updates.update_add_htlcs.is_empty());
11606 assert!(updates.update_fulfill_htlcs.is_empty());
11607 assert_eq!(updates.update_fail_htlcs.len(), 1);
11608 assert!(updates.update_fail_malformed_htlcs.is_empty());
11609 assert!(updates.update_fee.is_none());
11610 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11611 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11612 expect_payment_failed!(nodes[0], payment_hash, true);
11614 // Finally, claim the original payment.
11615 claim_payment(&nodes[0], &expected_route, payment_preimage);
11617 // To start (2), send a keysend payment but don't claim it.
11618 let payment_preimage = PaymentPreimage([42; 32]);
11619 let route = find_route(
11620 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11621 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11623 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11624 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11625 check_added_monitors!(nodes[0], 1);
11626 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11627 assert_eq!(events.len(), 1);
11628 let event = events.pop().unwrap();
11629 let path = vec![&nodes[1]];
11630 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11632 // Next, attempt a regular payment and make sure it fails.
11633 let payment_secret = PaymentSecret([43; 32]);
11634 nodes[0].node.send_payment_with_route(&route, payment_hash,
11635 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11636 check_added_monitors!(nodes[0], 1);
11637 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11638 assert_eq!(events.len(), 1);
11639 let ev = events.drain(..).next().unwrap();
11640 let payment_event = SendEvent::from_event(ev);
11641 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11642 check_added_monitors!(nodes[1], 0);
11643 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11644 expect_pending_htlcs_forwardable!(nodes[1]);
11645 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11646 check_added_monitors!(nodes[1], 1);
11647 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11648 assert!(updates.update_add_htlcs.is_empty());
11649 assert!(updates.update_fulfill_htlcs.is_empty());
11650 assert_eq!(updates.update_fail_htlcs.len(), 1);
11651 assert!(updates.update_fail_malformed_htlcs.is_empty());
11652 assert!(updates.update_fee.is_none());
11653 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11654 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11655 expect_payment_failed!(nodes[0], payment_hash, true);
11657 // Finally, succeed the keysend payment.
11658 claim_payment(&nodes[0], &expected_route, payment_preimage);
11660 // To start (3), send a keysend payment but don't claim it.
11661 let payment_id_1 = PaymentId([44; 32]);
11662 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11663 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11664 check_added_monitors!(nodes[0], 1);
11665 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11666 assert_eq!(events.len(), 1);
11667 let event = events.pop().unwrap();
11668 let path = vec![&nodes[1]];
11669 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11671 // Next, attempt a keysend payment and make sure it fails.
11672 let route_params = RouteParameters::from_payment_params_and_value(
11673 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11676 let route = find_route(
11677 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11678 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11680 let payment_id_2 = PaymentId([45; 32]);
11681 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11682 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11683 check_added_monitors!(nodes[0], 1);
11684 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11685 assert_eq!(events.len(), 1);
11686 let ev = events.drain(..).next().unwrap();
11687 let payment_event = SendEvent::from_event(ev);
11688 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11689 check_added_monitors!(nodes[1], 0);
11690 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11691 expect_pending_htlcs_forwardable!(nodes[1]);
11692 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11693 check_added_monitors!(nodes[1], 1);
11694 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11695 assert!(updates.update_add_htlcs.is_empty());
11696 assert!(updates.update_fulfill_htlcs.is_empty());
11697 assert_eq!(updates.update_fail_htlcs.len(), 1);
11698 assert!(updates.update_fail_malformed_htlcs.is_empty());
11699 assert!(updates.update_fee.is_none());
11700 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11701 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11702 expect_payment_failed!(nodes[0], payment_hash, true);
11704 // Finally, claim the original payment.
11705 claim_payment(&nodes[0], &expected_route, payment_preimage);
11709 fn test_keysend_hash_mismatch() {
11710 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11711 // preimage doesn't match the msg's payment hash.
11712 let chanmon_cfgs = create_chanmon_cfgs(2);
11713 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11714 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11715 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11717 let payer_pubkey = nodes[0].node.get_our_node_id();
11718 let payee_pubkey = nodes[1].node.get_our_node_id();
11720 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11721 let route_params = RouteParameters::from_payment_params_and_value(
11722 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11723 let network_graph = nodes[0].network_graph;
11724 let first_hops = nodes[0].node.list_usable_channels();
11725 let scorer = test_utils::TestScorer::new();
11726 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11727 let route = find_route(
11728 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11729 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11732 let test_preimage = PaymentPreimage([42; 32]);
11733 let mismatch_payment_hash = PaymentHash([43; 32]);
11734 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11735 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11736 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11737 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11738 check_added_monitors!(nodes[0], 1);
11740 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11741 assert_eq!(updates.update_add_htlcs.len(), 1);
11742 assert!(updates.update_fulfill_htlcs.is_empty());
11743 assert!(updates.update_fail_htlcs.is_empty());
11744 assert!(updates.update_fail_malformed_htlcs.is_empty());
11745 assert!(updates.update_fee.is_none());
11746 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11748 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11752 fn test_keysend_msg_with_secret_err() {
11753 // Test that we error as expected if we receive a keysend payment that includes a payment
11754 // secret when we don't support MPP keysend.
11755 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11756 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11757 let chanmon_cfgs = create_chanmon_cfgs(2);
11758 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11759 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11760 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11762 let payer_pubkey = nodes[0].node.get_our_node_id();
11763 let payee_pubkey = nodes[1].node.get_our_node_id();
11765 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11766 let route_params = RouteParameters::from_payment_params_and_value(
11767 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11768 let network_graph = nodes[0].network_graph;
11769 let first_hops = nodes[0].node.list_usable_channels();
11770 let scorer = test_utils::TestScorer::new();
11771 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11772 let route = find_route(
11773 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11774 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11777 let test_preimage = PaymentPreimage([42; 32]);
11778 let test_secret = PaymentSecret([43; 32]);
11779 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
11780 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11781 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11782 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11783 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11784 PaymentId(payment_hash.0), None, session_privs).unwrap();
11785 check_added_monitors!(nodes[0], 1);
11787 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11788 assert_eq!(updates.update_add_htlcs.len(), 1);
11789 assert!(updates.update_fulfill_htlcs.is_empty());
11790 assert!(updates.update_fail_htlcs.is_empty());
11791 assert!(updates.update_fail_malformed_htlcs.is_empty());
11792 assert!(updates.update_fee.is_none());
11793 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11795 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11799 fn test_multi_hop_missing_secret() {
11800 let chanmon_cfgs = create_chanmon_cfgs(4);
11801 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11802 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11803 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11805 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11806 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11807 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11808 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11810 // Marshall an MPP route.
11811 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11812 let path = route.paths[0].clone();
11813 route.paths.push(path);
11814 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11815 route.paths[0].hops[0].short_channel_id = chan_1_id;
11816 route.paths[0].hops[1].short_channel_id = chan_3_id;
11817 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11818 route.paths[1].hops[0].short_channel_id = chan_2_id;
11819 route.paths[1].hops[1].short_channel_id = chan_4_id;
11821 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11822 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11824 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11825 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11827 _ => panic!("unexpected error")
11832 fn test_drop_disconnected_peers_when_removing_channels() {
11833 let chanmon_cfgs = create_chanmon_cfgs(2);
11834 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11835 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11836 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11838 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11840 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11841 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11843 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11844 check_closed_broadcast!(nodes[0], true);
11845 check_added_monitors!(nodes[0], 1);
11846 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11849 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11850 // disconnected and the channel between has been force closed.
11851 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11852 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11853 assert_eq!(nodes_0_per_peer_state.len(), 1);
11854 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11857 nodes[0].node.timer_tick_occurred();
11860 // Assert that nodes[1] has now been removed.
11861 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11866 fn bad_inbound_payment_hash() {
11867 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11868 let chanmon_cfgs = create_chanmon_cfgs(2);
11869 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11870 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11871 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11873 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11874 let payment_data = msgs::FinalOnionHopData {
11876 total_msat: 100_000,
11879 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11880 // payment verification fails as expected.
11881 let mut bad_payment_hash = payment_hash.clone();
11882 bad_payment_hash.0[0] += 1;
11883 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11884 Ok(_) => panic!("Unexpected ok"),
11886 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11890 // Check that using the original payment hash succeeds.
11891 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11895 fn test_outpoint_to_peer_coverage() {
11896 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
11897 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11898 // the channel is successfully closed.
11899 let chanmon_cfgs = create_chanmon_cfgs(2);
11900 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11901 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11902 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11904 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11905 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11906 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11907 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11908 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11910 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11911 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
11913 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
11914 // funding transaction, and have the real `channel_id`.
11915 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
11916 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
11919 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11921 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
11922 // as it has the funding transaction.
11923 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11924 assert_eq!(nodes_0_lock.len(), 1);
11925 assert!(nodes_0_lock.contains_key(&funding_output));
11928 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
11930 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11932 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11934 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11935 assert_eq!(nodes_0_lock.len(), 1);
11936 assert!(nodes_0_lock.contains_key(&funding_output));
11938 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11941 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
11942 // soon as it has the funding transaction.
11943 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11944 assert_eq!(nodes_1_lock.len(), 1);
11945 assert!(nodes_1_lock.contains_key(&funding_output));
11947 check_added_monitors!(nodes[1], 1);
11948 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11949 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11950 check_added_monitors!(nodes[0], 1);
11951 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11952 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11953 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11954 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11956 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11957 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11958 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11959 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11961 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11962 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11964 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
11965 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11966 // fee for the closing transaction has been negotiated and the parties has the other
11967 // party's signature for the fee negotiated closing transaction.)
11968 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11969 assert_eq!(nodes_0_lock.len(), 1);
11970 assert!(nodes_0_lock.contains_key(&funding_output));
11974 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11975 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11976 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11977 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
11978 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11979 assert_eq!(nodes_1_lock.len(), 1);
11980 assert!(nodes_1_lock.contains_key(&funding_output));
11983 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11985 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11986 // therefore has all it needs to fully close the channel (both signatures for the
11987 // closing transaction).
11988 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
11989 // fully closed by `nodes[0]`.
11990 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
11992 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
11993 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11994 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11995 assert_eq!(nodes_1_lock.len(), 1);
11996 assert!(nodes_1_lock.contains_key(&funding_output));
11999 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
12001 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
12003 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
12004 // they both have everything required to fully close the channel.
12005 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
12007 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
12009 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
12010 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
12013 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
12014 let expected_message = format!("Not connected to node: {}", expected_public_key);
12015 check_api_error_message(expected_message, res_err)
12018 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
12019 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
12020 check_api_error_message(expected_message, res_err)
12023 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
12024 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
12025 check_api_error_message(expected_message, res_err)
12028 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
12029 let expected_message = "No such channel awaiting to be accepted.".to_string();
12030 check_api_error_message(expected_message, res_err)
12033 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
12035 Err(APIError::APIMisuseError { err }) => {
12036 assert_eq!(err, expected_err_message);
12038 Err(APIError::ChannelUnavailable { err }) => {
12039 assert_eq!(err, expected_err_message);
12041 Ok(_) => panic!("Unexpected Ok"),
12042 Err(_) => panic!("Unexpected Error"),
12047 fn test_api_calls_with_unkown_counterparty_node() {
12048 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
12049 // expected if the `counterparty_node_id` is an unkown peer in the
12050 // `ChannelManager::per_peer_state` map.
12051 let chanmon_cfg = create_chanmon_cfgs(2);
12052 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12053 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
12054 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12057 let channel_id = ChannelId::from_bytes([4; 32]);
12058 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
12059 let intercept_id = InterceptId([0; 32]);
12061 // Test the API functions.
12062 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
12064 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
12066 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
12068 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
12070 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
12072 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
12074 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
12078 fn test_api_calls_with_unavailable_channel() {
12079 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
12080 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
12081 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
12082 // the given `channel_id`.
12083 let chanmon_cfg = create_chanmon_cfgs(2);
12084 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12085 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
12086 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12088 let counterparty_node_id = nodes[1].node.get_our_node_id();
12091 let channel_id = ChannelId::from_bytes([4; 32]);
12093 // Test the API functions.
12094 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
12096 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
12098 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
12100 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
12102 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
12104 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
12108 fn test_connection_limiting() {
12109 // Test that we limit un-channel'd peers and un-funded channels properly.
12110 let chanmon_cfgs = create_chanmon_cfgs(2);
12111 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12112 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12113 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12115 // Note that create_network connects the nodes together for us
12117 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12118 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12120 let mut funding_tx = None;
12121 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
12122 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12123 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12126 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
12127 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
12128 funding_tx = Some(tx.clone());
12129 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
12130 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
12132 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
12133 check_added_monitors!(nodes[1], 1);
12134 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
12136 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
12138 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
12139 check_added_monitors!(nodes[0], 1);
12140 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
12142 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
12145 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
12146 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
12147 &nodes[0].keys_manager);
12148 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12149 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
12150 open_channel_msg.common_fields.temporary_channel_id);
12152 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
12153 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
12155 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
12156 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
12157 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
12158 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
12159 peer_pks.push(random_pk);
12160 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
12161 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12164 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
12165 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
12166 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
12167 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12168 }, true).unwrap_err();
12170 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
12171 // them if we have too many un-channel'd peers.
12172 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12173 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
12174 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
12175 for ev in chan_closed_events {
12176 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
12178 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
12179 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12181 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12182 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12183 }, true).unwrap_err();
12185 // but of course if the connection is outbound its allowed...
12186 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12187 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12188 }, false).unwrap();
12189 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12191 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
12192 // Even though we accept one more connection from new peers, we won't actually let them
12194 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
12195 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
12196 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
12197 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
12198 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
12200 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12201 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
12202 open_channel_msg.common_fields.temporary_channel_id);
12204 // Of course, however, outbound channels are always allowed
12205 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
12206 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
12208 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
12209 // "protected" and can connect again.
12210 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
12211 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12212 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12214 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
12216 // Further, because the first channel was funded, we can open another channel with
12218 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12219 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
12223 fn test_outbound_chans_unlimited() {
12224 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
12225 let chanmon_cfgs = create_chanmon_cfgs(2);
12226 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12227 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12228 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12230 // Note that create_network connects the nodes together for us
12232 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12233 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12235 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
12236 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12237 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12238 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
12241 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
12243 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12244 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
12245 open_channel_msg.common_fields.temporary_channel_id);
12247 // but we can still open an outbound channel.
12248 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12249 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
12251 // but even with such an outbound channel, additional inbound channels will still fail.
12252 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12253 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
12254 open_channel_msg.common_fields.temporary_channel_id);
12258 fn test_0conf_limiting() {
12259 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
12260 // flag set and (sometimes) accept channels as 0conf.
12261 let chanmon_cfgs = create_chanmon_cfgs(2);
12262 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12263 let mut settings = test_default_channel_config();
12264 settings.manually_accept_inbound_channels = true;
12265 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
12266 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12268 // Note that create_network connects the nodes together for us
12270 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12271 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12273 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
12274 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
12275 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
12276 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
12277 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
12278 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12281 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
12282 let events = nodes[1].node.get_and_clear_pending_events();
12284 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12285 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
12287 _ => panic!("Unexpected event"),
12289 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
12290 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
12293 // If we try to accept a channel from another peer non-0conf it will fail.
12294 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
12295 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
12296 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
12297 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12299 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12300 let events = nodes[1].node.get_and_clear_pending_events();
12302 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12303 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
12304 Err(APIError::APIMisuseError { err }) =>
12305 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
12309 _ => panic!("Unexpected event"),
12311 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
12312 open_channel_msg.common_fields.temporary_channel_id);
12314 // ...however if we accept the same channel 0conf it should work just fine.
12315 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12316 let events = nodes[1].node.get_and_clear_pending_events();
12318 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12319 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
12321 _ => panic!("Unexpected event"),
12323 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
12327 fn reject_excessively_underpaying_htlcs() {
12328 let chanmon_cfg = create_chanmon_cfgs(1);
12329 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12330 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12331 let node = create_network(1, &node_cfg, &node_chanmgr);
12332 let sender_intended_amt_msat = 100;
12333 let extra_fee_msat = 10;
12334 let hop_data = msgs::InboundOnionPayload::Receive {
12335 sender_intended_htlc_amt_msat: 100,
12336 cltv_expiry_height: 42,
12337 payment_metadata: None,
12338 keysend_preimage: None,
12339 payment_data: Some(msgs::FinalOnionHopData {
12340 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12342 custom_tlvs: Vec::new(),
12344 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
12345 // intended amount, we fail the payment.
12346 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12347 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
12348 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12349 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
12350 current_height, node[0].node.default_configuration.accept_mpp_keysend)
12352 assert_eq!(err_code, 19);
12353 } else { panic!(); }
12355 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
12356 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
12357 sender_intended_htlc_amt_msat: 100,
12358 cltv_expiry_height: 42,
12359 payment_metadata: None,
12360 keysend_preimage: None,
12361 payment_data: Some(msgs::FinalOnionHopData {
12362 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12364 custom_tlvs: Vec::new(),
12366 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12367 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12368 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
12369 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
12373 fn test_final_incorrect_cltv(){
12374 let chanmon_cfg = create_chanmon_cfgs(1);
12375 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12376 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12377 let node = create_network(1, &node_cfg, &node_chanmgr);
12379 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12380 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
12381 sender_intended_htlc_amt_msat: 100,
12382 cltv_expiry_height: 22,
12383 payment_metadata: None,
12384 keysend_preimage: None,
12385 payment_data: Some(msgs::FinalOnionHopData {
12386 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
12388 custom_tlvs: Vec::new(),
12389 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
12390 node[0].node.default_configuration.accept_mpp_keysend);
12392 // Should not return an error as this condition:
12393 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
12394 // is not satisfied.
12395 assert!(result.is_ok());
12399 fn test_inbound_anchors_manual_acceptance() {
12400 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
12401 // flag set and (sometimes) accept channels as 0conf.
12402 let mut anchors_cfg = test_default_channel_config();
12403 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12405 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
12406 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
12408 let chanmon_cfgs = create_chanmon_cfgs(3);
12409 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12410 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
12411 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
12412 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12414 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12415 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12417 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12418 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12419 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
12420 match &msg_events[0] {
12421 MessageSendEvent::HandleError { node_id, action } => {
12422 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
12424 ErrorAction::SendErrorMessage { msg } =>
12425 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
12426 _ => panic!("Unexpected error action"),
12429 _ => panic!("Unexpected event"),
12432 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12433 let events = nodes[2].node.get_and_clear_pending_events();
12435 Event::OpenChannelRequest { temporary_channel_id, .. } =>
12436 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
12437 _ => panic!("Unexpected event"),
12439 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12443 fn test_anchors_zero_fee_htlc_tx_fallback() {
12444 // Tests that if both nodes support anchors, but the remote node does not want to accept
12445 // anchor channels at the moment, an error it sent to the local node such that it can retry
12446 // the channel without the anchors feature.
12447 let chanmon_cfgs = create_chanmon_cfgs(2);
12448 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12449 let mut anchors_config = test_default_channel_config();
12450 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12451 anchors_config.manually_accept_inbound_channels = true;
12452 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
12453 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12455 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
12456 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12457 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
12459 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12460 let events = nodes[1].node.get_and_clear_pending_events();
12462 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12463 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
12465 _ => panic!("Unexpected event"),
12468 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12469 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12471 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12472 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12474 // Since nodes[1] should not have accepted the channel, it should
12475 // not have generated any events.
12476 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12480 fn test_update_channel_config() {
12481 let chanmon_cfg = create_chanmon_cfgs(2);
12482 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12483 let mut user_config = test_default_channel_config();
12484 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12485 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12486 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12487 let channel = &nodes[0].node.list_channels()[0];
12489 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12490 let events = nodes[0].node.get_and_clear_pending_msg_events();
12491 assert_eq!(events.len(), 0);
12493 user_config.channel_config.forwarding_fee_base_msat += 10;
12494 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12495 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12496 let events = nodes[0].node.get_and_clear_pending_msg_events();
12497 assert_eq!(events.len(), 1);
12499 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12500 _ => panic!("expected BroadcastChannelUpdate event"),
12503 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12504 let events = nodes[0].node.get_and_clear_pending_msg_events();
12505 assert_eq!(events.len(), 0);
12507 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12508 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12509 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12510 ..Default::default()
12512 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12513 let events = nodes[0].node.get_and_clear_pending_msg_events();
12514 assert_eq!(events.len(), 1);
12516 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12517 _ => panic!("expected BroadcastChannelUpdate event"),
12520 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12521 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12522 forwarding_fee_proportional_millionths: Some(new_fee),
12523 ..Default::default()
12525 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12526 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12527 let events = nodes[0].node.get_and_clear_pending_msg_events();
12528 assert_eq!(events.len(), 1);
12530 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12531 _ => panic!("expected BroadcastChannelUpdate event"),
12534 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12535 // should be applied to ensure update atomicity as specified in the API docs.
12536 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12537 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12538 let new_fee = current_fee + 100;
12541 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12542 forwarding_fee_proportional_millionths: Some(new_fee),
12543 ..Default::default()
12545 Err(APIError::ChannelUnavailable { err: _ }),
12548 // Check that the fee hasn't changed for the channel that exists.
12549 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12550 let events = nodes[0].node.get_and_clear_pending_msg_events();
12551 assert_eq!(events.len(), 0);
12555 fn test_payment_display() {
12556 let payment_id = PaymentId([42; 32]);
12557 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12558 let payment_hash = PaymentHash([42; 32]);
12559 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12560 let payment_preimage = PaymentPreimage([42; 32]);
12561 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12565 fn test_trigger_lnd_force_close() {
12566 let chanmon_cfg = create_chanmon_cfgs(2);
12567 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12568 let user_config = test_default_channel_config();
12569 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12570 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12572 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12573 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12574 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12575 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12576 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12577 check_closed_broadcast(&nodes[0], 1, true);
12578 check_added_monitors(&nodes[0], 1);
12579 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12581 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12582 assert_eq!(txn.len(), 1);
12583 check_spends!(txn[0], funding_tx);
12586 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12587 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12589 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12590 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12592 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12593 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12594 }, false).unwrap();
12595 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12596 let channel_reestablish = get_event_msg!(
12597 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12599 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12601 // Alice should respond with an error since the channel isn't known, but a bogus
12602 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12603 // close even if it was an lnd node.
12604 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12605 assert_eq!(msg_events.len(), 2);
12606 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12607 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12608 assert_eq!(msg.next_local_commitment_number, 0);
12609 assert_eq!(msg.next_remote_commitment_number, 0);
12610 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12611 } else { panic!() };
12612 check_closed_broadcast(&nodes[1], 1, true);
12613 check_added_monitors(&nodes[1], 1);
12614 let expected_close_reason = ClosureReason::ProcessingError {
12615 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12617 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12619 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12620 assert_eq!(txn.len(), 1);
12621 check_spends!(txn[0], funding_tx);
12626 fn test_malformed_forward_htlcs_ser() {
12627 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
12628 let chanmon_cfg = create_chanmon_cfgs(1);
12629 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12632 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
12633 let deserialized_chanmgr;
12634 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
12636 let dummy_failed_htlc = |htlc_id| {
12637 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
12639 let dummy_malformed_htlc = |htlc_id| {
12640 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
12643 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
12644 if htlc_id % 2 == 0 {
12645 dummy_failed_htlc(htlc_id)
12647 dummy_malformed_htlc(htlc_id)
12651 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
12652 if htlc_id % 2 == 1 {
12653 dummy_failed_htlc(htlc_id)
12655 dummy_malformed_htlc(htlc_id)
12660 let (scid_1, scid_2) = (42, 43);
12661 let mut forward_htlcs = new_hash_map();
12662 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
12663 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
12665 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
12666 *chanmgr_fwd_htlcs = forward_htlcs.clone();
12667 core::mem::drop(chanmgr_fwd_htlcs);
12669 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
12671 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
12672 for scid in [scid_1, scid_2].iter() {
12673 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
12674 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
12676 assert!(deserialized_fwd_htlcs.is_empty());
12677 core::mem::drop(deserialized_fwd_htlcs);
12679 expect_pending_htlcs_forwardable!(nodes[0]);
12685 use crate::chain::Listen;
12686 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12687 use crate::sign::{KeysManager, InMemorySigner};
12688 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12689 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12690 use crate::ln::functional_test_utils::*;
12691 use crate::ln::msgs::{ChannelMessageHandler, Init};
12692 use crate::routing::gossip::NetworkGraph;
12693 use crate::routing::router::{PaymentParameters, RouteParameters};
12694 use crate::util::test_utils;
12695 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12697 use bitcoin::blockdata::locktime::absolute::LockTime;
12698 use bitcoin::hashes::Hash;
12699 use bitcoin::hashes::sha256::Hash as Sha256;
12700 use bitcoin::{Transaction, TxOut};
12702 use crate::sync::{Arc, Mutex, RwLock};
12704 use criterion::Criterion;
12706 type Manager<'a, P> = ChannelManager<
12707 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12708 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12709 &'a test_utils::TestLogger, &'a P>,
12710 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12711 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12712 &'a test_utils::TestLogger>;
12714 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12715 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12717 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12718 type CM = Manager<'chan_mon_cfg, P>;
12720 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12722 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12725 pub fn bench_sends(bench: &mut Criterion) {
12726 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12729 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12730 // Do a simple benchmark of sending a payment back and forth between two nodes.
12731 // Note that this is unrealistic as each payment send will require at least two fsync
12733 let network = bitcoin::Network::Testnet;
12734 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12736 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12737 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12738 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12739 let scorer = RwLock::new(test_utils::TestScorer::new());
12740 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
12742 let mut config: UserConfig = Default::default();
12743 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12744 config.channel_handshake_config.minimum_depth = 1;
12746 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12747 let seed_a = [1u8; 32];
12748 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12749 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12751 best_block: BestBlock::from_network(network),
12752 }, genesis_block.header.time);
12753 let node_a_holder = ANodeHolder { node: &node_a };
12755 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12756 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12757 let seed_b = [2u8; 32];
12758 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12759 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12761 best_block: BestBlock::from_network(network),
12762 }, genesis_block.header.time);
12763 let node_b_holder = ANodeHolder { node: &node_b };
12765 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12766 features: node_b.init_features(), networks: None, remote_network_address: None
12768 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12769 features: node_a.init_features(), networks: None, remote_network_address: None
12770 }, false).unwrap();
12771 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12772 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12773 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12776 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12777 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12778 value: 8_000_000, script_pubkey: output_script,
12780 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12781 } else { panic!(); }
12783 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12784 let events_b = node_b.get_and_clear_pending_events();
12785 assert_eq!(events_b.len(), 1);
12786 match events_b[0] {
12787 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12788 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12790 _ => panic!("Unexpected event"),
12793 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12794 let events_a = node_a.get_and_clear_pending_events();
12795 assert_eq!(events_a.len(), 1);
12796 match events_a[0] {
12797 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12798 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12800 _ => panic!("Unexpected event"),
12803 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12805 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12806 Listen::block_connected(&node_a, &block, 1);
12807 Listen::block_connected(&node_b, &block, 1);
12809 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12810 let msg_events = node_a.get_and_clear_pending_msg_events();
12811 assert_eq!(msg_events.len(), 2);
12812 match msg_events[0] {
12813 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12814 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12815 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12819 match msg_events[1] {
12820 MessageSendEvent::SendChannelUpdate { .. } => {},
12824 let events_a = node_a.get_and_clear_pending_events();
12825 assert_eq!(events_a.len(), 1);
12826 match events_a[0] {
12827 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12828 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12830 _ => panic!("Unexpected event"),
12833 let events_b = node_b.get_and_clear_pending_events();
12834 assert_eq!(events_b.len(), 1);
12835 match events_b[0] {
12836 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12837 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12839 _ => panic!("Unexpected event"),
12842 let mut payment_count: u64 = 0;
12843 macro_rules! send_payment {
12844 ($node_a: expr, $node_b: expr) => {
12845 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12846 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12847 let mut payment_preimage = PaymentPreimage([0; 32]);
12848 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12849 payment_count += 1;
12850 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
12851 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12853 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12854 PaymentId(payment_hash.0),
12855 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12856 Retry::Attempts(0)).unwrap();
12857 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12858 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12859 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12860 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12861 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12862 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12863 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12865 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12866 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12867 $node_b.claim_funds(payment_preimage);
12868 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12870 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12871 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12872 assert_eq!(node_id, $node_a.get_our_node_id());
12873 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12874 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12876 _ => panic!("Failed to generate claim event"),
12879 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12880 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12881 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12882 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12884 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12888 bench.bench_function(bench_name, |b| b.iter(|| {
12889 send_payment!(node_a, node_b);
12890 send_payment!(node_b, node_a);