1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
48 #[cfg(any(feature = "_test_utils", test))]
49 use crate::ln::features::Bolt11InvoiceFeatures;
50 use crate::routing::gossip::NetworkGraph;
51 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
53 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundOnionErr, NextPacketDetails};
55 use crate::ln::onion_utils;
56 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
57 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
59 use crate::ln::outbound_payment;
60 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
61 use crate::ln::wire::Encode;
62 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
63 use crate::offers::invoice_error::InvoiceError;
64 use crate::offers::merkle::SignError;
65 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
66 use crate::offers::parse::Bolt12SemanticError;
67 use crate::offers::refund::{Refund, RefundBuilder};
68 use crate::onion_message::{Destination, OffersMessage, OffersMessageHandler, PendingOnionMessage, new_pending_onion_message};
69 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
79 use alloc::collections::{btree_map, BTreeMap};
82 use crate::prelude::*;
84 use core::cell::RefCell;
86 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
87 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
88 use core::time::Duration;
91 // Re-export this for use in the public API.
92 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
93 use crate::ln::script::ShutdownScript;
95 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
97 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
98 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
99 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
101 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
102 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
103 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
104 // before we forward it.
106 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
107 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
108 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
109 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
110 // our payment, which we can use to decode errors or inform the user that the payment was sent.
112 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub enum PendingHTLCRouting {
115 /// An HTLC which should be forwarded on to another node.
117 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
118 /// do with the HTLC.
119 onion_packet: msgs::OnionPacket,
120 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
122 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
123 /// to the receiving node, such as one returned from
124 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
125 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
126 /// Set if this HTLC is being forwarded within a blinded path.
127 blinded: Option<BlindedForward>,
129 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
131 /// Note that at this point, we have not checked that the invoice being paid was actually
132 /// generated by us, but rather it's claiming to pay an invoice of ours.
134 /// Information about the amount the sender intended to pay and (potential) proof that this
135 /// is a payment for an invoice we generated. This proof of payment is is also used for
136 /// linking MPP parts of a larger payment.
137 payment_data: msgs::FinalOnionHopData,
138 /// Additional data which we (allegedly) instructed the sender to include in the onion.
140 /// For HTLCs received by LDK, this will ultimately be exposed in
141 /// [`Event::PaymentClaimable::onion_fields`] as
142 /// [`RecipientOnionFields::payment_metadata`].
143 payment_metadata: Option<Vec<u8>>,
144 /// CLTV expiry of the received HTLC.
146 /// Used to track when we should expire pending HTLCs that go unclaimed.
147 incoming_cltv_expiry: u32,
148 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
149 /// provide the onion shared secret used to decrypt the next level of forwarding
151 phantom_shared_secret: Option<[u8; 32]>,
152 /// Custom TLVs which were set by the sender.
154 /// For HTLCs received by LDK, this will ultimately be exposed in
155 /// [`Event::PaymentClaimable::onion_fields`] as
156 /// [`RecipientOnionFields::custom_tlvs`].
157 custom_tlvs: Vec<(u64, Vec<u8>)>,
158 /// Set if this HTLC is the final hop in a multi-hop blinded path.
159 requires_blinded_error: bool,
161 /// The onion indicates that this is for payment to us but which contains the preimage for
162 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
163 /// "keysend" or "spontaneous" payment).
165 /// Information about the amount the sender intended to pay and possibly a token to
166 /// associate MPP parts of a larger payment.
168 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
169 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
170 payment_data: Option<msgs::FinalOnionHopData>,
171 /// Preimage for this onion payment. This preimage is provided by the sender and will be
172 /// used to settle the spontaneous payment.
173 payment_preimage: PaymentPreimage,
174 /// Additional data which we (allegedly) instructed the sender to include in the onion.
176 /// For HTLCs received by LDK, this will ultimately bubble back up as
177 /// [`RecipientOnionFields::payment_metadata`].
178 payment_metadata: Option<Vec<u8>>,
179 /// CLTV expiry of the received HTLC.
181 /// Used to track when we should expire pending HTLCs that go unclaimed.
182 incoming_cltv_expiry: u32,
183 /// Custom TLVs which were set by the sender.
185 /// For HTLCs received by LDK, these will ultimately bubble back up as
186 /// [`RecipientOnionFields::custom_tlvs`].
187 custom_tlvs: Vec<(u64, Vec<u8>)>,
191 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
192 #[derive(Clone, Copy, Hash, PartialEq, Eq)]
193 pub struct BlindedForward {
194 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
195 /// onion payload if we're the introduction node. Useful for calculating the next hop's
196 /// [`msgs::UpdateAddHTLC::blinding_point`].
197 pub inbound_blinding_point: PublicKey,
198 // Another field will be added here when we support forwarding as a non-intro node.
201 impl PendingHTLCRouting {
202 // Used to override the onion failure code and data if the HTLC is blinded.
203 fn blinded_failure(&self) -> Option<BlindedFailure> {
204 // TODO: needs update when we support forwarding blinded HTLCs as non-intro node
206 Self::Forward { blinded: Some(_), .. } => Some(BlindedFailure::FromIntroductionNode),
207 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
213 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
215 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
216 pub struct PendingHTLCInfo {
217 /// Further routing details based on whether the HTLC is being forwarded or received.
218 pub routing: PendingHTLCRouting,
219 /// The onion shared secret we build with the sender used to decrypt the onion.
221 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
222 pub incoming_shared_secret: [u8; 32],
223 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
224 pub payment_hash: PaymentHash,
225 /// Amount received in the incoming HTLC.
227 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
229 pub incoming_amt_msat: Option<u64>,
230 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
231 /// intended for us to receive for received payments.
233 /// If the received amount is less than this for received payments, an intermediary hop has
234 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
235 /// it along another path).
237 /// Because nodes can take less than their required fees, and because senders may wish to
238 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
239 /// received payments. In such cases, recipients must handle this HTLC as if it had received
240 /// [`Self::outgoing_amt_msat`].
241 pub outgoing_amt_msat: u64,
242 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
243 /// should have been set on the received HTLC for received payments).
244 pub outgoing_cltv_value: u32,
245 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
247 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
250 /// If this is a received payment, this is the fee that our counterparty took.
252 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
254 pub skimmed_fee_msat: Option<u64>,
257 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
258 pub(super) enum HTLCFailureMsg {
259 Relay(msgs::UpdateFailHTLC),
260 Malformed(msgs::UpdateFailMalformedHTLC),
263 /// Stores whether we can't forward an HTLC or relevant forwarding info
264 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
265 pub(super) enum PendingHTLCStatus {
266 Forward(PendingHTLCInfo),
267 Fail(HTLCFailureMsg),
270 pub(super) struct PendingAddHTLCInfo {
271 pub(super) forward_info: PendingHTLCInfo,
273 // These fields are produced in `forward_htlcs()` and consumed in
274 // `process_pending_htlc_forwards()` for constructing the
275 // `HTLCSource::PreviousHopData` for failed and forwarded
278 // Note that this may be an outbound SCID alias for the associated channel.
279 prev_short_channel_id: u64,
281 prev_funding_outpoint: OutPoint,
282 prev_user_channel_id: u128,
285 pub(super) enum HTLCForwardInfo {
286 AddHTLC(PendingAddHTLCInfo),
289 err_packet: msgs::OnionErrorPacket,
294 sha256_of_onion: [u8; 32],
298 // Used for failing blinded HTLCs backwards correctly.
299 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
300 enum BlindedFailure {
301 FromIntroductionNode,
305 /// Tracks the inbound corresponding to an outbound HTLC
306 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
307 pub(crate) struct HTLCPreviousHopData {
308 // Note that this may be an outbound SCID alias for the associated channel.
309 short_channel_id: u64,
310 user_channel_id: Option<u128>,
312 incoming_packet_shared_secret: [u8; 32],
313 phantom_shared_secret: Option<[u8; 32]>,
314 blinded_failure: Option<BlindedFailure>,
316 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
317 // channel with a preimage provided by the forward channel.
322 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
324 /// This is only here for backwards-compatibility in serialization, in the future it can be
325 /// removed, breaking clients running 0.0.106 and earlier.
326 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
328 /// Contains the payer-provided preimage.
329 Spontaneous(PaymentPreimage),
332 /// HTLCs that are to us and can be failed/claimed by the user
333 struct ClaimableHTLC {
334 prev_hop: HTLCPreviousHopData,
336 /// The amount (in msats) of this MPP part
338 /// The amount (in msats) that the sender intended to be sent in this MPP
339 /// part (used for validating total MPP amount)
340 sender_intended_value: u64,
341 onion_payload: OnionPayload,
343 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
344 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
345 total_value_received: Option<u64>,
346 /// The sender intended sum total of all MPP parts specified in the onion
348 /// The extra fee our counterparty skimmed off the top of this HTLC.
349 counterparty_skimmed_fee_msat: Option<u64>,
352 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
353 fn from(val: &ClaimableHTLC) -> Self {
354 events::ClaimedHTLC {
355 channel_id: val.prev_hop.outpoint.to_channel_id(),
356 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
357 cltv_expiry: val.cltv_expiry,
358 value_msat: val.value,
359 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
364 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
365 /// a payment and ensure idempotency in LDK.
367 /// This is not exported to bindings users as we just use [u8; 32] directly
368 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
369 pub struct PaymentId(pub [u8; Self::LENGTH]);
372 /// Number of bytes in the id.
373 pub const LENGTH: usize = 32;
376 impl Writeable for PaymentId {
377 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
382 impl Readable for PaymentId {
383 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
384 let buf: [u8; 32] = Readable::read(r)?;
389 impl core::fmt::Display for PaymentId {
390 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
391 crate::util::logger::DebugBytes(&self.0).fmt(f)
395 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
397 /// This is not exported to bindings users as we just use [u8; 32] directly
398 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
399 pub struct InterceptId(pub [u8; 32]);
401 impl Writeable for InterceptId {
402 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
407 impl Readable for InterceptId {
408 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
409 let buf: [u8; 32] = Readable::read(r)?;
414 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
415 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
416 pub(crate) enum SentHTLCId {
417 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
418 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
421 pub(crate) fn from_source(source: &HTLCSource) -> Self {
423 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
424 short_channel_id: hop_data.short_channel_id,
425 htlc_id: hop_data.htlc_id,
427 HTLCSource::OutboundRoute { session_priv, .. } =>
428 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
432 impl_writeable_tlv_based_enum!(SentHTLCId,
433 (0, PreviousHopData) => {
434 (0, short_channel_id, required),
435 (2, htlc_id, required),
437 (2, OutboundRoute) => {
438 (0, session_priv, required),
443 /// Tracks the inbound corresponding to an outbound HTLC
444 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
445 #[derive(Clone, Debug, PartialEq, Eq)]
446 pub(crate) enum HTLCSource {
447 PreviousHopData(HTLCPreviousHopData),
450 session_priv: SecretKey,
451 /// Technically we can recalculate this from the route, but we cache it here to avoid
452 /// doing a double-pass on route when we get a failure back
453 first_hop_htlc_msat: u64,
454 payment_id: PaymentId,
457 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
458 impl core::hash::Hash for HTLCSource {
459 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
461 HTLCSource::PreviousHopData(prev_hop_data) => {
463 prev_hop_data.hash(hasher);
465 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
468 session_priv[..].hash(hasher);
469 payment_id.hash(hasher);
470 first_hop_htlc_msat.hash(hasher);
476 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
478 pub fn dummy() -> Self {
479 HTLCSource::OutboundRoute {
480 path: Path { hops: Vec::new(), blinded_tail: None },
481 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
482 first_hop_htlc_msat: 0,
483 payment_id: PaymentId([2; 32]),
487 #[cfg(debug_assertions)]
488 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
489 /// transaction. Useful to ensure different datastructures match up.
490 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
491 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
492 *first_hop_htlc_msat == htlc.amount_msat
494 // There's nothing we can check for forwarded HTLCs
500 /// This enum is used to specify which error data to send to peers when failing back an HTLC
501 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
503 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
504 #[derive(Clone, Copy)]
505 pub enum FailureCode {
506 /// We had a temporary error processing the payment. Useful if no other error codes fit
507 /// and you want to indicate that the payer may want to retry.
508 TemporaryNodeFailure,
509 /// We have a required feature which was not in this onion. For example, you may require
510 /// some additional metadata that was not provided with this payment.
511 RequiredNodeFeatureMissing,
512 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
513 /// the HTLC is too close to the current block height for safe handling.
514 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
515 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
516 IncorrectOrUnknownPaymentDetails,
517 /// We failed to process the payload after the onion was decrypted. You may wish to
518 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
520 /// If available, the tuple data may include the type number and byte offset in the
521 /// decrypted byte stream where the failure occurred.
522 InvalidOnionPayload(Option<(u64, u16)>),
525 impl Into<u16> for FailureCode {
526 fn into(self) -> u16 {
528 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
529 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
530 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
531 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
536 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
537 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
538 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
539 /// peer_state lock. We then return the set of things that need to be done outside the lock in
540 /// this struct and call handle_error!() on it.
542 struct MsgHandleErrInternal {
543 err: msgs::LightningError,
544 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
545 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
546 channel_capacity: Option<u64>,
548 impl MsgHandleErrInternal {
550 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
552 err: LightningError {
554 action: msgs::ErrorAction::SendErrorMessage {
555 msg: msgs::ErrorMessage {
562 shutdown_finish: None,
563 channel_capacity: None,
567 fn from_no_close(err: msgs::LightningError) -> Self {
568 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
571 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
572 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
573 let action = if shutdown_res.monitor_update.is_some() {
574 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
575 // should disconnect our peer such that we force them to broadcast their latest
576 // commitment upon reconnecting.
577 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
579 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
582 err: LightningError { err, action },
583 chan_id: Some((channel_id, user_channel_id)),
584 shutdown_finish: Some((shutdown_res, channel_update)),
585 channel_capacity: Some(channel_capacity)
589 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
592 ChannelError::Warn(msg) => LightningError {
594 action: msgs::ErrorAction::SendWarningMessage {
595 msg: msgs::WarningMessage {
599 log_level: Level::Warn,
602 ChannelError::Ignore(msg) => LightningError {
604 action: msgs::ErrorAction::IgnoreError,
606 ChannelError::Close(msg) => LightningError {
608 action: msgs::ErrorAction::SendErrorMessage {
609 msg: msgs::ErrorMessage {
617 shutdown_finish: None,
618 channel_capacity: None,
622 fn closes_channel(&self) -> bool {
623 self.chan_id.is_some()
627 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
628 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
629 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
630 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
631 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
633 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
634 /// be sent in the order they appear in the return value, however sometimes the order needs to be
635 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
636 /// they were originally sent). In those cases, this enum is also returned.
637 #[derive(Clone, PartialEq)]
638 pub(super) enum RAACommitmentOrder {
639 /// Send the CommitmentUpdate messages first
641 /// Send the RevokeAndACK message first
645 /// Information about a payment which is currently being claimed.
646 struct ClaimingPayment {
648 payment_purpose: events::PaymentPurpose,
649 receiver_node_id: PublicKey,
650 htlcs: Vec<events::ClaimedHTLC>,
651 sender_intended_value: Option<u64>,
653 impl_writeable_tlv_based!(ClaimingPayment, {
654 (0, amount_msat, required),
655 (2, payment_purpose, required),
656 (4, receiver_node_id, required),
657 (5, htlcs, optional_vec),
658 (7, sender_intended_value, option),
661 struct ClaimablePayment {
662 purpose: events::PaymentPurpose,
663 onion_fields: Option<RecipientOnionFields>,
664 htlcs: Vec<ClaimableHTLC>,
667 /// Information about claimable or being-claimed payments
668 struct ClaimablePayments {
669 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
670 /// failed/claimed by the user.
672 /// Note that, no consistency guarantees are made about the channels given here actually
673 /// existing anymore by the time you go to read them!
675 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
676 /// we don't get a duplicate payment.
677 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
679 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
680 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
681 /// as an [`events::Event::PaymentClaimed`].
682 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
685 /// Events which we process internally but cannot be processed immediately at the generation site
686 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
687 /// running normally, and specifically must be processed before any other non-background
688 /// [`ChannelMonitorUpdate`]s are applied.
690 enum BackgroundEvent {
691 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
692 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
693 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
694 /// channel has been force-closed we do not need the counterparty node_id.
696 /// Note that any such events are lost on shutdown, so in general they must be updates which
697 /// are regenerated on startup.
698 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
699 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
700 /// channel to continue normal operation.
702 /// In general this should be used rather than
703 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
704 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
705 /// error the other variant is acceptable.
707 /// Note that any such events are lost on shutdown, so in general they must be updates which
708 /// are regenerated on startup.
709 MonitorUpdateRegeneratedOnStartup {
710 counterparty_node_id: PublicKey,
711 funding_txo: OutPoint,
712 update: ChannelMonitorUpdate
714 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
715 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
717 MonitorUpdatesComplete {
718 counterparty_node_id: PublicKey,
719 channel_id: ChannelId,
724 pub(crate) enum MonitorUpdateCompletionAction {
725 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
726 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
727 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
728 /// event can be generated.
729 PaymentClaimed { payment_hash: PaymentHash },
730 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
731 /// operation of another channel.
733 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
734 /// from completing a monitor update which removes the payment preimage until the inbound edge
735 /// completes a monitor update containing the payment preimage. In that case, after the inbound
736 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
738 EmitEventAndFreeOtherChannel {
739 event: events::Event,
740 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
742 /// Indicates we should immediately resume the operation of another channel, unless there is
743 /// some other reason why the channel is blocked. In practice this simply means immediately
744 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
746 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
747 /// from completing a monitor update which removes the payment preimage until the inbound edge
748 /// completes a monitor update containing the payment preimage. However, we use this variant
749 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
750 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
752 /// This variant should thus never be written to disk, as it is processed inline rather than
753 /// stored for later processing.
754 FreeOtherChannelImmediately {
755 downstream_counterparty_node_id: PublicKey,
756 downstream_funding_outpoint: OutPoint,
757 blocking_action: RAAMonitorUpdateBlockingAction,
761 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
762 (0, PaymentClaimed) => { (0, payment_hash, required) },
763 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
764 // *immediately*. However, for simplicity we implement read/write here.
765 (1, FreeOtherChannelImmediately) => {
766 (0, downstream_counterparty_node_id, required),
767 (2, downstream_funding_outpoint, required),
768 (4, blocking_action, required),
770 (2, EmitEventAndFreeOtherChannel) => {
771 (0, event, upgradable_required),
772 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
773 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
774 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
775 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
776 // downgrades to prior versions.
777 (1, downstream_counterparty_and_funding_outpoint, option),
781 #[derive(Clone, Debug, PartialEq, Eq)]
782 pub(crate) enum EventCompletionAction {
783 ReleaseRAAChannelMonitorUpdate {
784 counterparty_node_id: PublicKey,
785 channel_funding_outpoint: OutPoint,
788 impl_writeable_tlv_based_enum!(EventCompletionAction,
789 (0, ReleaseRAAChannelMonitorUpdate) => {
790 (0, channel_funding_outpoint, required),
791 (2, counterparty_node_id, required),
795 #[derive(Clone, PartialEq, Eq, Debug)]
796 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
797 /// the blocked action here. See enum variants for more info.
798 pub(crate) enum RAAMonitorUpdateBlockingAction {
799 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
800 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
802 ForwardedPaymentInboundClaim {
803 /// The upstream channel ID (i.e. the inbound edge).
804 channel_id: ChannelId,
805 /// The HTLC ID on the inbound edge.
810 impl RAAMonitorUpdateBlockingAction {
811 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
812 Self::ForwardedPaymentInboundClaim {
813 channel_id: prev_hop.outpoint.to_channel_id(),
814 htlc_id: prev_hop.htlc_id,
819 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
820 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
824 /// State we hold per-peer.
825 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
826 /// `channel_id` -> `ChannelPhase`
828 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
829 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
830 /// `temporary_channel_id` -> `InboundChannelRequest`.
832 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
833 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
834 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
835 /// the channel is rejected, then the entry is simply removed.
836 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
837 /// The latest `InitFeatures` we heard from the peer.
838 latest_features: InitFeatures,
839 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
840 /// for broadcast messages, where ordering isn't as strict).
841 pub(super) pending_msg_events: Vec<MessageSendEvent>,
842 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
843 /// user but which have not yet completed.
845 /// Note that the channel may no longer exist. For example if the channel was closed but we
846 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
847 /// for a missing channel.
848 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
849 /// Map from a specific channel to some action(s) that should be taken when all pending
850 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
852 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
853 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
854 /// channels with a peer this will just be one allocation and will amount to a linear list of
855 /// channels to walk, avoiding the whole hashing rigmarole.
857 /// Note that the channel may no longer exist. For example, if a channel was closed but we
858 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
859 /// for a missing channel. While a malicious peer could construct a second channel with the
860 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
861 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
862 /// duplicates do not occur, so such channels should fail without a monitor update completing.
863 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
864 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
865 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
866 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
867 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
868 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
869 /// The peer is currently connected (i.e. we've seen a
870 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
871 /// [`ChannelMessageHandler::peer_disconnected`].
875 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
876 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
877 /// If true is passed for `require_disconnected`, the function will return false if we haven't
878 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
879 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
880 if require_disconnected && self.is_connected {
883 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
884 && self.monitor_update_blocked_actions.is_empty()
885 && self.in_flight_monitor_updates.is_empty()
888 // Returns a count of all channels we have with this peer, including unfunded channels.
889 fn total_channel_count(&self) -> usize {
890 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
893 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
894 fn has_channel(&self, channel_id: &ChannelId) -> bool {
895 self.channel_by_id.contains_key(channel_id) ||
896 self.inbound_channel_request_by_id.contains_key(channel_id)
900 /// A not-yet-accepted inbound (from counterparty) channel. Once
901 /// accepted, the parameters will be used to construct a channel.
902 pub(super) struct InboundChannelRequest {
903 /// The original OpenChannel message.
904 pub open_channel_msg: msgs::OpenChannel,
905 /// The number of ticks remaining before the request expires.
906 pub ticks_remaining: i32,
909 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
910 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
911 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
913 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
914 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
916 /// For users who don't want to bother doing their own payment preimage storage, we also store that
919 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
920 /// and instead encoding it in the payment secret.
921 struct PendingInboundPayment {
922 /// The payment secret that the sender must use for us to accept this payment
923 payment_secret: PaymentSecret,
924 /// Time at which this HTLC expires - blocks with a header time above this value will result in
925 /// this payment being removed.
927 /// Arbitrary identifier the user specifies (or not)
928 user_payment_id: u64,
929 // Other required attributes of the payment, optionally enforced:
930 payment_preimage: Option<PaymentPreimage>,
931 min_value_msat: Option<u64>,
934 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
935 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
936 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
937 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
938 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
939 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
940 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
941 /// of [`KeysManager`] and [`DefaultRouter`].
943 /// This is not exported to bindings users as type aliases aren't supported in most languages.
944 #[cfg(not(c_bindings))]
945 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
953 Arc<NetworkGraph<Arc<L>>>,
955 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
956 ProbabilisticScoringFeeParameters,
957 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
962 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
963 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
964 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
965 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
966 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
967 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
968 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
969 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
970 /// of [`KeysManager`] and [`DefaultRouter`].
972 /// This is not exported to bindings users as type aliases aren't supported in most languages.
973 #[cfg(not(c_bindings))]
974 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
983 &'f NetworkGraph<&'g L>,
985 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
986 ProbabilisticScoringFeeParameters,
987 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
992 /// A trivial trait which describes any [`ChannelManager`].
994 /// This is not exported to bindings users as general cover traits aren't useful in other
996 pub trait AChannelManager {
997 /// A type implementing [`chain::Watch`].
998 type Watch: chain::Watch<Self::Signer> + ?Sized;
999 /// A type that may be dereferenced to [`Self::Watch`].
1000 type M: Deref<Target = Self::Watch>;
1001 /// A type implementing [`BroadcasterInterface`].
1002 type Broadcaster: BroadcasterInterface + ?Sized;
1003 /// A type that may be dereferenced to [`Self::Broadcaster`].
1004 type T: Deref<Target = Self::Broadcaster>;
1005 /// A type implementing [`EntropySource`].
1006 type EntropySource: EntropySource + ?Sized;
1007 /// A type that may be dereferenced to [`Self::EntropySource`].
1008 type ES: Deref<Target = Self::EntropySource>;
1009 /// A type implementing [`NodeSigner`].
1010 type NodeSigner: NodeSigner + ?Sized;
1011 /// A type that may be dereferenced to [`Self::NodeSigner`].
1012 type NS: Deref<Target = Self::NodeSigner>;
1013 /// A type implementing [`WriteableEcdsaChannelSigner`].
1014 type Signer: WriteableEcdsaChannelSigner + Sized;
1015 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1016 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1017 /// A type that may be dereferenced to [`Self::SignerProvider`].
1018 type SP: Deref<Target = Self::SignerProvider>;
1019 /// A type implementing [`FeeEstimator`].
1020 type FeeEstimator: FeeEstimator + ?Sized;
1021 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1022 type F: Deref<Target = Self::FeeEstimator>;
1023 /// A type implementing [`Router`].
1024 type Router: Router + ?Sized;
1025 /// A type that may be dereferenced to [`Self::Router`].
1026 type R: Deref<Target = Self::Router>;
1027 /// A type implementing [`Logger`].
1028 type Logger: Logger + ?Sized;
1029 /// A type that may be dereferenced to [`Self::Logger`].
1030 type L: Deref<Target = Self::Logger>;
1031 /// Returns a reference to the actual [`ChannelManager`] object.
1032 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1035 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1036 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1038 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1039 T::Target: BroadcasterInterface,
1040 ES::Target: EntropySource,
1041 NS::Target: NodeSigner,
1042 SP::Target: SignerProvider,
1043 F::Target: FeeEstimator,
1047 type Watch = M::Target;
1049 type Broadcaster = T::Target;
1051 type EntropySource = ES::Target;
1053 type NodeSigner = NS::Target;
1055 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1056 type SignerProvider = SP::Target;
1058 type FeeEstimator = F::Target;
1060 type Router = R::Target;
1062 type Logger = L::Target;
1064 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1067 /// Manager which keeps track of a number of channels and sends messages to the appropriate
1068 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
1070 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
1071 /// to individual Channels.
1073 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1074 /// all peers during write/read (though does not modify this instance, only the instance being
1075 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1076 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1078 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1079 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1080 /// [`ChannelMonitorUpdate`] before returning from
1081 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1082 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1083 /// `ChannelManager` operations from occurring during the serialization process). If the
1084 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1085 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1086 /// will be lost (modulo on-chain transaction fees).
1088 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1089 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1090 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1092 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1093 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1094 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1095 /// offline for a full minute. In order to track this, you must call
1096 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1098 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1099 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1100 /// not have a channel with being unable to connect to us or open new channels with us if we have
1101 /// many peers with unfunded channels.
1103 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1104 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1105 /// never limited. Please ensure you limit the count of such channels yourself.
1107 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1108 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1109 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1110 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1111 /// you're using lightning-net-tokio.
1113 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1114 /// [`funding_created`]: msgs::FundingCreated
1115 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1116 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1117 /// [`update_channel`]: chain::Watch::update_channel
1118 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1119 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1120 /// [`read`]: ReadableArgs::read
1123 // The tree structure below illustrates the lock order requirements for the different locks of the
1124 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1125 // and should then be taken in the order of the lowest to the highest level in the tree.
1126 // Note that locks on different branches shall not be taken at the same time, as doing so will
1127 // create a new lock order for those specific locks in the order they were taken.
1131 // `pending_offers_messages`
1133 // `total_consistency_lock`
1135 // |__`forward_htlcs`
1137 // | |__`pending_intercepted_htlcs`
1139 // |__`per_peer_state`
1141 // |__`pending_inbound_payments`
1143 // |__`claimable_payments`
1145 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1151 // |__`short_to_chan_info`
1153 // |__`outbound_scid_aliases`
1157 // |__`pending_events`
1159 // |__`pending_background_events`
1161 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1163 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1164 T::Target: BroadcasterInterface,
1165 ES::Target: EntropySource,
1166 NS::Target: NodeSigner,
1167 SP::Target: SignerProvider,
1168 F::Target: FeeEstimator,
1172 default_configuration: UserConfig,
1173 chain_hash: ChainHash,
1174 fee_estimator: LowerBoundedFeeEstimator<F>,
1180 /// See `ChannelManager` struct-level documentation for lock order requirements.
1182 pub(super) best_block: RwLock<BestBlock>,
1184 best_block: RwLock<BestBlock>,
1185 secp_ctx: Secp256k1<secp256k1::All>,
1187 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1188 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1189 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1190 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1192 /// See `ChannelManager` struct-level documentation for lock order requirements.
1193 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1195 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1196 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1197 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1198 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1199 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1200 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1201 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1202 /// after reloading from disk while replaying blocks against ChannelMonitors.
1204 /// See `PendingOutboundPayment` documentation for more info.
1206 /// See `ChannelManager` struct-level documentation for lock order requirements.
1207 pending_outbound_payments: OutboundPayments,
1209 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1211 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1212 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1213 /// and via the classic SCID.
1215 /// Note that no consistency guarantees are made about the existence of a channel with the
1216 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1218 /// See `ChannelManager` struct-level documentation for lock order requirements.
1220 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1222 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1223 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1224 /// until the user tells us what we should do with them.
1226 /// See `ChannelManager` struct-level documentation for lock order requirements.
1227 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1229 /// The sets of payments which are claimable or currently being claimed. See
1230 /// [`ClaimablePayments`]' individual field docs for more info.
1232 /// See `ChannelManager` struct-level documentation for lock order requirements.
1233 claimable_payments: Mutex<ClaimablePayments>,
1235 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1236 /// and some closed channels which reached a usable state prior to being closed. This is used
1237 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1238 /// active channel list on load.
1240 /// See `ChannelManager` struct-level documentation for lock order requirements.
1241 outbound_scid_aliases: Mutex<HashSet<u64>>,
1243 /// `channel_id` -> `counterparty_node_id`.
1245 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1246 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1247 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1249 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1250 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1251 /// the handling of the events.
1253 /// Note that no consistency guarantees are made about the existence of a peer with the
1254 /// `counterparty_node_id` in our other maps.
1257 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1258 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1259 /// would break backwards compatability.
1260 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1261 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1262 /// required to access the channel with the `counterparty_node_id`.
1264 /// See `ChannelManager` struct-level documentation for lock order requirements.
1265 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1267 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1269 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1270 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1271 /// confirmation depth.
1273 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1274 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1275 /// channel with the `channel_id` in our other maps.
1277 /// See `ChannelManager` struct-level documentation for lock order requirements.
1279 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1281 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1283 our_network_pubkey: PublicKey,
1285 inbound_payment_key: inbound_payment::ExpandedKey,
1287 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1288 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1289 /// we encrypt the namespace identifier using these bytes.
1291 /// [fake scids]: crate::util::scid_utils::fake_scid
1292 fake_scid_rand_bytes: [u8; 32],
1294 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1295 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1296 /// keeping additional state.
1297 probing_cookie_secret: [u8; 32],
1299 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1300 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1301 /// very far in the past, and can only ever be up to two hours in the future.
1302 highest_seen_timestamp: AtomicUsize,
1304 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1305 /// basis, as well as the peer's latest features.
1307 /// If we are connected to a peer we always at least have an entry here, even if no channels
1308 /// are currently open with that peer.
1310 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1311 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1314 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1316 /// See `ChannelManager` struct-level documentation for lock order requirements.
1317 #[cfg(not(any(test, feature = "_test_utils")))]
1318 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1319 #[cfg(any(test, feature = "_test_utils"))]
1320 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1322 /// The set of events which we need to give to the user to handle. In some cases an event may
1323 /// require some further action after the user handles it (currently only blocking a monitor
1324 /// update from being handed to the user to ensure the included changes to the channel state
1325 /// are handled by the user before they're persisted durably to disk). In that case, the second
1326 /// element in the tuple is set to `Some` with further details of the action.
1328 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1329 /// could be in the middle of being processed without the direct mutex held.
1331 /// See `ChannelManager` struct-level documentation for lock order requirements.
1332 #[cfg(not(any(test, feature = "_test_utils")))]
1333 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1334 #[cfg(any(test, feature = "_test_utils"))]
1335 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1337 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1338 pending_events_processor: AtomicBool,
1340 /// If we are running during init (either directly during the deserialization method or in
1341 /// block connection methods which run after deserialization but before normal operation) we
1342 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1343 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1344 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1346 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1348 /// See `ChannelManager` struct-level documentation for lock order requirements.
1350 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1351 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1352 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1353 /// Essentially just when we're serializing ourselves out.
1354 /// Taken first everywhere where we are making changes before any other locks.
1355 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1356 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1357 /// Notifier the lock contains sends out a notification when the lock is released.
1358 total_consistency_lock: RwLock<()>,
1359 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1360 /// received and the monitor has been persisted.
1362 /// This information does not need to be persisted as funding nodes can forget
1363 /// unfunded channels upon disconnection.
1364 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1366 background_events_processed_since_startup: AtomicBool,
1368 event_persist_notifier: Notifier,
1369 needs_persist_flag: AtomicBool,
1371 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1375 signer_provider: SP,
1380 /// Chain-related parameters used to construct a new `ChannelManager`.
1382 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1383 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1384 /// are not needed when deserializing a previously constructed `ChannelManager`.
1385 #[derive(Clone, Copy, PartialEq)]
1386 pub struct ChainParameters {
1387 /// The network for determining the `chain_hash` in Lightning messages.
1388 pub network: Network,
1390 /// The hash and height of the latest block successfully connected.
1392 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1393 pub best_block: BestBlock,
1396 #[derive(Copy, Clone, PartialEq)]
1400 SkipPersistHandleEvents,
1401 SkipPersistNoEvents,
1404 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1405 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1406 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1407 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1408 /// sending the aforementioned notification (since the lock being released indicates that the
1409 /// updates are ready for persistence).
1411 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1412 /// notify or not based on whether relevant changes have been made, providing a closure to
1413 /// `optionally_notify` which returns a `NotifyOption`.
1414 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1415 event_persist_notifier: &'a Notifier,
1416 needs_persist_flag: &'a AtomicBool,
1418 // We hold onto this result so the lock doesn't get released immediately.
1419 _read_guard: RwLockReadGuard<'a, ()>,
1422 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1423 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1424 /// events to handle.
1426 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1427 /// other cases where losing the changes on restart may result in a force-close or otherwise
1429 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1430 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1433 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1434 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1435 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1436 let force_notify = cm.get_cm().process_background_events();
1438 PersistenceNotifierGuard {
1439 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1440 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1441 should_persist: move || {
1442 // Pick the "most" action between `persist_check` and the background events
1443 // processing and return that.
1444 let notify = persist_check();
1445 match (notify, force_notify) {
1446 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1447 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1448 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1449 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1450 _ => NotifyOption::SkipPersistNoEvents,
1453 _read_guard: read_guard,
1457 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1458 /// [`ChannelManager::process_background_events`] MUST be called first (or
1459 /// [`Self::optionally_notify`] used).
1460 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1461 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1462 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1464 PersistenceNotifierGuard {
1465 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1466 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1467 should_persist: persist_check,
1468 _read_guard: read_guard,
1473 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1474 fn drop(&mut self) {
1475 match (self.should_persist)() {
1476 NotifyOption::DoPersist => {
1477 self.needs_persist_flag.store(true, Ordering::Release);
1478 self.event_persist_notifier.notify()
1480 NotifyOption::SkipPersistHandleEvents =>
1481 self.event_persist_notifier.notify(),
1482 NotifyOption::SkipPersistNoEvents => {},
1487 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1488 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1490 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1492 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1493 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1494 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1495 /// the maximum required amount in lnd as of March 2021.
1496 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1498 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1499 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1501 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1503 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1504 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1505 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1506 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1507 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1508 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1509 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1510 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1511 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1512 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1513 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1514 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1515 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1517 /// Minimum CLTV difference between the current block height and received inbound payments.
1518 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1520 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1521 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1522 // a payment was being routed, so we add an extra block to be safe.
1523 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1525 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1526 // ie that if the next-hop peer fails the HTLC within
1527 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1528 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1529 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1530 // LATENCY_GRACE_PERIOD_BLOCKS.
1533 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1535 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1536 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1539 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1541 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1542 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1544 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1545 /// until we mark the channel disabled and gossip the update.
1546 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1548 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1549 /// we mark the channel enabled and gossip the update.
1550 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1552 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1553 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1554 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1555 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1557 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1558 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1559 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1561 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1562 /// many peers we reject new (inbound) connections.
1563 const MAX_NO_CHANNEL_PEERS: usize = 250;
1565 /// Information needed for constructing an invoice route hint for this channel.
1566 #[derive(Clone, Debug, PartialEq)]
1567 pub struct CounterpartyForwardingInfo {
1568 /// Base routing fee in millisatoshis.
1569 pub fee_base_msat: u32,
1570 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1571 pub fee_proportional_millionths: u32,
1572 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1573 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1574 /// `cltv_expiry_delta` for more details.
1575 pub cltv_expiry_delta: u16,
1578 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1579 /// to better separate parameters.
1580 #[derive(Clone, Debug, PartialEq)]
1581 pub struct ChannelCounterparty {
1582 /// The node_id of our counterparty
1583 pub node_id: PublicKey,
1584 /// The Features the channel counterparty provided upon last connection.
1585 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1586 /// many routing-relevant features are present in the init context.
1587 pub features: InitFeatures,
1588 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1589 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1590 /// claiming at least this value on chain.
1592 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1594 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1595 pub unspendable_punishment_reserve: u64,
1596 /// Information on the fees and requirements that the counterparty requires when forwarding
1597 /// payments to us through this channel.
1598 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1599 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1600 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1601 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1602 pub outbound_htlc_minimum_msat: Option<u64>,
1603 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1604 pub outbound_htlc_maximum_msat: Option<u64>,
1607 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1608 #[derive(Clone, Debug, PartialEq)]
1609 pub struct ChannelDetails {
1610 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1611 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1612 /// Note that this means this value is *not* persistent - it can change once during the
1613 /// lifetime of the channel.
1614 pub channel_id: ChannelId,
1615 /// Parameters which apply to our counterparty. See individual fields for more information.
1616 pub counterparty: ChannelCounterparty,
1617 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1618 /// our counterparty already.
1620 /// Note that, if this has been set, `channel_id` will be equivalent to
1621 /// `funding_txo.unwrap().to_channel_id()`.
1622 pub funding_txo: Option<OutPoint>,
1623 /// The features which this channel operates with. See individual features for more info.
1625 /// `None` until negotiation completes and the channel type is finalized.
1626 pub channel_type: Option<ChannelTypeFeatures>,
1627 /// The position of the funding transaction in the chain. None if the funding transaction has
1628 /// not yet been confirmed and the channel fully opened.
1630 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1631 /// payments instead of this. See [`get_inbound_payment_scid`].
1633 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1634 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1636 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1637 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1638 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1639 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1640 /// [`confirmations_required`]: Self::confirmations_required
1641 pub short_channel_id: Option<u64>,
1642 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1643 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1644 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1647 /// This will be `None` as long as the channel is not available for routing outbound payments.
1649 /// [`short_channel_id`]: Self::short_channel_id
1650 /// [`confirmations_required`]: Self::confirmations_required
1651 pub outbound_scid_alias: Option<u64>,
1652 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1653 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1654 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1655 /// when they see a payment to be routed to us.
1657 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1658 /// previous values for inbound payment forwarding.
1660 /// [`short_channel_id`]: Self::short_channel_id
1661 pub inbound_scid_alias: Option<u64>,
1662 /// The value, in satoshis, of this channel as appears in the funding output
1663 pub channel_value_satoshis: u64,
1664 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1665 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1666 /// this value on chain.
1668 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1670 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1672 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1673 pub unspendable_punishment_reserve: Option<u64>,
1674 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1675 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1676 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1677 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1678 /// serialized with LDK versions prior to 0.0.113.
1680 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1681 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1682 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1683 pub user_channel_id: u128,
1684 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1685 /// which is applied to commitment and HTLC transactions.
1687 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1688 pub feerate_sat_per_1000_weight: Option<u32>,
1689 /// Our total balance. This is the amount we would get if we close the channel.
1690 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1691 /// amount is not likely to be recoverable on close.
1693 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1694 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1695 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1696 /// This does not consider any on-chain fees.
1698 /// See also [`ChannelDetails::outbound_capacity_msat`]
1699 pub balance_msat: u64,
1700 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1701 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1702 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1703 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1705 /// See also [`ChannelDetails::balance_msat`]
1707 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1708 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1709 /// should be able to spend nearly this amount.
1710 pub outbound_capacity_msat: u64,
1711 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1712 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1713 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1714 /// to use a limit as close as possible to the HTLC limit we can currently send.
1716 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1717 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1718 pub next_outbound_htlc_limit_msat: u64,
1719 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1720 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1721 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1722 /// route which is valid.
1723 pub next_outbound_htlc_minimum_msat: u64,
1724 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1725 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1726 /// available for inclusion in new inbound HTLCs).
1727 /// Note that there are some corner cases not fully handled here, so the actual available
1728 /// inbound capacity may be slightly higher than this.
1730 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1731 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1732 /// However, our counterparty should be able to spend nearly this amount.
1733 pub inbound_capacity_msat: u64,
1734 /// The number of required confirmations on the funding transaction before the funding will be
1735 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1736 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1737 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1738 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1740 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1742 /// [`is_outbound`]: ChannelDetails::is_outbound
1743 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1744 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1745 pub confirmations_required: Option<u32>,
1746 /// The current number of confirmations on the funding transaction.
1748 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1749 pub confirmations: Option<u32>,
1750 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1751 /// until we can claim our funds after we force-close the channel. During this time our
1752 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1753 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1754 /// time to claim our non-HTLC-encumbered funds.
1756 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1757 pub force_close_spend_delay: Option<u16>,
1758 /// True if the channel was initiated (and thus funded) by us.
1759 pub is_outbound: bool,
1760 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1761 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1762 /// required confirmation count has been reached (and we were connected to the peer at some
1763 /// point after the funding transaction received enough confirmations). The required
1764 /// confirmation count is provided in [`confirmations_required`].
1766 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1767 pub is_channel_ready: bool,
1768 /// The stage of the channel's shutdown.
1769 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1770 pub channel_shutdown_state: Option<ChannelShutdownState>,
1771 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1772 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1774 /// This is a strict superset of `is_channel_ready`.
1775 pub is_usable: bool,
1776 /// True if this channel is (or will be) publicly-announced.
1777 pub is_public: bool,
1778 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1779 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1780 pub inbound_htlc_minimum_msat: Option<u64>,
1781 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1782 pub inbound_htlc_maximum_msat: Option<u64>,
1783 /// Set of configurable parameters that affect channel operation.
1785 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1786 pub config: Option<ChannelConfig>,
1789 impl ChannelDetails {
1790 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1791 /// This should be used for providing invoice hints or in any other context where our
1792 /// counterparty will forward a payment to us.
1794 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1795 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1796 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1797 self.inbound_scid_alias.or(self.short_channel_id)
1800 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1801 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1802 /// we're sending or forwarding a payment outbound over this channel.
1804 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1805 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1806 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1807 self.short_channel_id.or(self.outbound_scid_alias)
1810 fn from_channel_context<SP: Deref, F: Deref>(
1811 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1812 fee_estimator: &LowerBoundedFeeEstimator<F>
1815 SP::Target: SignerProvider,
1816 F::Target: FeeEstimator
1818 let balance = context.get_available_balances(fee_estimator);
1819 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1820 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1822 channel_id: context.channel_id(),
1823 counterparty: ChannelCounterparty {
1824 node_id: context.get_counterparty_node_id(),
1825 features: latest_features,
1826 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1827 forwarding_info: context.counterparty_forwarding_info(),
1828 // Ensures that we have actually received the `htlc_minimum_msat` value
1829 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1830 // message (as they are always the first message from the counterparty).
1831 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1832 // default `0` value set by `Channel::new_outbound`.
1833 outbound_htlc_minimum_msat: if context.have_received_message() {
1834 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1835 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1837 funding_txo: context.get_funding_txo(),
1838 // Note that accept_channel (or open_channel) is always the first message, so
1839 // `have_received_message` indicates that type negotiation has completed.
1840 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1841 short_channel_id: context.get_short_channel_id(),
1842 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1843 inbound_scid_alias: context.latest_inbound_scid_alias(),
1844 channel_value_satoshis: context.get_value_satoshis(),
1845 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1846 unspendable_punishment_reserve: to_self_reserve_satoshis,
1847 balance_msat: balance.balance_msat,
1848 inbound_capacity_msat: balance.inbound_capacity_msat,
1849 outbound_capacity_msat: balance.outbound_capacity_msat,
1850 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1851 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1852 user_channel_id: context.get_user_id(),
1853 confirmations_required: context.minimum_depth(),
1854 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1855 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1856 is_outbound: context.is_outbound(),
1857 is_channel_ready: context.is_usable(),
1858 is_usable: context.is_live(),
1859 is_public: context.should_announce(),
1860 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1861 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1862 config: Some(context.config()),
1863 channel_shutdown_state: Some(context.shutdown_state()),
1868 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1869 /// Further information on the details of the channel shutdown.
1870 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1871 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1872 /// the channel will be removed shortly.
1873 /// Also note, that in normal operation, peers could disconnect at any of these states
1874 /// and require peer re-connection before making progress onto other states
1875 pub enum ChannelShutdownState {
1876 /// Channel has not sent or received a shutdown message.
1878 /// Local node has sent a shutdown message for this channel.
1880 /// Shutdown message exchanges have concluded and the channels are in the midst of
1881 /// resolving all existing open HTLCs before closing can continue.
1883 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1884 NegotiatingClosingFee,
1885 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1886 /// to drop the channel.
1890 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1891 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1892 #[derive(Debug, PartialEq)]
1893 pub enum RecentPaymentDetails {
1894 /// When an invoice was requested and thus a payment has not yet been sent.
1896 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1897 /// a payment and ensure idempotency in LDK.
1898 payment_id: PaymentId,
1900 /// When a payment is still being sent and awaiting successful delivery.
1902 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1903 /// a payment and ensure idempotency in LDK.
1904 payment_id: PaymentId,
1905 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1907 payment_hash: PaymentHash,
1908 /// Total amount (in msat, excluding fees) across all paths for this payment,
1909 /// not just the amount currently inflight.
1912 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1913 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1914 /// payment is removed from tracking.
1916 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1917 /// a payment and ensure idempotency in LDK.
1918 payment_id: PaymentId,
1919 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1920 /// made before LDK version 0.0.104.
1921 payment_hash: Option<PaymentHash>,
1923 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1924 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1925 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1927 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1928 /// a payment and ensure idempotency in LDK.
1929 payment_id: PaymentId,
1930 /// Hash of the payment that we have given up trying to send.
1931 payment_hash: PaymentHash,
1935 /// Route hints used in constructing invoices for [phantom node payents].
1937 /// [phantom node payments]: crate::sign::PhantomKeysManager
1939 pub struct PhantomRouteHints {
1940 /// The list of channels to be included in the invoice route hints.
1941 pub channels: Vec<ChannelDetails>,
1942 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1944 pub phantom_scid: u64,
1945 /// The pubkey of the real backing node that would ultimately receive the payment.
1946 pub real_node_pubkey: PublicKey,
1949 macro_rules! handle_error {
1950 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1951 // In testing, ensure there are no deadlocks where the lock is already held upon
1952 // entering the macro.
1953 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1954 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1958 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1959 let mut msg_events = Vec::with_capacity(2);
1961 if let Some((shutdown_res, update_option)) = shutdown_finish {
1962 $self.finish_close_channel(shutdown_res);
1963 if let Some(update) = update_option {
1964 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1968 if let Some((channel_id, user_channel_id)) = chan_id {
1969 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1970 channel_id, user_channel_id,
1971 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1972 counterparty_node_id: Some($counterparty_node_id),
1973 channel_capacity_sats: channel_capacity,
1978 let logger = WithContext::from(
1979 &$self.logger, Some($counterparty_node_id), chan_id.map(|(chan_id, _)| chan_id)
1981 log_error!(logger, "{}", err.err);
1982 if let msgs::ErrorAction::IgnoreError = err.action {
1984 msg_events.push(events::MessageSendEvent::HandleError {
1985 node_id: $counterparty_node_id,
1986 action: err.action.clone()
1990 if !msg_events.is_empty() {
1991 let per_peer_state = $self.per_peer_state.read().unwrap();
1992 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1993 let mut peer_state = peer_state_mutex.lock().unwrap();
1994 peer_state.pending_msg_events.append(&mut msg_events);
1998 // Return error in case higher-API need one
2005 macro_rules! update_maps_on_chan_removal {
2006 ($self: expr, $channel_context: expr) => {{
2007 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
2008 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2009 if let Some(short_id) = $channel_context.get_short_channel_id() {
2010 short_to_chan_info.remove(&short_id);
2012 // If the channel was never confirmed on-chain prior to its closure, remove the
2013 // outbound SCID alias we used for it from the collision-prevention set. While we
2014 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2015 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2016 // opening a million channels with us which are closed before we ever reach the funding
2018 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2019 debug_assert!(alias_removed);
2021 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2025 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2026 macro_rules! convert_chan_phase_err {
2027 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2029 ChannelError::Warn(msg) => {
2030 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2032 ChannelError::Ignore(msg) => {
2033 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2035 ChannelError::Close(msg) => {
2036 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2037 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2038 update_maps_on_chan_removal!($self, $channel.context);
2039 let shutdown_res = $channel.context.force_shutdown(true);
2040 let user_id = $channel.context.get_user_id();
2041 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
2043 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
2044 shutdown_res, $channel_update, channel_capacity_satoshis))
2048 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2049 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2051 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2052 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2054 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2055 match $channel_phase {
2056 ChannelPhase::Funded(channel) => {
2057 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2059 ChannelPhase::UnfundedOutboundV1(channel) => {
2060 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2062 ChannelPhase::UnfundedInboundV1(channel) => {
2063 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2069 macro_rules! break_chan_phase_entry {
2070 ($self: ident, $res: expr, $entry: expr) => {
2074 let key = *$entry.key();
2075 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2077 $entry.remove_entry();
2085 macro_rules! try_chan_phase_entry {
2086 ($self: ident, $res: expr, $entry: expr) => {
2090 let key = *$entry.key();
2091 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2093 $entry.remove_entry();
2101 macro_rules! remove_channel_phase {
2102 ($self: expr, $entry: expr) => {
2104 let channel = $entry.remove_entry().1;
2105 update_maps_on_chan_removal!($self, &channel.context());
2111 macro_rules! send_channel_ready {
2112 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2113 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2114 node_id: $channel.context.get_counterparty_node_id(),
2115 msg: $channel_ready_msg,
2117 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2118 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2119 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2120 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2121 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2122 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2123 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2124 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2125 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2126 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2131 macro_rules! emit_channel_pending_event {
2132 ($locked_events: expr, $channel: expr) => {
2133 if $channel.context.should_emit_channel_pending_event() {
2134 $locked_events.push_back((events::Event::ChannelPending {
2135 channel_id: $channel.context.channel_id(),
2136 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2137 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2138 user_channel_id: $channel.context.get_user_id(),
2139 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2141 $channel.context.set_channel_pending_event_emitted();
2146 macro_rules! emit_channel_ready_event {
2147 ($locked_events: expr, $channel: expr) => {
2148 if $channel.context.should_emit_channel_ready_event() {
2149 debug_assert!($channel.context.channel_pending_event_emitted());
2150 $locked_events.push_back((events::Event::ChannelReady {
2151 channel_id: $channel.context.channel_id(),
2152 user_channel_id: $channel.context.get_user_id(),
2153 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2154 channel_type: $channel.context.get_channel_type().clone(),
2156 $channel.context.set_channel_ready_event_emitted();
2161 macro_rules! handle_monitor_update_completion {
2162 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2163 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2164 let mut updates = $chan.monitor_updating_restored(&&logger,
2165 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2166 $self.best_block.read().unwrap().height());
2167 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2168 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2169 // We only send a channel_update in the case where we are just now sending a
2170 // channel_ready and the channel is in a usable state. We may re-send a
2171 // channel_update later through the announcement_signatures process for public
2172 // channels, but there's no reason not to just inform our counterparty of our fees
2174 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2175 Some(events::MessageSendEvent::SendChannelUpdate {
2176 node_id: counterparty_node_id,
2182 let update_actions = $peer_state.monitor_update_blocked_actions
2183 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2185 let htlc_forwards = $self.handle_channel_resumption(
2186 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2187 updates.commitment_update, updates.order, updates.accepted_htlcs,
2188 updates.funding_broadcastable, updates.channel_ready,
2189 updates.announcement_sigs);
2190 if let Some(upd) = channel_update {
2191 $peer_state.pending_msg_events.push(upd);
2194 let channel_id = $chan.context.channel_id();
2195 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2196 core::mem::drop($peer_state_lock);
2197 core::mem::drop($per_peer_state_lock);
2199 // If the channel belongs to a batch funding transaction, the progress of the batch
2200 // should be updated as we have received funding_signed and persisted the monitor.
2201 if let Some(txid) = unbroadcasted_batch_funding_txid {
2202 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2203 let mut batch_completed = false;
2204 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2205 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2206 *chan_id == channel_id &&
2207 *pubkey == counterparty_node_id
2209 if let Some(channel_state) = channel_state {
2210 channel_state.2 = true;
2212 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2214 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2216 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2219 // When all channels in a batched funding transaction have become ready, it is not necessary
2220 // to track the progress of the batch anymore and the state of the channels can be updated.
2221 if batch_completed {
2222 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2223 let per_peer_state = $self.per_peer_state.read().unwrap();
2224 let mut batch_funding_tx = None;
2225 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2226 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2227 let mut peer_state = peer_state_mutex.lock().unwrap();
2228 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2229 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2230 chan.set_batch_ready();
2231 let mut pending_events = $self.pending_events.lock().unwrap();
2232 emit_channel_pending_event!(pending_events, chan);
2236 if let Some(tx) = batch_funding_tx {
2237 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2238 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2243 $self.handle_monitor_update_completion_actions(update_actions);
2245 if let Some(forwards) = htlc_forwards {
2246 $self.forward_htlcs(&mut [forwards][..]);
2248 $self.finalize_claims(updates.finalized_claimed_htlcs);
2249 for failure in updates.failed_htlcs.drain(..) {
2250 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2251 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2256 macro_rules! handle_new_monitor_update {
2257 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2258 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2259 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2261 ChannelMonitorUpdateStatus::UnrecoverableError => {
2262 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2263 log_error!(logger, "{}", err_str);
2264 panic!("{}", err_str);
2266 ChannelMonitorUpdateStatus::InProgress => {
2267 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2268 &$chan.context.channel_id());
2271 ChannelMonitorUpdateStatus::Completed => {
2277 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2278 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2279 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2281 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2282 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2283 .or_insert_with(Vec::new);
2284 // During startup, we push monitor updates as background events through to here in
2285 // order to replay updates that were in-flight when we shut down. Thus, we have to
2286 // filter for uniqueness here.
2287 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2288 .unwrap_or_else(|| {
2289 in_flight_updates.push($update);
2290 in_flight_updates.len() - 1
2292 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2293 handle_new_monitor_update!($self, update_res, $chan, _internal,
2295 let _ = in_flight_updates.remove(idx);
2296 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2297 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2303 macro_rules! process_events_body {
2304 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2305 let mut processed_all_events = false;
2306 while !processed_all_events {
2307 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2314 // We'll acquire our total consistency lock so that we can be sure no other
2315 // persists happen while processing monitor events.
2316 let _read_guard = $self.total_consistency_lock.read().unwrap();
2318 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2319 // ensure any startup-generated background events are handled first.
2320 result = $self.process_background_events();
2322 // TODO: This behavior should be documented. It's unintuitive that we query
2323 // ChannelMonitors when clearing other events.
2324 if $self.process_pending_monitor_events() {
2325 result = NotifyOption::DoPersist;
2329 let pending_events = $self.pending_events.lock().unwrap().clone();
2330 let num_events = pending_events.len();
2331 if !pending_events.is_empty() {
2332 result = NotifyOption::DoPersist;
2335 let mut post_event_actions = Vec::new();
2337 for (event, action_opt) in pending_events {
2338 $event_to_handle = event;
2340 if let Some(action) = action_opt {
2341 post_event_actions.push(action);
2346 let mut pending_events = $self.pending_events.lock().unwrap();
2347 pending_events.drain(..num_events);
2348 processed_all_events = pending_events.is_empty();
2349 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2350 // updated here with the `pending_events` lock acquired.
2351 $self.pending_events_processor.store(false, Ordering::Release);
2354 if !post_event_actions.is_empty() {
2355 $self.handle_post_event_actions(post_event_actions);
2356 // If we had some actions, go around again as we may have more events now
2357 processed_all_events = false;
2361 NotifyOption::DoPersist => {
2362 $self.needs_persist_flag.store(true, Ordering::Release);
2363 $self.event_persist_notifier.notify();
2365 NotifyOption::SkipPersistHandleEvents =>
2366 $self.event_persist_notifier.notify(),
2367 NotifyOption::SkipPersistNoEvents => {},
2373 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2375 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
2376 T::Target: BroadcasterInterface,
2377 ES::Target: EntropySource,
2378 NS::Target: NodeSigner,
2379 SP::Target: SignerProvider,
2380 F::Target: FeeEstimator,
2384 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2386 /// The current time or latest block header time can be provided as the `current_timestamp`.
2388 /// This is the main "logic hub" for all channel-related actions, and implements
2389 /// [`ChannelMessageHandler`].
2391 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2393 /// Users need to notify the new `ChannelManager` when a new block is connected or
2394 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2395 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2398 /// [`block_connected`]: chain::Listen::block_connected
2399 /// [`block_disconnected`]: chain::Listen::block_disconnected
2400 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2402 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2403 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2404 current_timestamp: u32,
2406 let mut secp_ctx = Secp256k1::new();
2407 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2408 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2409 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2411 default_configuration: config.clone(),
2412 chain_hash: ChainHash::using_genesis_block(params.network),
2413 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2418 best_block: RwLock::new(params.best_block),
2420 outbound_scid_aliases: Mutex::new(HashSet::new()),
2421 pending_inbound_payments: Mutex::new(HashMap::new()),
2422 pending_outbound_payments: OutboundPayments::new(),
2423 forward_htlcs: Mutex::new(HashMap::new()),
2424 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2425 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2426 id_to_peer: Mutex::new(HashMap::new()),
2427 short_to_chan_info: FairRwLock::new(HashMap::new()),
2429 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2432 inbound_payment_key: expanded_inbound_key,
2433 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2435 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2437 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2439 per_peer_state: FairRwLock::new(HashMap::new()),
2441 pending_events: Mutex::new(VecDeque::new()),
2442 pending_events_processor: AtomicBool::new(false),
2443 pending_background_events: Mutex::new(Vec::new()),
2444 total_consistency_lock: RwLock::new(()),
2445 background_events_processed_since_startup: AtomicBool::new(false),
2446 event_persist_notifier: Notifier::new(),
2447 needs_persist_flag: AtomicBool::new(false),
2448 funding_batch_states: Mutex::new(BTreeMap::new()),
2450 pending_offers_messages: Mutex::new(Vec::new()),
2460 /// Gets the current configuration applied to all new channels.
2461 pub fn get_current_default_configuration(&self) -> &UserConfig {
2462 &self.default_configuration
2465 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2466 let height = self.best_block.read().unwrap().height();
2467 let mut outbound_scid_alias = 0;
2470 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2471 outbound_scid_alias += 1;
2473 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2475 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2479 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2484 /// Creates a new outbound channel to the given remote node and with the given value.
2486 /// `user_channel_id` will be provided back as in
2487 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2488 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2489 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2490 /// is simply copied to events and otherwise ignored.
2492 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2493 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2495 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2496 /// generate a shutdown scriptpubkey or destination script set by
2497 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2499 /// Note that we do not check if you are currently connected to the given peer. If no
2500 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2501 /// the channel eventually being silently forgotten (dropped on reload).
2503 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2504 /// channel. Otherwise, a random one will be generated for you.
2506 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2507 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2508 /// [`ChannelDetails::channel_id`] until after
2509 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2510 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2511 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2513 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2514 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2515 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2516 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2517 if channel_value_satoshis < 1000 {
2518 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2521 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2522 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2523 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2525 let per_peer_state = self.per_peer_state.read().unwrap();
2527 let peer_state_mutex = per_peer_state.get(&their_network_key)
2528 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2530 let mut peer_state = peer_state_mutex.lock().unwrap();
2532 if let Some(temporary_channel_id) = temporary_channel_id {
2533 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2534 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2539 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2540 let their_features = &peer_state.latest_features;
2541 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2542 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2543 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2544 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2548 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2553 let res = channel.get_open_channel(self.chain_hash);
2555 let temporary_channel_id = channel.context.channel_id();
2556 match peer_state.channel_by_id.entry(temporary_channel_id) {
2557 hash_map::Entry::Occupied(_) => {
2559 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2561 panic!("RNG is bad???");
2564 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2567 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2568 node_id: their_network_key,
2571 Ok(temporary_channel_id)
2574 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2575 // Allocate our best estimate of the number of channels we have in the `res`
2576 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2577 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2578 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2579 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2580 // the same channel.
2581 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2583 let best_block_height = self.best_block.read().unwrap().height();
2584 let per_peer_state = self.per_peer_state.read().unwrap();
2585 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2586 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2587 let peer_state = &mut *peer_state_lock;
2588 res.extend(peer_state.channel_by_id.iter()
2589 .filter_map(|(chan_id, phase)| match phase {
2590 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2591 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2595 .map(|(_channel_id, channel)| {
2596 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2597 peer_state.latest_features.clone(), &self.fee_estimator)
2605 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2606 /// more information.
2607 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2608 // Allocate our best estimate of the number of channels we have in the `res`
2609 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2610 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2611 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2612 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2613 // the same channel.
2614 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2616 let best_block_height = self.best_block.read().unwrap().height();
2617 let per_peer_state = self.per_peer_state.read().unwrap();
2618 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2619 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2620 let peer_state = &mut *peer_state_lock;
2621 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2622 let details = ChannelDetails::from_channel_context(context, best_block_height,
2623 peer_state.latest_features.clone(), &self.fee_estimator);
2631 /// Gets the list of usable channels, in random order. Useful as an argument to
2632 /// [`Router::find_route`] to ensure non-announced channels are used.
2634 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2635 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2637 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2638 // Note we use is_live here instead of usable which leads to somewhat confused
2639 // internal/external nomenclature, but that's ok cause that's probably what the user
2640 // really wanted anyway.
2641 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2644 /// Gets the list of channels we have with a given counterparty, in random order.
2645 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2646 let best_block_height = self.best_block.read().unwrap().height();
2647 let per_peer_state = self.per_peer_state.read().unwrap();
2649 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2650 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2651 let peer_state = &mut *peer_state_lock;
2652 let features = &peer_state.latest_features;
2653 let context_to_details = |context| {
2654 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2656 return peer_state.channel_by_id
2658 .map(|(_, phase)| phase.context())
2659 .map(context_to_details)
2665 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2666 /// successful path, or have unresolved HTLCs.
2668 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2669 /// result of a crash. If such a payment exists, is not listed here, and an
2670 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2672 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2673 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2674 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2675 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2676 PendingOutboundPayment::AwaitingInvoice { .. } => {
2677 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2679 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2680 PendingOutboundPayment::InvoiceReceived { .. } => {
2681 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2683 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2684 Some(RecentPaymentDetails::Pending {
2685 payment_id: *payment_id,
2686 payment_hash: *payment_hash,
2687 total_msat: *total_msat,
2690 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2691 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2693 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2694 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2696 PendingOutboundPayment::Legacy { .. } => None
2701 /// Helper function that issues the channel close events
2702 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2703 let mut pending_events_lock = self.pending_events.lock().unwrap();
2704 match context.unbroadcasted_funding() {
2705 Some(transaction) => {
2706 pending_events_lock.push_back((events::Event::DiscardFunding {
2707 channel_id: context.channel_id(), transaction
2712 pending_events_lock.push_back((events::Event::ChannelClosed {
2713 channel_id: context.channel_id(),
2714 user_channel_id: context.get_user_id(),
2715 reason: closure_reason,
2716 counterparty_node_id: Some(context.get_counterparty_node_id()),
2717 channel_capacity_sats: Some(context.get_value_satoshis()),
2721 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2722 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2724 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
2725 let mut shutdown_result = None;
2728 let per_peer_state = self.per_peer_state.read().unwrap();
2730 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2731 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2733 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2734 let peer_state = &mut *peer_state_lock;
2736 match peer_state.channel_by_id.entry(channel_id.clone()) {
2737 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2738 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2739 let funding_txo_opt = chan.context.get_funding_txo();
2740 let their_features = &peer_state.latest_features;
2741 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2742 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2743 failed_htlcs = htlcs;
2745 // We can send the `shutdown` message before updating the `ChannelMonitor`
2746 // here as we don't need the monitor update to complete until we send a
2747 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2748 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2749 node_id: *counterparty_node_id,
2753 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2754 "We can't both complete shutdown and generate a monitor update");
2756 // Update the monitor with the shutdown script if necessary.
2757 if let Some(monitor_update) = monitor_update_opt.take() {
2758 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2759 peer_state_lock, peer_state, per_peer_state, chan);
2762 self.issue_channel_close_events(chan_phase_entry.get().context(), ClosureReason::HolderForceClosed);
2763 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2764 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false));
2767 hash_map::Entry::Vacant(_) => {
2768 return Err(APIError::ChannelUnavailable {
2770 "Channel with id {} not found for the passed counterparty node_id {}",
2771 channel_id, counterparty_node_id,
2778 for htlc_source in failed_htlcs.drain(..) {
2779 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2780 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2781 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2784 if let Some(shutdown_result) = shutdown_result {
2785 self.finish_close_channel(shutdown_result);
2791 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2792 /// will be accepted on the given channel, and after additional timeout/the closing of all
2793 /// pending HTLCs, the channel will be closed on chain.
2795 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2796 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2798 /// * If our counterparty is the channel initiator, we will require a channel closing
2799 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2800 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2801 /// counterparty to pay as much fee as they'd like, however.
2803 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2805 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2806 /// generate a shutdown scriptpubkey or destination script set by
2807 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2810 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2811 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2812 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2813 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2814 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2815 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2818 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2819 /// will be accepted on the given channel, and after additional timeout/the closing of all
2820 /// pending HTLCs, the channel will be closed on chain.
2822 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2823 /// the channel being closed or not:
2824 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2825 /// transaction. The upper-bound is set by
2826 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2827 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2828 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2829 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2830 /// will appear on a force-closure transaction, whichever is lower).
2832 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2833 /// Will fail if a shutdown script has already been set for this channel by
2834 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2835 /// also be compatible with our and the counterparty's features.
2837 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2839 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2840 /// generate a shutdown scriptpubkey or destination script set by
2841 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2844 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2845 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2846 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2847 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2848 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2851 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2852 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2853 #[cfg(debug_assertions)]
2854 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2855 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2858 let logger = WithContext::from(
2859 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
2861 log_debug!(logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2862 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2863 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2864 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2865 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2866 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2868 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2869 // There isn't anything we can do if we get an update failure - we're already
2870 // force-closing. The monitor update on the required in-memory copy should broadcast
2871 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2872 // ignore the result here.
2873 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2875 let mut shutdown_results = Vec::new();
2876 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2877 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2878 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2879 let per_peer_state = self.per_peer_state.read().unwrap();
2880 let mut has_uncompleted_channel = None;
2881 for (channel_id, counterparty_node_id, state) in affected_channels {
2882 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2883 let mut peer_state = peer_state_mutex.lock().unwrap();
2884 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2885 update_maps_on_chan_removal!(self, &chan.context());
2886 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2887 shutdown_results.push(chan.context_mut().force_shutdown(false));
2890 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2893 has_uncompleted_channel.unwrap_or(true),
2894 "Closing a batch where all channels have completed initial monitor update",
2897 for shutdown_result in shutdown_results.drain(..) {
2898 self.finish_close_channel(shutdown_result);
2902 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2903 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2904 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2905 -> Result<PublicKey, APIError> {
2906 let per_peer_state = self.per_peer_state.read().unwrap();
2907 let peer_state_mutex = per_peer_state.get(peer_node_id)
2908 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2909 let (update_opt, counterparty_node_id) = {
2910 let mut peer_state = peer_state_mutex.lock().unwrap();
2911 let closure_reason = if let Some(peer_msg) = peer_msg {
2912 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2914 ClosureReason::HolderForceClosed
2916 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
2917 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2918 log_error!(logger, "Force-closing channel {}", channel_id);
2919 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2920 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2921 mem::drop(peer_state);
2922 mem::drop(per_peer_state);
2924 ChannelPhase::Funded(mut chan) => {
2925 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2926 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2928 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2929 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2930 // Unfunded channel has no update
2931 (None, chan_phase.context().get_counterparty_node_id())
2934 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2935 log_error!(logger, "Force-closing channel {}", &channel_id);
2936 // N.B. that we don't send any channel close event here: we
2937 // don't have a user_channel_id, and we never sent any opening
2939 (None, *peer_node_id)
2941 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2944 if let Some(update) = update_opt {
2945 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2946 // not try to broadcast it via whatever peer we have.
2947 let per_peer_state = self.per_peer_state.read().unwrap();
2948 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2949 .ok_or(per_peer_state.values().next());
2950 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2951 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2952 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2958 Ok(counterparty_node_id)
2961 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2962 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2963 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2964 Ok(counterparty_node_id) => {
2965 let per_peer_state = self.per_peer_state.read().unwrap();
2966 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2967 let mut peer_state = peer_state_mutex.lock().unwrap();
2968 peer_state.pending_msg_events.push(
2969 events::MessageSendEvent::HandleError {
2970 node_id: counterparty_node_id,
2971 action: msgs::ErrorAction::DisconnectPeer {
2972 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2983 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2984 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2985 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2987 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2988 -> Result<(), APIError> {
2989 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2992 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2993 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2994 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2996 /// You can always get the latest local transaction(s) to broadcast from
2997 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2998 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2999 -> Result<(), APIError> {
3000 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3003 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3004 /// for each to the chain and rejecting new HTLCs on each.
3005 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3006 for chan in self.list_channels() {
3007 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3011 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3012 /// local transaction(s).
3013 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3014 for chan in self.list_channels() {
3015 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3019 fn decode_update_add_htlc_onion(
3020 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3022 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3024 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3025 msg, &self.node_signer, &self.logger, &self.secp_ctx
3028 let is_blinded = match next_hop {
3029 onion_utils::Hop::Forward {
3030 next_hop_data: msgs::InboundOnionPayload::BlindedForward { .. }, ..
3032 _ => false, // TODO: update this when we support receiving to multi-hop blinded paths
3035 macro_rules! return_err {
3036 ($msg: expr, $err_code: expr, $data: expr) => {
3039 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3040 "Failed to accept/forward incoming HTLC: {}", $msg
3042 let (err_code, err_data) = if is_blinded {
3043 (INVALID_ONION_BLINDING, &[0; 32][..])
3044 } else { ($err_code, $data) };
3045 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3046 channel_id: msg.channel_id,
3047 htlc_id: msg.htlc_id,
3048 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3049 .get_encrypted_failure_packet(&shared_secret, &None),
3055 let NextPacketDetails {
3056 next_packet_pubkey, outgoing_amt_msat, outgoing_scid, outgoing_cltv_value
3057 } = match next_packet_details_opt {
3058 Some(next_packet_details) => next_packet_details,
3059 // it is a receive, so no need for outbound checks
3060 None => return Ok((next_hop, shared_secret, None)),
3063 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3064 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3065 if let Some((err, mut code, chan_update)) = loop {
3066 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3067 let forwarding_chan_info_opt = match id_option {
3068 None => { // unknown_next_peer
3069 // Note that this is likely a timing oracle for detecting whether an scid is a
3070 // phantom or an intercept.
3071 if (self.default_configuration.accept_intercept_htlcs &&
3072 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3073 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3077 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3080 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3082 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3083 let per_peer_state = self.per_peer_state.read().unwrap();
3084 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3085 if peer_state_mutex_opt.is_none() {
3086 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3088 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3089 let peer_state = &mut *peer_state_lock;
3090 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3091 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3094 // Channel was removed. The short_to_chan_info and channel_by_id maps
3095 // have no consistency guarantees.
3096 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3100 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3101 // Note that the behavior here should be identical to the above block - we
3102 // should NOT reveal the existence or non-existence of a private channel if
3103 // we don't allow forwards outbound over them.
3104 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3106 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3107 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3108 // "refuse to forward unless the SCID alias was used", so we pretend
3109 // we don't have the channel here.
3110 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3112 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3114 // Note that we could technically not return an error yet here and just hope
3115 // that the connection is reestablished or monitor updated by the time we get
3116 // around to doing the actual forward, but better to fail early if we can and
3117 // hopefully an attacker trying to path-trace payments cannot make this occur
3118 // on a small/per-node/per-channel scale.
3119 if !chan.context.is_live() { // channel_disabled
3120 // If the channel_update we're going to return is disabled (i.e. the
3121 // peer has been disabled for some time), return `channel_disabled`,
3122 // otherwise return `temporary_channel_failure`.
3123 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3124 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3126 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3129 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3130 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3132 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3133 break Some((err, code, chan_update_opt));
3140 let cur_height = self.best_block.read().unwrap().height() + 1;
3142 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
3143 cur_height, outgoing_cltv_value, msg.cltv_expiry
3145 if code & 0x1000 != 0 && chan_update_opt.is_none() {
3146 // We really should set `incorrect_cltv_expiry` here but as we're not
3147 // forwarding over a real channel we can't generate a channel_update
3148 // for it. Instead we just return a generic temporary_node_failure.
3149 break Some((err_msg, 0x2000 | 2, None))
3151 let chan_update_opt = if code & 0x1000 != 0 { chan_update_opt } else { None };
3152 break Some((err_msg, code, chan_update_opt));
3158 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3159 if let Some(chan_update) = chan_update {
3160 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3161 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3163 else if code == 0x1000 | 13 {
3164 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3166 else if code == 0x1000 | 20 {
3167 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3168 0u16.write(&mut res).expect("Writes cannot fail");
3170 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3171 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3172 chan_update.write(&mut res).expect("Writes cannot fail");
3173 } else if code & 0x1000 == 0x1000 {
3174 // If we're trying to return an error that requires a `channel_update` but
3175 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3176 // generate an update), just use the generic "temporary_node_failure"
3180 return_err!(err, code, &res.0[..]);
3182 Ok((next_hop, shared_secret, Some(next_packet_pubkey)))
3185 fn construct_pending_htlc_status<'a>(
3186 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3187 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3188 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3189 ) -> PendingHTLCStatus {
3190 macro_rules! return_err {
3191 ($msg: expr, $err_code: expr, $data: expr) => {
3193 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3194 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3195 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3196 channel_id: msg.channel_id,
3197 htlc_id: msg.htlc_id,
3198 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3199 .get_encrypted_failure_packet(&shared_secret, &None),
3205 onion_utils::Hop::Receive(next_hop_data) => {
3207 let current_height: u32 = self.best_block.read().unwrap().height();
3208 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3209 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3210 current_height, self.default_configuration.accept_mpp_keysend)
3213 // Note that we could obviously respond immediately with an update_fulfill_htlc
3214 // message, however that would leak that we are the recipient of this payment, so
3215 // instead we stay symmetric with the forwarding case, only responding (after a
3216 // delay) once they've send us a commitment_signed!
3217 PendingHTLCStatus::Forward(info)
3219 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3222 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3223 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3224 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3225 Ok(info) => PendingHTLCStatus::Forward(info),
3226 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3232 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3233 /// public, and thus should be called whenever the result is going to be passed out in a
3234 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3236 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3237 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3238 /// storage and the `peer_state` lock has been dropped.
3240 /// [`channel_update`]: msgs::ChannelUpdate
3241 /// [`internal_closing_signed`]: Self::internal_closing_signed
3242 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3243 if !chan.context.should_announce() {
3244 return Err(LightningError {
3245 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3246 action: msgs::ErrorAction::IgnoreError
3249 if chan.context.get_short_channel_id().is_none() {
3250 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3252 let logger = WithChannelContext::from(&self.logger, &chan.context);
3253 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3254 self.get_channel_update_for_unicast(chan)
3257 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3258 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3259 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3260 /// provided evidence that they know about the existence of the channel.
3262 /// Note that through [`internal_closing_signed`], this function is called without the
3263 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3264 /// removed from the storage and the `peer_state` lock has been dropped.
3266 /// [`channel_update`]: msgs::ChannelUpdate
3267 /// [`internal_closing_signed`]: Self::internal_closing_signed
3268 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3269 let logger = WithChannelContext::from(&self.logger, &chan.context);
3270 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
3271 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3272 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3276 self.get_channel_update_for_onion(short_channel_id, chan)
3279 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3280 let logger = WithChannelContext::from(&self.logger, &chan.context);
3281 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
3282 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3284 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3285 ChannelUpdateStatus::Enabled => true,
3286 ChannelUpdateStatus::DisabledStaged(_) => true,
3287 ChannelUpdateStatus::Disabled => false,
3288 ChannelUpdateStatus::EnabledStaged(_) => false,
3291 let unsigned = msgs::UnsignedChannelUpdate {
3292 chain_hash: self.chain_hash,
3294 timestamp: chan.context.get_update_time_counter(),
3295 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3296 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3297 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3298 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3299 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3300 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3301 excess_data: Vec::new(),
3303 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3304 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3305 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3307 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3309 Ok(msgs::ChannelUpdate {
3316 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3317 let _lck = self.total_consistency_lock.read().unwrap();
3318 self.send_payment_along_path(SendAlongPathArgs {
3319 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3324 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3325 let SendAlongPathArgs {
3326 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3329 // The top-level caller should hold the total_consistency_lock read lock.
3330 debug_assert!(self.total_consistency_lock.try_write().is_err());
3331 let prng_seed = self.entropy_source.get_secure_random_bytes();
3332 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3334 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3335 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3336 payment_hash, keysend_preimage, prng_seed
3338 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3339 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
3343 let err: Result<(), _> = loop {
3344 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3346 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3347 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
3348 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
3350 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3353 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
3355 "Attempting to send payment with payment hash {} along path with next hop {}",
3356 payment_hash, path.hops.first().unwrap().short_channel_id);
3358 let per_peer_state = self.per_peer_state.read().unwrap();
3359 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3360 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3361 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3362 let peer_state = &mut *peer_state_lock;
3363 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3364 match chan_phase_entry.get_mut() {
3365 ChannelPhase::Funded(chan) => {
3366 if !chan.context.is_live() {
3367 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3369 let funding_txo = chan.context.get_funding_txo().unwrap();
3370 let logger = WithChannelContext::from(&self.logger, &chan.context);
3371 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3372 htlc_cltv, HTLCSource::OutboundRoute {
3374 session_priv: session_priv.clone(),
3375 first_hop_htlc_msat: htlc_msat,
3377 }, onion_packet, None, &self.fee_estimator, &&logger);
3378 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3379 Some(monitor_update) => {
3380 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3382 // Note that MonitorUpdateInProgress here indicates (per function
3383 // docs) that we will resend the commitment update once monitor
3384 // updating completes. Therefore, we must return an error
3385 // indicating that it is unsafe to retry the payment wholesale,
3386 // which we do in the send_payment check for
3387 // MonitorUpdateInProgress, below.
3388 return Err(APIError::MonitorUpdateInProgress);
3396 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3399 // The channel was likely removed after we fetched the id from the
3400 // `short_to_chan_info` map, but before we successfully locked the
3401 // `channel_by_id` map.
3402 // This can occur as no consistency guarantees exists between the two maps.
3403 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3407 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3408 Ok(_) => unreachable!(),
3410 Err(APIError::ChannelUnavailable { err: e.err })
3415 /// Sends a payment along a given route.
3417 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3418 /// fields for more info.
3420 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3421 /// [`PeerManager::process_events`]).
3423 /// # Avoiding Duplicate Payments
3425 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3426 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3427 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3428 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3429 /// second payment with the same [`PaymentId`].
3431 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3432 /// tracking of payments, including state to indicate once a payment has completed. Because you
3433 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3434 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3435 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3437 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3438 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3439 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3440 /// [`ChannelManager::list_recent_payments`] for more information.
3442 /// # Possible Error States on [`PaymentSendFailure`]
3444 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3445 /// each entry matching the corresponding-index entry in the route paths, see
3446 /// [`PaymentSendFailure`] for more info.
3448 /// In general, a path may raise:
3449 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3450 /// node public key) is specified.
3451 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3452 /// closed, doesn't exist, or the peer is currently disconnected.
3453 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3454 /// relevant updates.
3456 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3457 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3458 /// different route unless you intend to pay twice!
3460 /// [`RouteHop`]: crate::routing::router::RouteHop
3461 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3462 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3463 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3464 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3465 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3466 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3467 let best_block_height = self.best_block.read().unwrap().height();
3468 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3469 self.pending_outbound_payments
3470 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3471 &self.entropy_source, &self.node_signer, best_block_height,
3472 |args| self.send_payment_along_path(args))
3475 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3476 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3477 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3478 let best_block_height = self.best_block.read().unwrap().height();
3479 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3480 self.pending_outbound_payments
3481 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3482 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3483 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3484 &self.pending_events, |args| self.send_payment_along_path(args))
3488 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3489 let best_block_height = self.best_block.read().unwrap().height();
3490 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3491 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3492 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3493 best_block_height, |args| self.send_payment_along_path(args))
3497 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3498 let best_block_height = self.best_block.read().unwrap().height();
3499 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3503 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3504 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3507 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3508 let best_block_height = self.best_block.read().unwrap().height();
3509 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3510 self.pending_outbound_payments
3511 .send_payment_for_bolt12_invoice(
3512 invoice, payment_id, &self.router, self.list_usable_channels(),
3513 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3514 best_block_height, &self.logger, &self.pending_events,
3515 |args| self.send_payment_along_path(args)
3519 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3520 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3521 /// retries are exhausted.
3523 /// # Event Generation
3525 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3526 /// as there are no remaining pending HTLCs for this payment.
3528 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3529 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3530 /// determine the ultimate status of a payment.
3532 /// # Requested Invoices
3534 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3535 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3536 /// and prevent any attempts at paying it once received. The other events may only be generated
3537 /// once the invoice has been received.
3539 /// # Restart Behavior
3541 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3542 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3543 /// [`Event::InvoiceRequestFailed`].
3545 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3546 pub fn abandon_payment(&self, payment_id: PaymentId) {
3547 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3548 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3551 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3552 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3553 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3554 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3555 /// never reach the recipient.
3557 /// See [`send_payment`] documentation for more details on the return value of this function
3558 /// and idempotency guarantees provided by the [`PaymentId`] key.
3560 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3561 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3563 /// [`send_payment`]: Self::send_payment
3564 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3565 let best_block_height = self.best_block.read().unwrap().height();
3566 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3567 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3568 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3569 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3572 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3573 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3575 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3578 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3579 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3580 let best_block_height = self.best_block.read().unwrap().height();
3581 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3582 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3583 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3584 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3585 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3588 /// Send a payment that is probing the given route for liquidity. We calculate the
3589 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3590 /// us to easily discern them from real payments.
3591 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3592 let best_block_height = self.best_block.read().unwrap().height();
3593 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3594 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3595 &self.entropy_source, &self.node_signer, best_block_height,
3596 |args| self.send_payment_along_path(args))
3599 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3602 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3603 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3606 /// Sends payment probes over all paths of a route that would be used to pay the given
3607 /// amount to the given `node_id`.
3609 /// See [`ChannelManager::send_preflight_probes`] for more information.
3610 pub fn send_spontaneous_preflight_probes(
3611 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3612 liquidity_limit_multiplier: Option<u64>,
3613 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3614 let payment_params =
3615 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3617 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3619 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3622 /// Sends payment probes over all paths of a route that would be used to pay a route found
3623 /// according to the given [`RouteParameters`].
3625 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3626 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3627 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3628 /// confirmation in a wallet UI.
3630 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3631 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3632 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3633 /// payment. To mitigate this issue, channels with available liquidity less than the required
3634 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3635 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3636 pub fn send_preflight_probes(
3637 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3638 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3639 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3641 let payer = self.get_our_node_id();
3642 let usable_channels = self.list_usable_channels();
3643 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3644 let inflight_htlcs = self.compute_inflight_htlcs();
3648 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3650 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3651 ProbeSendFailure::RouteNotFound
3654 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3656 let mut res = Vec::new();
3658 for mut path in route.paths {
3659 // If the last hop is probably an unannounced channel we refrain from probing all the
3660 // way through to the end and instead probe up to the second-to-last channel.
3661 while let Some(last_path_hop) = path.hops.last() {
3662 if last_path_hop.maybe_announced_channel {
3663 // We found a potentially announced last hop.
3666 // Drop the last hop, as it's likely unannounced.
3669 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3670 last_path_hop.short_channel_id
3672 let final_value_msat = path.final_value_msat();
3674 if let Some(new_last) = path.hops.last_mut() {
3675 new_last.fee_msat += final_value_msat;
3680 if path.hops.len() < 2 {
3683 "Skipped sending payment probe over path with less than two hops."
3688 if let Some(first_path_hop) = path.hops.first() {
3689 if let Some(first_hop) = first_hops.iter().find(|h| {
3690 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3692 let path_value = path.final_value_msat() + path.fee_msat();
3693 let used_liquidity =
3694 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3696 if first_hop.next_outbound_htlc_limit_msat
3697 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3699 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3702 *used_liquidity += path_value;
3707 res.push(self.send_probe(path).map_err(|e| {
3708 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3709 ProbeSendFailure::SendingFailed(e)
3716 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3717 /// which checks the correctness of the funding transaction given the associated channel.
3718 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3719 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3720 mut find_funding_output: FundingOutput,
3721 ) -> Result<(), APIError> {
3722 let per_peer_state = self.per_peer_state.read().unwrap();
3723 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3724 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3726 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3727 let peer_state = &mut *peer_state_lock;
3728 let (chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3729 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
3730 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3732 let logger = WithChannelContext::from(&self.logger, &chan.context);
3733 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
3734 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3735 let channel_id = chan.context.channel_id();
3736 let user_id = chan.context.get_user_id();
3737 let shutdown_res = chan.context.force_shutdown(false);
3738 let channel_capacity = chan.context.get_value_satoshis();
3739 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3740 } else { unreachable!(); });
3742 Ok(funding_msg) => (chan, funding_msg),
3743 Err((chan, err)) => {
3744 mem::drop(peer_state_lock);
3745 mem::drop(per_peer_state);
3746 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3747 return Err(APIError::ChannelUnavailable {
3748 err: "Signer refused to sign the initial commitment transaction".to_owned()
3754 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3755 return Err(APIError::APIMisuseError {
3757 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3758 temporary_channel_id, counterparty_node_id),
3761 None => return Err(APIError::ChannelUnavailable {err: format!(
3762 "Channel with id {} not found for the passed counterparty node_id {}",
3763 temporary_channel_id, counterparty_node_id),
3767 if let Some(msg) = msg_opt {
3768 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3769 node_id: chan.context.get_counterparty_node_id(),
3773 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3774 hash_map::Entry::Occupied(_) => {
3775 panic!("Generated duplicate funding txid?");
3777 hash_map::Entry::Vacant(e) => {
3778 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3779 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3780 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3782 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
3789 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3790 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3791 Ok(OutPoint { txid: tx.txid(), index: output_index })
3795 /// Call this upon creation of a funding transaction for the given channel.
3797 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3798 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3800 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3801 /// across the p2p network.
3803 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3804 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3806 /// May panic if the output found in the funding transaction is duplicative with some other
3807 /// channel (note that this should be trivially prevented by using unique funding transaction
3808 /// keys per-channel).
3810 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3811 /// counterparty's signature the funding transaction will automatically be broadcast via the
3812 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3814 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3815 /// not currently support replacing a funding transaction on an existing channel. Instead,
3816 /// create a new channel with a conflicting funding transaction.
3818 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3819 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3820 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3821 /// for more details.
3823 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3824 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3825 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3826 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3829 /// Call this upon creation of a batch funding transaction for the given channels.
3831 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3832 /// each individual channel and transaction output.
3834 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3835 /// will only be broadcast when we have safely received and persisted the counterparty's
3836 /// signature for each channel.
3838 /// If there is an error, all channels in the batch are to be considered closed.
3839 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3840 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3841 let mut result = Ok(());
3843 if !funding_transaction.is_coin_base() {
3844 for inp in funding_transaction.input.iter() {
3845 if inp.witness.is_empty() {
3846 result = result.and(Err(APIError::APIMisuseError {
3847 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3852 if funding_transaction.output.len() > u16::max_value() as usize {
3853 result = result.and(Err(APIError::APIMisuseError {
3854 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3858 let height = self.best_block.read().unwrap().height();
3859 // Transactions are evaluated as final by network mempools if their locktime is strictly
3860 // lower than the next block height. However, the modules constituting our Lightning
3861 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3862 // module is ahead of LDK, only allow one more block of headroom.
3863 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
3864 funding_transaction.lock_time.is_block_height() &&
3865 funding_transaction.lock_time.to_consensus_u32() > height + 1
3867 result = result.and(Err(APIError::APIMisuseError {
3868 err: "Funding transaction absolute timelock is non-final".to_owned()
3873 let txid = funding_transaction.txid();
3874 let is_batch_funding = temporary_channels.len() > 1;
3875 let mut funding_batch_states = if is_batch_funding {
3876 Some(self.funding_batch_states.lock().unwrap())
3880 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3881 match states.entry(txid) {
3882 btree_map::Entry::Occupied(_) => {
3883 result = result.clone().and(Err(APIError::APIMisuseError {
3884 err: "Batch funding transaction with the same txid already exists".to_owned()
3888 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3891 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3892 result = result.and_then(|_| self.funding_transaction_generated_intern(
3893 temporary_channel_id,
3894 counterparty_node_id,
3895 funding_transaction.clone(),
3898 let mut output_index = None;
3899 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3900 for (idx, outp) in tx.output.iter().enumerate() {
3901 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3902 if output_index.is_some() {
3903 return Err(APIError::APIMisuseError {
3904 err: "Multiple outputs matched the expected script and value".to_owned()
3907 output_index = Some(idx as u16);
3910 if output_index.is_none() {
3911 return Err(APIError::APIMisuseError {
3912 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3915 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3916 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3917 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3923 if let Err(ref e) = result {
3924 // Remaining channels need to be removed on any error.
3925 let e = format!("Error in transaction funding: {:?}", e);
3926 let mut channels_to_remove = Vec::new();
3927 channels_to_remove.extend(funding_batch_states.as_mut()
3928 .and_then(|states| states.remove(&txid))
3929 .into_iter().flatten()
3930 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3932 channels_to_remove.extend(temporary_channels.iter()
3933 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3935 let mut shutdown_results = Vec::new();
3937 let per_peer_state = self.per_peer_state.read().unwrap();
3938 for (channel_id, counterparty_node_id) in channels_to_remove {
3939 per_peer_state.get(&counterparty_node_id)
3940 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3941 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3943 update_maps_on_chan_removal!(self, &chan.context());
3944 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3945 shutdown_results.push(chan.context_mut().force_shutdown(false));
3949 for shutdown_result in shutdown_results.drain(..) {
3950 self.finish_close_channel(shutdown_result);
3956 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3958 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3959 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3960 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3961 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3963 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3964 /// `counterparty_node_id` is provided.
3966 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3967 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3969 /// If an error is returned, none of the updates should be considered applied.
3971 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3972 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3973 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3974 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3975 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3976 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3977 /// [`APIMisuseError`]: APIError::APIMisuseError
3978 pub fn update_partial_channel_config(
3979 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3980 ) -> Result<(), APIError> {
3981 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3982 return Err(APIError::APIMisuseError {
3983 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3987 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3988 let per_peer_state = self.per_peer_state.read().unwrap();
3989 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3990 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3991 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3992 let peer_state = &mut *peer_state_lock;
3993 for channel_id in channel_ids {
3994 if !peer_state.has_channel(channel_id) {
3995 return Err(APIError::ChannelUnavailable {
3996 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4000 for channel_id in channel_ids {
4001 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4002 let mut config = channel_phase.context().config();
4003 config.apply(config_update);
4004 if !channel_phase.context_mut().update_config(&config) {
4007 if let ChannelPhase::Funded(channel) = channel_phase {
4008 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4009 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4010 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4011 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4012 node_id: channel.context.get_counterparty_node_id(),
4019 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4020 debug_assert!(false);
4021 return Err(APIError::ChannelUnavailable {
4023 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4024 channel_id, counterparty_node_id),
4031 /// Atomically updates the [`ChannelConfig`] for the given channels.
4033 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4034 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4035 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4036 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4038 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4039 /// `counterparty_node_id` is provided.
4041 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4042 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4044 /// If an error is returned, none of the updates should be considered applied.
4046 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4047 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4048 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4049 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4050 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4051 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4052 /// [`APIMisuseError`]: APIError::APIMisuseError
4053 pub fn update_channel_config(
4054 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4055 ) -> Result<(), APIError> {
4056 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4059 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4060 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4062 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4063 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4065 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4066 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4067 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4068 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4069 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4071 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4072 /// you from forwarding more than you received. See
4073 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4076 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4079 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4080 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4081 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4082 // TODO: when we move to deciding the best outbound channel at forward time, only take
4083 // `next_node_id` and not `next_hop_channel_id`
4084 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4085 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4087 let next_hop_scid = {
4088 let peer_state_lock = self.per_peer_state.read().unwrap();
4089 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4090 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4091 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4092 let peer_state = &mut *peer_state_lock;
4093 match peer_state.channel_by_id.get(next_hop_channel_id) {
4094 Some(ChannelPhase::Funded(chan)) => {
4095 if !chan.context.is_usable() {
4096 return Err(APIError::ChannelUnavailable {
4097 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4100 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4102 Some(_) => return Err(APIError::ChannelUnavailable {
4103 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4104 next_hop_channel_id, next_node_id)
4107 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4108 next_hop_channel_id, next_node_id);
4109 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4110 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4111 return Err(APIError::ChannelUnavailable {
4118 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4119 .ok_or_else(|| APIError::APIMisuseError {
4120 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4123 let routing = match payment.forward_info.routing {
4124 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4125 PendingHTLCRouting::Forward {
4126 onion_packet, blinded, short_channel_id: next_hop_scid
4129 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4131 let skimmed_fee_msat =
4132 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4133 let pending_htlc_info = PendingHTLCInfo {
4134 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4135 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4138 let mut per_source_pending_forward = [(
4139 payment.prev_short_channel_id,
4140 payment.prev_funding_outpoint,
4141 payment.prev_user_channel_id,
4142 vec![(pending_htlc_info, payment.prev_htlc_id)]
4144 self.forward_htlcs(&mut per_source_pending_forward);
4148 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4149 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4151 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4154 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4155 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4156 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4158 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4159 .ok_or_else(|| APIError::APIMisuseError {
4160 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4163 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4164 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4165 short_channel_id: payment.prev_short_channel_id,
4166 user_channel_id: Some(payment.prev_user_channel_id),
4167 outpoint: payment.prev_funding_outpoint,
4168 htlc_id: payment.prev_htlc_id,
4169 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4170 phantom_shared_secret: None,
4171 blinded_failure: payment.forward_info.routing.blinded_failure(),
4174 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4175 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4176 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4177 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4182 /// Processes HTLCs which are pending waiting on random forward delay.
4184 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4185 /// Will likely generate further events.
4186 pub fn process_pending_htlc_forwards(&self) {
4187 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4189 let mut new_events = VecDeque::new();
4190 let mut failed_forwards = Vec::new();
4191 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4193 let mut forward_htlcs = HashMap::new();
4194 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4196 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4197 if short_chan_id != 0 {
4198 let mut forwarding_counterparty = None;
4199 macro_rules! forwarding_channel_not_found {
4201 for forward_info in pending_forwards.drain(..) {
4202 match forward_info {
4203 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4204 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4205 forward_info: PendingHTLCInfo {
4206 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4207 outgoing_cltv_value, ..
4210 macro_rules! failure_handler {
4211 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4212 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_funding_outpoint.to_channel_id()));
4213 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4215 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4216 short_channel_id: prev_short_channel_id,
4217 user_channel_id: Some(prev_user_channel_id),
4218 outpoint: prev_funding_outpoint,
4219 htlc_id: prev_htlc_id,
4220 incoming_packet_shared_secret: incoming_shared_secret,
4221 phantom_shared_secret: $phantom_ss,
4222 blinded_failure: routing.blinded_failure(),
4225 let reason = if $next_hop_unknown {
4226 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4228 HTLCDestination::FailedPayment{ payment_hash }
4231 failed_forwards.push((htlc_source, payment_hash,
4232 HTLCFailReason::reason($err_code, $err_data),
4238 macro_rules! fail_forward {
4239 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4241 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4245 macro_rules! failed_payment {
4246 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4248 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4252 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
4253 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4254 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4255 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4256 let next_hop = match onion_utils::decode_next_payment_hop(
4257 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4258 payment_hash, None, &self.node_signer
4261 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4262 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
4263 // In this scenario, the phantom would have sent us an
4264 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4265 // if it came from us (the second-to-last hop) but contains the sha256
4267 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4269 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4270 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4274 onion_utils::Hop::Receive(hop_data) => {
4275 let current_height: u32 = self.best_block.read().unwrap().height();
4276 match create_recv_pending_htlc_info(hop_data,
4277 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4278 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
4279 current_height, self.default_configuration.accept_mpp_keysend)
4281 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4282 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4288 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4291 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4294 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
4295 // Channel went away before we could fail it. This implies
4296 // the channel is now on chain and our counterparty is
4297 // trying to broadcast the HTLC-Timeout, but that's their
4298 // problem, not ours.
4304 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4305 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4306 Some((cp_id, chan_id)) => (cp_id, chan_id),
4308 forwarding_channel_not_found!();
4312 forwarding_counterparty = Some(counterparty_node_id);
4313 let per_peer_state = self.per_peer_state.read().unwrap();
4314 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4315 if peer_state_mutex_opt.is_none() {
4316 forwarding_channel_not_found!();
4319 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4320 let peer_state = &mut *peer_state_lock;
4321 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4322 let logger = WithChannelContext::from(&self.logger, &chan.context);
4323 for forward_info in pending_forwards.drain(..) {
4324 match forward_info {
4325 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4326 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4327 forward_info: PendingHTLCInfo {
4328 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4329 routing: PendingHTLCRouting::Forward {
4330 onion_packet, blinded, ..
4331 }, skimmed_fee_msat, ..
4334 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4335 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4336 short_channel_id: prev_short_channel_id,
4337 user_channel_id: Some(prev_user_channel_id),
4338 outpoint: prev_funding_outpoint,
4339 htlc_id: prev_htlc_id,
4340 incoming_packet_shared_secret: incoming_shared_secret,
4341 // Phantom payments are only PendingHTLCRouting::Receive.
4342 phantom_shared_secret: None,
4343 blinded_failure: blinded.map(|_| BlindedFailure::FromIntroductionNode),
4345 let next_blinding_point = blinded.and_then(|b| {
4346 let encrypted_tlvs_ss = self.node_signer.ecdh(
4347 Recipient::Node, &b.inbound_blinding_point, None
4348 ).unwrap().secret_bytes();
4349 onion_utils::next_hop_pubkey(
4350 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
4353 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4354 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4355 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
4358 if let ChannelError::Ignore(msg) = e {
4359 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4361 panic!("Stated return value requirements in send_htlc() were not met");
4363 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4364 failed_forwards.push((htlc_source, payment_hash,
4365 HTLCFailReason::reason(failure_code, data),
4366 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4371 HTLCForwardInfo::AddHTLC { .. } => {
4372 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4374 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4375 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4376 if let Err(e) = chan.queue_fail_htlc(
4377 htlc_id, err_packet, &&logger
4379 if let ChannelError::Ignore(msg) = e {
4380 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4382 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4384 // fail-backs are best-effort, we probably already have one
4385 // pending, and if not that's OK, if not, the channel is on
4386 // the chain and sending the HTLC-Timeout is their problem.
4390 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
4391 log_trace!(self.logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4392 if let Err(e) = chan.queue_fail_malformed_htlc(htlc_id, failure_code, sha256_of_onion, &self.logger) {
4393 if let ChannelError::Ignore(msg) = e {
4394 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4396 panic!("Stated return value requirements in queue_fail_malformed_htlc() were not met");
4398 // fail-backs are best-effort, we probably already have one
4399 // pending, and if not that's OK, if not, the channel is on
4400 // the chain and sending the HTLC-Timeout is their problem.
4407 forwarding_channel_not_found!();
4411 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4412 match forward_info {
4413 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4414 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4415 forward_info: PendingHTLCInfo {
4416 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4417 skimmed_fee_msat, ..
4420 let blinded_failure = routing.blinded_failure();
4421 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4422 PendingHTLCRouting::Receive {
4423 payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret,
4424 custom_tlvs, requires_blinded_error: _
4426 let _legacy_hop_data = Some(payment_data.clone());
4427 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4428 payment_metadata, custom_tlvs };
4429 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4430 Some(payment_data), phantom_shared_secret, onion_fields)
4432 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4433 let onion_fields = RecipientOnionFields {
4434 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4438 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4439 payment_data, None, onion_fields)
4442 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4445 let claimable_htlc = ClaimableHTLC {
4446 prev_hop: HTLCPreviousHopData {
4447 short_channel_id: prev_short_channel_id,
4448 user_channel_id: Some(prev_user_channel_id),
4449 outpoint: prev_funding_outpoint,
4450 htlc_id: prev_htlc_id,
4451 incoming_packet_shared_secret: incoming_shared_secret,
4452 phantom_shared_secret,
4455 // We differentiate the received value from the sender intended value
4456 // if possible so that we don't prematurely mark MPP payments complete
4457 // if routing nodes overpay
4458 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4459 sender_intended_value: outgoing_amt_msat,
4461 total_value_received: None,
4462 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4465 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4468 let mut committed_to_claimable = false;
4470 macro_rules! fail_htlc {
4471 ($htlc: expr, $payment_hash: expr) => {
4472 debug_assert!(!committed_to_claimable);
4473 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4474 htlc_msat_height_data.extend_from_slice(
4475 &self.best_block.read().unwrap().height().to_be_bytes(),
4477 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4478 short_channel_id: $htlc.prev_hop.short_channel_id,
4479 user_channel_id: $htlc.prev_hop.user_channel_id,
4480 outpoint: prev_funding_outpoint,
4481 htlc_id: $htlc.prev_hop.htlc_id,
4482 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4483 phantom_shared_secret,
4486 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4487 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4489 continue 'next_forwardable_htlc;
4492 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4493 let mut receiver_node_id = self.our_network_pubkey;
4494 if phantom_shared_secret.is_some() {
4495 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4496 .expect("Failed to get node_id for phantom node recipient");
4499 macro_rules! check_total_value {
4500 ($purpose: expr) => {{
4501 let mut payment_claimable_generated = false;
4502 let is_keysend = match $purpose {
4503 events::PaymentPurpose::SpontaneousPayment(_) => true,
4504 events::PaymentPurpose::InvoicePayment { .. } => false,
4506 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4507 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4508 fail_htlc!(claimable_htlc, payment_hash);
4510 let ref mut claimable_payment = claimable_payments.claimable_payments
4511 .entry(payment_hash)
4512 // Note that if we insert here we MUST NOT fail_htlc!()
4513 .or_insert_with(|| {
4514 committed_to_claimable = true;
4516 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4519 if $purpose != claimable_payment.purpose {
4520 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4521 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4522 fail_htlc!(claimable_htlc, payment_hash);
4524 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4525 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4526 fail_htlc!(claimable_htlc, payment_hash);
4528 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4529 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4530 fail_htlc!(claimable_htlc, payment_hash);
4533 claimable_payment.onion_fields = Some(onion_fields);
4535 let ref mut htlcs = &mut claimable_payment.htlcs;
4536 let mut total_value = claimable_htlc.sender_intended_value;
4537 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4538 for htlc in htlcs.iter() {
4539 total_value += htlc.sender_intended_value;
4540 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4541 if htlc.total_msat != claimable_htlc.total_msat {
4542 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4543 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4544 total_value = msgs::MAX_VALUE_MSAT;
4546 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4548 // The condition determining whether an MPP is complete must
4549 // match exactly the condition used in `timer_tick_occurred`
4550 if total_value >= msgs::MAX_VALUE_MSAT {
4551 fail_htlc!(claimable_htlc, payment_hash);
4552 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4553 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4555 fail_htlc!(claimable_htlc, payment_hash);
4556 } else if total_value >= claimable_htlc.total_msat {
4557 #[allow(unused_assignments)] {
4558 committed_to_claimable = true;
4560 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4561 htlcs.push(claimable_htlc);
4562 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4563 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4564 let counterparty_skimmed_fee_msat = htlcs.iter()
4565 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4566 debug_assert!(total_value.saturating_sub(amount_msat) <=
4567 counterparty_skimmed_fee_msat);
4568 new_events.push_back((events::Event::PaymentClaimable {
4569 receiver_node_id: Some(receiver_node_id),
4573 counterparty_skimmed_fee_msat,
4574 via_channel_id: Some(prev_channel_id),
4575 via_user_channel_id: Some(prev_user_channel_id),
4576 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4577 onion_fields: claimable_payment.onion_fields.clone(),
4579 payment_claimable_generated = true;
4581 // Nothing to do - we haven't reached the total
4582 // payment value yet, wait until we receive more
4584 htlcs.push(claimable_htlc);
4585 #[allow(unused_assignments)] {
4586 committed_to_claimable = true;
4589 payment_claimable_generated
4593 // Check that the payment hash and secret are known. Note that we
4594 // MUST take care to handle the "unknown payment hash" and
4595 // "incorrect payment secret" cases here identically or we'd expose
4596 // that we are the ultimate recipient of the given payment hash.
4597 // Further, we must not expose whether we have any other HTLCs
4598 // associated with the same payment_hash pending or not.
4599 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4600 match payment_secrets.entry(payment_hash) {
4601 hash_map::Entry::Vacant(_) => {
4602 match claimable_htlc.onion_payload {
4603 OnionPayload::Invoice { .. } => {
4604 let payment_data = payment_data.unwrap();
4605 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4606 Ok(result) => result,
4608 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4609 fail_htlc!(claimable_htlc, payment_hash);
4612 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4613 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4614 if (cltv_expiry as u64) < expected_min_expiry_height {
4615 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4616 &payment_hash, cltv_expiry, expected_min_expiry_height);
4617 fail_htlc!(claimable_htlc, payment_hash);
4620 let purpose = events::PaymentPurpose::InvoicePayment {
4621 payment_preimage: payment_preimage.clone(),
4622 payment_secret: payment_data.payment_secret,
4624 check_total_value!(purpose);
4626 OnionPayload::Spontaneous(preimage) => {
4627 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4628 check_total_value!(purpose);
4632 hash_map::Entry::Occupied(inbound_payment) => {
4633 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4634 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4635 fail_htlc!(claimable_htlc, payment_hash);
4637 let payment_data = payment_data.unwrap();
4638 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4639 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4640 fail_htlc!(claimable_htlc, payment_hash);
4641 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4642 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4643 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4644 fail_htlc!(claimable_htlc, payment_hash);
4646 let purpose = events::PaymentPurpose::InvoicePayment {
4647 payment_preimage: inbound_payment.get().payment_preimage,
4648 payment_secret: payment_data.payment_secret,
4650 let payment_claimable_generated = check_total_value!(purpose);
4651 if payment_claimable_generated {
4652 inbound_payment.remove_entry();
4658 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
4659 panic!("Got pending fail of our own HTLC");
4667 let best_block_height = self.best_block.read().unwrap().height();
4668 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4669 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4670 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4672 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4673 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4675 self.forward_htlcs(&mut phantom_receives);
4677 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4678 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4679 // nice to do the work now if we can rather than while we're trying to get messages in the
4681 self.check_free_holding_cells();
4683 if new_events.is_empty() { return }
4684 let mut events = self.pending_events.lock().unwrap();
4685 events.append(&mut new_events);
4688 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4690 /// Expects the caller to have a total_consistency_lock read lock.
4691 fn process_background_events(&self) -> NotifyOption {
4692 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4694 self.background_events_processed_since_startup.store(true, Ordering::Release);
4696 let mut background_events = Vec::new();
4697 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4698 if background_events.is_empty() {
4699 return NotifyOption::SkipPersistNoEvents;
4702 for event in background_events.drain(..) {
4704 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4705 // The channel has already been closed, so no use bothering to care about the
4706 // monitor updating completing.
4707 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4709 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4710 let mut updated_chan = false;
4712 let per_peer_state = self.per_peer_state.read().unwrap();
4713 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4714 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4715 let peer_state = &mut *peer_state_lock;
4716 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4717 hash_map::Entry::Occupied(mut chan_phase) => {
4718 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4719 updated_chan = true;
4720 handle_new_monitor_update!(self, funding_txo, update.clone(),
4721 peer_state_lock, peer_state, per_peer_state, chan);
4723 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4726 hash_map::Entry::Vacant(_) => {},
4731 // TODO: Track this as in-flight even though the channel is closed.
4732 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4735 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4736 let per_peer_state = self.per_peer_state.read().unwrap();
4737 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4738 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4739 let peer_state = &mut *peer_state_lock;
4740 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4741 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4743 let update_actions = peer_state.monitor_update_blocked_actions
4744 .remove(&channel_id).unwrap_or(Vec::new());
4745 mem::drop(peer_state_lock);
4746 mem::drop(per_peer_state);
4747 self.handle_monitor_update_completion_actions(update_actions);
4753 NotifyOption::DoPersist
4756 #[cfg(any(test, feature = "_test_utils"))]
4757 /// Process background events, for functional testing
4758 pub fn test_process_background_events(&self) {
4759 let _lck = self.total_consistency_lock.read().unwrap();
4760 let _ = self.process_background_events();
4763 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4764 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4766 let logger = WithChannelContext::from(&self.logger, &chan.context);
4768 // If the feerate has decreased by less than half, don't bother
4769 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4770 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4771 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4772 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4774 return NotifyOption::SkipPersistNoEvents;
4776 if !chan.context.is_live() {
4777 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4778 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4779 return NotifyOption::SkipPersistNoEvents;
4781 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
4782 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4784 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
4785 NotifyOption::DoPersist
4789 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4790 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4791 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4792 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4793 pub fn maybe_update_chan_fees(&self) {
4794 PersistenceNotifierGuard::optionally_notify(self, || {
4795 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4797 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4798 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4800 let per_peer_state = self.per_peer_state.read().unwrap();
4801 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4802 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4803 let peer_state = &mut *peer_state_lock;
4804 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4805 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4807 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4812 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4813 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4821 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4823 /// This currently includes:
4824 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4825 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4826 /// than a minute, informing the network that they should no longer attempt to route over
4828 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4829 /// with the current [`ChannelConfig`].
4830 /// * Removing peers which have disconnected but and no longer have any channels.
4831 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4832 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4833 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4834 /// The latter is determined using the system clock in `std` and the highest seen block time
4835 /// minus two hours in `no-std`.
4837 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4838 /// estimate fetches.
4840 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4841 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4842 pub fn timer_tick_occurred(&self) {
4843 PersistenceNotifierGuard::optionally_notify(self, || {
4844 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4846 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4847 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4849 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4850 let mut timed_out_mpp_htlcs = Vec::new();
4851 let mut pending_peers_awaiting_removal = Vec::new();
4852 let mut shutdown_channels = Vec::new();
4854 let mut process_unfunded_channel_tick = |
4855 chan_id: &ChannelId,
4856 context: &mut ChannelContext<SP>,
4857 unfunded_context: &mut UnfundedChannelContext,
4858 pending_msg_events: &mut Vec<MessageSendEvent>,
4859 counterparty_node_id: PublicKey,
4861 context.maybe_expire_prev_config();
4862 if unfunded_context.should_expire_unfunded_channel() {
4863 let logger = WithChannelContext::from(&self.logger, context);
4865 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4866 update_maps_on_chan_removal!(self, &context);
4867 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4868 shutdown_channels.push(context.force_shutdown(false));
4869 pending_msg_events.push(MessageSendEvent::HandleError {
4870 node_id: counterparty_node_id,
4871 action: msgs::ErrorAction::SendErrorMessage {
4872 msg: msgs::ErrorMessage {
4873 channel_id: *chan_id,
4874 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4885 let per_peer_state = self.per_peer_state.read().unwrap();
4886 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4887 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4888 let peer_state = &mut *peer_state_lock;
4889 let pending_msg_events = &mut peer_state.pending_msg_events;
4890 let counterparty_node_id = *counterparty_node_id;
4891 peer_state.channel_by_id.retain(|chan_id, phase| {
4893 ChannelPhase::Funded(chan) => {
4894 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4899 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4900 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4902 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4903 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4904 handle_errors.push((Err(err), counterparty_node_id));
4905 if needs_close { return false; }
4908 match chan.channel_update_status() {
4909 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4910 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4911 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4912 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4913 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4914 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4915 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4917 if n >= DISABLE_GOSSIP_TICKS {
4918 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4919 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4920 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4924 should_persist = NotifyOption::DoPersist;
4926 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4929 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4931 if n >= ENABLE_GOSSIP_TICKS {
4932 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4933 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4934 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4938 should_persist = NotifyOption::DoPersist;
4940 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4946 chan.context.maybe_expire_prev_config();
4948 if chan.should_disconnect_peer_awaiting_response() {
4949 let logger = WithChannelContext::from(&self.logger, &chan.context);
4950 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
4951 counterparty_node_id, chan_id);
4952 pending_msg_events.push(MessageSendEvent::HandleError {
4953 node_id: counterparty_node_id,
4954 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4955 msg: msgs::WarningMessage {
4956 channel_id: *chan_id,
4957 data: "Disconnecting due to timeout awaiting response".to_owned(),
4965 ChannelPhase::UnfundedInboundV1(chan) => {
4966 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4967 pending_msg_events, counterparty_node_id)
4969 ChannelPhase::UnfundedOutboundV1(chan) => {
4970 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4971 pending_msg_events, counterparty_node_id)
4976 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4977 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4978 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
4979 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4980 peer_state.pending_msg_events.push(
4981 events::MessageSendEvent::HandleError {
4982 node_id: counterparty_node_id,
4983 action: msgs::ErrorAction::SendErrorMessage {
4984 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4990 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4992 if peer_state.ok_to_remove(true) {
4993 pending_peers_awaiting_removal.push(counterparty_node_id);
4998 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4999 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5000 // of to that peer is later closed while still being disconnected (i.e. force closed),
5001 // we therefore need to remove the peer from `peer_state` separately.
5002 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5003 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5004 // negative effects on parallelism as much as possible.
5005 if pending_peers_awaiting_removal.len() > 0 {
5006 let mut per_peer_state = self.per_peer_state.write().unwrap();
5007 for counterparty_node_id in pending_peers_awaiting_removal {
5008 match per_peer_state.entry(counterparty_node_id) {
5009 hash_map::Entry::Occupied(entry) => {
5010 // Remove the entry if the peer is still disconnected and we still
5011 // have no channels to the peer.
5012 let remove_entry = {
5013 let peer_state = entry.get().lock().unwrap();
5014 peer_state.ok_to_remove(true)
5017 entry.remove_entry();
5020 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5025 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5026 if payment.htlcs.is_empty() {
5027 // This should be unreachable
5028 debug_assert!(false);
5031 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5032 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5033 // In this case we're not going to handle any timeouts of the parts here.
5034 // This condition determining whether the MPP is complete here must match
5035 // exactly the condition used in `process_pending_htlc_forwards`.
5036 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5037 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5040 } else if payment.htlcs.iter_mut().any(|htlc| {
5041 htlc.timer_ticks += 1;
5042 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5044 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5045 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5052 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5053 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5054 let reason = HTLCFailReason::from_failure_code(23);
5055 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5056 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5059 for (err, counterparty_node_id) in handle_errors.drain(..) {
5060 let _ = handle_error!(self, err, counterparty_node_id);
5063 for shutdown_res in shutdown_channels {
5064 self.finish_close_channel(shutdown_res);
5067 #[cfg(feature = "std")]
5068 let duration_since_epoch = std::time::SystemTime::now()
5069 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5070 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5071 #[cfg(not(feature = "std"))]
5072 let duration_since_epoch = Duration::from_secs(
5073 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5076 self.pending_outbound_payments.remove_stale_payments(
5077 duration_since_epoch, &self.pending_events
5080 // Technically we don't need to do this here, but if we have holding cell entries in a
5081 // channel that need freeing, it's better to do that here and block a background task
5082 // than block the message queueing pipeline.
5083 if self.check_free_holding_cells() {
5084 should_persist = NotifyOption::DoPersist;
5091 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5092 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5093 /// along the path (including in our own channel on which we received it).
5095 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5096 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5097 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5098 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5100 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5101 /// [`ChannelManager::claim_funds`]), you should still monitor for
5102 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5103 /// startup during which time claims that were in-progress at shutdown may be replayed.
5104 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5105 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5108 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5109 /// reason for the failure.
5111 /// See [`FailureCode`] for valid failure codes.
5112 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5113 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5115 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5116 if let Some(payment) = removed_source {
5117 for htlc in payment.htlcs {
5118 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5119 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5120 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5121 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5126 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5127 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5128 match failure_code {
5129 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5130 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5131 FailureCode::IncorrectOrUnknownPaymentDetails => {
5132 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5133 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5134 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5136 FailureCode::InvalidOnionPayload(data) => {
5137 let fail_data = match data {
5138 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5141 HTLCFailReason::reason(failure_code.into(), fail_data)
5146 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5147 /// that we want to return and a channel.
5149 /// This is for failures on the channel on which the HTLC was *received*, not failures
5151 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5152 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5153 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5154 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5155 // an inbound SCID alias before the real SCID.
5156 let scid_pref = if chan.context.should_announce() {
5157 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5159 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5161 if let Some(scid) = scid_pref {
5162 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5164 (0x4000|10, Vec::new())
5169 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5170 /// that we want to return and a channel.
5171 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5172 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5173 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5174 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5175 if desired_err_code == 0x1000 | 20 {
5176 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5177 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5178 0u16.write(&mut enc).expect("Writes cannot fail");
5180 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5181 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5182 upd.write(&mut enc).expect("Writes cannot fail");
5183 (desired_err_code, enc.0)
5185 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5186 // which means we really shouldn't have gotten a payment to be forwarded over this
5187 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5188 // PERM|no_such_channel should be fine.
5189 (0x4000|10, Vec::new())
5193 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5194 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5195 // be surfaced to the user.
5196 fn fail_holding_cell_htlcs(
5197 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5198 counterparty_node_id: &PublicKey
5200 let (failure_code, onion_failure_data) = {
5201 let per_peer_state = self.per_peer_state.read().unwrap();
5202 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5203 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5204 let peer_state = &mut *peer_state_lock;
5205 match peer_state.channel_by_id.entry(channel_id) {
5206 hash_map::Entry::Occupied(chan_phase_entry) => {
5207 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5208 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5210 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5211 debug_assert!(false);
5212 (0x4000|10, Vec::new())
5215 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5217 } else { (0x4000|10, Vec::new()) }
5220 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5221 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5222 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5223 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5227 /// Fails an HTLC backwards to the sender of it to us.
5228 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5229 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5230 // Ensure that no peer state channel storage lock is held when calling this function.
5231 // This ensures that future code doesn't introduce a lock-order requirement for
5232 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5233 // this function with any `per_peer_state` peer lock acquired would.
5234 #[cfg(debug_assertions)]
5235 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5236 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5239 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5240 //identify whether we sent it or not based on the (I presume) very different runtime
5241 //between the branches here. We should make this async and move it into the forward HTLCs
5244 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5245 // from block_connected which may run during initialization prior to the chain_monitor
5246 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5248 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5249 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5250 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5251 &self.pending_events, &self.logger)
5252 { self.push_pending_forwards_ev(); }
5254 HTLCSource::PreviousHopData(HTLCPreviousHopData {
5255 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
5256 ref phantom_shared_secret, ref outpoint, ref blinded_failure, ..
5259 WithContext::from(&self.logger, None, Some(outpoint.to_channel_id())),
5260 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
5261 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
5263 let failure = match blinded_failure {
5264 Some(BlindedFailure::FromIntroductionNode) => {
5265 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
5266 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
5267 incoming_packet_shared_secret, phantom_shared_secret
5269 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
5271 Some(BlindedFailure::FromBlindedNode) => {
5272 HTLCForwardInfo::FailMalformedHTLC {
5274 failure_code: INVALID_ONION_BLINDING,
5275 sha256_of_onion: [0; 32]
5279 let err_packet = onion_error.get_encrypted_failure_packet(
5280 incoming_packet_shared_secret, phantom_shared_secret
5282 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
5286 let mut push_forward_ev = false;
5287 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5288 if forward_htlcs.is_empty() {
5289 push_forward_ev = true;
5291 match forward_htlcs.entry(*short_channel_id) {
5292 hash_map::Entry::Occupied(mut entry) => {
5293 entry.get_mut().push(failure);
5295 hash_map::Entry::Vacant(entry) => {
5296 entry.insert(vec!(failure));
5299 mem::drop(forward_htlcs);
5300 if push_forward_ev { self.push_pending_forwards_ev(); }
5301 let mut pending_events = self.pending_events.lock().unwrap();
5302 pending_events.push_back((events::Event::HTLCHandlingFailed {
5303 prev_channel_id: outpoint.to_channel_id(),
5304 failed_next_destination: destination,
5310 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5311 /// [`MessageSendEvent`]s needed to claim the payment.
5313 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5314 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5315 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5316 /// successful. It will generally be available in the next [`process_pending_events`] call.
5318 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5319 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5320 /// event matches your expectation. If you fail to do so and call this method, you may provide
5321 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5323 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5324 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5325 /// [`claim_funds_with_known_custom_tlvs`].
5327 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5328 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5329 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5330 /// [`process_pending_events`]: EventsProvider::process_pending_events
5331 /// [`create_inbound_payment`]: Self::create_inbound_payment
5332 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5333 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5334 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5335 self.claim_payment_internal(payment_preimage, false);
5338 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5339 /// even type numbers.
5343 /// You MUST check you've understood all even TLVs before using this to
5344 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5346 /// [`claim_funds`]: Self::claim_funds
5347 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5348 self.claim_payment_internal(payment_preimage, true);
5351 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5352 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
5354 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5357 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5358 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5359 let mut receiver_node_id = self.our_network_pubkey;
5360 for htlc in payment.htlcs.iter() {
5361 if htlc.prev_hop.phantom_shared_secret.is_some() {
5362 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5363 .expect("Failed to get node_id for phantom node recipient");
5364 receiver_node_id = phantom_pubkey;
5369 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5370 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5371 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5372 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5373 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5375 if dup_purpose.is_some() {
5376 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5377 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5381 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5382 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5383 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5384 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5385 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5386 mem::drop(claimable_payments);
5387 for htlc in payment.htlcs {
5388 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5389 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5390 let receiver = HTLCDestination::FailedPayment { payment_hash };
5391 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5400 debug_assert!(!sources.is_empty());
5402 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5403 // and when we got here we need to check that the amount we're about to claim matches the
5404 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5405 // the MPP parts all have the same `total_msat`.
5406 let mut claimable_amt_msat = 0;
5407 let mut prev_total_msat = None;
5408 let mut expected_amt_msat = None;
5409 let mut valid_mpp = true;
5410 let mut errs = Vec::new();
5411 let per_peer_state = self.per_peer_state.read().unwrap();
5412 for htlc in sources.iter() {
5413 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5414 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5415 debug_assert!(false);
5419 prev_total_msat = Some(htlc.total_msat);
5421 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5422 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5423 debug_assert!(false);
5427 expected_amt_msat = htlc.total_value_received;
5428 claimable_amt_msat += htlc.value;
5430 mem::drop(per_peer_state);
5431 if sources.is_empty() || expected_amt_msat.is_none() {
5432 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5433 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5436 if claimable_amt_msat != expected_amt_msat.unwrap() {
5437 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5438 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5439 expected_amt_msat.unwrap(), claimable_amt_msat);
5443 for htlc in sources.drain(..) {
5444 let prev_hop_chan_id = htlc.prev_hop.outpoint.to_channel_id();
5445 if let Err((pk, err)) = self.claim_funds_from_hop(
5446 htlc.prev_hop, payment_preimage,
5447 |_, definitely_duplicate| {
5448 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5449 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5452 if let msgs::ErrorAction::IgnoreError = err.err.action {
5453 // We got a temporary failure updating monitor, but will claim the
5454 // HTLC when the monitor updating is restored (or on chain).
5455 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
5456 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5457 } else { errs.push((pk, err)); }
5462 for htlc in sources.drain(..) {
5463 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5464 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5465 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5466 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5467 let receiver = HTLCDestination::FailedPayment { payment_hash };
5468 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5470 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5473 // Now we can handle any errors which were generated.
5474 for (counterparty_node_id, err) in errs.drain(..) {
5475 let res: Result<(), _> = Err(err);
5476 let _ = handle_error!(self, res, counterparty_node_id);
5480 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5481 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5482 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5483 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5485 // If we haven't yet run background events assume we're still deserializing and shouldn't
5486 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5487 // `BackgroundEvent`s.
5488 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5490 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5491 // the required mutexes are not held before we start.
5492 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5493 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5496 let per_peer_state = self.per_peer_state.read().unwrap();
5497 let chan_id = prev_hop.outpoint.to_channel_id();
5498 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5499 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5503 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5504 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5505 .map(|peer_mutex| peer_mutex.lock().unwrap())
5508 if peer_state_opt.is_some() {
5509 let mut peer_state_lock = peer_state_opt.unwrap();
5510 let peer_state = &mut *peer_state_lock;
5511 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5512 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5513 let counterparty_node_id = chan.context.get_counterparty_node_id();
5514 let logger = WithChannelContext::from(&self.logger, &chan.context);
5515 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
5518 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5519 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5520 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
5522 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5525 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5526 peer_state, per_peer_state, chan);
5528 // If we're running during init we cannot update a monitor directly -
5529 // they probably haven't actually been loaded yet. Instead, push the
5530 // monitor update as a background event.
5531 self.pending_background_events.lock().unwrap().push(
5532 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5533 counterparty_node_id,
5534 funding_txo: prev_hop.outpoint,
5535 update: monitor_update.clone(),
5539 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5540 let action = if let Some(action) = completion_action(None, true) {
5545 mem::drop(peer_state_lock);
5547 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5549 let (node_id, funding_outpoint, blocker) =
5550 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5551 downstream_counterparty_node_id: node_id,
5552 downstream_funding_outpoint: funding_outpoint,
5553 blocking_action: blocker,
5555 (node_id, funding_outpoint, blocker)
5557 debug_assert!(false,
5558 "Duplicate claims should always free another channel immediately");
5561 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5562 let mut peer_state = peer_state_mtx.lock().unwrap();
5563 if let Some(blockers) = peer_state
5564 .actions_blocking_raa_monitor_updates
5565 .get_mut(&funding_outpoint.to_channel_id())
5567 let mut found_blocker = false;
5568 blockers.retain(|iter| {
5569 // Note that we could actually be blocked, in
5570 // which case we need to only remove the one
5571 // blocker which was added duplicatively.
5572 let first_blocker = !found_blocker;
5573 if *iter == blocker { found_blocker = true; }
5574 *iter != blocker || !first_blocker
5576 debug_assert!(found_blocker);
5579 debug_assert!(false);
5588 let preimage_update = ChannelMonitorUpdate {
5589 update_id: CLOSED_CHANNEL_UPDATE_ID,
5590 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5596 // We update the ChannelMonitor on the backward link, after
5597 // receiving an `update_fulfill_htlc` from the forward link.
5598 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5599 if update_res != ChannelMonitorUpdateStatus::Completed {
5600 // TODO: This needs to be handled somehow - if we receive a monitor update
5601 // with a preimage we *must* somehow manage to propagate it to the upstream
5602 // channel, or we must have an ability to receive the same event and try
5603 // again on restart.
5604 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.outpoint.to_channel_id())), "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5605 payment_preimage, update_res);
5608 // If we're running during init we cannot update a monitor directly - they probably
5609 // haven't actually been loaded yet. Instead, push the monitor update as a background
5611 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5612 // channel is already closed) we need to ultimately handle the monitor update
5613 // completion action only after we've completed the monitor update. This is the only
5614 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5615 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5616 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5617 // complete the monitor update completion action from `completion_action`.
5618 self.pending_background_events.lock().unwrap().push(
5619 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5620 prev_hop.outpoint, preimage_update,
5623 // Note that we do process the completion action here. This totally could be a
5624 // duplicate claim, but we have no way of knowing without interrogating the
5625 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5626 // generally always allowed to be duplicative (and it's specifically noted in
5627 // `PaymentForwarded`).
5628 self.handle_monitor_update_completion_actions(completion_action(None, false));
5632 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5633 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5636 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5637 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5638 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5641 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5642 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5643 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5644 if let Some(pubkey) = next_channel_counterparty_node_id {
5645 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5647 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5648 channel_funding_outpoint: next_channel_outpoint,
5649 counterparty_node_id: path.hops[0].pubkey,
5651 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5652 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5655 HTLCSource::PreviousHopData(hop_data) => {
5656 let prev_outpoint = hop_data.outpoint;
5657 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5658 #[cfg(debug_assertions)]
5659 let claiming_chan_funding_outpoint = hop_data.outpoint;
5660 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5661 |htlc_claim_value_msat, definitely_duplicate| {
5662 let chan_to_release =
5663 if let Some(node_id) = next_channel_counterparty_node_id {
5664 Some((node_id, next_channel_outpoint, completed_blocker))
5666 // We can only get `None` here if we are processing a
5667 // `ChannelMonitor`-originated event, in which case we
5668 // don't care about ensuring we wake the downstream
5669 // channel's monitor updating - the channel is already
5674 if definitely_duplicate && startup_replay {
5675 // On startup we may get redundant claims which are related to
5676 // monitor updates still in flight. In that case, we shouldn't
5677 // immediately free, but instead let that monitor update complete
5678 // in the background.
5679 #[cfg(debug_assertions)] {
5680 let background_events = self.pending_background_events.lock().unwrap();
5681 // There should be a `BackgroundEvent` pending...
5682 assert!(background_events.iter().any(|ev| {
5684 // to apply a monitor update that blocked the claiming channel,
5685 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5686 funding_txo, update, ..
5688 if *funding_txo == claiming_chan_funding_outpoint {
5689 assert!(update.updates.iter().any(|upd|
5690 if let ChannelMonitorUpdateStep::PaymentPreimage {
5691 payment_preimage: update_preimage
5693 payment_preimage == *update_preimage
5699 // or the channel we'd unblock is already closed,
5700 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5701 (funding_txo, monitor_update)
5703 if *funding_txo == next_channel_outpoint {
5704 assert_eq!(monitor_update.updates.len(), 1);
5706 monitor_update.updates[0],
5707 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5712 // or the monitor update has completed and will unblock
5713 // immediately once we get going.
5714 BackgroundEvent::MonitorUpdatesComplete {
5717 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5719 }), "{:?}", *background_events);
5722 } else if definitely_duplicate {
5723 if let Some(other_chan) = chan_to_release {
5724 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5725 downstream_counterparty_node_id: other_chan.0,
5726 downstream_funding_outpoint: other_chan.1,
5727 blocking_action: other_chan.2,
5731 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5732 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5733 Some(claimed_htlc_value - forwarded_htlc_value)
5736 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5737 event: events::Event::PaymentForwarded {
5739 claim_from_onchain_tx: from_onchain,
5740 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5741 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5742 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5744 downstream_counterparty_and_funding_outpoint: chan_to_release,
5748 if let Err((pk, err)) = res {
5749 let result: Result<(), _> = Err(err);
5750 let _ = handle_error!(self, result, pk);
5756 /// Gets the node_id held by this ChannelManager
5757 pub fn get_our_node_id(&self) -> PublicKey {
5758 self.our_network_pubkey.clone()
5761 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5762 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5763 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5764 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5766 for action in actions.into_iter() {
5768 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5769 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5770 if let Some(ClaimingPayment {
5772 payment_purpose: purpose,
5775 sender_intended_value: sender_intended_total_msat,
5777 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5781 receiver_node_id: Some(receiver_node_id),
5783 sender_intended_total_msat,
5787 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5788 event, downstream_counterparty_and_funding_outpoint
5790 self.pending_events.lock().unwrap().push_back((event, None));
5791 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5792 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5795 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5796 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5798 self.handle_monitor_update_release(
5799 downstream_counterparty_node_id,
5800 downstream_funding_outpoint,
5801 Some(blocking_action),
5808 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5809 /// update completion.
5810 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5811 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5812 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5813 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5814 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5815 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5816 let logger = WithChannelContext::from(&self.logger, &channel.context);
5817 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5818 &channel.context.channel_id(),
5819 if raa.is_some() { "an" } else { "no" },
5820 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5821 if funding_broadcastable.is_some() { "" } else { "not " },
5822 if channel_ready.is_some() { "sending" } else { "without" },
5823 if announcement_sigs.is_some() { "sending" } else { "without" });
5825 let mut htlc_forwards = None;
5827 let counterparty_node_id = channel.context.get_counterparty_node_id();
5828 if !pending_forwards.is_empty() {
5829 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5830 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5833 if let Some(msg) = channel_ready {
5834 send_channel_ready!(self, pending_msg_events, channel, msg);
5836 if let Some(msg) = announcement_sigs {
5837 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5838 node_id: counterparty_node_id,
5843 macro_rules! handle_cs { () => {
5844 if let Some(update) = commitment_update {
5845 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5846 node_id: counterparty_node_id,
5851 macro_rules! handle_raa { () => {
5852 if let Some(revoke_and_ack) = raa {
5853 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5854 node_id: counterparty_node_id,
5855 msg: revoke_and_ack,
5860 RAACommitmentOrder::CommitmentFirst => {
5864 RAACommitmentOrder::RevokeAndACKFirst => {
5870 if let Some(tx) = funding_broadcastable {
5871 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
5872 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5876 let mut pending_events = self.pending_events.lock().unwrap();
5877 emit_channel_pending_event!(pending_events, channel);
5878 emit_channel_ready_event!(pending_events, channel);
5884 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5885 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5887 let counterparty_node_id = match counterparty_node_id {
5888 Some(cp_id) => cp_id.clone(),
5890 // TODO: Once we can rely on the counterparty_node_id from the
5891 // monitor event, this and the id_to_peer map should be removed.
5892 let id_to_peer = self.id_to_peer.lock().unwrap();
5893 match id_to_peer.get(&funding_txo.to_channel_id()) {
5894 Some(cp_id) => cp_id.clone(),
5899 let per_peer_state = self.per_peer_state.read().unwrap();
5900 let mut peer_state_lock;
5901 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5902 if peer_state_mutex_opt.is_none() { return }
5903 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5904 let peer_state = &mut *peer_state_lock;
5906 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5909 let update_actions = peer_state.monitor_update_blocked_actions
5910 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5911 mem::drop(peer_state_lock);
5912 mem::drop(per_peer_state);
5913 self.handle_monitor_update_completion_actions(update_actions);
5916 let remaining_in_flight =
5917 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5918 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5921 let logger = WithChannelContext::from(&self.logger, &channel.context);
5922 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5923 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5924 remaining_in_flight);
5925 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5928 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5931 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5933 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5934 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5937 /// The `user_channel_id` parameter will be provided back in
5938 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5939 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5941 /// Note that this method will return an error and reject the channel, if it requires support
5942 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5943 /// used to accept such channels.
5945 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5946 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5947 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5948 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5951 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5952 /// it as confirmed immediately.
5954 /// The `user_channel_id` parameter will be provided back in
5955 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5956 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5958 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5959 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5961 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5962 /// transaction and blindly assumes that it will eventually confirm.
5964 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5965 /// does not pay to the correct script the correct amount, *you will lose funds*.
5967 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5968 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5969 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5970 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5973 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5974 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5976 let peers_without_funded_channels =
5977 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5978 let per_peer_state = self.per_peer_state.read().unwrap();
5979 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5980 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5981 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5982 let peer_state = &mut *peer_state_lock;
5983 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5985 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5986 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5987 // that we can delay allocating the SCID until after we're sure that the checks below will
5989 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5990 Some(unaccepted_channel) => {
5991 let best_block_height = self.best_block.read().unwrap().height();
5992 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5993 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5994 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5995 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5997 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
6001 // This should have been correctly configured by the call to InboundV1Channel::new.
6002 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6003 } else if channel.context.get_channel_type().requires_zero_conf() {
6004 let send_msg_err_event = events::MessageSendEvent::HandleError {
6005 node_id: channel.context.get_counterparty_node_id(),
6006 action: msgs::ErrorAction::SendErrorMessage{
6007 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6010 peer_state.pending_msg_events.push(send_msg_err_event);
6011 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
6013 // If this peer already has some channels, a new channel won't increase our number of peers
6014 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6015 // channels per-peer we can accept channels from a peer with existing ones.
6016 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6017 let send_msg_err_event = events::MessageSendEvent::HandleError {
6018 node_id: channel.context.get_counterparty_node_id(),
6019 action: msgs::ErrorAction::SendErrorMessage{
6020 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
6023 peer_state.pending_msg_events.push(send_msg_err_event);
6024 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
6028 // Now that we know we have a channel, assign an outbound SCID alias.
6029 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6030 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6032 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6033 node_id: channel.context.get_counterparty_node_id(),
6034 msg: channel.accept_inbound_channel(),
6037 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6042 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6043 /// or 0-conf channels.
6045 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6046 /// non-0-conf channels we have with the peer.
6047 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6048 where Filter: Fn(&PeerState<SP>) -> bool {
6049 let mut peers_without_funded_channels = 0;
6050 let best_block_height = self.best_block.read().unwrap().height();
6052 let peer_state_lock = self.per_peer_state.read().unwrap();
6053 for (_, peer_mtx) in peer_state_lock.iter() {
6054 let peer = peer_mtx.lock().unwrap();
6055 if !maybe_count_peer(&*peer) { continue; }
6056 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6057 if num_unfunded_channels == peer.total_channel_count() {
6058 peers_without_funded_channels += 1;
6062 return peers_without_funded_channels;
6065 fn unfunded_channel_count(
6066 peer: &PeerState<SP>, best_block_height: u32
6068 let mut num_unfunded_channels = 0;
6069 for (_, phase) in peer.channel_by_id.iter() {
6071 ChannelPhase::Funded(chan) => {
6072 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6073 // which have not yet had any confirmations on-chain.
6074 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6075 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6077 num_unfunded_channels += 1;
6080 ChannelPhase::UnfundedInboundV1(chan) => {
6081 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6082 num_unfunded_channels += 1;
6085 ChannelPhase::UnfundedOutboundV1(_) => {
6086 // Outbound channels don't contribute to the unfunded count in the DoS context.
6091 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6094 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6095 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6096 // likely to be lost on restart!
6097 if msg.chain_hash != self.chain_hash {
6098 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6101 if !self.default_configuration.accept_inbound_channels {
6102 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6105 // Get the number of peers with channels, but without funded ones. We don't care too much
6106 // about peers that never open a channel, so we filter by peers that have at least one
6107 // channel, and then limit the number of those with unfunded channels.
6108 let channeled_peers_without_funding =
6109 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6111 let per_peer_state = self.per_peer_state.read().unwrap();
6112 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6114 debug_assert!(false);
6115 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6117 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6118 let peer_state = &mut *peer_state_lock;
6120 // If this peer already has some channels, a new channel won't increase our number of peers
6121 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6122 // channels per-peer we can accept channels from a peer with existing ones.
6123 if peer_state.total_channel_count() == 0 &&
6124 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6125 !self.default_configuration.manually_accept_inbound_channels
6127 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6128 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6129 msg.temporary_channel_id.clone()));
6132 let best_block_height = self.best_block.read().unwrap().height();
6133 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6134 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6135 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6136 msg.temporary_channel_id.clone()));
6139 let channel_id = msg.temporary_channel_id;
6140 let channel_exists = peer_state.has_channel(&channel_id);
6142 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6145 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6146 if self.default_configuration.manually_accept_inbound_channels {
6147 let mut pending_events = self.pending_events.lock().unwrap();
6148 pending_events.push_back((events::Event::OpenChannelRequest {
6149 temporary_channel_id: msg.temporary_channel_id.clone(),
6150 counterparty_node_id: counterparty_node_id.clone(),
6151 funding_satoshis: msg.funding_satoshis,
6152 push_msat: msg.push_msat,
6153 channel_type: msg.channel_type.clone().unwrap(),
6155 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6156 open_channel_msg: msg.clone(),
6157 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6162 // Otherwise create the channel right now.
6163 let mut random_bytes = [0u8; 16];
6164 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6165 let user_channel_id = u128::from_be_bytes(random_bytes);
6166 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6167 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6168 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6171 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6176 let channel_type = channel.context.get_channel_type();
6177 if channel_type.requires_zero_conf() {
6178 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6180 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6181 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6184 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6185 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6187 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6188 node_id: counterparty_node_id.clone(),
6189 msg: channel.accept_inbound_channel(),
6191 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6195 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6196 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6197 // likely to be lost on restart!
6198 let (value, output_script, user_id) = {
6199 let per_peer_state = self.per_peer_state.read().unwrap();
6200 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6202 debug_assert!(false);
6203 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6205 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6206 let peer_state = &mut *peer_state_lock;
6207 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6208 hash_map::Entry::Occupied(mut phase) => {
6209 match phase.get_mut() {
6210 ChannelPhase::UnfundedOutboundV1(chan) => {
6211 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6212 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6215 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6219 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6222 let mut pending_events = self.pending_events.lock().unwrap();
6223 pending_events.push_back((events::Event::FundingGenerationReady {
6224 temporary_channel_id: msg.temporary_channel_id,
6225 counterparty_node_id: *counterparty_node_id,
6226 channel_value_satoshis: value,
6228 user_channel_id: user_id,
6233 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6234 let best_block = *self.best_block.read().unwrap();
6236 let per_peer_state = self.per_peer_state.read().unwrap();
6237 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6239 debug_assert!(false);
6240 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6243 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6244 let peer_state = &mut *peer_state_lock;
6245 let (chan, funding_msg_opt, monitor) =
6246 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6247 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6248 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
6249 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
6251 Err((mut inbound_chan, err)) => {
6252 // We've already removed this inbound channel from the map in `PeerState`
6253 // above so at this point we just need to clean up any lingering entries
6254 // concerning this channel as it is safe to do so.
6255 update_maps_on_chan_removal!(self, &inbound_chan.context);
6256 let user_id = inbound_chan.context.get_user_id();
6257 let shutdown_res = inbound_chan.context.force_shutdown(false);
6258 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6259 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6263 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6264 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6266 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6269 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
6270 hash_map::Entry::Occupied(_) => {
6271 Err(MsgHandleErrInternal::send_err_msg_no_close(
6272 "Already had channel with the new channel_id".to_owned(),
6273 chan.context.channel_id()
6276 hash_map::Entry::Vacant(e) => {
6277 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6278 match id_to_peer_lock.entry(chan.context.channel_id()) {
6279 hash_map::Entry::Occupied(_) => {
6280 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6281 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6282 chan.context.channel_id()))
6284 hash_map::Entry::Vacant(i_e) => {
6285 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6286 if let Ok(persist_state) = monitor_res {
6287 i_e.insert(chan.context.get_counterparty_node_id());
6288 mem::drop(id_to_peer_lock);
6290 // There's no problem signing a counterparty's funding transaction if our monitor
6291 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6292 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6293 // until we have persisted our monitor.
6294 if let Some(msg) = funding_msg_opt {
6295 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6296 node_id: counterparty_node_id.clone(),
6301 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6302 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6303 per_peer_state, chan, INITIAL_MONITOR);
6305 unreachable!("This must be a funded channel as we just inserted it.");
6309 let logger = WithChannelContext::from(&self.logger, &chan.context);
6310 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6311 let channel_id = match funding_msg_opt {
6312 Some(msg) => msg.channel_id,
6313 None => chan.context.channel_id(),
6315 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6316 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6325 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6326 let best_block = *self.best_block.read().unwrap();
6327 let per_peer_state = self.per_peer_state.read().unwrap();
6328 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6330 debug_assert!(false);
6331 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6334 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6335 let peer_state = &mut *peer_state_lock;
6336 match peer_state.channel_by_id.entry(msg.channel_id) {
6337 hash_map::Entry::Occupied(chan_phase_entry) => {
6338 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
6339 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
6340 let logger = WithContext::from(
6342 Some(chan.context.get_counterparty_node_id()),
6343 Some(chan.context.channel_id())
6346 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
6348 Ok((chan, monitor)) => {
6349 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6350 // We really should be able to insert here without doing a second
6351 // lookup, but sadly rust stdlib doesn't currently allow keeping
6352 // the original Entry around with the value removed.
6353 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
6354 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
6355 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6356 } else { unreachable!(); }
6359 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
6360 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
6364 debug_assert!(matches!(e, ChannelError::Close(_)),
6365 "We don't have a channel anymore, so the error better have expected close");
6366 // We've already removed this outbound channel from the map in
6367 // `PeerState` above so at this point we just need to clean up any
6368 // lingering entries concerning this channel as it is safe to do so.
6369 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
6373 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6376 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6380 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6381 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6382 // closing a channel), so any changes are likely to be lost on restart!
6383 let per_peer_state = self.per_peer_state.read().unwrap();
6384 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6386 debug_assert!(false);
6387 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6389 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6390 let peer_state = &mut *peer_state_lock;
6391 match peer_state.channel_by_id.entry(msg.channel_id) {
6392 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6393 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6394 let logger = WithChannelContext::from(&self.logger, &chan.context);
6395 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6396 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
6397 if let Some(announcement_sigs) = announcement_sigs_opt {
6398 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6399 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6400 node_id: counterparty_node_id.clone(),
6401 msg: announcement_sigs,
6403 } else if chan.context.is_usable() {
6404 // If we're sending an announcement_signatures, we'll send the (public)
6405 // channel_update after sending a channel_announcement when we receive our
6406 // counterparty's announcement_signatures. Thus, we only bother to send a
6407 // channel_update here if the channel is not public, i.e. we're not sending an
6408 // announcement_signatures.
6409 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6410 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6411 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6412 node_id: counterparty_node_id.clone(),
6419 let mut pending_events = self.pending_events.lock().unwrap();
6420 emit_channel_ready_event!(pending_events, chan);
6425 try_chan_phase_entry!(self, Err(ChannelError::Close(
6426 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6429 hash_map::Entry::Vacant(_) => {
6430 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6435 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6436 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6437 let mut finish_shutdown = None;
6439 let per_peer_state = self.per_peer_state.read().unwrap();
6440 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6442 debug_assert!(false);
6443 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6445 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6446 let peer_state = &mut *peer_state_lock;
6447 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6448 let phase = chan_phase_entry.get_mut();
6450 ChannelPhase::Funded(chan) => {
6451 if !chan.received_shutdown() {
6452 let logger = WithChannelContext::from(&self.logger, &chan.context);
6453 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
6455 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6458 let funding_txo_opt = chan.context.get_funding_txo();
6459 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6460 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6461 dropped_htlcs = htlcs;
6463 if let Some(msg) = shutdown {
6464 // We can send the `shutdown` message before updating the `ChannelMonitor`
6465 // here as we don't need the monitor update to complete until we send a
6466 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6467 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6468 node_id: *counterparty_node_id,
6472 // Update the monitor with the shutdown script if necessary.
6473 if let Some(monitor_update) = monitor_update_opt {
6474 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6475 peer_state_lock, peer_state, per_peer_state, chan);
6478 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6479 let context = phase.context_mut();
6480 let logger = WithChannelContext::from(&self.logger, context);
6481 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6482 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6483 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6484 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6488 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6491 for htlc_source in dropped_htlcs.drain(..) {
6492 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6493 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6494 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6496 if let Some(shutdown_res) = finish_shutdown {
6497 self.finish_close_channel(shutdown_res);
6503 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6504 let per_peer_state = self.per_peer_state.read().unwrap();
6505 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6507 debug_assert!(false);
6508 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6510 let (tx, chan_option, shutdown_result) = {
6511 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6512 let peer_state = &mut *peer_state_lock;
6513 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6514 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6515 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6516 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6517 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6518 if let Some(msg) = closing_signed {
6519 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6520 node_id: counterparty_node_id.clone(),
6525 // We're done with this channel, we've got a signed closing transaction and
6526 // will send the closing_signed back to the remote peer upon return. This
6527 // also implies there are no pending HTLCs left on the channel, so we can
6528 // fully delete it from tracking (the channel monitor is still around to
6529 // watch for old state broadcasts)!
6530 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6531 } else { (tx, None, shutdown_result) }
6533 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6534 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6537 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6540 if let Some(broadcast_tx) = tx {
6541 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
6542 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
6543 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6545 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6546 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6547 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6548 let peer_state = &mut *peer_state_lock;
6549 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6553 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6555 mem::drop(per_peer_state);
6556 if let Some(shutdown_result) = shutdown_result {
6557 self.finish_close_channel(shutdown_result);
6562 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6563 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6564 //determine the state of the payment based on our response/if we forward anything/the time
6565 //we take to respond. We should take care to avoid allowing such an attack.
6567 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6568 //us repeatedly garbled in different ways, and compare our error messages, which are
6569 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6570 //but we should prevent it anyway.
6572 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6573 // closing a channel), so any changes are likely to be lost on restart!
6575 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
6576 let per_peer_state = self.per_peer_state.read().unwrap();
6577 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6579 debug_assert!(false);
6580 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6582 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6583 let peer_state = &mut *peer_state_lock;
6584 match peer_state.channel_by_id.entry(msg.channel_id) {
6585 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6586 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6587 let pending_forward_info = match decoded_hop_res {
6588 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6589 self.construct_pending_htlc_status(
6590 msg, counterparty_node_id, shared_secret, next_hop,
6591 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
6593 Err(e) => PendingHTLCStatus::Fail(e)
6595 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6596 // If the update_add is completely bogus, the call will Err and we will close,
6597 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6598 // want to reject the new HTLC and fail it backwards instead of forwarding.
6599 match pending_forward_info {
6600 PendingHTLCStatus::Forward(PendingHTLCInfo {
6601 ref incoming_shared_secret, ref routing, ..
6603 let reason = if routing.blinded_failure().is_some() {
6604 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
6605 } else if (error_code & 0x1000) != 0 {
6606 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6607 HTLCFailReason::reason(real_code, error_data)
6609 HTLCFailReason::from_failure_code(error_code)
6610 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6611 let msg = msgs::UpdateFailHTLC {
6612 channel_id: msg.channel_id,
6613 htlc_id: msg.htlc_id,
6616 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6618 _ => pending_forward_info
6621 let logger = WithChannelContext::from(&self.logger, &chan.context);
6622 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &&logger), chan_phase_entry);
6624 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6625 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6628 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6633 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6635 let (htlc_source, forwarded_htlc_value) = {
6636 let per_peer_state = self.per_peer_state.read().unwrap();
6637 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6639 debug_assert!(false);
6640 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6642 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6643 let peer_state = &mut *peer_state_lock;
6644 match peer_state.channel_by_id.entry(msg.channel_id) {
6645 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6646 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6647 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6648 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6649 let logger = WithChannelContext::from(&self.logger, &chan.context);
6651 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6653 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6654 .or_insert_with(Vec::new)
6655 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6657 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6658 // entry here, even though we *do* need to block the next RAA monitor update.
6659 // We do this instead in the `claim_funds_internal` by attaching a
6660 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6661 // outbound HTLC is claimed. This is guaranteed to all complete before we
6662 // process the RAA as messages are processed from single peers serially.
6663 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6666 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6667 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6670 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6673 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6677 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6678 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6679 // closing a channel), so any changes are likely to be lost on restart!
6680 let per_peer_state = self.per_peer_state.read().unwrap();
6681 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6683 debug_assert!(false);
6684 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6686 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6687 let peer_state = &mut *peer_state_lock;
6688 match peer_state.channel_by_id.entry(msg.channel_id) {
6689 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6690 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6691 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6693 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6694 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6697 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6702 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6703 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6704 // closing a channel), so any changes are likely to be lost on restart!
6705 let per_peer_state = self.per_peer_state.read().unwrap();
6706 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6708 debug_assert!(false);
6709 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6711 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6712 let peer_state = &mut *peer_state_lock;
6713 match peer_state.channel_by_id.entry(msg.channel_id) {
6714 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6715 if (msg.failure_code & 0x8000) == 0 {
6716 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6717 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6719 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6720 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6722 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6723 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6727 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6731 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6732 let per_peer_state = self.per_peer_state.read().unwrap();
6733 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6735 debug_assert!(false);
6736 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6738 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6739 let peer_state = &mut *peer_state_lock;
6740 match peer_state.channel_by_id.entry(msg.channel_id) {
6741 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6742 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6743 let logger = WithChannelContext::from(&self.logger, &chan.context);
6744 let funding_txo = chan.context.get_funding_txo();
6745 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
6746 if let Some(monitor_update) = monitor_update_opt {
6747 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6748 peer_state, per_peer_state, chan);
6752 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6753 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6756 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6761 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6762 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6763 let mut push_forward_event = false;
6764 let mut new_intercept_events = VecDeque::new();
6765 let mut failed_intercept_forwards = Vec::new();
6766 if !pending_forwards.is_empty() {
6767 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6768 let scid = match forward_info.routing {
6769 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6770 PendingHTLCRouting::Receive { .. } => 0,
6771 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6773 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6774 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6776 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6777 let forward_htlcs_empty = forward_htlcs.is_empty();
6778 match forward_htlcs.entry(scid) {
6779 hash_map::Entry::Occupied(mut entry) => {
6780 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6781 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6783 hash_map::Entry::Vacant(entry) => {
6784 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6785 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6787 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
6788 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6789 match pending_intercepts.entry(intercept_id) {
6790 hash_map::Entry::Vacant(entry) => {
6791 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6792 requested_next_hop_scid: scid,
6793 payment_hash: forward_info.payment_hash,
6794 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6795 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6798 entry.insert(PendingAddHTLCInfo {
6799 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6801 hash_map::Entry::Occupied(_) => {
6802 let logger = WithContext::from(&self.logger, None, Some(prev_funding_outpoint.to_channel_id()));
6803 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6804 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6805 short_channel_id: prev_short_channel_id,
6806 user_channel_id: Some(prev_user_channel_id),
6807 outpoint: prev_funding_outpoint,
6808 htlc_id: prev_htlc_id,
6809 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6810 phantom_shared_secret: None,
6811 blinded_failure: forward_info.routing.blinded_failure(),
6814 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6815 HTLCFailReason::from_failure_code(0x4000 | 10),
6816 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6821 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6822 // payments are being processed.
6823 if forward_htlcs_empty {
6824 push_forward_event = true;
6826 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6827 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6834 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6835 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6838 if !new_intercept_events.is_empty() {
6839 let mut events = self.pending_events.lock().unwrap();
6840 events.append(&mut new_intercept_events);
6842 if push_forward_event { self.push_pending_forwards_ev() }
6846 fn push_pending_forwards_ev(&self) {
6847 let mut pending_events = self.pending_events.lock().unwrap();
6848 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6849 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6850 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6852 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6853 // events is done in batches and they are not removed until we're done processing each
6854 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6855 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6856 // payments will need an additional forwarding event before being claimed to make them look
6857 // real by taking more time.
6858 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6859 pending_events.push_back((Event::PendingHTLCsForwardable {
6860 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6865 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6866 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6867 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6868 /// the [`ChannelMonitorUpdate`] in question.
6869 fn raa_monitor_updates_held(&self,
6870 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6871 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6873 actions_blocking_raa_monitor_updates
6874 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6875 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6876 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6877 channel_funding_outpoint,
6878 counterparty_node_id,
6883 #[cfg(any(test, feature = "_test_utils"))]
6884 pub(crate) fn test_raa_monitor_updates_held(&self,
6885 counterparty_node_id: PublicKey, channel_id: ChannelId
6887 let per_peer_state = self.per_peer_state.read().unwrap();
6888 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6889 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6890 let peer_state = &mut *peer_state_lck;
6892 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6893 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6894 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6900 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6901 let htlcs_to_fail = {
6902 let per_peer_state = self.per_peer_state.read().unwrap();
6903 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6905 debug_assert!(false);
6906 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6907 }).map(|mtx| mtx.lock().unwrap())?;
6908 let peer_state = &mut *peer_state_lock;
6909 match peer_state.channel_by_id.entry(msg.channel_id) {
6910 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6911 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6912 let logger = WithChannelContext::from(&self.logger, &chan.context);
6913 let funding_txo_opt = chan.context.get_funding_txo();
6914 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6915 self.raa_monitor_updates_held(
6916 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6917 *counterparty_node_id)
6919 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6920 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
6921 if let Some(monitor_update) = monitor_update_opt {
6922 let funding_txo = funding_txo_opt
6923 .expect("Funding outpoint must have been set for RAA handling to succeed");
6924 handle_new_monitor_update!(self, funding_txo, monitor_update,
6925 peer_state_lock, peer_state, per_peer_state, chan);
6929 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6930 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6933 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6936 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6940 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6941 let per_peer_state = self.per_peer_state.read().unwrap();
6942 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6944 debug_assert!(false);
6945 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6947 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6948 let peer_state = &mut *peer_state_lock;
6949 match peer_state.channel_by_id.entry(msg.channel_id) {
6950 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6951 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6952 let logger = WithChannelContext::from(&self.logger, &chan.context);
6953 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
6955 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6956 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6959 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6964 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6965 let per_peer_state = self.per_peer_state.read().unwrap();
6966 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6968 debug_assert!(false);
6969 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6971 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6972 let peer_state = &mut *peer_state_lock;
6973 match peer_state.channel_by_id.entry(msg.channel_id) {
6974 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6975 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6976 if !chan.context.is_usable() {
6977 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6980 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6981 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6982 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6983 msg, &self.default_configuration
6984 ), chan_phase_entry),
6985 // Note that announcement_signatures fails if the channel cannot be announced,
6986 // so get_channel_update_for_broadcast will never fail by the time we get here.
6987 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6990 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6991 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6994 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6999 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
7000 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
7001 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
7002 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
7004 // It's not a local channel
7005 return Ok(NotifyOption::SkipPersistNoEvents)
7008 let per_peer_state = self.per_peer_state.read().unwrap();
7009 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
7010 if peer_state_mutex_opt.is_none() {
7011 return Ok(NotifyOption::SkipPersistNoEvents)
7013 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
7014 let peer_state = &mut *peer_state_lock;
7015 match peer_state.channel_by_id.entry(chan_id) {
7016 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7017 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7018 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
7019 if chan.context.should_announce() {
7020 // If the announcement is about a channel of ours which is public, some
7021 // other peer may simply be forwarding all its gossip to us. Don't provide
7022 // a scary-looking error message and return Ok instead.
7023 return Ok(NotifyOption::SkipPersistNoEvents);
7025 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
7027 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
7028 let msg_from_node_one = msg.contents.flags & 1 == 0;
7029 if were_node_one == msg_from_node_one {
7030 return Ok(NotifyOption::SkipPersistNoEvents);
7032 let logger = WithChannelContext::from(&self.logger, &chan.context);
7033 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
7034 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
7035 // If nothing changed after applying their update, we don't need to bother
7038 return Ok(NotifyOption::SkipPersistNoEvents);
7042 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7043 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7046 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7048 Ok(NotifyOption::DoPersist)
7051 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7053 let need_lnd_workaround = {
7054 let per_peer_state = self.per_peer_state.read().unwrap();
7056 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7058 debug_assert!(false);
7059 MsgHandleErrInternal::send_err_msg_no_close(
7060 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7064 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
7065 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7066 let peer_state = &mut *peer_state_lock;
7067 match peer_state.channel_by_id.entry(msg.channel_id) {
7068 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7069 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7070 // Currently, we expect all holding cell update_adds to be dropped on peer
7071 // disconnect, so Channel's reestablish will never hand us any holding cell
7072 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7073 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7074 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7075 msg, &&logger, &self.node_signer, self.chain_hash,
7076 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7077 let mut channel_update = None;
7078 if let Some(msg) = responses.shutdown_msg {
7079 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7080 node_id: counterparty_node_id.clone(),
7083 } else if chan.context.is_usable() {
7084 // If the channel is in a usable state (ie the channel is not being shut
7085 // down), send a unicast channel_update to our counterparty to make sure
7086 // they have the latest channel parameters.
7087 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7088 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7089 node_id: chan.context.get_counterparty_node_id(),
7094 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7095 htlc_forwards = self.handle_channel_resumption(
7096 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7097 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7098 if let Some(upd) = channel_update {
7099 peer_state.pending_msg_events.push(upd);
7103 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7104 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7107 hash_map::Entry::Vacant(_) => {
7108 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7110 // Unfortunately, lnd doesn't force close on errors
7111 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7112 // One of the few ways to get an lnd counterparty to force close is by
7113 // replicating what they do when restoring static channel backups (SCBs). They
7114 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7115 // invalid `your_last_per_commitment_secret`.
7117 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7118 // can assume it's likely the channel closed from our point of view, but it
7119 // remains open on the counterparty's side. By sending this bogus
7120 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7121 // force close broadcasting their latest state. If the closing transaction from
7122 // our point of view remains unconfirmed, it'll enter a race with the
7123 // counterparty's to-be-broadcast latest commitment transaction.
7124 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7125 node_id: *counterparty_node_id,
7126 msg: msgs::ChannelReestablish {
7127 channel_id: msg.channel_id,
7128 next_local_commitment_number: 0,
7129 next_remote_commitment_number: 0,
7130 your_last_per_commitment_secret: [1u8; 32],
7131 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7132 next_funding_txid: None,
7135 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7136 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7137 counterparty_node_id), msg.channel_id)
7143 let mut persist = NotifyOption::SkipPersistHandleEvents;
7144 if let Some(forwards) = htlc_forwards {
7145 self.forward_htlcs(&mut [forwards][..]);
7146 persist = NotifyOption::DoPersist;
7149 if let Some(channel_ready_msg) = need_lnd_workaround {
7150 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7155 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7156 fn process_pending_monitor_events(&self) -> bool {
7157 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7159 let mut failed_channels = Vec::new();
7160 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7161 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7162 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7163 for monitor_event in monitor_events.drain(..) {
7164 match monitor_event {
7165 MonitorEvent::HTLCEvent(htlc_update) => {
7166 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(funding_outpoint.to_channel_id()));
7167 if let Some(preimage) = htlc_update.payment_preimage {
7168 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7169 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7171 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7172 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7173 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7174 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7177 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7178 let counterparty_node_id_opt = match counterparty_node_id {
7179 Some(cp_id) => Some(cp_id),
7181 // TODO: Once we can rely on the counterparty_node_id from the
7182 // monitor event, this and the id_to_peer map should be removed.
7183 let id_to_peer = self.id_to_peer.lock().unwrap();
7184 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
7187 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7188 let per_peer_state = self.per_peer_state.read().unwrap();
7189 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7190 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7191 let peer_state = &mut *peer_state_lock;
7192 let pending_msg_events = &mut peer_state.pending_msg_events;
7193 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7194 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7195 failed_channels.push(chan.context.force_shutdown(false));
7196 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7197 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7201 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
7202 pending_msg_events.push(events::MessageSendEvent::HandleError {
7203 node_id: chan.context.get_counterparty_node_id(),
7204 action: msgs::ErrorAction::DisconnectPeer {
7205 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7213 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7214 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7220 for failure in failed_channels.drain(..) {
7221 self.finish_close_channel(failure);
7224 has_pending_monitor_events
7227 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7228 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7229 /// update events as a separate process method here.
7231 pub fn process_monitor_events(&self) {
7232 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7233 self.process_pending_monitor_events();
7236 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7237 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7238 /// update was applied.
7239 fn check_free_holding_cells(&self) -> bool {
7240 let mut has_monitor_update = false;
7241 let mut failed_htlcs = Vec::new();
7243 // Walk our list of channels and find any that need to update. Note that when we do find an
7244 // update, if it includes actions that must be taken afterwards, we have to drop the
7245 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7246 // manage to go through all our peers without finding a single channel to update.
7248 let per_peer_state = self.per_peer_state.read().unwrap();
7249 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7251 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7252 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7253 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7254 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7256 let counterparty_node_id = chan.context.get_counterparty_node_id();
7257 let funding_txo = chan.context.get_funding_txo();
7258 let (monitor_opt, holding_cell_failed_htlcs) =
7259 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
7260 if !holding_cell_failed_htlcs.is_empty() {
7261 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7263 if let Some(monitor_update) = monitor_opt {
7264 has_monitor_update = true;
7266 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7267 peer_state_lock, peer_state, per_peer_state, chan);
7268 continue 'peer_loop;
7277 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7278 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7279 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7285 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7286 /// is (temporarily) unavailable, and the operation should be retried later.
7288 /// This method allows for that retry - either checking for any signer-pending messages to be
7289 /// attempted in every channel, or in the specifically provided channel.
7291 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7292 #[cfg(test)] // This is only implemented for one signer method, and should be private until we
7293 // actually finish implementing it fully.
7294 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7295 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7297 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7298 let node_id = phase.context().get_counterparty_node_id();
7300 ChannelPhase::Funded(chan) => {
7301 let msgs = chan.signer_maybe_unblocked(&self.logger);
7302 if let Some(updates) = msgs.commitment_update {
7303 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7308 if let Some(msg) = msgs.funding_signed {
7309 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7314 if let Some(msg) = msgs.channel_ready {
7315 send_channel_ready!(self, pending_msg_events, chan, msg);
7318 ChannelPhase::UnfundedOutboundV1(chan) => {
7319 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
7320 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7326 ChannelPhase::UnfundedInboundV1(_) => {},
7330 let per_peer_state = self.per_peer_state.read().unwrap();
7331 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7332 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7333 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7334 let peer_state = &mut *peer_state_lock;
7335 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7336 unblock_chan(chan, &mut peer_state.pending_msg_events);
7340 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7341 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7342 let peer_state = &mut *peer_state_lock;
7343 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7344 unblock_chan(chan, &mut peer_state.pending_msg_events);
7350 /// Check whether any channels have finished removing all pending updates after a shutdown
7351 /// exchange and can now send a closing_signed.
7352 /// Returns whether any closing_signed messages were generated.
7353 fn maybe_generate_initial_closing_signed(&self) -> bool {
7354 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7355 let mut has_update = false;
7356 let mut shutdown_results = Vec::new();
7358 let per_peer_state = self.per_peer_state.read().unwrap();
7360 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7361 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7362 let peer_state = &mut *peer_state_lock;
7363 let pending_msg_events = &mut peer_state.pending_msg_events;
7364 peer_state.channel_by_id.retain(|channel_id, phase| {
7366 ChannelPhase::Funded(chan) => {
7367 let logger = WithChannelContext::from(&self.logger, &chan.context);
7368 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
7369 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7370 if let Some(msg) = msg_opt {
7372 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7373 node_id: chan.context.get_counterparty_node_id(), msg,
7376 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7377 if let Some(shutdown_result) = shutdown_result_opt {
7378 shutdown_results.push(shutdown_result);
7380 if let Some(tx) = tx_opt {
7381 // We're done with this channel. We got a closing_signed and sent back
7382 // a closing_signed with a closing transaction to broadcast.
7383 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7384 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7389 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7391 log_info!(logger, "Broadcasting {}", log_tx!(tx));
7392 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7393 update_maps_on_chan_removal!(self, &chan.context);
7399 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7400 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7405 _ => true, // Retain unfunded channels if present.
7411 for (counterparty_node_id, err) in handle_errors.drain(..) {
7412 let _ = handle_error!(self, err, counterparty_node_id);
7415 for shutdown_result in shutdown_results.drain(..) {
7416 self.finish_close_channel(shutdown_result);
7422 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7423 /// pushing the channel monitor update (if any) to the background events queue and removing the
7425 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7426 for mut failure in failed_channels.drain(..) {
7427 // Either a commitment transactions has been confirmed on-chain or
7428 // Channel::block_disconnected detected that the funding transaction has been
7429 // reorganized out of the main chain.
7430 // We cannot broadcast our latest local state via monitor update (as
7431 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7432 // so we track the update internally and handle it when the user next calls
7433 // timer_tick_occurred, guaranteeing we're running normally.
7434 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7435 assert_eq!(update.updates.len(), 1);
7436 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7437 assert!(should_broadcast);
7438 } else { unreachable!(); }
7439 self.pending_background_events.lock().unwrap().push(
7440 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7441 counterparty_node_id, funding_txo, update
7444 self.finish_close_channel(failure);
7448 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7449 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7450 /// not have an expiration unless otherwise set on the builder.
7454 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7455 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7456 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7457 /// node in order to send the [`InvoiceRequest`].
7461 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7464 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7466 /// [`Offer`]: crate::offers::offer::Offer
7467 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7468 pub fn create_offer_builder(
7469 &self, description: String
7470 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7471 let node_id = self.get_our_node_id();
7472 let expanded_key = &self.inbound_payment_key;
7473 let entropy = &*self.entropy_source;
7474 let secp_ctx = &self.secp_ctx;
7475 let path = self.create_one_hop_blinded_path();
7477 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7478 .chain_hash(self.chain_hash)
7482 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7483 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7487 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7488 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7490 /// The builder will have the provided expiration set. Any changes to the expiration on the
7491 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7492 /// block time minus two hours is used for the current time when determining if the refund has
7495 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7496 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7497 /// with an [`Event::InvoiceRequestFailed`].
7499 /// If `max_total_routing_fee_msat` is not specified, The default from
7500 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7504 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7505 /// the introduction node and a derived payer id for payer privacy. As such, currently, the
7506 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7507 /// in order to send the [`Bolt12Invoice`].
7511 /// Requires a direct connection to an introduction node in the responding
7512 /// [`Bolt12Invoice::payment_paths`].
7516 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7517 /// or if `amount_msats` is invalid.
7519 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7521 /// [`Refund`]: crate::offers::refund::Refund
7522 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7523 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7524 pub fn create_refund_builder(
7525 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7526 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7527 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7528 let node_id = self.get_our_node_id();
7529 let expanded_key = &self.inbound_payment_key;
7530 let entropy = &*self.entropy_source;
7531 let secp_ctx = &self.secp_ctx;
7532 let path = self.create_one_hop_blinded_path();
7534 let builder = RefundBuilder::deriving_payer_id(
7535 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7537 .chain_hash(self.chain_hash)
7538 .absolute_expiry(absolute_expiry)
7541 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7542 self.pending_outbound_payments
7543 .add_new_awaiting_invoice(
7544 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7546 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7551 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7552 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7553 /// [`Bolt12Invoice`] once it is received.
7555 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7556 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7557 /// The optional parameters are used in the builder, if `Some`:
7558 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7559 /// [`Offer::expects_quantity`] is `true`.
7560 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7561 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7563 /// If `max_total_routing_fee_msat` is not specified, The default from
7564 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7568 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7569 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7572 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7573 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7574 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7578 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7579 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7580 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7581 /// in order to send the [`Bolt12Invoice`].
7585 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7586 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7587 /// [`Bolt12Invoice::payment_paths`].
7591 /// Errors if a duplicate `payment_id` is provided given the caveats in the aforementioned link
7592 /// or if the provided parameters are invalid for the offer.
7594 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7595 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7596 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7597 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7598 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7599 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7600 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7601 pub fn pay_for_offer(
7602 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7603 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7604 max_total_routing_fee_msat: Option<u64>
7605 ) -> Result<(), Bolt12SemanticError> {
7606 let expanded_key = &self.inbound_payment_key;
7607 let entropy = &*self.entropy_source;
7608 let secp_ctx = &self.secp_ctx;
7611 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7612 .chain_hash(self.chain_hash)?;
7613 let builder = match quantity {
7615 Some(quantity) => builder.quantity(quantity)?,
7617 let builder = match amount_msats {
7619 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7621 let builder = match payer_note {
7623 Some(payer_note) => builder.payer_note(payer_note),
7626 let invoice_request = builder.build_and_sign()?;
7627 let reply_path = self.create_one_hop_blinded_path();
7629 let expiration = StaleExpiration::TimerTicks(1);
7630 self.pending_outbound_payments
7631 .add_new_awaiting_invoice(
7632 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7634 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7636 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7637 if offer.paths().is_empty() {
7638 let message = new_pending_onion_message(
7639 OffersMessage::InvoiceRequest(invoice_request),
7640 Destination::Node(offer.signing_pubkey()),
7643 pending_offers_messages.push(message);
7645 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7646 // Using only one path could result in a failure if the path no longer exists. But only
7647 // one invoice for a given payment id will be paid, even if more than one is received.
7648 const REQUEST_LIMIT: usize = 10;
7649 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7650 let message = new_pending_onion_message(
7651 OffersMessage::InvoiceRequest(invoice_request.clone()),
7652 Destination::BlindedPath(path.clone()),
7653 Some(reply_path.clone()),
7655 pending_offers_messages.push(message);
7662 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7665 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7666 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7667 /// [`PaymentPreimage`].
7671 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7672 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7673 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7674 /// received and no retries will be made.
7676 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7677 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7678 let expanded_key = &self.inbound_payment_key;
7679 let entropy = &*self.entropy_source;
7680 let secp_ctx = &self.secp_ctx;
7682 let amount_msats = refund.amount_msats();
7683 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7685 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7686 Ok((payment_hash, payment_secret)) => {
7687 let payment_paths = vec![
7688 self.create_one_hop_blinded_payment_path(payment_secret),
7690 #[cfg(not(feature = "no-std"))]
7691 let builder = refund.respond_using_derived_keys(
7692 payment_paths, payment_hash, expanded_key, entropy
7694 #[cfg(feature = "no-std")]
7695 let created_at = Duration::from_secs(
7696 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7698 #[cfg(feature = "no-std")]
7699 let builder = refund.respond_using_derived_keys_no_std(
7700 payment_paths, payment_hash, created_at, expanded_key, entropy
7702 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7703 let reply_path = self.create_one_hop_blinded_path();
7705 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7706 if refund.paths().is_empty() {
7707 let message = new_pending_onion_message(
7708 OffersMessage::Invoice(invoice),
7709 Destination::Node(refund.payer_id()),
7712 pending_offers_messages.push(message);
7714 for path in refund.paths() {
7715 let message = new_pending_onion_message(
7716 OffersMessage::Invoice(invoice.clone()),
7717 Destination::BlindedPath(path.clone()),
7718 Some(reply_path.clone()),
7720 pending_offers_messages.push(message);
7726 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7730 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7733 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7734 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7736 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7737 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7738 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7739 /// passed directly to [`claim_funds`].
7741 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7743 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7744 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7748 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7749 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7751 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7753 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7754 /// on versions of LDK prior to 0.0.114.
7756 /// [`claim_funds`]: Self::claim_funds
7757 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7758 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7759 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7760 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7761 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7762 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7763 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7764 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7765 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7766 min_final_cltv_expiry_delta)
7769 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7770 /// stored external to LDK.
7772 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7773 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7774 /// the `min_value_msat` provided here, if one is provided.
7776 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7777 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7780 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7781 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7782 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7783 /// sender "proof-of-payment" unless they have paid the required amount.
7785 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7786 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7787 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7788 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7789 /// invoices when no timeout is set.
7791 /// Note that we use block header time to time-out pending inbound payments (with some margin
7792 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7793 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7794 /// If you need exact expiry semantics, you should enforce them upon receipt of
7795 /// [`PaymentClaimable`].
7797 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7798 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7800 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7801 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7805 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7806 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7808 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7810 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7811 /// on versions of LDK prior to 0.0.114.
7813 /// [`create_inbound_payment`]: Self::create_inbound_payment
7814 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7815 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7816 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7817 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7818 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7819 min_final_cltv_expiry)
7822 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7823 /// previously returned from [`create_inbound_payment`].
7825 /// [`create_inbound_payment`]: Self::create_inbound_payment
7826 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7827 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7830 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7832 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7833 let entropy_source = self.entropy_source.deref();
7834 let secp_ctx = &self.secp_ctx;
7835 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7838 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7840 fn create_one_hop_blinded_payment_path(
7841 &self, payment_secret: PaymentSecret
7842 ) -> (BlindedPayInfo, BlindedPath) {
7843 let entropy_source = self.entropy_source.deref();
7844 let secp_ctx = &self.secp_ctx;
7846 let payee_node_id = self.get_our_node_id();
7847 let max_cltv_expiry = self.best_block.read().unwrap().height() + LATENCY_GRACE_PERIOD_BLOCKS;
7848 let payee_tlvs = ReceiveTlvs {
7850 payment_constraints: PaymentConstraints {
7852 htlc_minimum_msat: 1,
7855 // TODO: Err for overflow?
7856 BlindedPath::one_hop_for_payment(
7857 payee_node_id, payee_tlvs, entropy_source, secp_ctx
7861 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7862 /// are used when constructing the phantom invoice's route hints.
7864 /// [phantom node payments]: crate::sign::PhantomKeysManager
7865 pub fn get_phantom_scid(&self) -> u64 {
7866 let best_block_height = self.best_block.read().unwrap().height();
7867 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7869 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7870 // Ensure the generated scid doesn't conflict with a real channel.
7871 match short_to_chan_info.get(&scid_candidate) {
7872 Some(_) => continue,
7873 None => return scid_candidate
7878 /// Gets route hints for use in receiving [phantom node payments].
7880 /// [phantom node payments]: crate::sign::PhantomKeysManager
7881 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7883 channels: self.list_usable_channels(),
7884 phantom_scid: self.get_phantom_scid(),
7885 real_node_pubkey: self.get_our_node_id(),
7889 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7890 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7891 /// [`ChannelManager::forward_intercepted_htlc`].
7893 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7894 /// times to get a unique scid.
7895 pub fn get_intercept_scid(&self) -> u64 {
7896 let best_block_height = self.best_block.read().unwrap().height();
7897 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7899 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7900 // Ensure the generated scid doesn't conflict with a real channel.
7901 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7902 return scid_candidate
7906 /// Gets inflight HTLC information by processing pending outbound payments that are in
7907 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7908 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7909 let mut inflight_htlcs = InFlightHtlcs::new();
7911 let per_peer_state = self.per_peer_state.read().unwrap();
7912 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7913 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7914 let peer_state = &mut *peer_state_lock;
7915 for chan in peer_state.channel_by_id.values().filter_map(
7916 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7918 for (htlc_source, _) in chan.inflight_htlc_sources() {
7919 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7920 inflight_htlcs.process_path(path, self.get_our_node_id());
7929 #[cfg(any(test, feature = "_test_utils"))]
7930 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7931 let events = core::cell::RefCell::new(Vec::new());
7932 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7933 self.process_pending_events(&event_handler);
7937 #[cfg(feature = "_test_utils")]
7938 pub fn push_pending_event(&self, event: events::Event) {
7939 let mut events = self.pending_events.lock().unwrap();
7940 events.push_back((event, None));
7944 pub fn pop_pending_event(&self) -> Option<events::Event> {
7945 let mut events = self.pending_events.lock().unwrap();
7946 events.pop_front().map(|(e, _)| e)
7950 pub fn has_pending_payments(&self) -> bool {
7951 self.pending_outbound_payments.has_pending_payments()
7955 pub fn clear_pending_payments(&self) {
7956 self.pending_outbound_payments.clear_pending_payments()
7959 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7960 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7961 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7962 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7963 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7964 let logger = WithContext::from(
7965 &self.logger, Some(counterparty_node_id), Some(channel_funding_outpoint.to_channel_id())
7968 let per_peer_state = self.per_peer_state.read().unwrap();
7969 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7970 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7971 let peer_state = &mut *peer_state_lck;
7972 if let Some(blocker) = completed_blocker.take() {
7973 // Only do this on the first iteration of the loop.
7974 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7975 .get_mut(&channel_funding_outpoint.to_channel_id())
7977 blockers.retain(|iter| iter != &blocker);
7981 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7982 channel_funding_outpoint, counterparty_node_id) {
7983 // Check that, while holding the peer lock, we don't have anything else
7984 // blocking monitor updates for this channel. If we do, release the monitor
7985 // update(s) when those blockers complete.
7986 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7987 &channel_funding_outpoint.to_channel_id());
7991 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7992 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7993 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7994 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7995 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
7996 channel_funding_outpoint.to_channel_id());
7997 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7998 peer_state_lck, peer_state, per_peer_state, chan);
7999 if further_update_exists {
8000 // If there are more `ChannelMonitorUpdate`s to process, restart at the
8005 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
8006 channel_funding_outpoint.to_channel_id());
8012 "Got a release post-RAA monitor update for peer {} but the channel is gone",
8013 log_pubkey!(counterparty_node_id));
8019 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
8020 for action in actions {
8022 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
8023 channel_funding_outpoint, counterparty_node_id
8025 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
8031 /// Processes any events asynchronously in the order they were generated since the last call
8032 /// using the given event handler.
8034 /// See the trait-level documentation of [`EventsProvider`] for requirements.
8035 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
8039 process_events_body!(self, ev, { handler(ev).await });
8043 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8045 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8046 T::Target: BroadcasterInterface,
8047 ES::Target: EntropySource,
8048 NS::Target: NodeSigner,
8049 SP::Target: SignerProvider,
8050 F::Target: FeeEstimator,
8054 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8055 /// The returned array will contain `MessageSendEvent`s for different peers if
8056 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8057 /// is always placed next to each other.
8059 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8060 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8061 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8062 /// will randomly be placed first or last in the returned array.
8064 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8065 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8066 /// the `MessageSendEvent`s to the specific peer they were generated under.
8067 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8068 let events = RefCell::new(Vec::new());
8069 PersistenceNotifierGuard::optionally_notify(self, || {
8070 let mut result = NotifyOption::SkipPersistNoEvents;
8072 // TODO: This behavior should be documented. It's unintuitive that we query
8073 // ChannelMonitors when clearing other events.
8074 if self.process_pending_monitor_events() {
8075 result = NotifyOption::DoPersist;
8078 if self.check_free_holding_cells() {
8079 result = NotifyOption::DoPersist;
8081 if self.maybe_generate_initial_closing_signed() {
8082 result = NotifyOption::DoPersist;
8085 let mut pending_events = Vec::new();
8086 let per_peer_state = self.per_peer_state.read().unwrap();
8087 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8088 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8089 let peer_state = &mut *peer_state_lock;
8090 if peer_state.pending_msg_events.len() > 0 {
8091 pending_events.append(&mut peer_state.pending_msg_events);
8095 if !pending_events.is_empty() {
8096 events.replace(pending_events);
8105 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8107 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8108 T::Target: BroadcasterInterface,
8109 ES::Target: EntropySource,
8110 NS::Target: NodeSigner,
8111 SP::Target: SignerProvider,
8112 F::Target: FeeEstimator,
8116 /// Processes events that must be periodically handled.
8118 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8119 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8120 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8122 process_events_body!(self, ev, handler.handle_event(ev));
8126 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8128 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8129 T::Target: BroadcasterInterface,
8130 ES::Target: EntropySource,
8131 NS::Target: NodeSigner,
8132 SP::Target: SignerProvider,
8133 F::Target: FeeEstimator,
8137 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
8139 let best_block = self.best_block.read().unwrap();
8140 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8141 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8142 assert_eq!(best_block.height(), height - 1,
8143 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8146 self.transactions_confirmed(header, txdata, height);
8147 self.best_block_updated(header, height);
8150 fn block_disconnected(&self, header: &Header, height: u32) {
8151 let _persistence_guard =
8152 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8153 self, || -> NotifyOption { NotifyOption::DoPersist });
8154 let new_height = height - 1;
8156 let mut best_block = self.best_block.write().unwrap();
8157 assert_eq!(best_block.block_hash(), header.block_hash(),
8158 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8159 assert_eq!(best_block.height(), height,
8160 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8161 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8164 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8168 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8170 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8171 T::Target: BroadcasterInterface,
8172 ES::Target: EntropySource,
8173 NS::Target: NodeSigner,
8174 SP::Target: SignerProvider,
8175 F::Target: FeeEstimator,
8179 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
8180 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8181 // during initialization prior to the chain_monitor being fully configured in some cases.
8182 // See the docs for `ChannelManagerReadArgs` for more.
8184 let block_hash = header.block_hash();
8185 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8187 let _persistence_guard =
8188 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8189 self, || -> NotifyOption { NotifyOption::DoPersist });
8190 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
8191 .map(|(a, b)| (a, Vec::new(), b)));
8193 let last_best_block_height = self.best_block.read().unwrap().height();
8194 if height < last_best_block_height {
8195 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8196 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8200 fn best_block_updated(&self, header: &Header, height: u32) {
8201 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8202 // during initialization prior to the chain_monitor being fully configured in some cases.
8203 // See the docs for `ChannelManagerReadArgs` for more.
8205 let block_hash = header.block_hash();
8206 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8208 let _persistence_guard =
8209 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8210 self, || -> NotifyOption { NotifyOption::DoPersist });
8211 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8213 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8215 macro_rules! max_time {
8216 ($timestamp: expr) => {
8218 // Update $timestamp to be the max of its current value and the block
8219 // timestamp. This should keep us close to the current time without relying on
8220 // having an explicit local time source.
8221 // Just in case we end up in a race, we loop until we either successfully
8222 // update $timestamp or decide we don't need to.
8223 let old_serial = $timestamp.load(Ordering::Acquire);
8224 if old_serial >= header.time as usize { break; }
8225 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8231 max_time!(self.highest_seen_timestamp);
8232 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8233 payment_secrets.retain(|_, inbound_payment| {
8234 inbound_payment.expiry_time > header.time as u64
8238 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
8239 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8240 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8241 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8242 let peer_state = &mut *peer_state_lock;
8243 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8244 let txid_opt = chan.context.get_funding_txo();
8245 let height_opt = chan.context.get_funding_tx_confirmation_height();
8246 let hash_opt = chan.context.get_funding_tx_confirmed_in();
8247 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
8248 res.push((funding_txo.txid, conf_height, Some(block_hash)));
8255 fn transaction_unconfirmed(&self, txid: &Txid) {
8256 let _persistence_guard =
8257 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8258 self, || -> NotifyOption { NotifyOption::DoPersist });
8259 self.do_chain_event(None, |channel| {
8260 if let Some(funding_txo) = channel.context.get_funding_txo() {
8261 if funding_txo.txid == *txid {
8262 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
8263 } else { Ok((None, Vec::new(), None)) }
8264 } else { Ok((None, Vec::new(), None)) }
8269 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8271 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8272 T::Target: BroadcasterInterface,
8273 ES::Target: EntropySource,
8274 NS::Target: NodeSigner,
8275 SP::Target: SignerProvider,
8276 F::Target: FeeEstimator,
8280 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8281 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8283 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8284 (&self, height_opt: Option<u32>, f: FN) {
8285 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8286 // during initialization prior to the chain_monitor being fully configured in some cases.
8287 // See the docs for `ChannelManagerReadArgs` for more.
8289 let mut failed_channels = Vec::new();
8290 let mut timed_out_htlcs = Vec::new();
8292 let per_peer_state = self.per_peer_state.read().unwrap();
8293 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8294 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8295 let peer_state = &mut *peer_state_lock;
8296 let pending_msg_events = &mut peer_state.pending_msg_events;
8297 peer_state.channel_by_id.retain(|_, phase| {
8299 // Retain unfunded channels.
8300 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8301 ChannelPhase::Funded(channel) => {
8302 let res = f(channel);
8303 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8304 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8305 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8306 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8307 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8309 let logger = WithChannelContext::from(&self.logger, &channel.context);
8310 if let Some(channel_ready) = channel_ready_opt {
8311 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8312 if channel.context.is_usable() {
8313 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8314 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8315 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8316 node_id: channel.context.get_counterparty_node_id(),
8321 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8326 let mut pending_events = self.pending_events.lock().unwrap();
8327 emit_channel_ready_event!(pending_events, channel);
8330 if let Some(announcement_sigs) = announcement_sigs {
8331 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8332 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8333 node_id: channel.context.get_counterparty_node_id(),
8334 msg: announcement_sigs,
8336 if let Some(height) = height_opt {
8337 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8338 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8340 // Note that announcement_signatures fails if the channel cannot be announced,
8341 // so get_channel_update_for_broadcast will never fail by the time we get here.
8342 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8347 if channel.is_our_channel_ready() {
8348 if let Some(real_scid) = channel.context.get_short_channel_id() {
8349 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8350 // to the short_to_chan_info map here. Note that we check whether we
8351 // can relay using the real SCID at relay-time (i.e.
8352 // enforce option_scid_alias then), and if the funding tx is ever
8353 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8354 // is always consistent.
8355 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8356 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8357 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8358 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8359 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8362 } else if let Err(reason) = res {
8363 update_maps_on_chan_removal!(self, &channel.context);
8364 // It looks like our counterparty went on-chain or funding transaction was
8365 // reorged out of the main chain. Close the channel.
8366 failed_channels.push(channel.context.force_shutdown(true));
8367 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8368 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8372 let reason_message = format!("{}", reason);
8373 self.issue_channel_close_events(&channel.context, reason);
8374 pending_msg_events.push(events::MessageSendEvent::HandleError {
8375 node_id: channel.context.get_counterparty_node_id(),
8376 action: msgs::ErrorAction::DisconnectPeer {
8377 msg: Some(msgs::ErrorMessage {
8378 channel_id: channel.context.channel_id(),
8379 data: reason_message,
8392 if let Some(height) = height_opt {
8393 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8394 payment.htlcs.retain(|htlc| {
8395 // If height is approaching the number of blocks we think it takes us to get
8396 // our commitment transaction confirmed before the HTLC expires, plus the
8397 // number of blocks we generally consider it to take to do a commitment update,
8398 // just give up on it and fail the HTLC.
8399 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8400 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8401 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8403 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8404 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8405 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8409 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8412 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8413 intercepted_htlcs.retain(|_, htlc| {
8414 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8415 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8416 short_channel_id: htlc.prev_short_channel_id,
8417 user_channel_id: Some(htlc.prev_user_channel_id),
8418 htlc_id: htlc.prev_htlc_id,
8419 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8420 phantom_shared_secret: None,
8421 outpoint: htlc.prev_funding_outpoint,
8422 blinded_failure: htlc.forward_info.routing.blinded_failure(),
8425 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8426 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8427 _ => unreachable!(),
8429 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8430 HTLCFailReason::from_failure_code(0x2000 | 2),
8431 HTLCDestination::InvalidForward { requested_forward_scid }));
8432 let logger = WithContext::from(
8433 &self.logger, None, Some(htlc.prev_funding_outpoint.to_channel_id())
8435 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8441 self.handle_init_event_channel_failures(failed_channels);
8443 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8444 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8448 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8449 /// may have events that need processing.
8451 /// In order to check if this [`ChannelManager`] needs persisting, call
8452 /// [`Self::get_and_clear_needs_persistence`].
8454 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8455 /// [`ChannelManager`] and should instead register actions to be taken later.
8456 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8457 self.event_persist_notifier.get_future()
8460 /// Returns true if this [`ChannelManager`] needs to be persisted.
8461 pub fn get_and_clear_needs_persistence(&self) -> bool {
8462 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8465 #[cfg(any(test, feature = "_test_utils"))]
8466 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8467 self.event_persist_notifier.notify_pending()
8470 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8471 /// [`chain::Confirm`] interfaces.
8472 pub fn current_best_block(&self) -> BestBlock {
8473 self.best_block.read().unwrap().clone()
8476 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8477 /// [`ChannelManager`].
8478 pub fn node_features(&self) -> NodeFeatures {
8479 provided_node_features(&self.default_configuration)
8482 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8483 /// [`ChannelManager`].
8485 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8486 /// or not. Thus, this method is not public.
8487 #[cfg(any(feature = "_test_utils", test))]
8488 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8489 provided_bolt11_invoice_features(&self.default_configuration)
8492 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8493 /// [`ChannelManager`].
8494 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8495 provided_bolt12_invoice_features(&self.default_configuration)
8498 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8499 /// [`ChannelManager`].
8500 pub fn channel_features(&self) -> ChannelFeatures {
8501 provided_channel_features(&self.default_configuration)
8504 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8505 /// [`ChannelManager`].
8506 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8507 provided_channel_type_features(&self.default_configuration)
8510 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8511 /// [`ChannelManager`].
8512 pub fn init_features(&self) -> InitFeatures {
8513 provided_init_features(&self.default_configuration)
8517 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8518 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8520 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8521 T::Target: BroadcasterInterface,
8522 ES::Target: EntropySource,
8523 NS::Target: NodeSigner,
8524 SP::Target: SignerProvider,
8525 F::Target: FeeEstimator,
8529 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8530 // Note that we never need to persist the updated ChannelManager for an inbound
8531 // open_channel message - pre-funded channels are never written so there should be no
8532 // change to the contents.
8533 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8534 let res = self.internal_open_channel(counterparty_node_id, msg);
8535 let persist = match &res {
8536 Err(e) if e.closes_channel() => {
8537 debug_assert!(false, "We shouldn't close a new channel");
8538 NotifyOption::DoPersist
8540 _ => NotifyOption::SkipPersistHandleEvents,
8542 let _ = handle_error!(self, res, *counterparty_node_id);
8547 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8548 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8549 "Dual-funded channels not supported".to_owned(),
8550 msg.temporary_channel_id.clone())), *counterparty_node_id);
8553 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8554 // Note that we never need to persist the updated ChannelManager for an inbound
8555 // accept_channel message - pre-funded channels are never written so there should be no
8556 // change to the contents.
8557 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8558 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8559 NotifyOption::SkipPersistHandleEvents
8563 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8564 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8565 "Dual-funded channels not supported".to_owned(),
8566 msg.temporary_channel_id.clone())), *counterparty_node_id);
8569 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8570 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8571 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8574 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8575 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8576 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8579 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8580 // Note that we never need to persist the updated ChannelManager for an inbound
8581 // channel_ready message - while the channel's state will change, any channel_ready message
8582 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8583 // will not force-close the channel on startup.
8584 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8585 let res = self.internal_channel_ready(counterparty_node_id, msg);
8586 let persist = match &res {
8587 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8588 _ => NotifyOption::SkipPersistHandleEvents,
8590 let _ = handle_error!(self, res, *counterparty_node_id);
8595 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8596 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8597 "Quiescence not supported".to_owned(),
8598 msg.channel_id.clone())), *counterparty_node_id);
8601 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8602 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8603 "Splicing not supported".to_owned(),
8604 msg.channel_id.clone())), *counterparty_node_id);
8607 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8608 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8609 "Splicing not supported (splice_ack)".to_owned(),
8610 msg.channel_id.clone())), *counterparty_node_id);
8613 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8614 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8615 "Splicing not supported (splice_locked)".to_owned(),
8616 msg.channel_id.clone())), *counterparty_node_id);
8619 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8620 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8621 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8624 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8625 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8626 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8629 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8630 // Note that we never need to persist the updated ChannelManager for an inbound
8631 // update_add_htlc message - the message itself doesn't change our channel state only the
8632 // `commitment_signed` message afterwards will.
8633 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8634 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8635 let persist = match &res {
8636 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8637 Err(_) => NotifyOption::SkipPersistHandleEvents,
8638 Ok(()) => NotifyOption::SkipPersistNoEvents,
8640 let _ = handle_error!(self, res, *counterparty_node_id);
8645 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8646 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8647 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8650 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8651 // Note that we never need to persist the updated ChannelManager for an inbound
8652 // update_fail_htlc message - the message itself doesn't change our channel state only the
8653 // `commitment_signed` message afterwards will.
8654 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8655 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8656 let persist = match &res {
8657 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8658 Err(_) => NotifyOption::SkipPersistHandleEvents,
8659 Ok(()) => NotifyOption::SkipPersistNoEvents,
8661 let _ = handle_error!(self, res, *counterparty_node_id);
8666 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8667 // Note that we never need to persist the updated ChannelManager for an inbound
8668 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8669 // only the `commitment_signed` message afterwards will.
8670 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8671 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8672 let persist = match &res {
8673 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8674 Err(_) => NotifyOption::SkipPersistHandleEvents,
8675 Ok(()) => NotifyOption::SkipPersistNoEvents,
8677 let _ = handle_error!(self, res, *counterparty_node_id);
8682 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8683 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8684 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8687 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8688 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8689 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8692 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8693 // Note that we never need to persist the updated ChannelManager for an inbound
8694 // update_fee message - the message itself doesn't change our channel state only the
8695 // `commitment_signed` message afterwards will.
8696 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8697 let res = self.internal_update_fee(counterparty_node_id, msg);
8698 let persist = match &res {
8699 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8700 Err(_) => NotifyOption::SkipPersistHandleEvents,
8701 Ok(()) => NotifyOption::SkipPersistNoEvents,
8703 let _ = handle_error!(self, res, *counterparty_node_id);
8708 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8709 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8710 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8713 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8714 PersistenceNotifierGuard::optionally_notify(self, || {
8715 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8718 NotifyOption::DoPersist
8723 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8724 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8725 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8726 let persist = match &res {
8727 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8728 Err(_) => NotifyOption::SkipPersistHandleEvents,
8729 Ok(persist) => *persist,
8731 let _ = handle_error!(self, res, *counterparty_node_id);
8736 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8737 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8738 self, || NotifyOption::SkipPersistHandleEvents);
8739 let mut failed_channels = Vec::new();
8740 let mut per_peer_state = self.per_peer_state.write().unwrap();
8743 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
8744 "Marking channels with {} disconnected and generating channel_updates.",
8745 log_pubkey!(counterparty_node_id)
8747 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8748 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8749 let peer_state = &mut *peer_state_lock;
8750 let pending_msg_events = &mut peer_state.pending_msg_events;
8751 peer_state.channel_by_id.retain(|_, phase| {
8752 let context = match phase {
8753 ChannelPhase::Funded(chan) => {
8754 let logger = WithChannelContext::from(&self.logger, &chan.context);
8755 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
8756 // We only retain funded channels that are not shutdown.
8761 // Unfunded channels will always be removed.
8762 ChannelPhase::UnfundedOutboundV1(chan) => {
8765 ChannelPhase::UnfundedInboundV1(chan) => {
8769 // Clean up for removal.
8770 update_maps_on_chan_removal!(self, &context);
8771 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8772 failed_channels.push(context.force_shutdown(false));
8775 // Note that we don't bother generating any events for pre-accept channels -
8776 // they're not considered "channels" yet from the PoV of our events interface.
8777 peer_state.inbound_channel_request_by_id.clear();
8778 pending_msg_events.retain(|msg| {
8780 // V1 Channel Establishment
8781 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8782 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8783 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8784 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8785 // V2 Channel Establishment
8786 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8787 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8788 // Common Channel Establishment
8789 &events::MessageSendEvent::SendChannelReady { .. } => false,
8790 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8792 &events::MessageSendEvent::SendStfu { .. } => false,
8794 &events::MessageSendEvent::SendSplice { .. } => false,
8795 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8796 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8797 // Interactive Transaction Construction
8798 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8799 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8800 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8801 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8802 &events::MessageSendEvent::SendTxComplete { .. } => false,
8803 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8804 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8805 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8806 &events::MessageSendEvent::SendTxAbort { .. } => false,
8807 // Channel Operations
8808 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8809 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8810 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8811 &events::MessageSendEvent::SendShutdown { .. } => false,
8812 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8813 &events::MessageSendEvent::HandleError { .. } => false,
8815 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8816 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8817 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8818 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8819 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8820 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8821 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8822 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8823 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8826 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8827 peer_state.is_connected = false;
8828 peer_state.ok_to_remove(true)
8829 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8832 per_peer_state.remove(counterparty_node_id);
8834 mem::drop(per_peer_state);
8836 for failure in failed_channels.drain(..) {
8837 self.finish_close_channel(failure);
8841 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8842 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
8843 if !init_msg.features.supports_static_remote_key() {
8844 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8848 let mut res = Ok(());
8850 PersistenceNotifierGuard::optionally_notify(self, || {
8851 // If we have too many peers connected which don't have funded channels, disconnect the
8852 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8853 // unfunded channels taking up space in memory for disconnected peers, we still let new
8854 // peers connect, but we'll reject new channels from them.
8855 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8856 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8859 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8860 match peer_state_lock.entry(counterparty_node_id.clone()) {
8861 hash_map::Entry::Vacant(e) => {
8862 if inbound_peer_limited {
8864 return NotifyOption::SkipPersistNoEvents;
8866 e.insert(Mutex::new(PeerState {
8867 channel_by_id: HashMap::new(),
8868 inbound_channel_request_by_id: HashMap::new(),
8869 latest_features: init_msg.features.clone(),
8870 pending_msg_events: Vec::new(),
8871 in_flight_monitor_updates: BTreeMap::new(),
8872 monitor_update_blocked_actions: BTreeMap::new(),
8873 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8877 hash_map::Entry::Occupied(e) => {
8878 let mut peer_state = e.get().lock().unwrap();
8879 peer_state.latest_features = init_msg.features.clone();
8881 let best_block_height = self.best_block.read().unwrap().height();
8882 if inbound_peer_limited &&
8883 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8884 peer_state.channel_by_id.len()
8887 return NotifyOption::SkipPersistNoEvents;
8890 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8891 peer_state.is_connected = true;
8896 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8898 let per_peer_state = self.per_peer_state.read().unwrap();
8899 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8900 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8901 let peer_state = &mut *peer_state_lock;
8902 let pending_msg_events = &mut peer_state.pending_msg_events;
8904 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8905 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8906 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8907 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8908 // worry about closing and removing them.
8909 debug_assert!(false);
8913 let logger = WithChannelContext::from(&self.logger, &chan.context);
8914 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8915 node_id: chan.context.get_counterparty_node_id(),
8916 msg: chan.get_channel_reestablish(&&logger),
8921 return NotifyOption::SkipPersistHandleEvents;
8922 //TODO: Also re-broadcast announcement_signatures
8927 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8928 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8930 match &msg.data as &str {
8931 "cannot co-op close channel w/ active htlcs"|
8932 "link failed to shutdown" =>
8934 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8935 // send one while HTLCs are still present. The issue is tracked at
8936 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8937 // to fix it but none so far have managed to land upstream. The issue appears to be
8938 // very low priority for the LND team despite being marked "P1".
8939 // We're not going to bother handling this in a sensible way, instead simply
8940 // repeating the Shutdown message on repeat until morale improves.
8941 if !msg.channel_id.is_zero() {
8942 let per_peer_state = self.per_peer_state.read().unwrap();
8943 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8944 if peer_state_mutex_opt.is_none() { return; }
8945 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8946 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8947 if let Some(msg) = chan.get_outbound_shutdown() {
8948 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8949 node_id: *counterparty_node_id,
8953 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8954 node_id: *counterparty_node_id,
8955 action: msgs::ErrorAction::SendWarningMessage {
8956 msg: msgs::WarningMessage {
8957 channel_id: msg.channel_id,
8958 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8960 log_level: Level::Trace,
8970 if msg.channel_id.is_zero() {
8971 let channel_ids: Vec<ChannelId> = {
8972 let per_peer_state = self.per_peer_state.read().unwrap();
8973 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8974 if peer_state_mutex_opt.is_none() { return; }
8975 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8976 let peer_state = &mut *peer_state_lock;
8977 // Note that we don't bother generating any events for pre-accept channels -
8978 // they're not considered "channels" yet from the PoV of our events interface.
8979 peer_state.inbound_channel_request_by_id.clear();
8980 peer_state.channel_by_id.keys().cloned().collect()
8982 for channel_id in channel_ids {
8983 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8984 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8988 // First check if we can advance the channel type and try again.
8989 let per_peer_state = self.per_peer_state.read().unwrap();
8990 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8991 if peer_state_mutex_opt.is_none() { return; }
8992 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8993 let peer_state = &mut *peer_state_lock;
8994 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8995 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8996 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8997 node_id: *counterparty_node_id,
9005 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9006 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
9010 fn provided_node_features(&self) -> NodeFeatures {
9011 provided_node_features(&self.default_configuration)
9014 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
9015 provided_init_features(&self.default_configuration)
9018 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
9019 Some(vec![self.chain_hash])
9022 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
9023 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9024 "Dual-funded channels not supported".to_owned(),
9025 msg.channel_id.clone())), *counterparty_node_id);
9028 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
9029 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9030 "Dual-funded channels not supported".to_owned(),
9031 msg.channel_id.clone())), *counterparty_node_id);
9034 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
9035 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9036 "Dual-funded channels not supported".to_owned(),
9037 msg.channel_id.clone())), *counterparty_node_id);
9040 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
9041 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9042 "Dual-funded channels not supported".to_owned(),
9043 msg.channel_id.clone())), *counterparty_node_id);
9046 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
9047 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9048 "Dual-funded channels not supported".to_owned(),
9049 msg.channel_id.clone())), *counterparty_node_id);
9052 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
9053 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9054 "Dual-funded channels not supported".to_owned(),
9055 msg.channel_id.clone())), *counterparty_node_id);
9058 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
9059 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9060 "Dual-funded channels not supported".to_owned(),
9061 msg.channel_id.clone())), *counterparty_node_id);
9064 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
9065 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9066 "Dual-funded channels not supported".to_owned(),
9067 msg.channel_id.clone())), *counterparty_node_id);
9070 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9071 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9072 "Dual-funded channels not supported".to_owned(),
9073 msg.channel_id.clone())), *counterparty_node_id);
9077 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9078 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9080 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9081 T::Target: BroadcasterInterface,
9082 ES::Target: EntropySource,
9083 NS::Target: NodeSigner,
9084 SP::Target: SignerProvider,
9085 F::Target: FeeEstimator,
9089 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9090 let secp_ctx = &self.secp_ctx;
9091 let expanded_key = &self.inbound_payment_key;
9094 OffersMessage::InvoiceRequest(invoice_request) => {
9095 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9098 Ok(amount_msats) => Some(amount_msats),
9099 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9101 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9102 Ok(invoice_request) => invoice_request,
9104 let error = Bolt12SemanticError::InvalidMetadata;
9105 return Some(OffersMessage::InvoiceError(error.into()));
9108 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9110 match self.create_inbound_payment(amount_msats, relative_expiry, None) {
9111 Ok((payment_hash, payment_secret)) if invoice_request.keys.is_some() => {
9112 let payment_paths = vec![
9113 self.create_one_hop_blinded_payment_path(payment_secret),
9115 #[cfg(not(feature = "no-std"))]
9116 let builder = invoice_request.respond_using_derived_keys(
9117 payment_paths, payment_hash
9119 #[cfg(feature = "no-std")]
9120 let created_at = Duration::from_secs(
9121 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9123 #[cfg(feature = "no-std")]
9124 let builder = invoice_request.respond_using_derived_keys_no_std(
9125 payment_paths, payment_hash, created_at
9127 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9128 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9129 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9132 Ok((payment_hash, payment_secret)) => {
9133 let payment_paths = vec![
9134 self.create_one_hop_blinded_payment_path(payment_secret),
9136 #[cfg(not(feature = "no-std"))]
9137 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9138 #[cfg(feature = "no-std")]
9139 let created_at = Duration::from_secs(
9140 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9142 #[cfg(feature = "no-std")]
9143 let builder = invoice_request.respond_with_no_std(
9144 payment_paths, payment_hash, created_at
9146 let response = builder.and_then(|builder| builder.allow_mpp().build())
9147 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9149 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9150 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9151 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9152 InvoiceError::from_string("Failed signing invoice".to_string())
9154 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9155 InvoiceError::from_string("Failed invoice signature verification".to_string())
9159 Ok(invoice) => Some(invoice),
9160 Err(error) => Some(error),
9164 Some(OffersMessage::InvoiceError(Bolt12SemanticError::InvalidAmount.into()))
9168 OffersMessage::Invoice(invoice) => {
9169 match invoice.verify(expanded_key, secp_ctx) {
9171 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9173 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9174 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9177 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9178 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9179 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9186 OffersMessage::InvoiceError(invoice_error) => {
9187 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9193 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9194 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9198 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9199 /// [`ChannelManager`].
9200 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9201 let mut node_features = provided_init_features(config).to_context();
9202 node_features.set_keysend_optional();
9206 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9207 /// [`ChannelManager`].
9209 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9210 /// or not. Thus, this method is not public.
9211 #[cfg(any(feature = "_test_utils", test))]
9212 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9213 provided_init_features(config).to_context()
9216 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9217 /// [`ChannelManager`].
9218 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9219 provided_init_features(config).to_context()
9222 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9223 /// [`ChannelManager`].
9224 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9225 provided_init_features(config).to_context()
9228 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9229 /// [`ChannelManager`].
9230 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9231 ChannelTypeFeatures::from_init(&provided_init_features(config))
9234 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9235 /// [`ChannelManager`].
9236 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9237 // Note that if new features are added here which other peers may (eventually) require, we
9238 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9239 // [`ErroringMessageHandler`].
9240 let mut features = InitFeatures::empty();
9241 features.set_data_loss_protect_required();
9242 features.set_upfront_shutdown_script_optional();
9243 features.set_variable_length_onion_required();
9244 features.set_static_remote_key_required();
9245 features.set_payment_secret_required();
9246 features.set_basic_mpp_optional();
9247 features.set_wumbo_optional();
9248 features.set_shutdown_any_segwit_optional();
9249 features.set_channel_type_optional();
9250 features.set_scid_privacy_optional();
9251 features.set_zero_conf_optional();
9252 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9253 features.set_anchors_zero_fee_htlc_tx_optional();
9258 const SERIALIZATION_VERSION: u8 = 1;
9259 const MIN_SERIALIZATION_VERSION: u8 = 1;
9261 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9262 (2, fee_base_msat, required),
9263 (4, fee_proportional_millionths, required),
9264 (6, cltv_expiry_delta, required),
9267 impl_writeable_tlv_based!(ChannelCounterparty, {
9268 (2, node_id, required),
9269 (4, features, required),
9270 (6, unspendable_punishment_reserve, required),
9271 (8, forwarding_info, option),
9272 (9, outbound_htlc_minimum_msat, option),
9273 (11, outbound_htlc_maximum_msat, option),
9276 impl Writeable for ChannelDetails {
9277 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9278 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9279 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9280 let user_channel_id_low = self.user_channel_id as u64;
9281 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9282 write_tlv_fields!(writer, {
9283 (1, self.inbound_scid_alias, option),
9284 (2, self.channel_id, required),
9285 (3, self.channel_type, option),
9286 (4, self.counterparty, required),
9287 (5, self.outbound_scid_alias, option),
9288 (6, self.funding_txo, option),
9289 (7, self.config, option),
9290 (8, self.short_channel_id, option),
9291 (9, self.confirmations, option),
9292 (10, self.channel_value_satoshis, required),
9293 (12, self.unspendable_punishment_reserve, option),
9294 (14, user_channel_id_low, required),
9295 (16, self.balance_msat, required),
9296 (18, self.outbound_capacity_msat, required),
9297 (19, self.next_outbound_htlc_limit_msat, required),
9298 (20, self.inbound_capacity_msat, required),
9299 (21, self.next_outbound_htlc_minimum_msat, required),
9300 (22, self.confirmations_required, option),
9301 (24, self.force_close_spend_delay, option),
9302 (26, self.is_outbound, required),
9303 (28, self.is_channel_ready, required),
9304 (30, self.is_usable, required),
9305 (32, self.is_public, required),
9306 (33, self.inbound_htlc_minimum_msat, option),
9307 (35, self.inbound_htlc_maximum_msat, option),
9308 (37, user_channel_id_high_opt, option),
9309 (39, self.feerate_sat_per_1000_weight, option),
9310 (41, self.channel_shutdown_state, option),
9316 impl Readable for ChannelDetails {
9317 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9318 _init_and_read_len_prefixed_tlv_fields!(reader, {
9319 (1, inbound_scid_alias, option),
9320 (2, channel_id, required),
9321 (3, channel_type, option),
9322 (4, counterparty, required),
9323 (5, outbound_scid_alias, option),
9324 (6, funding_txo, option),
9325 (7, config, option),
9326 (8, short_channel_id, option),
9327 (9, confirmations, option),
9328 (10, channel_value_satoshis, required),
9329 (12, unspendable_punishment_reserve, option),
9330 (14, user_channel_id_low, required),
9331 (16, balance_msat, required),
9332 (18, outbound_capacity_msat, required),
9333 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9334 // filled in, so we can safely unwrap it here.
9335 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9336 (20, inbound_capacity_msat, required),
9337 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9338 (22, confirmations_required, option),
9339 (24, force_close_spend_delay, option),
9340 (26, is_outbound, required),
9341 (28, is_channel_ready, required),
9342 (30, is_usable, required),
9343 (32, is_public, required),
9344 (33, inbound_htlc_minimum_msat, option),
9345 (35, inbound_htlc_maximum_msat, option),
9346 (37, user_channel_id_high_opt, option),
9347 (39, feerate_sat_per_1000_weight, option),
9348 (41, channel_shutdown_state, option),
9351 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9352 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9353 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9354 let user_channel_id = user_channel_id_low as u128 +
9355 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9359 channel_id: channel_id.0.unwrap(),
9361 counterparty: counterparty.0.unwrap(),
9362 outbound_scid_alias,
9366 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9367 unspendable_punishment_reserve,
9369 balance_msat: balance_msat.0.unwrap(),
9370 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9371 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9372 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9373 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9374 confirmations_required,
9376 force_close_spend_delay,
9377 is_outbound: is_outbound.0.unwrap(),
9378 is_channel_ready: is_channel_ready.0.unwrap(),
9379 is_usable: is_usable.0.unwrap(),
9380 is_public: is_public.0.unwrap(),
9381 inbound_htlc_minimum_msat,
9382 inbound_htlc_maximum_msat,
9383 feerate_sat_per_1000_weight,
9384 channel_shutdown_state,
9389 impl_writeable_tlv_based!(PhantomRouteHints, {
9390 (2, channels, required_vec),
9391 (4, phantom_scid, required),
9392 (6, real_node_pubkey, required),
9395 impl_writeable_tlv_based!(BlindedForward, {
9396 (0, inbound_blinding_point, required),
9399 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9401 (0, onion_packet, required),
9402 (1, blinded, option),
9403 (2, short_channel_id, required),
9406 (0, payment_data, required),
9407 (1, phantom_shared_secret, option),
9408 (2, incoming_cltv_expiry, required),
9409 (3, payment_metadata, option),
9410 (5, custom_tlvs, optional_vec),
9411 (7, requires_blinded_error, (default_value, false)),
9413 (2, ReceiveKeysend) => {
9414 (0, payment_preimage, required),
9415 (2, incoming_cltv_expiry, required),
9416 (3, payment_metadata, option),
9417 (4, payment_data, option), // Added in 0.0.116
9418 (5, custom_tlvs, optional_vec),
9422 impl_writeable_tlv_based!(PendingHTLCInfo, {
9423 (0, routing, required),
9424 (2, incoming_shared_secret, required),
9425 (4, payment_hash, required),
9426 (6, outgoing_amt_msat, required),
9427 (8, outgoing_cltv_value, required),
9428 (9, incoming_amt_msat, option),
9429 (10, skimmed_fee_msat, option),
9433 impl Writeable for HTLCFailureMsg {
9434 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9436 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9438 channel_id.write(writer)?;
9439 htlc_id.write(writer)?;
9440 reason.write(writer)?;
9442 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9443 channel_id, htlc_id, sha256_of_onion, failure_code
9446 channel_id.write(writer)?;
9447 htlc_id.write(writer)?;
9448 sha256_of_onion.write(writer)?;
9449 failure_code.write(writer)?;
9456 impl Readable for HTLCFailureMsg {
9457 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9458 let id: u8 = Readable::read(reader)?;
9461 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9462 channel_id: Readable::read(reader)?,
9463 htlc_id: Readable::read(reader)?,
9464 reason: Readable::read(reader)?,
9468 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9469 channel_id: Readable::read(reader)?,
9470 htlc_id: Readable::read(reader)?,
9471 sha256_of_onion: Readable::read(reader)?,
9472 failure_code: Readable::read(reader)?,
9475 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9476 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9477 // messages contained in the variants.
9478 // In version 0.0.101, support for reading the variants with these types was added, and
9479 // we should migrate to writing these variants when UpdateFailHTLC or
9480 // UpdateFailMalformedHTLC get TLV fields.
9482 let length: BigSize = Readable::read(reader)?;
9483 let mut s = FixedLengthReader::new(reader, length.0);
9484 let res = Readable::read(&mut s)?;
9485 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9486 Ok(HTLCFailureMsg::Relay(res))
9489 let length: BigSize = Readable::read(reader)?;
9490 let mut s = FixedLengthReader::new(reader, length.0);
9491 let res = Readable::read(&mut s)?;
9492 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9493 Ok(HTLCFailureMsg::Malformed(res))
9495 _ => Err(DecodeError::UnknownRequiredFeature),
9500 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9505 impl_writeable_tlv_based_enum!(BlindedFailure,
9506 (0, FromIntroductionNode) => {},
9507 (2, FromBlindedNode) => {}, ;
9510 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9511 (0, short_channel_id, required),
9512 (1, phantom_shared_secret, option),
9513 (2, outpoint, required),
9514 (3, blinded_failure, option),
9515 (4, htlc_id, required),
9516 (6, incoming_packet_shared_secret, required),
9517 (7, user_channel_id, option),
9520 impl Writeable for ClaimableHTLC {
9521 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9522 let (payment_data, keysend_preimage) = match &self.onion_payload {
9523 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9524 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9526 write_tlv_fields!(writer, {
9527 (0, self.prev_hop, required),
9528 (1, self.total_msat, required),
9529 (2, self.value, required),
9530 (3, self.sender_intended_value, required),
9531 (4, payment_data, option),
9532 (5, self.total_value_received, option),
9533 (6, self.cltv_expiry, required),
9534 (8, keysend_preimage, option),
9535 (10, self.counterparty_skimmed_fee_msat, option),
9541 impl Readable for ClaimableHTLC {
9542 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9543 _init_and_read_len_prefixed_tlv_fields!(reader, {
9544 (0, prev_hop, required),
9545 (1, total_msat, option),
9546 (2, value_ser, required),
9547 (3, sender_intended_value, option),
9548 (4, payment_data_opt, option),
9549 (5, total_value_received, option),
9550 (6, cltv_expiry, required),
9551 (8, keysend_preimage, option),
9552 (10, counterparty_skimmed_fee_msat, option),
9554 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9555 let value = value_ser.0.unwrap();
9556 let onion_payload = match keysend_preimage {
9558 if payment_data.is_some() {
9559 return Err(DecodeError::InvalidValue)
9561 if total_msat.is_none() {
9562 total_msat = Some(value);
9564 OnionPayload::Spontaneous(p)
9567 if total_msat.is_none() {
9568 if payment_data.is_none() {
9569 return Err(DecodeError::InvalidValue)
9571 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9573 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9577 prev_hop: prev_hop.0.unwrap(),
9580 sender_intended_value: sender_intended_value.unwrap_or(value),
9581 total_value_received,
9582 total_msat: total_msat.unwrap(),
9584 cltv_expiry: cltv_expiry.0.unwrap(),
9585 counterparty_skimmed_fee_msat,
9590 impl Readable for HTLCSource {
9591 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9592 let id: u8 = Readable::read(reader)?;
9595 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9596 let mut first_hop_htlc_msat: u64 = 0;
9597 let mut path_hops = Vec::new();
9598 let mut payment_id = None;
9599 let mut payment_params: Option<PaymentParameters> = None;
9600 let mut blinded_tail: Option<BlindedTail> = None;
9601 read_tlv_fields!(reader, {
9602 (0, session_priv, required),
9603 (1, payment_id, option),
9604 (2, first_hop_htlc_msat, required),
9605 (4, path_hops, required_vec),
9606 (5, payment_params, (option: ReadableArgs, 0)),
9607 (6, blinded_tail, option),
9609 if payment_id.is_none() {
9610 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9612 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9614 let path = Path { hops: path_hops, blinded_tail };
9615 if path.hops.len() == 0 {
9616 return Err(DecodeError::InvalidValue);
9618 if let Some(params) = payment_params.as_mut() {
9619 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9620 if final_cltv_expiry_delta == &0 {
9621 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9625 Ok(HTLCSource::OutboundRoute {
9626 session_priv: session_priv.0.unwrap(),
9627 first_hop_htlc_msat,
9629 payment_id: payment_id.unwrap(),
9632 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9633 _ => Err(DecodeError::UnknownRequiredFeature),
9638 impl Writeable for HTLCSource {
9639 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9641 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9643 let payment_id_opt = Some(payment_id);
9644 write_tlv_fields!(writer, {
9645 (0, session_priv, required),
9646 (1, payment_id_opt, option),
9647 (2, first_hop_htlc_msat, required),
9648 // 3 was previously used to write a PaymentSecret for the payment.
9649 (4, path.hops, required_vec),
9650 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9651 (6, path.blinded_tail, option),
9654 HTLCSource::PreviousHopData(ref field) => {
9656 field.write(writer)?;
9663 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9664 (0, forward_info, required),
9665 (1, prev_user_channel_id, (default_value, 0)),
9666 (2, prev_short_channel_id, required),
9667 (4, prev_htlc_id, required),
9668 (6, prev_funding_outpoint, required),
9671 impl Writeable for HTLCForwardInfo {
9672 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9673 const FAIL_HTLC_VARIANT_ID: u8 = 1;
9675 Self::AddHTLC(info) => {
9679 Self::FailHTLC { htlc_id, err_packet } => {
9680 FAIL_HTLC_VARIANT_ID.write(w)?;
9681 write_tlv_fields!(w, {
9682 (0, htlc_id, required),
9683 (2, err_packet, required),
9686 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
9687 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
9688 // packet so older versions have something to fail back with, but serialize the real data as
9689 // optional TLVs for the benefit of newer versions.
9690 FAIL_HTLC_VARIANT_ID.write(w)?;
9691 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
9692 write_tlv_fields!(w, {
9693 (0, htlc_id, required),
9694 (1, failure_code, required),
9695 (2, dummy_err_packet, required),
9696 (3, sha256_of_onion, required),
9704 impl Readable for HTLCForwardInfo {
9705 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
9706 let id: u8 = Readable::read(r)?;
9708 0 => Self::AddHTLC(Readable::read(r)?),
9710 _init_and_read_len_prefixed_tlv_fields!(r, {
9711 (0, htlc_id, required),
9712 (1, malformed_htlc_failure_code, option),
9713 (2, err_packet, required),
9714 (3, sha256_of_onion, option),
9716 if let Some(failure_code) = malformed_htlc_failure_code {
9717 Self::FailMalformedHTLC {
9718 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
9720 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
9724 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
9725 err_packet: _init_tlv_based_struct_field!(err_packet, required),
9729 _ => return Err(DecodeError::InvalidValue),
9734 impl_writeable_tlv_based!(PendingInboundPayment, {
9735 (0, payment_secret, required),
9736 (2, expiry_time, required),
9737 (4, user_payment_id, required),
9738 (6, payment_preimage, required),
9739 (8, min_value_msat, required),
9742 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9744 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9745 T::Target: BroadcasterInterface,
9746 ES::Target: EntropySource,
9747 NS::Target: NodeSigner,
9748 SP::Target: SignerProvider,
9749 F::Target: FeeEstimator,
9753 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9754 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9756 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9758 self.chain_hash.write(writer)?;
9760 let best_block = self.best_block.read().unwrap();
9761 best_block.height().write(writer)?;
9762 best_block.block_hash().write(writer)?;
9765 let mut serializable_peer_count: u64 = 0;
9767 let per_peer_state = self.per_peer_state.read().unwrap();
9768 let mut number_of_funded_channels = 0;
9769 for (_, peer_state_mutex) in per_peer_state.iter() {
9770 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9771 let peer_state = &mut *peer_state_lock;
9772 if !peer_state.ok_to_remove(false) {
9773 serializable_peer_count += 1;
9776 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9777 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9781 (number_of_funded_channels as u64).write(writer)?;
9783 for (_, peer_state_mutex) in per_peer_state.iter() {
9784 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9785 let peer_state = &mut *peer_state_lock;
9786 for channel in peer_state.channel_by_id.iter().filter_map(
9787 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9788 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9791 channel.write(writer)?;
9797 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9798 (forward_htlcs.len() as u64).write(writer)?;
9799 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9800 short_channel_id.write(writer)?;
9801 (pending_forwards.len() as u64).write(writer)?;
9802 for forward in pending_forwards {
9803 forward.write(writer)?;
9808 let per_peer_state = self.per_peer_state.write().unwrap();
9810 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9811 let claimable_payments = self.claimable_payments.lock().unwrap();
9812 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9814 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9815 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9816 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9817 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9818 payment_hash.write(writer)?;
9819 (payment.htlcs.len() as u64).write(writer)?;
9820 for htlc in payment.htlcs.iter() {
9821 htlc.write(writer)?;
9823 htlc_purposes.push(&payment.purpose);
9824 htlc_onion_fields.push(&payment.onion_fields);
9827 let mut monitor_update_blocked_actions_per_peer = None;
9828 let mut peer_states = Vec::new();
9829 for (_, peer_state_mutex) in per_peer_state.iter() {
9830 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9831 // of a lockorder violation deadlock - no other thread can be holding any
9832 // per_peer_state lock at all.
9833 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9836 (serializable_peer_count).write(writer)?;
9837 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9838 // Peers which we have no channels to should be dropped once disconnected. As we
9839 // disconnect all peers when shutting down and serializing the ChannelManager, we
9840 // consider all peers as disconnected here. There's therefore no need write peers with
9842 if !peer_state.ok_to_remove(false) {
9843 peer_pubkey.write(writer)?;
9844 peer_state.latest_features.write(writer)?;
9845 if !peer_state.monitor_update_blocked_actions.is_empty() {
9846 monitor_update_blocked_actions_per_peer
9847 .get_or_insert_with(Vec::new)
9848 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9853 let events = self.pending_events.lock().unwrap();
9854 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9855 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9856 // refuse to read the new ChannelManager.
9857 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9858 if events_not_backwards_compatible {
9859 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9860 // well save the space and not write any events here.
9861 0u64.write(writer)?;
9863 (events.len() as u64).write(writer)?;
9864 for (event, _) in events.iter() {
9865 event.write(writer)?;
9869 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9870 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9871 // the closing monitor updates were always effectively replayed on startup (either directly
9872 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9873 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9874 0u64.write(writer)?;
9876 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9877 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9878 // likely to be identical.
9879 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9880 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9882 (pending_inbound_payments.len() as u64).write(writer)?;
9883 for (hash, pending_payment) in pending_inbound_payments.iter() {
9884 hash.write(writer)?;
9885 pending_payment.write(writer)?;
9888 // For backwards compat, write the session privs and their total length.
9889 let mut num_pending_outbounds_compat: u64 = 0;
9890 for (_, outbound) in pending_outbound_payments.iter() {
9891 if !outbound.is_fulfilled() && !outbound.abandoned() {
9892 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9895 num_pending_outbounds_compat.write(writer)?;
9896 for (_, outbound) in pending_outbound_payments.iter() {
9898 PendingOutboundPayment::Legacy { session_privs } |
9899 PendingOutboundPayment::Retryable { session_privs, .. } => {
9900 for session_priv in session_privs.iter() {
9901 session_priv.write(writer)?;
9904 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9905 PendingOutboundPayment::InvoiceReceived { .. } => {},
9906 PendingOutboundPayment::Fulfilled { .. } => {},
9907 PendingOutboundPayment::Abandoned { .. } => {},
9911 // Encode without retry info for 0.0.101 compatibility.
9912 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9913 for (id, outbound) in pending_outbound_payments.iter() {
9915 PendingOutboundPayment::Legacy { session_privs } |
9916 PendingOutboundPayment::Retryable { session_privs, .. } => {
9917 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9923 let mut pending_intercepted_htlcs = None;
9924 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9925 if our_pending_intercepts.len() != 0 {
9926 pending_intercepted_htlcs = Some(our_pending_intercepts);
9929 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9930 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9931 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9932 // map. Thus, if there are no entries we skip writing a TLV for it.
9933 pending_claiming_payments = None;
9936 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9937 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9938 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9939 if !updates.is_empty() {
9940 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9941 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9946 write_tlv_fields!(writer, {
9947 (1, pending_outbound_payments_no_retry, required),
9948 (2, pending_intercepted_htlcs, option),
9949 (3, pending_outbound_payments, required),
9950 (4, pending_claiming_payments, option),
9951 (5, self.our_network_pubkey, required),
9952 (6, monitor_update_blocked_actions_per_peer, option),
9953 (7, self.fake_scid_rand_bytes, required),
9954 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9955 (9, htlc_purposes, required_vec),
9956 (10, in_flight_monitor_updates, option),
9957 (11, self.probing_cookie_secret, required),
9958 (13, htlc_onion_fields, optional_vec),
9965 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9966 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9967 (self.len() as u64).write(w)?;
9968 for (event, action) in self.iter() {
9971 #[cfg(debug_assertions)] {
9972 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9973 // be persisted and are regenerated on restart. However, if such an event has a
9974 // post-event-handling action we'll write nothing for the event and would have to
9975 // either forget the action or fail on deserialization (which we do below). Thus,
9976 // check that the event is sane here.
9977 let event_encoded = event.encode();
9978 let event_read: Option<Event> =
9979 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9980 if action.is_some() { assert!(event_read.is_some()); }
9986 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9987 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9988 let len: u64 = Readable::read(reader)?;
9989 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9990 let mut events: Self = VecDeque::with_capacity(cmp::min(
9991 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9994 let ev_opt = MaybeReadable::read(reader)?;
9995 let action = Readable::read(reader)?;
9996 if let Some(ev) = ev_opt {
9997 events.push_back((ev, action));
9998 } else if action.is_some() {
9999 return Err(DecodeError::InvalidValue);
10006 impl_writeable_tlv_based_enum!(ChannelShutdownState,
10007 (0, NotShuttingDown) => {},
10008 (2, ShutdownInitiated) => {},
10009 (4, ResolvingHTLCs) => {},
10010 (6, NegotiatingClosingFee) => {},
10011 (8, ShutdownComplete) => {}, ;
10014 /// Arguments for the creation of a ChannelManager that are not deserialized.
10016 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
10018 /// 1) Deserialize all stored [`ChannelMonitor`]s.
10019 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
10020 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
10021 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
10022 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
10023 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
10024 /// same way you would handle a [`chain::Filter`] call using
10025 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
10026 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
10027 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
10028 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
10029 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
10030 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
10032 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
10033 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
10035 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
10036 /// call any other methods on the newly-deserialized [`ChannelManager`].
10038 /// Note that because some channels may be closed during deserialization, it is critical that you
10039 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
10040 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
10041 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
10042 /// not force-close the same channels but consider them live), you may end up revoking a state for
10043 /// which you've already broadcasted the transaction.
10045 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
10046 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10048 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10049 T::Target: BroadcasterInterface,
10050 ES::Target: EntropySource,
10051 NS::Target: NodeSigner,
10052 SP::Target: SignerProvider,
10053 F::Target: FeeEstimator,
10057 /// A cryptographically secure source of entropy.
10058 pub entropy_source: ES,
10060 /// A signer that is able to perform node-scoped cryptographic operations.
10061 pub node_signer: NS,
10063 /// The keys provider which will give us relevant keys. Some keys will be loaded during
10064 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
10066 pub signer_provider: SP,
10068 /// The fee_estimator for use in the ChannelManager in the future.
10070 /// No calls to the FeeEstimator will be made during deserialization.
10071 pub fee_estimator: F,
10072 /// The chain::Watch for use in the ChannelManager in the future.
10074 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
10075 /// you have deserialized ChannelMonitors separately and will add them to your
10076 /// chain::Watch after deserializing this ChannelManager.
10077 pub chain_monitor: M,
10079 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
10080 /// used to broadcast the latest local commitment transactions of channels which must be
10081 /// force-closed during deserialization.
10082 pub tx_broadcaster: T,
10083 /// The router which will be used in the ChannelManager in the future for finding routes
10084 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
10086 /// No calls to the router will be made during deserialization.
10088 /// The Logger for use in the ChannelManager and which may be used to log information during
10089 /// deserialization.
10091 /// Default settings used for new channels. Any existing channels will continue to use the
10092 /// runtime settings which were stored when the ChannelManager was serialized.
10093 pub default_config: UserConfig,
10095 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
10096 /// value.context.get_funding_txo() should be the key).
10098 /// If a monitor is inconsistent with the channel state during deserialization the channel will
10099 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
10100 /// is true for missing channels as well. If there is a monitor missing for which we find
10101 /// channel data Err(DecodeError::InvalidValue) will be returned.
10103 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
10106 /// This is not exported to bindings users because we have no HashMap bindings
10107 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
10110 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10111 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
10113 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10114 T::Target: BroadcasterInterface,
10115 ES::Target: EntropySource,
10116 NS::Target: NodeSigner,
10117 SP::Target: SignerProvider,
10118 F::Target: FeeEstimator,
10122 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
10123 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
10124 /// populate a HashMap directly from C.
10125 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
10126 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
10128 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
10129 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
10134 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10135 // SipmleArcChannelManager type:
10136 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10137 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10139 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10140 T::Target: BroadcasterInterface,
10141 ES::Target: EntropySource,
10142 NS::Target: NodeSigner,
10143 SP::Target: SignerProvider,
10144 F::Target: FeeEstimator,
10148 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10149 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10150 Ok((blockhash, Arc::new(chan_manager)))
10154 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10155 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10157 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10158 T::Target: BroadcasterInterface,
10159 ES::Target: EntropySource,
10160 NS::Target: NodeSigner,
10161 SP::Target: SignerProvider,
10162 F::Target: FeeEstimator,
10166 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10167 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10169 let chain_hash: ChainHash = Readable::read(reader)?;
10170 let best_block_height: u32 = Readable::read(reader)?;
10171 let best_block_hash: BlockHash = Readable::read(reader)?;
10173 let mut failed_htlcs = Vec::new();
10175 let channel_count: u64 = Readable::read(reader)?;
10176 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10177 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10178 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10179 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10180 let mut channel_closures = VecDeque::new();
10181 let mut close_background_events = Vec::new();
10182 for _ in 0..channel_count {
10183 let mut channel: Channel<SP> = Channel::read(reader, (
10184 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10186 let logger = WithChannelContext::from(&args.logger, &channel.context);
10187 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10188 funding_txo_set.insert(funding_txo.clone());
10189 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10190 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10191 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10192 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10193 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10194 // But if the channel is behind of the monitor, close the channel:
10195 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10196 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10197 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10198 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10199 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10201 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10202 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10203 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10205 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10206 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10207 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10209 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10210 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10211 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10213 let mut shutdown_result = channel.context.force_shutdown(true);
10214 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10215 return Err(DecodeError::InvalidValue);
10217 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10218 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10219 counterparty_node_id, funding_txo, update
10222 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10223 channel_closures.push_back((events::Event::ChannelClosed {
10224 channel_id: channel.context.channel_id(),
10225 user_channel_id: channel.context.get_user_id(),
10226 reason: ClosureReason::OutdatedChannelManager,
10227 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10228 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10230 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10231 let mut found_htlc = false;
10232 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10233 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10236 // If we have some HTLCs in the channel which are not present in the newer
10237 // ChannelMonitor, they have been removed and should be failed back to
10238 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10239 // were actually claimed we'd have generated and ensured the previous-hop
10240 // claim update ChannelMonitor updates were persisted prior to persising
10241 // the ChannelMonitor update for the forward leg, so attempting to fail the
10242 // backwards leg of the HTLC will simply be rejected.
10244 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10245 &channel.context.channel_id(), &payment_hash);
10246 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10250 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10251 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10252 monitor.get_latest_update_id());
10253 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10254 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10256 if channel.context.is_funding_broadcast() {
10257 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
10259 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10260 hash_map::Entry::Occupied(mut entry) => {
10261 let by_id_map = entry.get_mut();
10262 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10264 hash_map::Entry::Vacant(entry) => {
10265 let mut by_id_map = HashMap::new();
10266 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10267 entry.insert(by_id_map);
10271 } else if channel.is_awaiting_initial_mon_persist() {
10272 // If we were persisted and shut down while the initial ChannelMonitor persistence
10273 // was in-progress, we never broadcasted the funding transaction and can still
10274 // safely discard the channel.
10275 let _ = channel.context.force_shutdown(false);
10276 channel_closures.push_back((events::Event::ChannelClosed {
10277 channel_id: channel.context.channel_id(),
10278 user_channel_id: channel.context.get_user_id(),
10279 reason: ClosureReason::DisconnectedPeer,
10280 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10281 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10284 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10285 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10286 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10287 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10288 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10289 return Err(DecodeError::InvalidValue);
10293 for (funding_txo, monitor) in args.channel_monitors.iter() {
10294 if !funding_txo_set.contains(funding_txo) {
10295 let logger = WithChannelMonitor::from(&args.logger, monitor);
10296 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
10297 &funding_txo.to_channel_id());
10298 let monitor_update = ChannelMonitorUpdate {
10299 update_id: CLOSED_CHANNEL_UPDATE_ID,
10300 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10302 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10306 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10307 let forward_htlcs_count: u64 = Readable::read(reader)?;
10308 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10309 for _ in 0..forward_htlcs_count {
10310 let short_channel_id = Readable::read(reader)?;
10311 let pending_forwards_count: u64 = Readable::read(reader)?;
10312 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10313 for _ in 0..pending_forwards_count {
10314 pending_forwards.push(Readable::read(reader)?);
10316 forward_htlcs.insert(short_channel_id, pending_forwards);
10319 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10320 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10321 for _ in 0..claimable_htlcs_count {
10322 let payment_hash = Readable::read(reader)?;
10323 let previous_hops_len: u64 = Readable::read(reader)?;
10324 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10325 for _ in 0..previous_hops_len {
10326 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10328 claimable_htlcs_list.push((payment_hash, previous_hops));
10331 let peer_state_from_chans = |channel_by_id| {
10334 inbound_channel_request_by_id: HashMap::new(),
10335 latest_features: InitFeatures::empty(),
10336 pending_msg_events: Vec::new(),
10337 in_flight_monitor_updates: BTreeMap::new(),
10338 monitor_update_blocked_actions: BTreeMap::new(),
10339 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10340 is_connected: false,
10344 let peer_count: u64 = Readable::read(reader)?;
10345 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10346 for _ in 0..peer_count {
10347 let peer_pubkey = Readable::read(reader)?;
10348 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10349 let mut peer_state = peer_state_from_chans(peer_chans);
10350 peer_state.latest_features = Readable::read(reader)?;
10351 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10354 let event_count: u64 = Readable::read(reader)?;
10355 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10356 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10357 for _ in 0..event_count {
10358 match MaybeReadable::read(reader)? {
10359 Some(event) => pending_events_read.push_back((event, None)),
10364 let background_event_count: u64 = Readable::read(reader)?;
10365 for _ in 0..background_event_count {
10366 match <u8 as Readable>::read(reader)? {
10368 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10369 // however we really don't (and never did) need them - we regenerate all
10370 // on-startup monitor updates.
10371 let _: OutPoint = Readable::read(reader)?;
10372 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10374 _ => return Err(DecodeError::InvalidValue),
10378 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10379 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10381 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10382 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10383 for _ in 0..pending_inbound_payment_count {
10384 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10385 return Err(DecodeError::InvalidValue);
10389 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10390 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10391 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10392 for _ in 0..pending_outbound_payments_count_compat {
10393 let session_priv = Readable::read(reader)?;
10394 let payment = PendingOutboundPayment::Legacy {
10395 session_privs: [session_priv].iter().cloned().collect()
10397 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10398 return Err(DecodeError::InvalidValue)
10402 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10403 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10404 let mut pending_outbound_payments = None;
10405 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10406 let mut received_network_pubkey: Option<PublicKey> = None;
10407 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10408 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10409 let mut claimable_htlc_purposes = None;
10410 let mut claimable_htlc_onion_fields = None;
10411 let mut pending_claiming_payments = Some(HashMap::new());
10412 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10413 let mut events_override = None;
10414 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10415 read_tlv_fields!(reader, {
10416 (1, pending_outbound_payments_no_retry, option),
10417 (2, pending_intercepted_htlcs, option),
10418 (3, pending_outbound_payments, option),
10419 (4, pending_claiming_payments, option),
10420 (5, received_network_pubkey, option),
10421 (6, monitor_update_blocked_actions_per_peer, option),
10422 (7, fake_scid_rand_bytes, option),
10423 (8, events_override, option),
10424 (9, claimable_htlc_purposes, optional_vec),
10425 (10, in_flight_monitor_updates, option),
10426 (11, probing_cookie_secret, option),
10427 (13, claimable_htlc_onion_fields, optional_vec),
10429 if fake_scid_rand_bytes.is_none() {
10430 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10433 if probing_cookie_secret.is_none() {
10434 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10437 if let Some(events) = events_override {
10438 pending_events_read = events;
10441 if !channel_closures.is_empty() {
10442 pending_events_read.append(&mut channel_closures);
10445 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10446 pending_outbound_payments = Some(pending_outbound_payments_compat);
10447 } else if pending_outbound_payments.is_none() {
10448 let mut outbounds = HashMap::new();
10449 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10450 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10452 pending_outbound_payments = Some(outbounds);
10454 let pending_outbounds = OutboundPayments {
10455 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10456 retry_lock: Mutex::new(())
10459 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10460 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10461 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10462 // replayed, and for each monitor update we have to replay we have to ensure there's a
10463 // `ChannelMonitor` for it.
10465 // In order to do so we first walk all of our live channels (so that we can check their
10466 // state immediately after doing the update replays, when we have the `update_id`s
10467 // available) and then walk any remaining in-flight updates.
10469 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10470 let mut pending_background_events = Vec::new();
10471 macro_rules! handle_in_flight_updates {
10472 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10473 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
10475 let mut max_in_flight_update_id = 0;
10476 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10477 for update in $chan_in_flight_upds.iter() {
10478 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10479 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10480 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10481 pending_background_events.push(
10482 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10483 counterparty_node_id: $counterparty_node_id,
10484 funding_txo: $funding_txo,
10485 update: update.clone(),
10488 if $chan_in_flight_upds.is_empty() {
10489 // We had some updates to apply, but it turns out they had completed before we
10490 // were serialized, we just weren't notified of that. Thus, we may have to run
10491 // the completion actions for any monitor updates, but otherwise are done.
10492 pending_background_events.push(
10493 BackgroundEvent::MonitorUpdatesComplete {
10494 counterparty_node_id: $counterparty_node_id,
10495 channel_id: $funding_txo.to_channel_id(),
10498 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10499 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
10500 return Err(DecodeError::InvalidValue);
10502 max_in_flight_update_id
10506 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10507 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10508 let peer_state = &mut *peer_state_lock;
10509 for phase in peer_state.channel_by_id.values() {
10510 if let ChannelPhase::Funded(chan) = phase {
10511 let logger = WithChannelContext::from(&args.logger, &chan.context);
10513 // Channels that were persisted have to be funded, otherwise they should have been
10515 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10516 let monitor = args.channel_monitors.get(&funding_txo)
10517 .expect("We already checked for monitor presence when loading channels");
10518 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10519 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10520 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10521 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10522 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10523 funding_txo, monitor, peer_state, logger, ""));
10526 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10527 // If the channel is ahead of the monitor, return InvalidValue:
10528 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10529 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10530 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10531 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10532 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10533 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10534 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10535 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10536 return Err(DecodeError::InvalidValue);
10539 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10540 // created in this `channel_by_id` map.
10541 debug_assert!(false);
10542 return Err(DecodeError::InvalidValue);
10547 if let Some(in_flight_upds) = in_flight_monitor_updates {
10548 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10549 let logger = WithContext::from(&args.logger, Some(counterparty_id), Some(funding_txo.to_channel_id()));
10550 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10551 // Now that we've removed all the in-flight monitor updates for channels that are
10552 // still open, we need to replay any monitor updates that are for closed channels,
10553 // creating the neccessary peer_state entries as we go.
10554 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10555 Mutex::new(peer_state_from_chans(HashMap::new()))
10557 let mut peer_state = peer_state_mutex.lock().unwrap();
10558 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10559 funding_txo, monitor, peer_state, logger, "closed ");
10561 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10562 log_error!(logger, " The ChannelMonitor for channel {} is missing.",
10563 &funding_txo.to_channel_id());
10564 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10565 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10566 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10567 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10568 return Err(DecodeError::InvalidValue);
10573 // Note that we have to do the above replays before we push new monitor updates.
10574 pending_background_events.append(&mut close_background_events);
10576 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10577 // should ensure we try them again on the inbound edge. We put them here and do so after we
10578 // have a fully-constructed `ChannelManager` at the end.
10579 let mut pending_claims_to_replay = Vec::new();
10582 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10583 // ChannelMonitor data for any channels for which we do not have authorative state
10584 // (i.e. those for which we just force-closed above or we otherwise don't have a
10585 // corresponding `Channel` at all).
10586 // This avoids several edge-cases where we would otherwise "forget" about pending
10587 // payments which are still in-flight via their on-chain state.
10588 // We only rebuild the pending payments map if we were most recently serialized by
10590 for (_, monitor) in args.channel_monitors.iter() {
10591 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
10592 let chan_id = monitor.get_funding_txo().0.to_channel_id();
10593 if counterparty_opt.is_none() {
10594 let logger = WithChannelMonitor::from(&args.logger, monitor);
10595 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10596 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10597 if path.hops.is_empty() {
10598 log_error!(logger, "Got an empty path for a pending payment");
10599 return Err(DecodeError::InvalidValue);
10602 let path_amt = path.final_value_msat();
10603 let mut session_priv_bytes = [0; 32];
10604 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10605 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10606 hash_map::Entry::Occupied(mut entry) => {
10607 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10608 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10609 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
10611 hash_map::Entry::Vacant(entry) => {
10612 let path_fee = path.fee_msat();
10613 entry.insert(PendingOutboundPayment::Retryable {
10614 retry_strategy: None,
10615 attempts: PaymentAttempts::new(),
10616 payment_params: None,
10617 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10618 payment_hash: htlc.payment_hash,
10619 payment_secret: None, // only used for retries, and we'll never retry on startup
10620 payment_metadata: None, // only used for retries, and we'll never retry on startup
10621 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10622 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10623 pending_amt_msat: path_amt,
10624 pending_fee_msat: Some(path_fee),
10625 total_msat: path_amt,
10626 starting_block_height: best_block_height,
10627 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10629 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10630 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10635 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10636 match htlc_source {
10637 HTLCSource::PreviousHopData(prev_hop_data) => {
10638 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10639 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10640 info.prev_htlc_id == prev_hop_data.htlc_id
10642 // The ChannelMonitor is now responsible for this HTLC's
10643 // failure/success and will let us know what its outcome is. If we
10644 // still have an entry for this HTLC in `forward_htlcs` or
10645 // `pending_intercepted_htlcs`, we were apparently not persisted after
10646 // the monitor was when forwarding the payment.
10647 forward_htlcs.retain(|_, forwards| {
10648 forwards.retain(|forward| {
10649 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10650 if pending_forward_matches_htlc(&htlc_info) {
10651 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10652 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10657 !forwards.is_empty()
10659 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10660 if pending_forward_matches_htlc(&htlc_info) {
10661 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10662 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10663 pending_events_read.retain(|(event, _)| {
10664 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10665 intercepted_id != ev_id
10672 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10673 if let Some(preimage) = preimage_opt {
10674 let pending_events = Mutex::new(pending_events_read);
10675 // Note that we set `from_onchain` to "false" here,
10676 // deliberately keeping the pending payment around forever.
10677 // Given it should only occur when we have a channel we're
10678 // force-closing for being stale that's okay.
10679 // The alternative would be to wipe the state when claiming,
10680 // generating a `PaymentPathSuccessful` event but regenerating
10681 // it and the `PaymentSent` on every restart until the
10682 // `ChannelMonitor` is removed.
10684 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10685 channel_funding_outpoint: monitor.get_funding_txo().0,
10686 counterparty_node_id: path.hops[0].pubkey,
10688 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10689 path, false, compl_action, &pending_events, &&logger);
10690 pending_events_read = pending_events.into_inner().unwrap();
10697 // Whether the downstream channel was closed or not, try to re-apply any payment
10698 // preimages from it which may be needed in upstream channels for forwarded
10700 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10702 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10703 if let HTLCSource::PreviousHopData(_) = htlc_source {
10704 if let Some(payment_preimage) = preimage_opt {
10705 Some((htlc_source, payment_preimage, htlc.amount_msat,
10706 // Check if `counterparty_opt.is_none()` to see if the
10707 // downstream chan is closed (because we don't have a
10708 // channel_id -> peer map entry).
10709 counterparty_opt.is_none(),
10710 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10711 monitor.get_funding_txo().0))
10714 // If it was an outbound payment, we've handled it above - if a preimage
10715 // came in and we persisted the `ChannelManager` we either handled it and
10716 // are good to go or the channel force-closed - we don't have to handle the
10717 // channel still live case here.
10721 for tuple in outbound_claimed_htlcs_iter {
10722 pending_claims_to_replay.push(tuple);
10727 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10728 // If we have pending HTLCs to forward, assume we either dropped a
10729 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10730 // shut down before the timer hit. Either way, set the time_forwardable to a small
10731 // constant as enough time has likely passed that we should simply handle the forwards
10732 // now, or at least after the user gets a chance to reconnect to our peers.
10733 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10734 time_forwardable: Duration::from_secs(2),
10738 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10739 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10741 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10742 if let Some(purposes) = claimable_htlc_purposes {
10743 if purposes.len() != claimable_htlcs_list.len() {
10744 return Err(DecodeError::InvalidValue);
10746 if let Some(onion_fields) = claimable_htlc_onion_fields {
10747 if onion_fields.len() != claimable_htlcs_list.len() {
10748 return Err(DecodeError::InvalidValue);
10750 for (purpose, (onion, (payment_hash, htlcs))) in
10751 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10753 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10754 purpose, htlcs, onion_fields: onion,
10756 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10759 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10760 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10761 purpose, htlcs, onion_fields: None,
10763 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10767 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10768 // include a `_legacy_hop_data` in the `OnionPayload`.
10769 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10770 if htlcs.is_empty() {
10771 return Err(DecodeError::InvalidValue);
10773 let purpose = match &htlcs[0].onion_payload {
10774 OnionPayload::Invoice { _legacy_hop_data } => {
10775 if let Some(hop_data) = _legacy_hop_data {
10776 events::PaymentPurpose::InvoicePayment {
10777 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10778 Some(inbound_payment) => inbound_payment.payment_preimage,
10779 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10780 Ok((payment_preimage, _)) => payment_preimage,
10782 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10783 return Err(DecodeError::InvalidValue);
10787 payment_secret: hop_data.payment_secret,
10789 } else { return Err(DecodeError::InvalidValue); }
10791 OnionPayload::Spontaneous(payment_preimage) =>
10792 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10794 claimable_payments.insert(payment_hash, ClaimablePayment {
10795 purpose, htlcs, onion_fields: None,
10800 let mut secp_ctx = Secp256k1::new();
10801 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10803 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10805 Err(()) => return Err(DecodeError::InvalidValue)
10807 if let Some(network_pubkey) = received_network_pubkey {
10808 if network_pubkey != our_network_pubkey {
10809 log_error!(args.logger, "Key that was generated does not match the existing key.");
10810 return Err(DecodeError::InvalidValue);
10814 let mut outbound_scid_aliases = HashSet::new();
10815 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10816 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10817 let peer_state = &mut *peer_state_lock;
10818 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10819 if let ChannelPhase::Funded(chan) = phase {
10820 let logger = WithChannelContext::from(&args.logger, &chan.context);
10821 if chan.context.outbound_scid_alias() == 0 {
10822 let mut outbound_scid_alias;
10824 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10825 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10826 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10828 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10829 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10830 // Note that in rare cases its possible to hit this while reading an older
10831 // channel if we just happened to pick a colliding outbound alias above.
10832 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10833 return Err(DecodeError::InvalidValue);
10835 if chan.context.is_usable() {
10836 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10837 // Note that in rare cases its possible to hit this while reading an older
10838 // channel if we just happened to pick a colliding outbound alias above.
10839 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10840 return Err(DecodeError::InvalidValue);
10844 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10845 // created in this `channel_by_id` map.
10846 debug_assert!(false);
10847 return Err(DecodeError::InvalidValue);
10852 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10854 for (_, monitor) in args.channel_monitors.iter() {
10855 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10856 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10857 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10858 let mut claimable_amt_msat = 0;
10859 let mut receiver_node_id = Some(our_network_pubkey);
10860 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10861 if phantom_shared_secret.is_some() {
10862 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10863 .expect("Failed to get node_id for phantom node recipient");
10864 receiver_node_id = Some(phantom_pubkey)
10866 for claimable_htlc in &payment.htlcs {
10867 claimable_amt_msat += claimable_htlc.value;
10869 // Add a holding-cell claim of the payment to the Channel, which should be
10870 // applied ~immediately on peer reconnection. Because it won't generate a
10871 // new commitment transaction we can just provide the payment preimage to
10872 // the corresponding ChannelMonitor and nothing else.
10874 // We do so directly instead of via the normal ChannelMonitor update
10875 // procedure as the ChainMonitor hasn't yet been initialized, implying
10876 // we're not allowed to call it directly yet. Further, we do the update
10877 // without incrementing the ChannelMonitor update ID as there isn't any
10879 // If we were to generate a new ChannelMonitor update ID here and then
10880 // crash before the user finishes block connect we'd end up force-closing
10881 // this channel as well. On the flip side, there's no harm in restarting
10882 // without the new monitor persisted - we'll end up right back here on
10884 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10885 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10886 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10887 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10888 let peer_state = &mut *peer_state_lock;
10889 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10890 let logger = WithChannelContext::from(&args.logger, &channel.context);
10891 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
10894 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10895 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10898 pending_events_read.push_back((events::Event::PaymentClaimed {
10901 purpose: payment.purpose,
10902 amount_msat: claimable_amt_msat,
10903 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10904 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10910 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10911 if let Some(peer_state) = per_peer_state.get(&node_id) {
10912 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
10913 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
10914 for action in actions.iter() {
10915 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10916 downstream_counterparty_and_funding_outpoint:
10917 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10919 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10921 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
10922 blocked_channel_outpoint.to_channel_id());
10923 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10924 .entry(blocked_channel_outpoint.to_channel_id())
10925 .or_insert_with(Vec::new).push(blocking_action.clone());
10927 // If the channel we were blocking has closed, we don't need to
10928 // worry about it - the blocked monitor update should never have
10929 // been released from the `Channel` object so it can't have
10930 // completed, and if the channel closed there's no reason to bother
10934 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
10935 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
10939 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10941 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
10942 return Err(DecodeError::InvalidValue);
10946 let channel_manager = ChannelManager {
10948 fee_estimator: bounded_fee_estimator,
10949 chain_monitor: args.chain_monitor,
10950 tx_broadcaster: args.tx_broadcaster,
10951 router: args.router,
10953 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10955 inbound_payment_key: expanded_inbound_key,
10956 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10957 pending_outbound_payments: pending_outbounds,
10958 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10960 forward_htlcs: Mutex::new(forward_htlcs),
10961 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10962 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10963 id_to_peer: Mutex::new(id_to_peer),
10964 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10965 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10967 probing_cookie_secret: probing_cookie_secret.unwrap(),
10969 our_network_pubkey,
10972 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10974 per_peer_state: FairRwLock::new(per_peer_state),
10976 pending_events: Mutex::new(pending_events_read),
10977 pending_events_processor: AtomicBool::new(false),
10978 pending_background_events: Mutex::new(pending_background_events),
10979 total_consistency_lock: RwLock::new(()),
10980 background_events_processed_since_startup: AtomicBool::new(false),
10982 event_persist_notifier: Notifier::new(),
10983 needs_persist_flag: AtomicBool::new(false),
10985 funding_batch_states: Mutex::new(BTreeMap::new()),
10987 pending_offers_messages: Mutex::new(Vec::new()),
10989 entropy_source: args.entropy_source,
10990 node_signer: args.node_signer,
10991 signer_provider: args.signer_provider,
10993 logger: args.logger,
10994 default_configuration: args.default_config,
10997 for htlc_source in failed_htlcs.drain(..) {
10998 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10999 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
11000 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
11001 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
11004 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
11005 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
11006 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
11007 // channel is closed we just assume that it probably came from an on-chain claim.
11008 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
11009 downstream_closed, true, downstream_node_id, downstream_funding);
11012 //TODO: Broadcast channel update for closed channels, but only after we've made a
11013 //connection or two.
11015 Ok((best_block_hash.clone(), channel_manager))
11021 use bitcoin::hashes::Hash;
11022 use bitcoin::hashes::sha256::Hash as Sha256;
11023 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
11024 use core::sync::atomic::Ordering;
11025 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
11026 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
11027 use crate::ln::ChannelId;
11028 use crate::ln::channelmanager::{create_recv_pending_htlc_info, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
11029 use crate::ln::functional_test_utils::*;
11030 use crate::ln::msgs::{self, ErrorAction};
11031 use crate::ln::msgs::ChannelMessageHandler;
11032 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
11033 use crate::util::errors::APIError;
11034 use crate::util::test_utils;
11035 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
11036 use crate::sign::EntropySource;
11039 fn test_notify_limits() {
11040 // Check that a few cases which don't require the persistence of a new ChannelManager,
11041 // indeed, do not cause the persistence of a new ChannelManager.
11042 let chanmon_cfgs = create_chanmon_cfgs(3);
11043 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11044 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
11045 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11047 // All nodes start with a persistable update pending as `create_network` connects each node
11048 // with all other nodes to make most tests simpler.
11049 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11050 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11051 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11053 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11055 // We check that the channel info nodes have doesn't change too early, even though we try
11056 // to connect messages with new values
11057 chan.0.contents.fee_base_msat *= 2;
11058 chan.1.contents.fee_base_msat *= 2;
11059 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
11060 &nodes[1].node.get_our_node_id()).pop().unwrap();
11061 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
11062 &nodes[0].node.get_our_node_id()).pop().unwrap();
11064 // The first two nodes (which opened a channel) should now require fresh persistence
11065 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11066 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11067 // ... but the last node should not.
11068 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11069 // After persisting the first two nodes they should no longer need fresh persistence.
11070 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11071 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11073 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
11074 // about the channel.
11075 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
11076 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
11077 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11079 // The nodes which are a party to the channel should also ignore messages from unrelated
11081 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11082 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11083 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11084 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11085 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11086 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11088 // At this point the channel info given by peers should still be the same.
11089 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11090 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11092 // An earlier version of handle_channel_update didn't check the directionality of the
11093 // update message and would always update the local fee info, even if our peer was
11094 // (spuriously) forwarding us our own channel_update.
11095 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
11096 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
11097 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
11099 // First deliver each peers' own message, checking that the node doesn't need to be
11100 // persisted and that its channel info remains the same.
11101 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
11102 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
11103 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11104 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11105 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11106 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11108 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
11109 // the channel info has updated.
11110 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
11111 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
11112 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11113 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11114 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
11115 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
11119 fn test_keysend_dup_hash_partial_mpp() {
11120 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
11122 let chanmon_cfgs = create_chanmon_cfgs(2);
11123 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11124 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11125 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11126 create_announced_chan_between_nodes(&nodes, 0, 1);
11128 // First, send a partial MPP payment.
11129 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
11130 let mut mpp_route = route.clone();
11131 mpp_route.paths.push(mpp_route.paths[0].clone());
11133 let payment_id = PaymentId([42; 32]);
11134 // Use the utility function send_payment_along_path to send the payment with MPP data which
11135 // indicates there are more HTLCs coming.
11136 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
11137 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
11138 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
11139 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
11140 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
11141 check_added_monitors!(nodes[0], 1);
11142 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11143 assert_eq!(events.len(), 1);
11144 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11146 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11147 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11148 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11149 check_added_monitors!(nodes[0], 1);
11150 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11151 assert_eq!(events.len(), 1);
11152 let ev = events.drain(..).next().unwrap();
11153 let payment_event = SendEvent::from_event(ev);
11154 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11155 check_added_monitors!(nodes[1], 0);
11156 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11157 expect_pending_htlcs_forwardable!(nodes[1]);
11158 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11159 check_added_monitors!(nodes[1], 1);
11160 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11161 assert!(updates.update_add_htlcs.is_empty());
11162 assert!(updates.update_fulfill_htlcs.is_empty());
11163 assert_eq!(updates.update_fail_htlcs.len(), 1);
11164 assert!(updates.update_fail_malformed_htlcs.is_empty());
11165 assert!(updates.update_fee.is_none());
11166 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11167 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11168 expect_payment_failed!(nodes[0], our_payment_hash, true);
11170 // Send the second half of the original MPP payment.
11171 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11172 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11173 check_added_monitors!(nodes[0], 1);
11174 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11175 assert_eq!(events.len(), 1);
11176 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11178 // Claim the full MPP payment. Note that we can't use a test utility like
11179 // claim_funds_along_route because the ordering of the messages causes the second half of the
11180 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11181 // lightning messages manually.
11182 nodes[1].node.claim_funds(payment_preimage);
11183 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11184 check_added_monitors!(nodes[1], 2);
11186 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11187 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11188 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11189 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11190 check_added_monitors!(nodes[0], 1);
11191 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11192 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11193 check_added_monitors!(nodes[1], 1);
11194 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11195 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11196 check_added_monitors!(nodes[1], 1);
11197 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11198 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11199 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11200 check_added_monitors!(nodes[0], 1);
11201 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11202 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11203 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11204 check_added_monitors!(nodes[0], 1);
11205 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11206 check_added_monitors!(nodes[1], 1);
11207 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11208 check_added_monitors!(nodes[1], 1);
11209 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11210 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11211 check_added_monitors!(nodes[0], 1);
11213 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11214 // path's success and a PaymentPathSuccessful event for each path's success.
11215 let events = nodes[0].node.get_and_clear_pending_events();
11216 assert_eq!(events.len(), 2);
11218 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11219 assert_eq!(payment_id, *actual_payment_id);
11220 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11221 assert_eq!(route.paths[0], *path);
11223 _ => panic!("Unexpected event"),
11226 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11227 assert_eq!(payment_id, *actual_payment_id);
11228 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11229 assert_eq!(route.paths[0], *path);
11231 _ => panic!("Unexpected event"),
11236 fn test_keysend_dup_payment_hash() {
11237 do_test_keysend_dup_payment_hash(false);
11238 do_test_keysend_dup_payment_hash(true);
11241 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11242 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11243 // outbound regular payment fails as expected.
11244 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11245 // fails as expected.
11246 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11247 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11248 // reject MPP keysend payments, since in this case where the payment has no payment
11249 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11250 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11251 // payment secrets and reject otherwise.
11252 let chanmon_cfgs = create_chanmon_cfgs(2);
11253 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11254 let mut mpp_keysend_cfg = test_default_channel_config();
11255 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11256 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11257 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11258 create_announced_chan_between_nodes(&nodes, 0, 1);
11259 let scorer = test_utils::TestScorer::new();
11260 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11262 // To start (1), send a regular payment but don't claim it.
11263 let expected_route = [&nodes[1]];
11264 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11266 // Next, attempt a keysend payment and make sure it fails.
11267 let route_params = RouteParameters::from_payment_params_and_value(
11268 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11269 TEST_FINAL_CLTV, false), 100_000);
11270 let route = find_route(
11271 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11272 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11274 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11275 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11276 check_added_monitors!(nodes[0], 1);
11277 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11278 assert_eq!(events.len(), 1);
11279 let ev = events.drain(..).next().unwrap();
11280 let payment_event = SendEvent::from_event(ev);
11281 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11282 check_added_monitors!(nodes[1], 0);
11283 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11284 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11285 // fails), the second will process the resulting failure and fail the HTLC backward
11286 expect_pending_htlcs_forwardable!(nodes[1]);
11287 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11288 check_added_monitors!(nodes[1], 1);
11289 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11290 assert!(updates.update_add_htlcs.is_empty());
11291 assert!(updates.update_fulfill_htlcs.is_empty());
11292 assert_eq!(updates.update_fail_htlcs.len(), 1);
11293 assert!(updates.update_fail_malformed_htlcs.is_empty());
11294 assert!(updates.update_fee.is_none());
11295 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11296 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11297 expect_payment_failed!(nodes[0], payment_hash, true);
11299 // Finally, claim the original payment.
11300 claim_payment(&nodes[0], &expected_route, payment_preimage);
11302 // To start (2), send a keysend payment but don't claim it.
11303 let payment_preimage = PaymentPreimage([42; 32]);
11304 let route = find_route(
11305 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11306 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11308 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11309 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11310 check_added_monitors!(nodes[0], 1);
11311 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11312 assert_eq!(events.len(), 1);
11313 let event = events.pop().unwrap();
11314 let path = vec![&nodes[1]];
11315 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11317 // Next, attempt a regular payment and make sure it fails.
11318 let payment_secret = PaymentSecret([43; 32]);
11319 nodes[0].node.send_payment_with_route(&route, payment_hash,
11320 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11321 check_added_monitors!(nodes[0], 1);
11322 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11323 assert_eq!(events.len(), 1);
11324 let ev = events.drain(..).next().unwrap();
11325 let payment_event = SendEvent::from_event(ev);
11326 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11327 check_added_monitors!(nodes[1], 0);
11328 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11329 expect_pending_htlcs_forwardable!(nodes[1]);
11330 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11331 check_added_monitors!(nodes[1], 1);
11332 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11333 assert!(updates.update_add_htlcs.is_empty());
11334 assert!(updates.update_fulfill_htlcs.is_empty());
11335 assert_eq!(updates.update_fail_htlcs.len(), 1);
11336 assert!(updates.update_fail_malformed_htlcs.is_empty());
11337 assert!(updates.update_fee.is_none());
11338 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11339 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11340 expect_payment_failed!(nodes[0], payment_hash, true);
11342 // Finally, succeed the keysend payment.
11343 claim_payment(&nodes[0], &expected_route, payment_preimage);
11345 // To start (3), send a keysend payment but don't claim it.
11346 let payment_id_1 = PaymentId([44; 32]);
11347 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11348 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11349 check_added_monitors!(nodes[0], 1);
11350 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11351 assert_eq!(events.len(), 1);
11352 let event = events.pop().unwrap();
11353 let path = vec![&nodes[1]];
11354 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11356 // Next, attempt a keysend payment and make sure it fails.
11357 let route_params = RouteParameters::from_payment_params_and_value(
11358 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11361 let route = find_route(
11362 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11363 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11365 let payment_id_2 = PaymentId([45; 32]);
11366 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11367 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11368 check_added_monitors!(nodes[0], 1);
11369 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11370 assert_eq!(events.len(), 1);
11371 let ev = events.drain(..).next().unwrap();
11372 let payment_event = SendEvent::from_event(ev);
11373 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11374 check_added_monitors!(nodes[1], 0);
11375 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11376 expect_pending_htlcs_forwardable!(nodes[1]);
11377 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11378 check_added_monitors!(nodes[1], 1);
11379 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11380 assert!(updates.update_add_htlcs.is_empty());
11381 assert!(updates.update_fulfill_htlcs.is_empty());
11382 assert_eq!(updates.update_fail_htlcs.len(), 1);
11383 assert!(updates.update_fail_malformed_htlcs.is_empty());
11384 assert!(updates.update_fee.is_none());
11385 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11386 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11387 expect_payment_failed!(nodes[0], payment_hash, true);
11389 // Finally, claim the original payment.
11390 claim_payment(&nodes[0], &expected_route, payment_preimage);
11394 fn test_keysend_hash_mismatch() {
11395 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11396 // preimage doesn't match the msg's payment hash.
11397 let chanmon_cfgs = create_chanmon_cfgs(2);
11398 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11399 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11400 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11402 let payer_pubkey = nodes[0].node.get_our_node_id();
11403 let payee_pubkey = nodes[1].node.get_our_node_id();
11405 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11406 let route_params = RouteParameters::from_payment_params_and_value(
11407 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11408 let network_graph = nodes[0].network_graph;
11409 let first_hops = nodes[0].node.list_usable_channels();
11410 let scorer = test_utils::TestScorer::new();
11411 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11412 let route = find_route(
11413 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11414 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11417 let test_preimage = PaymentPreimage([42; 32]);
11418 let mismatch_payment_hash = PaymentHash([43; 32]);
11419 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11420 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11421 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11422 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11423 check_added_monitors!(nodes[0], 1);
11425 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11426 assert_eq!(updates.update_add_htlcs.len(), 1);
11427 assert!(updates.update_fulfill_htlcs.is_empty());
11428 assert!(updates.update_fail_htlcs.is_empty());
11429 assert!(updates.update_fail_malformed_htlcs.is_empty());
11430 assert!(updates.update_fee.is_none());
11431 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11433 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11437 fn test_keysend_msg_with_secret_err() {
11438 // Test that we error as expected if we receive a keysend payment that includes a payment
11439 // secret when we don't support MPP keysend.
11440 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11441 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11442 let chanmon_cfgs = create_chanmon_cfgs(2);
11443 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11444 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11445 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11447 let payer_pubkey = nodes[0].node.get_our_node_id();
11448 let payee_pubkey = nodes[1].node.get_our_node_id();
11450 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11451 let route_params = RouteParameters::from_payment_params_and_value(
11452 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11453 let network_graph = nodes[0].network_graph;
11454 let first_hops = nodes[0].node.list_usable_channels();
11455 let scorer = test_utils::TestScorer::new();
11456 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11457 let route = find_route(
11458 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11459 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11462 let test_preimage = PaymentPreimage([42; 32]);
11463 let test_secret = PaymentSecret([43; 32]);
11464 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
11465 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11466 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11467 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11468 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11469 PaymentId(payment_hash.0), None, session_privs).unwrap();
11470 check_added_monitors!(nodes[0], 1);
11472 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11473 assert_eq!(updates.update_add_htlcs.len(), 1);
11474 assert!(updates.update_fulfill_htlcs.is_empty());
11475 assert!(updates.update_fail_htlcs.is_empty());
11476 assert!(updates.update_fail_malformed_htlcs.is_empty());
11477 assert!(updates.update_fee.is_none());
11478 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11480 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11484 fn test_multi_hop_missing_secret() {
11485 let chanmon_cfgs = create_chanmon_cfgs(4);
11486 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11487 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11488 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11490 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11491 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11492 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11493 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11495 // Marshall an MPP route.
11496 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11497 let path = route.paths[0].clone();
11498 route.paths.push(path);
11499 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11500 route.paths[0].hops[0].short_channel_id = chan_1_id;
11501 route.paths[0].hops[1].short_channel_id = chan_3_id;
11502 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11503 route.paths[1].hops[0].short_channel_id = chan_2_id;
11504 route.paths[1].hops[1].short_channel_id = chan_4_id;
11506 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11507 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11509 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11510 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11512 _ => panic!("unexpected error")
11517 fn test_drop_disconnected_peers_when_removing_channels() {
11518 let chanmon_cfgs = create_chanmon_cfgs(2);
11519 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11520 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11521 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11523 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11525 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11526 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11528 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11529 check_closed_broadcast!(nodes[0], true);
11530 check_added_monitors!(nodes[0], 1);
11531 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11534 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11535 // disconnected and the channel between has been force closed.
11536 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11537 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11538 assert_eq!(nodes_0_per_peer_state.len(), 1);
11539 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11542 nodes[0].node.timer_tick_occurred();
11545 // Assert that nodes[1] has now been removed.
11546 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11551 fn bad_inbound_payment_hash() {
11552 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11553 let chanmon_cfgs = create_chanmon_cfgs(2);
11554 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11555 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11556 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11558 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11559 let payment_data = msgs::FinalOnionHopData {
11561 total_msat: 100_000,
11564 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11565 // payment verification fails as expected.
11566 let mut bad_payment_hash = payment_hash.clone();
11567 bad_payment_hash.0[0] += 1;
11568 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11569 Ok(_) => panic!("Unexpected ok"),
11571 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11575 // Check that using the original payment hash succeeds.
11576 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11580 fn test_id_to_peer_coverage() {
11581 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
11582 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11583 // the channel is successfully closed.
11584 let chanmon_cfgs = create_chanmon_cfgs(2);
11585 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11586 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11587 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11589 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11590 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11591 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11592 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11593 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11595 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11596 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
11598 // Ensure that the `id_to_peer` map is empty until either party has received the
11599 // funding transaction, and have the real `channel_id`.
11600 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11601 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11604 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11606 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
11607 // as it has the funding transaction.
11608 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11609 assert_eq!(nodes_0_lock.len(), 1);
11610 assert!(nodes_0_lock.contains_key(&channel_id));
11613 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11615 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11617 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11619 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11620 assert_eq!(nodes_0_lock.len(), 1);
11621 assert!(nodes_0_lock.contains_key(&channel_id));
11623 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11626 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
11627 // as it has the funding transaction.
11628 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11629 assert_eq!(nodes_1_lock.len(), 1);
11630 assert!(nodes_1_lock.contains_key(&channel_id));
11632 check_added_monitors!(nodes[1], 1);
11633 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11634 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11635 check_added_monitors!(nodes[0], 1);
11636 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11637 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11638 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11639 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11641 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11642 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11643 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11644 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11646 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11647 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11649 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
11650 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11651 // fee for the closing transaction has been negotiated and the parties has the other
11652 // party's signature for the fee negotiated closing transaction.)
11653 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
11654 assert_eq!(nodes_0_lock.len(), 1);
11655 assert!(nodes_0_lock.contains_key(&channel_id));
11659 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11660 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11661 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11662 // kept in the `nodes[1]`'s `id_to_peer` map.
11663 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11664 assert_eq!(nodes_1_lock.len(), 1);
11665 assert!(nodes_1_lock.contains_key(&channel_id));
11668 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11670 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11671 // therefore has all it needs to fully close the channel (both signatures for the
11672 // closing transaction).
11673 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
11674 // fully closed by `nodes[0]`.
11675 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
11677 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
11678 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11679 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
11680 assert_eq!(nodes_1_lock.len(), 1);
11681 assert!(nodes_1_lock.contains_key(&channel_id));
11684 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11686 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11688 // Assert that the channel has now been removed from both parties `id_to_peer` map once
11689 // they both have everything required to fully close the channel.
11690 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
11692 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11694 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11695 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11698 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11699 let expected_message = format!("Not connected to node: {}", expected_public_key);
11700 check_api_error_message(expected_message, res_err)
11703 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11704 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11705 check_api_error_message(expected_message, res_err)
11708 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11709 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11710 check_api_error_message(expected_message, res_err)
11713 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11714 let expected_message = "No such channel awaiting to be accepted.".to_string();
11715 check_api_error_message(expected_message, res_err)
11718 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11720 Err(APIError::APIMisuseError { err }) => {
11721 assert_eq!(err, expected_err_message);
11723 Err(APIError::ChannelUnavailable { err }) => {
11724 assert_eq!(err, expected_err_message);
11726 Ok(_) => panic!("Unexpected Ok"),
11727 Err(_) => panic!("Unexpected Error"),
11732 fn test_api_calls_with_unkown_counterparty_node() {
11733 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11734 // expected if the `counterparty_node_id` is an unkown peer in the
11735 // `ChannelManager::per_peer_state` map.
11736 let chanmon_cfg = create_chanmon_cfgs(2);
11737 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11738 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11739 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11742 let channel_id = ChannelId::from_bytes([4; 32]);
11743 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11744 let intercept_id = InterceptId([0; 32]);
11746 // Test the API functions.
11747 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11749 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11751 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11753 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11755 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11757 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11759 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11763 fn test_api_calls_with_unavailable_channel() {
11764 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11765 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11766 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11767 // the given `channel_id`.
11768 let chanmon_cfg = create_chanmon_cfgs(2);
11769 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11770 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11771 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11773 let counterparty_node_id = nodes[1].node.get_our_node_id();
11776 let channel_id = ChannelId::from_bytes([4; 32]);
11778 // Test the API functions.
11779 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11781 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11783 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11785 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11787 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11789 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11793 fn test_connection_limiting() {
11794 // Test that we limit un-channel'd peers and un-funded channels properly.
11795 let chanmon_cfgs = create_chanmon_cfgs(2);
11796 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11797 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11798 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11800 // Note that create_network connects the nodes together for us
11802 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11803 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11805 let mut funding_tx = None;
11806 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11807 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11808 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11811 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11812 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11813 funding_tx = Some(tx.clone());
11814 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11815 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11817 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11818 check_added_monitors!(nodes[1], 1);
11819 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11821 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11823 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11824 check_added_monitors!(nodes[0], 1);
11825 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11827 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11830 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11831 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11832 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11833 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11834 open_channel_msg.temporary_channel_id);
11836 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11837 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11839 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11840 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11841 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11842 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11843 peer_pks.push(random_pk);
11844 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11845 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11848 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11849 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11850 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11851 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11852 }, true).unwrap_err();
11854 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11855 // them if we have too many un-channel'd peers.
11856 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11857 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11858 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11859 for ev in chan_closed_events {
11860 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11862 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11863 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11865 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11866 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11867 }, true).unwrap_err();
11869 // but of course if the connection is outbound its allowed...
11870 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11871 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11872 }, false).unwrap();
11873 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11875 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11876 // Even though we accept one more connection from new peers, we won't actually let them
11878 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11879 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11880 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11881 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11882 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11884 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11885 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11886 open_channel_msg.temporary_channel_id);
11888 // Of course, however, outbound channels are always allowed
11889 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
11890 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11892 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11893 // "protected" and can connect again.
11894 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11895 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11896 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11898 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11900 // Further, because the first channel was funded, we can open another channel with
11902 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11903 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11907 fn test_outbound_chans_unlimited() {
11908 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11909 let chanmon_cfgs = create_chanmon_cfgs(2);
11910 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11911 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11912 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11914 // Note that create_network connects the nodes together for us
11916 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11917 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11919 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11920 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11921 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11922 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11925 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11927 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11928 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11929 open_channel_msg.temporary_channel_id);
11931 // but we can still open an outbound channel.
11932 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11933 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11935 // but even with such an outbound channel, additional inbound channels will still fail.
11936 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11937 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11938 open_channel_msg.temporary_channel_id);
11942 fn test_0conf_limiting() {
11943 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11944 // flag set and (sometimes) accept channels as 0conf.
11945 let chanmon_cfgs = create_chanmon_cfgs(2);
11946 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11947 let mut settings = test_default_channel_config();
11948 settings.manually_accept_inbound_channels = true;
11949 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11950 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11952 // Note that create_network connects the nodes together for us
11954 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11955 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11957 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11958 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11959 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11960 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11961 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11962 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11965 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11966 let events = nodes[1].node.get_and_clear_pending_events();
11968 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11969 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11971 _ => panic!("Unexpected event"),
11973 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11974 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11977 // If we try to accept a channel from another peer non-0conf it will fail.
11978 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11979 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11980 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11981 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11983 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11984 let events = nodes[1].node.get_and_clear_pending_events();
11986 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11987 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11988 Err(APIError::APIMisuseError { err }) =>
11989 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11993 _ => panic!("Unexpected event"),
11995 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11996 open_channel_msg.temporary_channel_id);
11998 // ...however if we accept the same channel 0conf it should work just fine.
11999 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12000 let events = nodes[1].node.get_and_clear_pending_events();
12002 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12003 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
12005 _ => panic!("Unexpected event"),
12007 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
12011 fn reject_excessively_underpaying_htlcs() {
12012 let chanmon_cfg = create_chanmon_cfgs(1);
12013 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12014 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12015 let node = create_network(1, &node_cfg, &node_chanmgr);
12016 let sender_intended_amt_msat = 100;
12017 let extra_fee_msat = 10;
12018 let hop_data = msgs::InboundOnionPayload::Receive {
12020 outgoing_cltv_value: 42,
12021 payment_metadata: None,
12022 keysend_preimage: None,
12023 payment_data: Some(msgs::FinalOnionHopData {
12024 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12026 custom_tlvs: Vec::new(),
12028 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
12029 // intended amount, we fail the payment.
12030 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12031 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
12032 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12033 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
12034 current_height, node[0].node.default_configuration.accept_mpp_keysend)
12036 assert_eq!(err_code, 19);
12037 } else { panic!(); }
12039 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
12040 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
12042 outgoing_cltv_value: 42,
12043 payment_metadata: None,
12044 keysend_preimage: None,
12045 payment_data: Some(msgs::FinalOnionHopData {
12046 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12048 custom_tlvs: Vec::new(),
12050 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12051 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12052 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
12053 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
12057 fn test_final_incorrect_cltv(){
12058 let chanmon_cfg = create_chanmon_cfgs(1);
12059 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12060 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12061 let node = create_network(1, &node_cfg, &node_chanmgr);
12063 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12064 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
12066 outgoing_cltv_value: 22,
12067 payment_metadata: None,
12068 keysend_preimage: None,
12069 payment_data: Some(msgs::FinalOnionHopData {
12070 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
12072 custom_tlvs: Vec::new(),
12073 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
12074 node[0].node.default_configuration.accept_mpp_keysend);
12076 // Should not return an error as this condition:
12077 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
12078 // is not satisfied.
12079 assert!(result.is_ok());
12083 fn test_inbound_anchors_manual_acceptance() {
12084 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
12085 // flag set and (sometimes) accept channels as 0conf.
12086 let mut anchors_cfg = test_default_channel_config();
12087 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12089 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
12090 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
12092 let chanmon_cfgs = create_chanmon_cfgs(3);
12093 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12094 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
12095 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
12096 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12098 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12099 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12101 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12102 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12103 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
12104 match &msg_events[0] {
12105 MessageSendEvent::HandleError { node_id, action } => {
12106 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
12108 ErrorAction::SendErrorMessage { msg } =>
12109 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
12110 _ => panic!("Unexpected error action"),
12113 _ => panic!("Unexpected event"),
12116 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12117 let events = nodes[2].node.get_and_clear_pending_events();
12119 Event::OpenChannelRequest { temporary_channel_id, .. } =>
12120 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
12121 _ => panic!("Unexpected event"),
12123 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12127 fn test_anchors_zero_fee_htlc_tx_fallback() {
12128 // Tests that if both nodes support anchors, but the remote node does not want to accept
12129 // anchor channels at the moment, an error it sent to the local node such that it can retry
12130 // the channel without the anchors feature.
12131 let chanmon_cfgs = create_chanmon_cfgs(2);
12132 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12133 let mut anchors_config = test_default_channel_config();
12134 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12135 anchors_config.manually_accept_inbound_channels = true;
12136 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
12137 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12139 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
12140 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12141 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
12143 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12144 let events = nodes[1].node.get_and_clear_pending_events();
12146 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12147 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
12149 _ => panic!("Unexpected event"),
12152 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12153 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12155 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12156 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12158 // Since nodes[1] should not have accepted the channel, it should
12159 // not have generated any events.
12160 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12164 fn test_update_channel_config() {
12165 let chanmon_cfg = create_chanmon_cfgs(2);
12166 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12167 let mut user_config = test_default_channel_config();
12168 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12169 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12170 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12171 let channel = &nodes[0].node.list_channels()[0];
12173 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12174 let events = nodes[0].node.get_and_clear_pending_msg_events();
12175 assert_eq!(events.len(), 0);
12177 user_config.channel_config.forwarding_fee_base_msat += 10;
12178 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12179 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12180 let events = nodes[0].node.get_and_clear_pending_msg_events();
12181 assert_eq!(events.len(), 1);
12183 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12184 _ => panic!("expected BroadcastChannelUpdate event"),
12187 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12188 let events = nodes[0].node.get_and_clear_pending_msg_events();
12189 assert_eq!(events.len(), 0);
12191 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12192 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12193 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12194 ..Default::default()
12196 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12197 let events = nodes[0].node.get_and_clear_pending_msg_events();
12198 assert_eq!(events.len(), 1);
12200 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12201 _ => panic!("expected BroadcastChannelUpdate event"),
12204 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12205 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12206 forwarding_fee_proportional_millionths: Some(new_fee),
12207 ..Default::default()
12209 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12210 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12211 let events = nodes[0].node.get_and_clear_pending_msg_events();
12212 assert_eq!(events.len(), 1);
12214 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12215 _ => panic!("expected BroadcastChannelUpdate event"),
12218 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12219 // should be applied to ensure update atomicity as specified in the API docs.
12220 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12221 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12222 let new_fee = current_fee + 100;
12225 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12226 forwarding_fee_proportional_millionths: Some(new_fee),
12227 ..Default::default()
12229 Err(APIError::ChannelUnavailable { err: _ }),
12232 // Check that the fee hasn't changed for the channel that exists.
12233 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12234 let events = nodes[0].node.get_and_clear_pending_msg_events();
12235 assert_eq!(events.len(), 0);
12239 fn test_payment_display() {
12240 let payment_id = PaymentId([42; 32]);
12241 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12242 let payment_hash = PaymentHash([42; 32]);
12243 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12244 let payment_preimage = PaymentPreimage([42; 32]);
12245 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12249 fn test_trigger_lnd_force_close() {
12250 let chanmon_cfg = create_chanmon_cfgs(2);
12251 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12252 let user_config = test_default_channel_config();
12253 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12254 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12256 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12257 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12258 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12259 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12260 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12261 check_closed_broadcast(&nodes[0], 1, true);
12262 check_added_monitors(&nodes[0], 1);
12263 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12265 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12266 assert_eq!(txn.len(), 1);
12267 check_spends!(txn[0], funding_tx);
12270 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12271 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12273 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12274 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12276 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12277 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12278 }, false).unwrap();
12279 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12280 let channel_reestablish = get_event_msg!(
12281 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12283 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12285 // Alice should respond with an error since the channel isn't known, but a bogus
12286 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12287 // close even if it was an lnd node.
12288 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12289 assert_eq!(msg_events.len(), 2);
12290 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12291 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12292 assert_eq!(msg.next_local_commitment_number, 0);
12293 assert_eq!(msg.next_remote_commitment_number, 0);
12294 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12295 } else { panic!() };
12296 check_closed_broadcast(&nodes[1], 1, true);
12297 check_added_monitors(&nodes[1], 1);
12298 let expected_close_reason = ClosureReason::ProcessingError {
12299 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12301 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12303 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12304 assert_eq!(txn.len(), 1);
12305 check_spends!(txn[0], funding_tx);
12312 use crate::chain::Listen;
12313 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12314 use crate::sign::{KeysManager, InMemorySigner};
12315 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12316 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12317 use crate::ln::functional_test_utils::*;
12318 use crate::ln::msgs::{ChannelMessageHandler, Init};
12319 use crate::routing::gossip::NetworkGraph;
12320 use crate::routing::router::{PaymentParameters, RouteParameters};
12321 use crate::util::test_utils;
12322 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12324 use bitcoin::blockdata::locktime::absolute::LockTime;
12325 use bitcoin::hashes::Hash;
12326 use bitcoin::hashes::sha256::Hash as Sha256;
12327 use bitcoin::{Block, Transaction, TxOut};
12329 use crate::sync::{Arc, Mutex, RwLock};
12331 use criterion::Criterion;
12333 type Manager<'a, P> = ChannelManager<
12334 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12335 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12336 &'a test_utils::TestLogger, &'a P>,
12337 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12338 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12339 &'a test_utils::TestLogger>;
12341 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12342 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12344 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12345 type CM = Manager<'chan_mon_cfg, P>;
12347 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12349 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12352 pub fn bench_sends(bench: &mut Criterion) {
12353 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12356 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12357 // Do a simple benchmark of sending a payment back and forth between two nodes.
12358 // Note that this is unrealistic as each payment send will require at least two fsync
12360 let network = bitcoin::Network::Testnet;
12361 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12363 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12364 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12365 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12366 let scorer = RwLock::new(test_utils::TestScorer::new());
12367 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12369 let mut config: UserConfig = Default::default();
12370 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12371 config.channel_handshake_config.minimum_depth = 1;
12373 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12374 let seed_a = [1u8; 32];
12375 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12376 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12378 best_block: BestBlock::from_network(network),
12379 }, genesis_block.header.time);
12380 let node_a_holder = ANodeHolder { node: &node_a };
12382 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12383 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12384 let seed_b = [2u8; 32];
12385 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12386 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12388 best_block: BestBlock::from_network(network),
12389 }, genesis_block.header.time);
12390 let node_b_holder = ANodeHolder { node: &node_b };
12392 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12393 features: node_b.init_features(), networks: None, remote_network_address: None
12395 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12396 features: node_a.init_features(), networks: None, remote_network_address: None
12397 }, false).unwrap();
12398 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12399 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12400 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12403 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12404 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12405 value: 8_000_000, script_pubkey: output_script,
12407 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12408 } else { panic!(); }
12410 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12411 let events_b = node_b.get_and_clear_pending_events();
12412 assert_eq!(events_b.len(), 1);
12413 match events_b[0] {
12414 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12415 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12417 _ => panic!("Unexpected event"),
12420 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12421 let events_a = node_a.get_and_clear_pending_events();
12422 assert_eq!(events_a.len(), 1);
12423 match events_a[0] {
12424 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12425 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12427 _ => panic!("Unexpected event"),
12430 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12432 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12433 Listen::block_connected(&node_a, &block, 1);
12434 Listen::block_connected(&node_b, &block, 1);
12436 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12437 let msg_events = node_a.get_and_clear_pending_msg_events();
12438 assert_eq!(msg_events.len(), 2);
12439 match msg_events[0] {
12440 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12441 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12442 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12446 match msg_events[1] {
12447 MessageSendEvent::SendChannelUpdate { .. } => {},
12451 let events_a = node_a.get_and_clear_pending_events();
12452 assert_eq!(events_a.len(), 1);
12453 match events_a[0] {
12454 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12455 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12457 _ => panic!("Unexpected event"),
12460 let events_b = node_b.get_and_clear_pending_events();
12461 assert_eq!(events_b.len(), 1);
12462 match events_b[0] {
12463 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12464 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12466 _ => panic!("Unexpected event"),
12469 let mut payment_count: u64 = 0;
12470 macro_rules! send_payment {
12471 ($node_a: expr, $node_b: expr) => {
12472 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12473 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12474 let mut payment_preimage = PaymentPreimage([0; 32]);
12475 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12476 payment_count += 1;
12477 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
12478 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12480 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12481 PaymentId(payment_hash.0),
12482 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12483 Retry::Attempts(0)).unwrap();
12484 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12485 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12486 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12487 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12488 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12489 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12490 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12492 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12493 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12494 $node_b.claim_funds(payment_preimage);
12495 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12497 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12498 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12499 assert_eq!(node_id, $node_a.get_our_node_id());
12500 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12501 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12503 _ => panic!("Failed to generate claim event"),
12506 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12507 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12508 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12509 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12511 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12515 bench.bench_function(bench_name, |b| b.iter(|| {
12516 send_payment!(node_a, node_b);
12517 send_payment!(node_b, node_a);