1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`find_route`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 //! [`find_route`]: crate::routing::router::find_route
22 use bitcoin::blockdata::block::BlockHeader;
23 use bitcoin::blockdata::transaction::Transaction;
24 use bitcoin::blockdata::constants::genesis_block;
25 use bitcoin::network::constants::Network;
27 use bitcoin::hashes::{Hash, HashEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hash_types::{BlockHash, Txid};
32 use bitcoin::secp256k1::{SecretKey,PublicKey};
33 use bitcoin::secp256k1::Secp256k1;
34 use bitcoin::secp256k1::ecdh::SharedSecret;
35 use bitcoin::secp256k1;
38 use chain::{Confirm, ChannelMonitorUpdateErr, Watch, BestBlock};
39 use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator};
40 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
41 use chain::transaction::{OutPoint, TransactionData};
42 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
43 // construct one themselves.
44 use ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
45 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
46 use ln::features::{ChannelTypeFeatures, InitFeatures, NodeFeatures};
47 use routing::router::{PaymentParameters, Route, RouteHop, RoutePath, RouteParameters};
49 use ln::msgs::NetAddress;
51 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT, OptionalField};
53 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner, Recipient};
54 use util::config::UserConfig;
55 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
56 use util::{byte_utils, events};
57 use util::scid_utils::fake_scid;
58 use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
59 use util::logger::{Level, Logger};
60 use util::errors::APIError;
65 use core::cell::RefCell;
67 use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use core::sync::atomic::{AtomicUsize, Ordering};
69 use core::time::Duration;
72 #[cfg(any(test, feature = "std"))]
73 use std::time::Instant;
74 use util::crypto::sign;
76 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
78 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
79 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
80 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
82 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
83 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
84 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
85 // before we forward it.
87 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
88 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
89 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
90 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
91 // our payment, which we can use to decode errors or inform the user that the payment was sent.
93 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
94 pub(super) enum PendingHTLCRouting {
96 onion_packet: msgs::OnionPacket,
97 /// The SCID from the onion that we should forward to. This could be a "real" SCID, an
98 /// outbound SCID alias, or a phantom node SCID.
99 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
102 payment_data: msgs::FinalOnionHopData,
103 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
104 phantom_shared_secret: Option<[u8; 32]>,
107 payment_preimage: PaymentPreimage,
108 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
112 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
113 pub(super) struct PendingHTLCInfo {
114 pub(super) routing: PendingHTLCRouting,
115 pub(super) incoming_shared_secret: [u8; 32],
116 payment_hash: PaymentHash,
117 pub(super) amt_to_forward: u64,
118 pub(super) outgoing_cltv_value: u32,
121 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
122 pub(super) enum HTLCFailureMsg {
123 Relay(msgs::UpdateFailHTLC),
124 Malformed(msgs::UpdateFailMalformedHTLC),
127 /// Stores whether we can't forward an HTLC or relevant forwarding info
128 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
129 pub(super) enum PendingHTLCStatus {
130 Forward(PendingHTLCInfo),
131 Fail(HTLCFailureMsg),
134 pub(super) enum HTLCForwardInfo {
136 forward_info: PendingHTLCInfo,
138 // These fields are produced in `forward_htlcs()` and consumed in
139 // `process_pending_htlc_forwards()` for constructing the
140 // `HTLCSource::PreviousHopData` for failed and forwarded
143 // Note that this may be an outbound SCID alias for the associated channel.
144 prev_short_channel_id: u64,
146 prev_funding_outpoint: OutPoint,
150 err_packet: msgs::OnionErrorPacket,
154 /// Tracks the inbound corresponding to an outbound HTLC
155 #[derive(Clone, Hash, PartialEq, Eq)]
156 pub(crate) struct HTLCPreviousHopData {
157 // Note that this may be an outbound SCID alias for the associated channel.
158 short_channel_id: u64,
160 incoming_packet_shared_secret: [u8; 32],
161 phantom_shared_secret: Option<[u8; 32]>,
163 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
164 // channel with a preimage provided by the forward channel.
169 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
171 /// This is only here for backwards-compatibility in serialization, in the future it can be
172 /// removed, breaking clients running 0.0.106 and earlier.
173 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
175 /// Contains the payer-provided preimage.
176 Spontaneous(PaymentPreimage),
179 /// HTLCs that are to us and can be failed/claimed by the user
180 struct ClaimableHTLC {
181 prev_hop: HTLCPreviousHopData,
183 /// The amount (in msats) of this MPP part
185 onion_payload: OnionPayload,
187 /// The sum total of all MPP parts
191 /// A payment identifier used to uniquely identify a payment to LDK.
192 /// (C-not exported) as we just use [u8; 32] directly
193 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
194 pub struct PaymentId(pub [u8; 32]);
196 impl Writeable for PaymentId {
197 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
202 impl Readable for PaymentId {
203 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
204 let buf: [u8; 32] = Readable::read(r)?;
208 /// Tracks the inbound corresponding to an outbound HTLC
209 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
210 #[derive(Clone, PartialEq, Eq)]
211 pub(crate) enum HTLCSource {
212 PreviousHopData(HTLCPreviousHopData),
215 session_priv: SecretKey,
216 /// Technically we can recalculate this from the route, but we cache it here to avoid
217 /// doing a double-pass on route when we get a failure back
218 first_hop_htlc_msat: u64,
219 payment_id: PaymentId,
220 payment_secret: Option<PaymentSecret>,
221 payment_params: Option<PaymentParameters>,
224 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
225 impl core::hash::Hash for HTLCSource {
226 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
228 HTLCSource::PreviousHopData(prev_hop_data) => {
230 prev_hop_data.hash(hasher);
232 HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
235 session_priv[..].hash(hasher);
236 payment_id.hash(hasher);
237 payment_secret.hash(hasher);
238 first_hop_htlc_msat.hash(hasher);
239 payment_params.hash(hasher);
244 #[cfg(not(feature = "grind_signatures"))]
247 pub fn dummy() -> Self {
248 HTLCSource::OutboundRoute {
250 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
251 first_hop_htlc_msat: 0,
252 payment_id: PaymentId([2; 32]),
253 payment_secret: None,
254 payment_params: None,
259 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
260 pub(super) enum HTLCFailReason {
262 err: msgs::OnionErrorPacket,
270 struct ReceiveError {
276 /// Return value for claim_funds_from_hop
277 enum ClaimFundsFromHop {
279 MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
284 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
286 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
287 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
288 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
289 /// channel_state lock. We then return the set of things that need to be done outside the lock in
290 /// this struct and call handle_error!() on it.
292 struct MsgHandleErrInternal {
293 err: msgs::LightningError,
294 chan_id: Option<([u8; 32], u64)>, // If Some a channel of ours has been closed
295 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
297 impl MsgHandleErrInternal {
299 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
301 err: LightningError {
303 action: msgs::ErrorAction::SendErrorMessage {
304 msg: msgs::ErrorMessage {
311 shutdown_finish: None,
315 fn ignore_no_close(err: String) -> Self {
317 err: LightningError {
319 action: msgs::ErrorAction::IgnoreError,
322 shutdown_finish: None,
326 fn from_no_close(err: msgs::LightningError) -> Self {
327 Self { err, chan_id: None, shutdown_finish: None }
330 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u64, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
332 err: LightningError {
334 action: msgs::ErrorAction::SendErrorMessage {
335 msg: msgs::ErrorMessage {
341 chan_id: Some((channel_id, user_channel_id)),
342 shutdown_finish: Some((shutdown_res, channel_update)),
346 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
349 ChannelError::Warn(msg) => LightningError {
351 action: msgs::ErrorAction::SendWarningMessage {
352 msg: msgs::WarningMessage {
356 log_level: Level::Warn,
359 ChannelError::Ignore(msg) => LightningError {
361 action: msgs::ErrorAction::IgnoreError,
363 ChannelError::Close(msg) => LightningError {
365 action: msgs::ErrorAction::SendErrorMessage {
366 msg: msgs::ErrorMessage {
372 ChannelError::CloseDelayBroadcast(msg) => LightningError {
374 action: msgs::ErrorAction::SendErrorMessage {
375 msg: msgs::ErrorMessage {
383 shutdown_finish: None,
388 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
389 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
390 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
391 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
392 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
394 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
395 /// be sent in the order they appear in the return value, however sometimes the order needs to be
396 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
397 /// they were originally sent). In those cases, this enum is also returned.
398 #[derive(Clone, PartialEq)]
399 pub(super) enum RAACommitmentOrder {
400 /// Send the CommitmentUpdate messages first
402 /// Send the RevokeAndACK message first
406 // Note this is only exposed in cfg(test):
407 pub(super) struct ChannelHolder<Signer: Sign> {
408 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
409 /// SCIDs (and outbound SCID aliases) to the real channel id. Outbound SCID aliases are added
410 /// here once the channel is available for normal use, with SCIDs being added once the funding
411 /// transaction is confirmed at the channel's required confirmation depth.
412 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
413 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
415 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
416 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
417 /// and via the classic SCID.
419 /// Note that while this is held in the same mutex as the channels themselves, no consistency
420 /// guarantees are made about the existence of a channel with the short id here, nor the short
421 /// ids in the PendingHTLCInfo!
422 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
423 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
424 /// failed/claimed by the user.
426 /// Note that while this is held in the same mutex as the channels themselves, no consistency
427 /// guarantees are made about the channels given here actually existing anymore by the time you
429 claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
430 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
431 /// for broadcast messages, where ordering isn't as strict).
432 pub(super) pending_msg_events: Vec<MessageSendEvent>,
435 /// Events which we process internally but cannot be procsesed immediately at the generation site
436 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
437 /// quite some time lag.
438 enum BackgroundEvent {
439 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
440 /// commitment transaction.
441 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
444 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
445 /// the latest Init features we heard from the peer.
447 latest_features: InitFeatures,
450 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
451 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
453 /// For users who don't want to bother doing their own payment preimage storage, we also store that
456 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
457 /// and instead encoding it in the payment secret.
458 struct PendingInboundPayment {
459 /// The payment secret that the sender must use for us to accept this payment
460 payment_secret: PaymentSecret,
461 /// Time at which this HTLC expires - blocks with a header time above this value will result in
462 /// this payment being removed.
464 /// Arbitrary identifier the user specifies (or not)
465 user_payment_id: u64,
466 // Other required attributes of the payment, optionally enforced:
467 payment_preimage: Option<PaymentPreimage>,
468 min_value_msat: Option<u64>,
471 /// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102
472 /// and later, also stores information for retrying the payment.
473 pub(crate) enum PendingOutboundPayment {
475 session_privs: HashSet<[u8; 32]>,
478 session_privs: HashSet<[u8; 32]>,
479 payment_hash: PaymentHash,
480 payment_secret: Option<PaymentSecret>,
481 pending_amt_msat: u64,
482 /// Used to track the fee paid. Only present if the payment was serialized on 0.0.103+.
483 pending_fee_msat: Option<u64>,
484 /// The total payment amount across all paths, used to verify that a retry is not overpaying.
486 /// Our best known block height at the time this payment was initiated.
487 starting_block_height: u32,
489 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
490 /// been resolved. This ensures we don't look up pending payments in ChannelMonitors on restart
491 /// and add a pending payment that was already fulfilled.
493 session_privs: HashSet<[u8; 32]>,
494 payment_hash: Option<PaymentHash>,
496 /// When a payer gives up trying to retry a payment, they inform us, letting us generate a
497 /// `PaymentFailed` event when all HTLCs have irrevocably failed. This avoids a number of race
498 /// conditions in MPP-aware payment retriers (1), where the possibility of multiple
499 /// `PaymentPathFailed` events with `all_paths_failed` can be pending at once, confusing a
500 /// downstream event handler as to when a payment has actually failed.
502 /// (1) https://github.com/lightningdevkit/rust-lightning/issues/1164
504 session_privs: HashSet<[u8; 32]>,
505 payment_hash: PaymentHash,
509 impl PendingOutboundPayment {
510 fn is_retryable(&self) -> bool {
512 PendingOutboundPayment::Retryable { .. } => true,
516 fn is_fulfilled(&self) -> bool {
518 PendingOutboundPayment::Fulfilled { .. } => true,
522 fn abandoned(&self) -> bool {
524 PendingOutboundPayment::Abandoned { .. } => true,
528 fn get_pending_fee_msat(&self) -> Option<u64> {
530 PendingOutboundPayment::Retryable { pending_fee_msat, .. } => pending_fee_msat.clone(),
535 fn payment_hash(&self) -> Option<PaymentHash> {
537 PendingOutboundPayment::Legacy { .. } => None,
538 PendingOutboundPayment::Retryable { payment_hash, .. } => Some(*payment_hash),
539 PendingOutboundPayment::Fulfilled { payment_hash, .. } => *payment_hash,
540 PendingOutboundPayment::Abandoned { payment_hash, .. } => Some(*payment_hash),
544 fn mark_fulfilled(&mut self) {
545 let mut session_privs = HashSet::new();
546 core::mem::swap(&mut session_privs, match self {
547 PendingOutboundPayment::Legacy { session_privs } |
548 PendingOutboundPayment::Retryable { session_privs, .. } |
549 PendingOutboundPayment::Fulfilled { session_privs, .. } |
550 PendingOutboundPayment::Abandoned { session_privs, .. }
553 let payment_hash = self.payment_hash();
554 *self = PendingOutboundPayment::Fulfilled { session_privs, payment_hash };
557 fn mark_abandoned(&mut self) -> Result<(), ()> {
558 let mut session_privs = HashSet::new();
559 let our_payment_hash;
560 core::mem::swap(&mut session_privs, match self {
561 PendingOutboundPayment::Legacy { .. } |
562 PendingOutboundPayment::Fulfilled { .. } =>
564 PendingOutboundPayment::Retryable { session_privs, payment_hash, .. } |
565 PendingOutboundPayment::Abandoned { session_privs, payment_hash, .. } => {
566 our_payment_hash = *payment_hash;
570 *self = PendingOutboundPayment::Abandoned { session_privs, payment_hash: our_payment_hash };
574 /// panics if path is None and !self.is_fulfilled
575 fn remove(&mut self, session_priv: &[u8; 32], path: Option<&Vec<RouteHop>>) -> bool {
576 let remove_res = match self {
577 PendingOutboundPayment::Legacy { session_privs } |
578 PendingOutboundPayment::Retryable { session_privs, .. } |
579 PendingOutboundPayment::Fulfilled { session_privs, .. } |
580 PendingOutboundPayment::Abandoned { session_privs, .. } => {
581 session_privs.remove(session_priv)
585 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
586 let path = path.expect("Fulfilling a payment should always come with a path");
587 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
588 *pending_amt_msat -= path_last_hop.fee_msat;
589 if let Some(fee_msat) = pending_fee_msat.as_mut() {
590 *fee_msat -= path.get_path_fees();
597 fn insert(&mut self, session_priv: [u8; 32], path: &Vec<RouteHop>) -> bool {
598 let insert_res = match self {
599 PendingOutboundPayment::Legacy { session_privs } |
600 PendingOutboundPayment::Retryable { session_privs, .. } => {
601 session_privs.insert(session_priv)
603 PendingOutboundPayment::Fulfilled { .. } => false,
604 PendingOutboundPayment::Abandoned { .. } => false,
607 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
608 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
609 *pending_amt_msat += path_last_hop.fee_msat;
610 if let Some(fee_msat) = pending_fee_msat.as_mut() {
611 *fee_msat += path.get_path_fees();
618 fn remaining_parts(&self) -> usize {
620 PendingOutboundPayment::Legacy { session_privs } |
621 PendingOutboundPayment::Retryable { session_privs, .. } |
622 PendingOutboundPayment::Fulfilled { session_privs, .. } |
623 PendingOutboundPayment::Abandoned { session_privs, .. } => {
630 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
631 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
632 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
633 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
634 /// issues such as overly long function definitions. Note that the ChannelManager can take any
635 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
636 /// concrete type of the KeysManager.
638 /// (C-not exported) as Arcs don't make sense in bindings
639 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
641 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
642 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
643 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
644 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
645 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
646 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
647 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
648 /// concrete type of the KeysManager.
650 /// (C-not exported) as Arcs don't make sense in bindings
651 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
653 /// Manager which keeps track of a number of channels and sends messages to the appropriate
654 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
656 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
657 /// to individual Channels.
659 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
660 /// all peers during write/read (though does not modify this instance, only the instance being
661 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
662 /// called funding_transaction_generated for outbound channels).
664 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
665 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
666 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
667 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
668 /// the serialization process). If the deserialized version is out-of-date compared to the
669 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
670 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
672 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
673 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
674 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
675 /// block_connected() to step towards your best block) upon deserialization before using the
678 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
679 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
680 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
681 /// offline for a full minute. In order to track this, you must call
682 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
684 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
685 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
686 /// essentially you should default to using a SimpleRefChannelManager, and use a
687 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
688 /// you're using lightning-net-tokio.
689 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
690 where M::Target: chain::Watch<Signer>,
691 T::Target: BroadcasterInterface,
692 K::Target: KeysInterface<Signer = Signer>,
693 F::Target: FeeEstimator,
696 default_configuration: UserConfig,
697 genesis_hash: BlockHash,
703 pub(super) best_block: RwLock<BestBlock>,
705 best_block: RwLock<BestBlock>,
706 secp_ctx: Secp256k1<secp256k1::All>,
708 #[cfg(any(test, feature = "_test_utils"))]
709 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
710 #[cfg(not(any(test, feature = "_test_utils")))]
711 channel_state: Mutex<ChannelHolder<Signer>>,
713 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
714 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
715 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
716 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
717 /// Locked *after* channel_state.
718 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
720 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
721 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
722 /// (if the channel has been force-closed), however we track them here to prevent duplicative
723 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
724 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
725 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
726 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
727 /// after reloading from disk while replaying blocks against ChannelMonitors.
729 /// See `PendingOutboundPayment` documentation for more info.
731 /// Locked *after* channel_state.
732 pending_outbound_payments: Mutex<HashMap<PaymentId, PendingOutboundPayment>>,
734 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
735 /// and some closed channels which reached a usable state prior to being closed. This is used
736 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
737 /// active channel list on load.
738 outbound_scid_aliases: Mutex<HashSet<u64>>,
740 our_network_key: SecretKey,
741 our_network_pubkey: PublicKey,
743 inbound_payment_key: inbound_payment::ExpandedKey,
745 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
746 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
747 /// we encrypt the namespace identifier using these bytes.
749 /// [fake scids]: crate::util::scid_utils::fake_scid
750 fake_scid_rand_bytes: [u8; 32],
752 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
753 /// value increases strictly since we don't assume access to a time source.
754 last_node_announcement_serial: AtomicUsize,
756 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
757 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
758 /// very far in the past, and can only ever be up to two hours in the future.
759 highest_seen_timestamp: AtomicUsize,
761 /// The bulk of our storage will eventually be here (channels and message queues and the like).
762 /// If we are connected to a peer we always at least have an entry here, even if no channels
763 /// are currently open with that peer.
764 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
765 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
768 /// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`.
769 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
771 pending_events: Mutex<Vec<events::Event>>,
772 pending_background_events: Mutex<Vec<BackgroundEvent>>,
773 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
774 /// Essentially just when we're serializing ourselves out.
775 /// Taken first everywhere where we are making changes before any other locks.
776 /// When acquiring this lock in read mode, rather than acquiring it directly, call
777 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
778 /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
779 total_consistency_lock: RwLock<()>,
781 persistence_notifier: PersistenceNotifier,
788 /// Chain-related parameters used to construct a new `ChannelManager`.
790 /// Typically, the block-specific parameters are derived from the best block hash for the network,
791 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
792 /// are not needed when deserializing a previously constructed `ChannelManager`.
793 #[derive(Clone, Copy, PartialEq)]
794 pub struct ChainParameters {
795 /// The network for determining the `chain_hash` in Lightning messages.
796 pub network: Network,
798 /// The hash and height of the latest block successfully connected.
800 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
801 pub best_block: BestBlock,
804 #[derive(Copy, Clone, PartialEq)]
810 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
811 /// desirable to notify any listeners on `await_persistable_update_timeout`/
812 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
813 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
814 /// sending the aforementioned notification (since the lock being released indicates that the
815 /// updates are ready for persistence).
817 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
818 /// notify or not based on whether relevant changes have been made, providing a closure to
819 /// `optionally_notify` which returns a `NotifyOption`.
820 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
821 persistence_notifier: &'a PersistenceNotifier,
823 // We hold onto this result so the lock doesn't get released immediately.
824 _read_guard: RwLockReadGuard<'a, ()>,
827 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
828 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
829 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
832 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
833 let read_guard = lock.read().unwrap();
835 PersistenceNotifierGuard {
836 persistence_notifier: notifier,
837 should_persist: persist_check,
838 _read_guard: read_guard,
843 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
845 if (self.should_persist)() == NotifyOption::DoPersist {
846 self.persistence_notifier.notify();
851 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
852 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
854 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
856 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
857 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
858 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
859 /// the maximum required amount in lnd as of March 2021.
860 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
862 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
863 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
865 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
867 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
868 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
869 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
870 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
871 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
872 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
873 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
875 /// Minimum CLTV difference between the current block height and received inbound payments.
876 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
878 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
879 // any payments to succeed. Further, we don't want payments to fail if a block was found while
880 // a payment was being routed, so we add an extra block to be safe.
881 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
883 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
884 // ie that if the next-hop peer fails the HTLC within
885 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
886 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
887 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
888 // LATENCY_GRACE_PERIOD_BLOCKS.
891 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
893 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
894 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
897 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
899 /// The number of blocks before we consider an outbound payment for expiry if it doesn't have any
900 /// pending HTLCs in flight.
901 pub(crate) const PAYMENT_EXPIRY_BLOCKS: u32 = 3;
903 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
904 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
906 /// Information needed for constructing an invoice route hint for this channel.
907 #[derive(Clone, Debug, PartialEq)]
908 pub struct CounterpartyForwardingInfo {
909 /// Base routing fee in millisatoshis.
910 pub fee_base_msat: u32,
911 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
912 pub fee_proportional_millionths: u32,
913 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
914 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
915 /// `cltv_expiry_delta` for more details.
916 pub cltv_expiry_delta: u16,
919 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
920 /// to better separate parameters.
921 #[derive(Clone, Debug, PartialEq)]
922 pub struct ChannelCounterparty {
923 /// The node_id of our counterparty
924 pub node_id: PublicKey,
925 /// The Features the channel counterparty provided upon last connection.
926 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
927 /// many routing-relevant features are present in the init context.
928 pub features: InitFeatures,
929 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
930 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
931 /// claiming at least this value on chain.
933 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
935 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
936 pub unspendable_punishment_reserve: u64,
937 /// Information on the fees and requirements that the counterparty requires when forwarding
938 /// payments to us through this channel.
939 pub forwarding_info: Option<CounterpartyForwardingInfo>,
940 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
941 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
942 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
943 pub outbound_htlc_minimum_msat: Option<u64>,
944 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
945 pub outbound_htlc_maximum_msat: Option<u64>,
948 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
949 #[derive(Clone, Debug, PartialEq)]
950 pub struct ChannelDetails {
951 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
952 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
953 /// Note that this means this value is *not* persistent - it can change once during the
954 /// lifetime of the channel.
955 pub channel_id: [u8; 32],
956 /// Parameters which apply to our counterparty. See individual fields for more information.
957 pub counterparty: ChannelCounterparty,
958 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
959 /// our counterparty already.
961 /// Note that, if this has been set, `channel_id` will be equivalent to
962 /// `funding_txo.unwrap().to_channel_id()`.
963 pub funding_txo: Option<OutPoint>,
964 /// The features which this channel operates with. See individual features for more info.
966 /// `None` until negotiation completes and the channel type is finalized.
967 pub channel_type: Option<ChannelTypeFeatures>,
968 /// The position of the funding transaction in the chain. None if the funding transaction has
969 /// not yet been confirmed and the channel fully opened.
971 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
972 /// payments instead of this. See [`get_inbound_payment_scid`].
974 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
975 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
977 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
978 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
979 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
980 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
981 /// [`confirmations_required`]: Self::confirmations_required
982 pub short_channel_id: Option<u64>,
983 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
984 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
985 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
988 /// This will be `None` as long as the channel is not available for routing outbound payments.
990 /// [`short_channel_id`]: Self::short_channel_id
991 /// [`confirmations_required`]: Self::confirmations_required
992 pub outbound_scid_alias: Option<u64>,
993 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
994 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
995 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
996 /// when they see a payment to be routed to us.
998 /// Our counterparty may choose to rotate this value at any time, though will always recognize
999 /// previous values for inbound payment forwarding.
1001 /// [`short_channel_id`]: Self::short_channel_id
1002 pub inbound_scid_alias: Option<u64>,
1003 /// The value, in satoshis, of this channel as appears in the funding output
1004 pub channel_value_satoshis: u64,
1005 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1006 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1007 /// this value on chain.
1009 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1011 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1013 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1014 pub unspendable_punishment_reserve: Option<u64>,
1015 /// The `user_channel_id` passed in to create_channel, or 0 if the channel was inbound.
1016 pub user_channel_id: u64,
1017 /// Our total balance. This is the amount we would get if we close the channel.
1018 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1019 /// amount is not likely to be recoverable on close.
1021 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1022 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1023 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1024 /// This does not consider any on-chain fees.
1026 /// See also [`ChannelDetails::outbound_capacity_msat`]
1027 pub balance_msat: u64,
1028 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1029 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1030 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1031 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1033 /// See also [`ChannelDetails::balance_msat`]
1035 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1036 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1037 /// should be able to spend nearly this amount.
1038 pub outbound_capacity_msat: u64,
1039 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1040 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1041 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1042 /// to use a limit as close as possible to the HTLC limit we can currently send.
1044 /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1045 pub next_outbound_htlc_limit_msat: u64,
1046 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1047 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1048 /// available for inclusion in new inbound HTLCs).
1049 /// Note that there are some corner cases not fully handled here, so the actual available
1050 /// inbound capacity may be slightly higher than this.
1052 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1053 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1054 /// However, our counterparty should be able to spend nearly this amount.
1055 pub inbound_capacity_msat: u64,
1056 /// The number of required confirmations on the funding transaction before the funding will be
1057 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1058 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1059 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1060 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1062 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1064 /// [`is_outbound`]: ChannelDetails::is_outbound
1065 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1066 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1067 pub confirmations_required: Option<u32>,
1068 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1069 /// until we can claim our funds after we force-close the channel. During this time our
1070 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1071 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1072 /// time to claim our non-HTLC-encumbered funds.
1074 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1075 pub force_close_spend_delay: Option<u16>,
1076 /// True if the channel was initiated (and thus funded) by us.
1077 pub is_outbound: bool,
1078 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1079 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1080 /// required confirmation count has been reached (and we were connected to the peer at some
1081 /// point after the funding transaction received enough confirmations). The required
1082 /// confirmation count is provided in [`confirmations_required`].
1084 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1085 pub is_channel_ready: bool,
1086 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1087 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1089 /// This is a strict superset of `is_channel_ready`.
1090 pub is_usable: bool,
1091 /// True if this channel is (or will be) publicly-announced.
1092 pub is_public: bool,
1093 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1094 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1095 pub inbound_htlc_minimum_msat: Option<u64>,
1096 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1097 pub inbound_htlc_maximum_msat: Option<u64>,
1100 impl ChannelDetails {
1101 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1102 /// This should be used for providing invoice hints or in any other context where our
1103 /// counterparty will forward a payment to us.
1105 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1106 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1107 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1108 self.inbound_scid_alias.or(self.short_channel_id)
1111 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1112 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1113 /// we're sending or forwarding a payment outbound over this channel.
1115 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1116 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1117 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1118 self.short_channel_id.or(self.outbound_scid_alias)
1122 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
1123 /// Err() type describing which state the payment is in, see the description of individual enum
1124 /// states for more.
1125 #[derive(Clone, Debug)]
1126 pub enum PaymentSendFailure {
1127 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
1128 /// send the payment at all. No channel state has been changed or messages sent to peers, and
1129 /// once you've changed the parameter at error, you can freely retry the payment in full.
1130 ParameterError(APIError),
1131 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
1132 /// from attempting to send the payment at all. No channel state has been changed or messages
1133 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
1134 /// payment in full.
1136 /// The results here are ordered the same as the paths in the route object which was passed to
1138 PathParameterError(Vec<Result<(), APIError>>),
1139 /// All paths which were attempted failed to send, with no channel state change taking place.
1140 /// You can freely retry the payment in full (though you probably want to do so over different
1141 /// paths than the ones selected).
1142 AllFailedRetrySafe(Vec<APIError>),
1143 /// Some paths which were attempted failed to send, though possibly not all. At least some
1144 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
1145 /// in over-/re-payment.
1147 /// The results here are ordered the same as the paths in the route object which was passed to
1148 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
1149 /// retried (though there is currently no API with which to do so).
1151 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
1152 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
1153 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
1154 /// with the latest update_id.
1156 /// The errors themselves, in the same order as the route hops.
1157 results: Vec<Result<(), APIError>>,
1158 /// If some paths failed without irrevocably committing to the new HTLC(s), this will
1159 /// contain a [`RouteParameters`] object which can be used to calculate a new route that
1160 /// will pay all remaining unpaid balance.
1161 failed_paths_retry: Option<RouteParameters>,
1162 /// The payment id for the payment, which is now at least partially pending.
1163 payment_id: PaymentId,
1167 /// Route hints used in constructing invoices for [phantom node payents].
1169 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1171 pub struct PhantomRouteHints {
1172 /// The list of channels to be included in the invoice route hints.
1173 pub channels: Vec<ChannelDetails>,
1174 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1176 pub phantom_scid: u64,
1177 /// The pubkey of the real backing node that would ultimately receive the payment.
1178 pub real_node_pubkey: PublicKey,
1181 macro_rules! handle_error {
1182 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1185 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1186 #[cfg(debug_assertions)]
1188 // In testing, ensure there are no deadlocks where the lock is already held upon
1189 // entering the macro.
1190 assert!($self.channel_state.try_lock().is_ok());
1191 assert!($self.pending_events.try_lock().is_ok());
1194 let mut msg_events = Vec::with_capacity(2);
1196 if let Some((shutdown_res, update_option)) = shutdown_finish {
1197 $self.finish_force_close_channel(shutdown_res);
1198 if let Some(update) = update_option {
1199 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1203 if let Some((channel_id, user_channel_id)) = chan_id {
1204 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1205 channel_id, user_channel_id,
1206 reason: ClosureReason::ProcessingError { err: err.err.clone() }
1211 log_error!($self.logger, "{}", err.err);
1212 if let msgs::ErrorAction::IgnoreError = err.action {
1214 msg_events.push(events::MessageSendEvent::HandleError {
1215 node_id: $counterparty_node_id,
1216 action: err.action.clone()
1220 if !msg_events.is_empty() {
1221 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
1224 // Return error in case higher-API need one
1231 macro_rules! update_maps_on_chan_removal {
1232 ($self: expr, $short_to_id: expr, $channel: expr) => {
1233 if let Some(short_id) = $channel.get_short_channel_id() {
1234 $short_to_id.remove(&short_id);
1236 // If the channel was never confirmed on-chain prior to its closure, remove the
1237 // outbound SCID alias we used for it from the collision-prevention set. While we
1238 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1239 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1240 // opening a million channels with us which are closed before we ever reach the funding
1242 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1243 debug_assert!(alias_removed);
1245 $short_to_id.remove(&$channel.outbound_scid_alias());
1249 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1250 macro_rules! convert_chan_err {
1251 ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
1253 ChannelError::Warn(msg) => {
1254 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1256 ChannelError::Ignore(msg) => {
1257 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1259 ChannelError::Close(msg) => {
1260 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1261 update_maps_on_chan_removal!($self, $short_to_id, $channel);
1262 let shutdown_res = $channel.force_shutdown(true);
1263 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1264 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1266 ChannelError::CloseDelayBroadcast(msg) => {
1267 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
1268 update_maps_on_chan_removal!($self, $short_to_id, $channel);
1269 let shutdown_res = $channel.force_shutdown(false);
1270 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1271 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1277 macro_rules! break_chan_entry {
1278 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1282 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
1284 $entry.remove_entry();
1292 macro_rules! try_chan_entry {
1293 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1297 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
1299 $entry.remove_entry();
1307 macro_rules! remove_channel {
1308 ($self: expr, $channel_state: expr, $entry: expr) => {
1310 let channel = $entry.remove_entry().1;
1311 update_maps_on_chan_removal!($self, $channel_state.short_to_id, channel);
1317 macro_rules! handle_monitor_err {
1318 ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $resend_channel_ready: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr, $chan_id: expr) => {
1320 ChannelMonitorUpdateErr::PermanentFailure => {
1321 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
1322 update_maps_on_chan_removal!($self, $short_to_id, $chan);
1323 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
1324 // chain in a confused state! We need to move them into the ChannelMonitor which
1325 // will be responsible for failing backwards once things confirm on-chain.
1326 // It's ok that we drop $failed_forwards here - at this point we'd rather they
1327 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
1328 // us bother trying to claim it just to forward on to another peer. If we're
1329 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
1330 // given up the preimage yet, so might as well just wait until the payment is
1331 // retried, avoiding the on-chain fees.
1332 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.get_user_id(),
1333 $chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
1336 ChannelMonitorUpdateErr::TemporaryFailure => {
1337 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards, {} fails, and {} fulfill finalizations",
1338 log_bytes!($chan_id[..]),
1339 if $resend_commitment && $resend_raa {
1340 match $action_type {
1341 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
1342 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
1344 } else if $resend_commitment { "commitment" }
1345 else if $resend_raa { "RAA" }
1347 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
1348 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len(),
1349 (&$failed_finalized_fulfills as &Vec<HTLCSource>).len());
1350 if !$resend_commitment {
1351 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
1354 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
1356 $chan.monitor_update_failed($resend_raa, $resend_commitment, $resend_channel_ready, $failed_forwards, $failed_fails, $failed_finalized_fulfills);
1357 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
1361 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $resend_channel_ready: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr) => { {
1362 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $resend_channel_ready, $failed_forwards, $failed_fails, $failed_finalized_fulfills, $entry.key());
1364 $entry.remove_entry();
1368 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, COMMITMENT_UPDATE_ONLY) => { {
1369 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst);
1370 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, true, false, Vec::new(), Vec::new(), Vec::new(), $chan_id)
1372 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, NO_UPDATE) => {
1373 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, false, false, Vec::new(), Vec::new(), Vec::new(), $chan_id)
1375 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_channel_ready: expr, OPTIONALLY_RESEND_FUNDING_LOCKED) => {
1376 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, false, $resend_channel_ready, Vec::new(), Vec::new(), Vec::new())
1378 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1379 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, false, Vec::new(), Vec::new(), Vec::new())
1381 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1382 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, false, $failed_forwards, $failed_fails, Vec::new())
1386 macro_rules! return_monitor_err {
1387 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1388 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
1390 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1391 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1395 // Does not break in case of TemporaryFailure!
1396 macro_rules! maybe_break_monitor_err {
1397 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1398 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
1399 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
1402 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
1407 macro_rules! send_channel_ready {
1408 ($short_to_id: expr, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {
1409 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1410 node_id: $channel.get_counterparty_node_id(),
1411 msg: $channel_ready_msg,
1413 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1414 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1415 let outbound_alias_insert = $short_to_id.insert($channel.outbound_scid_alias(), $channel.channel_id());
1416 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == $channel.channel_id(),
1417 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1418 if let Some(real_scid) = $channel.get_short_channel_id() {
1419 let scid_insert = $short_to_id.insert(real_scid, $channel.channel_id());
1420 assert!(scid_insert.is_none() || scid_insert.unwrap() == $channel.channel_id(),
1421 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1426 macro_rules! handle_chan_restoration_locked {
1427 ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
1428 $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
1429 $pending_forwards: expr, $funding_broadcastable: expr, $channel_ready: expr, $announcement_sigs: expr) => { {
1430 let mut htlc_forwards = None;
1432 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
1433 let chanmon_update_is_none = chanmon_update.is_none();
1434 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
1436 let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
1437 if !forwards.is_empty() {
1438 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().unwrap_or($channel_entry.get().outbound_scid_alias()),
1439 $channel_entry.get().get_funding_txo().unwrap(), forwards));
1442 if chanmon_update.is_some() {
1443 // On reconnect, we, by definition, only resend a channel_ready if there have been
1444 // no commitment updates, so the only channel monitor update which could also be
1445 // associated with a channel_ready would be the funding_created/funding_signed
1446 // monitor update. That monitor update failing implies that we won't send
1447 // channel_ready until it's been updated, so we can't have a channel_ready and a
1448 // monitor update here (so we don't bother to handle it correctly below).
1449 assert!($channel_ready.is_none());
1450 // A channel monitor update makes no sense without either a channel_ready or a
1451 // commitment update to process after it. Since we can't have a channel_ready, we
1452 // only bother to handle the monitor-update + commitment_update case below.
1453 assert!($commitment_update.is_some());
1456 if let Some(msg) = $channel_ready {
1457 // Similar to the above, this implies that we're letting the channel_ready fly
1458 // before it should be allowed to.
1459 assert!(chanmon_update.is_none());
1460 send_channel_ready!($channel_state.short_to_id, $channel_state.pending_msg_events, $channel_entry.get(), msg);
1462 if let Some(msg) = $announcement_sigs {
1463 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
1464 node_id: counterparty_node_id,
1469 let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1470 if let Some(monitor_update) = chanmon_update {
1471 // We only ever broadcast a funding transaction in response to a funding_signed
1472 // message and the resulting monitor update. Thus, on channel_reestablish
1473 // message handling we can't have a funding transaction to broadcast. When
1474 // processing a monitor update finishing resulting in a funding broadcast, we
1475 // cannot have a second monitor update, thus this case would indicate a bug.
1476 assert!(funding_broadcastable.is_none());
1477 // Given we were just reconnected or finished updating a channel monitor, the
1478 // only case where we can get a new ChannelMonitorUpdate would be if we also
1479 // have some commitment updates to send as well.
1480 assert!($commitment_update.is_some());
1481 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1482 // channel_reestablish doesn't guarantee the order it returns is sensical
1483 // for the messages it returns, but if we're setting what messages to
1484 // re-transmit on monitor update success, we need to make sure it is sane.
1485 let mut order = $order;
1487 order = RAACommitmentOrder::CommitmentFirst;
1489 break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1493 macro_rules! handle_cs { () => {
1494 if let Some(update) = $commitment_update {
1495 $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1496 node_id: counterparty_node_id,
1501 macro_rules! handle_raa { () => {
1502 if let Some(revoke_and_ack) = $raa {
1503 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1504 node_id: counterparty_node_id,
1505 msg: revoke_and_ack,
1510 RAACommitmentOrder::CommitmentFirst => {
1514 RAACommitmentOrder::RevokeAndACKFirst => {
1519 if let Some(tx) = funding_broadcastable {
1520 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1521 $self.tx_broadcaster.broadcast_transaction(&tx);
1526 if chanmon_update_is_none {
1527 // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1528 // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1529 // should *never* end up calling back to `chain_monitor.update_channel()`.
1530 assert!(res.is_ok());
1533 (htlc_forwards, res, counterparty_node_id)
1537 macro_rules! post_handle_chan_restoration {
1538 ($self: ident, $locked_res: expr) => { {
1539 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1541 let _ = handle_error!($self, res, counterparty_node_id);
1543 if let Some(forwards) = htlc_forwards {
1544 $self.forward_htlcs(&mut [forwards][..]);
1549 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1550 where M::Target: chain::Watch<Signer>,
1551 T::Target: BroadcasterInterface,
1552 K::Target: KeysInterface<Signer = Signer>,
1553 F::Target: FeeEstimator,
1556 /// Constructs a new ChannelManager to hold several channels and route between them.
1558 /// This is the main "logic hub" for all channel-related actions, and implements
1559 /// ChannelMessageHandler.
1561 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1563 /// Users need to notify the new ChannelManager when a new block is connected or
1564 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1565 /// from after `params.latest_hash`.
1566 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1567 let mut secp_ctx = Secp256k1::new();
1568 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1569 let inbound_pmt_key_material = keys_manager.get_inbound_payment_key_material();
1570 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1572 default_configuration: config.clone(),
1573 genesis_hash: genesis_block(params.network).header.block_hash(),
1574 fee_estimator: fee_est,
1578 best_block: RwLock::new(params.best_block),
1580 channel_state: Mutex::new(ChannelHolder{
1581 by_id: HashMap::new(),
1582 short_to_id: HashMap::new(),
1583 forward_htlcs: HashMap::new(),
1584 claimable_htlcs: HashMap::new(),
1585 pending_msg_events: Vec::new(),
1587 outbound_scid_aliases: Mutex::new(HashSet::new()),
1588 pending_inbound_payments: Mutex::new(HashMap::new()),
1589 pending_outbound_payments: Mutex::new(HashMap::new()),
1591 our_network_key: keys_manager.get_node_secret(Recipient::Node).unwrap(),
1592 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret(Recipient::Node).unwrap()),
1595 inbound_payment_key: expanded_inbound_key,
1596 fake_scid_rand_bytes: keys_manager.get_secure_random_bytes(),
1598 last_node_announcement_serial: AtomicUsize::new(0),
1599 highest_seen_timestamp: AtomicUsize::new(0),
1601 per_peer_state: RwLock::new(HashMap::new()),
1603 pending_events: Mutex::new(Vec::new()),
1604 pending_background_events: Mutex::new(Vec::new()),
1605 total_consistency_lock: RwLock::new(()),
1606 persistence_notifier: PersistenceNotifier::new(),
1614 /// Gets the current configuration applied to all new channels, as
1615 pub fn get_current_default_configuration(&self) -> &UserConfig {
1616 &self.default_configuration
1619 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1620 let height = self.best_block.read().unwrap().height();
1621 let mut outbound_scid_alias = 0;
1624 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1625 outbound_scid_alias += 1;
1627 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.keys_manager);
1629 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1633 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1638 /// Creates a new outbound channel to the given remote node and with the given value.
1640 /// `user_channel_id` will be provided back as in
1641 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1642 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to 0
1643 /// for inbound channels, so you may wish to avoid using 0 for `user_channel_id` here.
1644 /// `user_channel_id` has no meaning inside of LDK, it is simply copied to events and otherwise
1647 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1648 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1650 /// Note that we do not check if you are currently connected to the given peer. If no
1651 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1652 /// the channel eventually being silently forgotten (dropped on reload).
1654 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1655 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1656 /// [`ChannelDetails::channel_id`] until after
1657 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1658 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1659 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1661 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1662 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1663 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1664 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u64, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1665 if channel_value_satoshis < 1000 {
1666 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1670 let per_peer_state = self.per_peer_state.read().unwrap();
1671 match per_peer_state.get(&their_network_key) {
1672 Some(peer_state) => {
1673 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1674 let peer_state = peer_state.lock().unwrap();
1675 let their_features = &peer_state.latest_features;
1676 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1677 match Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key,
1678 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1679 self.best_block.read().unwrap().height(), outbound_scid_alias)
1683 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1688 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
1691 let res = channel.get_open_channel(self.genesis_hash.clone());
1693 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1694 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1695 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1697 let temporary_channel_id = channel.channel_id();
1698 let mut channel_state = self.channel_state.lock().unwrap();
1699 match channel_state.by_id.entry(temporary_channel_id) {
1700 hash_map::Entry::Occupied(_) => {
1702 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1704 panic!("RNG is bad???");
1707 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1709 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1710 node_id: their_network_key,
1713 Ok(temporary_channel_id)
1716 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1717 let mut res = Vec::new();
1719 let channel_state = self.channel_state.lock().unwrap();
1720 res.reserve(channel_state.by_id.len());
1721 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1722 let balance = channel.get_available_balances();
1723 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1724 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1725 res.push(ChannelDetails {
1726 channel_id: (*channel_id).clone(),
1727 counterparty: ChannelCounterparty {
1728 node_id: channel.get_counterparty_node_id(),
1729 features: InitFeatures::empty(),
1730 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1731 forwarding_info: channel.counterparty_forwarding_info(),
1732 // Ensures that we have actually received the `htlc_minimum_msat` value
1733 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1734 // message (as they are always the first message from the counterparty).
1735 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1736 // default `0` value set by `Channel::new_outbound`.
1737 outbound_htlc_minimum_msat: if channel.have_received_message() {
1738 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1739 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1741 funding_txo: channel.get_funding_txo(),
1742 // Note that accept_channel (or open_channel) is always the first message, so
1743 // `have_received_message` indicates that type negotiation has completed.
1744 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1745 short_channel_id: channel.get_short_channel_id(),
1746 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1747 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1748 channel_value_satoshis: channel.get_value_satoshis(),
1749 unspendable_punishment_reserve: to_self_reserve_satoshis,
1750 balance_msat: balance.balance_msat,
1751 inbound_capacity_msat: balance.inbound_capacity_msat,
1752 outbound_capacity_msat: balance.outbound_capacity_msat,
1753 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1754 user_channel_id: channel.get_user_id(),
1755 confirmations_required: channel.minimum_depth(),
1756 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1757 is_outbound: channel.is_outbound(),
1758 is_channel_ready: channel.is_usable(),
1759 is_usable: channel.is_live(),
1760 is_public: channel.should_announce(),
1761 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1762 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat()
1766 let per_peer_state = self.per_peer_state.read().unwrap();
1767 for chan in res.iter_mut() {
1768 if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
1769 chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
1775 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1776 /// more information.
1777 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1778 self.list_channels_with_filter(|_| true)
1781 /// Gets the list of usable channels, in random order. Useful as an argument to [`find_route`]
1782 /// to ensure non-announced channels are used.
1784 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1785 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1788 /// [`find_route`]: crate::routing::router::find_route
1789 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1790 // Note we use is_live here instead of usable which leads to somewhat confused
1791 // internal/external nomenclature, but that's ok cause that's probably what the user
1792 // really wanted anyway.
1793 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1796 /// Helper function that issues the channel close events
1797 fn issue_channel_close_events(&self, channel: &Channel<Signer>, closure_reason: ClosureReason) {
1798 let mut pending_events_lock = self.pending_events.lock().unwrap();
1799 match channel.unbroadcasted_funding() {
1800 Some(transaction) => {
1801 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1805 pending_events_lock.push(events::Event::ChannelClosed {
1806 channel_id: channel.channel_id(),
1807 user_channel_id: channel.get_user_id(),
1808 reason: closure_reason
1812 fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1813 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1815 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1816 let result: Result<(), _> = loop {
1817 let mut channel_state_lock = self.channel_state.lock().unwrap();
1818 let channel_state = &mut *channel_state_lock;
1819 match channel_state.by_id.entry(channel_id.clone()) {
1820 hash_map::Entry::Occupied(mut chan_entry) => {
1821 if *counterparty_node_id != chan_entry.get().get_counterparty_node_id(){
1822 return Err(APIError::APIMisuseError { err: "The passed counterparty_node_id doesn't match the channel's counterparty node_id".to_owned() });
1824 let per_peer_state = self.per_peer_state.read().unwrap();
1825 let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
1826 Some(peer_state) => {
1827 let peer_state = peer_state.lock().unwrap();
1828 let their_features = &peer_state.latest_features;
1829 chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
1831 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
1833 failed_htlcs = htlcs;
1835 // Update the monitor with the shutdown script if necessary.
1836 if let Some(monitor_update) = monitor_update {
1837 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
1838 let (result, is_permanent) =
1839 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE);
1841 remove_channel!(self, channel_state, chan_entry);
1847 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1848 node_id: *counterparty_node_id,
1852 if chan_entry.get().is_shutdown() {
1853 let channel = remove_channel!(self, channel_state, chan_entry);
1854 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1855 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1859 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1863 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1867 for htlc_source in failed_htlcs.drain(..) {
1868 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1871 let _ = handle_error!(self, result, *counterparty_node_id);
1875 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1876 /// will be accepted on the given channel, and after additional timeout/the closing of all
1877 /// pending HTLCs, the channel will be closed on chain.
1879 /// * If we are the channel initiator, we will pay between our [`Background`] and
1880 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1882 /// * If our counterparty is the channel initiator, we will require a channel closing
1883 /// transaction feerate of at least our [`Background`] feerate or the feerate which
1884 /// would appear on a force-closure transaction, whichever is lower. We will allow our
1885 /// counterparty to pay as much fee as they'd like, however.
1887 /// May generate a SendShutdown message event on success, which should be relayed.
1889 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1890 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1891 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1892 pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1893 self.close_channel_internal(channel_id, counterparty_node_id, None)
1896 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1897 /// will be accepted on the given channel, and after additional timeout/the closing of all
1898 /// pending HTLCs, the channel will be closed on chain.
1900 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1901 /// the channel being closed or not:
1902 /// * If we are the channel initiator, we will pay at least this feerate on the closing
1903 /// transaction. The upper-bound is set by
1904 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1905 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1906 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1907 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1908 /// will appear on a force-closure transaction, whichever is lower).
1910 /// May generate a SendShutdown message event on success, which should be relayed.
1912 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1913 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1914 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1915 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1916 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1920 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1921 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1922 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1923 for htlc_source in failed_htlcs.drain(..) {
1924 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1926 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1927 // There isn't anything we can do if we get an update failure - we're already
1928 // force-closing. The monitor update on the required in-memory copy should broadcast
1929 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1930 // ignore the result here.
1931 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1935 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1936 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1937 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>) -> Result<PublicKey, APIError> {
1939 let mut channel_state_lock = self.channel_state.lock().unwrap();
1940 let channel_state = &mut *channel_state_lock;
1941 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1942 if chan.get().get_counterparty_node_id() != *peer_node_id {
1943 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1945 if let Some(peer_msg) = peer_msg {
1946 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1948 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1950 remove_channel!(self, channel_state, chan)
1952 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1955 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1956 self.finish_force_close_channel(chan.force_shutdown(true));
1957 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1958 let mut channel_state = self.channel_state.lock().unwrap();
1959 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1964 Ok(chan.get_counterparty_node_id())
1967 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1968 /// the chain and rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
1969 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
1971 pub fn force_close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1972 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1973 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None) {
1974 Ok(counterparty_node_id) => {
1975 self.channel_state.lock().unwrap().pending_msg_events.push(
1976 events::MessageSendEvent::HandleError {
1977 node_id: counterparty_node_id,
1978 action: msgs::ErrorAction::SendErrorMessage {
1979 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1989 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1990 /// for each to the chain and rejecting new HTLCs on each.
1991 pub fn force_close_all_channels(&self) {
1992 for chan in self.list_channels() {
1993 let _ = self.force_close_channel(&chan.channel_id, &chan.counterparty.node_id);
1997 fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
1998 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2000 // final_incorrect_cltv_expiry
2001 if hop_data.outgoing_cltv_value != cltv_expiry {
2002 return Err(ReceiveError {
2003 msg: "Upstream node set CLTV to the wrong value",
2005 err_data: byte_utils::be32_to_array(cltv_expiry).to_vec()
2008 // final_expiry_too_soon
2009 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2010 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2011 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2012 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2013 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2014 if (hop_data.outgoing_cltv_value as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2015 return Err(ReceiveError {
2017 err_data: Vec::new(),
2018 msg: "The final CLTV expiry is too soon to handle",
2021 if hop_data.amt_to_forward > amt_msat {
2022 return Err(ReceiveError {
2024 err_data: byte_utils::be64_to_array(amt_msat).to_vec(),
2025 msg: "Upstream node sent less than we were supposed to receive in payment",
2029 let routing = match hop_data.format {
2030 msgs::OnionHopDataFormat::Legacy { .. } => {
2031 return Err(ReceiveError {
2032 err_code: 0x4000|0x2000|3,
2033 err_data: Vec::new(),
2034 msg: "We require payment_secrets",
2037 msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2038 return Err(ReceiveError {
2039 err_code: 0x4000|22,
2040 err_data: Vec::new(),
2041 msg: "Got non final data with an HMAC of 0",
2044 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2045 if payment_data.is_some() && keysend_preimage.is_some() {
2046 return Err(ReceiveError {
2047 err_code: 0x4000|22,
2048 err_data: Vec::new(),
2049 msg: "We don't support MPP keysend payments",
2051 } else if let Some(data) = payment_data {
2052 PendingHTLCRouting::Receive {
2054 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2055 phantom_shared_secret,
2057 } else if let Some(payment_preimage) = keysend_preimage {
2058 // We need to check that the sender knows the keysend preimage before processing this
2059 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2060 // could discover the final destination of X, by probing the adjacent nodes on the route
2061 // with a keysend payment of identical payment hash to X and observing the processing
2062 // time discrepancies due to a hash collision with X.
2063 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2064 if hashed_preimage != payment_hash {
2065 return Err(ReceiveError {
2066 err_code: 0x4000|22,
2067 err_data: Vec::new(),
2068 msg: "Payment preimage didn't match payment hash",
2072 PendingHTLCRouting::ReceiveKeysend {
2074 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2077 return Err(ReceiveError {
2078 err_code: 0x4000|0x2000|3,
2079 err_data: Vec::new(),
2080 msg: "We require payment_secrets",
2085 Ok(PendingHTLCInfo {
2088 incoming_shared_secret: shared_secret,
2089 amt_to_forward: amt_msat,
2090 outgoing_cltv_value: hop_data.outgoing_cltv_value,
2094 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
2095 macro_rules! return_malformed_err {
2096 ($msg: expr, $err_code: expr) => {
2098 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2099 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2100 channel_id: msg.channel_id,
2101 htlc_id: msg.htlc_id,
2102 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2103 failure_code: $err_code,
2104 })), self.channel_state.lock().unwrap());
2109 if let Err(_) = msg.onion_routing_packet.public_key {
2110 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2113 let shared_secret = SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key).secret_bytes();
2115 if msg.onion_routing_packet.version != 0 {
2116 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2117 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2118 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2119 //receiving node would have to brute force to figure out which version was put in the
2120 //packet by the node that send us the message, in the case of hashing the hop_data, the
2121 //node knows the HMAC matched, so they already know what is there...
2122 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2125 let mut channel_state = None;
2126 macro_rules! return_err {
2127 ($msg: expr, $err_code: expr, $data: expr) => {
2129 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2130 if channel_state.is_none() {
2131 channel_state = Some(self.channel_state.lock().unwrap());
2133 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2134 channel_id: msg.channel_id,
2135 htlc_id: msg.htlc_id,
2136 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
2137 })), channel_state.unwrap());
2142 let next_hop = match onion_utils::decode_next_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2144 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2145 return_malformed_err!(err_msg, err_code);
2147 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2148 return_err!(err_msg, err_code, &[0; 0]);
2152 let pending_forward_info = match next_hop {
2153 onion_utils::Hop::Receive(next_hop_data) => {
2155 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2157 // Note that we could obviously respond immediately with an update_fulfill_htlc
2158 // message, however that would leak that we are the recipient of this payment, so
2159 // instead we stay symmetric with the forwarding case, only responding (after a
2160 // delay) once they've send us a commitment_signed!
2161 PendingHTLCStatus::Forward(info)
2163 Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2166 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2167 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2169 let blinding_factor = {
2170 let mut sha = Sha256::engine();
2171 sha.input(&new_pubkey.serialize()[..]);
2172 sha.input(&shared_secret);
2173 Sha256::from_engine(sha).into_inner()
2176 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
2178 } else { Ok(new_pubkey) };
2180 let outgoing_packet = msgs::OnionPacket {
2183 hop_data: new_packet_bytes,
2184 hmac: next_hop_hmac.clone(),
2187 let short_channel_id = match next_hop_data.format {
2188 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
2189 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2190 msgs::OnionHopDataFormat::FinalNode { .. } => {
2191 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2195 PendingHTLCStatus::Forward(PendingHTLCInfo {
2196 routing: PendingHTLCRouting::Forward {
2197 onion_packet: outgoing_packet,
2200 payment_hash: msg.payment_hash.clone(),
2201 incoming_shared_secret: shared_secret,
2202 amt_to_forward: next_hop_data.amt_to_forward,
2203 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2208 channel_state = Some(self.channel_state.lock().unwrap());
2209 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2210 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2211 // with a short_channel_id of 0. This is important as various things later assume
2212 // short_channel_id is non-0 in any ::Forward.
2213 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2214 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
2215 if let Some((err, code, chan_update)) = loop {
2216 let forwarding_id_opt = match id_option {
2217 None => { // unknown_next_peer
2218 // Note that this is likely a timing oracle for detecting whether an scid is a
2220 if fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id) {
2223 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2226 Some(id) => Some(id.clone()),
2228 let (chan_update_opt, forwardee_cltv_expiry_delta) = if let Some(forwarding_id) = forwarding_id_opt {
2229 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
2230 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2231 // Note that the behavior here should be identical to the above block - we
2232 // should NOT reveal the existence or non-existence of a private channel if
2233 // we don't allow forwards outbound over them.
2234 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2236 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2237 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2238 // "refuse to forward unless the SCID alias was used", so we pretend
2239 // we don't have the channel here.
2240 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2242 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2244 // Note that we could technically not return an error yet here and just hope
2245 // that the connection is reestablished or monitor updated by the time we get
2246 // around to doing the actual forward, but better to fail early if we can and
2247 // hopefully an attacker trying to path-trace payments cannot make this occur
2248 // on a small/per-node/per-channel scale.
2249 if !chan.is_live() { // channel_disabled
2250 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2252 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2253 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2255 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
2256 .and_then(|prop_fee| { (prop_fee / 1000000)
2257 .checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
2258 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
2259 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, chan_update_opt));
2261 (chan_update_opt, chan.get_cltv_expiry_delta())
2262 } else { (None, MIN_CLTV_EXPIRY_DELTA) };
2264 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + forwardee_cltv_expiry_delta as u64 { // incorrect_cltv_expiry
2265 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, chan_update_opt));
2267 let cur_height = self.best_block.read().unwrap().height() + 1;
2268 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2269 // but we want to be robust wrt to counterparty packet sanitization (see
2270 // HTLC_FAIL_BACK_BUFFER rationale).
2271 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2272 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2274 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2275 break Some(("CLTV expiry is too far in the future", 21, None));
2277 // If the HTLC expires ~now, don't bother trying to forward it to our
2278 // counterparty. They should fail it anyway, but we don't want to bother with
2279 // the round-trips or risk them deciding they definitely want the HTLC and
2280 // force-closing to ensure they get it if we're offline.
2281 // We previously had a much more aggressive check here which tried to ensure
2282 // our counterparty receives an HTLC which has *our* risk threshold met on it,
2283 // but there is no need to do that, and since we're a bit conservative with our
2284 // risk threshold it just results in failing to forward payments.
2285 if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2286 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2292 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2293 if let Some(chan_update) = chan_update {
2294 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2295 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2297 else if code == 0x1000 | 13 {
2298 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2300 else if code == 0x1000 | 20 {
2301 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2302 0u16.write(&mut res).expect("Writes cannot fail");
2304 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2305 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2306 chan_update.write(&mut res).expect("Writes cannot fail");
2308 return_err!(err, code, &res.0[..]);
2313 (pending_forward_info, channel_state.unwrap())
2316 /// Gets the current channel_update for the given channel. This first checks if the channel is
2317 /// public, and thus should be called whenever the result is going to be passed out in a
2318 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2320 /// May be called with channel_state already locked!
2321 fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2322 if !chan.should_announce() {
2323 return Err(LightningError {
2324 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2325 action: msgs::ErrorAction::IgnoreError
2328 if chan.get_short_channel_id().is_none() {
2329 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2331 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2332 self.get_channel_update_for_unicast(chan)
2335 /// Gets the current channel_update for the given channel. This does not check if the channel
2336 /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2337 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2338 /// provided evidence that they know about the existence of the channel.
2339 /// May be called with channel_state already locked!
2340 fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2341 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2342 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2343 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2347 self.get_channel_update_for_onion(short_channel_id, chan)
2349 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2350 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2351 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2353 let unsigned = msgs::UnsignedChannelUpdate {
2354 chain_hash: self.genesis_hash,
2356 timestamp: chan.get_update_time_counter(),
2357 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2358 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2359 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2360 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
2361 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2362 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2363 excess_data: Vec::new(),
2366 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
2367 let sig = self.secp_ctx.sign_ecdsa(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
2369 Ok(msgs::ChannelUpdate {
2375 // Only public for testing, this should otherwise never be called direcly
2376 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>) -> Result<(), APIError> {
2377 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2378 let prng_seed = self.keys_manager.get_secure_random_bytes();
2379 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
2380 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2382 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2383 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
2384 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2385 if onion_utils::route_size_insane(&onion_payloads) {
2386 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
2388 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2390 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2392 let err: Result<(), _> = loop {
2393 let mut channel_lock = self.channel_state.lock().unwrap();
2395 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
2396 let payment_entry = pending_outbounds.entry(payment_id);
2397 if let hash_map::Entry::Occupied(payment) = &payment_entry {
2398 if !payment.get().is_retryable() {
2399 return Err(APIError::RouteError {
2400 err: "Payment already completed"
2405 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
2406 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2407 Some(id) => id.clone(),
2410 macro_rules! insert_outbound_payment {
2412 let payment = payment_entry.or_insert_with(|| PendingOutboundPayment::Retryable {
2413 session_privs: HashSet::new(),
2414 pending_amt_msat: 0,
2415 pending_fee_msat: Some(0),
2416 payment_hash: *payment_hash,
2417 payment_secret: *payment_secret,
2418 starting_block_height: self.best_block.read().unwrap().height(),
2419 total_msat: total_value,
2421 assert!(payment.insert(session_priv_bytes, path));
2425 let channel_state = &mut *channel_lock;
2426 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
2428 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
2429 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
2431 if !chan.get().is_live() {
2432 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
2434 break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(
2435 htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
2437 session_priv: session_priv.clone(),
2438 first_hop_htlc_msat: htlc_msat,
2440 payment_secret: payment_secret.clone(),
2441 payment_params: payment_params.clone(),
2442 }, onion_packet, &self.logger),
2443 channel_state, chan)
2445 Some((update_add, commitment_signed, monitor_update)) => {
2446 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2447 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
2448 // Note that MonitorUpdateFailed here indicates (per function docs)
2449 // that we will resend the commitment update once monitor updating
2450 // is restored. Therefore, we must return an error indicating that
2451 // it is unsafe to retry the payment wholesale, which we do in the
2452 // send_payment check for MonitorUpdateFailed, below.
2453 insert_outbound_payment!(); // Only do this after possibly break'ing on Perm failure above.
2454 return Err(APIError::MonitorUpdateFailed);
2456 insert_outbound_payment!();
2458 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
2459 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2460 node_id: path.first().unwrap().pubkey,
2461 updates: msgs::CommitmentUpdate {
2462 update_add_htlcs: vec![update_add],
2463 update_fulfill_htlcs: Vec::new(),
2464 update_fail_htlcs: Vec::new(),
2465 update_fail_malformed_htlcs: Vec::new(),
2471 None => { insert_outbound_payment!(); },
2473 } else { unreachable!(); }
2477 match handle_error!(self, err, path.first().unwrap().pubkey) {
2478 Ok(_) => unreachable!(),
2480 Err(APIError::ChannelUnavailable { err: e.err })
2485 /// Sends a payment along a given route.
2487 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
2488 /// fields for more info.
2490 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
2491 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
2492 /// next hop knows the preimage to payment_hash they can claim an additional amount as
2493 /// specified in the last hop in the route! Thus, you should probably do your own
2494 /// payment_preimage tracking (which you should already be doing as they represent "proof of
2495 /// payment") and prevent double-sends yourself.
2497 /// May generate SendHTLCs message(s) event on success, which should be relayed.
2499 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2500 /// each entry matching the corresponding-index entry in the route paths, see
2501 /// PaymentSendFailure for more info.
2503 /// In general, a path may raise:
2504 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
2505 /// node public key) is specified.
2506 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
2507 /// (including due to previous monitor update failure or new permanent monitor update
2509 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
2510 /// relevant updates.
2512 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2513 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2514 /// different route unless you intend to pay twice!
2516 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
2517 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
2518 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
2519 /// must not contain multiple paths as multi-path payments require a recipient-provided
2521 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
2522 /// bit set (either as required or as available). If multiple paths are present in the Route,
2523 /// we assume the invoice had the basic_mpp feature set.
2524 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<PaymentId, PaymentSendFailure> {
2525 self.send_payment_internal(route, payment_hash, payment_secret, None, None, None)
2528 fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: Option<PaymentId>, recv_value_msat: Option<u64>) -> Result<PaymentId, PaymentSendFailure> {
2529 if route.paths.len() < 1 {
2530 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
2532 if route.paths.len() > 10 {
2533 // This limit is completely arbitrary - there aren't any real fundamental path-count
2534 // limits. After we support retrying individual paths we should likely bump this, but
2535 // for now more than 10 paths likely carries too much one-path failure.
2536 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
2538 if payment_secret.is_none() && route.paths.len() > 1 {
2539 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
2541 let mut total_value = 0;
2542 let our_node_id = self.get_our_node_id();
2543 let mut path_errs = Vec::with_capacity(route.paths.len());
2544 let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) };
2545 'path_check: for path in route.paths.iter() {
2546 if path.len() < 1 || path.len() > 20 {
2547 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
2548 continue 'path_check;
2550 for (idx, hop) in path.iter().enumerate() {
2551 if idx != path.len() - 1 && hop.pubkey == our_node_id {
2552 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
2553 continue 'path_check;
2556 total_value += path.last().unwrap().fee_msat;
2557 path_errs.push(Ok(()));
2559 if path_errs.iter().any(|e| e.is_err()) {
2560 return Err(PaymentSendFailure::PathParameterError(path_errs));
2562 if let Some(amt_msat) = recv_value_msat {
2563 debug_assert!(amt_msat >= total_value);
2564 total_value = amt_msat;
2567 let cur_height = self.best_block.read().unwrap().height() + 1;
2568 let mut results = Vec::new();
2569 for path in route.paths.iter() {
2570 results.push(self.send_payment_along_path(&path, &route.payment_params, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage));
2572 let mut has_ok = false;
2573 let mut has_err = false;
2574 let mut pending_amt_unsent = 0;
2575 let mut max_unsent_cltv_delta = 0;
2576 for (res, path) in results.iter().zip(route.paths.iter()) {
2577 if res.is_ok() { has_ok = true; }
2578 if res.is_err() { has_err = true; }
2579 if let &Err(APIError::MonitorUpdateFailed) = res {
2580 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
2584 } else if res.is_err() {
2585 pending_amt_unsent += path.last().unwrap().fee_msat;
2586 max_unsent_cltv_delta = cmp::max(max_unsent_cltv_delta, path.last().unwrap().cltv_expiry_delta);
2589 if has_err && has_ok {
2590 Err(PaymentSendFailure::PartialFailure {
2593 failed_paths_retry: if pending_amt_unsent != 0 {
2594 if let Some(payment_params) = &route.payment_params {
2595 Some(RouteParameters {
2596 payment_params: payment_params.clone(),
2597 final_value_msat: pending_amt_unsent,
2598 final_cltv_expiry_delta: max_unsent_cltv_delta,
2604 // If we failed to send any paths, we shouldn't have inserted the new PaymentId into
2605 // our `pending_outbound_payments` map at all.
2606 debug_assert!(self.pending_outbound_payments.lock().unwrap().get(&payment_id).is_none());
2607 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
2613 /// Retries a payment along the given [`Route`].
2615 /// Errors returned are a superset of those returned from [`send_payment`], so see
2616 /// [`send_payment`] documentation for more details on errors. This method will also error if the
2617 /// retry amount puts the payment more than 10% over the payment's total amount, if the payment
2618 /// for the given `payment_id` cannot be found (likely due to timeout or success), or if
2619 /// further retries have been disabled with [`abandon_payment`].
2621 /// [`send_payment`]: [`ChannelManager::send_payment`]
2622 /// [`abandon_payment`]: [`ChannelManager::abandon_payment`]
2623 pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2624 const RETRY_OVERFLOW_PERCENTAGE: u64 = 10;
2625 for path in route.paths.iter() {
2626 if path.len() == 0 {
2627 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2628 err: "length-0 path in route".to_string()
2633 let (total_msat, payment_hash, payment_secret) = {
2634 let outbounds = self.pending_outbound_payments.lock().unwrap();
2635 if let Some(payment) = outbounds.get(&payment_id) {
2637 PendingOutboundPayment::Retryable {
2638 total_msat, payment_hash, payment_secret, pending_amt_msat, ..
2640 let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum();
2641 if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 {
2642 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2643 err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string()
2646 (*total_msat, *payment_hash, *payment_secret)
2648 PendingOutboundPayment::Legacy { .. } => {
2649 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2650 err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string()
2653 PendingOutboundPayment::Fulfilled { .. } => {
2654 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2655 err: "Payment already completed".to_owned()
2658 PendingOutboundPayment::Abandoned { .. } => {
2659 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2660 err: "Payment already abandoned (with some HTLCs still pending)".to_owned()
2665 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2666 err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)),
2670 return self.send_payment_internal(route, payment_hash, &payment_secret, None, Some(payment_id), Some(total_msat)).map(|_| ())
2673 /// Signals that no further retries for the given payment will occur.
2675 /// After this method returns, any future calls to [`retry_payment`] for the given `payment_id`
2676 /// will fail with [`PaymentSendFailure::ParameterError`]. If no such event has been generated,
2677 /// an [`Event::PaymentFailed`] event will be generated as soon as there are no remaining
2678 /// pending HTLCs for this payment.
2680 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2681 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2682 /// determine the ultimate status of a payment.
2684 /// [`retry_payment`]: Self::retry_payment
2685 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2686 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2687 pub fn abandon_payment(&self, payment_id: PaymentId) {
2688 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2690 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
2691 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
2692 if let Ok(()) = payment.get_mut().mark_abandoned() {
2693 if payment.get().remaining_parts() == 0 {
2694 self.pending_events.lock().unwrap().push(events::Event::PaymentFailed {
2696 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
2704 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2705 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2706 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2707 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2708 /// never reach the recipient.
2710 /// See [`send_payment`] documentation for more details on the return value of this function.
2712 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2713 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2715 /// Note that `route` must have exactly one path.
2717 /// [`send_payment`]: Self::send_payment
2718 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2719 let preimage = match payment_preimage {
2721 None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
2723 let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
2724 match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None, None) {
2725 Ok(payment_id) => Ok((payment_hash, payment_id)),
2730 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2731 /// which checks the correctness of the funding transaction given the associated channel.
2732 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2733 &self, temporary_channel_id: &[u8; 32], _counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2734 ) -> Result<(), APIError> {
2736 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
2738 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2740 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2741 .map_err(|e| if let ChannelError::Close(msg) = e {
2742 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2743 } else { unreachable!(); })
2746 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
2748 match handle_error!(self, res, chan.get_counterparty_node_id()) {
2749 Ok(funding_msg) => {
2752 Err(_) => { return Err(APIError::ChannelUnavailable {
2753 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
2758 let mut channel_state = self.channel_state.lock().unwrap();
2759 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2760 node_id: chan.get_counterparty_node_id(),
2763 match channel_state.by_id.entry(chan.channel_id()) {
2764 hash_map::Entry::Occupied(_) => {
2765 panic!("Generated duplicate funding txid?");
2767 hash_map::Entry::Vacant(e) => {
2775 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2776 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2777 Ok(OutPoint { txid: tx.txid(), index: output_index })
2781 /// Call this upon creation of a funding transaction for the given channel.
2783 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2784 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2786 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2787 /// across the p2p network.
2789 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2790 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2792 /// May panic if the output found in the funding transaction is duplicative with some other
2793 /// channel (note that this should be trivially prevented by using unique funding transaction
2794 /// keys per-channel).
2796 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2797 /// counterparty's signature the funding transaction will automatically be broadcast via the
2798 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2800 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2801 /// not currently support replacing a funding transaction on an existing channel. Instead,
2802 /// create a new channel with a conflicting funding transaction.
2804 /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2805 /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2806 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2807 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2809 for inp in funding_transaction.input.iter() {
2810 if inp.witness.is_empty() {
2811 return Err(APIError::APIMisuseError {
2812 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2817 let height = self.best_block.read().unwrap().height();
2818 // Transactions are evaluated as final by network mempools at the next block. However, the modules
2819 // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2820 // the wallet module is in advance on the LDK view, allow one more block of headroom.
2821 // TODO: updated if/when https://github.com/rust-bitcoin/rust-bitcoin/pull/994 landed and rust-bitcoin bumped.
2822 if !funding_transaction.input.iter().all(|input| input.sequence == 0xffffffff) && funding_transaction.lock_time < 500_000_000 && funding_transaction.lock_time > height + 2 {
2823 return Err(APIError::APIMisuseError {
2824 err: "Funding transaction absolute timelock is non-final".to_owned()
2828 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2829 let mut output_index = None;
2830 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2831 for (idx, outp) in tx.output.iter().enumerate() {
2832 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2833 if output_index.is_some() {
2834 return Err(APIError::APIMisuseError {
2835 err: "Multiple outputs matched the expected script and value".to_owned()
2838 if idx > u16::max_value() as usize {
2839 return Err(APIError::APIMisuseError {
2840 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2843 output_index = Some(idx as u16);
2846 if output_index.is_none() {
2847 return Err(APIError::APIMisuseError {
2848 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2851 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2856 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2857 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
2858 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2860 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2863 // ...by failing to compile if the number of addresses that would be half of a message is
2864 // smaller than 500:
2865 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
2867 /// Regenerates channel_announcements and generates a signed node_announcement from the given
2868 /// arguments, providing them in corresponding events via
2869 /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
2870 /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
2871 /// announcement to ensure that the lightning P2P network is aware of the channels we have and
2872 /// our network addresses.
2874 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2875 /// node to humans. They carry no in-protocol meaning.
2877 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2878 /// accepts incoming connections. These will be included in the node_announcement, publicly
2879 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2880 /// addresses should likely contain only Tor Onion addresses.
2882 /// Panics if `addresses` is absurdly large (more than 500).
2884 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2885 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2886 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2888 if addresses.len() > 500 {
2889 panic!("More than half the message size was taken up by public addresses!");
2892 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2893 // addresses be sorted for future compatibility.
2894 addresses.sort_by_key(|addr| addr.get_id());
2896 let announcement = msgs::UnsignedNodeAnnouncement {
2897 features: NodeFeatures::known(),
2898 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
2899 node_id: self.get_our_node_id(),
2900 rgb, alias, addresses,
2901 excess_address_data: Vec::new(),
2902 excess_data: Vec::new(),
2904 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2905 let node_announce_sig = sign(&self.secp_ctx, &msghash, &self.our_network_key);
2907 let mut channel_state_lock = self.channel_state.lock().unwrap();
2908 let channel_state = &mut *channel_state_lock;
2910 let mut announced_chans = false;
2911 for (_, chan) in channel_state.by_id.iter() {
2912 if let Some(msg) = chan.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height()) {
2913 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2915 update_msg: match self.get_channel_update_for_broadcast(chan) {
2920 announced_chans = true;
2922 // If the channel is not public or has not yet reached channel_ready, check the
2923 // next channel. If we don't yet have any public channels, we'll skip the broadcast
2924 // below as peers may not accept it without channels on chain first.
2928 if announced_chans {
2929 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2930 msg: msgs::NodeAnnouncement {
2931 signature: node_announce_sig,
2932 contents: announcement
2938 /// Processes HTLCs which are pending waiting on random forward delay.
2940 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2941 /// Will likely generate further events.
2942 pub fn process_pending_htlc_forwards(&self) {
2943 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2945 let mut new_events = Vec::new();
2946 let mut failed_forwards = Vec::new();
2947 let mut phantom_receives: Vec<(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
2948 let mut handle_errors = Vec::new();
2950 let mut channel_state_lock = self.channel_state.lock().unwrap();
2951 let channel_state = &mut *channel_state_lock;
2953 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2954 if short_chan_id != 0 {
2955 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2956 Some(chan_id) => chan_id.clone(),
2958 for forward_info in pending_forwards.drain(..) {
2959 match forward_info {
2960 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2961 routing, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2962 prev_funding_outpoint } => {
2963 macro_rules! fail_forward {
2964 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
2966 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2967 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2968 short_channel_id: prev_short_channel_id,
2969 outpoint: prev_funding_outpoint,
2970 htlc_id: prev_htlc_id,
2971 incoming_packet_shared_secret: incoming_shared_secret,
2972 phantom_shared_secret: $phantom_ss,
2974 failed_forwards.push((htlc_source, payment_hash,
2975 HTLCFailReason::Reason { failure_code: $err_code, data: $err_data }
2981 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
2982 let phantom_secret_res = self.keys_manager.get_node_secret(Recipient::PhantomNode);
2983 if phantom_secret_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id) {
2984 let phantom_shared_secret = SharedSecret::new(&onion_packet.public_key.unwrap(), &phantom_secret_res.unwrap()).secret_bytes();
2985 let next_hop = match onion_utils::decode_next_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
2987 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2988 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
2989 // In this scenario, the phantom would have sent us an
2990 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
2991 // if it came from us (the second-to-last hop) but contains the sha256
2993 fail_forward!(err_msg, err_code, sha256_of_onion.to_vec(), None);
2995 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2996 fail_forward!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3000 onion_utils::Hop::Receive(hop_data) => {
3001 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value, Some(phantom_shared_secret)) {
3002 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, vec![(info, prev_htlc_id)])),
3003 Err(ReceiveError { err_code, err_data, msg }) => fail_forward!(msg, err_code, err_data, Some(phantom_shared_secret))
3009 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3012 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3015 HTLCForwardInfo::FailHTLC { .. } => {
3016 // Channel went away before we could fail it. This implies
3017 // the channel is now on chain and our counterparty is
3018 // trying to broadcast the HTLC-Timeout, but that's their
3019 // problem, not ours.
3026 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
3027 let mut add_htlc_msgs = Vec::new();
3028 let mut fail_htlc_msgs = Vec::new();
3029 for forward_info in pending_forwards.drain(..) {
3030 match forward_info {
3031 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
3032 routing: PendingHTLCRouting::Forward {
3034 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
3035 prev_funding_outpoint } => {
3036 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3037 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3038 short_channel_id: prev_short_channel_id,
3039 outpoint: prev_funding_outpoint,
3040 htlc_id: prev_htlc_id,
3041 incoming_packet_shared_secret: incoming_shared_secret,
3042 // Phantom payments are only PendingHTLCRouting::Receive.
3043 phantom_shared_secret: None,
3045 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet, &self.logger) {
3047 if let ChannelError::Ignore(msg) = e {
3048 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3050 panic!("Stated return value requirements in send_htlc() were not met");
3052 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3053 failed_forwards.push((htlc_source, payment_hash,
3054 HTLCFailReason::Reason { failure_code, data }
3060 Some(msg) => { add_htlc_msgs.push(msg); },
3062 // Nothing to do here...we're waiting on a remote
3063 // revoke_and_ack before we can add anymore HTLCs. The Channel
3064 // will automatically handle building the update_add_htlc and
3065 // commitment_signed messages when we can.
3066 // TODO: Do some kind of timer to set the channel as !is_live()
3067 // as we don't really want others relying on us relaying through
3068 // this channel currently :/.
3074 HTLCForwardInfo::AddHTLC { .. } => {
3075 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3077 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3078 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3079 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
3081 if let ChannelError::Ignore(msg) = e {
3082 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3084 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
3086 // fail-backs are best-effort, we probably already have one
3087 // pending, and if not that's OK, if not, the channel is on
3088 // the chain and sending the HTLC-Timeout is their problem.
3091 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
3093 // Nothing to do here...we're waiting on a remote
3094 // revoke_and_ack before we can update the commitment
3095 // transaction. The Channel will automatically handle
3096 // building the update_fail_htlc and commitment_signed
3097 // messages when we can.
3098 // We don't need any kind of timer here as they should fail
3099 // the channel onto the chain if they can't get our
3100 // update_fail_htlc in time, it's not our problem.
3107 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
3108 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
3111 // We surely failed send_commitment due to bad keys, in that case
3112 // close channel and then send error message to peer.
3113 let counterparty_node_id = chan.get().get_counterparty_node_id();
3114 let err: Result<(), _> = match e {
3115 ChannelError::Ignore(_) | ChannelError::Warn(_) => {
3116 panic!("Stated return value requirements in send_commitment() were not met");
3118 ChannelError::Close(msg) => {
3119 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
3120 let mut channel = remove_channel!(self, channel_state, chan);
3121 // ChannelClosed event is generated by handle_error for us.
3122 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel.channel_id(), channel.get_user_id(), channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
3124 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
3126 handle_errors.push((counterparty_node_id, err));
3130 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3131 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
3134 log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
3135 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
3136 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3137 node_id: chan.get().get_counterparty_node_id(),
3138 updates: msgs::CommitmentUpdate {
3139 update_add_htlcs: add_htlc_msgs,
3140 update_fulfill_htlcs: Vec::new(),
3141 update_fail_htlcs: fail_htlc_msgs,
3142 update_fail_malformed_htlcs: Vec::new(),
3144 commitment_signed: commitment_msg,
3152 for forward_info in pending_forwards.drain(..) {
3153 match forward_info {
3154 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
3155 routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
3156 prev_funding_outpoint } => {
3157 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3158 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3159 let _legacy_hop_data = Some(payment_data.clone());
3160 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3162 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3163 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3165 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3168 let claimable_htlc = ClaimableHTLC {
3169 prev_hop: HTLCPreviousHopData {
3170 short_channel_id: prev_short_channel_id,
3171 outpoint: prev_funding_outpoint,
3172 htlc_id: prev_htlc_id,
3173 incoming_packet_shared_secret: incoming_shared_secret,
3174 phantom_shared_secret,
3176 value: amt_to_forward,
3178 total_msat: if let Some(data) = &payment_data { data.total_msat } else { amt_to_forward },
3183 macro_rules! fail_htlc {
3185 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
3186 htlc_msat_height_data.extend_from_slice(
3187 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
3189 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3190 short_channel_id: $htlc.prev_hop.short_channel_id,
3191 outpoint: prev_funding_outpoint,
3192 htlc_id: $htlc.prev_hop.htlc_id,
3193 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3194 phantom_shared_secret,
3196 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
3201 macro_rules! check_total_value {
3202 ($payment_data: expr, $payment_preimage: expr) => {{
3203 let mut payment_received_generated = false;
3205 events::PaymentPurpose::InvoicePayment {
3206 payment_preimage: $payment_preimage,
3207 payment_secret: $payment_data.payment_secret,
3210 let (_, htlcs) = channel_state.claimable_htlcs.entry(payment_hash)
3211 .or_insert_with(|| (purpose(), Vec::new()));
3212 if htlcs.len() == 1 {
3213 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3214 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3215 fail_htlc!(claimable_htlc);
3219 let mut total_value = claimable_htlc.value;
3220 for htlc in htlcs.iter() {
3221 total_value += htlc.value;
3222 match &htlc.onion_payload {
3223 OnionPayload::Invoice { .. } => {
3224 if htlc.total_msat != $payment_data.total_msat {
3225 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3226 log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3227 total_value = msgs::MAX_VALUE_MSAT;
3229 if total_value >= msgs::MAX_VALUE_MSAT { break; }
3231 _ => unreachable!(),
3234 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3235 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3236 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3237 fail_htlc!(claimable_htlc);
3238 } else if total_value == $payment_data.total_msat {
3239 htlcs.push(claimable_htlc);
3240 new_events.push(events::Event::PaymentReceived {
3243 amount_msat: total_value,
3245 payment_received_generated = true;
3247 // Nothing to do - we haven't reached the total
3248 // payment value yet, wait until we receive more
3250 htlcs.push(claimable_htlc);
3252 payment_received_generated
3256 // Check that the payment hash and secret are known. Note that we
3257 // MUST take care to handle the "unknown payment hash" and
3258 // "incorrect payment secret" cases here identically or we'd expose
3259 // that we are the ultimate recipient of the given payment hash.
3260 // Further, we must not expose whether we have any other HTLCs
3261 // associated with the same payment_hash pending or not.
3262 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3263 match payment_secrets.entry(payment_hash) {
3264 hash_map::Entry::Vacant(_) => {
3265 match claimable_htlc.onion_payload {
3266 OnionPayload::Invoice { .. } => {
3267 let payment_data = payment_data.unwrap();
3268 let payment_preimage = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3269 Ok(payment_preimage) => payment_preimage,
3271 fail_htlc!(claimable_htlc);
3275 check_total_value!(payment_data, payment_preimage);
3277 OnionPayload::Spontaneous(preimage) => {
3278 match channel_state.claimable_htlcs.entry(payment_hash) {
3279 hash_map::Entry::Vacant(e) => {
3280 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3281 e.insert((purpose.clone(), vec![claimable_htlc]));
3282 new_events.push(events::Event::PaymentReceived {
3284 amount_msat: amt_to_forward,
3288 hash_map::Entry::Occupied(_) => {
3289 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3290 fail_htlc!(claimable_htlc);
3296 hash_map::Entry::Occupied(inbound_payment) => {
3297 if payment_data.is_none() {
3298 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3299 fail_htlc!(claimable_htlc);
3302 let payment_data = payment_data.unwrap();
3303 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3304 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3305 fail_htlc!(claimable_htlc);
3306 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3307 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3308 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3309 fail_htlc!(claimable_htlc);
3311 let payment_received_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3312 if payment_received_generated {
3313 inbound_payment.remove_entry();
3319 HTLCForwardInfo::FailHTLC { .. } => {
3320 panic!("Got pending fail of our own HTLC");
3328 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
3329 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
3331 self.forward_htlcs(&mut phantom_receives);
3333 for (counterparty_node_id, err) in handle_errors.drain(..) {
3334 let _ = handle_error!(self, err, counterparty_node_id);
3337 if new_events.is_empty() { return }
3338 let mut events = self.pending_events.lock().unwrap();
3339 events.append(&mut new_events);
3342 /// Free the background events, generally called from timer_tick_occurred.
3344 /// Exposed for testing to allow us to process events quickly without generating accidental
3345 /// BroadcastChannelUpdate events in timer_tick_occurred.
3347 /// Expects the caller to have a total_consistency_lock read lock.
3348 fn process_background_events(&self) -> bool {
3349 let mut background_events = Vec::new();
3350 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3351 if background_events.is_empty() {
3355 for event in background_events.drain(..) {
3357 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3358 // The channel has already been closed, so no use bothering to care about the
3359 // monitor updating completing.
3360 let _ = self.chain_monitor.update_channel(funding_txo, update);
3367 #[cfg(any(test, feature = "_test_utils"))]
3368 /// Process background events, for functional testing
3369 pub fn test_process_background_events(&self) {
3370 self.process_background_events();
3373 fn update_channel_fee(&self, short_to_id: &mut HashMap<u64, [u8; 32]>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
3374 if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
3375 // If the feerate has decreased by less than half, don't bother
3376 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3377 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3378 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3379 return (true, NotifyOption::SkipPersist, Ok(()));
3381 if !chan.is_live() {
3382 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3383 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3384 return (true, NotifyOption::SkipPersist, Ok(()));
3386 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3387 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3389 let mut retain_channel = true;
3390 let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
3393 let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
3394 if drop { retain_channel = false; }
3398 let ret_err = match res {
3399 Ok(Some((update_fee, commitment_signed, monitor_update))) => {
3400 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3401 let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, chan_id, COMMITMENT_UPDATE_ONLY);
3402 if drop { retain_channel = false; }
3405 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3406 node_id: chan.get_counterparty_node_id(),
3407 updates: msgs::CommitmentUpdate {
3408 update_add_htlcs: Vec::new(),
3409 update_fulfill_htlcs: Vec::new(),
3410 update_fail_htlcs: Vec::new(),
3411 update_fail_malformed_htlcs: Vec::new(),
3412 update_fee: Some(update_fee),
3422 (retain_channel, NotifyOption::DoPersist, ret_err)
3426 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3427 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3428 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3429 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3430 pub fn maybe_update_chan_fees(&self) {
3431 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3432 let mut should_persist = NotifyOption::SkipPersist;
3434 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
3436 let mut handle_errors = Vec::new();
3438 let mut channel_state_lock = self.channel_state.lock().unwrap();
3439 let channel_state = &mut *channel_state_lock;
3440 let pending_msg_events = &mut channel_state.pending_msg_events;
3441 let short_to_id = &mut channel_state.short_to_id;
3442 channel_state.by_id.retain(|chan_id, chan| {
3443 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
3444 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3446 handle_errors.push(err);
3456 /// Performs actions which should happen on startup and roughly once per minute thereafter.
3458 /// This currently includes:
3459 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3460 /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3461 /// than a minute, informing the network that they should no longer attempt to route over
3464 /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3465 /// estimate fetches.
3466 pub fn timer_tick_occurred(&self) {
3467 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3468 let mut should_persist = NotifyOption::SkipPersist;
3469 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3471 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
3473 let mut handle_errors = Vec::new();
3474 let mut timed_out_mpp_htlcs = Vec::new();
3476 let mut channel_state_lock = self.channel_state.lock().unwrap();
3477 let channel_state = &mut *channel_state_lock;
3478 let pending_msg_events = &mut channel_state.pending_msg_events;
3479 let short_to_id = &mut channel_state.short_to_id;
3480 channel_state.by_id.retain(|chan_id, chan| {
3481 let counterparty_node_id = chan.get_counterparty_node_id();
3482 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
3483 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3485 handle_errors.push((err, counterparty_node_id));
3487 if !retain_channel { return false; }
3489 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3490 let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
3491 handle_errors.push((Err(err), chan.get_counterparty_node_id()));
3492 if needs_close { return false; }
3495 match chan.channel_update_status() {
3496 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3497 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3498 ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3499 ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3500 ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3501 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3502 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3506 should_persist = NotifyOption::DoPersist;
3507 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3509 ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3510 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3511 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3515 should_persist = NotifyOption::DoPersist;
3516 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3524 channel_state.claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3525 if htlcs.is_empty() {
3526 // This should be unreachable
3527 debug_assert!(false);
3530 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3531 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3532 // In this case we're not going to handle any timeouts of the parts here.
3533 if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3535 } else if htlcs.into_iter().any(|htlc| {
3536 htlc.timer_ticks += 1;
3537 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3539 timed_out_mpp_htlcs.extend(htlcs.into_iter().map(|htlc| (htlc.prev_hop.clone(), payment_hash.clone())));
3547 for htlc_source in timed_out_mpp_htlcs.drain(..) {
3548 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), HTLCSource::PreviousHopData(htlc_source.0), &htlc_source.1, HTLCFailReason::Reason { failure_code: 23, data: Vec::new() });
3551 for (err, counterparty_node_id) in handle_errors.drain(..) {
3552 let _ = handle_error!(self, err, counterparty_node_id);
3558 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3559 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
3560 /// along the path (including in our own channel on which we received it).
3562 /// Note that in some cases around unclean shutdown, it is possible the payment may have
3563 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3564 /// second copy of) the [`events::Event::PaymentReceived`] event. Alternatively, the payment
3565 /// may have already been failed automatically by LDK if it was nearing its expiration time.
3567 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3568 /// [`ChannelManager::claim_funds`]), you should still monitor for
3569 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3570 /// startup during which time claims that were in-progress at shutdown may be replayed.
3571 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3572 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3574 let mut channel_state = Some(self.channel_state.lock().unwrap());
3575 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
3576 if let Some((_, mut sources)) = removed_source {
3577 for htlc in sources.drain(..) {
3578 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3579 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3580 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3581 self.best_block.read().unwrap().height()));
3582 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3583 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
3584 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
3589 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3590 /// that we want to return and a channel.
3592 /// This is for failures on the channel on which the HTLC was *received*, not failures
3594 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<Signer>) -> (u16, Vec<u8>) {
3595 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3596 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3597 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3598 // an inbound SCID alias before the real SCID.
3599 let scid_pref = if chan.should_announce() {
3600 chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3602 chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3604 if let Some(scid) = scid_pref {
3605 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3607 (0x4000|10, Vec::new())
3612 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3613 /// that we want to return and a channel.
3614 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<Signer>) -> (u16, Vec<u8>) {
3615 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3616 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3617 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3618 if desired_err_code == 0x1000 | 20 {
3619 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3620 0u16.write(&mut enc).expect("Writes cannot fail");
3622 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3623 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3624 upd.write(&mut enc).expect("Writes cannot fail");
3625 (desired_err_code, enc.0)
3627 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3628 // which means we really shouldn't have gotten a payment to be forwarded over this
3629 // channel yet, or if we did it's from a route hint. Either way, returning an error of
3630 // PERM|no_such_channel should be fine.
3631 (0x4000|10, Vec::new())
3635 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3636 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3637 // be surfaced to the user.
3638 fn fail_holding_cell_htlcs(
3639 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3640 _counterparty_node_id: &PublicKey
3642 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3644 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
3645 let (failure_code, onion_failure_data) =
3646 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
3647 hash_map::Entry::Occupied(chan_entry) => {
3648 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3650 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3652 let channel_state = self.channel_state.lock().unwrap();
3653 self.fail_htlc_backwards_internal(channel_state,
3654 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
3656 HTLCSource::OutboundRoute { session_priv, payment_id, path, payment_params, .. } => {
3657 let mut session_priv_bytes = [0; 32];
3658 session_priv_bytes.copy_from_slice(&session_priv[..]);
3659 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3660 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3661 if payment.get_mut().remove(&session_priv_bytes, Some(&path)) && !payment.get().is_fulfilled() {
3662 let retry = if let Some(payment_params_data) = payment_params {
3663 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3664 Some(RouteParameters {
3665 payment_params: payment_params_data,
3666 final_value_msat: path_last_hop.fee_msat,
3667 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3670 let mut pending_events = self.pending_events.lock().unwrap();
3671 pending_events.push(events::Event::PaymentPathFailed {
3672 payment_id: Some(payment_id),
3674 rejected_by_dest: false,
3675 network_update: None,
3676 all_paths_failed: payment.get().remaining_parts() == 0,
3678 short_channel_id: None,
3685 if payment.get().abandoned() && payment.get().remaining_parts() == 0 {
3686 pending_events.push(events::Event::PaymentFailed {
3688 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
3694 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3701 /// Fails an HTLC backwards to the sender of it to us.
3702 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
3703 /// There are several callsites that do stupid things like loop over a list of payment_hashes
3704 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
3705 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
3706 /// still-available channels.
3707 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
3708 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3709 //identify whether we sent it or not based on the (I presume) very different runtime
3710 //between the branches here. We should make this async and move it into the forward HTLCs
3713 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3714 // from block_connected which may run during initialization prior to the chain_monitor
3715 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3717 HTLCSource::OutboundRoute { ref path, session_priv, payment_id, ref payment_params, .. } => {
3718 let mut session_priv_bytes = [0; 32];
3719 session_priv_bytes.copy_from_slice(&session_priv[..]);
3720 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3721 let mut all_paths_failed = false;
3722 let mut full_failure_ev = None;
3723 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3724 if !payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
3725 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3728 if payment.get().is_fulfilled() {
3729 log_trace!(self.logger, "Received failure of HTLC with payment_hash {} after payment completion", log_bytes!(payment_hash.0));
3732 if payment.get().remaining_parts() == 0 {
3733 all_paths_failed = true;
3734 if payment.get().abandoned() {
3735 full_failure_ev = Some(events::Event::PaymentFailed {
3737 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
3743 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3746 mem::drop(channel_state_lock);
3747 let retry = if let Some(payment_params_data) = payment_params {
3748 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3749 Some(RouteParameters {
3750 payment_params: payment_params_data.clone(),
3751 final_value_msat: path_last_hop.fee_msat,
3752 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3755 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3757 let path_failure = match &onion_error {
3758 &HTLCFailReason::LightningError { ref err } => {
3760 let (network_update, short_channel_id, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3762 let (network_update, short_channel_id, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3763 // TODO: If we decided to blame ourselves (or one of our channels) in
3764 // process_onion_failure we should close that channel as it implies our
3765 // next-hop is needlessly blaming us!
3766 events::Event::PaymentPathFailed {
3767 payment_id: Some(payment_id),
3768 payment_hash: payment_hash.clone(),
3769 rejected_by_dest: !payment_retryable,
3776 error_code: onion_error_code,
3778 error_data: onion_error_data
3781 &HTLCFailReason::Reason {
3787 // we get a fail_malformed_htlc from the first hop
3788 // TODO: We'd like to generate a NetworkUpdate for temporary
3789 // failures here, but that would be insufficient as find_route
3790 // generally ignores its view of our own channels as we provide them via
3792 // TODO: For non-temporary failures, we really should be closing the
3793 // channel here as we apparently can't relay through them anyway.
3794 events::Event::PaymentPathFailed {
3795 payment_id: Some(payment_id),
3796 payment_hash: payment_hash.clone(),
3797 rejected_by_dest: path.len() == 1,
3798 network_update: None,
3801 short_channel_id: Some(path.first().unwrap().short_channel_id),
3804 error_code: Some(*failure_code),
3806 error_data: Some(data.clone()),
3810 let mut pending_events = self.pending_events.lock().unwrap();
3811 pending_events.push(path_failure);
3812 if let Some(ev) = full_failure_ev { pending_events.push(ev); }
3814 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, phantom_shared_secret, .. }) => {
3815 let err_packet = match onion_error {
3816 HTLCFailReason::Reason { failure_code, data } => {
3817 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
3818 if let Some(phantom_ss) = phantom_shared_secret {
3819 let phantom_packet = onion_utils::build_failure_packet(&phantom_ss, failure_code, &data[..]).encode();
3820 let encrypted_phantom_packet = onion_utils::encrypt_failure_packet(&phantom_ss, &phantom_packet);
3821 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &encrypted_phantom_packet.data[..])
3823 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
3824 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
3827 HTLCFailReason::LightningError { err } => {
3828 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
3829 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
3833 let mut forward_event = None;
3834 if channel_state_lock.forward_htlcs.is_empty() {
3835 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
3837 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
3838 hash_map::Entry::Occupied(mut entry) => {
3839 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
3841 hash_map::Entry::Vacant(entry) => {
3842 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
3845 mem::drop(channel_state_lock);
3846 if let Some(time) = forward_event {
3847 let mut pending_events = self.pending_events.lock().unwrap();
3848 pending_events.push(events::Event::PendingHTLCsForwardable {
3849 time_forwardable: time
3856 /// Provides a payment preimage in response to [`Event::PaymentReceived`], generating any
3857 /// [`MessageSendEvent`]s needed to claim the payment.
3859 /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3860 /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3861 /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3863 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3864 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
3865 /// event matches your expectation. If you fail to do so and call this method, you may provide
3866 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3868 /// [`Event::PaymentReceived`]: crate::util::events::Event::PaymentReceived
3869 /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
3870 /// [`process_pending_events`]: EventsProvider::process_pending_events
3871 /// [`create_inbound_payment`]: Self::create_inbound_payment
3872 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3873 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
3874 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3875 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3877 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3879 let mut channel_state = Some(self.channel_state.lock().unwrap());
3880 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
3881 if let Some((payment_purpose, mut sources)) = removed_source {
3882 assert!(!sources.is_empty());
3884 // If we are claiming an MPP payment, we have to take special care to ensure that each
3885 // channel exists before claiming all of the payments (inside one lock).
3886 // Note that channel existance is sufficient as we should always get a monitor update
3887 // which will take care of the real HTLC claim enforcement.
3889 // If we find an HTLC which we would need to claim but for which we do not have a
3890 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3891 // the sender retries the already-failed path(s), it should be a pretty rare case where
3892 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3893 // provide the preimage, so worrying too much about the optimal handling isn't worth
3895 let mut claimable_amt_msat = 0;
3896 let mut expected_amt_msat = None;
3897 let mut valid_mpp = true;
3898 for htlc in sources.iter() {
3899 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
3903 if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
3904 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
3905 debug_assert!(false);
3909 expected_amt_msat = Some(htlc.total_msat);
3910 if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
3911 // We don't currently support MPP for spontaneous payments, so just check
3912 // that there's one payment here and move on.
3913 if sources.len() != 1 {
3914 log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
3915 debug_assert!(false);
3921 claimable_amt_msat += htlc.value;
3923 if sources.is_empty() || expected_amt_msat.is_none() {
3924 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
3927 if claimable_amt_msat != expected_amt_msat.unwrap() {
3928 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
3929 expected_amt_msat.unwrap(), claimable_amt_msat);
3933 let mut errs = Vec::new();
3934 let mut claimed_any_htlcs = false;
3935 for htlc in sources.drain(..) {
3937 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3938 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3939 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3940 self.best_block.read().unwrap().height()));
3941 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3942 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
3943 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
3945 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
3946 ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
3947 if let msgs::ErrorAction::IgnoreError = err.err.action {
3948 // We got a temporary failure updating monitor, but will claim the
3949 // HTLC when the monitor updating is restored (or on chain).
3950 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3951 claimed_any_htlcs = true;
3952 } else { errs.push((pk, err)); }
3954 ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
3955 ClaimFundsFromHop::DuplicateClaim => {
3956 // While we should never get here in most cases, if we do, it likely
3957 // indicates that the HTLC was timed out some time ago and is no longer
3958 // available to be claimed. Thus, it does not make sense to set
3959 // `claimed_any_htlcs`.
3961 ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
3966 if claimed_any_htlcs {
3967 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
3969 purpose: payment_purpose,
3970 amount_msat: claimable_amt_msat,
3974 // Now that we've done the entire above loop in one lock, we can handle any errors
3975 // which were generated.
3976 channel_state.take();
3978 for (counterparty_node_id, err) in errs.drain(..) {
3979 let res: Result<(), _> = Err(err);
3980 let _ = handle_error!(self, res, counterparty_node_id);
3985 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
3986 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3987 let channel_state = &mut **channel_state_lock;
3988 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
3989 Some(chan_id) => chan_id.clone(),
3991 return ClaimFundsFromHop::PrevHopForceClosed
3995 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
3996 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
3997 Ok(msgs_monitor_option) => {
3998 if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
3999 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
4000 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug },
4001 "Failed to update channel monitor with preimage {:?}: {:?}",
4002 payment_preimage, e);
4003 return ClaimFundsFromHop::MonitorUpdateFail(
4004 chan.get().get_counterparty_node_id(),
4005 handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
4006 Some(htlc_value_msat)
4009 if let Some((msg, commitment_signed)) = msgs {
4010 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
4011 log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
4012 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4013 node_id: chan.get().get_counterparty_node_id(),
4014 updates: msgs::CommitmentUpdate {
4015 update_add_htlcs: Vec::new(),
4016 update_fulfill_htlcs: vec![msg],
4017 update_fail_htlcs: Vec::new(),
4018 update_fail_malformed_htlcs: Vec::new(),
4024 return ClaimFundsFromHop::Success(htlc_value_msat);
4026 return ClaimFundsFromHop::DuplicateClaim;
4029 Err((e, monitor_update)) => {
4030 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
4031 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info },
4032 "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
4033 payment_preimage, e);
4035 let counterparty_node_id = chan.get().get_counterparty_node_id();
4036 let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id);
4038 chan.remove_entry();
4040 return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
4043 } else { unreachable!(); }
4046 fn finalize_claims(&self, mut sources: Vec<HTLCSource>) {
4047 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
4048 let mut pending_events = self.pending_events.lock().unwrap();
4049 for source in sources.drain(..) {
4050 if let HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } = source {
4051 let mut session_priv_bytes = [0; 32];
4052 session_priv_bytes.copy_from_slice(&session_priv[..]);
4053 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
4054 assert!(payment.get().is_fulfilled());
4055 if payment.get_mut().remove(&session_priv_bytes, None) {
4056 pending_events.push(
4057 events::Event::PaymentPathSuccessful {
4059 payment_hash: payment.get().payment_hash(),
4064 if payment.get().remaining_parts() == 0 {
4072 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4074 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4075 mem::drop(channel_state_lock);
4076 let mut session_priv_bytes = [0; 32];
4077 session_priv_bytes.copy_from_slice(&session_priv[..]);
4078 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
4079 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
4080 let mut pending_events = self.pending_events.lock().unwrap();
4081 if !payment.get().is_fulfilled() {
4082 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4083 let fee_paid_msat = payment.get().get_pending_fee_msat();
4084 pending_events.push(
4085 events::Event::PaymentSent {
4086 payment_id: Some(payment_id),
4092 payment.get_mut().mark_fulfilled();
4096 // We currently immediately remove HTLCs which were fulfilled on-chain.
4097 // This could potentially lead to removing a pending payment too early,
4098 // with a reorg of one block causing us to re-add the fulfilled payment on
4100 // TODO: We should have a second monitor event that informs us of payments
4101 // irrevocably fulfilled.
4102 if payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
4103 let payment_hash = Some(PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()));
4104 pending_events.push(
4105 events::Event::PaymentPathSuccessful {
4113 if payment.get().remaining_parts() == 0 {
4118 log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
4121 HTLCSource::PreviousHopData(hop_data) => {
4122 let prev_outpoint = hop_data.outpoint;
4123 let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
4124 let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
4125 let htlc_claim_value_msat = match res {
4126 ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
4127 ClaimFundsFromHop::Success(amt) => Some(amt),
4130 if let ClaimFundsFromHop::PrevHopForceClosed = res {
4131 let preimage_update = ChannelMonitorUpdate {
4132 update_id: CLOSED_CHANNEL_UPDATE_ID,
4133 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4134 payment_preimage: payment_preimage.clone(),
4137 // We update the ChannelMonitor on the backward link, after
4138 // receiving an offchain preimage event from the forward link (the
4139 // event being update_fulfill_htlc).
4140 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
4141 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4142 payment_preimage, e);
4144 // Note that we do *not* set `claimed_htlc` to false here. In fact, this
4145 // totally could be a duplicate claim, but we have no way of knowing
4146 // without interrogating the `ChannelMonitor` we've provided the above
4147 // update to. Instead, we simply document in `PaymentForwarded` that this
4150 mem::drop(channel_state_lock);
4151 if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
4152 let result: Result<(), _> = Err(err);
4153 let _ = handle_error!(self, result, pk);
4157 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4158 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4159 Some(claimed_htlc_value - forwarded_htlc_value)
4162 let mut pending_events = self.pending_events.lock().unwrap();
4163 let prev_channel_id = Some(prev_outpoint.to_channel_id());
4164 let next_channel_id = Some(next_channel_id);
4166 pending_events.push(events::Event::PaymentForwarded {
4168 claim_from_onchain_tx: from_onchain,
4178 /// Gets the node_id held by this ChannelManager
4179 pub fn get_our_node_id(&self) -> PublicKey {
4180 self.our_network_pubkey.clone()
4183 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
4184 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4186 let chan_restoration_res;
4187 let (mut pending_failures, finalized_claims) = {
4188 let mut channel_lock = self.channel_state.lock().unwrap();
4189 let channel_state = &mut *channel_lock;
4190 let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
4191 hash_map::Entry::Occupied(chan) => chan,
4192 hash_map::Entry::Vacant(_) => return,
4194 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4198 let updates = channel.get_mut().monitor_updating_restored(&self.logger, self.get_our_node_id(), self.genesis_hash, self.best_block.read().unwrap().height());
4199 let channel_update = if updates.channel_ready.is_some() && channel.get().is_usable() {
4200 // We only send a channel_update in the case where we are just now sending a
4201 // channel_ready and the channel is in a usable state. We may re-send a
4202 // channel_update later through the announcement_signatures process for public
4203 // channels, but there's no reason not to just inform our counterparty of our fees
4205 if let Ok(msg) = self.get_channel_update_for_unicast(channel.get()) {
4206 Some(events::MessageSendEvent::SendChannelUpdate {
4207 node_id: channel.get().get_counterparty_node_id(),
4212 chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, updates.raa, updates.commitment_update, updates.order, None, updates.accepted_htlcs, updates.funding_broadcastable, updates.channel_ready, updates.announcement_sigs);
4213 if let Some(upd) = channel_update {
4214 channel_state.pending_msg_events.push(upd);
4216 (updates.failed_htlcs, updates.finalized_claimed_htlcs)
4218 post_handle_chan_restoration!(self, chan_restoration_res);
4219 self.finalize_claims(finalized_claims);
4220 for failure in pending_failures.drain(..) {
4221 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
4225 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4227 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4228 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4231 /// The `user_channel_id` parameter will be provided back in
4232 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4233 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4235 /// Note that this method will return an error and reject the channel, if it requires support
4236 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4237 /// used to accept such channels.
4239 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4240 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4241 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u64) -> Result<(), APIError> {
4242 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4245 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4246 /// it as confirmed immediately.
4248 /// The `user_channel_id` parameter will be provided back in
4249 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4250 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4252 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4253 /// and (if the counterparty agrees), enables forwarding of payments immediately.
4255 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4256 /// transaction and blindly assumes that it will eventually confirm.
4258 /// If it does not confirm before we decide to close the channel, or if the funding transaction
4259 /// does not pay to the correct script the correct amount, *you will lose funds*.
4261 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4262 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4263 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u64) -> Result<(), APIError> {
4264 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4267 fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u64) -> Result<(), APIError> {
4268 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4270 let mut channel_state_lock = self.channel_state.lock().unwrap();
4271 let channel_state = &mut *channel_state_lock;
4272 match channel_state.by_id.entry(temporary_channel_id.clone()) {
4273 hash_map::Entry::Occupied(mut channel) => {
4274 if !channel.get().inbound_is_awaiting_accept() {
4275 return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4277 if *counterparty_node_id != channel.get().get_counterparty_node_id() {
4278 return Err(APIError::APIMisuseError { err: "The passed counterparty_node_id doesn't match the channel's counterparty node_id".to_owned() });
4281 channel.get_mut().set_0conf();
4282 } else if channel.get().get_channel_type().requires_zero_conf() {
4283 let send_msg_err_event = events::MessageSendEvent::HandleError {
4284 node_id: channel.get().get_counterparty_node_id(),
4285 action: msgs::ErrorAction::SendErrorMessage{
4286 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4289 channel_state.pending_msg_events.push(send_msg_err_event);
4290 let _ = remove_channel!(self, channel_state, channel);
4291 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4294 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4295 node_id: channel.get().get_counterparty_node_id(),
4296 msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4299 hash_map::Entry::Vacant(_) => {
4300 return Err(APIError::ChannelUnavailable { err: "Can't accept a channel that doesn't exist".to_owned() });
4306 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4307 if msg.chain_hash != self.genesis_hash {
4308 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4311 if !self.default_configuration.accept_inbound_channels {
4312 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4315 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4316 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.keys_manager,
4317 counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration,
4318 self.best_block.read().unwrap().height(), &self.logger, outbound_scid_alias)
4321 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4322 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4326 let mut channel_state_lock = self.channel_state.lock().unwrap();
4327 let channel_state = &mut *channel_state_lock;
4328 match channel_state.by_id.entry(channel.channel_id()) {
4329 hash_map::Entry::Occupied(_) => {
4330 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4331 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone()))
4333 hash_map::Entry::Vacant(entry) => {
4334 if !self.default_configuration.manually_accept_inbound_channels {
4335 if channel.get_channel_type().requires_zero_conf() {
4336 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4338 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4339 node_id: counterparty_node_id.clone(),
4340 msg: channel.accept_inbound_channel(0),
4343 let mut pending_events = self.pending_events.lock().unwrap();
4344 pending_events.push(
4345 events::Event::OpenChannelRequest {
4346 temporary_channel_id: msg.temporary_channel_id.clone(),
4347 counterparty_node_id: counterparty_node_id.clone(),
4348 funding_satoshis: msg.funding_satoshis,
4349 push_msat: msg.push_msat,
4350 channel_type: channel.get_channel_type().clone(),
4355 entry.insert(channel);
4361 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4362 let (value, output_script, user_id) = {
4363 let mut channel_lock = self.channel_state.lock().unwrap();
4364 let channel_state = &mut *channel_lock;
4365 match channel_state.by_id.entry(msg.temporary_channel_id) {
4366 hash_map::Entry::Occupied(mut chan) => {
4367 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4368 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
4370 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.peer_channel_config_limits, &their_features), channel_state, chan);
4371 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4373 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
4376 let mut pending_events = self.pending_events.lock().unwrap();
4377 pending_events.push(events::Event::FundingGenerationReady {
4378 temporary_channel_id: msg.temporary_channel_id,
4379 counterparty_node_id: *counterparty_node_id,
4380 channel_value_satoshis: value,
4382 user_channel_id: user_id,
4387 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4388 let ((funding_msg, monitor, mut channel_ready), mut chan) = {
4389 let best_block = *self.best_block.read().unwrap();
4390 let mut channel_lock = self.channel_state.lock().unwrap();
4391 let channel_state = &mut *channel_lock;
4392 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
4393 hash_map::Entry::Occupied(mut chan) => {
4394 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4395 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
4397 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
4399 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
4402 // Because we have exclusive ownership of the channel here we can release the channel_state
4403 // lock before watch_channel
4404 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
4406 ChannelMonitorUpdateErr::PermanentFailure => {
4407 // Note that we reply with the new channel_id in error messages if we gave up on the
4408 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4409 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4410 // any messages referencing a previously-closed channel anyway.
4411 // We do not do a force-close here as that would generate a monitor update for
4412 // a monitor that we didn't manage to store (and that we don't care about - we
4413 // don't respond with the funding_signed so the channel can never go on chain).
4414 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
4415 assert!(failed_htlcs.is_empty());
4416 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
4418 ChannelMonitorUpdateErr::TemporaryFailure => {
4419 // There's no problem signing a counterparty's funding transaction if our monitor
4420 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4421 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4422 // until we have persisted our monitor.
4423 chan.monitor_update_failed(false, false, channel_ready.is_some(), Vec::new(), Vec::new(), Vec::new());
4424 channel_ready = None; // Don't send the channel_ready now
4428 let mut channel_state_lock = self.channel_state.lock().unwrap();
4429 let channel_state = &mut *channel_state_lock;
4430 match channel_state.by_id.entry(funding_msg.channel_id) {
4431 hash_map::Entry::Occupied(_) => {
4432 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4434 hash_map::Entry::Vacant(e) => {
4435 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4436 node_id: counterparty_node_id.clone(),
4439 if let Some(msg) = channel_ready {
4440 send_channel_ready!(channel_state.short_to_id, channel_state.pending_msg_events, chan, msg);
4448 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4450 let best_block = *self.best_block.read().unwrap();
4451 let mut channel_lock = self.channel_state.lock().unwrap();
4452 let channel_state = &mut *channel_lock;
4453 match channel_state.by_id.entry(msg.channel_id) {
4454 hash_map::Entry::Occupied(mut chan) => {
4455 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4456 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4458 let (monitor, funding_tx, channel_ready) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
4459 Ok(update) => update,
4460 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
4462 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
4463 let mut res = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, channel_ready.is_some(), OPTIONALLY_RESEND_FUNDING_LOCKED);
4464 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4465 // We weren't able to watch the channel to begin with, so no updates should be made on
4466 // it. Previously, full_stack_target found an (unreachable) panic when the
4467 // monitor update contained within `shutdown_finish` was applied.
4468 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4469 shutdown_finish.0.take();
4474 if let Some(msg) = channel_ready {
4475 send_channel_ready!(channel_state.short_to_id, channel_state.pending_msg_events, chan.get(), msg);
4479 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4482 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
4483 self.tx_broadcaster.broadcast_transaction(&funding_tx);
4487 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4488 let mut channel_state_lock = self.channel_state.lock().unwrap();
4489 let channel_state = &mut *channel_state_lock;
4490 match channel_state.by_id.entry(msg.channel_id) {
4491 hash_map::Entry::Occupied(mut chan) => {
4492 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4493 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4495 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, self.get_our_node_id(),
4496 self.genesis_hash.clone(), &self.best_block.read().unwrap(), &self.logger), channel_state, chan);
4497 if let Some(announcement_sigs) = announcement_sigs_opt {
4498 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4499 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4500 node_id: counterparty_node_id.clone(),
4501 msg: announcement_sigs,
4503 } else if chan.get().is_usable() {
4504 // If we're sending an announcement_signatures, we'll send the (public)
4505 // channel_update after sending a channel_announcement when we receive our
4506 // counterparty's announcement_signatures. Thus, we only bother to send a
4507 // channel_update here if the channel is not public, i.e. we're not sending an
4508 // announcement_signatures.
4509 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4510 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4511 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4512 node_id: counterparty_node_id.clone(),
4519 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4523 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4524 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4525 let result: Result<(), _> = loop {
4526 let mut channel_state_lock = self.channel_state.lock().unwrap();
4527 let channel_state = &mut *channel_state_lock;
4529 match channel_state.by_id.entry(msg.channel_id.clone()) {
4530 hash_map::Entry::Occupied(mut chan_entry) => {
4531 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
4532 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4535 if !chan_entry.get().received_shutdown() {
4536 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4537 log_bytes!(msg.channel_id),
4538 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4541 let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
4542 dropped_htlcs = htlcs;
4544 // Update the monitor with the shutdown script if necessary.
4545 if let Some(monitor_update) = monitor_update {
4546 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
4547 let (result, is_permanent) =
4548 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE);
4550 remove_channel!(self, channel_state, chan_entry);
4556 if let Some(msg) = shutdown {
4557 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4558 node_id: *counterparty_node_id,
4565 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4568 for htlc_source in dropped_htlcs.drain(..) {
4569 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4572 let _ = handle_error!(self, result, *counterparty_node_id);
4576 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4577 let (tx, chan_option) = {
4578 let mut channel_state_lock = self.channel_state.lock().unwrap();
4579 let channel_state = &mut *channel_state_lock;
4580 match channel_state.by_id.entry(msg.channel_id.clone()) {
4581 hash_map::Entry::Occupied(mut chan_entry) => {
4582 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
4583 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4585 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
4586 if let Some(msg) = closing_signed {
4587 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4588 node_id: counterparty_node_id.clone(),
4593 // We're done with this channel, we've got a signed closing transaction and
4594 // will send the closing_signed back to the remote peer upon return. This
4595 // also implies there are no pending HTLCs left on the channel, so we can
4596 // fully delete it from tracking (the channel monitor is still around to
4597 // watch for old state broadcasts)!
4598 (tx, Some(remove_channel!(self, channel_state, chan_entry)))
4599 } else { (tx, None) }
4601 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4604 if let Some(broadcast_tx) = tx {
4605 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4606 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4608 if let Some(chan) = chan_option {
4609 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4610 let mut channel_state = self.channel_state.lock().unwrap();
4611 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4615 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4620 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4621 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4622 //determine the state of the payment based on our response/if we forward anything/the time
4623 //we take to respond. We should take care to avoid allowing such an attack.
4625 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4626 //us repeatedly garbled in different ways, and compare our error messages, which are
4627 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4628 //but we should prevent it anyway.
4630 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
4631 let channel_state = &mut *channel_state_lock;
4633 match channel_state.by_id.entry(msg.channel_id) {
4634 hash_map::Entry::Occupied(mut chan) => {
4635 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4636 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4639 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4640 // If the update_add is completely bogus, the call will Err and we will close,
4641 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4642 // want to reject the new HTLC and fail it backwards instead of forwarding.
4643 match pending_forward_info {
4644 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4645 let reason = if (error_code & 0x1000) != 0 {
4646 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4647 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, real_code, &error_data)
4649 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
4651 let msg = msgs::UpdateFailHTLC {
4652 channel_id: msg.channel_id,
4653 htlc_id: msg.htlc_id,
4656 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4658 _ => pending_forward_info
4661 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
4663 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4668 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4669 let mut channel_lock = self.channel_state.lock().unwrap();
4670 let (htlc_source, forwarded_htlc_value) = {
4671 let channel_state = &mut *channel_lock;
4672 match channel_state.by_id.entry(msg.channel_id) {
4673 hash_map::Entry::Occupied(mut chan) => {
4674 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4675 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4677 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
4679 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4682 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4686 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4687 let mut channel_lock = self.channel_state.lock().unwrap();
4688 let channel_state = &mut *channel_lock;
4689 match channel_state.by_id.entry(msg.channel_id) {
4690 hash_map::Entry::Occupied(mut chan) => {
4691 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4692 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4694 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
4696 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4701 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4702 let mut channel_lock = self.channel_state.lock().unwrap();
4703 let channel_state = &mut *channel_lock;
4704 match channel_state.by_id.entry(msg.channel_id) {
4705 hash_map::Entry::Occupied(mut chan) => {
4706 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4707 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4709 if (msg.failure_code & 0x8000) == 0 {
4710 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4711 try_chan_entry!(self, Err(chan_err), channel_state, chan);
4713 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
4716 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4720 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4721 let mut channel_state_lock = self.channel_state.lock().unwrap();
4722 let channel_state = &mut *channel_state_lock;
4723 match channel_state.by_id.entry(msg.channel_id) {
4724 hash_map::Entry::Occupied(mut chan) => {
4725 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4726 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4728 let (revoke_and_ack, commitment_signed, monitor_update) =
4729 match chan.get_mut().commitment_signed(&msg, &self.logger) {
4730 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
4731 Err((Some(update), e)) => {
4732 assert!(chan.get().is_awaiting_monitor_update());
4733 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
4734 try_chan_entry!(self, Err(e), channel_state, chan);
4739 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
4740 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
4742 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4743 node_id: counterparty_node_id.clone(),
4744 msg: revoke_and_ack,
4746 if let Some(msg) = commitment_signed {
4747 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4748 node_id: counterparty_node_id.clone(),
4749 updates: msgs::CommitmentUpdate {
4750 update_add_htlcs: Vec::new(),
4751 update_fulfill_htlcs: Vec::new(),
4752 update_fail_htlcs: Vec::new(),
4753 update_fail_malformed_htlcs: Vec::new(),
4755 commitment_signed: msg,
4761 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4766 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
4767 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
4768 let mut forward_event = None;
4769 if !pending_forwards.is_empty() {
4770 let mut channel_state = self.channel_state.lock().unwrap();
4771 if channel_state.forward_htlcs.is_empty() {
4772 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
4774 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4775 match channel_state.forward_htlcs.entry(match forward_info.routing {
4776 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4777 PendingHTLCRouting::Receive { .. } => 0,
4778 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4780 hash_map::Entry::Occupied(mut entry) => {
4781 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
4782 prev_htlc_id, forward_info });
4784 hash_map::Entry::Vacant(entry) => {
4785 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
4786 prev_htlc_id, forward_info }));
4791 match forward_event {
4793 let mut pending_events = self.pending_events.lock().unwrap();
4794 pending_events.push(events::Event::PendingHTLCsForwardable {
4795 time_forwardable: time
4803 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4804 let mut htlcs_to_fail = Vec::new();
4806 let mut channel_state_lock = self.channel_state.lock().unwrap();
4807 let channel_state = &mut *channel_state_lock;
4808 match channel_state.by_id.entry(msg.channel_id) {
4809 hash_map::Entry::Occupied(mut chan) => {
4810 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4811 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4813 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
4814 let raa_updates = break_chan_entry!(self,
4815 chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
4816 htlcs_to_fail = raa_updates.holding_cell_failed_htlcs;
4817 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), raa_updates.monitor_update) {
4818 if was_frozen_for_monitor {
4819 assert!(raa_updates.commitment_update.is_none());
4820 assert!(raa_updates.accepted_htlcs.is_empty());
4821 assert!(raa_updates.failed_htlcs.is_empty());
4822 assert!(raa_updates.finalized_claimed_htlcs.is_empty());
4823 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
4825 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan,
4826 RAACommitmentOrder::CommitmentFirst, false,
4827 raa_updates.commitment_update.is_some(), false,
4828 raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
4829 raa_updates.finalized_claimed_htlcs) {
4831 } else { unreachable!(); }
4834 if let Some(updates) = raa_updates.commitment_update {
4835 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4836 node_id: counterparty_node_id.clone(),
4840 break Ok((raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
4841 raa_updates.finalized_claimed_htlcs,
4842 chan.get().get_short_channel_id()
4843 .unwrap_or(chan.get().outbound_scid_alias()),
4844 chan.get().get_funding_txo().unwrap()))
4846 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4849 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
4851 Ok((pending_forwards, mut pending_failures, finalized_claim_htlcs,
4852 short_channel_id, channel_outpoint)) =>
4854 for failure in pending_failures.drain(..) {
4855 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
4857 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
4858 self.finalize_claims(finalized_claim_htlcs);
4865 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
4866 let mut channel_lock = self.channel_state.lock().unwrap();
4867 let channel_state = &mut *channel_lock;
4868 match channel_state.by_id.entry(msg.channel_id) {
4869 hash_map::Entry::Occupied(mut chan) => {
4870 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4871 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4873 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
4875 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4880 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
4881 let mut channel_state_lock = self.channel_state.lock().unwrap();
4882 let channel_state = &mut *channel_state_lock;
4884 match channel_state.by_id.entry(msg.channel_id) {
4885 hash_map::Entry::Occupied(mut chan) => {
4886 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4887 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4889 if !chan.get().is_usable() {
4890 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
4893 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
4894 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
4895 self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height(), msg), channel_state, chan),
4896 // Note that announcement_signatures fails if the channel cannot be announced,
4897 // so get_channel_update_for_broadcast will never fail by the time we get here.
4898 update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
4901 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4906 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
4907 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
4908 let mut channel_state_lock = self.channel_state.lock().unwrap();
4909 let channel_state = &mut *channel_state_lock;
4910 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
4911 Some(chan_id) => chan_id.clone(),
4913 // It's not a local channel
4914 return Ok(NotifyOption::SkipPersist)
4917 match channel_state.by_id.entry(chan_id) {
4918 hash_map::Entry::Occupied(mut chan) => {
4919 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4920 if chan.get().should_announce() {
4921 // If the announcement is about a channel of ours which is public, some
4922 // other peer may simply be forwarding all its gossip to us. Don't provide
4923 // a scary-looking error message and return Ok instead.
4924 return Ok(NotifyOption::SkipPersist);
4926 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
4928 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
4929 let msg_from_node_one = msg.contents.flags & 1 == 0;
4930 if were_node_one == msg_from_node_one {
4931 return Ok(NotifyOption::SkipPersist);
4933 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
4936 hash_map::Entry::Vacant(_) => unreachable!()
4938 Ok(NotifyOption::DoPersist)
4941 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
4942 let chan_restoration_res;
4943 let (htlcs_failed_forward, need_lnd_workaround) = {
4944 let mut channel_state_lock = self.channel_state.lock().unwrap();
4945 let channel_state = &mut *channel_state_lock;
4947 match channel_state.by_id.entry(msg.channel_id) {
4948 hash_map::Entry::Occupied(mut chan) => {
4949 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4950 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4952 // Currently, we expect all holding cell update_adds to be dropped on peer
4953 // disconnect, so Channel's reestablish will never hand us any holding cell
4954 // freed HTLCs to fail backwards. If in the future we no longer drop pending
4955 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
4956 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
4957 msg, &self.logger, self.our_network_pubkey.clone(), self.genesis_hash,
4958 &*self.best_block.read().unwrap()), channel_state, chan);
4959 let mut channel_update = None;
4960 if let Some(msg) = responses.shutdown_msg {
4961 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4962 node_id: counterparty_node_id.clone(),
4965 } else if chan.get().is_usable() {
4966 // If the channel is in a usable state (ie the channel is not being shut
4967 // down), send a unicast channel_update to our counterparty to make sure
4968 // they have the latest channel parameters.
4969 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4970 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
4971 node_id: chan.get().get_counterparty_node_id(),
4976 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
4977 chan_restoration_res = handle_chan_restoration_locked!(
4978 self, channel_state_lock, channel_state, chan, responses.raa, responses.commitment_update, responses.order,
4979 responses.mon_update, Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
4980 if let Some(upd) = channel_update {
4981 channel_state.pending_msg_events.push(upd);
4983 (responses.holding_cell_failed_htlcs, need_lnd_workaround)
4985 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4988 post_handle_chan_restoration!(self, chan_restoration_res);
4989 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id, counterparty_node_id);
4991 if let Some(channel_ready_msg) = need_lnd_workaround {
4992 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
4997 /// Process pending events from the `chain::Watch`, returning whether any events were processed.
4998 fn process_pending_monitor_events(&self) -> bool {
4999 let mut failed_channels = Vec::new();
5000 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5001 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5002 for (funding_outpoint, mut monitor_events) in pending_monitor_events.drain(..) {
5003 for monitor_event in monitor_events.drain(..) {
5004 match monitor_event {
5005 MonitorEvent::HTLCEvent(htlc_update) => {
5006 if let Some(preimage) = htlc_update.payment_preimage {
5007 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5008 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5010 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5011 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
5014 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5015 MonitorEvent::UpdateFailed(funding_outpoint) => {
5016 let mut channel_lock = self.channel_state.lock().unwrap();
5017 let channel_state = &mut *channel_lock;
5018 let by_id = &mut channel_state.by_id;
5019 let pending_msg_events = &mut channel_state.pending_msg_events;
5020 if let hash_map::Entry::Occupied(chan_entry) = by_id.entry(funding_outpoint.to_channel_id()) {
5021 let mut chan = remove_channel!(self, channel_state, chan_entry);
5022 failed_channels.push(chan.force_shutdown(false));
5023 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5024 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5028 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5029 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5031 ClosureReason::CommitmentTxConfirmed
5033 self.issue_channel_close_events(&chan, reason);
5034 pending_msg_events.push(events::MessageSendEvent::HandleError {
5035 node_id: chan.get_counterparty_node_id(),
5036 action: msgs::ErrorAction::SendErrorMessage {
5037 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5042 MonitorEvent::UpdateCompleted { funding_txo, monitor_update_id } => {
5043 self.channel_monitor_updated(&funding_txo, monitor_update_id);
5049 for failure in failed_channels.drain(..) {
5050 self.finish_force_close_channel(failure);
5053 has_pending_monitor_events
5056 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5057 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5058 /// update events as a separate process method here.
5060 pub fn process_monitor_events(&self) {
5061 self.process_pending_monitor_events();
5064 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5065 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5066 /// update was applied.
5068 /// This should only apply to HTLCs which were added to the holding cell because we were
5069 /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
5070 /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
5071 /// code to inform them of a channel monitor update.
5072 fn check_free_holding_cells(&self) -> bool {
5073 let mut has_monitor_update = false;
5074 let mut failed_htlcs = Vec::new();
5075 let mut handle_errors = Vec::new();
5077 let mut channel_state_lock = self.channel_state.lock().unwrap();
5078 let channel_state = &mut *channel_state_lock;
5079 let by_id = &mut channel_state.by_id;
5080 let short_to_id = &mut channel_state.short_to_id;
5081 let pending_msg_events = &mut channel_state.pending_msg_events;
5083 by_id.retain(|channel_id, chan| {
5084 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
5085 Ok((commitment_opt, holding_cell_failed_htlcs)) => {
5086 if !holding_cell_failed_htlcs.is_empty() {
5088 holding_cell_failed_htlcs,
5090 chan.get_counterparty_node_id()
5093 if let Some((commitment_update, monitor_update)) = commitment_opt {
5094 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
5095 has_monitor_update = true;
5096 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, channel_id, COMMITMENT_UPDATE_ONLY);
5097 handle_errors.push((chan.get_counterparty_node_id(), res));
5098 if close_channel { return false; }
5100 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5101 node_id: chan.get_counterparty_node_id(),
5102 updates: commitment_update,
5109 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
5110 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5111 // ChannelClosed event is generated by handle_error for us
5118 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5119 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5120 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5123 for (counterparty_node_id, err) in handle_errors.drain(..) {
5124 let _ = handle_error!(self, err, counterparty_node_id);
5130 /// Check whether any channels have finished removing all pending updates after a shutdown
5131 /// exchange and can now send a closing_signed.
5132 /// Returns whether any closing_signed messages were generated.
5133 fn maybe_generate_initial_closing_signed(&self) -> bool {
5134 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5135 let mut has_update = false;
5137 let mut channel_state_lock = self.channel_state.lock().unwrap();
5138 let channel_state = &mut *channel_state_lock;
5139 let by_id = &mut channel_state.by_id;
5140 let short_to_id = &mut channel_state.short_to_id;
5141 let pending_msg_events = &mut channel_state.pending_msg_events;
5143 by_id.retain(|channel_id, chan| {
5144 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5145 Ok((msg_opt, tx_opt)) => {
5146 if let Some(msg) = msg_opt {
5148 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5149 node_id: chan.get_counterparty_node_id(), msg,
5152 if let Some(tx) = tx_opt {
5153 // We're done with this channel. We got a closing_signed and sent back
5154 // a closing_signed with a closing transaction to broadcast.
5155 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5156 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5161 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5163 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5164 self.tx_broadcaster.broadcast_transaction(&tx);
5165 update_maps_on_chan_removal!(self, short_to_id, chan);
5171 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
5172 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5179 for (counterparty_node_id, err) in handle_errors.drain(..) {
5180 let _ = handle_error!(self, err, counterparty_node_id);
5186 /// Handle a list of channel failures during a block_connected or block_disconnected call,
5187 /// pushing the channel monitor update (if any) to the background events queue and removing the
5189 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5190 for mut failure in failed_channels.drain(..) {
5191 // Either a commitment transactions has been confirmed on-chain or
5192 // Channel::block_disconnected detected that the funding transaction has been
5193 // reorganized out of the main chain.
5194 // We cannot broadcast our latest local state via monitor update (as
5195 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5196 // so we track the update internally and handle it when the user next calls
5197 // timer_tick_occurred, guaranteeing we're running normally.
5198 if let Some((funding_txo, update)) = failure.0.take() {
5199 assert_eq!(update.updates.len(), 1);
5200 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5201 assert!(should_broadcast);
5202 } else { unreachable!(); }
5203 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5205 self.finish_force_close_channel(failure);
5209 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5210 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5212 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5213 return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5216 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
5218 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5219 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5220 match payment_secrets.entry(payment_hash) {
5221 hash_map::Entry::Vacant(e) => {
5222 e.insert(PendingInboundPayment {
5223 payment_secret, min_value_msat, payment_preimage,
5224 user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5225 // We assume that highest_seen_timestamp is pretty close to the current time -
5226 // it's updated when we receive a new block with the maximum time we've seen in
5227 // a header. It should never be more than two hours in the future.
5228 // Thus, we add two hours here as a buffer to ensure we absolutely
5229 // never fail a payment too early.
5230 // Note that we assume that received blocks have reasonably up-to-date
5232 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5235 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5240 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5243 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5244 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5246 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
5247 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
5248 /// passed directly to [`claim_funds`].
5250 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5252 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5253 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5257 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5258 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5260 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5262 /// [`claim_funds`]: Self::claim_funds
5263 /// [`PaymentReceived`]: events::Event::PaymentReceived
5264 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
5265 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5266 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), ()> {
5267 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs, &self.keys_manager, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
5270 /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5271 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5273 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5276 /// This method is deprecated and will be removed soon.
5278 /// [`create_inbound_payment`]: Self::create_inbound_payment
5280 pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5281 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
5282 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5283 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5284 Ok((payment_hash, payment_secret))
5287 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5288 /// stored external to LDK.
5290 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
5291 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5292 /// the `min_value_msat` provided here, if one is provided.
5294 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5295 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5298 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5299 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5300 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
5301 /// sender "proof-of-payment" unless they have paid the required amount.
5303 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5304 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5305 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5306 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5307 /// invoices when no timeout is set.
5309 /// Note that we use block header time to time-out pending inbound payments (with some margin
5310 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5311 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
5312 /// If you need exact expiry semantics, you should enforce them upon receipt of
5313 /// [`PaymentReceived`].
5315 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
5316 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
5318 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5319 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5323 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5324 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5326 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5328 /// [`create_inbound_payment`]: Self::create_inbound_payment
5329 /// [`PaymentReceived`]: events::Event::PaymentReceived
5330 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, ()> {
5331 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash, invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
5334 /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5335 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5337 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5340 /// This method is deprecated and will be removed soon.
5342 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5344 pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5345 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5348 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5349 /// previously returned from [`create_inbound_payment`].
5351 /// [`create_inbound_payment`]: Self::create_inbound_payment
5352 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5353 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5356 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5357 /// are used when constructing the phantom invoice's route hints.
5359 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5360 pub fn get_phantom_scid(&self) -> u64 {
5361 let mut channel_state = self.channel_state.lock().unwrap();
5362 let best_block = self.best_block.read().unwrap();
5364 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block.height(), &self.genesis_hash, &self.fake_scid_rand_bytes, &self.keys_manager);
5365 // Ensure the generated scid doesn't conflict with a real channel.
5366 match channel_state.short_to_id.entry(scid_candidate) {
5367 hash_map::Entry::Occupied(_) => continue,
5368 hash_map::Entry::Vacant(_) => return scid_candidate
5373 /// Gets route hints for use in receiving [phantom node payments].
5375 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5376 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5378 channels: self.list_usable_channels(),
5379 phantom_scid: self.get_phantom_scid(),
5380 real_node_pubkey: self.get_our_node_id(),
5384 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5385 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5386 let events = core::cell::RefCell::new(Vec::new());
5387 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
5388 self.process_pending_events(&event_handler);
5393 pub fn has_pending_payments(&self) -> bool {
5394 !self.pending_outbound_payments.lock().unwrap().is_empty()
5398 pub fn clear_pending_payments(&self) {
5399 self.pending_outbound_payments.lock().unwrap().clear()
5403 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
5404 where M::Target: chain::Watch<Signer>,
5405 T::Target: BroadcasterInterface,
5406 K::Target: KeysInterface<Signer = Signer>,
5407 F::Target: FeeEstimator,
5410 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5411 let events = RefCell::new(Vec::new());
5412 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5413 let mut result = NotifyOption::SkipPersist;
5415 // TODO: This behavior should be documented. It's unintuitive that we query
5416 // ChannelMonitors when clearing other events.
5417 if self.process_pending_monitor_events() {
5418 result = NotifyOption::DoPersist;
5421 if self.check_free_holding_cells() {
5422 result = NotifyOption::DoPersist;
5424 if self.maybe_generate_initial_closing_signed() {
5425 result = NotifyOption::DoPersist;
5428 let mut pending_events = Vec::new();
5429 let mut channel_state = self.channel_state.lock().unwrap();
5430 mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
5432 if !pending_events.is_empty() {
5433 events.replace(pending_events);
5442 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
5444 M::Target: chain::Watch<Signer>,
5445 T::Target: BroadcasterInterface,
5446 K::Target: KeysInterface<Signer = Signer>,
5447 F::Target: FeeEstimator,
5450 /// Processes events that must be periodically handled.
5452 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5453 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5455 /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
5456 /// when processed, an [`EventHandler`] must be able to handle previously seen events when
5457 /// restarting from an old state.
5458 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5459 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5460 let mut result = NotifyOption::SkipPersist;
5462 // TODO: This behavior should be documented. It's unintuitive that we query
5463 // ChannelMonitors when clearing other events.
5464 if self.process_pending_monitor_events() {
5465 result = NotifyOption::DoPersist;
5468 let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5469 if !pending_events.is_empty() {
5470 result = NotifyOption::DoPersist;
5473 for event in pending_events.drain(..) {
5474 handler.handle_event(&event);
5482 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
5484 M::Target: chain::Watch<Signer>,
5485 T::Target: BroadcasterInterface,
5486 K::Target: KeysInterface<Signer = Signer>,
5487 F::Target: FeeEstimator,
5490 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5492 let best_block = self.best_block.read().unwrap();
5493 assert_eq!(best_block.block_hash(), header.prev_blockhash,
5494 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5495 assert_eq!(best_block.height(), height - 1,
5496 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5499 self.transactions_confirmed(header, txdata, height);
5500 self.best_block_updated(header, height);
5503 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5504 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5505 let new_height = height - 1;
5507 let mut best_block = self.best_block.write().unwrap();
5508 assert_eq!(best_block.block_hash(), header.block_hash(),
5509 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5510 assert_eq!(best_block.height(), height,
5511 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5512 *best_block = BestBlock::new(header.prev_blockhash, new_height)
5515 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5519 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
5521 M::Target: chain::Watch<Signer>,
5522 T::Target: BroadcasterInterface,
5523 K::Target: KeysInterface<Signer = Signer>,
5524 F::Target: FeeEstimator,
5527 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5528 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5529 // during initialization prior to the chain_monitor being fully configured in some cases.
5530 // See the docs for `ChannelManagerReadArgs` for more.
5532 let block_hash = header.block_hash();
5533 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5535 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5536 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger)
5537 .map(|(a, b)| (a, Vec::new(), b)));
5539 let last_best_block_height = self.best_block.read().unwrap().height();
5540 if height < last_best_block_height {
5541 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5542 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5546 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5547 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5548 // during initialization prior to the chain_monitor being fully configured in some cases.
5549 // See the docs for `ChannelManagerReadArgs` for more.
5551 let block_hash = header.block_hash();
5552 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5554 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5556 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5558 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5560 macro_rules! max_time {
5561 ($timestamp: expr) => {
5563 // Update $timestamp to be the max of its current value and the block
5564 // timestamp. This should keep us close to the current time without relying on
5565 // having an explicit local time source.
5566 // Just in case we end up in a race, we loop until we either successfully
5567 // update $timestamp or decide we don't need to.
5568 let old_serial = $timestamp.load(Ordering::Acquire);
5569 if old_serial >= header.time as usize { break; }
5570 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5576 max_time!(self.last_node_announcement_serial);
5577 max_time!(self.highest_seen_timestamp);
5578 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5579 payment_secrets.retain(|_, inbound_payment| {
5580 inbound_payment.expiry_time > header.time as u64
5583 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
5584 let mut pending_events = self.pending_events.lock().unwrap();
5585 outbounds.retain(|payment_id, payment| {
5586 if payment.remaining_parts() != 0 { return true }
5587 if let PendingOutboundPayment::Retryable { starting_block_height, payment_hash, .. } = payment {
5588 if *starting_block_height + PAYMENT_EXPIRY_BLOCKS <= height {
5589 log_info!(self.logger, "Timing out payment with id {} and hash {}", log_bytes!(payment_id.0), log_bytes!(payment_hash.0));
5590 pending_events.push(events::Event::PaymentFailed {
5591 payment_id: *payment_id, payment_hash: *payment_hash,
5599 fn get_relevant_txids(&self) -> Vec<Txid> {
5600 let channel_state = self.channel_state.lock().unwrap();
5601 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
5602 for chan in channel_state.by_id.values() {
5603 if let Some(funding_txo) = chan.get_funding_txo() {
5604 res.push(funding_txo.txid);
5610 fn transaction_unconfirmed(&self, txid: &Txid) {
5611 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5612 self.do_chain_event(None, |channel| {
5613 if let Some(funding_txo) = channel.get_funding_txo() {
5614 if funding_txo.txid == *txid {
5615 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5616 } else { Ok((None, Vec::new(), None)) }
5617 } else { Ok((None, Vec::new(), None)) }
5622 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
5624 M::Target: chain::Watch<Signer>,
5625 T::Target: BroadcasterInterface,
5626 K::Target: KeysInterface<Signer = Signer>,
5627 F::Target: FeeEstimator,
5630 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5631 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5633 fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5634 (&self, height_opt: Option<u32>, f: FN) {
5635 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5636 // during initialization prior to the chain_monitor being fully configured in some cases.
5637 // See the docs for `ChannelManagerReadArgs` for more.
5639 let mut failed_channels = Vec::new();
5640 let mut timed_out_htlcs = Vec::new();
5642 let mut channel_lock = self.channel_state.lock().unwrap();
5643 let channel_state = &mut *channel_lock;
5644 let short_to_id = &mut channel_state.short_to_id;
5645 let pending_msg_events = &mut channel_state.pending_msg_events;
5646 channel_state.by_id.retain(|_, channel| {
5647 let res = f(channel);
5648 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5649 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5650 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5651 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
5655 if let Some(channel_ready) = channel_ready_opt {
5656 send_channel_ready!(short_to_id, pending_msg_events, channel, channel_ready);
5657 if channel.is_usable() {
5658 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5659 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5660 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5661 node_id: channel.get_counterparty_node_id(),
5666 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5669 if let Some(announcement_sigs) = announcement_sigs {
5670 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5671 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5672 node_id: channel.get_counterparty_node_id(),
5673 msg: announcement_sigs,
5675 if let Some(height) = height_opt {
5676 if let Some(announcement) = channel.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash, height) {
5677 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5679 // Note that announcement_signatures fails if the channel cannot be announced,
5680 // so get_channel_update_for_broadcast will never fail by the time we get here.
5681 update_msg: self.get_channel_update_for_broadcast(channel).unwrap(),
5686 if channel.is_our_channel_ready() {
5687 if let Some(real_scid) = channel.get_short_channel_id() {
5688 // If we sent a 0conf channel_ready, and now have an SCID, we add it
5689 // to the short_to_id map here. Note that we check whether we can relay
5690 // using the real SCID at relay-time (i.e. enforce option_scid_alias
5691 // then), and if the funding tx is ever un-confirmed we force-close the
5692 // channel, ensuring short_to_id is always consistent.
5693 let scid_insert = short_to_id.insert(real_scid, channel.channel_id());
5694 assert!(scid_insert.is_none() || scid_insert.unwrap() == channel.channel_id(),
5695 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
5696 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
5699 } else if let Err(reason) = res {
5700 update_maps_on_chan_removal!(self, short_to_id, channel);
5701 // It looks like our counterparty went on-chain or funding transaction was
5702 // reorged out of the main chain. Close the channel.
5703 failed_channels.push(channel.force_shutdown(true));
5704 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
5705 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5709 let reason_message = format!("{}", reason);
5710 self.issue_channel_close_events(channel, reason);
5711 pending_msg_events.push(events::MessageSendEvent::HandleError {
5712 node_id: channel.get_counterparty_node_id(),
5713 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
5714 channel_id: channel.channel_id(),
5715 data: reason_message,
5723 if let Some(height) = height_opt {
5724 channel_state.claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
5725 htlcs.retain(|htlc| {
5726 // If height is approaching the number of blocks we think it takes us to get
5727 // our commitment transaction confirmed before the HTLC expires, plus the
5728 // number of blocks we generally consider it to take to do a commitment update,
5729 // just give up on it and fail the HTLC.
5730 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
5731 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
5732 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
5733 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
5734 failure_code: 0x4000 | 15,
5735 data: htlc_msat_height_data
5740 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
5745 self.handle_init_event_channel_failures(failed_channels);
5747 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
5748 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
5752 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
5753 /// indicating whether persistence is necessary. Only one listener on
5754 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
5757 /// Note that this method is not available with the `no-std` feature.
5758 #[cfg(any(test, feature = "std"))]
5759 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
5760 self.persistence_notifier.wait_timeout(max_wait)
5763 /// Blocks until ChannelManager needs to be persisted. Only one listener on
5764 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
5766 pub fn await_persistable_update(&self) {
5767 self.persistence_notifier.wait()
5770 #[cfg(any(test, feature = "_test_utils"))]
5771 pub fn get_persistence_condvar_value(&self) -> bool {
5772 let mutcond = &self.persistence_notifier.persistence_lock;
5773 let &(ref mtx, _) = mutcond;
5774 let guard = mtx.lock().unwrap();
5778 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
5779 /// [`chain::Confirm`] interfaces.
5780 pub fn current_best_block(&self) -> BestBlock {
5781 self.best_block.read().unwrap().clone()
5785 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
5786 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
5787 where M::Target: chain::Watch<Signer>,
5788 T::Target: BroadcasterInterface,
5789 K::Target: KeysInterface<Signer = Signer>,
5790 F::Target: FeeEstimator,
5793 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
5794 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5795 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
5798 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
5799 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5800 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
5803 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
5804 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5805 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
5808 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
5809 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5810 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
5813 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
5814 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5815 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
5818 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
5819 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5820 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
5823 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
5824 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5825 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
5828 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
5829 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5830 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
5833 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
5834 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5835 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
5838 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
5839 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5840 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
5843 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
5844 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5845 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
5848 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
5849 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5850 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
5853 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
5854 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5855 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
5858 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
5859 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5860 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
5863 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
5864 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5865 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
5868 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
5869 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5870 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
5873 NotifyOption::SkipPersist
5878 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
5879 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5880 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
5883 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
5884 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5885 let mut failed_channels = Vec::new();
5886 let mut no_channels_remain = true;
5888 let mut channel_state_lock = self.channel_state.lock().unwrap();
5889 let channel_state = &mut *channel_state_lock;
5890 let pending_msg_events = &mut channel_state.pending_msg_events;
5891 let short_to_id = &mut channel_state.short_to_id;
5892 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates. We believe we {} make future connections to this peer.",
5893 log_pubkey!(counterparty_node_id), if no_connection_possible { "cannot" } else { "can" });
5894 channel_state.by_id.retain(|_, chan| {
5895 if chan.get_counterparty_node_id() == *counterparty_node_id {
5896 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
5897 if chan.is_shutdown() {
5898 update_maps_on_chan_removal!(self, short_to_id, chan);
5899 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
5902 no_channels_remain = false;
5907 pending_msg_events.retain(|msg| {
5909 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
5910 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
5911 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
5912 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
5913 &events::MessageSendEvent::SendChannelReady { ref node_id, .. } => node_id != counterparty_node_id,
5914 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
5915 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
5916 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
5917 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
5918 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
5919 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
5920 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
5921 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
5922 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
5923 &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
5924 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
5925 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
5926 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
5927 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
5928 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
5932 if no_channels_remain {
5933 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
5936 for failure in failed_channels.drain(..) {
5937 self.finish_force_close_channel(failure);
5941 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
5942 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
5944 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5947 let mut peer_state_lock = self.per_peer_state.write().unwrap();
5948 match peer_state_lock.entry(counterparty_node_id.clone()) {
5949 hash_map::Entry::Vacant(e) => {
5950 e.insert(Mutex::new(PeerState {
5951 latest_features: init_msg.features.clone(),
5954 hash_map::Entry::Occupied(e) => {
5955 e.get().lock().unwrap().latest_features = init_msg.features.clone();
5960 let mut channel_state_lock = self.channel_state.lock().unwrap();
5961 let channel_state = &mut *channel_state_lock;
5962 let pending_msg_events = &mut channel_state.pending_msg_events;
5963 channel_state.by_id.retain(|_, chan| {
5964 if chan.get_counterparty_node_id() == *counterparty_node_id {
5965 if !chan.have_received_message() {
5966 // If we created this (outbound) channel while we were disconnected from the
5967 // peer we probably failed to send the open_channel message, which is now
5968 // lost. We can't have had anything pending related to this channel, so we just
5972 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
5973 node_id: chan.get_counterparty_node_id(),
5974 msg: chan.get_channel_reestablish(&self.logger),
5980 //TODO: Also re-broadcast announcement_signatures
5983 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
5984 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5986 if msg.channel_id == [0; 32] {
5987 for chan in self.list_channels() {
5988 if chan.counterparty.node_id == *counterparty_node_id {
5989 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
5990 let _ = self.force_close_channel_with_peer(&chan.channel_id, counterparty_node_id, Some(&msg.data));
5995 // First check if we can advance the channel type and try again.
5996 let mut channel_state = self.channel_state.lock().unwrap();
5997 if let Some(chan) = channel_state.by_id.get_mut(&msg.channel_id) {
5998 if chan.get_counterparty_node_id() != *counterparty_node_id {
6001 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6002 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6003 node_id: *counterparty_node_id,
6011 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6012 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data));
6017 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
6018 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
6019 struct PersistenceNotifier {
6020 /// Users won't access the persistence_lock directly, but rather wait on its bool using
6021 /// `wait_timeout` and `wait`.
6022 persistence_lock: (Mutex<bool>, Condvar),
6025 impl PersistenceNotifier {
6028 persistence_lock: (Mutex::new(false), Condvar::new()),
6034 let &(ref mtx, ref cvar) = &self.persistence_lock;
6035 let mut guard = mtx.lock().unwrap();
6040 guard = cvar.wait(guard).unwrap();
6041 let result = *guard;
6049 #[cfg(any(test, feature = "std"))]
6050 fn wait_timeout(&self, max_wait: Duration) -> bool {
6051 let current_time = Instant::now();
6053 let &(ref mtx, ref cvar) = &self.persistence_lock;
6054 let mut guard = mtx.lock().unwrap();
6059 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
6060 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
6061 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
6062 // time. Note that this logic can be highly simplified through the use of
6063 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
6065 let elapsed = current_time.elapsed();
6066 let result = *guard;
6067 if result || elapsed >= max_wait {
6071 match max_wait.checked_sub(elapsed) {
6072 None => return result,
6078 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
6080 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
6081 let mut persistence_lock = persist_mtx.lock().unwrap();
6082 *persistence_lock = true;
6083 mem::drop(persistence_lock);
6088 const SERIALIZATION_VERSION: u8 = 1;
6089 const MIN_SERIALIZATION_VERSION: u8 = 1;
6091 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6092 (2, fee_base_msat, required),
6093 (4, fee_proportional_millionths, required),
6094 (6, cltv_expiry_delta, required),
6097 impl_writeable_tlv_based!(ChannelCounterparty, {
6098 (2, node_id, required),
6099 (4, features, required),
6100 (6, unspendable_punishment_reserve, required),
6101 (8, forwarding_info, option),
6102 (9, outbound_htlc_minimum_msat, option),
6103 (11, outbound_htlc_maximum_msat, option),
6106 impl_writeable_tlv_based!(ChannelDetails, {
6107 (1, inbound_scid_alias, option),
6108 (2, channel_id, required),
6109 (3, channel_type, option),
6110 (4, counterparty, required),
6111 (5, outbound_scid_alias, option),
6112 (6, funding_txo, option),
6113 (8, short_channel_id, option),
6114 (10, channel_value_satoshis, required),
6115 (12, unspendable_punishment_reserve, option),
6116 (14, user_channel_id, required),
6117 (16, balance_msat, required),
6118 (18, outbound_capacity_msat, required),
6119 // Note that by the time we get past the required read above, outbound_capacity_msat will be
6120 // filled in, so we can safely unwrap it here.
6121 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap())),
6122 (20, inbound_capacity_msat, required),
6123 (22, confirmations_required, option),
6124 (24, force_close_spend_delay, option),
6125 (26, is_outbound, required),
6126 (28, is_channel_ready, required),
6127 (30, is_usable, required),
6128 (32, is_public, required),
6129 (33, inbound_htlc_minimum_msat, option),
6130 (35, inbound_htlc_maximum_msat, option),
6133 impl_writeable_tlv_based!(PhantomRouteHints, {
6134 (2, channels, vec_type),
6135 (4, phantom_scid, required),
6136 (6, real_node_pubkey, required),
6139 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6141 (0, onion_packet, required),
6142 (2, short_channel_id, required),
6145 (0, payment_data, required),
6146 (1, phantom_shared_secret, option),
6147 (2, incoming_cltv_expiry, required),
6149 (2, ReceiveKeysend) => {
6150 (0, payment_preimage, required),
6151 (2, incoming_cltv_expiry, required),
6155 impl_writeable_tlv_based!(PendingHTLCInfo, {
6156 (0, routing, required),
6157 (2, incoming_shared_secret, required),
6158 (4, payment_hash, required),
6159 (6, amt_to_forward, required),
6160 (8, outgoing_cltv_value, required)
6164 impl Writeable for HTLCFailureMsg {
6165 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6167 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6169 channel_id.write(writer)?;
6170 htlc_id.write(writer)?;
6171 reason.write(writer)?;
6173 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6174 channel_id, htlc_id, sha256_of_onion, failure_code
6177 channel_id.write(writer)?;
6178 htlc_id.write(writer)?;
6179 sha256_of_onion.write(writer)?;
6180 failure_code.write(writer)?;
6187 impl Readable for HTLCFailureMsg {
6188 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6189 let id: u8 = Readable::read(reader)?;
6192 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6193 channel_id: Readable::read(reader)?,
6194 htlc_id: Readable::read(reader)?,
6195 reason: Readable::read(reader)?,
6199 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6200 channel_id: Readable::read(reader)?,
6201 htlc_id: Readable::read(reader)?,
6202 sha256_of_onion: Readable::read(reader)?,
6203 failure_code: Readable::read(reader)?,
6206 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6207 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6208 // messages contained in the variants.
6209 // In version 0.0.101, support for reading the variants with these types was added, and
6210 // we should migrate to writing these variants when UpdateFailHTLC or
6211 // UpdateFailMalformedHTLC get TLV fields.
6213 let length: BigSize = Readable::read(reader)?;
6214 let mut s = FixedLengthReader::new(reader, length.0);
6215 let res = Readable::read(&mut s)?;
6216 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6217 Ok(HTLCFailureMsg::Relay(res))
6220 let length: BigSize = Readable::read(reader)?;
6221 let mut s = FixedLengthReader::new(reader, length.0);
6222 let res = Readable::read(&mut s)?;
6223 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6224 Ok(HTLCFailureMsg::Malformed(res))
6226 _ => Err(DecodeError::UnknownRequiredFeature),
6231 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6236 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6237 (0, short_channel_id, required),
6238 (1, phantom_shared_secret, option),
6239 (2, outpoint, required),
6240 (4, htlc_id, required),
6241 (6, incoming_packet_shared_secret, required)
6244 impl Writeable for ClaimableHTLC {
6245 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6246 let (payment_data, keysend_preimage) = match &self.onion_payload {
6247 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6248 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6250 write_tlv_fields!(writer, {
6251 (0, self.prev_hop, required),
6252 (1, self.total_msat, required),
6253 (2, self.value, required),
6254 (4, payment_data, option),
6255 (6, self.cltv_expiry, required),
6256 (8, keysend_preimage, option),
6262 impl Readable for ClaimableHTLC {
6263 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6264 let mut prev_hop = ::util::ser::OptionDeserWrapper(None);
6266 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6267 let mut cltv_expiry = 0;
6268 let mut total_msat = None;
6269 let mut keysend_preimage: Option<PaymentPreimage> = None;
6270 read_tlv_fields!(reader, {
6271 (0, prev_hop, required),
6272 (1, total_msat, option),
6273 (2, value, required),
6274 (4, payment_data, option),
6275 (6, cltv_expiry, required),
6276 (8, keysend_preimage, option)
6278 let onion_payload = match keysend_preimage {
6280 if payment_data.is_some() {
6281 return Err(DecodeError::InvalidValue)
6283 if total_msat.is_none() {
6284 total_msat = Some(value);
6286 OnionPayload::Spontaneous(p)
6289 if total_msat.is_none() {
6290 if payment_data.is_none() {
6291 return Err(DecodeError::InvalidValue)
6293 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6295 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6299 prev_hop: prev_hop.0.unwrap(),
6302 total_msat: total_msat.unwrap(),
6309 impl Readable for HTLCSource {
6310 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6311 let id: u8 = Readable::read(reader)?;
6314 let mut session_priv: ::util::ser::OptionDeserWrapper<SecretKey> = ::util::ser::OptionDeserWrapper(None);
6315 let mut first_hop_htlc_msat: u64 = 0;
6316 let mut path = Some(Vec::new());
6317 let mut payment_id = None;
6318 let mut payment_secret = None;
6319 let mut payment_params = None;
6320 read_tlv_fields!(reader, {
6321 (0, session_priv, required),
6322 (1, payment_id, option),
6323 (2, first_hop_htlc_msat, required),
6324 (3, payment_secret, option),
6325 (4, path, vec_type),
6326 (5, payment_params, option),
6328 if payment_id.is_none() {
6329 // For backwards compat, if there was no payment_id written, use the session_priv bytes
6331 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6333 Ok(HTLCSource::OutboundRoute {
6334 session_priv: session_priv.0.unwrap(),
6335 first_hop_htlc_msat: first_hop_htlc_msat,
6336 path: path.unwrap(),
6337 payment_id: payment_id.unwrap(),
6342 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6343 _ => Err(DecodeError::UnknownRequiredFeature),
6348 impl Writeable for HTLCSource {
6349 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::io::Error> {
6351 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6353 let payment_id_opt = Some(payment_id);
6354 write_tlv_fields!(writer, {
6355 (0, session_priv, required),
6356 (1, payment_id_opt, option),
6357 (2, first_hop_htlc_msat, required),
6358 (3, payment_secret, option),
6359 (4, path, vec_type),
6360 (5, payment_params, option),
6363 HTLCSource::PreviousHopData(ref field) => {
6365 field.write(writer)?;
6372 impl_writeable_tlv_based_enum!(HTLCFailReason,
6373 (0, LightningError) => {
6377 (0, failure_code, required),
6378 (2, data, vec_type),
6382 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6384 (0, forward_info, required),
6385 (2, prev_short_channel_id, required),
6386 (4, prev_htlc_id, required),
6387 (6, prev_funding_outpoint, required),
6390 (0, htlc_id, required),
6391 (2, err_packet, required),
6395 impl_writeable_tlv_based!(PendingInboundPayment, {
6396 (0, payment_secret, required),
6397 (2, expiry_time, required),
6398 (4, user_payment_id, required),
6399 (6, payment_preimage, required),
6400 (8, min_value_msat, required),
6403 impl_writeable_tlv_based_enum_upgradable!(PendingOutboundPayment,
6405 (0, session_privs, required),
6408 (0, session_privs, required),
6409 (1, payment_hash, option),
6412 (0, session_privs, required),
6413 (1, pending_fee_msat, option),
6414 (2, payment_hash, required),
6415 (4, payment_secret, option),
6416 (6, total_msat, required),
6417 (8, pending_amt_msat, required),
6418 (10, starting_block_height, required),
6421 (0, session_privs, required),
6422 (2, payment_hash, required),
6426 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
6427 where M::Target: chain::Watch<Signer>,
6428 T::Target: BroadcasterInterface,
6429 K::Target: KeysInterface<Signer = Signer>,
6430 F::Target: FeeEstimator,
6433 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6434 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6436 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6438 self.genesis_hash.write(writer)?;
6440 let best_block = self.best_block.read().unwrap();
6441 best_block.height().write(writer)?;
6442 best_block.block_hash().write(writer)?;
6445 let channel_state = self.channel_state.lock().unwrap();
6446 let mut unfunded_channels = 0;
6447 for (_, channel) in channel_state.by_id.iter() {
6448 if !channel.is_funding_initiated() {
6449 unfunded_channels += 1;
6452 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
6453 for (_, channel) in channel_state.by_id.iter() {
6454 if channel.is_funding_initiated() {
6455 channel.write(writer)?;
6459 (channel_state.forward_htlcs.len() as u64).write(writer)?;
6460 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
6461 short_channel_id.write(writer)?;
6462 (pending_forwards.len() as u64).write(writer)?;
6463 for forward in pending_forwards {
6464 forward.write(writer)?;
6468 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
6469 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
6470 for (payment_hash, (purpose, previous_hops)) in channel_state.claimable_htlcs.iter() {
6471 payment_hash.write(writer)?;
6472 (previous_hops.len() as u64).write(writer)?;
6473 for htlc in previous_hops.iter() {
6474 htlc.write(writer)?;
6476 htlc_purposes.push(purpose);
6479 let per_peer_state = self.per_peer_state.write().unwrap();
6480 (per_peer_state.len() as u64).write(writer)?;
6481 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
6482 peer_pubkey.write(writer)?;
6483 let peer_state = peer_state_mutex.lock().unwrap();
6484 peer_state.latest_features.write(writer)?;
6487 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6488 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
6489 let events = self.pending_events.lock().unwrap();
6490 (events.len() as u64).write(writer)?;
6491 for event in events.iter() {
6492 event.write(writer)?;
6495 let background_events = self.pending_background_events.lock().unwrap();
6496 (background_events.len() as u64).write(writer)?;
6497 for event in background_events.iter() {
6499 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
6501 funding_txo.write(writer)?;
6502 monitor_update.write(writer)?;
6507 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
6508 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6510 (pending_inbound_payments.len() as u64).write(writer)?;
6511 for (hash, pending_payment) in pending_inbound_payments.iter() {
6512 hash.write(writer)?;
6513 pending_payment.write(writer)?;
6516 // For backwards compat, write the session privs and their total length.
6517 let mut num_pending_outbounds_compat: u64 = 0;
6518 for (_, outbound) in pending_outbound_payments.iter() {
6519 if !outbound.is_fulfilled() && !outbound.abandoned() {
6520 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
6523 num_pending_outbounds_compat.write(writer)?;
6524 for (_, outbound) in pending_outbound_payments.iter() {
6526 PendingOutboundPayment::Legacy { session_privs } |
6527 PendingOutboundPayment::Retryable { session_privs, .. } => {
6528 for session_priv in session_privs.iter() {
6529 session_priv.write(writer)?;
6532 PendingOutboundPayment::Fulfilled { .. } => {},
6533 PendingOutboundPayment::Abandoned { .. } => {},
6537 // Encode without retry info for 0.0.101 compatibility.
6538 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
6539 for (id, outbound) in pending_outbound_payments.iter() {
6541 PendingOutboundPayment::Legacy { session_privs } |
6542 PendingOutboundPayment::Retryable { session_privs, .. } => {
6543 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
6548 write_tlv_fields!(writer, {
6549 (1, pending_outbound_payments_no_retry, required),
6550 (3, pending_outbound_payments, required),
6551 (5, self.our_network_pubkey, required),
6552 (7, self.fake_scid_rand_bytes, required),
6553 (9, htlc_purposes, vec_type),
6560 /// Arguments for the creation of a ChannelManager that are not deserialized.
6562 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
6564 /// 1) Deserialize all stored [`ChannelMonitor`]s.
6565 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
6566 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
6567 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
6568 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
6569 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
6570 /// same way you would handle a [`chain::Filter`] call using
6571 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
6572 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
6573 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
6574 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
6575 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
6576 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
6578 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
6579 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
6581 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
6582 /// call any other methods on the newly-deserialized [`ChannelManager`].
6584 /// Note that because some channels may be closed during deserialization, it is critical that you
6585 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
6586 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
6587 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
6588 /// not force-close the same channels but consider them live), you may end up revoking a state for
6589 /// which you've already broadcasted the transaction.
6591 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
6592 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6593 where M::Target: chain::Watch<Signer>,
6594 T::Target: BroadcasterInterface,
6595 K::Target: KeysInterface<Signer = Signer>,
6596 F::Target: FeeEstimator,
6599 /// The keys provider which will give us relevant keys. Some keys will be loaded during
6600 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
6602 pub keys_manager: K,
6604 /// The fee_estimator for use in the ChannelManager in the future.
6606 /// No calls to the FeeEstimator will be made during deserialization.
6607 pub fee_estimator: F,
6608 /// The chain::Watch for use in the ChannelManager in the future.
6610 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
6611 /// you have deserialized ChannelMonitors separately and will add them to your
6612 /// chain::Watch after deserializing this ChannelManager.
6613 pub chain_monitor: M,
6615 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
6616 /// used to broadcast the latest local commitment transactions of channels which must be
6617 /// force-closed during deserialization.
6618 pub tx_broadcaster: T,
6619 /// The Logger for use in the ChannelManager and which may be used to log information during
6620 /// deserialization.
6622 /// Default settings used for new channels. Any existing channels will continue to use the
6623 /// runtime settings which were stored when the ChannelManager was serialized.
6624 pub default_config: UserConfig,
6626 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
6627 /// value.get_funding_txo() should be the key).
6629 /// If a monitor is inconsistent with the channel state during deserialization the channel will
6630 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
6631 /// is true for missing channels as well. If there is a monitor missing for which we find
6632 /// channel data Err(DecodeError::InvalidValue) will be returned.
6634 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
6637 /// (C-not exported) because we have no HashMap bindings
6638 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
6641 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6642 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
6643 where M::Target: chain::Watch<Signer>,
6644 T::Target: BroadcasterInterface,
6645 K::Target: KeysInterface<Signer = Signer>,
6646 F::Target: FeeEstimator,
6649 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
6650 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
6651 /// populate a HashMap directly from C.
6652 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
6653 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
6655 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
6656 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
6661 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
6662 // SipmleArcChannelManager type:
6663 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6664 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
6665 where M::Target: chain::Watch<Signer>,
6666 T::Target: BroadcasterInterface,
6667 K::Target: KeysInterface<Signer = Signer>,
6668 F::Target: FeeEstimator,
6671 fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
6672 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
6673 Ok((blockhash, Arc::new(chan_manager)))
6677 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6678 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
6679 where M::Target: chain::Watch<Signer>,
6680 T::Target: BroadcasterInterface,
6681 K::Target: KeysInterface<Signer = Signer>,
6682 F::Target: FeeEstimator,
6685 fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
6686 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
6688 let genesis_hash: BlockHash = Readable::read(reader)?;
6689 let best_block_height: u32 = Readable::read(reader)?;
6690 let best_block_hash: BlockHash = Readable::read(reader)?;
6692 let mut failed_htlcs = Vec::new();
6694 let channel_count: u64 = Readable::read(reader)?;
6695 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
6696 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6697 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6698 let mut channel_closures = Vec::new();
6699 for _ in 0..channel_count {
6700 let mut channel: Channel<Signer> = Channel::read(reader, (&args.keys_manager, best_block_height))?;
6701 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
6702 funding_txo_set.insert(funding_txo.clone());
6703 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
6704 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
6705 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
6706 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
6707 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
6708 // If the channel is ahead of the monitor, return InvalidValue:
6709 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
6710 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
6711 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
6712 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
6713 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
6714 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
6715 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
6716 return Err(DecodeError::InvalidValue);
6717 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
6718 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
6719 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
6720 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
6721 // But if the channel is behind of the monitor, close the channel:
6722 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
6723 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
6724 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
6725 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
6726 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
6727 failed_htlcs.append(&mut new_failed_htlcs);
6728 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
6729 channel_closures.push(events::Event::ChannelClosed {
6730 channel_id: channel.channel_id(),
6731 user_channel_id: channel.get_user_id(),
6732 reason: ClosureReason::OutdatedChannelManager
6735 log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
6736 if let Some(short_channel_id) = channel.get_short_channel_id() {
6737 short_to_id.insert(short_channel_id, channel.channel_id());
6739 by_id.insert(channel.channel_id(), channel);
6742 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
6743 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
6744 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
6745 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
6746 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
6747 return Err(DecodeError::InvalidValue);
6751 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
6752 if !funding_txo_set.contains(funding_txo) {
6753 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
6754 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
6758 const MAX_ALLOC_SIZE: usize = 1024 * 64;
6759 let forward_htlcs_count: u64 = Readable::read(reader)?;
6760 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
6761 for _ in 0..forward_htlcs_count {
6762 let short_channel_id = Readable::read(reader)?;
6763 let pending_forwards_count: u64 = Readable::read(reader)?;
6764 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
6765 for _ in 0..pending_forwards_count {
6766 pending_forwards.push(Readable::read(reader)?);
6768 forward_htlcs.insert(short_channel_id, pending_forwards);
6771 let claimable_htlcs_count: u64 = Readable::read(reader)?;
6772 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
6773 for _ in 0..claimable_htlcs_count {
6774 let payment_hash = Readable::read(reader)?;
6775 let previous_hops_len: u64 = Readable::read(reader)?;
6776 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
6777 for _ in 0..previous_hops_len {
6778 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
6780 claimable_htlcs_list.push((payment_hash, previous_hops));
6783 let peer_count: u64 = Readable::read(reader)?;
6784 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
6785 for _ in 0..peer_count {
6786 let peer_pubkey = Readable::read(reader)?;
6787 let peer_state = PeerState {
6788 latest_features: Readable::read(reader)?,
6790 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
6793 let event_count: u64 = Readable::read(reader)?;
6794 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
6795 for _ in 0..event_count {
6796 match MaybeReadable::read(reader)? {
6797 Some(event) => pending_events_read.push(event),
6801 if forward_htlcs_count > 0 {
6802 // If we have pending HTLCs to forward, assume we either dropped a
6803 // `PendingHTLCsForwardable` or the user received it but never processed it as they
6804 // shut down before the timer hit. Either way, set the time_forwardable to a small
6805 // constant as enough time has likely passed that we should simply handle the forwards
6806 // now, or at least after the user gets a chance to reconnect to our peers.
6807 pending_events_read.push(events::Event::PendingHTLCsForwardable {
6808 time_forwardable: Duration::from_secs(2),
6812 let background_event_count: u64 = Readable::read(reader)?;
6813 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
6814 for _ in 0..background_event_count {
6815 match <u8 as Readable>::read(reader)? {
6816 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
6817 _ => return Err(DecodeError::InvalidValue),
6821 let last_node_announcement_serial: u32 = Readable::read(reader)?;
6822 let highest_seen_timestamp: u32 = Readable::read(reader)?;
6824 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
6825 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
6826 for _ in 0..pending_inbound_payment_count {
6827 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
6828 return Err(DecodeError::InvalidValue);
6832 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
6833 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
6834 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
6835 for _ in 0..pending_outbound_payments_count_compat {
6836 let session_priv = Readable::read(reader)?;
6837 let payment = PendingOutboundPayment::Legacy {
6838 session_privs: [session_priv].iter().cloned().collect()
6840 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
6841 return Err(DecodeError::InvalidValue)
6845 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
6846 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
6847 let mut pending_outbound_payments = None;
6848 let mut received_network_pubkey: Option<PublicKey> = None;
6849 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
6850 let mut claimable_htlc_purposes = None;
6851 read_tlv_fields!(reader, {
6852 (1, pending_outbound_payments_no_retry, option),
6853 (3, pending_outbound_payments, option),
6854 (5, received_network_pubkey, option),
6855 (7, fake_scid_rand_bytes, option),
6856 (9, claimable_htlc_purposes, vec_type),
6858 if fake_scid_rand_bytes.is_none() {
6859 fake_scid_rand_bytes = Some(args.keys_manager.get_secure_random_bytes());
6862 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
6863 pending_outbound_payments = Some(pending_outbound_payments_compat);
6864 } else if pending_outbound_payments.is_none() {
6865 let mut outbounds = HashMap::new();
6866 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
6867 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
6869 pending_outbound_payments = Some(outbounds);
6871 // If we're tracking pending payments, ensure we haven't lost any by looking at the
6872 // ChannelMonitor data for any channels for which we do not have authorative state
6873 // (i.e. those for which we just force-closed above or we otherwise don't have a
6874 // corresponding `Channel` at all).
6875 // This avoids several edge-cases where we would otherwise "forget" about pending
6876 // payments which are still in-flight via their on-chain state.
6877 // We only rebuild the pending payments map if we were most recently serialized by
6879 for (_, monitor) in args.channel_monitors.iter() {
6880 if by_id.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
6881 for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() {
6882 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
6883 if path.is_empty() {
6884 log_error!(args.logger, "Got an empty path for a pending payment");
6885 return Err(DecodeError::InvalidValue);
6887 let path_amt = path.last().unwrap().fee_msat;
6888 let mut session_priv_bytes = [0; 32];
6889 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
6890 match pending_outbound_payments.as_mut().unwrap().entry(payment_id) {
6891 hash_map::Entry::Occupied(mut entry) => {
6892 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
6893 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
6894 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
6896 hash_map::Entry::Vacant(entry) => {
6897 let path_fee = path.get_path_fees();
6898 entry.insert(PendingOutboundPayment::Retryable {
6899 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
6900 payment_hash: htlc.payment_hash,
6902 pending_amt_msat: path_amt,
6903 pending_fee_msat: Some(path_fee),
6904 total_msat: path_amt,
6905 starting_block_height: best_block_height,
6907 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
6908 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
6917 let inbound_pmt_key_material = args.keys_manager.get_inbound_payment_key_material();
6918 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
6920 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
6921 if let Some(mut purposes) = claimable_htlc_purposes {
6922 if purposes.len() != claimable_htlcs_list.len() {
6923 return Err(DecodeError::InvalidValue);
6925 for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
6926 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
6929 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
6930 // include a `_legacy_hop_data` in the `OnionPayload`.
6931 for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
6932 if previous_hops.is_empty() {
6933 return Err(DecodeError::InvalidValue);
6935 let purpose = match &previous_hops[0].onion_payload {
6936 OnionPayload::Invoice { _legacy_hop_data } => {
6937 if let Some(hop_data) = _legacy_hop_data {
6938 events::PaymentPurpose::InvoicePayment {
6939 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
6940 Some(inbound_payment) => inbound_payment.payment_preimage,
6941 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
6942 Ok(payment_preimage) => payment_preimage,
6944 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
6945 return Err(DecodeError::InvalidValue);
6949 payment_secret: hop_data.payment_secret,
6951 } else { return Err(DecodeError::InvalidValue); }
6953 OnionPayload::Spontaneous(payment_preimage) =>
6954 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
6956 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
6960 let mut secp_ctx = Secp256k1::new();
6961 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
6963 if !channel_closures.is_empty() {
6964 pending_events_read.append(&mut channel_closures);
6967 let our_network_key = match args.keys_manager.get_node_secret(Recipient::Node) {
6969 Err(()) => return Err(DecodeError::InvalidValue)
6971 let our_network_pubkey = PublicKey::from_secret_key(&secp_ctx, &our_network_key);
6972 if let Some(network_pubkey) = received_network_pubkey {
6973 if network_pubkey != our_network_pubkey {
6974 log_error!(args.logger, "Key that was generated does not match the existing key.");
6975 return Err(DecodeError::InvalidValue);
6979 let mut outbound_scid_aliases = HashSet::new();
6980 for (chan_id, chan) in by_id.iter_mut() {
6981 if chan.outbound_scid_alias() == 0 {
6982 let mut outbound_scid_alias;
6984 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
6985 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.keys_manager);
6986 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
6988 chan.set_outbound_scid_alias(outbound_scid_alias);
6989 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
6990 // Note that in rare cases its possible to hit this while reading an older
6991 // channel if we just happened to pick a colliding outbound alias above.
6992 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
6993 return Err(DecodeError::InvalidValue);
6995 if chan.is_usable() {
6996 if short_to_id.insert(chan.outbound_scid_alias(), *chan_id).is_some() {
6997 // Note that in rare cases its possible to hit this while reading an older
6998 // channel if we just happened to pick a colliding outbound alias above.
6999 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7000 return Err(DecodeError::InvalidValue);
7005 for (_, monitor) in args.channel_monitors.iter() {
7006 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7007 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7008 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7009 let mut claimable_amt_msat = 0;
7010 for claimable_htlc in claimable_htlcs {
7011 claimable_amt_msat += claimable_htlc.value;
7013 // Add a holding-cell claim of the payment to the Channel, which should be
7014 // applied ~immediately on peer reconnection. Because it won't generate a
7015 // new commitment transaction we can just provide the payment preimage to
7016 // the corresponding ChannelMonitor and nothing else.
7018 // We do so directly instead of via the normal ChannelMonitor update
7019 // procedure as the ChainMonitor hasn't yet been initialized, implying
7020 // we're not allowed to call it directly yet. Further, we do the update
7021 // without incrementing the ChannelMonitor update ID as there isn't any
7023 // If we were to generate a new ChannelMonitor update ID here and then
7024 // crash before the user finishes block connect we'd end up force-closing
7025 // this channel as well. On the flip side, there's no harm in restarting
7026 // without the new monitor persisted - we'll end up right back here on
7028 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7029 if let Some(channel) = by_id.get_mut(&previous_channel_id) {
7030 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7032 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7033 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &args.fee_estimator, &args.logger);
7036 pending_events_read.push(events::Event::PaymentClaimed {
7038 purpose: payment_purpose,
7039 amount_msat: claimable_amt_msat,
7045 let channel_manager = ChannelManager {
7047 fee_estimator: args.fee_estimator,
7048 chain_monitor: args.chain_monitor,
7049 tx_broadcaster: args.tx_broadcaster,
7051 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7053 channel_state: Mutex::new(ChannelHolder {
7058 pending_msg_events: Vec::new(),
7060 inbound_payment_key: expanded_inbound_key,
7061 pending_inbound_payments: Mutex::new(pending_inbound_payments),
7062 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7064 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7065 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7071 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
7072 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7074 per_peer_state: RwLock::new(per_peer_state),
7076 pending_events: Mutex::new(pending_events_read),
7077 pending_background_events: Mutex::new(pending_background_events_read),
7078 total_consistency_lock: RwLock::new(()),
7079 persistence_notifier: PersistenceNotifier::new(),
7081 keys_manager: args.keys_manager,
7082 logger: args.logger,
7083 default_configuration: args.default_config,
7086 for htlc_source in failed_htlcs.drain(..) {
7087 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
7090 //TODO: Broadcast channel update for closed channels, but only after we've made a
7091 //connection or two.
7093 Ok((best_block_hash.clone(), channel_manager))
7099 use bitcoin::hashes::Hash;
7100 use bitcoin::hashes::sha256::Hash as Sha256;
7101 use core::time::Duration;
7102 use core::sync::atomic::Ordering;
7103 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7104 use ln::channelmanager::{PaymentId, PaymentSendFailure};
7105 use ln::channelmanager::inbound_payment;
7106 use ln::features::InitFeatures;
7107 use ln::functional_test_utils::*;
7109 use ln::msgs::ChannelMessageHandler;
7110 use routing::router::{PaymentParameters, RouteParameters, find_route};
7111 use util::errors::APIError;
7112 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
7113 use util::test_utils;
7114 use chain::keysinterface::KeysInterface;
7116 #[cfg(feature = "std")]
7118 fn test_wait_timeout() {
7119 use ln::channelmanager::PersistenceNotifier;
7121 use core::sync::atomic::AtomicBool;
7124 let persistence_notifier = Arc::new(PersistenceNotifier::new());
7125 let thread_notifier = Arc::clone(&persistence_notifier);
7127 let exit_thread = Arc::new(AtomicBool::new(false));
7128 let exit_thread_clone = exit_thread.clone();
7129 thread::spawn(move || {
7131 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
7132 let mut persistence_lock = persist_mtx.lock().unwrap();
7133 *persistence_lock = true;
7136 if exit_thread_clone.load(Ordering::SeqCst) {
7142 // Check that we can block indefinitely until updates are available.
7143 let _ = persistence_notifier.wait();
7145 // Check that the PersistenceNotifier will return after the given duration if updates are
7148 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
7153 exit_thread.store(true, Ordering::SeqCst);
7155 // Check that the PersistenceNotifier will return after the given duration even if no updates
7158 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
7165 fn test_notify_limits() {
7166 // Check that a few cases which don't require the persistence of a new ChannelManager,
7167 // indeed, do not cause the persistence of a new ChannelManager.
7168 let chanmon_cfgs = create_chanmon_cfgs(3);
7169 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7170 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7171 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7173 // All nodes start with a persistable update pending as `create_network` connects each node
7174 // with all other nodes to make most tests simpler.
7175 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7176 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7177 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7179 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
7181 // We check that the channel info nodes have doesn't change too early, even though we try
7182 // to connect messages with new values
7183 chan.0.contents.fee_base_msat *= 2;
7184 chan.1.contents.fee_base_msat *= 2;
7185 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
7186 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
7188 // The first two nodes (which opened a channel) should now require fresh persistence
7189 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7190 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7191 // ... but the last node should not.
7192 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7193 // After persisting the first two nodes they should no longer need fresh persistence.
7194 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7195 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7197 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7198 // about the channel.
7199 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7200 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7201 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7203 // The nodes which are a party to the channel should also ignore messages from unrelated
7205 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7206 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7207 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7208 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7209 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7210 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7212 // At this point the channel info given by peers should still be the same.
7213 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7214 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7216 // An earlier version of handle_channel_update didn't check the directionality of the
7217 // update message and would always update the local fee info, even if our peer was
7218 // (spuriously) forwarding us our own channel_update.
7219 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7220 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7221 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7223 // First deliver each peers' own message, checking that the node doesn't need to be
7224 // persisted and that its channel info remains the same.
7225 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7226 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7227 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7228 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7229 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7230 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7232 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7233 // the channel info has updated.
7234 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7235 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7236 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7237 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7238 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7239 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7243 fn test_keysend_dup_hash_partial_mpp() {
7244 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7246 let chanmon_cfgs = create_chanmon_cfgs(2);
7247 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7248 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7249 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7250 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
7252 // First, send a partial MPP payment.
7253 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7254 let payment_id = PaymentId([42; 32]);
7255 // Use the utility function send_payment_along_path to send the payment with MPP data which
7256 // indicates there are more HTLCs coming.
7257 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7258 nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
7259 check_added_monitors!(nodes[0], 1);
7260 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7261 assert_eq!(events.len(), 1);
7262 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7264 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7265 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
7266 check_added_monitors!(nodes[0], 1);
7267 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7268 assert_eq!(events.len(), 1);
7269 let ev = events.drain(..).next().unwrap();
7270 let payment_event = SendEvent::from_event(ev);
7271 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7272 check_added_monitors!(nodes[1], 0);
7273 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7274 expect_pending_htlcs_forwardable!(nodes[1]);
7275 expect_pending_htlcs_forwardable!(nodes[1]);
7276 check_added_monitors!(nodes[1], 1);
7277 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7278 assert!(updates.update_add_htlcs.is_empty());
7279 assert!(updates.update_fulfill_htlcs.is_empty());
7280 assert_eq!(updates.update_fail_htlcs.len(), 1);
7281 assert!(updates.update_fail_malformed_htlcs.is_empty());
7282 assert!(updates.update_fee.is_none());
7283 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7284 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7285 expect_payment_failed!(nodes[0], our_payment_hash, true);
7287 // Send the second half of the original MPP payment.
7288 nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
7289 check_added_monitors!(nodes[0], 1);
7290 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7291 assert_eq!(events.len(), 1);
7292 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7294 // Claim the full MPP payment. Note that we can't use a test utility like
7295 // claim_funds_along_route because the ordering of the messages causes the second half of the
7296 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
7297 // lightning messages manually.
7298 nodes[1].node.claim_funds(payment_preimage);
7299 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
7300 check_added_monitors!(nodes[1], 2);
7302 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7303 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
7304 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
7305 check_added_monitors!(nodes[0], 1);
7306 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7307 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
7308 check_added_monitors!(nodes[1], 1);
7309 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7310 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
7311 check_added_monitors!(nodes[1], 1);
7312 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7313 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
7314 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
7315 check_added_monitors!(nodes[0], 1);
7316 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
7317 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
7318 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7319 check_added_monitors!(nodes[0], 1);
7320 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
7321 check_added_monitors!(nodes[1], 1);
7322 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
7323 check_added_monitors!(nodes[1], 1);
7324 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7325 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
7326 check_added_monitors!(nodes[0], 1);
7328 // Note that successful MPP payments will generate a single PaymentSent event upon the first
7329 // path's success and a PaymentPathSuccessful event for each path's success.
7330 let events = nodes[0].node.get_and_clear_pending_events();
7331 assert_eq!(events.len(), 3);
7333 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
7334 assert_eq!(Some(payment_id), *id);
7335 assert_eq!(payment_preimage, *preimage);
7336 assert_eq!(our_payment_hash, *hash);
7338 _ => panic!("Unexpected event"),
7341 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7342 assert_eq!(payment_id, *actual_payment_id);
7343 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7344 assert_eq!(route.paths[0], *path);
7346 _ => panic!("Unexpected event"),
7349 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7350 assert_eq!(payment_id, *actual_payment_id);
7351 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7352 assert_eq!(route.paths[0], *path);
7354 _ => panic!("Unexpected event"),
7359 fn test_keysend_dup_payment_hash() {
7360 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
7361 // outbound regular payment fails as expected.
7362 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
7363 // fails as expected.
7364 let chanmon_cfgs = create_chanmon_cfgs(2);
7365 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7366 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7367 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7368 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
7369 let scorer = test_utils::TestScorer::with_penalty(0);
7370 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7372 // To start (1), send a regular payment but don't claim it.
7373 let expected_route = [&nodes[1]];
7374 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
7376 // Next, attempt a keysend payment and make sure it fails.
7377 let route_params = RouteParameters {
7378 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id()),
7379 final_value_msat: 100_000,
7380 final_cltv_expiry_delta: TEST_FINAL_CLTV,
7382 let route = find_route(
7383 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph.read_only(),
7384 None, nodes[0].logger, &scorer, &random_seed_bytes
7386 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
7387 check_added_monitors!(nodes[0], 1);
7388 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7389 assert_eq!(events.len(), 1);
7390 let ev = events.drain(..).next().unwrap();
7391 let payment_event = SendEvent::from_event(ev);
7392 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7393 check_added_monitors!(nodes[1], 0);
7394 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7395 expect_pending_htlcs_forwardable!(nodes[1]);
7396 expect_pending_htlcs_forwardable!(nodes[1]);
7397 check_added_monitors!(nodes[1], 1);
7398 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7399 assert!(updates.update_add_htlcs.is_empty());
7400 assert!(updates.update_fulfill_htlcs.is_empty());
7401 assert_eq!(updates.update_fail_htlcs.len(), 1);
7402 assert!(updates.update_fail_malformed_htlcs.is_empty());
7403 assert!(updates.update_fee.is_none());
7404 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7405 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7406 expect_payment_failed!(nodes[0], payment_hash, true);
7408 // Finally, claim the original payment.
7409 claim_payment(&nodes[0], &expected_route, payment_preimage);
7411 // To start (2), send a keysend payment but don't claim it.
7412 let payment_preimage = PaymentPreimage([42; 32]);
7413 let route = find_route(
7414 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph.read_only(),
7415 None, nodes[0].logger, &scorer, &random_seed_bytes
7417 let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
7418 check_added_monitors!(nodes[0], 1);
7419 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7420 assert_eq!(events.len(), 1);
7421 let event = events.pop().unwrap();
7422 let path = vec![&nodes[1]];
7423 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
7425 // Next, attempt a regular payment and make sure it fails.
7426 let payment_secret = PaymentSecret([43; 32]);
7427 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
7428 check_added_monitors!(nodes[0], 1);
7429 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7430 assert_eq!(events.len(), 1);
7431 let ev = events.drain(..).next().unwrap();
7432 let payment_event = SendEvent::from_event(ev);
7433 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7434 check_added_monitors!(nodes[1], 0);
7435 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7436 expect_pending_htlcs_forwardable!(nodes[1]);
7437 expect_pending_htlcs_forwardable!(nodes[1]);
7438 check_added_monitors!(nodes[1], 1);
7439 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7440 assert!(updates.update_add_htlcs.is_empty());
7441 assert!(updates.update_fulfill_htlcs.is_empty());
7442 assert_eq!(updates.update_fail_htlcs.len(), 1);
7443 assert!(updates.update_fail_malformed_htlcs.is_empty());
7444 assert!(updates.update_fee.is_none());
7445 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7446 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7447 expect_payment_failed!(nodes[0], payment_hash, true);
7449 // Finally, succeed the keysend payment.
7450 claim_payment(&nodes[0], &expected_route, payment_preimage);
7454 fn test_keysend_hash_mismatch() {
7455 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
7456 // preimage doesn't match the msg's payment hash.
7457 let chanmon_cfgs = create_chanmon_cfgs(2);
7458 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7459 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7460 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7462 let payer_pubkey = nodes[0].node.get_our_node_id();
7463 let payee_pubkey = nodes[1].node.get_our_node_id();
7464 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7465 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7467 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
7468 let route_params = RouteParameters {
7469 payment_params: PaymentParameters::for_keysend(payee_pubkey),
7470 final_value_msat: 10000,
7471 final_cltv_expiry_delta: 40,
7473 let network_graph = nodes[0].network_graph;
7474 let first_hops = nodes[0].node.list_usable_channels();
7475 let scorer = test_utils::TestScorer::with_penalty(0);
7476 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7477 let route = find_route(
7478 &payer_pubkey, &route_params, &network_graph.read_only(),
7479 Some(&first_hops.iter().collect::<Vec<_>>()), nodes[0].logger, &scorer,
7483 let test_preimage = PaymentPreimage([42; 32]);
7484 let mismatch_payment_hash = PaymentHash([43; 32]);
7485 let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None, None).unwrap();
7486 check_added_monitors!(nodes[0], 1);
7488 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7489 assert_eq!(updates.update_add_htlcs.len(), 1);
7490 assert!(updates.update_fulfill_htlcs.is_empty());
7491 assert!(updates.update_fail_htlcs.is_empty());
7492 assert!(updates.update_fail_malformed_htlcs.is_empty());
7493 assert!(updates.update_fee.is_none());
7494 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
7496 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
7500 fn test_keysend_msg_with_secret_err() {
7501 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
7502 let chanmon_cfgs = create_chanmon_cfgs(2);
7503 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7504 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7505 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7507 let payer_pubkey = nodes[0].node.get_our_node_id();
7508 let payee_pubkey = nodes[1].node.get_our_node_id();
7509 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7510 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7512 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
7513 let route_params = RouteParameters {
7514 payment_params: PaymentParameters::for_keysend(payee_pubkey),
7515 final_value_msat: 10000,
7516 final_cltv_expiry_delta: 40,
7518 let network_graph = nodes[0].network_graph;
7519 let first_hops = nodes[0].node.list_usable_channels();
7520 let scorer = test_utils::TestScorer::with_penalty(0);
7521 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7522 let route = find_route(
7523 &payer_pubkey, &route_params, &network_graph.read_only(),
7524 Some(&first_hops.iter().collect::<Vec<_>>()), nodes[0].logger, &scorer,
7528 let test_preimage = PaymentPreimage([42; 32]);
7529 let test_secret = PaymentSecret([43; 32]);
7530 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
7531 let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None, None).unwrap();
7532 check_added_monitors!(nodes[0], 1);
7534 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7535 assert_eq!(updates.update_add_htlcs.len(), 1);
7536 assert!(updates.update_fulfill_htlcs.is_empty());
7537 assert!(updates.update_fail_htlcs.is_empty());
7538 assert!(updates.update_fail_malformed_htlcs.is_empty());
7539 assert!(updates.update_fee.is_none());
7540 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
7542 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
7546 fn test_multi_hop_missing_secret() {
7547 let chanmon_cfgs = create_chanmon_cfgs(4);
7548 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
7549 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
7550 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
7552 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7553 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7554 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7555 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7557 // Marshall an MPP route.
7558 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
7559 let path = route.paths[0].clone();
7560 route.paths.push(path);
7561 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
7562 route.paths[0][0].short_channel_id = chan_1_id;
7563 route.paths[0][1].short_channel_id = chan_3_id;
7564 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
7565 route.paths[1][0].short_channel_id = chan_2_id;
7566 route.paths[1][1].short_channel_id = chan_4_id;
7568 match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() {
7569 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
7570 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
7571 _ => panic!("unexpected error")
7576 fn bad_inbound_payment_hash() {
7577 // Add coverage for checking that a user-provided payment hash matches the payment secret.
7578 let chanmon_cfgs = create_chanmon_cfgs(2);
7579 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7580 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7581 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7583 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
7584 let payment_data = msgs::FinalOnionHopData {
7586 total_msat: 100_000,
7589 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
7590 // payment verification fails as expected.
7591 let mut bad_payment_hash = payment_hash.clone();
7592 bad_payment_hash.0[0] += 1;
7593 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
7594 Ok(_) => panic!("Unexpected ok"),
7596 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
7600 // Check that using the original payment hash succeeds.
7601 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
7605 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
7608 use chain::chainmonitor::{ChainMonitor, Persist};
7609 use chain::keysinterface::{KeysManager, KeysInterface, InMemorySigner};
7610 use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
7611 use ln::features::{InitFeatures, InvoiceFeatures};
7612 use ln::functional_test_utils::*;
7613 use ln::msgs::{ChannelMessageHandler, Init};
7614 use routing::gossip::NetworkGraph;
7615 use routing::router::{PaymentParameters, get_route};
7616 use util::test_utils;
7617 use util::config::UserConfig;
7618 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
7620 use bitcoin::hashes::Hash;
7621 use bitcoin::hashes::sha256::Hash as Sha256;
7622 use bitcoin::{Block, BlockHeader, Transaction, TxOut};
7624 use sync::{Arc, Mutex};
7628 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
7629 node: &'a ChannelManager<InMemorySigner,
7630 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
7631 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
7632 &'a test_utils::TestLogger, &'a P>,
7633 &'a test_utils::TestBroadcaster, &'a KeysManager,
7634 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
7639 fn bench_sends(bench: &mut Bencher) {
7640 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
7643 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
7644 // Do a simple benchmark of sending a payment back and forth between two nodes.
7645 // Note that this is unrealistic as each payment send will require at least two fsync
7647 let network = bitcoin::Network::Testnet;
7648 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
7650 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
7651 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
7653 let mut config: UserConfig = Default::default();
7654 config.own_channel_config.minimum_depth = 1;
7656 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
7657 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
7658 let seed_a = [1u8; 32];
7659 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
7660 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
7662 best_block: BestBlock::from_genesis(network),
7664 let node_a_holder = NodeHolder { node: &node_a };
7666 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
7667 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
7668 let seed_b = [2u8; 32];
7669 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
7670 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
7672 best_block: BestBlock::from_genesis(network),
7674 let node_b_holder = NodeHolder { node: &node_b };
7676 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None });
7677 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None });
7678 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
7679 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
7680 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
7683 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
7684 tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
7685 value: 8_000_000, script_pubkey: output_script,
7687 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
7688 } else { panic!(); }
7690 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
7691 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
7693 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
7696 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
7699 Listen::block_connected(&node_a, &block, 1);
7700 Listen::block_connected(&node_b, &block, 1);
7702 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
7703 let msg_events = node_a.get_and_clear_pending_msg_events();
7704 assert_eq!(msg_events.len(), 2);
7705 match msg_events[0] {
7706 MessageSendEvent::SendChannelReady { ref msg, .. } => {
7707 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
7708 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
7712 match msg_events[1] {
7713 MessageSendEvent::SendChannelUpdate { .. } => {},
7717 let dummy_graph = NetworkGraph::new(genesis_hash, &logger_a);
7719 let mut payment_count: u64 = 0;
7720 macro_rules! send_payment {
7721 ($node_a: expr, $node_b: expr) => {
7722 let usable_channels = $node_a.list_usable_channels();
7723 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id())
7724 .with_features(InvoiceFeatures::known());
7725 let scorer = test_utils::TestScorer::with_penalty(0);
7726 let seed = [3u8; 32];
7727 let keys_manager = KeysManager::new(&seed, 42, 42);
7728 let random_seed_bytes = keys_manager.get_secure_random_bytes();
7729 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
7730 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
7732 let mut payment_preimage = PaymentPreimage([0; 32]);
7733 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
7735 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
7736 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200).unwrap();
7738 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
7739 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
7740 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
7741 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
7742 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
7743 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
7744 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
7745 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
7747 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
7748 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
7749 $node_b.claim_funds(payment_preimage);
7750 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
7752 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
7753 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
7754 assert_eq!(node_id, $node_a.get_our_node_id());
7755 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
7756 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
7758 _ => panic!("Failed to generate claim event"),
7761 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
7762 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
7763 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
7764 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
7766 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
7771 send_payment!(node_a, node_b);
7772 send_payment!(node_b, node_a);