1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
33 use crate::blinded_path::BlindedPath;
34 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
36 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
37 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
38 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
39 use crate::chain::transaction::{OutPoint, TransactionData};
41 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
42 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
43 // construct one themselves.
44 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
45 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
46 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
47 #[cfg(any(feature = "_test_utils", test))]
48 use crate::ln::features::Bolt11InvoiceFeatures;
49 use crate::routing::gossip::NetworkGraph;
50 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
51 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
53 use crate::ln::onion_utils;
54 use crate::ln::onion_utils::HTLCFailReason;
55 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
57 use crate::ln::outbound_payment;
58 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
59 use crate::ln::wire::Encode;
60 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
61 use crate::offers::invoice_error::InvoiceError;
62 use crate::offers::merkle::SignError;
63 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
64 use crate::offers::parse::Bolt12SemanticError;
65 use crate::offers::refund::{Refund, RefundBuilder};
66 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
67 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
68 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
69 use crate::util::wakers::{Future, Notifier};
70 use crate::util::scid_utils::fake_scid;
71 use crate::util::string::UntrustedString;
72 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
73 use crate::util::logger::{Level, Logger};
74 use crate::util::errors::APIError;
76 use alloc::collections::{btree_map, BTreeMap};
79 use crate::prelude::*;
81 use core::cell::RefCell;
83 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
84 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
85 use core::time::Duration;
88 // Re-export this for use in the public API.
89 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
90 use crate::ln::script::ShutdownScript;
92 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
94 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
95 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
96 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
98 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
99 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
100 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
101 // before we forward it.
103 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
104 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
105 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
106 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
107 // our payment, which we can use to decode errors or inform the user that the payment was sent.
109 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
110 pub(super) enum PendingHTLCRouting {
112 onion_packet: msgs::OnionPacket,
113 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
114 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
115 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
118 payment_data: msgs::FinalOnionHopData,
119 payment_metadata: Option<Vec<u8>>,
120 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
121 phantom_shared_secret: Option<[u8; 32]>,
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
126 /// This was added in 0.0.116 and will break deserialization on downgrades.
127 payment_data: Option<msgs::FinalOnionHopData>,
128 payment_preimage: PaymentPreimage,
129 payment_metadata: Option<Vec<u8>>,
130 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
131 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
132 custom_tlvs: Vec<(u64, Vec<u8>)>,
136 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
137 pub(super) struct PendingHTLCInfo {
138 pub(super) routing: PendingHTLCRouting,
139 pub(super) incoming_shared_secret: [u8; 32],
140 payment_hash: PaymentHash,
142 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
143 /// Sender intended amount to forward or receive (actual amount received
144 /// may overshoot this in either case)
145 pub(super) outgoing_amt_msat: u64,
146 pub(super) outgoing_cltv_value: u32,
147 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
148 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
149 pub(super) skimmed_fee_msat: Option<u64>,
152 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
153 pub(super) enum HTLCFailureMsg {
154 Relay(msgs::UpdateFailHTLC),
155 Malformed(msgs::UpdateFailMalformedHTLC),
158 /// Stores whether we can't forward an HTLC or relevant forwarding info
159 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
160 pub(super) enum PendingHTLCStatus {
161 Forward(PendingHTLCInfo),
162 Fail(HTLCFailureMsg),
165 pub(super) struct PendingAddHTLCInfo {
166 pub(super) forward_info: PendingHTLCInfo,
168 // These fields are produced in `forward_htlcs()` and consumed in
169 // `process_pending_htlc_forwards()` for constructing the
170 // `HTLCSource::PreviousHopData` for failed and forwarded
173 // Note that this may be an outbound SCID alias for the associated channel.
174 prev_short_channel_id: u64,
176 prev_funding_outpoint: OutPoint,
177 prev_user_channel_id: u128,
180 pub(super) enum HTLCForwardInfo {
181 AddHTLC(PendingAddHTLCInfo),
184 err_packet: msgs::OnionErrorPacket,
188 /// Tracks the inbound corresponding to an outbound HTLC
189 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
190 pub(crate) struct HTLCPreviousHopData {
191 // Note that this may be an outbound SCID alias for the associated channel.
192 short_channel_id: u64,
193 user_channel_id: Option<u128>,
195 incoming_packet_shared_secret: [u8; 32],
196 phantom_shared_secret: Option<[u8; 32]>,
198 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
199 // channel with a preimage provided by the forward channel.
204 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
206 /// This is only here for backwards-compatibility in serialization, in the future it can be
207 /// removed, breaking clients running 0.0.106 and earlier.
208 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
210 /// Contains the payer-provided preimage.
211 Spontaneous(PaymentPreimage),
214 /// HTLCs that are to us and can be failed/claimed by the user
215 struct ClaimableHTLC {
216 prev_hop: HTLCPreviousHopData,
218 /// The amount (in msats) of this MPP part
220 /// The amount (in msats) that the sender intended to be sent in this MPP
221 /// part (used for validating total MPP amount)
222 sender_intended_value: u64,
223 onion_payload: OnionPayload,
225 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
226 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
227 total_value_received: Option<u64>,
228 /// The sender intended sum total of all MPP parts specified in the onion
230 /// The extra fee our counterparty skimmed off the top of this HTLC.
231 counterparty_skimmed_fee_msat: Option<u64>,
234 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
235 fn from(val: &ClaimableHTLC) -> Self {
236 events::ClaimedHTLC {
237 channel_id: val.prev_hop.outpoint.to_channel_id(),
238 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
239 cltv_expiry: val.cltv_expiry,
240 value_msat: val.value,
241 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
246 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
247 /// a payment and ensure idempotency in LDK.
249 /// This is not exported to bindings users as we just use [u8; 32] directly
250 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
251 pub struct PaymentId(pub [u8; Self::LENGTH]);
254 /// Number of bytes in the id.
255 pub const LENGTH: usize = 32;
258 impl Writeable for PaymentId {
259 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
264 impl Readable for PaymentId {
265 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
266 let buf: [u8; 32] = Readable::read(r)?;
271 impl core::fmt::Display for PaymentId {
272 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
273 crate::util::logger::DebugBytes(&self.0).fmt(f)
277 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
279 /// This is not exported to bindings users as we just use [u8; 32] directly
280 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
281 pub struct InterceptId(pub [u8; 32]);
283 impl Writeable for InterceptId {
284 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
289 impl Readable for InterceptId {
290 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
291 let buf: [u8; 32] = Readable::read(r)?;
296 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
297 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
298 pub(crate) enum SentHTLCId {
299 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
300 OutboundRoute { session_priv: SecretKey },
303 pub(crate) fn from_source(source: &HTLCSource) -> Self {
305 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
306 short_channel_id: hop_data.short_channel_id,
307 htlc_id: hop_data.htlc_id,
309 HTLCSource::OutboundRoute { session_priv, .. } =>
310 Self::OutboundRoute { session_priv: *session_priv },
314 impl_writeable_tlv_based_enum!(SentHTLCId,
315 (0, PreviousHopData) => {
316 (0, short_channel_id, required),
317 (2, htlc_id, required),
319 (2, OutboundRoute) => {
320 (0, session_priv, required),
325 /// Tracks the inbound corresponding to an outbound HTLC
326 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
327 #[derive(Clone, Debug, PartialEq, Eq)]
328 pub(crate) enum HTLCSource {
329 PreviousHopData(HTLCPreviousHopData),
332 session_priv: SecretKey,
333 /// Technically we can recalculate this from the route, but we cache it here to avoid
334 /// doing a double-pass on route when we get a failure back
335 first_hop_htlc_msat: u64,
336 payment_id: PaymentId,
339 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
340 impl core::hash::Hash for HTLCSource {
341 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
343 HTLCSource::PreviousHopData(prev_hop_data) => {
345 prev_hop_data.hash(hasher);
347 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
350 session_priv[..].hash(hasher);
351 payment_id.hash(hasher);
352 first_hop_htlc_msat.hash(hasher);
358 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
360 pub fn dummy() -> Self {
361 HTLCSource::OutboundRoute {
362 path: Path { hops: Vec::new(), blinded_tail: None },
363 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
364 first_hop_htlc_msat: 0,
365 payment_id: PaymentId([2; 32]),
369 #[cfg(debug_assertions)]
370 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
371 /// transaction. Useful to ensure different datastructures match up.
372 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
373 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
374 *first_hop_htlc_msat == htlc.amount_msat
376 // There's nothing we can check for forwarded HTLCs
382 struct InboundOnionErr {
388 /// This enum is used to specify which error data to send to peers when failing back an HTLC
389 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
391 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
392 #[derive(Clone, Copy)]
393 pub enum FailureCode {
394 /// We had a temporary error processing the payment. Useful if no other error codes fit
395 /// and you want to indicate that the payer may want to retry.
396 TemporaryNodeFailure,
397 /// We have a required feature which was not in this onion. For example, you may require
398 /// some additional metadata that was not provided with this payment.
399 RequiredNodeFeatureMissing,
400 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
401 /// the HTLC is too close to the current block height for safe handling.
402 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
403 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
404 IncorrectOrUnknownPaymentDetails,
405 /// We failed to process the payload after the onion was decrypted. You may wish to
406 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
408 /// If available, the tuple data may include the type number and byte offset in the
409 /// decrypted byte stream where the failure occurred.
410 InvalidOnionPayload(Option<(u64, u16)>),
413 impl Into<u16> for FailureCode {
414 fn into(self) -> u16 {
416 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
417 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
418 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
419 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
424 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
425 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
426 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
427 /// peer_state lock. We then return the set of things that need to be done outside the lock in
428 /// this struct and call handle_error!() on it.
430 struct MsgHandleErrInternal {
431 err: msgs::LightningError,
432 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
433 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
434 channel_capacity: Option<u64>,
436 impl MsgHandleErrInternal {
438 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
440 err: LightningError {
442 action: msgs::ErrorAction::SendErrorMessage {
443 msg: msgs::ErrorMessage {
450 shutdown_finish: None,
451 channel_capacity: None,
455 fn from_no_close(err: msgs::LightningError) -> Self {
456 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
459 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
460 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
461 let action = if shutdown_res.monitor_update.is_some() {
462 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
463 // should disconnect our peer such that we force them to broadcast their latest
464 // commitment upon reconnecting.
465 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
467 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
470 err: LightningError { err, action },
471 chan_id: Some((channel_id, user_channel_id)),
472 shutdown_finish: Some((shutdown_res, channel_update)),
473 channel_capacity: Some(channel_capacity)
477 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
480 ChannelError::Warn(msg) => LightningError {
482 action: msgs::ErrorAction::SendWarningMessage {
483 msg: msgs::WarningMessage {
487 log_level: Level::Warn,
490 ChannelError::Ignore(msg) => LightningError {
492 action: msgs::ErrorAction::IgnoreError,
494 ChannelError::Close(msg) => LightningError {
496 action: msgs::ErrorAction::SendErrorMessage {
497 msg: msgs::ErrorMessage {
505 shutdown_finish: None,
506 channel_capacity: None,
510 fn closes_channel(&self) -> bool {
511 self.chan_id.is_some()
515 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
516 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
517 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
518 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
519 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
521 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
522 /// be sent in the order they appear in the return value, however sometimes the order needs to be
523 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
524 /// they were originally sent). In those cases, this enum is also returned.
525 #[derive(Clone, PartialEq)]
526 pub(super) enum RAACommitmentOrder {
527 /// Send the CommitmentUpdate messages first
529 /// Send the RevokeAndACK message first
533 /// Information about a payment which is currently being claimed.
534 struct ClaimingPayment {
536 payment_purpose: events::PaymentPurpose,
537 receiver_node_id: PublicKey,
538 htlcs: Vec<events::ClaimedHTLC>,
539 sender_intended_value: Option<u64>,
541 impl_writeable_tlv_based!(ClaimingPayment, {
542 (0, amount_msat, required),
543 (2, payment_purpose, required),
544 (4, receiver_node_id, required),
545 (5, htlcs, optional_vec),
546 (7, sender_intended_value, option),
549 struct ClaimablePayment {
550 purpose: events::PaymentPurpose,
551 onion_fields: Option<RecipientOnionFields>,
552 htlcs: Vec<ClaimableHTLC>,
555 /// Information about claimable or being-claimed payments
556 struct ClaimablePayments {
557 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
558 /// failed/claimed by the user.
560 /// Note that, no consistency guarantees are made about the channels given here actually
561 /// existing anymore by the time you go to read them!
563 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
564 /// we don't get a duplicate payment.
565 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
567 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
568 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
569 /// as an [`events::Event::PaymentClaimed`].
570 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
573 /// Events which we process internally but cannot be processed immediately at the generation site
574 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
575 /// running normally, and specifically must be processed before any other non-background
576 /// [`ChannelMonitorUpdate`]s are applied.
578 enum BackgroundEvent {
579 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
580 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
581 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
582 /// channel has been force-closed we do not need the counterparty node_id.
584 /// Note that any such events are lost on shutdown, so in general they must be updates which
585 /// are regenerated on startup.
586 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
587 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
588 /// channel to continue normal operation.
590 /// In general this should be used rather than
591 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
592 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
593 /// error the other variant is acceptable.
595 /// Note that any such events are lost on shutdown, so in general they must be updates which
596 /// are regenerated on startup.
597 MonitorUpdateRegeneratedOnStartup {
598 counterparty_node_id: PublicKey,
599 funding_txo: OutPoint,
600 update: ChannelMonitorUpdate
602 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
603 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
605 MonitorUpdatesComplete {
606 counterparty_node_id: PublicKey,
607 channel_id: ChannelId,
612 pub(crate) enum MonitorUpdateCompletionAction {
613 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
614 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
615 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
616 /// event can be generated.
617 PaymentClaimed { payment_hash: PaymentHash },
618 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
619 /// operation of another channel.
621 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
622 /// from completing a monitor update which removes the payment preimage until the inbound edge
623 /// completes a monitor update containing the payment preimage. In that case, after the inbound
624 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
626 EmitEventAndFreeOtherChannel {
627 event: events::Event,
628 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
630 /// Indicates we should immediately resume the operation of another channel, unless there is
631 /// some other reason why the channel is blocked. In practice this simply means immediately
632 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
634 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
635 /// from completing a monitor update which removes the payment preimage until the inbound edge
636 /// completes a monitor update containing the payment preimage. However, we use this variant
637 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
638 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
640 /// This variant should thus never be written to disk, as it is processed inline rather than
641 /// stored for later processing.
642 FreeOtherChannelImmediately {
643 downstream_counterparty_node_id: PublicKey,
644 downstream_funding_outpoint: OutPoint,
645 blocking_action: RAAMonitorUpdateBlockingAction,
649 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
650 (0, PaymentClaimed) => { (0, payment_hash, required) },
651 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
652 // *immediately*. However, for simplicity we implement read/write here.
653 (1, FreeOtherChannelImmediately) => {
654 (0, downstream_counterparty_node_id, required),
655 (2, downstream_funding_outpoint, required),
656 (4, blocking_action, required),
658 (2, EmitEventAndFreeOtherChannel) => {
659 (0, event, upgradable_required),
660 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
661 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
662 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
663 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
664 // downgrades to prior versions.
665 (1, downstream_counterparty_and_funding_outpoint, option),
669 #[derive(Clone, Debug, PartialEq, Eq)]
670 pub(crate) enum EventCompletionAction {
671 ReleaseRAAChannelMonitorUpdate {
672 counterparty_node_id: PublicKey,
673 channel_funding_outpoint: OutPoint,
676 impl_writeable_tlv_based_enum!(EventCompletionAction,
677 (0, ReleaseRAAChannelMonitorUpdate) => {
678 (0, channel_funding_outpoint, required),
679 (2, counterparty_node_id, required),
683 #[derive(Clone, PartialEq, Eq, Debug)]
684 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
685 /// the blocked action here. See enum variants for more info.
686 pub(crate) enum RAAMonitorUpdateBlockingAction {
687 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
688 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
690 ForwardedPaymentInboundClaim {
691 /// The upstream channel ID (i.e. the inbound edge).
692 channel_id: ChannelId,
693 /// The HTLC ID on the inbound edge.
698 impl RAAMonitorUpdateBlockingAction {
699 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
700 Self::ForwardedPaymentInboundClaim {
701 channel_id: prev_hop.outpoint.to_channel_id(),
702 htlc_id: prev_hop.htlc_id,
707 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
708 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
712 /// State we hold per-peer.
713 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
714 /// `channel_id` -> `ChannelPhase`
716 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
717 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
718 /// `temporary_channel_id` -> `InboundChannelRequest`.
720 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
721 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
722 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
723 /// the channel is rejected, then the entry is simply removed.
724 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
725 /// The latest `InitFeatures` we heard from the peer.
726 latest_features: InitFeatures,
727 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
728 /// for broadcast messages, where ordering isn't as strict).
729 pub(super) pending_msg_events: Vec<MessageSendEvent>,
730 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
731 /// user but which have not yet completed.
733 /// Note that the channel may no longer exist. For example if the channel was closed but we
734 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
735 /// for a missing channel.
736 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
737 /// Map from a specific channel to some action(s) that should be taken when all pending
738 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
740 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
741 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
742 /// channels with a peer this will just be one allocation and will amount to a linear list of
743 /// channels to walk, avoiding the whole hashing rigmarole.
745 /// Note that the channel may no longer exist. For example, if a channel was closed but we
746 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
747 /// for a missing channel. While a malicious peer could construct a second channel with the
748 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
749 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
750 /// duplicates do not occur, so such channels should fail without a monitor update completing.
751 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
752 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
753 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
754 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
755 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
756 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
757 /// The peer is currently connected (i.e. we've seen a
758 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
759 /// [`ChannelMessageHandler::peer_disconnected`].
763 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
764 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
765 /// If true is passed for `require_disconnected`, the function will return false if we haven't
766 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
767 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
768 if require_disconnected && self.is_connected {
771 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
772 && self.monitor_update_blocked_actions.is_empty()
773 && self.in_flight_monitor_updates.is_empty()
776 // Returns a count of all channels we have with this peer, including unfunded channels.
777 fn total_channel_count(&self) -> usize {
778 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
781 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
782 fn has_channel(&self, channel_id: &ChannelId) -> bool {
783 self.channel_by_id.contains_key(channel_id) ||
784 self.inbound_channel_request_by_id.contains_key(channel_id)
788 /// A not-yet-accepted inbound (from counterparty) channel. Once
789 /// accepted, the parameters will be used to construct a channel.
790 pub(super) struct InboundChannelRequest {
791 /// The original OpenChannel message.
792 pub open_channel_msg: msgs::OpenChannel,
793 /// The number of ticks remaining before the request expires.
794 pub ticks_remaining: i32,
797 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
798 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
799 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
801 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
802 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
804 /// For users who don't want to bother doing their own payment preimage storage, we also store that
807 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
808 /// and instead encoding it in the payment secret.
809 struct PendingInboundPayment {
810 /// The payment secret that the sender must use for us to accept this payment
811 payment_secret: PaymentSecret,
812 /// Time at which this HTLC expires - blocks with a header time above this value will result in
813 /// this payment being removed.
815 /// Arbitrary identifier the user specifies (or not)
816 user_payment_id: u64,
817 // Other required attributes of the payment, optionally enforced:
818 payment_preimage: Option<PaymentPreimage>,
819 min_value_msat: Option<u64>,
822 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
823 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
824 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
825 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
826 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
827 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
828 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
829 /// of [`KeysManager`] and [`DefaultRouter`].
831 /// This is not exported to bindings users as type aliases aren't supported in most languages.
832 #[cfg(not(c_bindings))]
833 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
841 Arc<NetworkGraph<Arc<L>>>,
843 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
844 ProbabilisticScoringFeeParameters,
845 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
850 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
851 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
852 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
853 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
854 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
855 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
856 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
857 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
858 /// of [`KeysManager`] and [`DefaultRouter`].
860 /// This is not exported to bindings users as type aliases aren't supported in most languages.
861 #[cfg(not(c_bindings))]
862 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
871 &'f NetworkGraph<&'g L>,
873 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
874 ProbabilisticScoringFeeParameters,
875 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
880 /// A trivial trait which describes any [`ChannelManager`].
882 /// This is not exported to bindings users as general cover traits aren't useful in other
884 pub trait AChannelManager {
885 /// A type implementing [`chain::Watch`].
886 type Watch: chain::Watch<Self::Signer> + ?Sized;
887 /// A type that may be dereferenced to [`Self::Watch`].
888 type M: Deref<Target = Self::Watch>;
889 /// A type implementing [`BroadcasterInterface`].
890 type Broadcaster: BroadcasterInterface + ?Sized;
891 /// A type that may be dereferenced to [`Self::Broadcaster`].
892 type T: Deref<Target = Self::Broadcaster>;
893 /// A type implementing [`EntropySource`].
894 type EntropySource: EntropySource + ?Sized;
895 /// A type that may be dereferenced to [`Self::EntropySource`].
896 type ES: Deref<Target = Self::EntropySource>;
897 /// A type implementing [`NodeSigner`].
898 type NodeSigner: NodeSigner + ?Sized;
899 /// A type that may be dereferenced to [`Self::NodeSigner`].
900 type NS: Deref<Target = Self::NodeSigner>;
901 /// A type implementing [`WriteableEcdsaChannelSigner`].
902 type Signer: WriteableEcdsaChannelSigner + Sized;
903 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
904 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
905 /// A type that may be dereferenced to [`Self::SignerProvider`].
906 type SP: Deref<Target = Self::SignerProvider>;
907 /// A type implementing [`FeeEstimator`].
908 type FeeEstimator: FeeEstimator + ?Sized;
909 /// A type that may be dereferenced to [`Self::FeeEstimator`].
910 type F: Deref<Target = Self::FeeEstimator>;
911 /// A type implementing [`Router`].
912 type Router: Router + ?Sized;
913 /// A type that may be dereferenced to [`Self::Router`].
914 type R: Deref<Target = Self::Router>;
915 /// A type implementing [`Logger`].
916 type Logger: Logger + ?Sized;
917 /// A type that may be dereferenced to [`Self::Logger`].
918 type L: Deref<Target = Self::Logger>;
919 /// Returns a reference to the actual [`ChannelManager`] object.
920 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
923 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
924 for ChannelManager<M, T, ES, NS, SP, F, R, L>
926 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
927 T::Target: BroadcasterInterface,
928 ES::Target: EntropySource,
929 NS::Target: NodeSigner,
930 SP::Target: SignerProvider,
931 F::Target: FeeEstimator,
935 type Watch = M::Target;
937 type Broadcaster = T::Target;
939 type EntropySource = ES::Target;
941 type NodeSigner = NS::Target;
943 type Signer = <SP::Target as SignerProvider>::Signer;
944 type SignerProvider = SP::Target;
946 type FeeEstimator = F::Target;
948 type Router = R::Target;
950 type Logger = L::Target;
952 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
955 /// Manager which keeps track of a number of channels and sends messages to the appropriate
956 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
958 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
959 /// to individual Channels.
961 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
962 /// all peers during write/read (though does not modify this instance, only the instance being
963 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
964 /// called [`funding_transaction_generated`] for outbound channels) being closed.
966 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
967 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
968 /// [`ChannelMonitorUpdate`] before returning from
969 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
970 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
971 /// `ChannelManager` operations from occurring during the serialization process). If the
972 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
973 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
974 /// will be lost (modulo on-chain transaction fees).
976 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
977 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
978 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
980 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
981 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
982 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
983 /// offline for a full minute. In order to track this, you must call
984 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
986 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
987 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
988 /// not have a channel with being unable to connect to us or open new channels with us if we have
989 /// many peers with unfunded channels.
991 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
992 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
993 /// never limited. Please ensure you limit the count of such channels yourself.
995 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
996 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
997 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
998 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
999 /// you're using lightning-net-tokio.
1001 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1002 /// [`funding_created`]: msgs::FundingCreated
1003 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1004 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1005 /// [`update_channel`]: chain::Watch::update_channel
1006 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1007 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1008 /// [`read`]: ReadableArgs::read
1011 // The tree structure below illustrates the lock order requirements for the different locks of the
1012 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1013 // and should then be taken in the order of the lowest to the highest level in the tree.
1014 // Note that locks on different branches shall not be taken at the same time, as doing so will
1015 // create a new lock order for those specific locks in the order they were taken.
1019 // `pending_offers_messages`
1021 // `total_consistency_lock`
1023 // |__`forward_htlcs`
1025 // | |__`pending_intercepted_htlcs`
1027 // |__`per_peer_state`
1029 // |__`pending_inbound_payments`
1031 // |__`claimable_payments`
1033 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1039 // |__`short_to_chan_info`
1041 // |__`outbound_scid_aliases`
1045 // |__`pending_events`
1047 // |__`pending_background_events`
1049 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1051 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1052 T::Target: BroadcasterInterface,
1053 ES::Target: EntropySource,
1054 NS::Target: NodeSigner,
1055 SP::Target: SignerProvider,
1056 F::Target: FeeEstimator,
1060 default_configuration: UserConfig,
1061 chain_hash: ChainHash,
1062 fee_estimator: LowerBoundedFeeEstimator<F>,
1068 /// See `ChannelManager` struct-level documentation for lock order requirements.
1070 pub(super) best_block: RwLock<BestBlock>,
1072 best_block: RwLock<BestBlock>,
1073 secp_ctx: Secp256k1<secp256k1::All>,
1075 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1076 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1077 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1078 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1080 /// See `ChannelManager` struct-level documentation for lock order requirements.
1081 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1083 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1084 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1085 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1086 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1087 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1088 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1089 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1090 /// after reloading from disk while replaying blocks against ChannelMonitors.
1092 /// See `PendingOutboundPayment` documentation for more info.
1094 /// See `ChannelManager` struct-level documentation for lock order requirements.
1095 pending_outbound_payments: OutboundPayments,
1097 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1099 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1100 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1101 /// and via the classic SCID.
1103 /// Note that no consistency guarantees are made about the existence of a channel with the
1104 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1106 /// See `ChannelManager` struct-level documentation for lock order requirements.
1108 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1110 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1111 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1112 /// until the user tells us what we should do with them.
1114 /// See `ChannelManager` struct-level documentation for lock order requirements.
1115 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1117 /// The sets of payments which are claimable or currently being claimed. See
1118 /// [`ClaimablePayments`]' individual field docs for more info.
1120 /// See `ChannelManager` struct-level documentation for lock order requirements.
1121 claimable_payments: Mutex<ClaimablePayments>,
1123 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1124 /// and some closed channels which reached a usable state prior to being closed. This is used
1125 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1126 /// active channel list on load.
1128 /// See `ChannelManager` struct-level documentation for lock order requirements.
1129 outbound_scid_aliases: Mutex<HashSet<u64>>,
1131 /// `channel_id` -> `counterparty_node_id`.
1133 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1134 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1135 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1137 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1138 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1139 /// the handling of the events.
1141 /// Note that no consistency guarantees are made about the existence of a peer with the
1142 /// `counterparty_node_id` in our other maps.
1145 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1146 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1147 /// would break backwards compatability.
1148 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1149 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1150 /// required to access the channel with the `counterparty_node_id`.
1152 /// See `ChannelManager` struct-level documentation for lock order requirements.
1153 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1155 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1157 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1158 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1159 /// confirmation depth.
1161 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1162 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1163 /// channel with the `channel_id` in our other maps.
1165 /// See `ChannelManager` struct-level documentation for lock order requirements.
1167 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1169 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1171 our_network_pubkey: PublicKey,
1173 inbound_payment_key: inbound_payment::ExpandedKey,
1175 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1176 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1177 /// we encrypt the namespace identifier using these bytes.
1179 /// [fake scids]: crate::util::scid_utils::fake_scid
1180 fake_scid_rand_bytes: [u8; 32],
1182 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1183 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1184 /// keeping additional state.
1185 probing_cookie_secret: [u8; 32],
1187 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1188 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1189 /// very far in the past, and can only ever be up to two hours in the future.
1190 highest_seen_timestamp: AtomicUsize,
1192 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1193 /// basis, as well as the peer's latest features.
1195 /// If we are connected to a peer we always at least have an entry here, even if no channels
1196 /// are currently open with that peer.
1198 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1199 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1202 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1204 /// See `ChannelManager` struct-level documentation for lock order requirements.
1205 #[cfg(not(any(test, feature = "_test_utils")))]
1206 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1207 #[cfg(any(test, feature = "_test_utils"))]
1208 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1210 /// The set of events which we need to give to the user to handle. In some cases an event may
1211 /// require some further action after the user handles it (currently only blocking a monitor
1212 /// update from being handed to the user to ensure the included changes to the channel state
1213 /// are handled by the user before they're persisted durably to disk). In that case, the second
1214 /// element in the tuple is set to `Some` with further details of the action.
1216 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1217 /// could be in the middle of being processed without the direct mutex held.
1219 /// See `ChannelManager` struct-level documentation for lock order requirements.
1220 #[cfg(not(any(test, feature = "_test_utils")))]
1221 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1222 #[cfg(any(test, feature = "_test_utils"))]
1223 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1225 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1226 pending_events_processor: AtomicBool,
1228 /// If we are running during init (either directly during the deserialization method or in
1229 /// block connection methods which run after deserialization but before normal operation) we
1230 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1231 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1232 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1234 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1236 /// See `ChannelManager` struct-level documentation for lock order requirements.
1238 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1239 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1240 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1241 /// Essentially just when we're serializing ourselves out.
1242 /// Taken first everywhere where we are making changes before any other locks.
1243 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1244 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1245 /// Notifier the lock contains sends out a notification when the lock is released.
1246 total_consistency_lock: RwLock<()>,
1247 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1248 /// received and the monitor has been persisted.
1250 /// This information does not need to be persisted as funding nodes can forget
1251 /// unfunded channels upon disconnection.
1252 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1254 background_events_processed_since_startup: AtomicBool,
1256 event_persist_notifier: Notifier,
1257 needs_persist_flag: AtomicBool,
1259 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1263 signer_provider: SP,
1268 /// Chain-related parameters used to construct a new `ChannelManager`.
1270 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1271 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1272 /// are not needed when deserializing a previously constructed `ChannelManager`.
1273 #[derive(Clone, Copy, PartialEq)]
1274 pub struct ChainParameters {
1275 /// The network for determining the `chain_hash` in Lightning messages.
1276 pub network: Network,
1278 /// The hash and height of the latest block successfully connected.
1280 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1281 pub best_block: BestBlock,
1284 #[derive(Copy, Clone, PartialEq)]
1288 SkipPersistHandleEvents,
1289 SkipPersistNoEvents,
1292 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1293 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1294 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1295 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1296 /// sending the aforementioned notification (since the lock being released indicates that the
1297 /// updates are ready for persistence).
1299 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1300 /// notify or not based on whether relevant changes have been made, providing a closure to
1301 /// `optionally_notify` which returns a `NotifyOption`.
1302 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1303 event_persist_notifier: &'a Notifier,
1304 needs_persist_flag: &'a AtomicBool,
1306 // We hold onto this result so the lock doesn't get released immediately.
1307 _read_guard: RwLockReadGuard<'a, ()>,
1310 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1311 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1312 /// events to handle.
1314 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1315 /// other cases where losing the changes on restart may result in a force-close or otherwise
1317 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1318 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1321 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1322 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1323 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1324 let force_notify = cm.get_cm().process_background_events();
1326 PersistenceNotifierGuard {
1327 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1328 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1329 should_persist: move || {
1330 // Pick the "most" action between `persist_check` and the background events
1331 // processing and return that.
1332 let notify = persist_check();
1333 match (notify, force_notify) {
1334 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1335 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1336 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1337 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1338 _ => NotifyOption::SkipPersistNoEvents,
1341 _read_guard: read_guard,
1345 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1346 /// [`ChannelManager::process_background_events`] MUST be called first (or
1347 /// [`Self::optionally_notify`] used).
1348 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1349 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1350 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1352 PersistenceNotifierGuard {
1353 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1354 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1355 should_persist: persist_check,
1356 _read_guard: read_guard,
1361 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1362 fn drop(&mut self) {
1363 match (self.should_persist)() {
1364 NotifyOption::DoPersist => {
1365 self.needs_persist_flag.store(true, Ordering::Release);
1366 self.event_persist_notifier.notify()
1368 NotifyOption::SkipPersistHandleEvents =>
1369 self.event_persist_notifier.notify(),
1370 NotifyOption::SkipPersistNoEvents => {},
1375 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1376 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1378 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1380 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1381 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1382 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1383 /// the maximum required amount in lnd as of March 2021.
1384 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1386 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1387 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1389 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1391 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1392 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1393 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1394 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1395 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1396 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1397 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1398 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1399 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1400 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1401 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1402 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1403 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1405 /// Minimum CLTV difference between the current block height and received inbound payments.
1406 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1408 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1409 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1410 // a payment was being routed, so we add an extra block to be safe.
1411 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1413 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1414 // ie that if the next-hop peer fails the HTLC within
1415 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1416 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1417 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1418 // LATENCY_GRACE_PERIOD_BLOCKS.
1421 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1423 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1424 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1427 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1429 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1430 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1432 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1433 /// until we mark the channel disabled and gossip the update.
1434 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1436 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1437 /// we mark the channel enabled and gossip the update.
1438 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1440 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1441 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1442 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1443 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1445 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1446 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1447 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1449 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1450 /// many peers we reject new (inbound) connections.
1451 const MAX_NO_CHANNEL_PEERS: usize = 250;
1453 /// Information needed for constructing an invoice route hint for this channel.
1454 #[derive(Clone, Debug, PartialEq)]
1455 pub struct CounterpartyForwardingInfo {
1456 /// Base routing fee in millisatoshis.
1457 pub fee_base_msat: u32,
1458 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1459 pub fee_proportional_millionths: u32,
1460 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1461 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1462 /// `cltv_expiry_delta` for more details.
1463 pub cltv_expiry_delta: u16,
1466 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1467 /// to better separate parameters.
1468 #[derive(Clone, Debug, PartialEq)]
1469 pub struct ChannelCounterparty {
1470 /// The node_id of our counterparty
1471 pub node_id: PublicKey,
1472 /// The Features the channel counterparty provided upon last connection.
1473 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1474 /// many routing-relevant features are present in the init context.
1475 pub features: InitFeatures,
1476 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1477 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1478 /// claiming at least this value on chain.
1480 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1482 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1483 pub unspendable_punishment_reserve: u64,
1484 /// Information on the fees and requirements that the counterparty requires when forwarding
1485 /// payments to us through this channel.
1486 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1487 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1488 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1489 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1490 pub outbound_htlc_minimum_msat: Option<u64>,
1491 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1492 pub outbound_htlc_maximum_msat: Option<u64>,
1495 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1496 #[derive(Clone, Debug, PartialEq)]
1497 pub struct ChannelDetails {
1498 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1499 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1500 /// Note that this means this value is *not* persistent - it can change once during the
1501 /// lifetime of the channel.
1502 pub channel_id: ChannelId,
1503 /// Parameters which apply to our counterparty. See individual fields for more information.
1504 pub counterparty: ChannelCounterparty,
1505 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1506 /// our counterparty already.
1508 /// Note that, if this has been set, `channel_id` will be equivalent to
1509 /// `funding_txo.unwrap().to_channel_id()`.
1510 pub funding_txo: Option<OutPoint>,
1511 /// The features which this channel operates with. See individual features for more info.
1513 /// `None` until negotiation completes and the channel type is finalized.
1514 pub channel_type: Option<ChannelTypeFeatures>,
1515 /// The position of the funding transaction in the chain. None if the funding transaction has
1516 /// not yet been confirmed and the channel fully opened.
1518 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1519 /// payments instead of this. See [`get_inbound_payment_scid`].
1521 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1522 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1524 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1525 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1526 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1527 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1528 /// [`confirmations_required`]: Self::confirmations_required
1529 pub short_channel_id: Option<u64>,
1530 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1531 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1532 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1535 /// This will be `None` as long as the channel is not available for routing outbound payments.
1537 /// [`short_channel_id`]: Self::short_channel_id
1538 /// [`confirmations_required`]: Self::confirmations_required
1539 pub outbound_scid_alias: Option<u64>,
1540 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1541 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1542 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1543 /// when they see a payment to be routed to us.
1545 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1546 /// previous values for inbound payment forwarding.
1548 /// [`short_channel_id`]: Self::short_channel_id
1549 pub inbound_scid_alias: Option<u64>,
1550 /// The value, in satoshis, of this channel as appears in the funding output
1551 pub channel_value_satoshis: u64,
1552 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1553 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1554 /// this value on chain.
1556 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1558 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1560 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1561 pub unspendable_punishment_reserve: Option<u64>,
1562 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1563 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1564 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1565 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1566 /// serialized with LDK versions prior to 0.0.113.
1568 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1569 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1570 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1571 pub user_channel_id: u128,
1572 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1573 /// which is applied to commitment and HTLC transactions.
1575 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1576 pub feerate_sat_per_1000_weight: Option<u32>,
1577 /// Our total balance. This is the amount we would get if we close the channel.
1578 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1579 /// amount is not likely to be recoverable on close.
1581 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1582 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1583 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1584 /// This does not consider any on-chain fees.
1586 /// See also [`ChannelDetails::outbound_capacity_msat`]
1587 pub balance_msat: u64,
1588 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1589 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1590 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1591 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1593 /// See also [`ChannelDetails::balance_msat`]
1595 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1596 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1597 /// should be able to spend nearly this amount.
1598 pub outbound_capacity_msat: u64,
1599 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1600 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1601 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1602 /// to use a limit as close as possible to the HTLC limit we can currently send.
1604 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1605 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1606 pub next_outbound_htlc_limit_msat: u64,
1607 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1608 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1609 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1610 /// route which is valid.
1611 pub next_outbound_htlc_minimum_msat: u64,
1612 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1613 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1614 /// available for inclusion in new inbound HTLCs).
1615 /// Note that there are some corner cases not fully handled here, so the actual available
1616 /// inbound capacity may be slightly higher than this.
1618 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1619 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1620 /// However, our counterparty should be able to spend nearly this amount.
1621 pub inbound_capacity_msat: u64,
1622 /// The number of required confirmations on the funding transaction before the funding will be
1623 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1624 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1625 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1626 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1628 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1630 /// [`is_outbound`]: ChannelDetails::is_outbound
1631 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1632 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1633 pub confirmations_required: Option<u32>,
1634 /// The current number of confirmations on the funding transaction.
1636 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1637 pub confirmations: Option<u32>,
1638 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1639 /// until we can claim our funds after we force-close the channel. During this time our
1640 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1641 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1642 /// time to claim our non-HTLC-encumbered funds.
1644 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1645 pub force_close_spend_delay: Option<u16>,
1646 /// True if the channel was initiated (and thus funded) by us.
1647 pub is_outbound: bool,
1648 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1649 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1650 /// required confirmation count has been reached (and we were connected to the peer at some
1651 /// point after the funding transaction received enough confirmations). The required
1652 /// confirmation count is provided in [`confirmations_required`].
1654 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1655 pub is_channel_ready: bool,
1656 /// The stage of the channel's shutdown.
1657 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1658 pub channel_shutdown_state: Option<ChannelShutdownState>,
1659 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1660 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1662 /// This is a strict superset of `is_channel_ready`.
1663 pub is_usable: bool,
1664 /// True if this channel is (or will be) publicly-announced.
1665 pub is_public: bool,
1666 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1667 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1668 pub inbound_htlc_minimum_msat: Option<u64>,
1669 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1670 pub inbound_htlc_maximum_msat: Option<u64>,
1671 /// Set of configurable parameters that affect channel operation.
1673 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1674 pub config: Option<ChannelConfig>,
1677 impl ChannelDetails {
1678 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1679 /// This should be used for providing invoice hints or in any other context where our
1680 /// counterparty will forward a payment to us.
1682 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1683 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1684 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1685 self.inbound_scid_alias.or(self.short_channel_id)
1688 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1689 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1690 /// we're sending or forwarding a payment outbound over this channel.
1692 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1693 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1694 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1695 self.short_channel_id.or(self.outbound_scid_alias)
1698 fn from_channel_context<SP: Deref, F: Deref>(
1699 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1700 fee_estimator: &LowerBoundedFeeEstimator<F>
1703 SP::Target: SignerProvider,
1704 F::Target: FeeEstimator
1706 let balance = context.get_available_balances(fee_estimator);
1707 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1708 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1710 channel_id: context.channel_id(),
1711 counterparty: ChannelCounterparty {
1712 node_id: context.get_counterparty_node_id(),
1713 features: latest_features,
1714 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1715 forwarding_info: context.counterparty_forwarding_info(),
1716 // Ensures that we have actually received the `htlc_minimum_msat` value
1717 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1718 // message (as they are always the first message from the counterparty).
1719 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1720 // default `0` value set by `Channel::new_outbound`.
1721 outbound_htlc_minimum_msat: if context.have_received_message() {
1722 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1723 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1725 funding_txo: context.get_funding_txo(),
1726 // Note that accept_channel (or open_channel) is always the first message, so
1727 // `have_received_message` indicates that type negotiation has completed.
1728 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1729 short_channel_id: context.get_short_channel_id(),
1730 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1731 inbound_scid_alias: context.latest_inbound_scid_alias(),
1732 channel_value_satoshis: context.get_value_satoshis(),
1733 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1734 unspendable_punishment_reserve: to_self_reserve_satoshis,
1735 balance_msat: balance.balance_msat,
1736 inbound_capacity_msat: balance.inbound_capacity_msat,
1737 outbound_capacity_msat: balance.outbound_capacity_msat,
1738 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1739 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1740 user_channel_id: context.get_user_id(),
1741 confirmations_required: context.minimum_depth(),
1742 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1743 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1744 is_outbound: context.is_outbound(),
1745 is_channel_ready: context.is_usable(),
1746 is_usable: context.is_live(),
1747 is_public: context.should_announce(),
1748 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1749 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1750 config: Some(context.config()),
1751 channel_shutdown_state: Some(context.shutdown_state()),
1756 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1757 /// Further information on the details of the channel shutdown.
1758 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1759 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1760 /// the channel will be removed shortly.
1761 /// Also note, that in normal operation, peers could disconnect at any of these states
1762 /// and require peer re-connection before making progress onto other states
1763 pub enum ChannelShutdownState {
1764 /// Channel has not sent or received a shutdown message.
1766 /// Local node has sent a shutdown message for this channel.
1768 /// Shutdown message exchanges have concluded and the channels are in the midst of
1769 /// resolving all existing open HTLCs before closing can continue.
1771 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1772 NegotiatingClosingFee,
1773 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1774 /// to drop the channel.
1778 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1779 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1780 #[derive(Debug, PartialEq)]
1781 pub enum RecentPaymentDetails {
1782 /// When an invoice was requested and thus a payment has not yet been sent.
1784 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1785 /// a payment and ensure idempotency in LDK.
1786 payment_id: PaymentId,
1788 /// When a payment is still being sent and awaiting successful delivery.
1790 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1791 /// a payment and ensure idempotency in LDK.
1792 payment_id: PaymentId,
1793 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1795 payment_hash: PaymentHash,
1796 /// Total amount (in msat, excluding fees) across all paths for this payment,
1797 /// not just the amount currently inflight.
1800 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1801 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1802 /// payment is removed from tracking.
1804 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1805 /// a payment and ensure idempotency in LDK.
1806 payment_id: PaymentId,
1807 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1808 /// made before LDK version 0.0.104.
1809 payment_hash: Option<PaymentHash>,
1811 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1812 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1813 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1815 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1816 /// a payment and ensure idempotency in LDK.
1817 payment_id: PaymentId,
1818 /// Hash of the payment that we have given up trying to send.
1819 payment_hash: PaymentHash,
1823 /// Route hints used in constructing invoices for [phantom node payents].
1825 /// [phantom node payments]: crate::sign::PhantomKeysManager
1827 pub struct PhantomRouteHints {
1828 /// The list of channels to be included in the invoice route hints.
1829 pub channels: Vec<ChannelDetails>,
1830 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1832 pub phantom_scid: u64,
1833 /// The pubkey of the real backing node that would ultimately receive the payment.
1834 pub real_node_pubkey: PublicKey,
1837 macro_rules! handle_error {
1838 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1839 // In testing, ensure there are no deadlocks where the lock is already held upon
1840 // entering the macro.
1841 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1842 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1846 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1847 let mut msg_events = Vec::with_capacity(2);
1849 if let Some((shutdown_res, update_option)) = shutdown_finish {
1850 $self.finish_close_channel(shutdown_res);
1851 if let Some(update) = update_option {
1852 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1856 if let Some((channel_id, user_channel_id)) = chan_id {
1857 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1858 channel_id, user_channel_id,
1859 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1860 counterparty_node_id: Some($counterparty_node_id),
1861 channel_capacity_sats: channel_capacity,
1866 log_error!($self.logger, "{}", err.err);
1867 if let msgs::ErrorAction::IgnoreError = err.action {
1869 msg_events.push(events::MessageSendEvent::HandleError {
1870 node_id: $counterparty_node_id,
1871 action: err.action.clone()
1875 if !msg_events.is_empty() {
1876 let per_peer_state = $self.per_peer_state.read().unwrap();
1877 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1878 let mut peer_state = peer_state_mutex.lock().unwrap();
1879 peer_state.pending_msg_events.append(&mut msg_events);
1883 // Return error in case higher-API need one
1888 ($self: ident, $internal: expr) => {
1891 Err((chan, msg_handle_err)) => {
1892 let counterparty_node_id = chan.get_counterparty_node_id();
1893 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1899 macro_rules! update_maps_on_chan_removal {
1900 ($self: expr, $channel_context: expr) => {{
1901 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1902 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1903 if let Some(short_id) = $channel_context.get_short_channel_id() {
1904 short_to_chan_info.remove(&short_id);
1906 // If the channel was never confirmed on-chain prior to its closure, remove the
1907 // outbound SCID alias we used for it from the collision-prevention set. While we
1908 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1909 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1910 // opening a million channels with us which are closed before we ever reach the funding
1912 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1913 debug_assert!(alias_removed);
1915 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1919 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1920 macro_rules! convert_chan_phase_err {
1921 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1923 ChannelError::Warn(msg) => {
1924 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1926 ChannelError::Ignore(msg) => {
1927 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1929 ChannelError::Close(msg) => {
1930 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1931 update_maps_on_chan_removal!($self, $channel.context);
1932 let shutdown_res = $channel.context.force_shutdown(true);
1933 let user_id = $channel.context.get_user_id();
1934 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1936 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1937 shutdown_res, $channel_update, channel_capacity_satoshis))
1941 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1942 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1944 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1945 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1947 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1948 match $channel_phase {
1949 ChannelPhase::Funded(channel) => {
1950 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1952 ChannelPhase::UnfundedOutboundV1(channel) => {
1953 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1955 ChannelPhase::UnfundedInboundV1(channel) => {
1956 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1962 macro_rules! break_chan_phase_entry {
1963 ($self: ident, $res: expr, $entry: expr) => {
1967 let key = *$entry.key();
1968 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1970 $entry.remove_entry();
1978 macro_rules! try_chan_phase_entry {
1979 ($self: ident, $res: expr, $entry: expr) => {
1983 let key = *$entry.key();
1984 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1986 $entry.remove_entry();
1994 macro_rules! remove_channel_phase {
1995 ($self: expr, $entry: expr) => {
1997 let channel = $entry.remove_entry().1;
1998 update_maps_on_chan_removal!($self, &channel.context());
2004 macro_rules! send_channel_ready {
2005 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2006 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2007 node_id: $channel.context.get_counterparty_node_id(),
2008 msg: $channel_ready_msg,
2010 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2011 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2012 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2013 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2014 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2015 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2016 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2017 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2018 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2019 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2024 macro_rules! emit_channel_pending_event {
2025 ($locked_events: expr, $channel: expr) => {
2026 if $channel.context.should_emit_channel_pending_event() {
2027 $locked_events.push_back((events::Event::ChannelPending {
2028 channel_id: $channel.context.channel_id(),
2029 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2030 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2031 user_channel_id: $channel.context.get_user_id(),
2032 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2034 $channel.context.set_channel_pending_event_emitted();
2039 macro_rules! emit_channel_ready_event {
2040 ($locked_events: expr, $channel: expr) => {
2041 if $channel.context.should_emit_channel_ready_event() {
2042 debug_assert!($channel.context.channel_pending_event_emitted());
2043 $locked_events.push_back((events::Event::ChannelReady {
2044 channel_id: $channel.context.channel_id(),
2045 user_channel_id: $channel.context.get_user_id(),
2046 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2047 channel_type: $channel.context.get_channel_type().clone(),
2049 $channel.context.set_channel_ready_event_emitted();
2054 macro_rules! handle_monitor_update_completion {
2055 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2056 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2057 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2058 $self.best_block.read().unwrap().height());
2059 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2060 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2061 // We only send a channel_update in the case where we are just now sending a
2062 // channel_ready and the channel is in a usable state. We may re-send a
2063 // channel_update later through the announcement_signatures process for public
2064 // channels, but there's no reason not to just inform our counterparty of our fees
2066 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2067 Some(events::MessageSendEvent::SendChannelUpdate {
2068 node_id: counterparty_node_id,
2074 let update_actions = $peer_state.monitor_update_blocked_actions
2075 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2077 let htlc_forwards = $self.handle_channel_resumption(
2078 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2079 updates.commitment_update, updates.order, updates.accepted_htlcs,
2080 updates.funding_broadcastable, updates.channel_ready,
2081 updates.announcement_sigs);
2082 if let Some(upd) = channel_update {
2083 $peer_state.pending_msg_events.push(upd);
2086 let channel_id = $chan.context.channel_id();
2087 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2088 core::mem::drop($peer_state_lock);
2089 core::mem::drop($per_peer_state_lock);
2091 // If the channel belongs to a batch funding transaction, the progress of the batch
2092 // should be updated as we have received funding_signed and persisted the monitor.
2093 if let Some(txid) = unbroadcasted_batch_funding_txid {
2094 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2095 let mut batch_completed = false;
2096 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2097 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2098 *chan_id == channel_id &&
2099 *pubkey == counterparty_node_id
2101 if let Some(channel_state) = channel_state {
2102 channel_state.2 = true;
2104 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2106 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2108 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2111 // When all channels in a batched funding transaction have become ready, it is not necessary
2112 // to track the progress of the batch anymore and the state of the channels can be updated.
2113 if batch_completed {
2114 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2115 let per_peer_state = $self.per_peer_state.read().unwrap();
2116 let mut batch_funding_tx = None;
2117 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2118 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2119 let mut peer_state = peer_state_mutex.lock().unwrap();
2120 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2121 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2122 chan.set_batch_ready();
2123 let mut pending_events = $self.pending_events.lock().unwrap();
2124 emit_channel_pending_event!(pending_events, chan);
2128 if let Some(tx) = batch_funding_tx {
2129 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2130 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2135 $self.handle_monitor_update_completion_actions(update_actions);
2137 if let Some(forwards) = htlc_forwards {
2138 $self.forward_htlcs(&mut [forwards][..]);
2140 $self.finalize_claims(updates.finalized_claimed_htlcs);
2141 for failure in updates.failed_htlcs.drain(..) {
2142 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2143 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2148 macro_rules! handle_new_monitor_update {
2149 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2150 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2152 ChannelMonitorUpdateStatus::UnrecoverableError => {
2153 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2154 log_error!($self.logger, "{}", err_str);
2155 panic!("{}", err_str);
2157 ChannelMonitorUpdateStatus::InProgress => {
2158 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2159 &$chan.context.channel_id());
2162 ChannelMonitorUpdateStatus::Completed => {
2168 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2169 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2170 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2172 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2173 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2174 .or_insert_with(Vec::new);
2175 // During startup, we push monitor updates as background events through to here in
2176 // order to replay updates that were in-flight when we shut down. Thus, we have to
2177 // filter for uniqueness here.
2178 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2179 .unwrap_or_else(|| {
2180 in_flight_updates.push($update);
2181 in_flight_updates.len() - 1
2183 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2184 handle_new_monitor_update!($self, update_res, $chan, _internal,
2186 let _ = in_flight_updates.remove(idx);
2187 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2188 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2194 macro_rules! process_events_body {
2195 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2196 let mut processed_all_events = false;
2197 while !processed_all_events {
2198 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2205 // We'll acquire our total consistency lock so that we can be sure no other
2206 // persists happen while processing monitor events.
2207 let _read_guard = $self.total_consistency_lock.read().unwrap();
2209 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2210 // ensure any startup-generated background events are handled first.
2211 result = $self.process_background_events();
2213 // TODO: This behavior should be documented. It's unintuitive that we query
2214 // ChannelMonitors when clearing other events.
2215 if $self.process_pending_monitor_events() {
2216 result = NotifyOption::DoPersist;
2220 let pending_events = $self.pending_events.lock().unwrap().clone();
2221 let num_events = pending_events.len();
2222 if !pending_events.is_empty() {
2223 result = NotifyOption::DoPersist;
2226 let mut post_event_actions = Vec::new();
2228 for (event, action_opt) in pending_events {
2229 $event_to_handle = event;
2231 if let Some(action) = action_opt {
2232 post_event_actions.push(action);
2237 let mut pending_events = $self.pending_events.lock().unwrap();
2238 pending_events.drain(..num_events);
2239 processed_all_events = pending_events.is_empty();
2240 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2241 // updated here with the `pending_events` lock acquired.
2242 $self.pending_events_processor.store(false, Ordering::Release);
2245 if !post_event_actions.is_empty() {
2246 $self.handle_post_event_actions(post_event_actions);
2247 // If we had some actions, go around again as we may have more events now
2248 processed_all_events = false;
2252 NotifyOption::DoPersist => {
2253 $self.needs_persist_flag.store(true, Ordering::Release);
2254 $self.event_persist_notifier.notify();
2256 NotifyOption::SkipPersistHandleEvents =>
2257 $self.event_persist_notifier.notify(),
2258 NotifyOption::SkipPersistNoEvents => {},
2264 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2266 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2267 T::Target: BroadcasterInterface,
2268 ES::Target: EntropySource,
2269 NS::Target: NodeSigner,
2270 SP::Target: SignerProvider,
2271 F::Target: FeeEstimator,
2275 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2277 /// The current time or latest block header time can be provided as the `current_timestamp`.
2279 /// This is the main "logic hub" for all channel-related actions, and implements
2280 /// [`ChannelMessageHandler`].
2282 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2284 /// Users need to notify the new `ChannelManager` when a new block is connected or
2285 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2286 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2289 /// [`block_connected`]: chain::Listen::block_connected
2290 /// [`block_disconnected`]: chain::Listen::block_disconnected
2291 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2293 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2294 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2295 current_timestamp: u32,
2297 let mut secp_ctx = Secp256k1::new();
2298 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2299 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2300 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2302 default_configuration: config.clone(),
2303 chain_hash: ChainHash::using_genesis_block(params.network),
2304 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2309 best_block: RwLock::new(params.best_block),
2311 outbound_scid_aliases: Mutex::new(HashSet::new()),
2312 pending_inbound_payments: Mutex::new(HashMap::new()),
2313 pending_outbound_payments: OutboundPayments::new(),
2314 forward_htlcs: Mutex::new(HashMap::new()),
2315 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2316 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2317 id_to_peer: Mutex::new(HashMap::new()),
2318 short_to_chan_info: FairRwLock::new(HashMap::new()),
2320 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2323 inbound_payment_key: expanded_inbound_key,
2324 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2326 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2328 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2330 per_peer_state: FairRwLock::new(HashMap::new()),
2332 pending_events: Mutex::new(VecDeque::new()),
2333 pending_events_processor: AtomicBool::new(false),
2334 pending_background_events: Mutex::new(Vec::new()),
2335 total_consistency_lock: RwLock::new(()),
2336 background_events_processed_since_startup: AtomicBool::new(false),
2337 event_persist_notifier: Notifier::new(),
2338 needs_persist_flag: AtomicBool::new(false),
2339 funding_batch_states: Mutex::new(BTreeMap::new()),
2341 pending_offers_messages: Mutex::new(Vec::new()),
2351 /// Gets the current configuration applied to all new channels.
2352 pub fn get_current_default_configuration(&self) -> &UserConfig {
2353 &self.default_configuration
2356 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2357 let height = self.best_block.read().unwrap().height();
2358 let mut outbound_scid_alias = 0;
2361 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2362 outbound_scid_alias += 1;
2364 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2366 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2370 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2375 /// Creates a new outbound channel to the given remote node and with the given value.
2377 /// `user_channel_id` will be provided back as in
2378 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2379 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2380 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2381 /// is simply copied to events and otherwise ignored.
2383 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2384 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2386 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2387 /// generate a shutdown scriptpubkey or destination script set by
2388 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2390 /// Note that we do not check if you are currently connected to the given peer. If no
2391 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2392 /// the channel eventually being silently forgotten (dropped on reload).
2394 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2395 /// channel. Otherwise, a random one will be generated for you.
2397 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2398 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2399 /// [`ChannelDetails::channel_id`] until after
2400 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2401 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2402 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2404 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2405 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2406 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2407 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2408 if channel_value_satoshis < 1000 {
2409 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2412 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2413 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2414 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2416 let per_peer_state = self.per_peer_state.read().unwrap();
2418 let peer_state_mutex = per_peer_state.get(&their_network_key)
2419 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2421 let mut peer_state = peer_state_mutex.lock().unwrap();
2423 if let Some(temporary_channel_id) = temporary_channel_id {
2424 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2425 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2430 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2431 let their_features = &peer_state.latest_features;
2432 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2433 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2434 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2435 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2439 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2444 let res = channel.get_open_channel(self.chain_hash);
2446 let temporary_channel_id = channel.context.channel_id();
2447 match peer_state.channel_by_id.entry(temporary_channel_id) {
2448 hash_map::Entry::Occupied(_) => {
2450 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2452 panic!("RNG is bad???");
2455 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2458 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2459 node_id: their_network_key,
2462 Ok(temporary_channel_id)
2465 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2466 // Allocate our best estimate of the number of channels we have in the `res`
2467 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2468 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2469 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2470 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2471 // the same channel.
2472 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2474 let best_block_height = self.best_block.read().unwrap().height();
2475 let per_peer_state = self.per_peer_state.read().unwrap();
2476 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2477 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2478 let peer_state = &mut *peer_state_lock;
2479 res.extend(peer_state.channel_by_id.iter()
2480 .filter_map(|(chan_id, phase)| match phase {
2481 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2482 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2486 .map(|(_channel_id, channel)| {
2487 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2488 peer_state.latest_features.clone(), &self.fee_estimator)
2496 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2497 /// more information.
2498 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2499 // Allocate our best estimate of the number of channels we have in the `res`
2500 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2501 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2502 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2503 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2504 // the same channel.
2505 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2507 let best_block_height = self.best_block.read().unwrap().height();
2508 let per_peer_state = self.per_peer_state.read().unwrap();
2509 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2510 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2511 let peer_state = &mut *peer_state_lock;
2512 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2513 let details = ChannelDetails::from_channel_context(context, best_block_height,
2514 peer_state.latest_features.clone(), &self.fee_estimator);
2522 /// Gets the list of usable channels, in random order. Useful as an argument to
2523 /// [`Router::find_route`] to ensure non-announced channels are used.
2525 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2526 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2528 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2529 // Note we use is_live here instead of usable which leads to somewhat confused
2530 // internal/external nomenclature, but that's ok cause that's probably what the user
2531 // really wanted anyway.
2532 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2535 /// Gets the list of channels we have with a given counterparty, in random order.
2536 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2537 let best_block_height = self.best_block.read().unwrap().height();
2538 let per_peer_state = self.per_peer_state.read().unwrap();
2540 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2541 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2542 let peer_state = &mut *peer_state_lock;
2543 let features = &peer_state.latest_features;
2544 let context_to_details = |context| {
2545 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2547 return peer_state.channel_by_id
2549 .map(|(_, phase)| phase.context())
2550 .map(context_to_details)
2556 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2557 /// successful path, or have unresolved HTLCs.
2559 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2560 /// result of a crash. If such a payment exists, is not listed here, and an
2561 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2563 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2564 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2565 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2566 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2567 PendingOutboundPayment::AwaitingInvoice { .. } => {
2568 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2570 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2571 PendingOutboundPayment::InvoiceReceived { .. } => {
2572 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2574 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2575 Some(RecentPaymentDetails::Pending {
2576 payment_id: *payment_id,
2577 payment_hash: *payment_hash,
2578 total_msat: *total_msat,
2581 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2582 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2584 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2585 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2587 PendingOutboundPayment::Legacy { .. } => None
2592 /// Helper function that issues the channel close events
2593 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2594 let mut pending_events_lock = self.pending_events.lock().unwrap();
2595 match context.unbroadcasted_funding() {
2596 Some(transaction) => {
2597 pending_events_lock.push_back((events::Event::DiscardFunding {
2598 channel_id: context.channel_id(), transaction
2603 pending_events_lock.push_back((events::Event::ChannelClosed {
2604 channel_id: context.channel_id(),
2605 user_channel_id: context.get_user_id(),
2606 reason: closure_reason,
2607 counterparty_node_id: Some(context.get_counterparty_node_id()),
2608 channel_capacity_sats: Some(context.get_value_satoshis()),
2612 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2613 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2615 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2616 let shutdown_result;
2618 let per_peer_state = self.per_peer_state.read().unwrap();
2620 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2621 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2623 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2624 let peer_state = &mut *peer_state_lock;
2626 match peer_state.channel_by_id.entry(channel_id.clone()) {
2627 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2628 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2629 let funding_txo_opt = chan.context.get_funding_txo();
2630 let their_features = &peer_state.latest_features;
2631 let (shutdown_msg, mut monitor_update_opt, htlcs, local_shutdown_result) =
2632 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2633 failed_htlcs = htlcs;
2634 shutdown_result = local_shutdown_result;
2635 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
2637 // We can send the `shutdown` message before updating the `ChannelMonitor`
2638 // here as we don't need the monitor update to complete until we send a
2639 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2640 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2641 node_id: *counterparty_node_id,
2645 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2646 "We can't both complete shutdown and generate a monitor update");
2648 // Update the monitor with the shutdown script if necessary.
2649 if let Some(monitor_update) = monitor_update_opt.take() {
2650 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2651 peer_state_lock, peer_state, per_peer_state, chan);
2655 if chan.is_shutdown() {
2656 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2657 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2658 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2662 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2668 hash_map::Entry::Vacant(_) => {
2669 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2670 // it does not exist for this peer. Either way, we can attempt to force-close it.
2672 // An appropriate error will be returned for non-existence of the channel if that's the case.
2673 mem::drop(peer_state_lock);
2674 mem::drop(per_peer_state);
2675 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2680 for htlc_source in failed_htlcs.drain(..) {
2681 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2682 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2683 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2686 if let Some(shutdown_result) = shutdown_result {
2687 self.finish_close_channel(shutdown_result);
2693 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2694 /// will be accepted on the given channel, and after additional timeout/the closing of all
2695 /// pending HTLCs, the channel will be closed on chain.
2697 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2698 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2700 /// * If our counterparty is the channel initiator, we will require a channel closing
2701 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2702 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2703 /// counterparty to pay as much fee as they'd like, however.
2705 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2707 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2708 /// generate a shutdown scriptpubkey or destination script set by
2709 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2712 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2713 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2714 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2715 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2716 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2717 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2720 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2721 /// will be accepted on the given channel, and after additional timeout/the closing of all
2722 /// pending HTLCs, the channel will be closed on chain.
2724 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2725 /// the channel being closed or not:
2726 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2727 /// transaction. The upper-bound is set by
2728 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2729 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2730 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2731 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2732 /// will appear on a force-closure transaction, whichever is lower).
2734 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2735 /// Will fail if a shutdown script has already been set for this channel by
2736 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2737 /// also be compatible with our and the counterparty's features.
2739 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2741 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2742 /// generate a shutdown scriptpubkey or destination script set by
2743 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2746 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2747 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2748 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2749 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2750 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2753 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2754 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2755 #[cfg(debug_assertions)]
2756 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2757 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2760 log_debug!(self.logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2761 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2762 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2763 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2764 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2765 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2767 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2768 // There isn't anything we can do if we get an update failure - we're already
2769 // force-closing. The monitor update on the required in-memory copy should broadcast
2770 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2771 // ignore the result here.
2772 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2774 let mut shutdown_results = Vec::new();
2775 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2776 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2777 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2778 let per_peer_state = self.per_peer_state.read().unwrap();
2779 let mut has_uncompleted_channel = None;
2780 for (channel_id, counterparty_node_id, state) in affected_channels {
2781 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2782 let mut peer_state = peer_state_mutex.lock().unwrap();
2783 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2784 update_maps_on_chan_removal!(self, &chan.context());
2785 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2786 shutdown_results.push(chan.context_mut().force_shutdown(false));
2789 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2792 has_uncompleted_channel.unwrap_or(true),
2793 "Closing a batch where all channels have completed initial monitor update",
2796 for shutdown_result in shutdown_results.drain(..) {
2797 self.finish_close_channel(shutdown_result);
2801 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2802 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2803 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2804 -> Result<PublicKey, APIError> {
2805 let per_peer_state = self.per_peer_state.read().unwrap();
2806 let peer_state_mutex = per_peer_state.get(peer_node_id)
2807 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2808 let (update_opt, counterparty_node_id) = {
2809 let mut peer_state = peer_state_mutex.lock().unwrap();
2810 let closure_reason = if let Some(peer_msg) = peer_msg {
2811 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2813 ClosureReason::HolderForceClosed
2815 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2816 log_error!(self.logger, "Force-closing channel {}", channel_id);
2817 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2818 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2819 mem::drop(peer_state);
2820 mem::drop(per_peer_state);
2822 ChannelPhase::Funded(mut chan) => {
2823 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2824 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2826 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2827 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2828 // Unfunded channel has no update
2829 (None, chan_phase.context().get_counterparty_node_id())
2832 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2833 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2834 // N.B. that we don't send any channel close event here: we
2835 // don't have a user_channel_id, and we never sent any opening
2837 (None, *peer_node_id)
2839 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2842 if let Some(update) = update_opt {
2843 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2844 // not try to broadcast it via whatever peer we have.
2845 let per_peer_state = self.per_peer_state.read().unwrap();
2846 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2847 .ok_or(per_peer_state.values().next());
2848 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2849 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2850 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2856 Ok(counterparty_node_id)
2859 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2860 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2861 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2862 Ok(counterparty_node_id) => {
2863 let per_peer_state = self.per_peer_state.read().unwrap();
2864 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2865 let mut peer_state = peer_state_mutex.lock().unwrap();
2866 peer_state.pending_msg_events.push(
2867 events::MessageSendEvent::HandleError {
2868 node_id: counterparty_node_id,
2869 action: msgs::ErrorAction::DisconnectPeer {
2870 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2881 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2882 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2883 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2885 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2886 -> Result<(), APIError> {
2887 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2890 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2891 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2892 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2894 /// You can always get the latest local transaction(s) to broadcast from
2895 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2896 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2897 -> Result<(), APIError> {
2898 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2901 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2902 /// for each to the chain and rejecting new HTLCs on each.
2903 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2904 for chan in self.list_channels() {
2905 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2909 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2910 /// local transaction(s).
2911 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2912 for chan in self.list_channels() {
2913 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2917 fn construct_fwd_pending_htlc_info(
2918 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2919 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2920 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2921 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2922 debug_assert!(next_packet_pubkey_opt.is_some());
2923 let outgoing_packet = msgs::OnionPacket {
2925 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2926 hop_data: new_packet_bytes,
2930 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2931 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2932 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2933 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2934 return Err(InboundOnionErr {
2935 msg: "Final Node OnionHopData provided for us as an intermediary node",
2936 err_code: 0x4000 | 22,
2937 err_data: Vec::new(),
2941 Ok(PendingHTLCInfo {
2942 routing: PendingHTLCRouting::Forward {
2943 onion_packet: outgoing_packet,
2946 payment_hash: msg.payment_hash,
2947 incoming_shared_secret: shared_secret,
2948 incoming_amt_msat: Some(msg.amount_msat),
2949 outgoing_amt_msat: amt_to_forward,
2950 outgoing_cltv_value,
2951 skimmed_fee_msat: None,
2955 fn construct_recv_pending_htlc_info(
2956 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2957 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2958 counterparty_skimmed_fee_msat: Option<u64>,
2959 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2960 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2961 msgs::InboundOnionPayload::Receive {
2962 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2964 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2965 msgs::InboundOnionPayload::BlindedReceive {
2966 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2968 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2969 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2971 msgs::InboundOnionPayload::Forward { .. } => {
2972 return Err(InboundOnionErr {
2973 err_code: 0x4000|22,
2974 err_data: Vec::new(),
2975 msg: "Got non final data with an HMAC of 0",
2979 // final_incorrect_cltv_expiry
2980 if outgoing_cltv_value > cltv_expiry {
2981 return Err(InboundOnionErr {
2982 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2984 err_data: cltv_expiry.to_be_bytes().to_vec()
2987 // final_expiry_too_soon
2988 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2989 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2991 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2992 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2993 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2994 let current_height: u32 = self.best_block.read().unwrap().height();
2995 if cltv_expiry <= current_height + HTLC_FAIL_BACK_BUFFER + 1 {
2996 let mut err_data = Vec::with_capacity(12);
2997 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2998 err_data.extend_from_slice(¤t_height.to_be_bytes());
2999 return Err(InboundOnionErr {
3000 err_code: 0x4000 | 15, err_data,
3001 msg: "The final CLTV expiry is too soon to handle",
3004 if (!allow_underpay && onion_amt_msat > amt_msat) ||
3005 (allow_underpay && onion_amt_msat >
3006 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
3008 return Err(InboundOnionErr {
3010 err_data: amt_msat.to_be_bytes().to_vec(),
3011 msg: "Upstream node sent less than we were supposed to receive in payment",
3015 let routing = if let Some(payment_preimage) = keysend_preimage {
3016 // We need to check that the sender knows the keysend preimage before processing this
3017 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
3018 // could discover the final destination of X, by probing the adjacent nodes on the route
3019 // with a keysend payment of identical payment hash to X and observing the processing
3020 // time discrepancies due to a hash collision with X.
3021 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3022 if hashed_preimage != payment_hash {
3023 return Err(InboundOnionErr {
3024 err_code: 0x4000|22,
3025 err_data: Vec::new(),
3026 msg: "Payment preimage didn't match payment hash",
3029 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
3030 return Err(InboundOnionErr {
3031 err_code: 0x4000|22,
3032 err_data: Vec::new(),
3033 msg: "We don't support MPP keysend payments",
3036 PendingHTLCRouting::ReceiveKeysend {
3040 incoming_cltv_expiry: outgoing_cltv_value,
3043 } else if let Some(data) = payment_data {
3044 PendingHTLCRouting::Receive {
3047 incoming_cltv_expiry: outgoing_cltv_value,
3048 phantom_shared_secret,
3052 return Err(InboundOnionErr {
3053 err_code: 0x4000|0x2000|3,
3054 err_data: Vec::new(),
3055 msg: "We require payment_secrets",
3058 Ok(PendingHTLCInfo {
3061 incoming_shared_secret: shared_secret,
3062 incoming_amt_msat: Some(amt_msat),
3063 outgoing_amt_msat: onion_amt_msat,
3064 outgoing_cltv_value,
3065 skimmed_fee_msat: counterparty_skimmed_fee_msat,
3069 fn decode_update_add_htlc_onion(
3070 &self, msg: &msgs::UpdateAddHTLC
3071 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
3072 macro_rules! return_malformed_err {
3073 ($msg: expr, $err_code: expr) => {
3075 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3076 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3077 channel_id: msg.channel_id,
3078 htlc_id: msg.htlc_id,
3079 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
3080 failure_code: $err_code,
3086 if let Err(_) = msg.onion_routing_packet.public_key {
3087 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
3090 let shared_secret = self.node_signer.ecdh(
3091 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
3092 ).unwrap().secret_bytes();
3094 if msg.onion_routing_packet.version != 0 {
3095 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
3096 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
3097 //the hash doesn't really serve any purpose - in the case of hashing all data, the
3098 //receiving node would have to brute force to figure out which version was put in the
3099 //packet by the node that send us the message, in the case of hashing the hop_data, the
3100 //node knows the HMAC matched, so they already know what is there...
3101 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
3103 macro_rules! return_err {
3104 ($msg: expr, $err_code: expr, $data: expr) => {
3106 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3107 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3108 channel_id: msg.channel_id,
3109 htlc_id: msg.htlc_id,
3110 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3111 .get_encrypted_failure_packet(&shared_secret, &None),
3117 let next_hop = match onion_utils::decode_next_payment_hop(
3118 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
3119 msg.payment_hash, &self.node_signer
3122 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3123 return_malformed_err!(err_msg, err_code);
3125 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3126 return_err!(err_msg, err_code, &[0; 0]);
3129 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
3130 onion_utils::Hop::Forward {
3131 next_hop_data: msgs::InboundOnionPayload::Forward {
3132 short_channel_id, amt_to_forward, outgoing_cltv_value
3135 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
3136 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
3137 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
3139 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
3140 // inbound channel's state.
3141 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
3142 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
3143 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
3145 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
3149 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3150 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3151 if let Some((err, mut code, chan_update)) = loop {
3152 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3153 let forwarding_chan_info_opt = match id_option {
3154 None => { // unknown_next_peer
3155 // Note that this is likely a timing oracle for detecting whether an scid is a
3156 // phantom or an intercept.
3157 if (self.default_configuration.accept_intercept_htlcs &&
3158 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3159 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3163 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3166 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3168 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3169 let per_peer_state = self.per_peer_state.read().unwrap();
3170 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3171 if peer_state_mutex_opt.is_none() {
3172 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3174 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3175 let peer_state = &mut *peer_state_lock;
3176 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3177 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3180 // Channel was removed. The short_to_chan_info and channel_by_id maps
3181 // have no consistency guarantees.
3182 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3186 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3187 // Note that the behavior here should be identical to the above block - we
3188 // should NOT reveal the existence or non-existence of a private channel if
3189 // we don't allow forwards outbound over them.
3190 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3192 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3193 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3194 // "refuse to forward unless the SCID alias was used", so we pretend
3195 // we don't have the channel here.
3196 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3198 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3200 // Note that we could technically not return an error yet here and just hope
3201 // that the connection is reestablished or monitor updated by the time we get
3202 // around to doing the actual forward, but better to fail early if we can and
3203 // hopefully an attacker trying to path-trace payments cannot make this occur
3204 // on a small/per-node/per-channel scale.
3205 if !chan.context.is_live() { // channel_disabled
3206 // If the channel_update we're going to return is disabled (i.e. the
3207 // peer has been disabled for some time), return `channel_disabled`,
3208 // otherwise return `temporary_channel_failure`.
3209 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3210 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3212 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3215 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3216 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3218 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3219 break Some((err, code, chan_update_opt));
3223 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3224 // We really should set `incorrect_cltv_expiry` here but as we're not
3225 // forwarding over a real channel we can't generate a channel_update
3226 // for it. Instead we just return a generic temporary_node_failure.
3228 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3235 let cur_height = self.best_block.read().unwrap().height() + 1;
3236 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3237 // but we want to be robust wrt to counterparty packet sanitization (see
3238 // HTLC_FAIL_BACK_BUFFER rationale).
3239 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3240 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3242 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3243 break Some(("CLTV expiry is too far in the future", 21, None));
3245 // If the HTLC expires ~now, don't bother trying to forward it to our
3246 // counterparty. They should fail it anyway, but we don't want to bother with
3247 // the round-trips or risk them deciding they definitely want the HTLC and
3248 // force-closing to ensure they get it if we're offline.
3249 // We previously had a much more aggressive check here which tried to ensure
3250 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3251 // but there is no need to do that, and since we're a bit conservative with our
3252 // risk threshold it just results in failing to forward payments.
3253 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3254 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3260 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3261 if let Some(chan_update) = chan_update {
3262 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3263 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3265 else if code == 0x1000 | 13 {
3266 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3268 else if code == 0x1000 | 20 {
3269 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3270 0u16.write(&mut res).expect("Writes cannot fail");
3272 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3273 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3274 chan_update.write(&mut res).expect("Writes cannot fail");
3275 } else if code & 0x1000 == 0x1000 {
3276 // If we're trying to return an error that requires a `channel_update` but
3277 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3278 // generate an update), just use the generic "temporary_node_failure"
3282 return_err!(err, code, &res.0[..]);
3284 Ok((next_hop, shared_secret, next_packet_pk_opt))
3287 fn construct_pending_htlc_status<'a>(
3288 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3289 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3290 ) -> PendingHTLCStatus {
3291 macro_rules! return_err {
3292 ($msg: expr, $err_code: expr, $data: expr) => {
3294 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3295 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3296 channel_id: msg.channel_id,
3297 htlc_id: msg.htlc_id,
3298 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3299 .get_encrypted_failure_packet(&shared_secret, &None),
3305 onion_utils::Hop::Receive(next_hop_data) => {
3307 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3308 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3311 // Note that we could obviously respond immediately with an update_fulfill_htlc
3312 // message, however that would leak that we are the recipient of this payment, so
3313 // instead we stay symmetric with the forwarding case, only responding (after a
3314 // delay) once they've send us a commitment_signed!
3315 PendingHTLCStatus::Forward(info)
3317 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3320 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3321 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3322 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3323 Ok(info) => PendingHTLCStatus::Forward(info),
3324 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3330 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3331 /// public, and thus should be called whenever the result is going to be passed out in a
3332 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3334 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3335 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3336 /// storage and the `peer_state` lock has been dropped.
3338 /// [`channel_update`]: msgs::ChannelUpdate
3339 /// [`internal_closing_signed`]: Self::internal_closing_signed
3340 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3341 if !chan.context.should_announce() {
3342 return Err(LightningError {
3343 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3344 action: msgs::ErrorAction::IgnoreError
3347 if chan.context.get_short_channel_id().is_none() {
3348 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3350 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3351 self.get_channel_update_for_unicast(chan)
3354 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3355 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3356 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3357 /// provided evidence that they know about the existence of the channel.
3359 /// Note that through [`internal_closing_signed`], this function is called without the
3360 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3361 /// removed from the storage and the `peer_state` lock has been dropped.
3363 /// [`channel_update`]: msgs::ChannelUpdate
3364 /// [`internal_closing_signed`]: Self::internal_closing_signed
3365 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3366 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3367 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3368 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3372 self.get_channel_update_for_onion(short_channel_id, chan)
3375 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3376 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3377 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3379 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3380 ChannelUpdateStatus::Enabled => true,
3381 ChannelUpdateStatus::DisabledStaged(_) => true,
3382 ChannelUpdateStatus::Disabled => false,
3383 ChannelUpdateStatus::EnabledStaged(_) => false,
3386 let unsigned = msgs::UnsignedChannelUpdate {
3387 chain_hash: self.chain_hash,
3389 timestamp: chan.context.get_update_time_counter(),
3390 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3391 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3392 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3393 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3394 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3395 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3396 excess_data: Vec::new(),
3398 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3399 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3400 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3402 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3404 Ok(msgs::ChannelUpdate {
3411 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3412 let _lck = self.total_consistency_lock.read().unwrap();
3413 self.send_payment_along_path(SendAlongPathArgs {
3414 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3419 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3420 let SendAlongPathArgs {
3421 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3424 // The top-level caller should hold the total_consistency_lock read lock.
3425 debug_assert!(self.total_consistency_lock.try_write().is_err());
3427 log_trace!(self.logger,
3428 "Attempting to send payment with payment hash {} along path with next hop {}",
3429 payment_hash, path.hops.first().unwrap().short_channel_id);
3430 let prng_seed = self.entropy_source.get_secure_random_bytes();
3431 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3433 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3434 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3435 payment_hash, keysend_preimage, prng_seed
3438 let err: Result<(), _> = loop {
3439 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3440 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3441 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3444 let per_peer_state = self.per_peer_state.read().unwrap();
3445 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3446 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3447 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3448 let peer_state = &mut *peer_state_lock;
3449 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3450 match chan_phase_entry.get_mut() {
3451 ChannelPhase::Funded(chan) => {
3452 if !chan.context.is_live() {
3453 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3455 let funding_txo = chan.context.get_funding_txo().unwrap();
3456 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3457 htlc_cltv, HTLCSource::OutboundRoute {
3459 session_priv: session_priv.clone(),
3460 first_hop_htlc_msat: htlc_msat,
3462 }, onion_packet, None, &self.fee_estimator, &self.logger);
3463 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3464 Some(monitor_update) => {
3465 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3467 // Note that MonitorUpdateInProgress here indicates (per function
3468 // docs) that we will resend the commitment update once monitor
3469 // updating completes. Therefore, we must return an error
3470 // indicating that it is unsafe to retry the payment wholesale,
3471 // which we do in the send_payment check for
3472 // MonitorUpdateInProgress, below.
3473 return Err(APIError::MonitorUpdateInProgress);
3481 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3484 // The channel was likely removed after we fetched the id from the
3485 // `short_to_chan_info` map, but before we successfully locked the
3486 // `channel_by_id` map.
3487 // This can occur as no consistency guarantees exists between the two maps.
3488 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3493 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3494 Ok(_) => unreachable!(),
3496 Err(APIError::ChannelUnavailable { err: e.err })
3501 /// Sends a payment along a given route.
3503 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3504 /// fields for more info.
3506 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3507 /// [`PeerManager::process_events`]).
3509 /// # Avoiding Duplicate Payments
3511 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3512 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3513 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3514 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3515 /// second payment with the same [`PaymentId`].
3517 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3518 /// tracking of payments, including state to indicate once a payment has completed. Because you
3519 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3520 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3521 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3523 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3524 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3525 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3526 /// [`ChannelManager::list_recent_payments`] for more information.
3528 /// # Possible Error States on [`PaymentSendFailure`]
3530 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3531 /// each entry matching the corresponding-index entry in the route paths, see
3532 /// [`PaymentSendFailure`] for more info.
3534 /// In general, a path may raise:
3535 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3536 /// node public key) is specified.
3537 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3538 /// closed, doesn't exist, or the peer is currently disconnected.
3539 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3540 /// relevant updates.
3542 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3543 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3544 /// different route unless you intend to pay twice!
3546 /// [`RouteHop`]: crate::routing::router::RouteHop
3547 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3548 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3549 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3550 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3551 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3552 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3553 let best_block_height = self.best_block.read().unwrap().height();
3554 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3555 self.pending_outbound_payments
3556 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3557 &self.entropy_source, &self.node_signer, best_block_height,
3558 |args| self.send_payment_along_path(args))
3561 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3562 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3563 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3564 let best_block_height = self.best_block.read().unwrap().height();
3565 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3566 self.pending_outbound_payments
3567 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3568 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3569 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3570 &self.pending_events, |args| self.send_payment_along_path(args))
3574 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3575 let best_block_height = self.best_block.read().unwrap().height();
3576 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3577 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3578 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3579 best_block_height, |args| self.send_payment_along_path(args))
3583 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3584 let best_block_height = self.best_block.read().unwrap().height();
3585 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3589 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3590 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3593 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3594 let best_block_height = self.best_block.read().unwrap().height();
3595 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3596 self.pending_outbound_payments
3597 .send_payment_for_bolt12_invoice(
3598 invoice, payment_id, &self.router, self.list_usable_channels(),
3599 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3600 best_block_height, &self.logger, &self.pending_events,
3601 |args| self.send_payment_along_path(args)
3605 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3606 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3607 /// retries are exhausted.
3609 /// # Event Generation
3611 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3612 /// as there are no remaining pending HTLCs for this payment.
3614 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3615 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3616 /// determine the ultimate status of a payment.
3618 /// # Requested Invoices
3620 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3621 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3622 /// and prevent any attempts at paying it once received. The other events may only be generated
3623 /// once the invoice has been received.
3625 /// # Restart Behavior
3627 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3628 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3629 /// [`Event::InvoiceRequestFailed`].
3631 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3632 pub fn abandon_payment(&self, payment_id: PaymentId) {
3633 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3634 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3637 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3638 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3639 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3640 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3641 /// never reach the recipient.
3643 /// See [`send_payment`] documentation for more details on the return value of this function
3644 /// and idempotency guarantees provided by the [`PaymentId`] key.
3646 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3647 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3649 /// [`send_payment`]: Self::send_payment
3650 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3651 let best_block_height = self.best_block.read().unwrap().height();
3652 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3653 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3654 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3655 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3658 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3659 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3661 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3664 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3665 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3666 let best_block_height = self.best_block.read().unwrap().height();
3667 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3668 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3669 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3670 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3671 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3674 /// Send a payment that is probing the given route for liquidity. We calculate the
3675 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3676 /// us to easily discern them from real payments.
3677 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3678 let best_block_height = self.best_block.read().unwrap().height();
3679 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3680 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3681 &self.entropy_source, &self.node_signer, best_block_height,
3682 |args| self.send_payment_along_path(args))
3685 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3688 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3689 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3692 /// Sends payment probes over all paths of a route that would be used to pay the given
3693 /// amount to the given `node_id`.
3695 /// See [`ChannelManager::send_preflight_probes`] for more information.
3696 pub fn send_spontaneous_preflight_probes(
3697 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3698 liquidity_limit_multiplier: Option<u64>,
3699 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3700 let payment_params =
3701 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3703 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3705 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3708 /// Sends payment probes over all paths of a route that would be used to pay a route found
3709 /// according to the given [`RouteParameters`].
3711 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3712 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3713 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3714 /// confirmation in a wallet UI.
3716 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3717 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3718 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3719 /// payment. To mitigate this issue, channels with available liquidity less than the required
3720 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3721 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3722 pub fn send_preflight_probes(
3723 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3724 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3725 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3727 let payer = self.get_our_node_id();
3728 let usable_channels = self.list_usable_channels();
3729 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3730 let inflight_htlcs = self.compute_inflight_htlcs();
3734 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3736 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3737 ProbeSendFailure::RouteNotFound
3740 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3742 let mut res = Vec::new();
3744 for mut path in route.paths {
3745 // If the last hop is probably an unannounced channel we refrain from probing all the
3746 // way through to the end and instead probe up to the second-to-last channel.
3747 while let Some(last_path_hop) = path.hops.last() {
3748 if last_path_hop.maybe_announced_channel {
3749 // We found a potentially announced last hop.
3752 // Drop the last hop, as it's likely unannounced.
3755 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3756 last_path_hop.short_channel_id
3758 let final_value_msat = path.final_value_msat();
3760 if let Some(new_last) = path.hops.last_mut() {
3761 new_last.fee_msat += final_value_msat;
3766 if path.hops.len() < 2 {
3769 "Skipped sending payment probe over path with less than two hops."
3774 if let Some(first_path_hop) = path.hops.first() {
3775 if let Some(first_hop) = first_hops.iter().find(|h| {
3776 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3778 let path_value = path.final_value_msat() + path.fee_msat();
3779 let used_liquidity =
3780 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3782 if first_hop.next_outbound_htlc_limit_msat
3783 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3785 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3788 *used_liquidity += path_value;
3793 res.push(self.send_probe(path).map_err(|e| {
3794 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3795 ProbeSendFailure::SendingFailed(e)
3802 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3803 /// which checks the correctness of the funding transaction given the associated channel.
3804 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3805 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3806 mut find_funding_output: FundingOutput,
3807 ) -> Result<(), APIError> {
3808 let per_peer_state = self.per_peer_state.read().unwrap();
3809 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3810 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3812 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3813 let peer_state = &mut *peer_state_lock;
3814 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3815 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3816 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3818 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3819 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3820 let channel_id = chan.context.channel_id();
3821 let user_id = chan.context.get_user_id();
3822 let shutdown_res = chan.context.force_shutdown(false);
3823 let channel_capacity = chan.context.get_value_satoshis();
3824 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3825 } else { unreachable!(); });
3827 Ok((chan, funding_msg)) => (chan, funding_msg),
3828 Err((chan, err)) => {
3829 mem::drop(peer_state_lock);
3830 mem::drop(per_peer_state);
3832 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3833 return Err(APIError::ChannelUnavailable {
3834 err: "Signer refused to sign the initial commitment transaction".to_owned()
3840 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3841 return Err(APIError::APIMisuseError {
3843 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3844 temporary_channel_id, counterparty_node_id),
3847 None => return Err(APIError::ChannelUnavailable {err: format!(
3848 "Channel with id {} not found for the passed counterparty node_id {}",
3849 temporary_channel_id, counterparty_node_id),
3853 if let Some(msg) = msg_opt {
3854 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3855 node_id: chan.context.get_counterparty_node_id(),
3859 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3860 hash_map::Entry::Occupied(_) => {
3861 panic!("Generated duplicate funding txid?");
3863 hash_map::Entry::Vacant(e) => {
3864 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3865 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3866 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3868 e.insert(ChannelPhase::Funded(chan));
3875 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3876 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3877 Ok(OutPoint { txid: tx.txid(), index: output_index })
3881 /// Call this upon creation of a funding transaction for the given channel.
3883 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3884 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3886 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3887 /// across the p2p network.
3889 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3890 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3892 /// May panic if the output found in the funding transaction is duplicative with some other
3893 /// channel (note that this should be trivially prevented by using unique funding transaction
3894 /// keys per-channel).
3896 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3897 /// counterparty's signature the funding transaction will automatically be broadcast via the
3898 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3900 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3901 /// not currently support replacing a funding transaction on an existing channel. Instead,
3902 /// create a new channel with a conflicting funding transaction.
3904 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3905 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3906 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3907 /// for more details.
3909 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3910 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3911 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3912 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3915 /// Call this upon creation of a batch funding transaction for the given channels.
3917 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3918 /// each individual channel and transaction output.
3920 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3921 /// will only be broadcast when we have safely received and persisted the counterparty's
3922 /// signature for each channel.
3924 /// If there is an error, all channels in the batch are to be considered closed.
3925 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3926 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3927 let mut result = Ok(());
3929 if !funding_transaction.is_coin_base() {
3930 for inp in funding_transaction.input.iter() {
3931 if inp.witness.is_empty() {
3932 result = result.and(Err(APIError::APIMisuseError {
3933 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3938 if funding_transaction.output.len() > u16::max_value() as usize {
3939 result = result.and(Err(APIError::APIMisuseError {
3940 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3944 let height = self.best_block.read().unwrap().height();
3945 // Transactions are evaluated as final by network mempools if their locktime is strictly
3946 // lower than the next block height. However, the modules constituting our Lightning
3947 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3948 // module is ahead of LDK, only allow one more block of headroom.
3949 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3950 result = result.and(Err(APIError::APIMisuseError {
3951 err: "Funding transaction absolute timelock is non-final".to_owned()
3956 let txid = funding_transaction.txid();
3957 let is_batch_funding = temporary_channels.len() > 1;
3958 let mut funding_batch_states = if is_batch_funding {
3959 Some(self.funding_batch_states.lock().unwrap())
3963 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3964 match states.entry(txid) {
3965 btree_map::Entry::Occupied(_) => {
3966 result = result.clone().and(Err(APIError::APIMisuseError {
3967 err: "Batch funding transaction with the same txid already exists".to_owned()
3971 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3974 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3975 result = result.and_then(|_| self.funding_transaction_generated_intern(
3976 temporary_channel_id,
3977 counterparty_node_id,
3978 funding_transaction.clone(),
3981 let mut output_index = None;
3982 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3983 for (idx, outp) in tx.output.iter().enumerate() {
3984 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3985 if output_index.is_some() {
3986 return Err(APIError::APIMisuseError {
3987 err: "Multiple outputs matched the expected script and value".to_owned()
3990 output_index = Some(idx as u16);
3993 if output_index.is_none() {
3994 return Err(APIError::APIMisuseError {
3995 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3998 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3999 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4000 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
4006 if let Err(ref e) = result {
4007 // Remaining channels need to be removed on any error.
4008 let e = format!("Error in transaction funding: {:?}", e);
4009 let mut channels_to_remove = Vec::new();
4010 channels_to_remove.extend(funding_batch_states.as_mut()
4011 .and_then(|states| states.remove(&txid))
4012 .into_iter().flatten()
4013 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4015 channels_to_remove.extend(temporary_channels.iter()
4016 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4018 let mut shutdown_results = Vec::new();
4020 let per_peer_state = self.per_peer_state.read().unwrap();
4021 for (channel_id, counterparty_node_id) in channels_to_remove {
4022 per_peer_state.get(&counterparty_node_id)
4023 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4024 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4026 update_maps_on_chan_removal!(self, &chan.context());
4027 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
4028 shutdown_results.push(chan.context_mut().force_shutdown(false));
4032 for shutdown_result in shutdown_results.drain(..) {
4033 self.finish_close_channel(shutdown_result);
4039 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4041 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4042 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4043 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4044 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4046 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4047 /// `counterparty_node_id` is provided.
4049 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4050 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4052 /// If an error is returned, none of the updates should be considered applied.
4054 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4055 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4056 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4057 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4058 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4059 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4060 /// [`APIMisuseError`]: APIError::APIMisuseError
4061 pub fn update_partial_channel_config(
4062 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4063 ) -> Result<(), APIError> {
4064 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4065 return Err(APIError::APIMisuseError {
4066 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4070 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4071 let per_peer_state = self.per_peer_state.read().unwrap();
4072 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4073 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4074 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4075 let peer_state = &mut *peer_state_lock;
4076 for channel_id in channel_ids {
4077 if !peer_state.has_channel(channel_id) {
4078 return Err(APIError::ChannelUnavailable {
4079 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4083 for channel_id in channel_ids {
4084 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4085 let mut config = channel_phase.context().config();
4086 config.apply(config_update);
4087 if !channel_phase.context_mut().update_config(&config) {
4090 if let ChannelPhase::Funded(channel) = channel_phase {
4091 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4092 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4093 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4094 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4095 node_id: channel.context.get_counterparty_node_id(),
4102 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4103 debug_assert!(false);
4104 return Err(APIError::ChannelUnavailable {
4106 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4107 channel_id, counterparty_node_id),
4114 /// Atomically updates the [`ChannelConfig`] for the given channels.
4116 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4117 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4118 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4119 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4121 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4122 /// `counterparty_node_id` is provided.
4124 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4125 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4127 /// If an error is returned, none of the updates should be considered applied.
4129 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4130 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4131 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4132 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4133 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4134 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4135 /// [`APIMisuseError`]: APIError::APIMisuseError
4136 pub fn update_channel_config(
4137 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4138 ) -> Result<(), APIError> {
4139 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4142 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4143 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4145 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4146 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4148 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4149 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4150 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4151 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4152 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4154 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4155 /// you from forwarding more than you received. See
4156 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4159 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4162 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4163 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4164 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4165 // TODO: when we move to deciding the best outbound channel at forward time, only take
4166 // `next_node_id` and not `next_hop_channel_id`
4167 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4168 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4170 let next_hop_scid = {
4171 let peer_state_lock = self.per_peer_state.read().unwrap();
4172 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4173 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4174 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4175 let peer_state = &mut *peer_state_lock;
4176 match peer_state.channel_by_id.get(next_hop_channel_id) {
4177 Some(ChannelPhase::Funded(chan)) => {
4178 if !chan.context.is_usable() {
4179 return Err(APIError::ChannelUnavailable {
4180 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4183 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4185 Some(_) => return Err(APIError::ChannelUnavailable {
4186 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4187 next_hop_channel_id, next_node_id)
4190 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4191 next_hop_channel_id, next_node_id);
4192 log_error!(self.logger, "{} when attempting to forward intercepted HTLC", error);
4193 return Err(APIError::ChannelUnavailable {
4200 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4201 .ok_or_else(|| APIError::APIMisuseError {
4202 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4205 let routing = match payment.forward_info.routing {
4206 PendingHTLCRouting::Forward { onion_packet, .. } => {
4207 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4209 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4211 let skimmed_fee_msat =
4212 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4213 let pending_htlc_info = PendingHTLCInfo {
4214 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4215 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4218 let mut per_source_pending_forward = [(
4219 payment.prev_short_channel_id,
4220 payment.prev_funding_outpoint,
4221 payment.prev_user_channel_id,
4222 vec![(pending_htlc_info, payment.prev_htlc_id)]
4224 self.forward_htlcs(&mut per_source_pending_forward);
4228 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4229 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4231 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4234 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4235 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4236 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4238 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4239 .ok_or_else(|| APIError::APIMisuseError {
4240 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4243 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4244 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4245 short_channel_id: payment.prev_short_channel_id,
4246 user_channel_id: Some(payment.prev_user_channel_id),
4247 outpoint: payment.prev_funding_outpoint,
4248 htlc_id: payment.prev_htlc_id,
4249 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4250 phantom_shared_secret: None,
4253 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4254 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4255 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4256 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4261 /// Processes HTLCs which are pending waiting on random forward delay.
4263 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4264 /// Will likely generate further events.
4265 pub fn process_pending_htlc_forwards(&self) {
4266 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4268 let mut new_events = VecDeque::new();
4269 let mut failed_forwards = Vec::new();
4270 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4272 let mut forward_htlcs = HashMap::new();
4273 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4275 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4276 if short_chan_id != 0 {
4277 macro_rules! forwarding_channel_not_found {
4279 for forward_info in pending_forwards.drain(..) {
4280 match forward_info {
4281 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4282 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4283 forward_info: PendingHTLCInfo {
4284 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4285 outgoing_cltv_value, ..
4288 macro_rules! failure_handler {
4289 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4290 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4292 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4293 short_channel_id: prev_short_channel_id,
4294 user_channel_id: Some(prev_user_channel_id),
4295 outpoint: prev_funding_outpoint,
4296 htlc_id: prev_htlc_id,
4297 incoming_packet_shared_secret: incoming_shared_secret,
4298 phantom_shared_secret: $phantom_ss,
4301 let reason = if $next_hop_unknown {
4302 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4304 HTLCDestination::FailedPayment{ payment_hash }
4307 failed_forwards.push((htlc_source, payment_hash,
4308 HTLCFailReason::reason($err_code, $err_data),
4314 macro_rules! fail_forward {
4315 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4317 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4321 macro_rules! failed_payment {
4322 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4324 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4328 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4329 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4330 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4331 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4332 let next_hop = match onion_utils::decode_next_payment_hop(
4333 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4334 payment_hash, &self.node_signer
4337 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4338 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4339 // In this scenario, the phantom would have sent us an
4340 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4341 // if it came from us (the second-to-last hop) but contains the sha256
4343 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4345 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4346 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4350 onion_utils::Hop::Receive(hop_data) => {
4351 match self.construct_recv_pending_htlc_info(hop_data,
4352 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4353 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4355 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4356 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4362 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4365 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4368 HTLCForwardInfo::FailHTLC { .. } => {
4369 // Channel went away before we could fail it. This implies
4370 // the channel is now on chain and our counterparty is
4371 // trying to broadcast the HTLC-Timeout, but that's their
4372 // problem, not ours.
4378 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4379 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4380 Some((cp_id, chan_id)) => (cp_id, chan_id),
4382 forwarding_channel_not_found!();
4386 let per_peer_state = self.per_peer_state.read().unwrap();
4387 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4388 if peer_state_mutex_opt.is_none() {
4389 forwarding_channel_not_found!();
4392 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4393 let peer_state = &mut *peer_state_lock;
4394 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4395 for forward_info in pending_forwards.drain(..) {
4396 match forward_info {
4397 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4398 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4399 forward_info: PendingHTLCInfo {
4400 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4401 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4404 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4405 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4406 short_channel_id: prev_short_channel_id,
4407 user_channel_id: Some(prev_user_channel_id),
4408 outpoint: prev_funding_outpoint,
4409 htlc_id: prev_htlc_id,
4410 incoming_packet_shared_secret: incoming_shared_secret,
4411 // Phantom payments are only PendingHTLCRouting::Receive.
4412 phantom_shared_secret: None,
4414 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4415 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4416 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4419 if let ChannelError::Ignore(msg) = e {
4420 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4422 panic!("Stated return value requirements in send_htlc() were not met");
4424 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4425 failed_forwards.push((htlc_source, payment_hash,
4426 HTLCFailReason::reason(failure_code, data),
4427 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4432 HTLCForwardInfo::AddHTLC { .. } => {
4433 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4435 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4436 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4437 if let Err(e) = chan.queue_fail_htlc(
4438 htlc_id, err_packet, &self.logger
4440 if let ChannelError::Ignore(msg) = e {
4441 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4443 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4445 // fail-backs are best-effort, we probably already have one
4446 // pending, and if not that's OK, if not, the channel is on
4447 // the chain and sending the HTLC-Timeout is their problem.
4454 forwarding_channel_not_found!();
4458 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4459 match forward_info {
4460 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4461 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4462 forward_info: PendingHTLCInfo {
4463 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4464 skimmed_fee_msat, ..
4467 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4468 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4469 let _legacy_hop_data = Some(payment_data.clone());
4470 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4471 payment_metadata, custom_tlvs };
4472 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4473 Some(payment_data), phantom_shared_secret, onion_fields)
4475 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4476 let onion_fields = RecipientOnionFields {
4477 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4481 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4482 payment_data, None, onion_fields)
4485 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4488 let claimable_htlc = ClaimableHTLC {
4489 prev_hop: HTLCPreviousHopData {
4490 short_channel_id: prev_short_channel_id,
4491 user_channel_id: Some(prev_user_channel_id),
4492 outpoint: prev_funding_outpoint,
4493 htlc_id: prev_htlc_id,
4494 incoming_packet_shared_secret: incoming_shared_secret,
4495 phantom_shared_secret,
4497 // We differentiate the received value from the sender intended value
4498 // if possible so that we don't prematurely mark MPP payments complete
4499 // if routing nodes overpay
4500 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4501 sender_intended_value: outgoing_amt_msat,
4503 total_value_received: None,
4504 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4507 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4510 let mut committed_to_claimable = false;
4512 macro_rules! fail_htlc {
4513 ($htlc: expr, $payment_hash: expr) => {
4514 debug_assert!(!committed_to_claimable);
4515 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4516 htlc_msat_height_data.extend_from_slice(
4517 &self.best_block.read().unwrap().height().to_be_bytes(),
4519 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4520 short_channel_id: $htlc.prev_hop.short_channel_id,
4521 user_channel_id: $htlc.prev_hop.user_channel_id,
4522 outpoint: prev_funding_outpoint,
4523 htlc_id: $htlc.prev_hop.htlc_id,
4524 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4525 phantom_shared_secret,
4527 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4528 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4530 continue 'next_forwardable_htlc;
4533 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4534 let mut receiver_node_id = self.our_network_pubkey;
4535 if phantom_shared_secret.is_some() {
4536 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4537 .expect("Failed to get node_id for phantom node recipient");
4540 macro_rules! check_total_value {
4541 ($purpose: expr) => {{
4542 let mut payment_claimable_generated = false;
4543 let is_keysend = match $purpose {
4544 events::PaymentPurpose::SpontaneousPayment(_) => true,
4545 events::PaymentPurpose::InvoicePayment { .. } => false,
4547 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4548 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4549 fail_htlc!(claimable_htlc, payment_hash);
4551 let ref mut claimable_payment = claimable_payments.claimable_payments
4552 .entry(payment_hash)
4553 // Note that if we insert here we MUST NOT fail_htlc!()
4554 .or_insert_with(|| {
4555 committed_to_claimable = true;
4557 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4560 if $purpose != claimable_payment.purpose {
4561 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4562 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4563 fail_htlc!(claimable_htlc, payment_hash);
4565 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4566 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4567 fail_htlc!(claimable_htlc, payment_hash);
4569 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4570 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4571 fail_htlc!(claimable_htlc, payment_hash);
4574 claimable_payment.onion_fields = Some(onion_fields);
4576 let ref mut htlcs = &mut claimable_payment.htlcs;
4577 let mut total_value = claimable_htlc.sender_intended_value;
4578 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4579 for htlc in htlcs.iter() {
4580 total_value += htlc.sender_intended_value;
4581 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4582 if htlc.total_msat != claimable_htlc.total_msat {
4583 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4584 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4585 total_value = msgs::MAX_VALUE_MSAT;
4587 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4589 // The condition determining whether an MPP is complete must
4590 // match exactly the condition used in `timer_tick_occurred`
4591 if total_value >= msgs::MAX_VALUE_MSAT {
4592 fail_htlc!(claimable_htlc, payment_hash);
4593 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4594 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4596 fail_htlc!(claimable_htlc, payment_hash);
4597 } else if total_value >= claimable_htlc.total_msat {
4598 #[allow(unused_assignments)] {
4599 committed_to_claimable = true;
4601 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4602 htlcs.push(claimable_htlc);
4603 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4604 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4605 let counterparty_skimmed_fee_msat = htlcs.iter()
4606 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4607 debug_assert!(total_value.saturating_sub(amount_msat) <=
4608 counterparty_skimmed_fee_msat);
4609 new_events.push_back((events::Event::PaymentClaimable {
4610 receiver_node_id: Some(receiver_node_id),
4614 counterparty_skimmed_fee_msat,
4615 via_channel_id: Some(prev_channel_id),
4616 via_user_channel_id: Some(prev_user_channel_id),
4617 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4618 onion_fields: claimable_payment.onion_fields.clone(),
4620 payment_claimable_generated = true;
4622 // Nothing to do - we haven't reached the total
4623 // payment value yet, wait until we receive more
4625 htlcs.push(claimable_htlc);
4626 #[allow(unused_assignments)] {
4627 committed_to_claimable = true;
4630 payment_claimable_generated
4634 // Check that the payment hash and secret are known. Note that we
4635 // MUST take care to handle the "unknown payment hash" and
4636 // "incorrect payment secret" cases here identically or we'd expose
4637 // that we are the ultimate recipient of the given payment hash.
4638 // Further, we must not expose whether we have any other HTLCs
4639 // associated with the same payment_hash pending or not.
4640 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4641 match payment_secrets.entry(payment_hash) {
4642 hash_map::Entry::Vacant(_) => {
4643 match claimable_htlc.onion_payload {
4644 OnionPayload::Invoice { .. } => {
4645 let payment_data = payment_data.unwrap();
4646 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4647 Ok(result) => result,
4649 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4650 fail_htlc!(claimable_htlc, payment_hash);
4653 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4654 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4655 if (cltv_expiry as u64) < expected_min_expiry_height {
4656 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4657 &payment_hash, cltv_expiry, expected_min_expiry_height);
4658 fail_htlc!(claimable_htlc, payment_hash);
4661 let purpose = events::PaymentPurpose::InvoicePayment {
4662 payment_preimage: payment_preimage.clone(),
4663 payment_secret: payment_data.payment_secret,
4665 check_total_value!(purpose);
4667 OnionPayload::Spontaneous(preimage) => {
4668 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4669 check_total_value!(purpose);
4673 hash_map::Entry::Occupied(inbound_payment) => {
4674 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4675 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4676 fail_htlc!(claimable_htlc, payment_hash);
4678 let payment_data = payment_data.unwrap();
4679 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4680 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4681 fail_htlc!(claimable_htlc, payment_hash);
4682 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4683 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4684 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4685 fail_htlc!(claimable_htlc, payment_hash);
4687 let purpose = events::PaymentPurpose::InvoicePayment {
4688 payment_preimage: inbound_payment.get().payment_preimage,
4689 payment_secret: payment_data.payment_secret,
4691 let payment_claimable_generated = check_total_value!(purpose);
4692 if payment_claimable_generated {
4693 inbound_payment.remove_entry();
4699 HTLCForwardInfo::FailHTLC { .. } => {
4700 panic!("Got pending fail of our own HTLC");
4708 let best_block_height = self.best_block.read().unwrap().height();
4709 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4710 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4711 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4713 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4714 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4716 self.forward_htlcs(&mut phantom_receives);
4718 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4719 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4720 // nice to do the work now if we can rather than while we're trying to get messages in the
4722 self.check_free_holding_cells();
4724 if new_events.is_empty() { return }
4725 let mut events = self.pending_events.lock().unwrap();
4726 events.append(&mut new_events);
4729 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4731 /// Expects the caller to have a total_consistency_lock read lock.
4732 fn process_background_events(&self) -> NotifyOption {
4733 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4735 self.background_events_processed_since_startup.store(true, Ordering::Release);
4737 let mut background_events = Vec::new();
4738 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4739 if background_events.is_empty() {
4740 return NotifyOption::SkipPersistNoEvents;
4743 for event in background_events.drain(..) {
4745 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4746 // The channel has already been closed, so no use bothering to care about the
4747 // monitor updating completing.
4748 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4750 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4751 let mut updated_chan = false;
4753 let per_peer_state = self.per_peer_state.read().unwrap();
4754 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4755 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4756 let peer_state = &mut *peer_state_lock;
4757 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4758 hash_map::Entry::Occupied(mut chan_phase) => {
4759 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4760 updated_chan = true;
4761 handle_new_monitor_update!(self, funding_txo, update.clone(),
4762 peer_state_lock, peer_state, per_peer_state, chan);
4764 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4767 hash_map::Entry::Vacant(_) => {},
4772 // TODO: Track this as in-flight even though the channel is closed.
4773 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4776 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4777 let per_peer_state = self.per_peer_state.read().unwrap();
4778 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4779 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4780 let peer_state = &mut *peer_state_lock;
4781 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4782 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4784 let update_actions = peer_state.monitor_update_blocked_actions
4785 .remove(&channel_id).unwrap_or(Vec::new());
4786 mem::drop(peer_state_lock);
4787 mem::drop(per_peer_state);
4788 self.handle_monitor_update_completion_actions(update_actions);
4794 NotifyOption::DoPersist
4797 #[cfg(any(test, feature = "_test_utils"))]
4798 /// Process background events, for functional testing
4799 pub fn test_process_background_events(&self) {
4800 let _lck = self.total_consistency_lock.read().unwrap();
4801 let _ = self.process_background_events();
4804 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4805 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4806 // If the feerate has decreased by less than half, don't bother
4807 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4808 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4809 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4810 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4812 return NotifyOption::SkipPersistNoEvents;
4814 if !chan.context.is_live() {
4815 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4816 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4817 return NotifyOption::SkipPersistNoEvents;
4819 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4820 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4822 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4823 NotifyOption::DoPersist
4827 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4828 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4829 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4830 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4831 pub fn maybe_update_chan_fees(&self) {
4832 PersistenceNotifierGuard::optionally_notify(self, || {
4833 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4835 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4836 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4838 let per_peer_state = self.per_peer_state.read().unwrap();
4839 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4840 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4841 let peer_state = &mut *peer_state_lock;
4842 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4843 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4845 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4850 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4851 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4859 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4861 /// This currently includes:
4862 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4863 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4864 /// than a minute, informing the network that they should no longer attempt to route over
4866 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4867 /// with the current [`ChannelConfig`].
4868 /// * Removing peers which have disconnected but and no longer have any channels.
4869 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4870 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4871 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4872 /// The latter is determined using the system clock in `std` and the highest seen block time
4873 /// minus two hours in `no-std`.
4875 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4876 /// estimate fetches.
4878 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4879 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4880 pub fn timer_tick_occurred(&self) {
4881 PersistenceNotifierGuard::optionally_notify(self, || {
4882 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4884 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4885 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4887 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4888 let mut timed_out_mpp_htlcs = Vec::new();
4889 let mut pending_peers_awaiting_removal = Vec::new();
4890 let mut shutdown_channels = Vec::new();
4892 let mut process_unfunded_channel_tick = |
4893 chan_id: &ChannelId,
4894 context: &mut ChannelContext<SP>,
4895 unfunded_context: &mut UnfundedChannelContext,
4896 pending_msg_events: &mut Vec<MessageSendEvent>,
4897 counterparty_node_id: PublicKey,
4899 context.maybe_expire_prev_config();
4900 if unfunded_context.should_expire_unfunded_channel() {
4901 log_error!(self.logger,
4902 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4903 update_maps_on_chan_removal!(self, &context);
4904 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4905 shutdown_channels.push(context.force_shutdown(false));
4906 pending_msg_events.push(MessageSendEvent::HandleError {
4907 node_id: counterparty_node_id,
4908 action: msgs::ErrorAction::SendErrorMessage {
4909 msg: msgs::ErrorMessage {
4910 channel_id: *chan_id,
4911 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4922 let per_peer_state = self.per_peer_state.read().unwrap();
4923 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4924 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4925 let peer_state = &mut *peer_state_lock;
4926 let pending_msg_events = &mut peer_state.pending_msg_events;
4927 let counterparty_node_id = *counterparty_node_id;
4928 peer_state.channel_by_id.retain(|chan_id, phase| {
4930 ChannelPhase::Funded(chan) => {
4931 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4936 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4937 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4939 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4940 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4941 handle_errors.push((Err(err), counterparty_node_id));
4942 if needs_close { return false; }
4945 match chan.channel_update_status() {
4946 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4947 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4948 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4949 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4950 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4951 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4952 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4954 if n >= DISABLE_GOSSIP_TICKS {
4955 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4956 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4957 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4961 should_persist = NotifyOption::DoPersist;
4963 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4966 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4968 if n >= ENABLE_GOSSIP_TICKS {
4969 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4970 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4971 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4975 should_persist = NotifyOption::DoPersist;
4977 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4983 chan.context.maybe_expire_prev_config();
4985 if chan.should_disconnect_peer_awaiting_response() {
4986 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4987 counterparty_node_id, chan_id);
4988 pending_msg_events.push(MessageSendEvent::HandleError {
4989 node_id: counterparty_node_id,
4990 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4991 msg: msgs::WarningMessage {
4992 channel_id: *chan_id,
4993 data: "Disconnecting due to timeout awaiting response".to_owned(),
5001 ChannelPhase::UnfundedInboundV1(chan) => {
5002 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5003 pending_msg_events, counterparty_node_id)
5005 ChannelPhase::UnfundedOutboundV1(chan) => {
5006 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5007 pending_msg_events, counterparty_node_id)
5012 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5013 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5014 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5015 peer_state.pending_msg_events.push(
5016 events::MessageSendEvent::HandleError {
5017 node_id: counterparty_node_id,
5018 action: msgs::ErrorAction::SendErrorMessage {
5019 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5025 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5027 if peer_state.ok_to_remove(true) {
5028 pending_peers_awaiting_removal.push(counterparty_node_id);
5033 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5034 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5035 // of to that peer is later closed while still being disconnected (i.e. force closed),
5036 // we therefore need to remove the peer from `peer_state` separately.
5037 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5038 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5039 // negative effects on parallelism as much as possible.
5040 if pending_peers_awaiting_removal.len() > 0 {
5041 let mut per_peer_state = self.per_peer_state.write().unwrap();
5042 for counterparty_node_id in pending_peers_awaiting_removal {
5043 match per_peer_state.entry(counterparty_node_id) {
5044 hash_map::Entry::Occupied(entry) => {
5045 // Remove the entry if the peer is still disconnected and we still
5046 // have no channels to the peer.
5047 let remove_entry = {
5048 let peer_state = entry.get().lock().unwrap();
5049 peer_state.ok_to_remove(true)
5052 entry.remove_entry();
5055 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5060 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5061 if payment.htlcs.is_empty() {
5062 // This should be unreachable
5063 debug_assert!(false);
5066 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5067 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5068 // In this case we're not going to handle any timeouts of the parts here.
5069 // This condition determining whether the MPP is complete here must match
5070 // exactly the condition used in `process_pending_htlc_forwards`.
5071 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5072 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5075 } else if payment.htlcs.iter_mut().any(|htlc| {
5076 htlc.timer_ticks += 1;
5077 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5079 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5080 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5087 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5088 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5089 let reason = HTLCFailReason::from_failure_code(23);
5090 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5091 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5094 for (err, counterparty_node_id) in handle_errors.drain(..) {
5095 let _ = handle_error!(self, err, counterparty_node_id);
5098 for shutdown_res in shutdown_channels {
5099 self.finish_close_channel(shutdown_res);
5102 #[cfg(feature = "std")]
5103 let duration_since_epoch = std::time::SystemTime::now()
5104 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5105 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5106 #[cfg(not(feature = "std"))]
5107 let duration_since_epoch = Duration::from_secs(
5108 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5111 self.pending_outbound_payments.remove_stale_payments(
5112 duration_since_epoch, &self.pending_events
5115 // Technically we don't need to do this here, but if we have holding cell entries in a
5116 // channel that need freeing, it's better to do that here and block a background task
5117 // than block the message queueing pipeline.
5118 if self.check_free_holding_cells() {
5119 should_persist = NotifyOption::DoPersist;
5126 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5127 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5128 /// along the path (including in our own channel on which we received it).
5130 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5131 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5132 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5133 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5135 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5136 /// [`ChannelManager::claim_funds`]), you should still monitor for
5137 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5138 /// startup during which time claims that were in-progress at shutdown may be replayed.
5139 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5140 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5143 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5144 /// reason for the failure.
5146 /// See [`FailureCode`] for valid failure codes.
5147 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5148 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5150 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5151 if let Some(payment) = removed_source {
5152 for htlc in payment.htlcs {
5153 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5154 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5155 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5156 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5161 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5162 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5163 match failure_code {
5164 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5165 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5166 FailureCode::IncorrectOrUnknownPaymentDetails => {
5167 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5168 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5169 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5171 FailureCode::InvalidOnionPayload(data) => {
5172 let fail_data = match data {
5173 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5176 HTLCFailReason::reason(failure_code.into(), fail_data)
5181 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5182 /// that we want to return and a channel.
5184 /// This is for failures on the channel on which the HTLC was *received*, not failures
5186 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5187 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5188 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5189 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5190 // an inbound SCID alias before the real SCID.
5191 let scid_pref = if chan.context.should_announce() {
5192 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5194 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5196 if let Some(scid) = scid_pref {
5197 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5199 (0x4000|10, Vec::new())
5204 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5205 /// that we want to return and a channel.
5206 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5207 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5208 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5209 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5210 if desired_err_code == 0x1000 | 20 {
5211 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5212 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5213 0u16.write(&mut enc).expect("Writes cannot fail");
5215 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5216 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5217 upd.write(&mut enc).expect("Writes cannot fail");
5218 (desired_err_code, enc.0)
5220 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5221 // which means we really shouldn't have gotten a payment to be forwarded over this
5222 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5223 // PERM|no_such_channel should be fine.
5224 (0x4000|10, Vec::new())
5228 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5229 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5230 // be surfaced to the user.
5231 fn fail_holding_cell_htlcs(
5232 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5233 counterparty_node_id: &PublicKey
5235 let (failure_code, onion_failure_data) = {
5236 let per_peer_state = self.per_peer_state.read().unwrap();
5237 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5238 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5239 let peer_state = &mut *peer_state_lock;
5240 match peer_state.channel_by_id.entry(channel_id) {
5241 hash_map::Entry::Occupied(chan_phase_entry) => {
5242 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5243 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5245 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5246 debug_assert!(false);
5247 (0x4000|10, Vec::new())
5250 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5252 } else { (0x4000|10, Vec::new()) }
5255 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5256 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5257 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5258 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5262 /// Fails an HTLC backwards to the sender of it to us.
5263 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5264 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5265 // Ensure that no peer state channel storage lock is held when calling this function.
5266 // This ensures that future code doesn't introduce a lock-order requirement for
5267 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5268 // this function with any `per_peer_state` peer lock acquired would.
5269 #[cfg(debug_assertions)]
5270 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5271 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5274 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5275 //identify whether we sent it or not based on the (I presume) very different runtime
5276 //between the branches here. We should make this async and move it into the forward HTLCs
5279 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5280 // from block_connected which may run during initialization prior to the chain_monitor
5281 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5283 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5284 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5285 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5286 &self.pending_events, &self.logger)
5287 { self.push_pending_forwards_ev(); }
5289 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5290 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5291 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5293 let mut push_forward_ev = false;
5294 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5295 if forward_htlcs.is_empty() {
5296 push_forward_ev = true;
5298 match forward_htlcs.entry(*short_channel_id) {
5299 hash_map::Entry::Occupied(mut entry) => {
5300 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5302 hash_map::Entry::Vacant(entry) => {
5303 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5306 mem::drop(forward_htlcs);
5307 if push_forward_ev { self.push_pending_forwards_ev(); }
5308 let mut pending_events = self.pending_events.lock().unwrap();
5309 pending_events.push_back((events::Event::HTLCHandlingFailed {
5310 prev_channel_id: outpoint.to_channel_id(),
5311 failed_next_destination: destination,
5317 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5318 /// [`MessageSendEvent`]s needed to claim the payment.
5320 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5321 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5322 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5323 /// successful. It will generally be available in the next [`process_pending_events`] call.
5325 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5326 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5327 /// event matches your expectation. If you fail to do so and call this method, you may provide
5328 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5330 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5331 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5332 /// [`claim_funds_with_known_custom_tlvs`].
5334 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5335 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5336 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5337 /// [`process_pending_events`]: EventsProvider::process_pending_events
5338 /// [`create_inbound_payment`]: Self::create_inbound_payment
5339 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5340 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5341 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5342 self.claim_payment_internal(payment_preimage, false);
5345 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5346 /// even type numbers.
5350 /// You MUST check you've understood all even TLVs before using this to
5351 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5353 /// [`claim_funds`]: Self::claim_funds
5354 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5355 self.claim_payment_internal(payment_preimage, true);
5358 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5359 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5361 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5364 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5365 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5366 let mut receiver_node_id = self.our_network_pubkey;
5367 for htlc in payment.htlcs.iter() {
5368 if htlc.prev_hop.phantom_shared_secret.is_some() {
5369 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5370 .expect("Failed to get node_id for phantom node recipient");
5371 receiver_node_id = phantom_pubkey;
5376 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5377 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5378 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5379 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5380 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5382 if dup_purpose.is_some() {
5383 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5384 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5388 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5389 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5390 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5391 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5392 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5393 mem::drop(claimable_payments);
5394 for htlc in payment.htlcs {
5395 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5396 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5397 let receiver = HTLCDestination::FailedPayment { payment_hash };
5398 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5407 debug_assert!(!sources.is_empty());
5409 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5410 // and when we got here we need to check that the amount we're about to claim matches the
5411 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5412 // the MPP parts all have the same `total_msat`.
5413 let mut claimable_amt_msat = 0;
5414 let mut prev_total_msat = None;
5415 let mut expected_amt_msat = None;
5416 let mut valid_mpp = true;
5417 let mut errs = Vec::new();
5418 let per_peer_state = self.per_peer_state.read().unwrap();
5419 for htlc in sources.iter() {
5420 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5421 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5422 debug_assert!(false);
5426 prev_total_msat = Some(htlc.total_msat);
5428 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5429 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5430 debug_assert!(false);
5434 expected_amt_msat = htlc.total_value_received;
5435 claimable_amt_msat += htlc.value;
5437 mem::drop(per_peer_state);
5438 if sources.is_empty() || expected_amt_msat.is_none() {
5439 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5440 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5443 if claimable_amt_msat != expected_amt_msat.unwrap() {
5444 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5445 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5446 expected_amt_msat.unwrap(), claimable_amt_msat);
5450 for htlc in sources.drain(..) {
5451 if let Err((pk, err)) = self.claim_funds_from_hop(
5452 htlc.prev_hop, payment_preimage,
5453 |_, definitely_duplicate| {
5454 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5455 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5458 if let msgs::ErrorAction::IgnoreError = err.err.action {
5459 // We got a temporary failure updating monitor, but will claim the
5460 // HTLC when the monitor updating is restored (or on chain).
5461 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5462 } else { errs.push((pk, err)); }
5467 for htlc in sources.drain(..) {
5468 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5469 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5470 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5471 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5472 let receiver = HTLCDestination::FailedPayment { payment_hash };
5473 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5475 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5478 // Now we can handle any errors which were generated.
5479 for (counterparty_node_id, err) in errs.drain(..) {
5480 let res: Result<(), _> = Err(err);
5481 let _ = handle_error!(self, res, counterparty_node_id);
5485 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5486 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5487 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5488 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5490 // If we haven't yet run background events assume we're still deserializing and shouldn't
5491 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5492 // `BackgroundEvent`s.
5493 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5495 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5496 // the required mutexes are not held before we start.
5497 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5498 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5501 let per_peer_state = self.per_peer_state.read().unwrap();
5502 let chan_id = prev_hop.outpoint.to_channel_id();
5503 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5504 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5508 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5509 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5510 .map(|peer_mutex| peer_mutex.lock().unwrap())
5513 if peer_state_opt.is_some() {
5514 let mut peer_state_lock = peer_state_opt.unwrap();
5515 let peer_state = &mut *peer_state_lock;
5516 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5517 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5518 let counterparty_node_id = chan.context.get_counterparty_node_id();
5519 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5522 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5523 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5524 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5526 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5529 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5530 peer_state, per_peer_state, chan);
5532 // If we're running during init we cannot update a monitor directly -
5533 // they probably haven't actually been loaded yet. Instead, push the
5534 // monitor update as a background event.
5535 self.pending_background_events.lock().unwrap().push(
5536 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5537 counterparty_node_id,
5538 funding_txo: prev_hop.outpoint,
5539 update: monitor_update.clone(),
5543 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5544 let action = if let Some(action) = completion_action(None, true) {
5549 mem::drop(peer_state_lock);
5551 log_trace!(self.logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5553 let (node_id, funding_outpoint, blocker) =
5554 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5555 downstream_counterparty_node_id: node_id,
5556 downstream_funding_outpoint: funding_outpoint,
5557 blocking_action: blocker,
5559 (node_id, funding_outpoint, blocker)
5561 debug_assert!(false,
5562 "Duplicate claims should always free another channel immediately");
5565 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5566 let mut peer_state = peer_state_mtx.lock().unwrap();
5567 if let Some(blockers) = peer_state
5568 .actions_blocking_raa_monitor_updates
5569 .get_mut(&funding_outpoint.to_channel_id())
5571 let mut found_blocker = false;
5572 blockers.retain(|iter| {
5573 // Note that we could actually be blocked, in
5574 // which case we need to only remove the one
5575 // blocker which was added duplicatively.
5576 let first_blocker = !found_blocker;
5577 if *iter == blocker { found_blocker = true; }
5578 *iter != blocker || !first_blocker
5580 debug_assert!(found_blocker);
5583 debug_assert!(false);
5592 let preimage_update = ChannelMonitorUpdate {
5593 update_id: CLOSED_CHANNEL_UPDATE_ID,
5594 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5600 // We update the ChannelMonitor on the backward link, after
5601 // receiving an `update_fulfill_htlc` from the forward link.
5602 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5603 if update_res != ChannelMonitorUpdateStatus::Completed {
5604 // TODO: This needs to be handled somehow - if we receive a monitor update
5605 // with a preimage we *must* somehow manage to propagate it to the upstream
5606 // channel, or we must have an ability to receive the same event and try
5607 // again on restart.
5608 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5609 payment_preimage, update_res);
5612 // If we're running during init we cannot update a monitor directly - they probably
5613 // haven't actually been loaded yet. Instead, push the monitor update as a background
5615 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5616 // channel is already closed) we need to ultimately handle the monitor update
5617 // completion action only after we've completed the monitor update. This is the only
5618 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5619 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5620 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5621 // complete the monitor update completion action from `completion_action`.
5622 self.pending_background_events.lock().unwrap().push(
5623 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5624 prev_hop.outpoint, preimage_update,
5627 // Note that we do process the completion action here. This totally could be a
5628 // duplicate claim, but we have no way of knowing without interrogating the
5629 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5630 // generally always allowed to be duplicative (and it's specifically noted in
5631 // `PaymentForwarded`).
5632 self.handle_monitor_update_completion_actions(completion_action(None, false));
5636 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5637 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5640 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5641 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5642 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5645 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5646 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5647 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5648 if let Some(pubkey) = next_channel_counterparty_node_id {
5649 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5651 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5652 channel_funding_outpoint: next_channel_outpoint,
5653 counterparty_node_id: path.hops[0].pubkey,
5655 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5656 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5659 HTLCSource::PreviousHopData(hop_data) => {
5660 let prev_outpoint = hop_data.outpoint;
5661 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5662 #[cfg(debug_assertions)]
5663 let claiming_chan_funding_outpoint = hop_data.outpoint;
5664 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5665 |htlc_claim_value_msat, definitely_duplicate| {
5666 let chan_to_release =
5667 if let Some(node_id) = next_channel_counterparty_node_id {
5668 Some((node_id, next_channel_outpoint, completed_blocker))
5670 // We can only get `None` here if we are processing a
5671 // `ChannelMonitor`-originated event, in which case we
5672 // don't care about ensuring we wake the downstream
5673 // channel's monitor updating - the channel is already
5678 if definitely_duplicate && startup_replay {
5679 // On startup we may get redundant claims which are related to
5680 // monitor updates still in flight. In that case, we shouldn't
5681 // immediately free, but instead let that monitor update complete
5682 // in the background.
5683 #[cfg(debug_assertions)] {
5684 let background_events = self.pending_background_events.lock().unwrap();
5685 // There should be a `BackgroundEvent` pending...
5686 assert!(background_events.iter().any(|ev| {
5688 // to apply a monitor update that blocked the claiming channel,
5689 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5690 funding_txo, update, ..
5692 if *funding_txo == claiming_chan_funding_outpoint {
5693 assert!(update.updates.iter().any(|upd|
5694 if let ChannelMonitorUpdateStep::PaymentPreimage {
5695 payment_preimage: update_preimage
5697 payment_preimage == *update_preimage
5703 // or the channel we'd unblock is already closed,
5704 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5705 (funding_txo, monitor_update)
5707 if *funding_txo == next_channel_outpoint {
5708 assert_eq!(monitor_update.updates.len(), 1);
5710 monitor_update.updates[0],
5711 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5716 // or the monitor update has completed and will unblock
5717 // immediately once we get going.
5718 BackgroundEvent::MonitorUpdatesComplete {
5721 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5723 }), "{:?}", *background_events);
5726 } else if definitely_duplicate {
5727 if let Some(other_chan) = chan_to_release {
5728 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5729 downstream_counterparty_node_id: other_chan.0,
5730 downstream_funding_outpoint: other_chan.1,
5731 blocking_action: other_chan.2,
5735 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5736 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5737 Some(claimed_htlc_value - forwarded_htlc_value)
5740 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5741 event: events::Event::PaymentForwarded {
5743 claim_from_onchain_tx: from_onchain,
5744 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5745 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5746 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5748 downstream_counterparty_and_funding_outpoint: chan_to_release,
5752 if let Err((pk, err)) = res {
5753 let result: Result<(), _> = Err(err);
5754 let _ = handle_error!(self, result, pk);
5760 /// Gets the node_id held by this ChannelManager
5761 pub fn get_our_node_id(&self) -> PublicKey {
5762 self.our_network_pubkey.clone()
5765 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5766 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5767 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5768 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5770 for action in actions.into_iter() {
5772 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5773 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5774 if let Some(ClaimingPayment {
5776 payment_purpose: purpose,
5779 sender_intended_value: sender_intended_total_msat,
5781 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5785 receiver_node_id: Some(receiver_node_id),
5787 sender_intended_total_msat,
5791 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5792 event, downstream_counterparty_and_funding_outpoint
5794 self.pending_events.lock().unwrap().push_back((event, None));
5795 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5796 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5799 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5800 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5802 self.handle_monitor_update_release(
5803 downstream_counterparty_node_id,
5804 downstream_funding_outpoint,
5805 Some(blocking_action),
5812 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5813 /// update completion.
5814 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5815 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5816 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5817 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5818 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5819 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5820 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5821 &channel.context.channel_id(),
5822 if raa.is_some() { "an" } else { "no" },
5823 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5824 if funding_broadcastable.is_some() { "" } else { "not " },
5825 if channel_ready.is_some() { "sending" } else { "without" },
5826 if announcement_sigs.is_some() { "sending" } else { "without" });
5828 let mut htlc_forwards = None;
5830 let counterparty_node_id = channel.context.get_counterparty_node_id();
5831 if !pending_forwards.is_empty() {
5832 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5833 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5836 if let Some(msg) = channel_ready {
5837 send_channel_ready!(self, pending_msg_events, channel, msg);
5839 if let Some(msg) = announcement_sigs {
5840 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5841 node_id: counterparty_node_id,
5846 macro_rules! handle_cs { () => {
5847 if let Some(update) = commitment_update {
5848 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5849 node_id: counterparty_node_id,
5854 macro_rules! handle_raa { () => {
5855 if let Some(revoke_and_ack) = raa {
5856 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5857 node_id: counterparty_node_id,
5858 msg: revoke_and_ack,
5863 RAACommitmentOrder::CommitmentFirst => {
5867 RAACommitmentOrder::RevokeAndACKFirst => {
5873 if let Some(tx) = funding_broadcastable {
5874 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5875 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5879 let mut pending_events = self.pending_events.lock().unwrap();
5880 emit_channel_pending_event!(pending_events, channel);
5881 emit_channel_ready_event!(pending_events, channel);
5887 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5888 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5890 let counterparty_node_id = match counterparty_node_id {
5891 Some(cp_id) => cp_id.clone(),
5893 // TODO: Once we can rely on the counterparty_node_id from the
5894 // monitor event, this and the id_to_peer map should be removed.
5895 let id_to_peer = self.id_to_peer.lock().unwrap();
5896 match id_to_peer.get(&funding_txo.to_channel_id()) {
5897 Some(cp_id) => cp_id.clone(),
5902 let per_peer_state = self.per_peer_state.read().unwrap();
5903 let mut peer_state_lock;
5904 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5905 if peer_state_mutex_opt.is_none() { return }
5906 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5907 let peer_state = &mut *peer_state_lock;
5909 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5912 let update_actions = peer_state.monitor_update_blocked_actions
5913 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5914 mem::drop(peer_state_lock);
5915 mem::drop(per_peer_state);
5916 self.handle_monitor_update_completion_actions(update_actions);
5919 let remaining_in_flight =
5920 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5921 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5924 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5925 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5926 remaining_in_flight);
5927 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5930 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5933 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5935 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5936 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5939 /// The `user_channel_id` parameter will be provided back in
5940 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5941 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5943 /// Note that this method will return an error and reject the channel, if it requires support
5944 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5945 /// used to accept such channels.
5947 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5948 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5949 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5950 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5953 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5954 /// it as confirmed immediately.
5956 /// The `user_channel_id` parameter will be provided back in
5957 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5958 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5960 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5961 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5963 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5964 /// transaction and blindly assumes that it will eventually confirm.
5966 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5967 /// does not pay to the correct script the correct amount, *you will lose funds*.
5969 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5970 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5971 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5972 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5975 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5976 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5978 let peers_without_funded_channels =
5979 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5980 let per_peer_state = self.per_peer_state.read().unwrap();
5981 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5982 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5983 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5984 let peer_state = &mut *peer_state_lock;
5985 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5987 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5988 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5989 // that we can delay allocating the SCID until after we're sure that the checks below will
5991 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5992 Some(unaccepted_channel) => {
5993 let best_block_height = self.best_block.read().unwrap().height();
5994 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5995 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5996 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5997 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5999 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
6003 // This should have been correctly configured by the call to InboundV1Channel::new.
6004 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6005 } else if channel.context.get_channel_type().requires_zero_conf() {
6006 let send_msg_err_event = events::MessageSendEvent::HandleError {
6007 node_id: channel.context.get_counterparty_node_id(),
6008 action: msgs::ErrorAction::SendErrorMessage{
6009 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6012 peer_state.pending_msg_events.push(send_msg_err_event);
6013 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
6015 // If this peer already has some channels, a new channel won't increase our number of peers
6016 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6017 // channels per-peer we can accept channels from a peer with existing ones.
6018 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6019 let send_msg_err_event = events::MessageSendEvent::HandleError {
6020 node_id: channel.context.get_counterparty_node_id(),
6021 action: msgs::ErrorAction::SendErrorMessage{
6022 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
6025 peer_state.pending_msg_events.push(send_msg_err_event);
6026 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
6030 // Now that we know we have a channel, assign an outbound SCID alias.
6031 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6032 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6034 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6035 node_id: channel.context.get_counterparty_node_id(),
6036 msg: channel.accept_inbound_channel(),
6039 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6044 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6045 /// or 0-conf channels.
6047 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6048 /// non-0-conf channels we have with the peer.
6049 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6050 where Filter: Fn(&PeerState<SP>) -> bool {
6051 let mut peers_without_funded_channels = 0;
6052 let best_block_height = self.best_block.read().unwrap().height();
6054 let peer_state_lock = self.per_peer_state.read().unwrap();
6055 for (_, peer_mtx) in peer_state_lock.iter() {
6056 let peer = peer_mtx.lock().unwrap();
6057 if !maybe_count_peer(&*peer) { continue; }
6058 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6059 if num_unfunded_channels == peer.total_channel_count() {
6060 peers_without_funded_channels += 1;
6064 return peers_without_funded_channels;
6067 fn unfunded_channel_count(
6068 peer: &PeerState<SP>, best_block_height: u32
6070 let mut num_unfunded_channels = 0;
6071 for (_, phase) in peer.channel_by_id.iter() {
6073 ChannelPhase::Funded(chan) => {
6074 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6075 // which have not yet had any confirmations on-chain.
6076 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6077 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6079 num_unfunded_channels += 1;
6082 ChannelPhase::UnfundedInboundV1(chan) => {
6083 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6084 num_unfunded_channels += 1;
6087 ChannelPhase::UnfundedOutboundV1(_) => {
6088 // Outbound channels don't contribute to the unfunded count in the DoS context.
6093 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6096 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6097 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6098 // likely to be lost on restart!
6099 if msg.chain_hash != self.chain_hash {
6100 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6103 if !self.default_configuration.accept_inbound_channels {
6104 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6107 // Get the number of peers with channels, but without funded ones. We don't care too much
6108 // about peers that never open a channel, so we filter by peers that have at least one
6109 // channel, and then limit the number of those with unfunded channels.
6110 let channeled_peers_without_funding =
6111 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6113 let per_peer_state = self.per_peer_state.read().unwrap();
6114 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6116 debug_assert!(false);
6117 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6119 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6120 let peer_state = &mut *peer_state_lock;
6122 // If this peer already has some channels, a new channel won't increase our number of peers
6123 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6124 // channels per-peer we can accept channels from a peer with existing ones.
6125 if peer_state.total_channel_count() == 0 &&
6126 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6127 !self.default_configuration.manually_accept_inbound_channels
6129 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6130 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6131 msg.temporary_channel_id.clone()));
6134 let best_block_height = self.best_block.read().unwrap().height();
6135 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6136 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6137 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6138 msg.temporary_channel_id.clone()));
6141 let channel_id = msg.temporary_channel_id;
6142 let channel_exists = peer_state.has_channel(&channel_id);
6144 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6147 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6148 if self.default_configuration.manually_accept_inbound_channels {
6149 let mut pending_events = self.pending_events.lock().unwrap();
6150 pending_events.push_back((events::Event::OpenChannelRequest {
6151 temporary_channel_id: msg.temporary_channel_id.clone(),
6152 counterparty_node_id: counterparty_node_id.clone(),
6153 funding_satoshis: msg.funding_satoshis,
6154 push_msat: msg.push_msat,
6155 channel_type: msg.channel_type.clone().unwrap(),
6157 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6158 open_channel_msg: msg.clone(),
6159 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6164 // Otherwise create the channel right now.
6165 let mut random_bytes = [0u8; 16];
6166 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6167 let user_channel_id = u128::from_be_bytes(random_bytes);
6168 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6169 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6170 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6173 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6178 let channel_type = channel.context.get_channel_type();
6179 if channel_type.requires_zero_conf() {
6180 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6182 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6183 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6186 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6187 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6189 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6190 node_id: counterparty_node_id.clone(),
6191 msg: channel.accept_inbound_channel(),
6193 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6197 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6198 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6199 // likely to be lost on restart!
6200 let (value, output_script, user_id) = {
6201 let per_peer_state = self.per_peer_state.read().unwrap();
6202 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6204 debug_assert!(false);
6205 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6207 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6208 let peer_state = &mut *peer_state_lock;
6209 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6210 hash_map::Entry::Occupied(mut phase) => {
6211 match phase.get_mut() {
6212 ChannelPhase::UnfundedOutboundV1(chan) => {
6213 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6214 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6217 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6221 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6224 let mut pending_events = self.pending_events.lock().unwrap();
6225 pending_events.push_back((events::Event::FundingGenerationReady {
6226 temporary_channel_id: msg.temporary_channel_id,
6227 counterparty_node_id: *counterparty_node_id,
6228 channel_value_satoshis: value,
6230 user_channel_id: user_id,
6235 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6236 let best_block = *self.best_block.read().unwrap();
6238 let per_peer_state = self.per_peer_state.read().unwrap();
6239 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6241 debug_assert!(false);
6242 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6245 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6246 let peer_state = &mut *peer_state_lock;
6247 let (chan, funding_msg_opt, monitor) =
6248 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6249 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6250 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6252 Err((mut inbound_chan, err)) => {
6253 // We've already removed this inbound channel from the map in `PeerState`
6254 // above so at this point we just need to clean up any lingering entries
6255 // concerning this channel as it is safe to do so.
6256 update_maps_on_chan_removal!(self, &inbound_chan.context);
6257 let user_id = inbound_chan.context.get_user_id();
6258 let shutdown_res = inbound_chan.context.force_shutdown(false);
6259 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6260 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6264 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6265 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6267 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6270 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6271 hash_map::Entry::Occupied(_) => {
6272 Err(MsgHandleErrInternal::send_err_msg_no_close(
6273 "Already had channel with the new channel_id".to_owned(),
6274 chan.context.channel_id()
6277 hash_map::Entry::Vacant(e) => {
6278 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6279 match id_to_peer_lock.entry(chan.context.channel_id()) {
6280 hash_map::Entry::Occupied(_) => {
6281 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6282 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6283 chan.context.channel_id()))
6285 hash_map::Entry::Vacant(i_e) => {
6286 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6287 if let Ok(persist_state) = monitor_res {
6288 i_e.insert(chan.context.get_counterparty_node_id());
6289 mem::drop(id_to_peer_lock);
6291 // There's no problem signing a counterparty's funding transaction if our monitor
6292 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6293 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6294 // until we have persisted our monitor.
6295 if let Some(msg) = funding_msg_opt {
6296 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6297 node_id: counterparty_node_id.clone(),
6302 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6303 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6304 per_peer_state, chan, INITIAL_MONITOR);
6306 unreachable!("This must be a funded channel as we just inserted it.");
6310 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6311 let channel_id = match funding_msg_opt {
6312 Some(msg) => msg.channel_id,
6313 None => chan.context.channel_id(),
6315 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6316 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6325 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6326 let best_block = *self.best_block.read().unwrap();
6327 let per_peer_state = self.per_peer_state.read().unwrap();
6328 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6330 debug_assert!(false);
6331 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6334 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6335 let peer_state = &mut *peer_state_lock;
6336 match peer_state.channel_by_id.entry(msg.channel_id) {
6337 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6338 match chan_phase_entry.get_mut() {
6339 ChannelPhase::Funded(ref mut chan) => {
6340 let monitor = try_chan_phase_entry!(self,
6341 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6342 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6343 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6346 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6350 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6354 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6358 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6359 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6360 // closing a channel), so any changes are likely to be lost on restart!
6361 let per_peer_state = self.per_peer_state.read().unwrap();
6362 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6364 debug_assert!(false);
6365 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6367 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6368 let peer_state = &mut *peer_state_lock;
6369 match peer_state.channel_by_id.entry(msg.channel_id) {
6370 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6371 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6372 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6373 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6374 if let Some(announcement_sigs) = announcement_sigs_opt {
6375 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6376 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6377 node_id: counterparty_node_id.clone(),
6378 msg: announcement_sigs,
6380 } else if chan.context.is_usable() {
6381 // If we're sending an announcement_signatures, we'll send the (public)
6382 // channel_update after sending a channel_announcement when we receive our
6383 // counterparty's announcement_signatures. Thus, we only bother to send a
6384 // channel_update here if the channel is not public, i.e. we're not sending an
6385 // announcement_signatures.
6386 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6387 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6388 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6389 node_id: counterparty_node_id.clone(),
6396 let mut pending_events = self.pending_events.lock().unwrap();
6397 emit_channel_ready_event!(pending_events, chan);
6402 try_chan_phase_entry!(self, Err(ChannelError::Close(
6403 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6406 hash_map::Entry::Vacant(_) => {
6407 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6412 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6413 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6414 let mut finish_shutdown = None;
6416 let per_peer_state = self.per_peer_state.read().unwrap();
6417 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6419 debug_assert!(false);
6420 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6422 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6423 let peer_state = &mut *peer_state_lock;
6424 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6425 let phase = chan_phase_entry.get_mut();
6427 ChannelPhase::Funded(chan) => {
6428 if !chan.received_shutdown() {
6429 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6431 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6434 let funding_txo_opt = chan.context.get_funding_txo();
6435 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6436 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6437 dropped_htlcs = htlcs;
6439 if let Some(msg) = shutdown {
6440 // We can send the `shutdown` message before updating the `ChannelMonitor`
6441 // here as we don't need the monitor update to complete until we send a
6442 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6443 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6444 node_id: *counterparty_node_id,
6448 // Update the monitor with the shutdown script if necessary.
6449 if let Some(monitor_update) = monitor_update_opt {
6450 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6451 peer_state_lock, peer_state, per_peer_state, chan);
6454 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6455 let context = phase.context_mut();
6456 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6457 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6458 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6459 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6463 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6466 for htlc_source in dropped_htlcs.drain(..) {
6467 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6468 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6469 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6471 if let Some(shutdown_res) = finish_shutdown {
6472 self.finish_close_channel(shutdown_res);
6478 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6479 let per_peer_state = self.per_peer_state.read().unwrap();
6480 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6482 debug_assert!(false);
6483 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6485 let (tx, chan_option, shutdown_result) = {
6486 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6487 let peer_state = &mut *peer_state_lock;
6488 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6489 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6490 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6491 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6492 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6493 if let Some(msg) = closing_signed {
6494 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6495 node_id: counterparty_node_id.clone(),
6500 // We're done with this channel, we've got a signed closing transaction and
6501 // will send the closing_signed back to the remote peer upon return. This
6502 // also implies there are no pending HTLCs left on the channel, so we can
6503 // fully delete it from tracking (the channel monitor is still around to
6504 // watch for old state broadcasts)!
6505 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6506 } else { (tx, None, shutdown_result) }
6508 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6509 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6512 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6515 if let Some(broadcast_tx) = tx {
6516 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6517 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6519 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6520 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6521 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6522 let peer_state = &mut *peer_state_lock;
6523 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6527 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6529 mem::drop(per_peer_state);
6530 if let Some(shutdown_result) = shutdown_result {
6531 self.finish_close_channel(shutdown_result);
6536 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6537 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6538 //determine the state of the payment based on our response/if we forward anything/the time
6539 //we take to respond. We should take care to avoid allowing such an attack.
6541 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6542 //us repeatedly garbled in different ways, and compare our error messages, which are
6543 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6544 //but we should prevent it anyway.
6546 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6547 // closing a channel), so any changes are likely to be lost on restart!
6549 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6550 let per_peer_state = self.per_peer_state.read().unwrap();
6551 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6553 debug_assert!(false);
6554 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6556 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6557 let peer_state = &mut *peer_state_lock;
6558 match peer_state.channel_by_id.entry(msg.channel_id) {
6559 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6560 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6561 let pending_forward_info = match decoded_hop_res {
6562 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6563 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6564 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6565 Err(e) => PendingHTLCStatus::Fail(e)
6567 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6568 // If the update_add is completely bogus, the call will Err and we will close,
6569 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6570 // want to reject the new HTLC and fail it backwards instead of forwarding.
6571 match pending_forward_info {
6572 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6573 let reason = if (error_code & 0x1000) != 0 {
6574 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6575 HTLCFailReason::reason(real_code, error_data)
6577 HTLCFailReason::from_failure_code(error_code)
6578 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6579 let msg = msgs::UpdateFailHTLC {
6580 channel_id: msg.channel_id,
6581 htlc_id: msg.htlc_id,
6584 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6586 _ => pending_forward_info
6589 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6591 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6592 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6595 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6600 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6602 let (htlc_source, forwarded_htlc_value) = {
6603 let per_peer_state = self.per_peer_state.read().unwrap();
6604 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6606 debug_assert!(false);
6607 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6609 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6610 let peer_state = &mut *peer_state_lock;
6611 match peer_state.channel_by_id.entry(msg.channel_id) {
6612 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6613 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6614 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6615 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6616 log_trace!(self.logger,
6617 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6619 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6620 .or_insert_with(Vec::new)
6621 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6623 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6624 // entry here, even though we *do* need to block the next RAA monitor update.
6625 // We do this instead in the `claim_funds_internal` by attaching a
6626 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6627 // outbound HTLC is claimed. This is guaranteed to all complete before we
6628 // process the RAA as messages are processed from single peers serially.
6629 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6632 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6633 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6636 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6639 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6643 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6644 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6645 // closing a channel), so any changes are likely to be lost on restart!
6646 let per_peer_state = self.per_peer_state.read().unwrap();
6647 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6649 debug_assert!(false);
6650 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6652 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6653 let peer_state = &mut *peer_state_lock;
6654 match peer_state.channel_by_id.entry(msg.channel_id) {
6655 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6656 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6657 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6659 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6660 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6663 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6668 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6669 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6670 // closing a channel), so any changes are likely to be lost on restart!
6671 let per_peer_state = self.per_peer_state.read().unwrap();
6672 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6674 debug_assert!(false);
6675 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6677 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6678 let peer_state = &mut *peer_state_lock;
6679 match peer_state.channel_by_id.entry(msg.channel_id) {
6680 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6681 if (msg.failure_code & 0x8000) == 0 {
6682 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6683 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6685 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6686 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6688 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6689 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6693 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6697 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6698 let per_peer_state = self.per_peer_state.read().unwrap();
6699 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6701 debug_assert!(false);
6702 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6704 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6705 let peer_state = &mut *peer_state_lock;
6706 match peer_state.channel_by_id.entry(msg.channel_id) {
6707 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6708 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6709 let funding_txo = chan.context.get_funding_txo();
6710 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6711 if let Some(monitor_update) = monitor_update_opt {
6712 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6713 peer_state, per_peer_state, chan);
6717 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6718 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6721 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6726 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6727 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6728 let mut push_forward_event = false;
6729 let mut new_intercept_events = VecDeque::new();
6730 let mut failed_intercept_forwards = Vec::new();
6731 if !pending_forwards.is_empty() {
6732 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6733 let scid = match forward_info.routing {
6734 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6735 PendingHTLCRouting::Receive { .. } => 0,
6736 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6738 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6739 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6741 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6742 let forward_htlcs_empty = forward_htlcs.is_empty();
6743 match forward_htlcs.entry(scid) {
6744 hash_map::Entry::Occupied(mut entry) => {
6745 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6746 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6748 hash_map::Entry::Vacant(entry) => {
6749 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6750 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6752 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6753 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6754 match pending_intercepts.entry(intercept_id) {
6755 hash_map::Entry::Vacant(entry) => {
6756 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6757 requested_next_hop_scid: scid,
6758 payment_hash: forward_info.payment_hash,
6759 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6760 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6763 entry.insert(PendingAddHTLCInfo {
6764 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6766 hash_map::Entry::Occupied(_) => {
6767 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6768 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6769 short_channel_id: prev_short_channel_id,
6770 user_channel_id: Some(prev_user_channel_id),
6771 outpoint: prev_funding_outpoint,
6772 htlc_id: prev_htlc_id,
6773 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6774 phantom_shared_secret: None,
6777 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6778 HTLCFailReason::from_failure_code(0x4000 | 10),
6779 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6784 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6785 // payments are being processed.
6786 if forward_htlcs_empty {
6787 push_forward_event = true;
6789 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6790 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6797 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6798 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6801 if !new_intercept_events.is_empty() {
6802 let mut events = self.pending_events.lock().unwrap();
6803 events.append(&mut new_intercept_events);
6805 if push_forward_event { self.push_pending_forwards_ev() }
6809 fn push_pending_forwards_ev(&self) {
6810 let mut pending_events = self.pending_events.lock().unwrap();
6811 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6812 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6813 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6815 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6816 // events is done in batches and they are not removed until we're done processing each
6817 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6818 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6819 // payments will need an additional forwarding event before being claimed to make them look
6820 // real by taking more time.
6821 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6822 pending_events.push_back((Event::PendingHTLCsForwardable {
6823 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6828 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6829 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6830 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6831 /// the [`ChannelMonitorUpdate`] in question.
6832 fn raa_monitor_updates_held(&self,
6833 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6834 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6836 actions_blocking_raa_monitor_updates
6837 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6838 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6839 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6840 channel_funding_outpoint,
6841 counterparty_node_id,
6846 #[cfg(any(test, feature = "_test_utils"))]
6847 pub(crate) fn test_raa_monitor_updates_held(&self,
6848 counterparty_node_id: PublicKey, channel_id: ChannelId
6850 let per_peer_state = self.per_peer_state.read().unwrap();
6851 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6852 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6853 let peer_state = &mut *peer_state_lck;
6855 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6856 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6857 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6863 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6864 let htlcs_to_fail = {
6865 let per_peer_state = self.per_peer_state.read().unwrap();
6866 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6868 debug_assert!(false);
6869 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6870 }).map(|mtx| mtx.lock().unwrap())?;
6871 let peer_state = &mut *peer_state_lock;
6872 match peer_state.channel_by_id.entry(msg.channel_id) {
6873 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6874 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6875 let funding_txo_opt = chan.context.get_funding_txo();
6876 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6877 self.raa_monitor_updates_held(
6878 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6879 *counterparty_node_id)
6881 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6882 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6883 if let Some(monitor_update) = monitor_update_opt {
6884 let funding_txo = funding_txo_opt
6885 .expect("Funding outpoint must have been set for RAA handling to succeed");
6886 handle_new_monitor_update!(self, funding_txo, monitor_update,
6887 peer_state_lock, peer_state, per_peer_state, chan);
6891 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6892 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6895 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6898 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6902 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6903 let per_peer_state = self.per_peer_state.read().unwrap();
6904 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6906 debug_assert!(false);
6907 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6909 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6910 let peer_state = &mut *peer_state_lock;
6911 match peer_state.channel_by_id.entry(msg.channel_id) {
6912 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6913 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6914 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6916 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6917 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6920 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6925 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6926 let per_peer_state = self.per_peer_state.read().unwrap();
6927 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6929 debug_assert!(false);
6930 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6932 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6933 let peer_state = &mut *peer_state_lock;
6934 match peer_state.channel_by_id.entry(msg.channel_id) {
6935 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6936 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6937 if !chan.context.is_usable() {
6938 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6941 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6942 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6943 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6944 msg, &self.default_configuration
6945 ), chan_phase_entry),
6946 // Note that announcement_signatures fails if the channel cannot be announced,
6947 // so get_channel_update_for_broadcast will never fail by the time we get here.
6948 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6951 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6952 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6955 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6960 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6961 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6962 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6963 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6965 // It's not a local channel
6966 return Ok(NotifyOption::SkipPersistNoEvents)
6969 let per_peer_state = self.per_peer_state.read().unwrap();
6970 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6971 if peer_state_mutex_opt.is_none() {
6972 return Ok(NotifyOption::SkipPersistNoEvents)
6974 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6975 let peer_state = &mut *peer_state_lock;
6976 match peer_state.channel_by_id.entry(chan_id) {
6977 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6978 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6979 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6980 if chan.context.should_announce() {
6981 // If the announcement is about a channel of ours which is public, some
6982 // other peer may simply be forwarding all its gossip to us. Don't provide
6983 // a scary-looking error message and return Ok instead.
6984 return Ok(NotifyOption::SkipPersistNoEvents);
6986 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6988 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6989 let msg_from_node_one = msg.contents.flags & 1 == 0;
6990 if were_node_one == msg_from_node_one {
6991 return Ok(NotifyOption::SkipPersistNoEvents);
6993 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6994 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6995 // If nothing changed after applying their update, we don't need to bother
6998 return Ok(NotifyOption::SkipPersistNoEvents);
7002 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7003 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7006 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7008 Ok(NotifyOption::DoPersist)
7011 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7013 let need_lnd_workaround = {
7014 let per_peer_state = self.per_peer_state.read().unwrap();
7016 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7018 debug_assert!(false);
7019 MsgHandleErrInternal::send_err_msg_no_close(
7020 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7024 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7025 let peer_state = &mut *peer_state_lock;
7026 match peer_state.channel_by_id.entry(msg.channel_id) {
7027 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7028 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7029 // Currently, we expect all holding cell update_adds to be dropped on peer
7030 // disconnect, so Channel's reestablish will never hand us any holding cell
7031 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7032 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7033 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7034 msg, &self.logger, &self.node_signer, self.chain_hash,
7035 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7036 let mut channel_update = None;
7037 if let Some(msg) = responses.shutdown_msg {
7038 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7039 node_id: counterparty_node_id.clone(),
7042 } else if chan.context.is_usable() {
7043 // If the channel is in a usable state (ie the channel is not being shut
7044 // down), send a unicast channel_update to our counterparty to make sure
7045 // they have the latest channel parameters.
7046 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7047 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7048 node_id: chan.context.get_counterparty_node_id(),
7053 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7054 htlc_forwards = self.handle_channel_resumption(
7055 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7056 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7057 if let Some(upd) = channel_update {
7058 peer_state.pending_msg_events.push(upd);
7062 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7063 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7066 hash_map::Entry::Vacant(_) => {
7067 log_debug!(self.logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7068 log_bytes!(msg.channel_id.0));
7069 // Unfortunately, lnd doesn't force close on errors
7070 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7071 // One of the few ways to get an lnd counterparty to force close is by
7072 // replicating what they do when restoring static channel backups (SCBs). They
7073 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7074 // invalid `your_last_per_commitment_secret`.
7076 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7077 // can assume it's likely the channel closed from our point of view, but it
7078 // remains open on the counterparty's side. By sending this bogus
7079 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7080 // force close broadcasting their latest state. If the closing transaction from
7081 // our point of view remains unconfirmed, it'll enter a race with the
7082 // counterparty's to-be-broadcast latest commitment transaction.
7083 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7084 node_id: *counterparty_node_id,
7085 msg: msgs::ChannelReestablish {
7086 channel_id: msg.channel_id,
7087 next_local_commitment_number: 0,
7088 next_remote_commitment_number: 0,
7089 your_last_per_commitment_secret: [1u8; 32],
7090 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7091 next_funding_txid: None,
7094 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7095 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7096 counterparty_node_id), msg.channel_id)
7102 let mut persist = NotifyOption::SkipPersistHandleEvents;
7103 if let Some(forwards) = htlc_forwards {
7104 self.forward_htlcs(&mut [forwards][..]);
7105 persist = NotifyOption::DoPersist;
7108 if let Some(channel_ready_msg) = need_lnd_workaround {
7109 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7114 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7115 fn process_pending_monitor_events(&self) -> bool {
7116 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7118 let mut failed_channels = Vec::new();
7119 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7120 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7121 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7122 for monitor_event in monitor_events.drain(..) {
7123 match monitor_event {
7124 MonitorEvent::HTLCEvent(htlc_update) => {
7125 if let Some(preimage) = htlc_update.payment_preimage {
7126 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7127 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7129 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7130 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7131 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7132 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7135 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7136 let counterparty_node_id_opt = match counterparty_node_id {
7137 Some(cp_id) => Some(cp_id),
7139 // TODO: Once we can rely on the counterparty_node_id from the
7140 // monitor event, this and the id_to_peer map should be removed.
7141 let id_to_peer = self.id_to_peer.lock().unwrap();
7142 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
7145 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7146 let per_peer_state = self.per_peer_state.read().unwrap();
7147 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7148 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7149 let peer_state = &mut *peer_state_lock;
7150 let pending_msg_events = &mut peer_state.pending_msg_events;
7151 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7152 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7153 failed_channels.push(chan.context.force_shutdown(false));
7154 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7155 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7159 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
7160 pending_msg_events.push(events::MessageSendEvent::HandleError {
7161 node_id: chan.context.get_counterparty_node_id(),
7162 action: msgs::ErrorAction::DisconnectPeer {
7163 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7171 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7172 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7178 for failure in failed_channels.drain(..) {
7179 self.finish_close_channel(failure);
7182 has_pending_monitor_events
7185 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7186 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7187 /// update events as a separate process method here.
7189 pub fn process_monitor_events(&self) {
7190 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7191 self.process_pending_monitor_events();
7194 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7195 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7196 /// update was applied.
7197 fn check_free_holding_cells(&self) -> bool {
7198 let mut has_monitor_update = false;
7199 let mut failed_htlcs = Vec::new();
7201 // Walk our list of channels and find any that need to update. Note that when we do find an
7202 // update, if it includes actions that must be taken afterwards, we have to drop the
7203 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7204 // manage to go through all our peers without finding a single channel to update.
7206 let per_peer_state = self.per_peer_state.read().unwrap();
7207 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7209 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7210 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7211 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7212 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7214 let counterparty_node_id = chan.context.get_counterparty_node_id();
7215 let funding_txo = chan.context.get_funding_txo();
7216 let (monitor_opt, holding_cell_failed_htlcs) =
7217 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
7218 if !holding_cell_failed_htlcs.is_empty() {
7219 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7221 if let Some(monitor_update) = monitor_opt {
7222 has_monitor_update = true;
7224 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7225 peer_state_lock, peer_state, per_peer_state, chan);
7226 continue 'peer_loop;
7235 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7236 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7237 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7243 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7244 /// is (temporarily) unavailable, and the operation should be retried later.
7246 /// This method allows for that retry - either checking for any signer-pending messages to be
7247 /// attempted in every channel, or in the specifically provided channel.
7249 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7250 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7251 // actually finish implementing it fully.
7252 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7253 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7255 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7256 let node_id = phase.context().get_counterparty_node_id();
7257 if let ChannelPhase::Funded(chan) = phase {
7258 let msgs = chan.signer_maybe_unblocked(&self.logger);
7259 if let Some(updates) = msgs.commitment_update {
7260 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7265 if let Some(msg) = msgs.funding_signed {
7266 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7271 if let Some(msg) = msgs.funding_created {
7272 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7277 if let Some(msg) = msgs.channel_ready {
7278 send_channel_ready!(self, pending_msg_events, chan, msg);
7283 let per_peer_state = self.per_peer_state.read().unwrap();
7284 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7285 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7286 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7287 let peer_state = &mut *peer_state_lock;
7288 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7289 unblock_chan(chan, &mut peer_state.pending_msg_events);
7293 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7294 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7295 let peer_state = &mut *peer_state_lock;
7296 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7297 unblock_chan(chan, &mut peer_state.pending_msg_events);
7303 /// Check whether any channels have finished removing all pending updates after a shutdown
7304 /// exchange and can now send a closing_signed.
7305 /// Returns whether any closing_signed messages were generated.
7306 fn maybe_generate_initial_closing_signed(&self) -> bool {
7307 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7308 let mut has_update = false;
7309 let mut shutdown_results = Vec::new();
7311 let per_peer_state = self.per_peer_state.read().unwrap();
7313 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7314 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7315 let peer_state = &mut *peer_state_lock;
7316 let pending_msg_events = &mut peer_state.pending_msg_events;
7317 peer_state.channel_by_id.retain(|channel_id, phase| {
7319 ChannelPhase::Funded(chan) => {
7320 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7321 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7322 if let Some(msg) = msg_opt {
7324 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7325 node_id: chan.context.get_counterparty_node_id(), msg,
7328 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7329 if let Some(shutdown_result) = shutdown_result_opt {
7330 shutdown_results.push(shutdown_result);
7332 if let Some(tx) = tx_opt {
7333 // We're done with this channel. We got a closing_signed and sent back
7334 // a closing_signed with a closing transaction to broadcast.
7335 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7336 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7341 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7343 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7344 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7345 update_maps_on_chan_removal!(self, &chan.context);
7351 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7352 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7357 _ => true, // Retain unfunded channels if present.
7363 for (counterparty_node_id, err) in handle_errors.drain(..) {
7364 let _ = handle_error!(self, err, counterparty_node_id);
7367 for shutdown_result in shutdown_results.drain(..) {
7368 self.finish_close_channel(shutdown_result);
7374 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7375 /// pushing the channel monitor update (if any) to the background events queue and removing the
7377 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7378 for mut failure in failed_channels.drain(..) {
7379 // Either a commitment transactions has been confirmed on-chain or
7380 // Channel::block_disconnected detected that the funding transaction has been
7381 // reorganized out of the main chain.
7382 // We cannot broadcast our latest local state via monitor update (as
7383 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7384 // so we track the update internally and handle it when the user next calls
7385 // timer_tick_occurred, guaranteeing we're running normally.
7386 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7387 assert_eq!(update.updates.len(), 1);
7388 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7389 assert!(should_broadcast);
7390 } else { unreachable!(); }
7391 self.pending_background_events.lock().unwrap().push(
7392 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7393 counterparty_node_id, funding_txo, update
7396 self.finish_close_channel(failure);
7400 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7401 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7402 /// not have an expiration unless otherwise set on the builder.
7406 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7407 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7408 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7409 /// node in order to send the [`InvoiceRequest`].
7413 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7416 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7418 /// [`Offer`]: crate::offers::offer::Offer
7419 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7420 pub fn create_offer_builder(
7421 &self, description: String
7422 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7423 let node_id = self.get_our_node_id();
7424 let expanded_key = &self.inbound_payment_key;
7425 let entropy = &*self.entropy_source;
7426 let secp_ctx = &self.secp_ctx;
7427 let path = self.create_one_hop_blinded_path();
7429 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7430 .chain_hash(self.chain_hash)
7434 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7435 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7439 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7440 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7442 /// The builder will have the provided expiration set. Any changes to the expiration on the
7443 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7444 /// block time minus two hours is used for the current time when determining if the refund has
7447 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7448 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7449 /// with an [`Event::InvoiceRequestFailed`].
7451 /// If `max_total_routing_fee_msat` is not specified, The default from
7452 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7456 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7457 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7458 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7459 /// in order to send the [`Bolt12Invoice`].
7463 /// Requires a direct connection to an introduction node in the responding
7464 /// [`Bolt12Invoice::payment_paths`].
7468 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7469 /// or if `amount_msats` is invalid.
7471 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7473 /// [`Refund`]: crate::offers::refund::Refund
7474 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7475 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7476 pub fn create_refund_builder(
7477 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7478 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7479 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7480 let node_id = self.get_our_node_id();
7481 let expanded_key = &self.inbound_payment_key;
7482 let entropy = &*self.entropy_source;
7483 let secp_ctx = &self.secp_ctx;
7484 let path = self.create_one_hop_blinded_path();
7486 let builder = RefundBuilder::deriving_payer_id(
7487 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7489 .chain_hash(self.chain_hash)
7490 .absolute_expiry(absolute_expiry)
7493 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7494 self.pending_outbound_payments
7495 .add_new_awaiting_invoice(
7496 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7498 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7503 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7504 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7505 /// [`Bolt12Invoice`] once it is received.
7507 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7508 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7509 /// The optional parameters are used in the builder, if `Some`:
7510 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7511 /// [`Offer::expects_quantity`] is `true`.
7512 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7513 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7515 /// If `max_total_routing_fee_msat` is not specified, The default from
7516 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7520 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7521 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7524 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7525 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7526 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7530 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7531 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7532 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7533 /// in order to send the [`Bolt12Invoice`].
7537 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7538 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7539 /// [`Bolt12Invoice::payment_paths`].
7543 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7544 /// or if the provided parameters are invalid for the offer.
7546 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7547 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7548 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7549 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7550 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7551 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7552 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7553 pub fn pay_for_offer(
7554 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7555 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7556 max_total_routing_fee_msat: Option<u64>
7557 ) -> Result<(), Bolt12SemanticError> {
7558 let expanded_key = &self.inbound_payment_key;
7559 let entropy = &*self.entropy_source;
7560 let secp_ctx = &self.secp_ctx;
7563 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7564 .chain_hash(self.chain_hash)?;
7565 let builder = match quantity {
7567 Some(quantity) => builder.quantity(quantity)?,
7569 let builder = match amount_msats {
7571 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7573 let builder = match payer_note {
7575 Some(payer_note) => builder.payer_note(payer_note),
7578 let invoice_request = builder.build_and_sign()?;
7579 let reply_path = self.create_one_hop_blinded_path();
7581 let expiration = StaleExpiration::TimerTicks(1);
7582 self.pending_outbound_payments
7583 .add_new_awaiting_invoice(
7584 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7586 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7588 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7589 if offer.paths().is_empty() {
7590 let message = new_pending_onion_message(
7591 OffersMessage::InvoiceRequest(invoice_request),
7592 Destination::Node(offer.signing_pubkey()),
7595 pending_offers_messages.push(message);
7597 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7598 // Using only one path could result in a failure if the path no longer exists. But only
7599 // one invoice for a given payment id will be paid, even if more than one is received.
7600 const REQUEST_LIMIT: usize = 10;
7601 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7602 let message = new_pending_onion_message(
7603 OffersMessage::InvoiceRequest(invoice_request.clone()),
7604 Destination::BlindedPath(path.clone()),
7605 Some(reply_path.clone()),
7607 pending_offers_messages.push(message);
7614 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7617 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7618 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7619 /// [`PaymentPreimage`].
7623 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7624 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7625 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7626 /// received and no retries will be made.
7628 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7629 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7630 let expanded_key = &self.inbound_payment_key;
7631 let entropy = &*self.entropy_source;
7632 let secp_ctx = &self.secp_ctx;
7634 let amount_msats = refund.amount_msats();
7635 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7637 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7638 Ok((payment_hash, payment_secret)) => {
7639 let payment_paths = vec![
7640 self.create_one_hop_blinded_payment_path(payment_secret),
7642 #[cfg(not(feature = "no-std"))]
7643 let builder = refund.respond_using_derived_keys(
7644 payment_paths, payment_hash, expanded_key, entropy
7646 #[cfg(feature = "no-std")]
7647 let created_at = Duration::from_secs(
7648 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7650 #[cfg(feature = "no-std")]
7651 let builder = refund.respond_using_derived_keys_no_std(
7652 payment_paths, payment_hash, created_at, expanded_key, entropy
7654 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7655 let reply_path = self.create_one_hop_blinded_path();
7657 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7658 if refund.paths().is_empty() {
7659 let message = new_pending_onion_message(
7660 OffersMessage::Invoice(invoice),
7661 Destination::Node(refund.payer_id()),
7664 pending_offers_messages.push(message);
7666 for path in refund.paths() {
7667 let message = new_pending_onion_message(
7668 OffersMessage::Invoice(invoice.clone()),
7669 Destination::BlindedPath(path.clone()),
7670 Some(reply_path.clone()),
7672 pending_offers_messages.push(message);
7678 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7682 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7685 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7686 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7688 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7689 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7690 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7691 /// passed directly to [`claim_funds`].
7693 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7695 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7696 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7700 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7701 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7703 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7705 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7706 /// on versions of LDK prior to 0.0.114.
7708 /// [`claim_funds`]: Self::claim_funds
7709 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7710 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7711 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7712 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7713 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7714 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7715 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7716 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7717 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7718 min_final_cltv_expiry_delta)
7721 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7722 /// stored external to LDK.
7724 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7725 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7726 /// the `min_value_msat` provided here, if one is provided.
7728 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7729 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7732 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7733 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7734 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7735 /// sender "proof-of-payment" unless they have paid the required amount.
7737 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7738 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7739 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7740 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7741 /// invoices when no timeout is set.
7743 /// Note that we use block header time to time-out pending inbound payments (with some margin
7744 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7745 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7746 /// If you need exact expiry semantics, you should enforce them upon receipt of
7747 /// [`PaymentClaimable`].
7749 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7750 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7752 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7753 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7757 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7758 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7760 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7762 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7763 /// on versions of LDK prior to 0.0.114.
7765 /// [`create_inbound_payment`]: Self::create_inbound_payment
7766 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7767 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7768 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7769 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7770 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7771 min_final_cltv_expiry)
7774 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7775 /// previously returned from [`create_inbound_payment`].
7777 /// [`create_inbound_payment`]: Self::create_inbound_payment
7778 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7779 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7782 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7784 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7785 let entropy_source = self.entropy_source.deref();
7786 let secp_ctx = &self.secp_ctx;
7787 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7790 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7792 fn create_one_hop_blinded_payment_path(
7793 &self, payment_secret: PaymentSecret
7794 ) -> (BlindedPayInfo, BlindedPath) {
7795 let entropy_source = self.entropy_source.deref();
7796 let secp_ctx = &self.secp_ctx;
7798 let payee_node_id = self.get_our_node_id();
7799 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7800 let payee_tlvs = ReceiveTlvs {
7802 payment_constraints: PaymentConstraints {
7804 htlc_minimum_msat: 1,
7807 // TODO: Err for overflow?
7808 BlindedPath::one_hop_for_payment(
7809 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7813 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7814 /// are used when constructing the phantom invoice's route hints.
7816 /// [phantom node payments]: crate::sign::PhantomKeysManager
7817 pub fn get_phantom_scid(&self) -> u64 {
7818 let best_block_height = self.best_block.read().unwrap().height();
7819 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7821 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7822 // Ensure the generated scid doesn't conflict with a real channel.
7823 match short_to_chan_info.get(&scid_candidate) {
7824 Some(_) => continue,
7825 None => return scid_candidate
7830 /// Gets route hints for use in receiving [phantom node payments].
7832 /// [phantom node payments]: crate::sign::PhantomKeysManager
7833 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7835 channels: self.list_usable_channels(),
7836 phantom_scid: self.get_phantom_scid(),
7837 real_node_pubkey: self.get_our_node_id(),
7841 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7842 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7843 /// [`ChannelManager::forward_intercepted_htlc`].
7845 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7846 /// times to get a unique scid.
7847 pub fn get_intercept_scid(&self) -> u64 {
7848 let best_block_height = self.best_block.read().unwrap().height();
7849 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7851 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7852 // Ensure the generated scid doesn't conflict with a real channel.
7853 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7854 return scid_candidate
7858 /// Gets inflight HTLC information by processing pending outbound payments that are in
7859 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7860 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7861 let mut inflight_htlcs = InFlightHtlcs::new();
7863 let per_peer_state = self.per_peer_state.read().unwrap();
7864 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7865 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7866 let peer_state = &mut *peer_state_lock;
7867 for chan in peer_state.channel_by_id.values().filter_map(
7868 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7870 for (htlc_source, _) in chan.inflight_htlc_sources() {
7871 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7872 inflight_htlcs.process_path(path, self.get_our_node_id());
7881 #[cfg(any(test, feature = "_test_utils"))]
7882 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7883 let events = core::cell::RefCell::new(Vec::new());
7884 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7885 self.process_pending_events(&event_handler);
7889 #[cfg(feature = "_test_utils")]
7890 pub fn push_pending_event(&self, event: events::Event) {
7891 let mut events = self.pending_events.lock().unwrap();
7892 events.push_back((event, None));
7896 pub fn pop_pending_event(&self) -> Option<events::Event> {
7897 let mut events = self.pending_events.lock().unwrap();
7898 events.pop_front().map(|(e, _)| e)
7902 pub fn has_pending_payments(&self) -> bool {
7903 self.pending_outbound_payments.has_pending_payments()
7907 pub fn clear_pending_payments(&self) {
7908 self.pending_outbound_payments.clear_pending_payments()
7911 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7912 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7913 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7914 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7915 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7917 let per_peer_state = self.per_peer_state.read().unwrap();
7918 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7919 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7920 let peer_state = &mut *peer_state_lck;
7922 if let Some(blocker) = completed_blocker.take() {
7923 // Only do this on the first iteration of the loop.
7924 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7925 .get_mut(&channel_funding_outpoint.to_channel_id())
7927 blockers.retain(|iter| iter != &blocker);
7931 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7932 channel_funding_outpoint, counterparty_node_id) {
7933 // Check that, while holding the peer lock, we don't have anything else
7934 // blocking monitor updates for this channel. If we do, release the monitor
7935 // update(s) when those blockers complete.
7936 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7937 &channel_funding_outpoint.to_channel_id());
7941 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7942 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7943 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7944 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7945 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7946 channel_funding_outpoint.to_channel_id());
7947 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7948 peer_state_lck, peer_state, per_peer_state, chan);
7949 if further_update_exists {
7950 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7955 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7956 channel_funding_outpoint.to_channel_id());
7961 log_debug!(self.logger,
7962 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7963 log_pubkey!(counterparty_node_id));
7969 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7970 for action in actions {
7972 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7973 channel_funding_outpoint, counterparty_node_id
7975 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7981 /// Processes any events asynchronously in the order they were generated since the last call
7982 /// using the given event handler.
7984 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7985 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7989 process_events_body!(self, ev, { handler(ev).await });
7993 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7995 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7996 T::Target: BroadcasterInterface,
7997 ES::Target: EntropySource,
7998 NS::Target: NodeSigner,
7999 SP::Target: SignerProvider,
8000 F::Target: FeeEstimator,
8004 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8005 /// The returned array will contain `MessageSendEvent`s for different peers if
8006 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8007 /// is always placed next to each other.
8009 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8010 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8011 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8012 /// will randomly be placed first or last in the returned array.
8014 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8015 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8016 /// the `MessageSendEvent`s to the specific peer they were generated under.
8017 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8018 let events = RefCell::new(Vec::new());
8019 PersistenceNotifierGuard::optionally_notify(self, || {
8020 let mut result = NotifyOption::SkipPersistNoEvents;
8022 // TODO: This behavior should be documented. It's unintuitive that we query
8023 // ChannelMonitors when clearing other events.
8024 if self.process_pending_monitor_events() {
8025 result = NotifyOption::DoPersist;
8028 if self.check_free_holding_cells() {
8029 result = NotifyOption::DoPersist;
8031 if self.maybe_generate_initial_closing_signed() {
8032 result = NotifyOption::DoPersist;
8035 let mut pending_events = Vec::new();
8036 let per_peer_state = self.per_peer_state.read().unwrap();
8037 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8038 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8039 let peer_state = &mut *peer_state_lock;
8040 if peer_state.pending_msg_events.len() > 0 {
8041 pending_events.append(&mut peer_state.pending_msg_events);
8045 if !pending_events.is_empty() {
8046 events.replace(pending_events);
8055 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8057 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8058 T::Target: BroadcasterInterface,
8059 ES::Target: EntropySource,
8060 NS::Target: NodeSigner,
8061 SP::Target: SignerProvider,
8062 F::Target: FeeEstimator,
8066 /// Processes events that must be periodically handled.
8068 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8069 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8070 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8072 process_events_body!(self, ev, handler.handle_event(ev));
8076 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8078 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8079 T::Target: BroadcasterInterface,
8080 ES::Target: EntropySource,
8081 NS::Target: NodeSigner,
8082 SP::Target: SignerProvider,
8083 F::Target: FeeEstimator,
8087 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
8089 let best_block = self.best_block.read().unwrap();
8090 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8091 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8092 assert_eq!(best_block.height(), height - 1,
8093 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8096 self.transactions_confirmed(header, txdata, height);
8097 self.best_block_updated(header, height);
8100 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
8101 let _persistence_guard =
8102 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8103 self, || -> NotifyOption { NotifyOption::DoPersist });
8104 let new_height = height - 1;
8106 let mut best_block = self.best_block.write().unwrap();
8107 assert_eq!(best_block.block_hash(), header.block_hash(),
8108 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8109 assert_eq!(best_block.height(), height,
8110 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8111 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8114 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8118 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8120 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8121 T::Target: BroadcasterInterface,
8122 ES::Target: EntropySource,
8123 NS::Target: NodeSigner,
8124 SP::Target: SignerProvider,
8125 F::Target: FeeEstimator,
8129 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
8130 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8131 // during initialization prior to the chain_monitor being fully configured in some cases.
8132 // See the docs for `ChannelManagerReadArgs` for more.
8134 let block_hash = header.block_hash();
8135 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8137 let _persistence_guard =
8138 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8139 self, || -> NotifyOption { NotifyOption::DoPersist });
8140 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger)
8141 .map(|(a, b)| (a, Vec::new(), b)));
8143 let last_best_block_height = self.best_block.read().unwrap().height();
8144 if height < last_best_block_height {
8145 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8146 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8150 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
8151 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8152 // during initialization prior to the chain_monitor being fully configured in some cases.
8153 // See the docs for `ChannelManagerReadArgs` for more.
8155 let block_hash = header.block_hash();
8156 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8158 let _persistence_guard =
8159 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8160 self, || -> NotifyOption { NotifyOption::DoPersist });
8161 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8163 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
8165 macro_rules! max_time {
8166 ($timestamp: expr) => {
8168 // Update $timestamp to be the max of its current value and the block
8169 // timestamp. This should keep us close to the current time without relying on
8170 // having an explicit local time source.
8171 // Just in case we end up in a race, we loop until we either successfully
8172 // update $timestamp or decide we don't need to.
8173 let old_serial = $timestamp.load(Ordering::Acquire);
8174 if old_serial >= header.time as usize { break; }
8175 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8181 max_time!(self.highest_seen_timestamp);
8182 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8183 payment_secrets.retain(|_, inbound_payment| {
8184 inbound_payment.expiry_time > header.time as u64
8188 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
8189 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8190 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8191 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8192 let peer_state = &mut *peer_state_lock;
8193 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8194 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
8195 res.push((funding_txo.txid, Some(block_hash)));
8202 fn transaction_unconfirmed(&self, txid: &Txid) {
8203 let _persistence_guard =
8204 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8205 self, || -> NotifyOption { NotifyOption::DoPersist });
8206 self.do_chain_event(None, |channel| {
8207 if let Some(funding_txo) = channel.context.get_funding_txo() {
8208 if funding_txo.txid == *txid {
8209 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
8210 } else { Ok((None, Vec::new(), None)) }
8211 } else { Ok((None, Vec::new(), None)) }
8216 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8218 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8219 T::Target: BroadcasterInterface,
8220 ES::Target: EntropySource,
8221 NS::Target: NodeSigner,
8222 SP::Target: SignerProvider,
8223 F::Target: FeeEstimator,
8227 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8228 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8230 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8231 (&self, height_opt: Option<u32>, f: FN) {
8232 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8233 // during initialization prior to the chain_monitor being fully configured in some cases.
8234 // See the docs for `ChannelManagerReadArgs` for more.
8236 let mut failed_channels = Vec::new();
8237 let mut timed_out_htlcs = Vec::new();
8239 let per_peer_state = self.per_peer_state.read().unwrap();
8240 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8241 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8242 let peer_state = &mut *peer_state_lock;
8243 let pending_msg_events = &mut peer_state.pending_msg_events;
8244 peer_state.channel_by_id.retain(|_, phase| {
8246 // Retain unfunded channels.
8247 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8248 ChannelPhase::Funded(channel) => {
8249 let res = f(channel);
8250 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8251 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8252 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8253 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8254 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8256 if let Some(channel_ready) = channel_ready_opt {
8257 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8258 if channel.context.is_usable() {
8259 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8260 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8261 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8262 node_id: channel.context.get_counterparty_node_id(),
8267 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8272 let mut pending_events = self.pending_events.lock().unwrap();
8273 emit_channel_ready_event!(pending_events, channel);
8276 if let Some(announcement_sigs) = announcement_sigs {
8277 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8278 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8279 node_id: channel.context.get_counterparty_node_id(),
8280 msg: announcement_sigs,
8282 if let Some(height) = height_opt {
8283 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8284 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8286 // Note that announcement_signatures fails if the channel cannot be announced,
8287 // so get_channel_update_for_broadcast will never fail by the time we get here.
8288 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8293 if channel.is_our_channel_ready() {
8294 if let Some(real_scid) = channel.context.get_short_channel_id() {
8295 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8296 // to the short_to_chan_info map here. Note that we check whether we
8297 // can relay using the real SCID at relay-time (i.e.
8298 // enforce option_scid_alias then), and if the funding tx is ever
8299 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8300 // is always consistent.
8301 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8302 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8303 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8304 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8305 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8308 } else if let Err(reason) = res {
8309 update_maps_on_chan_removal!(self, &channel.context);
8310 // It looks like our counterparty went on-chain or funding transaction was
8311 // reorged out of the main chain. Close the channel.
8312 failed_channels.push(channel.context.force_shutdown(true));
8313 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8314 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8318 let reason_message = format!("{}", reason);
8319 self.issue_channel_close_events(&channel.context, reason);
8320 pending_msg_events.push(events::MessageSendEvent::HandleError {
8321 node_id: channel.context.get_counterparty_node_id(),
8322 action: msgs::ErrorAction::DisconnectPeer {
8323 msg: Some(msgs::ErrorMessage {
8324 channel_id: channel.context.channel_id(),
8325 data: reason_message,
8338 if let Some(height) = height_opt {
8339 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8340 payment.htlcs.retain(|htlc| {
8341 // If height is approaching the number of blocks we think it takes us to get
8342 // our commitment transaction confirmed before the HTLC expires, plus the
8343 // number of blocks we generally consider it to take to do a commitment update,
8344 // just give up on it and fail the HTLC.
8345 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8346 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8347 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8349 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8350 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8351 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8355 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8358 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8359 intercepted_htlcs.retain(|_, htlc| {
8360 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8361 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8362 short_channel_id: htlc.prev_short_channel_id,
8363 user_channel_id: Some(htlc.prev_user_channel_id),
8364 htlc_id: htlc.prev_htlc_id,
8365 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8366 phantom_shared_secret: None,
8367 outpoint: htlc.prev_funding_outpoint,
8370 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8371 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8372 _ => unreachable!(),
8374 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8375 HTLCFailReason::from_failure_code(0x2000 | 2),
8376 HTLCDestination::InvalidForward { requested_forward_scid }));
8377 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8383 self.handle_init_event_channel_failures(failed_channels);
8385 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8386 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8390 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8391 /// may have events that need processing.
8393 /// In order to check if this [`ChannelManager`] needs persisting, call
8394 /// [`Self::get_and_clear_needs_persistence`].
8396 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8397 /// [`ChannelManager`] and should instead register actions to be taken later.
8398 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8399 self.event_persist_notifier.get_future()
8402 /// Returns true if this [`ChannelManager`] needs to be persisted.
8403 pub fn get_and_clear_needs_persistence(&self) -> bool {
8404 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8407 #[cfg(any(test, feature = "_test_utils"))]
8408 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8409 self.event_persist_notifier.notify_pending()
8412 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8413 /// [`chain::Confirm`] interfaces.
8414 pub fn current_best_block(&self) -> BestBlock {
8415 self.best_block.read().unwrap().clone()
8418 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8419 /// [`ChannelManager`].
8420 pub fn node_features(&self) -> NodeFeatures {
8421 provided_node_features(&self.default_configuration)
8424 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8425 /// [`ChannelManager`].
8427 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8428 /// or not. Thus, this method is not public.
8429 #[cfg(any(feature = "_test_utils", test))]
8430 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8431 provided_bolt11_invoice_features(&self.default_configuration)
8434 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8435 /// [`ChannelManager`].
8436 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8437 provided_bolt12_invoice_features(&self.default_configuration)
8440 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8441 /// [`ChannelManager`].
8442 pub fn channel_features(&self) -> ChannelFeatures {
8443 provided_channel_features(&self.default_configuration)
8446 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8447 /// [`ChannelManager`].
8448 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8449 provided_channel_type_features(&self.default_configuration)
8452 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8453 /// [`ChannelManager`].
8454 pub fn init_features(&self) -> InitFeatures {
8455 provided_init_features(&self.default_configuration)
8459 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8460 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8462 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8463 T::Target: BroadcasterInterface,
8464 ES::Target: EntropySource,
8465 NS::Target: NodeSigner,
8466 SP::Target: SignerProvider,
8467 F::Target: FeeEstimator,
8471 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8472 // Note that we never need to persist the updated ChannelManager for an inbound
8473 // open_channel message - pre-funded channels are never written so there should be no
8474 // change to the contents.
8475 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8476 let res = self.internal_open_channel(counterparty_node_id, msg);
8477 let persist = match &res {
8478 Err(e) if e.closes_channel() => {
8479 debug_assert!(false, "We shouldn't close a new channel");
8480 NotifyOption::DoPersist
8482 _ => NotifyOption::SkipPersistHandleEvents,
8484 let _ = handle_error!(self, res, *counterparty_node_id);
8489 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8490 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8491 "Dual-funded channels not supported".to_owned(),
8492 msg.temporary_channel_id.clone())), *counterparty_node_id);
8495 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8496 // Note that we never need to persist the updated ChannelManager for an inbound
8497 // accept_channel message - pre-funded channels are never written so there should be no
8498 // change to the contents.
8499 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8500 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8501 NotifyOption::SkipPersistHandleEvents
8505 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8506 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8507 "Dual-funded channels not supported".to_owned(),
8508 msg.temporary_channel_id.clone())), *counterparty_node_id);
8511 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8512 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8513 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8516 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8517 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8518 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8521 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8522 // Note that we never need to persist the updated ChannelManager for an inbound
8523 // channel_ready message - while the channel's state will change, any channel_ready message
8524 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8525 // will not force-close the channel on startup.
8526 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8527 let res = self.internal_channel_ready(counterparty_node_id, msg);
8528 let persist = match &res {
8529 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8530 _ => NotifyOption::SkipPersistHandleEvents,
8532 let _ = handle_error!(self, res, *counterparty_node_id);
8537 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8538 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8539 "Quiescence not supported".to_owned(),
8540 msg.channel_id.clone())), *counterparty_node_id);
8543 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8544 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8545 "Splicing not supported".to_owned(),
8546 msg.channel_id.clone())), *counterparty_node_id);
8549 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8550 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8551 "Splicing not supported (splice_ack)".to_owned(),
8552 msg.channel_id.clone())), *counterparty_node_id);
8555 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8556 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8557 "Splicing not supported (splice_locked)".to_owned(),
8558 msg.channel_id.clone())), *counterparty_node_id);
8561 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8562 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8563 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8566 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8567 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8568 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8571 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8572 // Note that we never need to persist the updated ChannelManager for an inbound
8573 // update_add_htlc message - the message itself doesn't change our channel state only the
8574 // `commitment_signed` message afterwards will.
8575 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8576 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8577 let persist = match &res {
8578 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8579 Err(_) => NotifyOption::SkipPersistHandleEvents,
8580 Ok(()) => NotifyOption::SkipPersistNoEvents,
8582 let _ = handle_error!(self, res, *counterparty_node_id);
8587 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8588 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8589 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8592 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8593 // Note that we never need to persist the updated ChannelManager for an inbound
8594 // update_fail_htlc message - the message itself doesn't change our channel state only the
8595 // `commitment_signed` message afterwards will.
8596 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8597 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8598 let persist = match &res {
8599 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8600 Err(_) => NotifyOption::SkipPersistHandleEvents,
8601 Ok(()) => NotifyOption::SkipPersistNoEvents,
8603 let _ = handle_error!(self, res, *counterparty_node_id);
8608 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8609 // Note that we never need to persist the updated ChannelManager for an inbound
8610 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8611 // only the `commitment_signed` message afterwards will.
8612 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8613 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8614 let persist = match &res {
8615 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8616 Err(_) => NotifyOption::SkipPersistHandleEvents,
8617 Ok(()) => NotifyOption::SkipPersistNoEvents,
8619 let _ = handle_error!(self, res, *counterparty_node_id);
8624 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8625 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8626 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8629 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8630 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8631 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8634 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8635 // Note that we never need to persist the updated ChannelManager for an inbound
8636 // update_fee message - the message itself doesn't change our channel state only the
8637 // `commitment_signed` message afterwards will.
8638 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8639 let res = self.internal_update_fee(counterparty_node_id, msg);
8640 let persist = match &res {
8641 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8642 Err(_) => NotifyOption::SkipPersistHandleEvents,
8643 Ok(()) => NotifyOption::SkipPersistNoEvents,
8645 let _ = handle_error!(self, res, *counterparty_node_id);
8650 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8651 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8652 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8655 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8656 PersistenceNotifierGuard::optionally_notify(self, || {
8657 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8660 NotifyOption::DoPersist
8665 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8666 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8667 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8668 let persist = match &res {
8669 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8670 Err(_) => NotifyOption::SkipPersistHandleEvents,
8671 Ok(persist) => *persist,
8673 let _ = handle_error!(self, res, *counterparty_node_id);
8678 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8679 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8680 self, || NotifyOption::SkipPersistHandleEvents);
8681 let mut failed_channels = Vec::new();
8682 let mut per_peer_state = self.per_peer_state.write().unwrap();
8684 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8685 log_pubkey!(counterparty_node_id));
8686 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8687 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8688 let peer_state = &mut *peer_state_lock;
8689 let pending_msg_events = &mut peer_state.pending_msg_events;
8690 peer_state.channel_by_id.retain(|_, phase| {
8691 let context = match phase {
8692 ChannelPhase::Funded(chan) => {
8693 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8694 // We only retain funded channels that are not shutdown.
8699 // Unfunded channels will always be removed.
8700 ChannelPhase::UnfundedOutboundV1(chan) => {
8703 ChannelPhase::UnfundedInboundV1(chan) => {
8707 // Clean up for removal.
8708 update_maps_on_chan_removal!(self, &context);
8709 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8710 failed_channels.push(context.force_shutdown(false));
8713 // Note that we don't bother generating any events for pre-accept channels -
8714 // they're not considered "channels" yet from the PoV of our events interface.
8715 peer_state.inbound_channel_request_by_id.clear();
8716 pending_msg_events.retain(|msg| {
8718 // V1 Channel Establishment
8719 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8720 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8721 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8722 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8723 // V2 Channel Establishment
8724 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8725 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8726 // Common Channel Establishment
8727 &events::MessageSendEvent::SendChannelReady { .. } => false,
8728 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8730 &events::MessageSendEvent::SendStfu { .. } => false,
8732 &events::MessageSendEvent::SendSplice { .. } => false,
8733 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8734 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8735 // Interactive Transaction Construction
8736 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8737 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8738 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8739 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8740 &events::MessageSendEvent::SendTxComplete { .. } => false,
8741 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8742 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8743 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8744 &events::MessageSendEvent::SendTxAbort { .. } => false,
8745 // Channel Operations
8746 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8747 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8748 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8749 &events::MessageSendEvent::SendShutdown { .. } => false,
8750 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8751 &events::MessageSendEvent::HandleError { .. } => false,
8753 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8754 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8755 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8756 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8757 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8758 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8759 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8760 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8761 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8764 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8765 peer_state.is_connected = false;
8766 peer_state.ok_to_remove(true)
8767 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8770 per_peer_state.remove(counterparty_node_id);
8772 mem::drop(per_peer_state);
8774 for failure in failed_channels.drain(..) {
8775 self.finish_close_channel(failure);
8779 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8780 if !init_msg.features.supports_static_remote_key() {
8781 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8785 let mut res = Ok(());
8787 PersistenceNotifierGuard::optionally_notify(self, || {
8788 // If we have too many peers connected which don't have funded channels, disconnect the
8789 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8790 // unfunded channels taking up space in memory for disconnected peers, we still let new
8791 // peers connect, but we'll reject new channels from them.
8792 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8793 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8796 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8797 match peer_state_lock.entry(counterparty_node_id.clone()) {
8798 hash_map::Entry::Vacant(e) => {
8799 if inbound_peer_limited {
8801 return NotifyOption::SkipPersistNoEvents;
8803 e.insert(Mutex::new(PeerState {
8804 channel_by_id: HashMap::new(),
8805 inbound_channel_request_by_id: HashMap::new(),
8806 latest_features: init_msg.features.clone(),
8807 pending_msg_events: Vec::new(),
8808 in_flight_monitor_updates: BTreeMap::new(),
8809 monitor_update_blocked_actions: BTreeMap::new(),
8810 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8814 hash_map::Entry::Occupied(e) => {
8815 let mut peer_state = e.get().lock().unwrap();
8816 peer_state.latest_features = init_msg.features.clone();
8818 let best_block_height = self.best_block.read().unwrap().height();
8819 if inbound_peer_limited &&
8820 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8821 peer_state.channel_by_id.len()
8824 return NotifyOption::SkipPersistNoEvents;
8827 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8828 peer_state.is_connected = true;
8833 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8835 let per_peer_state = self.per_peer_state.read().unwrap();
8836 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8837 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8838 let peer_state = &mut *peer_state_lock;
8839 let pending_msg_events = &mut peer_state.pending_msg_events;
8841 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8842 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8843 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8844 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8845 // worry about closing and removing them.
8846 debug_assert!(false);
8850 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8851 node_id: chan.context.get_counterparty_node_id(),
8852 msg: chan.get_channel_reestablish(&self.logger),
8857 return NotifyOption::SkipPersistHandleEvents;
8858 //TODO: Also re-broadcast announcement_signatures
8863 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8864 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8866 match &msg.data as &str {
8867 "cannot co-op close channel w/ active htlcs"|
8868 "link failed to shutdown" =>
8870 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8871 // send one while HTLCs are still present. The issue is tracked at
8872 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8873 // to fix it but none so far have managed to land upstream. The issue appears to be
8874 // very low priority for the LND team despite being marked "P1".
8875 // We're not going to bother handling this in a sensible way, instead simply
8876 // repeating the Shutdown message on repeat until morale improves.
8877 if !msg.channel_id.is_zero() {
8878 let per_peer_state = self.per_peer_state.read().unwrap();
8879 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8880 if peer_state_mutex_opt.is_none() { return; }
8881 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8882 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8883 if let Some(msg) = chan.get_outbound_shutdown() {
8884 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8885 node_id: *counterparty_node_id,
8889 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8890 node_id: *counterparty_node_id,
8891 action: msgs::ErrorAction::SendWarningMessage {
8892 msg: msgs::WarningMessage {
8893 channel_id: msg.channel_id,
8894 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8896 log_level: Level::Trace,
8906 if msg.channel_id.is_zero() {
8907 let channel_ids: Vec<ChannelId> = {
8908 let per_peer_state = self.per_peer_state.read().unwrap();
8909 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8910 if peer_state_mutex_opt.is_none() { return; }
8911 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8912 let peer_state = &mut *peer_state_lock;
8913 // Note that we don't bother generating any events for pre-accept channels -
8914 // they're not considered "channels" yet from the PoV of our events interface.
8915 peer_state.inbound_channel_request_by_id.clear();
8916 peer_state.channel_by_id.keys().cloned().collect()
8918 for channel_id in channel_ids {
8919 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8920 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8924 // First check if we can advance the channel type and try again.
8925 let per_peer_state = self.per_peer_state.read().unwrap();
8926 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8927 if peer_state_mutex_opt.is_none() { return; }
8928 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8929 let peer_state = &mut *peer_state_lock;
8930 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8931 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8932 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8933 node_id: *counterparty_node_id,
8941 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8942 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8946 fn provided_node_features(&self) -> NodeFeatures {
8947 provided_node_features(&self.default_configuration)
8950 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8951 provided_init_features(&self.default_configuration)
8954 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
8955 Some(vec![self.chain_hash])
8958 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8959 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8960 "Dual-funded channels not supported".to_owned(),
8961 msg.channel_id.clone())), *counterparty_node_id);
8964 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8965 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8966 "Dual-funded channels not supported".to_owned(),
8967 msg.channel_id.clone())), *counterparty_node_id);
8970 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8971 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8972 "Dual-funded channels not supported".to_owned(),
8973 msg.channel_id.clone())), *counterparty_node_id);
8976 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8977 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8978 "Dual-funded channels not supported".to_owned(),
8979 msg.channel_id.clone())), *counterparty_node_id);
8982 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8983 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8984 "Dual-funded channels not supported".to_owned(),
8985 msg.channel_id.clone())), *counterparty_node_id);
8988 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8989 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8990 "Dual-funded channels not supported".to_owned(),
8991 msg.channel_id.clone())), *counterparty_node_id);
8994 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8995 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8996 "Dual-funded channels not supported".to_owned(),
8997 msg.channel_id.clone())), *counterparty_node_id);
9000 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
9001 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9002 "Dual-funded channels not supported".to_owned(),
9003 msg.channel_id.clone())), *counterparty_node_id);
9006 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9007 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9008 "Dual-funded channels not supported".to_owned(),
9009 msg.channel_id.clone())), *counterparty_node_id);
9013 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9014 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9016 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9017 T::Target: BroadcasterInterface,
9018 ES::Target: EntropySource,
9019 NS::Target: NodeSigner,
9020 SP::Target: SignerProvider,
9021 F::Target: FeeEstimator,
9025 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9026 let secp_ctx = &self.secp_ctx;
9027 let expanded_key = &self.inbound_payment_key;
9030 OffersMessage::InvoiceRequest(invoice_request) => {
9031 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9034 Ok(amount_msats) => Some(amount_msats),
9035 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9037 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9038 Ok(invoice_request) => invoice_request,
9040 let error = Bolt12SemanticError::InvalidMetadata;
9041 return Some(OffersMessage::InvoiceError(error.into()));
9044 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9046 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9047 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9048 let payment_paths = vec![
9049 self.create_one_hop_blinded_payment_path(payment_secret),
9051 #[cfg(not(feature = "no-std"))]
9052 let builder = invoice_request.respond_using_derived_keys(
9053 payment_paths, payment_hash
9055 #[cfg(feature = "no-std")]
9056 let created_at = Duration::from_secs(
9057 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9059 #[cfg(feature = "no-std")]
9060 let builder = invoice_request.respond_using_derived_keys_no_std(
9061 payment_paths, payment_hash, created_at
9063 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9064 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9065 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9068 Ok((payment_hash, payment_secret)) => {
9069 let payment_paths = vec![
9070 self.create_one_hop_blinded_payment_path(payment_secret),
9072 #[cfg(not(feature = "no-std"))]
9073 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9074 #[cfg(feature = "no-std")]
9075 let created_at = Duration::from_secs(
9076 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9078 #[cfg(feature = "no-std")]
9079 let builder = invoice_request.respond_with_no_std(
9080 payment_paths, payment_hash, created_at
9082 let response = builder.and_then(|builder| builder.allow_mpp().build())
9083 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9085 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9086 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9087 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9088 InvoiceError::from_string("Failed signing invoice".to_string())
9090 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9091 InvoiceError::from_string("Failed invoice signature verification".to_string())
9095 Ok(invoice) => Some(invoice),
9096 Err(error) => Some(error),
9100 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9104 OffersMessage::Invoice(invoice) => {
9105 match invoice.verify(expanded_key, secp_ctx) {
9107 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9109 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9110 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9113 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9114 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9115 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9122 OffersMessage::InvoiceError(invoice_error) => {
9123 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9129 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9130 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9134 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9135 /// [`ChannelManager`].
9136 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9137 let mut node_features = provided_init_features(config).to_context();
9138 node_features.set_keysend_optional();
9142 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9143 /// [`ChannelManager`].
9145 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9146 /// or not. Thus, this method is not public.
9147 #[cfg(any(feature = "_test_utils", test))]
9148 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9149 provided_init_features(config).to_context()
9152 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9153 /// [`ChannelManager`].
9154 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9155 provided_init_features(config).to_context()
9158 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9159 /// [`ChannelManager`].
9160 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9161 provided_init_features(config).to_context()
9164 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9165 /// [`ChannelManager`].
9166 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9167 ChannelTypeFeatures::from_init(&provided_init_features(config))
9170 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9171 /// [`ChannelManager`].
9172 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9173 // Note that if new features are added here which other peers may (eventually) require, we
9174 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9175 // [`ErroringMessageHandler`].
9176 let mut features = InitFeatures::empty();
9177 features.set_data_loss_protect_required();
9178 features.set_upfront_shutdown_script_optional();
9179 features.set_variable_length_onion_required();
9180 features.set_static_remote_key_required();
9181 features.set_payment_secret_required();
9182 features.set_basic_mpp_optional();
9183 features.set_wumbo_optional();
9184 features.set_shutdown_any_segwit_optional();
9185 features.set_channel_type_optional();
9186 features.set_scid_privacy_optional();
9187 features.set_zero_conf_optional();
9188 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9189 features.set_anchors_zero_fee_htlc_tx_optional();
9194 const SERIALIZATION_VERSION: u8 = 1;
9195 const MIN_SERIALIZATION_VERSION: u8 = 1;
9197 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9198 (2, fee_base_msat, required),
9199 (4, fee_proportional_millionths, required),
9200 (6, cltv_expiry_delta, required),
9203 impl_writeable_tlv_based!(ChannelCounterparty, {
9204 (2, node_id, required),
9205 (4, features, required),
9206 (6, unspendable_punishment_reserve, required),
9207 (8, forwarding_info, option),
9208 (9, outbound_htlc_minimum_msat, option),
9209 (11, outbound_htlc_maximum_msat, option),
9212 impl Writeable for ChannelDetails {
9213 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9214 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9215 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9216 let user_channel_id_low = self.user_channel_id as u64;
9217 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9218 write_tlv_fields!(writer, {
9219 (1, self.inbound_scid_alias, option),
9220 (2, self.channel_id, required),
9221 (3, self.channel_type, option),
9222 (4, self.counterparty, required),
9223 (5, self.outbound_scid_alias, option),
9224 (6, self.funding_txo, option),
9225 (7, self.config, option),
9226 (8, self.short_channel_id, option),
9227 (9, self.confirmations, option),
9228 (10, self.channel_value_satoshis, required),
9229 (12, self.unspendable_punishment_reserve, option),
9230 (14, user_channel_id_low, required),
9231 (16, self.balance_msat, required),
9232 (18, self.outbound_capacity_msat, required),
9233 (19, self.next_outbound_htlc_limit_msat, required),
9234 (20, self.inbound_capacity_msat, required),
9235 (21, self.next_outbound_htlc_minimum_msat, required),
9236 (22, self.confirmations_required, option),
9237 (24, self.force_close_spend_delay, option),
9238 (26, self.is_outbound, required),
9239 (28, self.is_channel_ready, required),
9240 (30, self.is_usable, required),
9241 (32, self.is_public, required),
9242 (33, self.inbound_htlc_minimum_msat, option),
9243 (35, self.inbound_htlc_maximum_msat, option),
9244 (37, user_channel_id_high_opt, option),
9245 (39, self.feerate_sat_per_1000_weight, option),
9246 (41, self.channel_shutdown_state, option),
9252 impl Readable for ChannelDetails {
9253 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9254 _init_and_read_len_prefixed_tlv_fields!(reader, {
9255 (1, inbound_scid_alias, option),
9256 (2, channel_id, required),
9257 (3, channel_type, option),
9258 (4, counterparty, required),
9259 (5, outbound_scid_alias, option),
9260 (6, funding_txo, option),
9261 (7, config, option),
9262 (8, short_channel_id, option),
9263 (9, confirmations, option),
9264 (10, channel_value_satoshis, required),
9265 (12, unspendable_punishment_reserve, option),
9266 (14, user_channel_id_low, required),
9267 (16, balance_msat, required),
9268 (18, outbound_capacity_msat, required),
9269 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9270 // filled in, so we can safely unwrap it here.
9271 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9272 (20, inbound_capacity_msat, required),
9273 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9274 (22, confirmations_required, option),
9275 (24, force_close_spend_delay, option),
9276 (26, is_outbound, required),
9277 (28, is_channel_ready, required),
9278 (30, is_usable, required),
9279 (32, is_public, required),
9280 (33, inbound_htlc_minimum_msat, option),
9281 (35, inbound_htlc_maximum_msat, option),
9282 (37, user_channel_id_high_opt, option),
9283 (39, feerate_sat_per_1000_weight, option),
9284 (41, channel_shutdown_state, option),
9287 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9288 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9289 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9290 let user_channel_id = user_channel_id_low as u128 +
9291 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9295 channel_id: channel_id.0.unwrap(),
9297 counterparty: counterparty.0.unwrap(),
9298 outbound_scid_alias,
9302 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9303 unspendable_punishment_reserve,
9305 balance_msat: balance_msat.0.unwrap(),
9306 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9307 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9308 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9309 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9310 confirmations_required,
9312 force_close_spend_delay,
9313 is_outbound: is_outbound.0.unwrap(),
9314 is_channel_ready: is_channel_ready.0.unwrap(),
9315 is_usable: is_usable.0.unwrap(),
9316 is_public: is_public.0.unwrap(),
9317 inbound_htlc_minimum_msat,
9318 inbound_htlc_maximum_msat,
9319 feerate_sat_per_1000_weight,
9320 channel_shutdown_state,
9325 impl_writeable_tlv_based!(PhantomRouteHints, {
9326 (2, channels, required_vec),
9327 (4, phantom_scid, required),
9328 (6, real_node_pubkey, required),
9331 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9333 (0, onion_packet, required),
9334 (2, short_channel_id, required),
9337 (0, payment_data, required),
9338 (1, phantom_shared_secret, option),
9339 (2, incoming_cltv_expiry, required),
9340 (3, payment_metadata, option),
9341 (5, custom_tlvs, optional_vec),
9343 (2, ReceiveKeysend) => {
9344 (0, payment_preimage, required),
9345 (2, incoming_cltv_expiry, required),
9346 (3, payment_metadata, option),
9347 (4, payment_data, option), // Added in 0.0.116
9348 (5, custom_tlvs, optional_vec),
9352 impl_writeable_tlv_based!(PendingHTLCInfo, {
9353 (0, routing, required),
9354 (2, incoming_shared_secret, required),
9355 (4, payment_hash, required),
9356 (6, outgoing_amt_msat, required),
9357 (8, outgoing_cltv_value, required),
9358 (9, incoming_amt_msat, option),
9359 (10, skimmed_fee_msat, option),
9363 impl Writeable for HTLCFailureMsg {
9364 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9366 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9368 channel_id.write(writer)?;
9369 htlc_id.write(writer)?;
9370 reason.write(writer)?;
9372 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9373 channel_id, htlc_id, sha256_of_onion, failure_code
9376 channel_id.write(writer)?;
9377 htlc_id.write(writer)?;
9378 sha256_of_onion.write(writer)?;
9379 failure_code.write(writer)?;
9386 impl Readable for HTLCFailureMsg {
9387 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9388 let id: u8 = Readable::read(reader)?;
9391 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9392 channel_id: Readable::read(reader)?,
9393 htlc_id: Readable::read(reader)?,
9394 reason: Readable::read(reader)?,
9398 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9399 channel_id: Readable::read(reader)?,
9400 htlc_id: Readable::read(reader)?,
9401 sha256_of_onion: Readable::read(reader)?,
9402 failure_code: Readable::read(reader)?,
9405 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9406 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9407 // messages contained in the variants.
9408 // In version 0.0.101, support for reading the variants with these types was added, and
9409 // we should migrate to writing these variants when UpdateFailHTLC or
9410 // UpdateFailMalformedHTLC get TLV fields.
9412 let length: BigSize = Readable::read(reader)?;
9413 let mut s = FixedLengthReader::new(reader, length.0);
9414 let res = Readable::read(&mut s)?;
9415 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9416 Ok(HTLCFailureMsg::Relay(res))
9419 let length: BigSize = Readable::read(reader)?;
9420 let mut s = FixedLengthReader::new(reader, length.0);
9421 let res = Readable::read(&mut s)?;
9422 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9423 Ok(HTLCFailureMsg::Malformed(res))
9425 _ => Err(DecodeError::UnknownRequiredFeature),
9430 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9435 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9436 (0, short_channel_id, required),
9437 (1, phantom_shared_secret, option),
9438 (2, outpoint, required),
9439 (4, htlc_id, required),
9440 (6, incoming_packet_shared_secret, required),
9441 (7, user_channel_id, option),
9444 impl Writeable for ClaimableHTLC {
9445 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9446 let (payment_data, keysend_preimage) = match &self.onion_payload {
9447 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9448 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9450 write_tlv_fields!(writer, {
9451 (0, self.prev_hop, required),
9452 (1, self.total_msat, required),
9453 (2, self.value, required),
9454 (3, self.sender_intended_value, required),
9455 (4, payment_data, option),
9456 (5, self.total_value_received, option),
9457 (6, self.cltv_expiry, required),
9458 (8, keysend_preimage, option),
9459 (10, self.counterparty_skimmed_fee_msat, option),
9465 impl Readable for ClaimableHTLC {
9466 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9467 _init_and_read_len_prefixed_tlv_fields!(reader, {
9468 (0, prev_hop, required),
9469 (1, total_msat, option),
9470 (2, value_ser, required),
9471 (3, sender_intended_value, option),
9472 (4, payment_data_opt, option),
9473 (5, total_value_received, option),
9474 (6, cltv_expiry, required),
9475 (8, keysend_preimage, option),
9476 (10, counterparty_skimmed_fee_msat, option),
9478 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9479 let value = value_ser.0.unwrap();
9480 let onion_payload = match keysend_preimage {
9482 if payment_data.is_some() {
9483 return Err(DecodeError::InvalidValue)
9485 if total_msat.is_none() {
9486 total_msat = Some(value);
9488 OnionPayload::Spontaneous(p)
9491 if total_msat.is_none() {
9492 if payment_data.is_none() {
9493 return Err(DecodeError::InvalidValue)
9495 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9497 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9501 prev_hop: prev_hop.0.unwrap(),
9504 sender_intended_value: sender_intended_value.unwrap_or(value),
9505 total_value_received,
9506 total_msat: total_msat.unwrap(),
9508 cltv_expiry: cltv_expiry.0.unwrap(),
9509 counterparty_skimmed_fee_msat,
9514 impl Readable for HTLCSource {
9515 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9516 let id: u8 = Readable::read(reader)?;
9519 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9520 let mut first_hop_htlc_msat: u64 = 0;
9521 let mut path_hops = Vec::new();
9522 let mut payment_id = None;
9523 let mut payment_params: Option<PaymentParameters> = None;
9524 let mut blinded_tail: Option<BlindedTail> = None;
9525 read_tlv_fields!(reader, {
9526 (0, session_priv, required),
9527 (1, payment_id, option),
9528 (2, first_hop_htlc_msat, required),
9529 (4, path_hops, required_vec),
9530 (5, payment_params, (option: ReadableArgs, 0)),
9531 (6, blinded_tail, option),
9533 if payment_id.is_none() {
9534 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9536 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9538 let path = Path { hops: path_hops, blinded_tail };
9539 if path.hops.len() == 0 {
9540 return Err(DecodeError::InvalidValue);
9542 if let Some(params) = payment_params.as_mut() {
9543 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9544 if final_cltv_expiry_delta == &0 {
9545 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9549 Ok(HTLCSource::OutboundRoute {
9550 session_priv: session_priv.0.unwrap(),
9551 first_hop_htlc_msat,
9553 payment_id: payment_id.unwrap(),
9556 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9557 _ => Err(DecodeError::UnknownRequiredFeature),
9562 impl Writeable for HTLCSource {
9563 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9565 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9567 let payment_id_opt = Some(payment_id);
9568 write_tlv_fields!(writer, {
9569 (0, session_priv, required),
9570 (1, payment_id_opt, option),
9571 (2, first_hop_htlc_msat, required),
9572 // 3 was previously used to write a PaymentSecret for the payment.
9573 (4, path.hops, required_vec),
9574 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9575 (6, path.blinded_tail, option),
9578 HTLCSource::PreviousHopData(ref field) => {
9580 field.write(writer)?;
9587 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9588 (0, forward_info, required),
9589 (1, prev_user_channel_id, (default_value, 0)),
9590 (2, prev_short_channel_id, required),
9591 (4, prev_htlc_id, required),
9592 (6, prev_funding_outpoint, required),
9595 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
9597 (0, htlc_id, required),
9598 (2, err_packet, required),
9603 impl_writeable_tlv_based!(PendingInboundPayment, {
9604 (0, payment_secret, required),
9605 (2, expiry_time, required),
9606 (4, user_payment_id, required),
9607 (6, payment_preimage, required),
9608 (8, min_value_msat, required),
9611 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9613 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9614 T::Target: BroadcasterInterface,
9615 ES::Target: EntropySource,
9616 NS::Target: NodeSigner,
9617 SP::Target: SignerProvider,
9618 F::Target: FeeEstimator,
9622 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9623 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9625 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9627 self.chain_hash.write(writer)?;
9629 let best_block = self.best_block.read().unwrap();
9630 best_block.height().write(writer)?;
9631 best_block.block_hash().write(writer)?;
9634 let mut serializable_peer_count: u64 = 0;
9636 let per_peer_state = self.per_peer_state.read().unwrap();
9637 let mut number_of_funded_channels = 0;
9638 for (_, peer_state_mutex) in per_peer_state.iter() {
9639 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9640 let peer_state = &mut *peer_state_lock;
9641 if !peer_state.ok_to_remove(false) {
9642 serializable_peer_count += 1;
9645 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9646 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9650 (number_of_funded_channels as u64).write(writer)?;
9652 for (_, peer_state_mutex) in per_peer_state.iter() {
9653 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9654 let peer_state = &mut *peer_state_lock;
9655 for channel in peer_state.channel_by_id.iter().filter_map(
9656 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9657 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9660 channel.write(writer)?;
9666 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9667 (forward_htlcs.len() as u64).write(writer)?;
9668 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9669 short_channel_id.write(writer)?;
9670 (pending_forwards.len() as u64).write(writer)?;
9671 for forward in pending_forwards {
9672 forward.write(writer)?;
9677 let per_peer_state = self.per_peer_state.write().unwrap();
9679 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9680 let claimable_payments = self.claimable_payments.lock().unwrap();
9681 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9683 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9684 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9685 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9686 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9687 payment_hash.write(writer)?;
9688 (payment.htlcs.len() as u64).write(writer)?;
9689 for htlc in payment.htlcs.iter() {
9690 htlc.write(writer)?;
9692 htlc_purposes.push(&payment.purpose);
9693 htlc_onion_fields.push(&payment.onion_fields);
9696 let mut monitor_update_blocked_actions_per_peer = None;
9697 let mut peer_states = Vec::new();
9698 for (_, peer_state_mutex) in per_peer_state.iter() {
9699 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9700 // of a lockorder violation deadlock - no other thread can be holding any
9701 // per_peer_state lock at all.
9702 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9705 (serializable_peer_count).write(writer)?;
9706 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9707 // Peers which we have no channels to should be dropped once disconnected. As we
9708 // disconnect all peers when shutting down and serializing the ChannelManager, we
9709 // consider all peers as disconnected here. There's therefore no need write peers with
9711 if !peer_state.ok_to_remove(false) {
9712 peer_pubkey.write(writer)?;
9713 peer_state.latest_features.write(writer)?;
9714 if !peer_state.monitor_update_blocked_actions.is_empty() {
9715 monitor_update_blocked_actions_per_peer
9716 .get_or_insert_with(Vec::new)
9717 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9722 let events = self.pending_events.lock().unwrap();
9723 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9724 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9725 // refuse to read the new ChannelManager.
9726 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9727 if events_not_backwards_compatible {
9728 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9729 // well save the space and not write any events here.
9730 0u64.write(writer)?;
9732 (events.len() as u64).write(writer)?;
9733 for (event, _) in events.iter() {
9734 event.write(writer)?;
9738 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9739 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9740 // the closing monitor updates were always effectively replayed on startup (either directly
9741 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9742 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9743 0u64.write(writer)?;
9745 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9746 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9747 // likely to be identical.
9748 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9749 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9751 (pending_inbound_payments.len() as u64).write(writer)?;
9752 for (hash, pending_payment) in pending_inbound_payments.iter() {
9753 hash.write(writer)?;
9754 pending_payment.write(writer)?;
9757 // For backwards compat, write the session privs and their total length.
9758 let mut num_pending_outbounds_compat: u64 = 0;
9759 for (_, outbound) in pending_outbound_payments.iter() {
9760 if !outbound.is_fulfilled() && !outbound.abandoned() {
9761 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9764 num_pending_outbounds_compat.write(writer)?;
9765 for (_, outbound) in pending_outbound_payments.iter() {
9767 PendingOutboundPayment::Legacy { session_privs } |
9768 PendingOutboundPayment::Retryable { session_privs, .. } => {
9769 for session_priv in session_privs.iter() {
9770 session_priv.write(writer)?;
9773 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9774 PendingOutboundPayment::InvoiceReceived { .. } => {},
9775 PendingOutboundPayment::Fulfilled { .. } => {},
9776 PendingOutboundPayment::Abandoned { .. } => {},
9780 // Encode without retry info for 0.0.101 compatibility.
9781 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9782 for (id, outbound) in pending_outbound_payments.iter() {
9784 PendingOutboundPayment::Legacy { session_privs } |
9785 PendingOutboundPayment::Retryable { session_privs, .. } => {
9786 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9792 let mut pending_intercepted_htlcs = None;
9793 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9794 if our_pending_intercepts.len() != 0 {
9795 pending_intercepted_htlcs = Some(our_pending_intercepts);
9798 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9799 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9800 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9801 // map. Thus, if there are no entries we skip writing a TLV for it.
9802 pending_claiming_payments = None;
9805 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9806 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9807 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9808 if !updates.is_empty() {
9809 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9810 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9815 write_tlv_fields!(writer, {
9816 (1, pending_outbound_payments_no_retry, required),
9817 (2, pending_intercepted_htlcs, option),
9818 (3, pending_outbound_payments, required),
9819 (4, pending_claiming_payments, option),
9820 (5, self.our_network_pubkey, required),
9821 (6, monitor_update_blocked_actions_per_peer, option),
9822 (7, self.fake_scid_rand_bytes, required),
9823 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9824 (9, htlc_purposes, required_vec),
9825 (10, in_flight_monitor_updates, option),
9826 (11, self.probing_cookie_secret, required),
9827 (13, htlc_onion_fields, optional_vec),
9834 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9835 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9836 (self.len() as u64).write(w)?;
9837 for (event, action) in self.iter() {
9840 #[cfg(debug_assertions)] {
9841 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9842 // be persisted and are regenerated on restart. However, if such an event has a
9843 // post-event-handling action we'll write nothing for the event and would have to
9844 // either forget the action or fail on deserialization (which we do below). Thus,
9845 // check that the event is sane here.
9846 let event_encoded = event.encode();
9847 let event_read: Option<Event> =
9848 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9849 if action.is_some() { assert!(event_read.is_some()); }
9855 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9856 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9857 let len: u64 = Readable::read(reader)?;
9858 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9859 let mut events: Self = VecDeque::with_capacity(cmp::min(
9860 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9863 let ev_opt = MaybeReadable::read(reader)?;
9864 let action = Readable::read(reader)?;
9865 if let Some(ev) = ev_opt {
9866 events.push_back((ev, action));
9867 } else if action.is_some() {
9868 return Err(DecodeError::InvalidValue);
9875 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9876 (0, NotShuttingDown) => {},
9877 (2, ShutdownInitiated) => {},
9878 (4, ResolvingHTLCs) => {},
9879 (6, NegotiatingClosingFee) => {},
9880 (8, ShutdownComplete) => {}, ;
9883 /// Arguments for the creation of a ChannelManager that are not deserialized.
9885 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9887 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9888 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9889 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9890 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9891 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9892 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9893 /// same way you would handle a [`chain::Filter`] call using
9894 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9895 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9896 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9897 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9898 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9899 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9901 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9902 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9904 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9905 /// call any other methods on the newly-deserialized [`ChannelManager`].
9907 /// Note that because some channels may be closed during deserialization, it is critical that you
9908 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9909 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9910 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9911 /// not force-close the same channels but consider them live), you may end up revoking a state for
9912 /// which you've already broadcasted the transaction.
9914 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9915 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9917 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9918 T::Target: BroadcasterInterface,
9919 ES::Target: EntropySource,
9920 NS::Target: NodeSigner,
9921 SP::Target: SignerProvider,
9922 F::Target: FeeEstimator,
9926 /// A cryptographically secure source of entropy.
9927 pub entropy_source: ES,
9929 /// A signer that is able to perform node-scoped cryptographic operations.
9930 pub node_signer: NS,
9932 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9933 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9935 pub signer_provider: SP,
9937 /// The fee_estimator for use in the ChannelManager in the future.
9939 /// No calls to the FeeEstimator will be made during deserialization.
9940 pub fee_estimator: F,
9941 /// The chain::Watch for use in the ChannelManager in the future.
9943 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9944 /// you have deserialized ChannelMonitors separately and will add them to your
9945 /// chain::Watch after deserializing this ChannelManager.
9946 pub chain_monitor: M,
9948 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9949 /// used to broadcast the latest local commitment transactions of channels which must be
9950 /// force-closed during deserialization.
9951 pub tx_broadcaster: T,
9952 /// The router which will be used in the ChannelManager in the future for finding routes
9953 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9955 /// No calls to the router will be made during deserialization.
9957 /// The Logger for use in the ChannelManager and which may be used to log information during
9958 /// deserialization.
9960 /// Default settings used for new channels. Any existing channels will continue to use the
9961 /// runtime settings which were stored when the ChannelManager was serialized.
9962 pub default_config: UserConfig,
9964 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
9965 /// value.context.get_funding_txo() should be the key).
9967 /// If a monitor is inconsistent with the channel state during deserialization the channel will
9968 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
9969 /// is true for missing channels as well. If there is a monitor missing for which we find
9970 /// channel data Err(DecodeError::InvalidValue) will be returned.
9972 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
9975 /// This is not exported to bindings users because we have no HashMap bindings
9976 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
9979 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9980 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
9982 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9983 T::Target: BroadcasterInterface,
9984 ES::Target: EntropySource,
9985 NS::Target: NodeSigner,
9986 SP::Target: SignerProvider,
9987 F::Target: FeeEstimator,
9991 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9992 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9993 /// populate a HashMap directly from C.
9994 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9995 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
9997 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9998 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
10003 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10004 // SipmleArcChannelManager type:
10005 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10006 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10008 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
10009 T::Target: BroadcasterInterface,
10010 ES::Target: EntropySource,
10011 NS::Target: NodeSigner,
10012 SP::Target: SignerProvider,
10013 F::Target: FeeEstimator,
10017 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10018 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10019 Ok((blockhash, Arc::new(chan_manager)))
10023 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10024 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10026 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
10027 T::Target: BroadcasterInterface,
10028 ES::Target: EntropySource,
10029 NS::Target: NodeSigner,
10030 SP::Target: SignerProvider,
10031 F::Target: FeeEstimator,
10035 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10036 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10038 let chain_hash: ChainHash = Readable::read(reader)?;
10039 let best_block_height: u32 = Readable::read(reader)?;
10040 let best_block_hash: BlockHash = Readable::read(reader)?;
10042 let mut failed_htlcs = Vec::new();
10044 let channel_count: u64 = Readable::read(reader)?;
10045 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10046 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10047 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10048 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10049 let mut channel_closures = VecDeque::new();
10050 let mut close_background_events = Vec::new();
10051 for _ in 0..channel_count {
10052 let mut channel: Channel<SP> = Channel::read(reader, (
10053 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10055 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10056 funding_txo_set.insert(funding_txo.clone());
10057 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10058 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10059 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10060 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10061 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10062 // But if the channel is behind of the monitor, close the channel:
10063 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10064 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10065 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10066 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10067 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10069 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10070 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10071 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10073 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10074 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10075 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10077 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10078 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10079 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10081 let mut shutdown_result = channel.context.force_shutdown(true);
10082 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10083 return Err(DecodeError::InvalidValue);
10085 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10086 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10087 counterparty_node_id, funding_txo, update
10090 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10091 channel_closures.push_back((events::Event::ChannelClosed {
10092 channel_id: channel.context.channel_id(),
10093 user_channel_id: channel.context.get_user_id(),
10094 reason: ClosureReason::OutdatedChannelManager,
10095 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10096 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10098 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10099 let mut found_htlc = false;
10100 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10101 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10104 // If we have some HTLCs in the channel which are not present in the newer
10105 // ChannelMonitor, they have been removed and should be failed back to
10106 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10107 // were actually claimed we'd have generated and ensured the previous-hop
10108 // claim update ChannelMonitor updates were persisted prior to persising
10109 // the ChannelMonitor update for the forward leg, so attempting to fail the
10110 // backwards leg of the HTLC will simply be rejected.
10111 log_info!(args.logger,
10112 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10113 &channel.context.channel_id(), &payment_hash);
10114 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10118 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10119 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10120 monitor.get_latest_update_id());
10121 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10122 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10124 if channel.context.is_funding_broadcast() {
10125 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10127 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10128 hash_map::Entry::Occupied(mut entry) => {
10129 let by_id_map = entry.get_mut();
10130 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10132 hash_map::Entry::Vacant(entry) => {
10133 let mut by_id_map = HashMap::new();
10134 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10135 entry.insert(by_id_map);
10139 } else if channel.is_awaiting_initial_mon_persist() {
10140 // If we were persisted and shut down while the initial ChannelMonitor persistence
10141 // was in-progress, we never broadcasted the funding transaction and can still
10142 // safely discard the channel.
10143 let _ = channel.context.force_shutdown(false);
10144 channel_closures.push_back((events::Event::ChannelClosed {
10145 channel_id: channel.context.channel_id(),
10146 user_channel_id: channel.context.get_user_id(),
10147 reason: ClosureReason::DisconnectedPeer,
10148 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10149 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10152 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10153 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10154 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10155 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10156 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10157 return Err(DecodeError::InvalidValue);
10161 for (funding_txo, _) in args.channel_monitors.iter() {
10162 if !funding_txo_set.contains(funding_txo) {
10163 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
10164 &funding_txo.to_channel_id());
10165 let monitor_update = ChannelMonitorUpdate {
10166 update_id: CLOSED_CHANNEL_UPDATE_ID,
10167 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10169 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10173 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10174 let forward_htlcs_count: u64 = Readable::read(reader)?;
10175 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10176 for _ in 0..forward_htlcs_count {
10177 let short_channel_id = Readable::read(reader)?;
10178 let pending_forwards_count: u64 = Readable::read(reader)?;
10179 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10180 for _ in 0..pending_forwards_count {
10181 pending_forwards.push(Readable::read(reader)?);
10183 forward_htlcs.insert(short_channel_id, pending_forwards);
10186 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10187 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10188 for _ in 0..claimable_htlcs_count {
10189 let payment_hash = Readable::read(reader)?;
10190 let previous_hops_len: u64 = Readable::read(reader)?;
10191 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10192 for _ in 0..previous_hops_len {
10193 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10195 claimable_htlcs_list.push((payment_hash, previous_hops));
10198 let peer_state_from_chans = |channel_by_id| {
10201 inbound_channel_request_by_id: HashMap::new(),
10202 latest_features: InitFeatures::empty(),
10203 pending_msg_events: Vec::new(),
10204 in_flight_monitor_updates: BTreeMap::new(),
10205 monitor_update_blocked_actions: BTreeMap::new(),
10206 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10207 is_connected: false,
10211 let peer_count: u64 = Readable::read(reader)?;
10212 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10213 for _ in 0..peer_count {
10214 let peer_pubkey = Readable::read(reader)?;
10215 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10216 let mut peer_state = peer_state_from_chans(peer_chans);
10217 peer_state.latest_features = Readable::read(reader)?;
10218 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10221 let event_count: u64 = Readable::read(reader)?;
10222 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10223 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10224 for _ in 0..event_count {
10225 match MaybeReadable::read(reader)? {
10226 Some(event) => pending_events_read.push_back((event, None)),
10231 let background_event_count: u64 = Readable::read(reader)?;
10232 for _ in 0..background_event_count {
10233 match <u8 as Readable>::read(reader)? {
10235 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10236 // however we really don't (and never did) need them - we regenerate all
10237 // on-startup monitor updates.
10238 let _: OutPoint = Readable::read(reader)?;
10239 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10241 _ => return Err(DecodeError::InvalidValue),
10245 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10246 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10248 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10249 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10250 for _ in 0..pending_inbound_payment_count {
10251 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10252 return Err(DecodeError::InvalidValue);
10256 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10257 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10258 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10259 for _ in 0..pending_outbound_payments_count_compat {
10260 let session_priv = Readable::read(reader)?;
10261 let payment = PendingOutboundPayment::Legacy {
10262 session_privs: [session_priv].iter().cloned().collect()
10264 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10265 return Err(DecodeError::InvalidValue)
10269 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10270 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10271 let mut pending_outbound_payments = None;
10272 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10273 let mut received_network_pubkey: Option<PublicKey> = None;
10274 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10275 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10276 let mut claimable_htlc_purposes = None;
10277 let mut claimable_htlc_onion_fields = None;
10278 let mut pending_claiming_payments = Some(HashMap::new());
10279 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10280 let mut events_override = None;
10281 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10282 read_tlv_fields!(reader, {
10283 (1, pending_outbound_payments_no_retry, option),
10284 (2, pending_intercepted_htlcs, option),
10285 (3, pending_outbound_payments, option),
10286 (4, pending_claiming_payments, option),
10287 (5, received_network_pubkey, option),
10288 (6, monitor_update_blocked_actions_per_peer, option),
10289 (7, fake_scid_rand_bytes, option),
10290 (8, events_override, option),
10291 (9, claimable_htlc_purposes, optional_vec),
10292 (10, in_flight_monitor_updates, option),
10293 (11, probing_cookie_secret, option),
10294 (13, claimable_htlc_onion_fields, optional_vec),
10296 if fake_scid_rand_bytes.is_none() {
10297 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10300 if probing_cookie_secret.is_none() {
10301 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10304 if let Some(events) = events_override {
10305 pending_events_read = events;
10308 if !channel_closures.is_empty() {
10309 pending_events_read.append(&mut channel_closures);
10312 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10313 pending_outbound_payments = Some(pending_outbound_payments_compat);
10314 } else if pending_outbound_payments.is_none() {
10315 let mut outbounds = HashMap::new();
10316 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10317 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10319 pending_outbound_payments = Some(outbounds);
10321 let pending_outbounds = OutboundPayments {
10322 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10323 retry_lock: Mutex::new(())
10326 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10327 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10328 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10329 // replayed, and for each monitor update we have to replay we have to ensure there's a
10330 // `ChannelMonitor` for it.
10332 // In order to do so we first walk all of our live channels (so that we can check their
10333 // state immediately after doing the update replays, when we have the `update_id`s
10334 // available) and then walk any remaining in-flight updates.
10336 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10337 let mut pending_background_events = Vec::new();
10338 macro_rules! handle_in_flight_updates {
10339 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10340 $monitor: expr, $peer_state: expr, $channel_info_log: expr
10342 let mut max_in_flight_update_id = 0;
10343 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10344 for update in $chan_in_flight_upds.iter() {
10345 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10346 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10347 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10348 pending_background_events.push(
10349 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10350 counterparty_node_id: $counterparty_node_id,
10351 funding_txo: $funding_txo,
10352 update: update.clone(),
10355 if $chan_in_flight_upds.is_empty() {
10356 // We had some updates to apply, but it turns out they had completed before we
10357 // were serialized, we just weren't notified of that. Thus, we may have to run
10358 // the completion actions for any monitor updates, but otherwise are done.
10359 pending_background_events.push(
10360 BackgroundEvent::MonitorUpdatesComplete {
10361 counterparty_node_id: $counterparty_node_id,
10362 channel_id: $funding_txo.to_channel_id(),
10365 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10366 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
10367 return Err(DecodeError::InvalidValue);
10369 max_in_flight_update_id
10373 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10374 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10375 let peer_state = &mut *peer_state_lock;
10376 for phase in peer_state.channel_by_id.values() {
10377 if let ChannelPhase::Funded(chan) = phase {
10378 // Channels that were persisted have to be funded, otherwise they should have been
10380 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10381 let monitor = args.channel_monitors.get(&funding_txo)
10382 .expect("We already checked for monitor presence when loading channels");
10383 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10384 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10385 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10386 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10387 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10388 funding_txo, monitor, peer_state, ""));
10391 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10392 // If the channel is ahead of the monitor, return InvalidValue:
10393 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10394 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10395 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10396 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10397 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10398 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10399 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10400 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10401 return Err(DecodeError::InvalidValue);
10404 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10405 // created in this `channel_by_id` map.
10406 debug_assert!(false);
10407 return Err(DecodeError::InvalidValue);
10412 if let Some(in_flight_upds) = in_flight_monitor_updates {
10413 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10414 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10415 // Now that we've removed all the in-flight monitor updates for channels that are
10416 // still open, we need to replay any monitor updates that are for closed channels,
10417 // creating the neccessary peer_state entries as we go.
10418 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10419 Mutex::new(peer_state_from_chans(HashMap::new()))
10421 let mut peer_state = peer_state_mutex.lock().unwrap();
10422 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10423 funding_txo, monitor, peer_state, "closed ");
10425 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10426 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
10427 &funding_txo.to_channel_id());
10428 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10429 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10430 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10431 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10432 return Err(DecodeError::InvalidValue);
10437 // Note that we have to do the above replays before we push new monitor updates.
10438 pending_background_events.append(&mut close_background_events);
10440 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10441 // should ensure we try them again on the inbound edge. We put them here and do so after we
10442 // have a fully-constructed `ChannelManager` at the end.
10443 let mut pending_claims_to_replay = Vec::new();
10446 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10447 // ChannelMonitor data for any channels for which we do not have authorative state
10448 // (i.e. those for which we just force-closed above or we otherwise don't have a
10449 // corresponding `Channel` at all).
10450 // This avoids several edge-cases where we would otherwise "forget" about pending
10451 // payments which are still in-flight via their on-chain state.
10452 // We only rebuild the pending payments map if we were most recently serialized by
10454 for (_, monitor) in args.channel_monitors.iter() {
10455 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10456 if counterparty_opt.is_none() {
10457 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10458 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10459 if path.hops.is_empty() {
10460 log_error!(args.logger, "Got an empty path for a pending payment");
10461 return Err(DecodeError::InvalidValue);
10464 let path_amt = path.final_value_msat();
10465 let mut session_priv_bytes = [0; 32];
10466 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10467 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10468 hash_map::Entry::Occupied(mut entry) => {
10469 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10470 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10471 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
10473 hash_map::Entry::Vacant(entry) => {
10474 let path_fee = path.fee_msat();
10475 entry.insert(PendingOutboundPayment::Retryable {
10476 retry_strategy: None,
10477 attempts: PaymentAttempts::new(),
10478 payment_params: None,
10479 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10480 payment_hash: htlc.payment_hash,
10481 payment_secret: None, // only used for retries, and we'll never retry on startup
10482 payment_metadata: None, // only used for retries, and we'll never retry on startup
10483 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10484 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10485 pending_amt_msat: path_amt,
10486 pending_fee_msat: Some(path_fee),
10487 total_msat: path_amt,
10488 starting_block_height: best_block_height,
10489 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10491 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10492 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10497 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10498 match htlc_source {
10499 HTLCSource::PreviousHopData(prev_hop_data) => {
10500 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10501 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10502 info.prev_htlc_id == prev_hop_data.htlc_id
10504 // The ChannelMonitor is now responsible for this HTLC's
10505 // failure/success and will let us know what its outcome is. If we
10506 // still have an entry for this HTLC in `forward_htlcs` or
10507 // `pending_intercepted_htlcs`, we were apparently not persisted after
10508 // the monitor was when forwarding the payment.
10509 forward_htlcs.retain(|_, forwards| {
10510 forwards.retain(|forward| {
10511 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10512 if pending_forward_matches_htlc(&htlc_info) {
10513 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10514 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10519 !forwards.is_empty()
10521 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10522 if pending_forward_matches_htlc(&htlc_info) {
10523 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10524 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10525 pending_events_read.retain(|(event, _)| {
10526 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10527 intercepted_id != ev_id
10534 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10535 if let Some(preimage) = preimage_opt {
10536 let pending_events = Mutex::new(pending_events_read);
10537 // Note that we set `from_onchain` to "false" here,
10538 // deliberately keeping the pending payment around forever.
10539 // Given it should only occur when we have a channel we're
10540 // force-closing for being stale that's okay.
10541 // The alternative would be to wipe the state when claiming,
10542 // generating a `PaymentPathSuccessful` event but regenerating
10543 // it and the `PaymentSent` on every restart until the
10544 // `ChannelMonitor` is removed.
10546 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10547 channel_funding_outpoint: monitor.get_funding_txo().0,
10548 counterparty_node_id: path.hops[0].pubkey,
10550 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10551 path, false, compl_action, &pending_events, &args.logger);
10552 pending_events_read = pending_events.into_inner().unwrap();
10559 // Whether the downstream channel was closed or not, try to re-apply any payment
10560 // preimages from it which may be needed in upstream channels for forwarded
10562 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10564 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10565 if let HTLCSource::PreviousHopData(_) = htlc_source {
10566 if let Some(payment_preimage) = preimage_opt {
10567 Some((htlc_source, payment_preimage, htlc.amount_msat,
10568 // Check if `counterparty_opt.is_none()` to see if the
10569 // downstream chan is closed (because we don't have a
10570 // channel_id -> peer map entry).
10571 counterparty_opt.is_none(),
10572 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10573 monitor.get_funding_txo().0))
10576 // If it was an outbound payment, we've handled it above - if a preimage
10577 // came in and we persisted the `ChannelManager` we either handled it and
10578 // are good to go or the channel force-closed - we don't have to handle the
10579 // channel still live case here.
10583 for tuple in outbound_claimed_htlcs_iter {
10584 pending_claims_to_replay.push(tuple);
10589 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10590 // If we have pending HTLCs to forward, assume we either dropped a
10591 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10592 // shut down before the timer hit. Either way, set the time_forwardable to a small
10593 // constant as enough time has likely passed that we should simply handle the forwards
10594 // now, or at least after the user gets a chance to reconnect to our peers.
10595 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10596 time_forwardable: Duration::from_secs(2),
10600 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10601 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10603 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10604 if let Some(purposes) = claimable_htlc_purposes {
10605 if purposes.len() != claimable_htlcs_list.len() {
10606 return Err(DecodeError::InvalidValue);
10608 if let Some(onion_fields) = claimable_htlc_onion_fields {
10609 if onion_fields.len() != claimable_htlcs_list.len() {
10610 return Err(DecodeError::InvalidValue);
10612 for (purpose, (onion, (payment_hash, htlcs))) in
10613 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10615 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10616 purpose, htlcs, onion_fields: onion,
10618 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10621 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10622 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10623 purpose, htlcs, onion_fields: None,
10625 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10629 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10630 // include a `_legacy_hop_data` in the `OnionPayload`.
10631 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10632 if htlcs.is_empty() {
10633 return Err(DecodeError::InvalidValue);
10635 let purpose = match &htlcs[0].onion_payload {
10636 OnionPayload::Invoice { _legacy_hop_data } => {
10637 if let Some(hop_data) = _legacy_hop_data {
10638 events::PaymentPurpose::InvoicePayment {
10639 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10640 Some(inbound_payment) => inbound_payment.payment_preimage,
10641 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10642 Ok((payment_preimage, _)) => payment_preimage,
10644 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10645 return Err(DecodeError::InvalidValue);
10649 payment_secret: hop_data.payment_secret,
10651 } else { return Err(DecodeError::InvalidValue); }
10653 OnionPayload::Spontaneous(payment_preimage) =>
10654 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10656 claimable_payments.insert(payment_hash, ClaimablePayment {
10657 purpose, htlcs, onion_fields: None,
10662 let mut secp_ctx = Secp256k1::new();
10663 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10665 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10667 Err(()) => return Err(DecodeError::InvalidValue)
10669 if let Some(network_pubkey) = received_network_pubkey {
10670 if network_pubkey != our_network_pubkey {
10671 log_error!(args.logger, "Key that was generated does not match the existing key.");
10672 return Err(DecodeError::InvalidValue);
10676 let mut outbound_scid_aliases = HashSet::new();
10677 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10678 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10679 let peer_state = &mut *peer_state_lock;
10680 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10681 if let ChannelPhase::Funded(chan) = phase {
10682 if chan.context.outbound_scid_alias() == 0 {
10683 let mut outbound_scid_alias;
10685 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10686 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10687 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10689 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10690 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10691 // Note that in rare cases its possible to hit this while reading an older
10692 // channel if we just happened to pick a colliding outbound alias above.
10693 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10694 return Err(DecodeError::InvalidValue);
10696 if chan.context.is_usable() {
10697 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10698 // Note that in rare cases its possible to hit this while reading an older
10699 // channel if we just happened to pick a colliding outbound alias above.
10700 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10701 return Err(DecodeError::InvalidValue);
10705 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10706 // created in this `channel_by_id` map.
10707 debug_assert!(false);
10708 return Err(DecodeError::InvalidValue);
10713 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10715 for (_, monitor) in args.channel_monitors.iter() {
10716 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10717 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10718 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10719 let mut claimable_amt_msat = 0;
10720 let mut receiver_node_id = Some(our_network_pubkey);
10721 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10722 if phantom_shared_secret.is_some() {
10723 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10724 .expect("Failed to get node_id for phantom node recipient");
10725 receiver_node_id = Some(phantom_pubkey)
10727 for claimable_htlc in &payment.htlcs {
10728 claimable_amt_msat += claimable_htlc.value;
10730 // Add a holding-cell claim of the payment to the Channel, which should be
10731 // applied ~immediately on peer reconnection. Because it won't generate a
10732 // new commitment transaction we can just provide the payment preimage to
10733 // the corresponding ChannelMonitor and nothing else.
10735 // We do so directly instead of via the normal ChannelMonitor update
10736 // procedure as the ChainMonitor hasn't yet been initialized, implying
10737 // we're not allowed to call it directly yet. Further, we do the update
10738 // without incrementing the ChannelMonitor update ID as there isn't any
10740 // If we were to generate a new ChannelMonitor update ID here and then
10741 // crash before the user finishes block connect we'd end up force-closing
10742 // this channel as well. On the flip side, there's no harm in restarting
10743 // without the new monitor persisted - we'll end up right back here on
10745 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10746 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10747 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10748 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10749 let peer_state = &mut *peer_state_lock;
10750 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10751 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
10754 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10755 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10758 pending_events_read.push_back((events::Event::PaymentClaimed {
10761 purpose: payment.purpose,
10762 amount_msat: claimable_amt_msat,
10763 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10764 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10770 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10771 if let Some(peer_state) = per_peer_state.get(&node_id) {
10772 for (_, actions) in monitor_update_blocked_actions.iter() {
10773 for action in actions.iter() {
10774 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10775 downstream_counterparty_and_funding_outpoint:
10776 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10778 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10779 log_trace!(args.logger,
10780 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10781 blocked_channel_outpoint.to_channel_id());
10782 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10783 .entry(blocked_channel_outpoint.to_channel_id())
10784 .or_insert_with(Vec::new).push(blocking_action.clone());
10786 // If the channel we were blocking has closed, we don't need to
10787 // worry about it - the blocked monitor update should never have
10788 // been released from the `Channel` object so it can't have
10789 // completed, and if the channel closed there's no reason to bother
10793 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10794 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10798 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10800 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
10801 return Err(DecodeError::InvalidValue);
10805 let channel_manager = ChannelManager {
10807 fee_estimator: bounded_fee_estimator,
10808 chain_monitor: args.chain_monitor,
10809 tx_broadcaster: args.tx_broadcaster,
10810 router: args.router,
10812 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10814 inbound_payment_key: expanded_inbound_key,
10815 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10816 pending_outbound_payments: pending_outbounds,
10817 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10819 forward_htlcs: Mutex::new(forward_htlcs),
10820 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10821 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10822 id_to_peer: Mutex::new(id_to_peer),
10823 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10824 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10826 probing_cookie_secret: probing_cookie_secret.unwrap(),
10828 our_network_pubkey,
10831 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10833 per_peer_state: FairRwLock::new(per_peer_state),
10835 pending_events: Mutex::new(pending_events_read),
10836 pending_events_processor: AtomicBool::new(false),
10837 pending_background_events: Mutex::new(pending_background_events),
10838 total_consistency_lock: RwLock::new(()),
10839 background_events_processed_since_startup: AtomicBool::new(false),
10841 event_persist_notifier: Notifier::new(),
10842 needs_persist_flag: AtomicBool::new(false),
10844 funding_batch_states: Mutex::new(BTreeMap::new()),
10846 pending_offers_messages: Mutex::new(Vec::new()),
10848 entropy_source: args.entropy_source,
10849 node_signer: args.node_signer,
10850 signer_provider: args.signer_provider,
10852 logger: args.logger,
10853 default_configuration: args.default_config,
10856 for htlc_source in failed_htlcs.drain(..) {
10857 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10858 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10859 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10860 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10863 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10864 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10865 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10866 // channel is closed we just assume that it probably came from an on-chain claim.
10867 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10868 downstream_closed, true, downstream_node_id, downstream_funding);
10871 //TODO: Broadcast channel update for closed channels, but only after we've made a
10872 //connection or two.
10874 Ok((best_block_hash.clone(), channel_manager))
10880 use bitcoin::hashes::Hash;
10881 use bitcoin::hashes::sha256::Hash as Sha256;
10882 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10883 use core::sync::atomic::Ordering;
10884 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10885 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10886 use crate::ln::ChannelId;
10887 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10888 use crate::ln::functional_test_utils::*;
10889 use crate::ln::msgs::{self, ErrorAction};
10890 use crate::ln::msgs::ChannelMessageHandler;
10891 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10892 use crate::util::errors::APIError;
10893 use crate::util::test_utils;
10894 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10895 use crate::sign::EntropySource;
10898 fn test_notify_limits() {
10899 // Check that a few cases which don't require the persistence of a new ChannelManager,
10900 // indeed, do not cause the persistence of a new ChannelManager.
10901 let chanmon_cfgs = create_chanmon_cfgs(3);
10902 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10903 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10904 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10906 // All nodes start with a persistable update pending as `create_network` connects each node
10907 // with all other nodes to make most tests simpler.
10908 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10909 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10910 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10912 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10914 // We check that the channel info nodes have doesn't change too early, even though we try
10915 // to connect messages with new values
10916 chan.0.contents.fee_base_msat *= 2;
10917 chan.1.contents.fee_base_msat *= 2;
10918 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10919 &nodes[1].node.get_our_node_id()).pop().unwrap();
10920 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10921 &nodes[0].node.get_our_node_id()).pop().unwrap();
10923 // The first two nodes (which opened a channel) should now require fresh persistence
10924 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10925 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10926 // ... but the last node should not.
10927 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10928 // After persisting the first two nodes they should no longer need fresh persistence.
10929 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10930 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10932 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10933 // about the channel.
10934 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10935 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10936 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10938 // The nodes which are a party to the channel should also ignore messages from unrelated
10940 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10941 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10942 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10943 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10944 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10945 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10947 // At this point the channel info given by peers should still be the same.
10948 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10949 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10951 // An earlier version of handle_channel_update didn't check the directionality of the
10952 // update message and would always update the local fee info, even if our peer was
10953 // (spuriously) forwarding us our own channel_update.
10954 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
10955 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
10956 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
10958 // First deliver each peers' own message, checking that the node doesn't need to be
10959 // persisted and that its channel info remains the same.
10960 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
10961 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
10962 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10963 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10964 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10965 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10967 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
10968 // the channel info has updated.
10969 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
10970 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
10971 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10972 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10973 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
10974 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
10978 fn test_keysend_dup_hash_partial_mpp() {
10979 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
10981 let chanmon_cfgs = create_chanmon_cfgs(2);
10982 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10983 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10984 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10985 create_announced_chan_between_nodes(&nodes, 0, 1);
10987 // First, send a partial MPP payment.
10988 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
10989 let mut mpp_route = route.clone();
10990 mpp_route.paths.push(mpp_route.paths[0].clone());
10992 let payment_id = PaymentId([42; 32]);
10993 // Use the utility function send_payment_along_path to send the payment with MPP data which
10994 // indicates there are more HTLCs coming.
10995 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
10996 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
10997 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
10998 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
10999 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
11000 check_added_monitors!(nodes[0], 1);
11001 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11002 assert_eq!(events.len(), 1);
11003 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11005 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11006 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11007 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11008 check_added_monitors!(nodes[0], 1);
11009 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11010 assert_eq!(events.len(), 1);
11011 let ev = events.drain(..).next().unwrap();
11012 let payment_event = SendEvent::from_event(ev);
11013 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11014 check_added_monitors!(nodes[1], 0);
11015 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11016 expect_pending_htlcs_forwardable!(nodes[1]);
11017 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11018 check_added_monitors!(nodes[1], 1);
11019 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11020 assert!(updates.update_add_htlcs.is_empty());
11021 assert!(updates.update_fulfill_htlcs.is_empty());
11022 assert_eq!(updates.update_fail_htlcs.len(), 1);
11023 assert!(updates.update_fail_malformed_htlcs.is_empty());
11024 assert!(updates.update_fee.is_none());
11025 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11026 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11027 expect_payment_failed!(nodes[0], our_payment_hash, true);
11029 // Send the second half of the original MPP payment.
11030 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11031 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11032 check_added_monitors!(nodes[0], 1);
11033 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11034 assert_eq!(events.len(), 1);
11035 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11037 // Claim the full MPP payment. Note that we can't use a test utility like
11038 // claim_funds_along_route because the ordering of the messages causes the second half of the
11039 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11040 // lightning messages manually.
11041 nodes[1].node.claim_funds(payment_preimage);
11042 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11043 check_added_monitors!(nodes[1], 2);
11045 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11046 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11047 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11048 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11049 check_added_monitors!(nodes[0], 1);
11050 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11051 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11052 check_added_monitors!(nodes[1], 1);
11053 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11054 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11055 check_added_monitors!(nodes[1], 1);
11056 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11057 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11058 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11059 check_added_monitors!(nodes[0], 1);
11060 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11061 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11062 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11063 check_added_monitors!(nodes[0], 1);
11064 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11065 check_added_monitors!(nodes[1], 1);
11066 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11067 check_added_monitors!(nodes[1], 1);
11068 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11069 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11070 check_added_monitors!(nodes[0], 1);
11072 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11073 // path's success and a PaymentPathSuccessful event for each path's success.
11074 let events = nodes[0].node.get_and_clear_pending_events();
11075 assert_eq!(events.len(), 2);
11077 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11078 assert_eq!(payment_id, *actual_payment_id);
11079 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11080 assert_eq!(route.paths[0], *path);
11082 _ => panic!("Unexpected event"),
11085 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11086 assert_eq!(payment_id, *actual_payment_id);
11087 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11088 assert_eq!(route.paths[0], *path);
11090 _ => panic!("Unexpected event"),
11095 fn test_keysend_dup_payment_hash() {
11096 do_test_keysend_dup_payment_hash(false);
11097 do_test_keysend_dup_payment_hash(true);
11100 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11101 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11102 // outbound regular payment fails as expected.
11103 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11104 // fails as expected.
11105 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11106 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11107 // reject MPP keysend payments, since in this case where the payment has no payment
11108 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11109 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11110 // payment secrets and reject otherwise.
11111 let chanmon_cfgs = create_chanmon_cfgs(2);
11112 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11113 let mut mpp_keysend_cfg = test_default_channel_config();
11114 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11115 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11116 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11117 create_announced_chan_between_nodes(&nodes, 0, 1);
11118 let scorer = test_utils::TestScorer::new();
11119 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11121 // To start (1), send a regular payment but don't claim it.
11122 let expected_route = [&nodes[1]];
11123 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11125 // Next, attempt a keysend payment and make sure it fails.
11126 let route_params = RouteParameters::from_payment_params_and_value(
11127 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11128 TEST_FINAL_CLTV, false), 100_000);
11129 let route = find_route(
11130 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11131 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11133 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11134 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11135 check_added_monitors!(nodes[0], 1);
11136 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11137 assert_eq!(events.len(), 1);
11138 let ev = events.drain(..).next().unwrap();
11139 let payment_event = SendEvent::from_event(ev);
11140 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11141 check_added_monitors!(nodes[1], 0);
11142 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11143 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11144 // fails), the second will process the resulting failure and fail the HTLC backward
11145 expect_pending_htlcs_forwardable!(nodes[1]);
11146 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11147 check_added_monitors!(nodes[1], 1);
11148 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11149 assert!(updates.update_add_htlcs.is_empty());
11150 assert!(updates.update_fulfill_htlcs.is_empty());
11151 assert_eq!(updates.update_fail_htlcs.len(), 1);
11152 assert!(updates.update_fail_malformed_htlcs.is_empty());
11153 assert!(updates.update_fee.is_none());
11154 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11155 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11156 expect_payment_failed!(nodes[0], payment_hash, true);
11158 // Finally, claim the original payment.
11159 claim_payment(&nodes[0], &expected_route, payment_preimage);
11161 // To start (2), send a keysend payment but don't claim it.
11162 let payment_preimage = PaymentPreimage([42; 32]);
11163 let route = find_route(
11164 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11165 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11167 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11168 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11169 check_added_monitors!(nodes[0], 1);
11170 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11171 assert_eq!(events.len(), 1);
11172 let event = events.pop().unwrap();
11173 let path = vec![&nodes[1]];
11174 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11176 // Next, attempt a regular payment and make sure it fails.
11177 let payment_secret = PaymentSecret([43; 32]);
11178 nodes[0].node.send_payment_with_route(&route, payment_hash,
11179 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11180 check_added_monitors!(nodes[0], 1);
11181 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11182 assert_eq!(events.len(), 1);
11183 let ev = events.drain(..).next().unwrap();
11184 let payment_event = SendEvent::from_event(ev);
11185 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11186 check_added_monitors!(nodes[1], 0);
11187 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11188 expect_pending_htlcs_forwardable!(nodes[1]);
11189 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11190 check_added_monitors!(nodes[1], 1);
11191 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11192 assert!(updates.update_add_htlcs.is_empty());
11193 assert!(updates.update_fulfill_htlcs.is_empty());
11194 assert_eq!(updates.update_fail_htlcs.len(), 1);
11195 assert!(updates.update_fail_malformed_htlcs.is_empty());
11196 assert!(updates.update_fee.is_none());
11197 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11198 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11199 expect_payment_failed!(nodes[0], payment_hash, true);
11201 // Finally, succeed the keysend payment.
11202 claim_payment(&nodes[0], &expected_route, payment_preimage);
11204 // To start (3), send a keysend payment but don't claim it.
11205 let payment_id_1 = PaymentId([44; 32]);
11206 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11207 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11208 check_added_monitors!(nodes[0], 1);
11209 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11210 assert_eq!(events.len(), 1);
11211 let event = events.pop().unwrap();
11212 let path = vec![&nodes[1]];
11213 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11215 // Next, attempt a keysend payment and make sure it fails.
11216 let route_params = RouteParameters::from_payment_params_and_value(
11217 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11220 let route = find_route(
11221 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11222 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11224 let payment_id_2 = PaymentId([45; 32]);
11225 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11226 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11227 check_added_monitors!(nodes[0], 1);
11228 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11229 assert_eq!(events.len(), 1);
11230 let ev = events.drain(..).next().unwrap();
11231 let payment_event = SendEvent::from_event(ev);
11232 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11233 check_added_monitors!(nodes[1], 0);
11234 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11235 expect_pending_htlcs_forwardable!(nodes[1]);
11236 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11237 check_added_monitors!(nodes[1], 1);
11238 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11239 assert!(updates.update_add_htlcs.is_empty());
11240 assert!(updates.update_fulfill_htlcs.is_empty());
11241 assert_eq!(updates.update_fail_htlcs.len(), 1);
11242 assert!(updates.update_fail_malformed_htlcs.is_empty());
11243 assert!(updates.update_fee.is_none());
11244 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11245 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11246 expect_payment_failed!(nodes[0], payment_hash, true);
11248 // Finally, claim the original payment.
11249 claim_payment(&nodes[0], &expected_route, payment_preimage);
11253 fn test_keysend_hash_mismatch() {
11254 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11255 // preimage doesn't match the msg's payment hash.
11256 let chanmon_cfgs = create_chanmon_cfgs(2);
11257 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11258 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11259 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11261 let payer_pubkey = nodes[0].node.get_our_node_id();
11262 let payee_pubkey = nodes[1].node.get_our_node_id();
11264 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11265 let route_params = RouteParameters::from_payment_params_and_value(
11266 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11267 let network_graph = nodes[0].network_graph.clone();
11268 let first_hops = nodes[0].node.list_usable_channels();
11269 let scorer = test_utils::TestScorer::new();
11270 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11271 let route = find_route(
11272 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11273 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11276 let test_preimage = PaymentPreimage([42; 32]);
11277 let mismatch_payment_hash = PaymentHash([43; 32]);
11278 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11279 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11280 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11281 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11282 check_added_monitors!(nodes[0], 1);
11284 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11285 assert_eq!(updates.update_add_htlcs.len(), 1);
11286 assert!(updates.update_fulfill_htlcs.is_empty());
11287 assert!(updates.update_fail_htlcs.is_empty());
11288 assert!(updates.update_fail_malformed_htlcs.is_empty());
11289 assert!(updates.update_fee.is_none());
11290 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11292 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11296 fn test_keysend_msg_with_secret_err() {
11297 // Test that we error as expected if we receive a keysend payment that includes a payment
11298 // secret when we don't support MPP keysend.
11299 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11300 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11301 let chanmon_cfgs = create_chanmon_cfgs(2);
11302 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11303 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11304 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11306 let payer_pubkey = nodes[0].node.get_our_node_id();
11307 let payee_pubkey = nodes[1].node.get_our_node_id();
11309 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11310 let route_params = RouteParameters::from_payment_params_and_value(
11311 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11312 let network_graph = nodes[0].network_graph.clone();
11313 let first_hops = nodes[0].node.list_usable_channels();
11314 let scorer = test_utils::TestScorer::new();
11315 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11316 let route = find_route(
11317 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11318 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11321 let test_preimage = PaymentPreimage([42; 32]);
11322 let test_secret = PaymentSecret([43; 32]);
11323 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
11324 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11325 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11326 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11327 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11328 PaymentId(payment_hash.0), None, session_privs).unwrap();
11329 check_added_monitors!(nodes[0], 1);
11331 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11332 assert_eq!(updates.update_add_htlcs.len(), 1);
11333 assert!(updates.update_fulfill_htlcs.is_empty());
11334 assert!(updates.update_fail_htlcs.is_empty());
11335 assert!(updates.update_fail_malformed_htlcs.is_empty());
11336 assert!(updates.update_fee.is_none());
11337 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11339 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11343 fn test_multi_hop_missing_secret() {
11344 let chanmon_cfgs = create_chanmon_cfgs(4);
11345 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11346 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11347 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11349 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11350 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11351 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11352 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11354 // Marshall an MPP route.
11355 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11356 let path = route.paths[0].clone();
11357 route.paths.push(path);
11358 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11359 route.paths[0].hops[0].short_channel_id = chan_1_id;
11360 route.paths[0].hops[1].short_channel_id = chan_3_id;
11361 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11362 route.paths[1].hops[0].short_channel_id = chan_2_id;
11363 route.paths[1].hops[1].short_channel_id = chan_4_id;
11365 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11366 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11368 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11369 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11371 _ => panic!("unexpected error")
11376 fn test_drop_disconnected_peers_when_removing_channels() {
11377 let chanmon_cfgs = create_chanmon_cfgs(2);
11378 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11379 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11380 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11382 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11384 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11385 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11387 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11388 check_closed_broadcast!(nodes[0], true);
11389 check_added_monitors!(nodes[0], 1);
11390 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11393 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11394 // disconnected and the channel between has been force closed.
11395 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11396 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11397 assert_eq!(nodes_0_per_peer_state.len(), 1);
11398 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11401 nodes[0].node.timer_tick_occurred();
11404 // Assert that nodes[1] has now been removed.
11405 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11410 fn bad_inbound_payment_hash() {
11411 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11412 let chanmon_cfgs = create_chanmon_cfgs(2);
11413 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11414 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11415 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11417 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11418 let payment_data = msgs::FinalOnionHopData {
11420 total_msat: 100_000,
11423 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11424 // payment verification fails as expected.
11425 let mut bad_payment_hash = payment_hash.clone();
11426 bad_payment_hash.0[0] += 1;
11427 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11428 Ok(_) => panic!("Unexpected ok"),
11430 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11434 // Check that using the original payment hash succeeds.
11435 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11439 fn test_id_to_peer_coverage() {
11440 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11441 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11442 // the channel is successfully closed.
11443 let chanmon_cfgs = create_chanmon_cfgs(2);
11444 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11445 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11446 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11448 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11449 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11450 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11451 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11452 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11454 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11455 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
11457 // Ensure that the `id_to_peer` map is empty until either party has received the
11458 // funding transaction, and have the real `channel_id`.
11459 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11460 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11463 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11465 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11466 // as it has the funding transaction.
11467 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11468 assert_eq!(nodes_0_lock.len(), 1);
11469 assert!(nodes_0_lock.contains_key(&channel_id));
11472 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11474 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11476 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11478 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11479 assert_eq!(nodes_0_lock.len(), 1);
11480 assert!(nodes_0_lock.contains_key(&channel_id));
11482 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11485 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11486 // as it has the funding transaction.
11487 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11488 assert_eq!(nodes_1_lock.len(), 1);
11489 assert!(nodes_1_lock.contains_key(&channel_id));
11491 check_added_monitors!(nodes[1], 1);
11492 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11493 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11494 check_added_monitors!(nodes[0], 1);
11495 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11496 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11497 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11498 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11500 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11501 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11502 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11503 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11505 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11506 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11508 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11509 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11510 // fee for the closing transaction has been negotiated and the parties has the other
11511 // party's signature for the fee negotiated closing transaction.)
11512 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11513 assert_eq!(nodes_0_lock.len(), 1);
11514 assert!(nodes_0_lock.contains_key(&channel_id));
11518 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11519 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11520 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11521 // kept in the `nodes[1]`'s `id_to_peer` map.
11522 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11523 assert_eq!(nodes_1_lock.len(), 1);
11524 assert!(nodes_1_lock.contains_key(&channel_id));
11527 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11529 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11530 // therefore has all it needs to fully close the channel (both signatures for the
11531 // closing transaction).
11532 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11533 // fully closed by `nodes[0]`.
11534 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11536 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11537 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11538 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11539 assert_eq!(nodes_1_lock.len(), 1);
11540 assert!(nodes_1_lock.contains_key(&channel_id));
11543 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11545 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11547 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11548 // they both have everything required to fully close the channel.
11549 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11551 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11553 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11554 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11557 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11558 let expected_message = format!("Not connected to node: {}", expected_public_key);
11559 check_api_error_message(expected_message, res_err)
11562 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11563 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11564 check_api_error_message(expected_message, res_err)
11567 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11568 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11569 check_api_error_message(expected_message, res_err)
11572 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11573 let expected_message = "No such channel awaiting to be accepted.".to_string();
11574 check_api_error_message(expected_message, res_err)
11577 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11579 Err(APIError::APIMisuseError { err }) => {
11580 assert_eq!(err, expected_err_message);
11582 Err(APIError::ChannelUnavailable { err }) => {
11583 assert_eq!(err, expected_err_message);
11585 Ok(_) => panic!("Unexpected Ok"),
11586 Err(_) => panic!("Unexpected Error"),
11591 fn test_api_calls_with_unkown_counterparty_node() {
11592 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11593 // expected if the `counterparty_node_id` is an unkown peer in the
11594 // `ChannelManager::per_peer_state` map.
11595 let chanmon_cfg = create_chanmon_cfgs(2);
11596 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11597 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11598 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11601 let channel_id = ChannelId::from_bytes([4; 32]);
11602 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11603 let intercept_id = InterceptId([0; 32]);
11605 // Test the API functions.
11606 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11608 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11610 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11612 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11614 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11616 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11618 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11622 fn test_api_calls_with_unavailable_channel() {
11623 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11624 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11625 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11626 // the given `channel_id`.
11627 let chanmon_cfg = create_chanmon_cfgs(2);
11628 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11629 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11630 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11632 let counterparty_node_id = nodes[1].node.get_our_node_id();
11635 let channel_id = ChannelId::from_bytes([4; 32]);
11637 // Test the API functions.
11638 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11640 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11642 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11644 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11646 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11648 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11652 fn test_connection_limiting() {
11653 // Test that we limit un-channel'd peers and un-funded channels properly.
11654 let chanmon_cfgs = create_chanmon_cfgs(2);
11655 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11656 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11657 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11659 // Note that create_network connects the nodes together for us
11661 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11662 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11664 let mut funding_tx = None;
11665 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11666 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11667 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11670 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11671 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11672 funding_tx = Some(tx.clone());
11673 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11674 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11676 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11677 check_added_monitors!(nodes[1], 1);
11678 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11680 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11682 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11683 check_added_monitors!(nodes[0], 1);
11684 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11686 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11689 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11690 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11691 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11692 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11693 open_channel_msg.temporary_channel_id);
11695 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11696 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11698 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11699 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11700 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11701 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11702 peer_pks.push(random_pk);
11703 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11704 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11707 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11708 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11709 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11710 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11711 }, true).unwrap_err();
11713 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11714 // them if we have too many un-channel'd peers.
11715 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11716 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11717 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11718 for ev in chan_closed_events {
11719 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11721 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11722 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11724 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11725 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11726 }, true).unwrap_err();
11728 // but of course if the connection is outbound its allowed...
11729 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11730 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11731 }, false).unwrap();
11732 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11734 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11735 // Even though we accept one more connection from new peers, we won't actually let them
11737 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11738 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11739 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11740 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11741 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11743 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11744 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11745 open_channel_msg.temporary_channel_id);
11747 // Of course, however, outbound channels are always allowed
11748 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11749 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11751 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11752 // "protected" and can connect again.
11753 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11754 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11755 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11757 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11759 // Further, because the first channel was funded, we can open another channel with
11761 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11762 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11766 fn test_outbound_chans_unlimited() {
11767 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11768 let chanmon_cfgs = create_chanmon_cfgs(2);
11769 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11770 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11771 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11773 // Note that create_network connects the nodes together for us
11775 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11776 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11778 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11779 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11780 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11781 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11784 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11786 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11787 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11788 open_channel_msg.temporary_channel_id);
11790 // but we can still open an outbound channel.
11791 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11792 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11794 // but even with such an outbound channel, additional inbound channels will still fail.
11795 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11796 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11797 open_channel_msg.temporary_channel_id);
11801 fn test_0conf_limiting() {
11802 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11803 // flag set and (sometimes) accept channels as 0conf.
11804 let chanmon_cfgs = create_chanmon_cfgs(2);
11805 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11806 let mut settings = test_default_channel_config();
11807 settings.manually_accept_inbound_channels = true;
11808 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11809 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11811 // Note that create_network connects the nodes together for us
11813 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11814 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11816 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11817 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11818 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11819 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11820 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11821 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11824 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11825 let events = nodes[1].node.get_and_clear_pending_events();
11827 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11828 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11830 _ => panic!("Unexpected event"),
11832 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11833 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11836 // If we try to accept a channel from another peer non-0conf it will fail.
11837 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11838 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11839 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11840 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11842 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11843 let events = nodes[1].node.get_and_clear_pending_events();
11845 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11846 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11847 Err(APIError::APIMisuseError { err }) =>
11848 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11852 _ => panic!("Unexpected event"),
11854 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11855 open_channel_msg.temporary_channel_id);
11857 // ...however if we accept the same channel 0conf it should work just fine.
11858 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11859 let events = nodes[1].node.get_and_clear_pending_events();
11861 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11862 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11864 _ => panic!("Unexpected event"),
11866 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11870 fn reject_excessively_underpaying_htlcs() {
11871 let chanmon_cfg = create_chanmon_cfgs(1);
11872 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11873 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11874 let node = create_network(1, &node_cfg, &node_chanmgr);
11875 let sender_intended_amt_msat = 100;
11876 let extra_fee_msat = 10;
11877 let hop_data = msgs::InboundOnionPayload::Receive {
11879 outgoing_cltv_value: 42,
11880 payment_metadata: None,
11881 keysend_preimage: None,
11882 payment_data: Some(msgs::FinalOnionHopData {
11883 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11885 custom_tlvs: Vec::new(),
11887 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11888 // intended amount, we fail the payment.
11889 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11890 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11891 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
11893 assert_eq!(err_code, 19);
11894 } else { panic!(); }
11896 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11897 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11899 outgoing_cltv_value: 42,
11900 payment_metadata: None,
11901 keysend_preimage: None,
11902 payment_data: Some(msgs::FinalOnionHopData {
11903 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11905 custom_tlvs: Vec::new(),
11907 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11908 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
11912 fn test_final_incorrect_cltv(){
11913 let chanmon_cfg = create_chanmon_cfgs(1);
11914 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11915 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11916 let node = create_network(1, &node_cfg, &node_chanmgr);
11918 let result = node[0].node.construct_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
11920 outgoing_cltv_value: 22,
11921 payment_metadata: None,
11922 keysend_preimage: None,
11923 payment_data: Some(msgs::FinalOnionHopData {
11924 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
11926 custom_tlvs: Vec::new(),
11927 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None);
11929 // Should not return an error as this condition:
11930 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
11931 // is not satisfied.
11932 assert!(result.is_ok());
11936 fn test_inbound_anchors_manual_acceptance() {
11937 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11938 // flag set and (sometimes) accept channels as 0conf.
11939 let mut anchors_cfg = test_default_channel_config();
11940 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11942 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11943 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11945 let chanmon_cfgs = create_chanmon_cfgs(3);
11946 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11947 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
11948 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
11949 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11951 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11952 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11954 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11955 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11956 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
11957 match &msg_events[0] {
11958 MessageSendEvent::HandleError { node_id, action } => {
11959 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
11961 ErrorAction::SendErrorMessage { msg } =>
11962 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
11963 _ => panic!("Unexpected error action"),
11966 _ => panic!("Unexpected event"),
11969 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11970 let events = nodes[2].node.get_and_clear_pending_events();
11972 Event::OpenChannelRequest { temporary_channel_id, .. } =>
11973 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
11974 _ => panic!("Unexpected event"),
11976 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11980 fn test_anchors_zero_fee_htlc_tx_fallback() {
11981 // Tests that if both nodes support anchors, but the remote node does not want to accept
11982 // anchor channels at the moment, an error it sent to the local node such that it can retry
11983 // the channel without the anchors feature.
11984 let chanmon_cfgs = create_chanmon_cfgs(2);
11985 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11986 let mut anchors_config = test_default_channel_config();
11987 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11988 anchors_config.manually_accept_inbound_channels = true;
11989 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
11990 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11992 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
11993 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11994 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
11996 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11997 let events = nodes[1].node.get_and_clear_pending_events();
11999 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12000 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
12002 _ => panic!("Unexpected event"),
12005 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12006 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12008 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12009 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12011 // Since nodes[1] should not have accepted the channel, it should
12012 // not have generated any events.
12013 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12017 fn test_update_channel_config() {
12018 let chanmon_cfg = create_chanmon_cfgs(2);
12019 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12020 let mut user_config = test_default_channel_config();
12021 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12022 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12023 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12024 let channel = &nodes[0].node.list_channels()[0];
12026 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12027 let events = nodes[0].node.get_and_clear_pending_msg_events();
12028 assert_eq!(events.len(), 0);
12030 user_config.channel_config.forwarding_fee_base_msat += 10;
12031 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12032 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12033 let events = nodes[0].node.get_and_clear_pending_msg_events();
12034 assert_eq!(events.len(), 1);
12036 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12037 _ => panic!("expected BroadcastChannelUpdate event"),
12040 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12041 let events = nodes[0].node.get_and_clear_pending_msg_events();
12042 assert_eq!(events.len(), 0);
12044 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12045 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12046 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12047 ..Default::default()
12049 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12050 let events = nodes[0].node.get_and_clear_pending_msg_events();
12051 assert_eq!(events.len(), 1);
12053 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12054 _ => panic!("expected BroadcastChannelUpdate event"),
12057 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12058 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12059 forwarding_fee_proportional_millionths: Some(new_fee),
12060 ..Default::default()
12062 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12063 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12064 let events = nodes[0].node.get_and_clear_pending_msg_events();
12065 assert_eq!(events.len(), 1);
12067 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12068 _ => panic!("expected BroadcastChannelUpdate event"),
12071 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12072 // should be applied to ensure update atomicity as specified in the API docs.
12073 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12074 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12075 let new_fee = current_fee + 100;
12078 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12079 forwarding_fee_proportional_millionths: Some(new_fee),
12080 ..Default::default()
12082 Err(APIError::ChannelUnavailable { err: _ }),
12085 // Check that the fee hasn't changed for the channel that exists.
12086 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12087 let events = nodes[0].node.get_and_clear_pending_msg_events();
12088 assert_eq!(events.len(), 0);
12092 fn test_payment_display() {
12093 let payment_id = PaymentId([42; 32]);
12094 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12095 let payment_hash = PaymentHash([42; 32]);
12096 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12097 let payment_preimage = PaymentPreimage([42; 32]);
12098 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12102 fn test_trigger_lnd_force_close() {
12103 let chanmon_cfg = create_chanmon_cfgs(2);
12104 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12105 let user_config = test_default_channel_config();
12106 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12107 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12109 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12110 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12111 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12112 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12113 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12114 check_closed_broadcast(&nodes[0], 1, true);
12115 check_added_monitors(&nodes[0], 1);
12116 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12118 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12119 assert_eq!(txn.len(), 1);
12120 check_spends!(txn[0], funding_tx);
12123 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12124 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12126 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12127 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12129 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12130 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12131 }, false).unwrap();
12132 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12133 let channel_reestablish = get_event_msg!(
12134 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12136 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12138 // Alice should respond with an error since the channel isn't known, but a bogus
12139 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12140 // close even if it was an lnd node.
12141 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12142 assert_eq!(msg_events.len(), 2);
12143 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12144 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12145 assert_eq!(msg.next_local_commitment_number, 0);
12146 assert_eq!(msg.next_remote_commitment_number, 0);
12147 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12148 } else { panic!() };
12149 check_closed_broadcast(&nodes[1], 1, true);
12150 check_added_monitors(&nodes[1], 1);
12151 let expected_close_reason = ClosureReason::ProcessingError {
12152 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12154 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12156 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12157 assert_eq!(txn.len(), 1);
12158 check_spends!(txn[0], funding_tx);
12165 use crate::chain::Listen;
12166 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12167 use crate::sign::{KeysManager, InMemorySigner};
12168 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12169 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12170 use crate::ln::functional_test_utils::*;
12171 use crate::ln::msgs::{ChannelMessageHandler, Init};
12172 use crate::routing::gossip::NetworkGraph;
12173 use crate::routing::router::{PaymentParameters, RouteParameters};
12174 use crate::util::test_utils;
12175 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12177 use bitcoin::hashes::Hash;
12178 use bitcoin::hashes::sha256::Hash as Sha256;
12179 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
12181 use crate::sync::{Arc, Mutex, RwLock};
12183 use criterion::Criterion;
12185 type Manager<'a, P> = ChannelManager<
12186 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12187 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12188 &'a test_utils::TestLogger, &'a P>,
12189 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12190 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12191 &'a test_utils::TestLogger>;
12193 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12194 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12196 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12197 type CM = Manager<'chan_mon_cfg, P>;
12199 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12201 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12204 pub fn bench_sends(bench: &mut Criterion) {
12205 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12208 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12209 // Do a simple benchmark of sending a payment back and forth between two nodes.
12210 // Note that this is unrealistic as each payment send will require at least two fsync
12212 let network = bitcoin::Network::Testnet;
12213 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12215 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12216 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12217 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12218 let scorer = RwLock::new(test_utils::TestScorer::new());
12219 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12221 let mut config: UserConfig = Default::default();
12222 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12223 config.channel_handshake_config.minimum_depth = 1;
12225 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12226 let seed_a = [1u8; 32];
12227 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12228 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12230 best_block: BestBlock::from_network(network),
12231 }, genesis_block.header.time);
12232 let node_a_holder = ANodeHolder { node: &node_a };
12234 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12235 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12236 let seed_b = [2u8; 32];
12237 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12238 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12240 best_block: BestBlock::from_network(network),
12241 }, genesis_block.header.time);
12242 let node_b_holder = ANodeHolder { node: &node_b };
12244 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12245 features: node_b.init_features(), networks: None, remote_network_address: None
12247 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12248 features: node_a.init_features(), networks: None, remote_network_address: None
12249 }, false).unwrap();
12250 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12251 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12252 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12255 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12256 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12257 value: 8_000_000, script_pubkey: output_script,
12259 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12260 } else { panic!(); }
12262 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12263 let events_b = node_b.get_and_clear_pending_events();
12264 assert_eq!(events_b.len(), 1);
12265 match events_b[0] {
12266 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12267 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12269 _ => panic!("Unexpected event"),
12272 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12273 let events_a = node_a.get_and_clear_pending_events();
12274 assert_eq!(events_a.len(), 1);
12275 match events_a[0] {
12276 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12277 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12279 _ => panic!("Unexpected event"),
12282 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12284 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12285 Listen::block_connected(&node_a, &block, 1);
12286 Listen::block_connected(&node_b, &block, 1);
12288 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12289 let msg_events = node_a.get_and_clear_pending_msg_events();
12290 assert_eq!(msg_events.len(), 2);
12291 match msg_events[0] {
12292 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12293 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12294 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12298 match msg_events[1] {
12299 MessageSendEvent::SendChannelUpdate { .. } => {},
12303 let events_a = node_a.get_and_clear_pending_events();
12304 assert_eq!(events_a.len(), 1);
12305 match events_a[0] {
12306 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12307 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12309 _ => panic!("Unexpected event"),
12312 let events_b = node_b.get_and_clear_pending_events();
12313 assert_eq!(events_b.len(), 1);
12314 match events_b[0] {
12315 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12316 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12318 _ => panic!("Unexpected event"),
12321 let mut payment_count: u64 = 0;
12322 macro_rules! send_payment {
12323 ($node_a: expr, $node_b: expr) => {
12324 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12325 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12326 let mut payment_preimage = PaymentPreimage([0; 32]);
12327 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12328 payment_count += 1;
12329 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
12330 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12332 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12333 PaymentId(payment_hash.0),
12334 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12335 Retry::Attempts(0)).unwrap();
12336 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12337 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12338 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12339 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12340 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12341 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12342 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12344 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12345 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12346 $node_b.claim_funds(payment_preimage);
12347 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12349 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12350 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12351 assert_eq!(node_id, $node_a.get_our_node_id());
12352 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12353 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12355 _ => panic!("Failed to generate claim event"),
12358 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12359 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12360 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12361 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12363 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12367 bench.bench_function(bench_name, |b| b.iter(|| {
12368 send_payment!(node_a, node_b);
12369 send_payment!(node_b, node_a);