1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
21 use bitcoin::blockdata::block::BlockHeader;
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
29 use bitcoin::hash_types::{BlockHash, Txid};
31 use bitcoin::secp256k1::{SecretKey,PublicKey};
32 use bitcoin::secp256k1::Secp256k1;
33 use bitcoin::secp256k1::ecdh::SharedSecret;
34 use bitcoin::secp256k1;
37 use chain::{Confirm, ChannelMonitorUpdateErr, Watch, BestBlock};
38 use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator};
39 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use chain::transaction::{OutPoint, TransactionData};
41 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
42 // construct one themselves.
43 use ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
44 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
45 use ln::features::{ChannelTypeFeatures, InitFeatures, NodeFeatures};
46 use routing::router::{PaymentParameters, Route, RouteHop, RoutePath, RouteParameters};
48 use ln::msgs::NetAddress;
50 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT, OptionalField};
52 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner, Recipient};
53 use util::config::UserConfig;
54 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
55 use util::{byte_utils, events};
56 use util::scid_utils::fake_scid;
57 use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
58 use util::logger::{Level, Logger};
59 use util::errors::APIError;
64 use core::cell::RefCell;
66 use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
67 use core::sync::atomic::{AtomicUsize, Ordering};
68 use core::time::Duration;
71 #[cfg(any(test, feature = "std"))]
72 use std::time::Instant;
73 use util::crypto::sign;
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 pub(super) enum PendingHTLCRouting {
95 onion_packet: msgs::OnionPacket,
96 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
99 payment_data: msgs::FinalOnionHopData,
100 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101 phantom_shared_secret: Option<[u8; 32]>,
104 payment_preimage: PaymentPreimage,
105 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
109 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
110 pub(super) struct PendingHTLCInfo {
111 pub(super) routing: PendingHTLCRouting,
112 pub(super) incoming_shared_secret: [u8; 32],
113 payment_hash: PaymentHash,
114 pub(super) amt_to_forward: u64,
115 pub(super) outgoing_cltv_value: u32,
118 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
119 pub(super) enum HTLCFailureMsg {
120 Relay(msgs::UpdateFailHTLC),
121 Malformed(msgs::UpdateFailMalformedHTLC),
124 /// Stores whether we can't forward an HTLC or relevant forwarding info
125 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
126 pub(super) enum PendingHTLCStatus {
127 Forward(PendingHTLCInfo),
128 Fail(HTLCFailureMsg),
131 pub(super) enum HTLCForwardInfo {
133 forward_info: PendingHTLCInfo,
135 // These fields are produced in `forward_htlcs()` and consumed in
136 // `process_pending_htlc_forwards()` for constructing the
137 // `HTLCSource::PreviousHopData` for failed and forwarded
139 prev_short_channel_id: u64,
141 prev_funding_outpoint: OutPoint,
145 err_packet: msgs::OnionErrorPacket,
149 /// Tracks the inbound corresponding to an outbound HTLC
150 #[derive(Clone, Hash, PartialEq, Eq)]
151 pub(crate) struct HTLCPreviousHopData {
152 short_channel_id: u64,
154 incoming_packet_shared_secret: [u8; 32],
155 phantom_shared_secret: Option<[u8; 32]>,
157 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
158 // channel with a preimage provided by the forward channel.
163 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
165 /// This is only here for backwards-compatibility in serialization, in the future it can be
166 /// removed, breaking clients running 0.0.106 and earlier.
167 _legacy_hop_data: msgs::FinalOnionHopData,
169 /// Contains the payer-provided preimage.
170 Spontaneous(PaymentPreimage),
173 /// HTLCs that are to us and can be failed/claimed by the user
174 struct ClaimableHTLC {
175 prev_hop: HTLCPreviousHopData,
177 /// The amount (in msats) of this MPP part
179 onion_payload: OnionPayload,
181 /// The sum total of all MPP parts
185 /// A payment identifier used to uniquely identify a payment to LDK.
186 /// (C-not exported) as we just use [u8; 32] directly
187 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
188 pub struct PaymentId(pub [u8; 32]);
190 impl Writeable for PaymentId {
191 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
196 impl Readable for PaymentId {
197 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
198 let buf: [u8; 32] = Readable::read(r)?;
202 /// Tracks the inbound corresponding to an outbound HTLC
203 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
204 #[derive(Clone, PartialEq, Eq)]
205 pub(crate) enum HTLCSource {
206 PreviousHopData(HTLCPreviousHopData),
209 session_priv: SecretKey,
210 /// Technically we can recalculate this from the route, but we cache it here to avoid
211 /// doing a double-pass on route when we get a failure back
212 first_hop_htlc_msat: u64,
213 payment_id: PaymentId,
214 payment_secret: Option<PaymentSecret>,
215 payment_params: Option<PaymentParameters>,
218 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
219 impl core::hash::Hash for HTLCSource {
220 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
222 HTLCSource::PreviousHopData(prev_hop_data) => {
224 prev_hop_data.hash(hasher);
226 HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
229 session_priv[..].hash(hasher);
230 payment_id.hash(hasher);
231 payment_secret.hash(hasher);
232 first_hop_htlc_msat.hash(hasher);
233 payment_params.hash(hasher);
238 #[cfg(not(feature = "grind_signatures"))]
241 pub fn dummy() -> Self {
242 HTLCSource::OutboundRoute {
244 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
245 first_hop_htlc_msat: 0,
246 payment_id: PaymentId([2; 32]),
247 payment_secret: None,
248 payment_params: None,
253 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
254 pub(super) enum HTLCFailReason {
256 err: msgs::OnionErrorPacket,
264 struct ReceiveError {
270 /// Return value for claim_funds_from_hop
271 enum ClaimFundsFromHop {
273 MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
278 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
280 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
281 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
282 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
283 /// channel_state lock. We then return the set of things that need to be done outside the lock in
284 /// this struct and call handle_error!() on it.
286 struct MsgHandleErrInternal {
287 err: msgs::LightningError,
288 chan_id: Option<([u8; 32], u64)>, // If Some a channel of ours has been closed
289 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
291 impl MsgHandleErrInternal {
293 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
295 err: LightningError {
297 action: msgs::ErrorAction::SendErrorMessage {
298 msg: msgs::ErrorMessage {
305 shutdown_finish: None,
309 fn ignore_no_close(err: String) -> Self {
311 err: LightningError {
313 action: msgs::ErrorAction::IgnoreError,
316 shutdown_finish: None,
320 fn from_no_close(err: msgs::LightningError) -> Self {
321 Self { err, chan_id: None, shutdown_finish: None }
324 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u64, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
326 err: LightningError {
328 action: msgs::ErrorAction::SendErrorMessage {
329 msg: msgs::ErrorMessage {
335 chan_id: Some((channel_id, user_channel_id)),
336 shutdown_finish: Some((shutdown_res, channel_update)),
340 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
343 ChannelError::Warn(msg) => LightningError {
345 action: msgs::ErrorAction::SendWarningMessage {
346 msg: msgs::WarningMessage {
350 log_level: Level::Warn,
353 ChannelError::Ignore(msg) => LightningError {
355 action: msgs::ErrorAction::IgnoreError,
357 ChannelError::Close(msg) => LightningError {
359 action: msgs::ErrorAction::SendErrorMessage {
360 msg: msgs::ErrorMessage {
366 ChannelError::CloseDelayBroadcast(msg) => LightningError {
368 action: msgs::ErrorAction::SendErrorMessage {
369 msg: msgs::ErrorMessage {
377 shutdown_finish: None,
382 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
383 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
384 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
385 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
386 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
388 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
389 /// be sent in the order they appear in the return value, however sometimes the order needs to be
390 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
391 /// they were originally sent). In those cases, this enum is also returned.
392 #[derive(Clone, PartialEq)]
393 pub(super) enum RAACommitmentOrder {
394 /// Send the CommitmentUpdate messages first
396 /// Send the RevokeAndACK message first
400 // Note this is only exposed in cfg(test):
401 pub(super) struct ChannelHolder<Signer: Sign> {
402 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
403 /// SCIDs (and outbound SCID aliases) to the real channel id. Outbound SCID aliases are added
404 /// here once the channel is available for normal use, with SCIDs being added once the funding
405 /// transaction is confirmed at the channel's required confirmation depth.
406 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
407 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
409 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
410 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
411 /// and via the classic SCID.
413 /// Note that while this is held in the same mutex as the channels themselves, no consistency
414 /// guarantees are made about the existence of a channel with the short id here, nor the short
415 /// ids in the PendingHTLCInfo!
416 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
417 /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
418 /// Note that while this is held in the same mutex as the channels themselves, no consistency
419 /// guarantees are made about the channels given here actually existing anymore by the time you
421 claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
422 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
423 /// for broadcast messages, where ordering isn't as strict).
424 pub(super) pending_msg_events: Vec<MessageSendEvent>,
427 /// Events which we process internally but cannot be procsesed immediately at the generation site
428 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
429 /// quite some time lag.
430 enum BackgroundEvent {
431 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
432 /// commitment transaction.
433 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
436 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
437 /// the latest Init features we heard from the peer.
439 latest_features: InitFeatures,
442 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
443 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
445 /// For users who don't want to bother doing their own payment preimage storage, we also store that
448 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
449 /// and instead encoding it in the payment secret.
450 struct PendingInboundPayment {
451 /// The payment secret that the sender must use for us to accept this payment
452 payment_secret: PaymentSecret,
453 /// Time at which this HTLC expires - blocks with a header time above this value will result in
454 /// this payment being removed.
456 /// Arbitrary identifier the user specifies (or not)
457 user_payment_id: u64,
458 // Other required attributes of the payment, optionally enforced:
459 payment_preimage: Option<PaymentPreimage>,
460 min_value_msat: Option<u64>,
463 /// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102
464 /// and later, also stores information for retrying the payment.
465 pub(crate) enum PendingOutboundPayment {
467 session_privs: HashSet<[u8; 32]>,
470 session_privs: HashSet<[u8; 32]>,
471 payment_hash: PaymentHash,
472 payment_secret: Option<PaymentSecret>,
473 pending_amt_msat: u64,
474 /// Used to track the fee paid. Only present if the payment was serialized on 0.0.103+.
475 pending_fee_msat: Option<u64>,
476 /// The total payment amount across all paths, used to verify that a retry is not overpaying.
478 /// Our best known block height at the time this payment was initiated.
479 starting_block_height: u32,
481 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
482 /// been resolved. This ensures we don't look up pending payments in ChannelMonitors on restart
483 /// and add a pending payment that was already fulfilled.
485 session_privs: HashSet<[u8; 32]>,
486 payment_hash: Option<PaymentHash>,
488 /// When a payer gives up trying to retry a payment, they inform us, letting us generate a
489 /// `PaymentFailed` event when all HTLCs have irrevocably failed. This avoids a number of race
490 /// conditions in MPP-aware payment retriers (1), where the possibility of multiple
491 /// `PaymentPathFailed` events with `all_paths_failed` can be pending at once, confusing a
492 /// downstream event handler as to when a payment has actually failed.
494 /// (1) https://github.com/lightningdevkit/rust-lightning/issues/1164
496 session_privs: HashSet<[u8; 32]>,
497 payment_hash: PaymentHash,
501 impl PendingOutboundPayment {
502 fn is_retryable(&self) -> bool {
504 PendingOutboundPayment::Retryable { .. } => true,
508 fn is_fulfilled(&self) -> bool {
510 PendingOutboundPayment::Fulfilled { .. } => true,
514 fn abandoned(&self) -> bool {
516 PendingOutboundPayment::Abandoned { .. } => true,
520 fn get_pending_fee_msat(&self) -> Option<u64> {
522 PendingOutboundPayment::Retryable { pending_fee_msat, .. } => pending_fee_msat.clone(),
527 fn payment_hash(&self) -> Option<PaymentHash> {
529 PendingOutboundPayment::Legacy { .. } => None,
530 PendingOutboundPayment::Retryable { payment_hash, .. } => Some(*payment_hash),
531 PendingOutboundPayment::Fulfilled { payment_hash, .. } => *payment_hash,
532 PendingOutboundPayment::Abandoned { payment_hash, .. } => Some(*payment_hash),
536 fn mark_fulfilled(&mut self) {
537 let mut session_privs = HashSet::new();
538 core::mem::swap(&mut session_privs, match self {
539 PendingOutboundPayment::Legacy { session_privs } |
540 PendingOutboundPayment::Retryable { session_privs, .. } |
541 PendingOutboundPayment::Fulfilled { session_privs, .. } |
542 PendingOutboundPayment::Abandoned { session_privs, .. }
545 let payment_hash = self.payment_hash();
546 *self = PendingOutboundPayment::Fulfilled { session_privs, payment_hash };
549 fn mark_abandoned(&mut self) -> Result<(), ()> {
550 let mut session_privs = HashSet::new();
551 let our_payment_hash;
552 core::mem::swap(&mut session_privs, match self {
553 PendingOutboundPayment::Legacy { .. } |
554 PendingOutboundPayment::Fulfilled { .. } =>
556 PendingOutboundPayment::Retryable { session_privs, payment_hash, .. } |
557 PendingOutboundPayment::Abandoned { session_privs, payment_hash, .. } => {
558 our_payment_hash = *payment_hash;
562 *self = PendingOutboundPayment::Abandoned { session_privs, payment_hash: our_payment_hash };
566 /// panics if path is None and !self.is_fulfilled
567 fn remove(&mut self, session_priv: &[u8; 32], path: Option<&Vec<RouteHop>>) -> bool {
568 let remove_res = match self {
569 PendingOutboundPayment::Legacy { session_privs } |
570 PendingOutboundPayment::Retryable { session_privs, .. } |
571 PendingOutboundPayment::Fulfilled { session_privs, .. } |
572 PendingOutboundPayment::Abandoned { session_privs, .. } => {
573 session_privs.remove(session_priv)
577 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
578 let path = path.expect("Fulfilling a payment should always come with a path");
579 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
580 *pending_amt_msat -= path_last_hop.fee_msat;
581 if let Some(fee_msat) = pending_fee_msat.as_mut() {
582 *fee_msat -= path.get_path_fees();
589 fn insert(&mut self, session_priv: [u8; 32], path: &Vec<RouteHop>) -> bool {
590 let insert_res = match self {
591 PendingOutboundPayment::Legacy { session_privs } |
592 PendingOutboundPayment::Retryable { session_privs, .. } => {
593 session_privs.insert(session_priv)
595 PendingOutboundPayment::Fulfilled { .. } => false,
596 PendingOutboundPayment::Abandoned { .. } => false,
599 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
600 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
601 *pending_amt_msat += path_last_hop.fee_msat;
602 if let Some(fee_msat) = pending_fee_msat.as_mut() {
603 *fee_msat += path.get_path_fees();
610 fn remaining_parts(&self) -> usize {
612 PendingOutboundPayment::Legacy { session_privs } |
613 PendingOutboundPayment::Retryable { session_privs, .. } |
614 PendingOutboundPayment::Fulfilled { session_privs, .. } |
615 PendingOutboundPayment::Abandoned { session_privs, .. } => {
622 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
623 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
624 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
625 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
626 /// issues such as overly long function definitions. Note that the ChannelManager can take any
627 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
628 /// concrete type of the KeysManager.
630 /// (C-not exported) as Arcs don't make sense in bindings
631 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
633 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
634 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
635 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
636 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
637 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
638 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
639 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
640 /// concrete type of the KeysManager.
642 /// (C-not exported) as Arcs don't make sense in bindings
643 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
645 /// Manager which keeps track of a number of channels and sends messages to the appropriate
646 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
648 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
649 /// to individual Channels.
651 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
652 /// all peers during write/read (though does not modify this instance, only the instance being
653 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
654 /// called funding_transaction_generated for outbound channels).
656 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
657 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
658 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
659 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
660 /// the serialization process). If the deserialized version is out-of-date compared to the
661 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
662 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
664 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
665 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
666 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
667 /// block_connected() to step towards your best block) upon deserialization before using the
670 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
671 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
672 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
673 /// offline for a full minute. In order to track this, you must call
674 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
676 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
677 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
678 /// essentially you should default to using a SimpleRefChannelManager, and use a
679 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
680 /// you're using lightning-net-tokio.
681 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
682 where M::Target: chain::Watch<Signer>,
683 T::Target: BroadcasterInterface,
684 K::Target: KeysInterface<Signer = Signer>,
685 F::Target: FeeEstimator,
688 default_configuration: UserConfig,
689 genesis_hash: BlockHash,
695 pub(super) best_block: RwLock<BestBlock>,
697 best_block: RwLock<BestBlock>,
698 secp_ctx: Secp256k1<secp256k1::All>,
700 #[cfg(any(test, feature = "_test_utils"))]
701 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
702 #[cfg(not(any(test, feature = "_test_utils")))]
703 channel_state: Mutex<ChannelHolder<Signer>>,
705 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
706 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
707 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
708 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
709 /// Locked *after* channel_state.
710 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
712 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
713 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
714 /// (if the channel has been force-closed), however we track them here to prevent duplicative
715 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
716 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
717 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
718 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
719 /// after reloading from disk while replaying blocks against ChannelMonitors.
721 /// See `PendingOutboundPayment` documentation for more info.
723 /// Locked *after* channel_state.
724 pending_outbound_payments: Mutex<HashMap<PaymentId, PendingOutboundPayment>>,
726 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
727 /// and some closed channels which reached a usable state prior to being closed. This is used
728 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
729 /// active channel list on load.
730 outbound_scid_aliases: Mutex<HashSet<u64>>,
732 our_network_key: SecretKey,
733 our_network_pubkey: PublicKey,
735 inbound_payment_key: inbound_payment::ExpandedKey,
737 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
738 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
739 /// we encrypt the namespace identifier using these bytes.
741 /// [fake scids]: crate::util::scid_utils::fake_scid
742 fake_scid_rand_bytes: [u8; 32],
744 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
745 /// value increases strictly since we don't assume access to a time source.
746 last_node_announcement_serial: AtomicUsize,
748 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
749 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
750 /// very far in the past, and can only ever be up to two hours in the future.
751 highest_seen_timestamp: AtomicUsize,
753 /// The bulk of our storage will eventually be here (channels and message queues and the like).
754 /// If we are connected to a peer we always at least have an entry here, even if no channels
755 /// are currently open with that peer.
756 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
757 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
760 /// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`.
761 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
763 pending_events: Mutex<Vec<events::Event>>,
764 pending_background_events: Mutex<Vec<BackgroundEvent>>,
765 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
766 /// Essentially just when we're serializing ourselves out.
767 /// Taken first everywhere where we are making changes before any other locks.
768 /// When acquiring this lock in read mode, rather than acquiring it directly, call
769 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
770 /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
771 total_consistency_lock: RwLock<()>,
773 persistence_notifier: PersistenceNotifier,
780 /// Chain-related parameters used to construct a new `ChannelManager`.
782 /// Typically, the block-specific parameters are derived from the best block hash for the network,
783 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
784 /// are not needed when deserializing a previously constructed `ChannelManager`.
785 #[derive(Clone, Copy, PartialEq)]
786 pub struct ChainParameters {
787 /// The network for determining the `chain_hash` in Lightning messages.
788 pub network: Network,
790 /// The hash and height of the latest block successfully connected.
792 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
793 pub best_block: BestBlock,
796 #[derive(Copy, Clone, PartialEq)]
802 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
803 /// desirable to notify any listeners on `await_persistable_update_timeout`/
804 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
805 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
806 /// sending the aforementioned notification (since the lock being released indicates that the
807 /// updates are ready for persistence).
809 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
810 /// notify or not based on whether relevant changes have been made, providing a closure to
811 /// `optionally_notify` which returns a `NotifyOption`.
812 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
813 persistence_notifier: &'a PersistenceNotifier,
815 // We hold onto this result so the lock doesn't get released immediately.
816 _read_guard: RwLockReadGuard<'a, ()>,
819 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
820 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
821 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
824 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
825 let read_guard = lock.read().unwrap();
827 PersistenceNotifierGuard {
828 persistence_notifier: notifier,
829 should_persist: persist_check,
830 _read_guard: read_guard,
835 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
837 if (self.should_persist)() == NotifyOption::DoPersist {
838 self.persistence_notifier.notify();
843 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
844 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
846 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
848 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
849 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
850 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
851 /// the maximum required amount in lnd as of March 2021.
852 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
854 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
855 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
857 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
859 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
860 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
861 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
862 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
863 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
864 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
865 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
867 /// Minimum CLTV difference between the current block height and received inbound payments.
868 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
870 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
871 // any payments to succeed. Further, we don't want payments to fail if a block was found while
872 // a payment was being routed, so we add an extra block to be safe.
873 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
875 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
876 // ie that if the next-hop peer fails the HTLC within
877 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
878 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
879 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
880 // LATENCY_GRACE_PERIOD_BLOCKS.
883 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
885 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
886 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
889 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
891 /// The number of blocks before we consider an outbound payment for expiry if it doesn't have any
892 /// pending HTLCs in flight.
893 pub(crate) const PAYMENT_EXPIRY_BLOCKS: u32 = 3;
895 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
896 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
898 /// Information needed for constructing an invoice route hint for this channel.
899 #[derive(Clone, Debug, PartialEq)]
900 pub struct CounterpartyForwardingInfo {
901 /// Base routing fee in millisatoshis.
902 pub fee_base_msat: u32,
903 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
904 pub fee_proportional_millionths: u32,
905 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
906 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
907 /// `cltv_expiry_delta` for more details.
908 pub cltv_expiry_delta: u16,
911 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
912 /// to better separate parameters.
913 #[derive(Clone, Debug, PartialEq)]
914 pub struct ChannelCounterparty {
915 /// The node_id of our counterparty
916 pub node_id: PublicKey,
917 /// The Features the channel counterparty provided upon last connection.
918 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
919 /// many routing-relevant features are present in the init context.
920 pub features: InitFeatures,
921 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
922 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
923 /// claiming at least this value on chain.
925 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
927 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
928 pub unspendable_punishment_reserve: u64,
929 /// Information on the fees and requirements that the counterparty requires when forwarding
930 /// payments to us through this channel.
931 pub forwarding_info: Option<CounterpartyForwardingInfo>,
932 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
933 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
934 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
935 pub outbound_htlc_minimum_msat: Option<u64>,
936 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
937 pub outbound_htlc_maximum_msat: Option<u64>,
940 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
941 #[derive(Clone, Debug, PartialEq)]
942 pub struct ChannelDetails {
943 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
944 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
945 /// Note that this means this value is *not* persistent - it can change once during the
946 /// lifetime of the channel.
947 pub channel_id: [u8; 32],
948 /// Parameters which apply to our counterparty. See individual fields for more information.
949 pub counterparty: ChannelCounterparty,
950 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
951 /// our counterparty already.
953 /// Note that, if this has been set, `channel_id` will be equivalent to
954 /// `funding_txo.unwrap().to_channel_id()`.
955 pub funding_txo: Option<OutPoint>,
956 /// The features which this channel operates with. See individual features for more info.
958 /// `None` until negotiation completes and the channel type is finalized.
959 pub channel_type: Option<ChannelTypeFeatures>,
960 /// The position of the funding transaction in the chain. None if the funding transaction has
961 /// not yet been confirmed and the channel fully opened.
963 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
964 /// payments instead of this. See [`get_inbound_payment_scid`].
966 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
967 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
968 pub short_channel_id: Option<u64>,
969 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
970 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
971 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
972 /// when they see a payment to be routed to us.
974 /// Our counterparty may choose to rotate this value at any time, though will always recognize
975 /// previous values for inbound payment forwarding.
977 /// [`short_channel_id`]: Self::short_channel_id
978 pub inbound_scid_alias: Option<u64>,
979 /// The value, in satoshis, of this channel as appears in the funding output
980 pub channel_value_satoshis: u64,
981 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
982 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
983 /// this value on chain.
985 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
987 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
989 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
990 pub unspendable_punishment_reserve: Option<u64>,
991 /// The `user_channel_id` passed in to create_channel, or 0 if the channel was inbound.
992 pub user_channel_id: u64,
993 /// Our total balance. This is the amount we would get if we close the channel.
994 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
995 /// amount is not likely to be recoverable on close.
997 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
998 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
999 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1000 /// This does not consider any on-chain fees.
1002 /// See also [`ChannelDetails::outbound_capacity_msat`]
1003 pub balance_msat: u64,
1004 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1005 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1006 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1007 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1009 /// See also [`ChannelDetails::balance_msat`]
1011 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1012 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1013 /// should be able to spend nearly this amount.
1014 pub outbound_capacity_msat: u64,
1015 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1016 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1017 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1018 /// to use a limit as close as possible to the HTLC limit we can currently send.
1020 /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1021 pub next_outbound_htlc_limit_msat: u64,
1022 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1023 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1024 /// available for inclusion in new inbound HTLCs).
1025 /// Note that there are some corner cases not fully handled here, so the actual available
1026 /// inbound capacity may be slightly higher than this.
1028 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1029 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1030 /// However, our counterparty should be able to spend nearly this amount.
1031 pub inbound_capacity_msat: u64,
1032 /// The number of required confirmations on the funding transaction before the funding will be
1033 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1034 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1035 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1036 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1038 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1040 /// [`is_outbound`]: ChannelDetails::is_outbound
1041 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1042 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1043 pub confirmations_required: Option<u32>,
1044 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1045 /// until we can claim our funds after we force-close the channel. During this time our
1046 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1047 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1048 /// time to claim our non-HTLC-encumbered funds.
1050 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1051 pub force_close_spend_delay: Option<u16>,
1052 /// True if the channel was initiated (and thus funded) by us.
1053 pub is_outbound: bool,
1054 /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
1055 /// channel is not currently being shut down. `funding_locked` message exchange implies the
1056 /// required confirmation count has been reached (and we were connected to the peer at some
1057 /// point after the funding transaction received enough confirmations). The required
1058 /// confirmation count is provided in [`confirmations_required`].
1060 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1061 pub is_funding_locked: bool,
1062 /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
1063 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1065 /// This is a strict superset of `is_funding_locked`.
1066 pub is_usable: bool,
1067 /// True if this channel is (or will be) publicly-announced.
1068 pub is_public: bool,
1069 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1070 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1071 pub inbound_htlc_minimum_msat: Option<u64>,
1072 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1073 pub inbound_htlc_maximum_msat: Option<u64>,
1076 impl ChannelDetails {
1077 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1078 /// This should be used for providing invoice hints or in any other context where our
1079 /// counterparty will forward a payment to us.
1081 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1082 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1083 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1084 self.inbound_scid_alias.or(self.short_channel_id)
1088 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
1089 /// Err() type describing which state the payment is in, see the description of individual enum
1090 /// states for more.
1091 #[derive(Clone, Debug)]
1092 pub enum PaymentSendFailure {
1093 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
1094 /// send the payment at all. No channel state has been changed or messages sent to peers, and
1095 /// once you've changed the parameter at error, you can freely retry the payment in full.
1096 ParameterError(APIError),
1097 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
1098 /// from attempting to send the payment at all. No channel state has been changed or messages
1099 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
1100 /// payment in full.
1102 /// The results here are ordered the same as the paths in the route object which was passed to
1104 PathParameterError(Vec<Result<(), APIError>>),
1105 /// All paths which were attempted failed to send, with no channel state change taking place.
1106 /// You can freely retry the payment in full (though you probably want to do so over different
1107 /// paths than the ones selected).
1108 AllFailedRetrySafe(Vec<APIError>),
1109 /// Some paths which were attempted failed to send, though possibly not all. At least some
1110 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
1111 /// in over-/re-payment.
1113 /// The results here are ordered the same as the paths in the route object which was passed to
1114 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
1115 /// retried (though there is currently no API with which to do so).
1117 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
1118 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
1119 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
1120 /// with the latest update_id.
1122 /// The errors themselves, in the same order as the route hops.
1123 results: Vec<Result<(), APIError>>,
1124 /// If some paths failed without irrevocably committing to the new HTLC(s), this will
1125 /// contain a [`RouteParameters`] object which can be used to calculate a new route that
1126 /// will pay all remaining unpaid balance.
1127 failed_paths_retry: Option<RouteParameters>,
1128 /// The payment id for the payment, which is now at least partially pending.
1129 payment_id: PaymentId,
1133 /// Route hints used in constructing invoices for [phantom node payents].
1135 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1137 pub struct PhantomRouteHints {
1138 /// The list of channels to be included in the invoice route hints.
1139 pub channels: Vec<ChannelDetails>,
1140 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1142 pub phantom_scid: u64,
1143 /// The pubkey of the real backing node that would ultimately receive the payment.
1144 pub real_node_pubkey: PublicKey,
1147 macro_rules! handle_error {
1148 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1151 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1152 #[cfg(debug_assertions)]
1154 // In testing, ensure there are no deadlocks where the lock is already held upon
1155 // entering the macro.
1156 assert!($self.channel_state.try_lock().is_ok());
1157 assert!($self.pending_events.try_lock().is_ok());
1160 let mut msg_events = Vec::with_capacity(2);
1162 if let Some((shutdown_res, update_option)) = shutdown_finish {
1163 $self.finish_force_close_channel(shutdown_res);
1164 if let Some(update) = update_option {
1165 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1169 if let Some((channel_id, user_channel_id)) = chan_id {
1170 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1171 channel_id, user_channel_id,
1172 reason: ClosureReason::ProcessingError { err: err.err.clone() }
1177 log_error!($self.logger, "{}", err.err);
1178 if let msgs::ErrorAction::IgnoreError = err.action {
1180 msg_events.push(events::MessageSendEvent::HandleError {
1181 node_id: $counterparty_node_id,
1182 action: err.action.clone()
1186 if !msg_events.is_empty() {
1187 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
1190 // Return error in case higher-API need one
1197 macro_rules! update_maps_on_chan_removal {
1198 ($self: expr, $short_to_id: expr, $channel: expr) => {
1199 if let Some(short_id) = $channel.get_short_channel_id() {
1200 $short_to_id.remove(&short_id);
1202 // If the channel was never confirmed on-chain prior to its closure, remove the
1203 // outbound SCID alias we used for it from the collision-prevention set. While we
1204 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1205 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1206 // opening a million channels with us which are closed before we ever reach the funding
1208 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1209 debug_assert!(alias_removed);
1211 $short_to_id.remove(&$channel.outbound_scid_alias());
1215 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1216 macro_rules! convert_chan_err {
1217 ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
1219 ChannelError::Warn(msg) => {
1220 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1222 ChannelError::Ignore(msg) => {
1223 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1225 ChannelError::Close(msg) => {
1226 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1227 update_maps_on_chan_removal!($self, $short_to_id, $channel);
1228 let shutdown_res = $channel.force_shutdown(true);
1229 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1230 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1232 ChannelError::CloseDelayBroadcast(msg) => {
1233 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
1234 update_maps_on_chan_removal!($self, $short_to_id, $channel);
1235 let shutdown_res = $channel.force_shutdown(false);
1236 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1237 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1243 macro_rules! break_chan_entry {
1244 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1248 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
1250 $entry.remove_entry();
1258 macro_rules! try_chan_entry {
1259 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1263 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
1265 $entry.remove_entry();
1273 macro_rules! remove_channel {
1274 ($self: expr, $channel_state: expr, $entry: expr) => {
1276 let channel = $entry.remove_entry().1;
1277 update_maps_on_chan_removal!($self, $channel_state.short_to_id, channel);
1283 macro_rules! handle_monitor_err {
1284 ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr, $chan_id: expr) => {
1286 ChannelMonitorUpdateErr::PermanentFailure => {
1287 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
1288 update_maps_on_chan_removal!($self, $short_to_id, $chan);
1289 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
1290 // chain in a confused state! We need to move them into the ChannelMonitor which
1291 // will be responsible for failing backwards once things confirm on-chain.
1292 // It's ok that we drop $failed_forwards here - at this point we'd rather they
1293 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
1294 // us bother trying to claim it just to forward on to another peer. If we're
1295 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
1296 // given up the preimage yet, so might as well just wait until the payment is
1297 // retried, avoiding the on-chain fees.
1298 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.get_user_id(),
1299 $chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
1302 ChannelMonitorUpdateErr::TemporaryFailure => {
1303 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards, {} fails, and {} fulfill finalizations",
1304 log_bytes!($chan_id[..]),
1305 if $resend_commitment && $resend_raa {
1306 match $action_type {
1307 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
1308 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
1310 } else if $resend_commitment { "commitment" }
1311 else if $resend_raa { "RAA" }
1313 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
1314 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len(),
1315 (&$failed_finalized_fulfills as &Vec<HTLCSource>).len());
1316 if !$resend_commitment {
1317 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
1320 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
1322 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills);
1323 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
1327 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr) => { {
1328 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills, $entry.key());
1330 $entry.remove_entry();
1334 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, COMMITMENT_UPDATE_ONLY) => { {
1335 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst);
1336 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, true, Vec::new(), Vec::new(), Vec::new(), $chan_id)
1338 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, NO_UPDATE) => {
1339 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, false, Vec::new(), Vec::new(), Vec::new(), $chan_id)
1341 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1342 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new(), Vec::new())
1344 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1345 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, Vec::new())
1349 macro_rules! return_monitor_err {
1350 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1351 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
1353 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1354 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1358 // Does not break in case of TemporaryFailure!
1359 macro_rules! maybe_break_monitor_err {
1360 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1361 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
1362 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
1365 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
1370 macro_rules! send_funding_locked {
1371 ($short_to_id: expr, $pending_msg_events: expr, $channel: expr, $funding_locked_msg: expr) => {
1372 $pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
1373 node_id: $channel.get_counterparty_node_id(),
1374 msg: $funding_locked_msg,
1376 // Note that we may send a funding locked multiple times for a channel if we reconnect, so
1377 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1378 let outbound_alias_insert = $short_to_id.insert($channel.outbound_scid_alias(), $channel.channel_id());
1379 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == $channel.channel_id(),
1380 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1381 if let Some(real_scid) = $channel.get_short_channel_id() {
1382 let scid_insert = $short_to_id.insert(real_scid, $channel.channel_id());
1383 assert!(scid_insert.is_none() || scid_insert.unwrap() == $channel.channel_id(),
1384 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1389 macro_rules! handle_chan_restoration_locked {
1390 ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
1391 $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
1392 $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr, $announcement_sigs: expr) => { {
1393 let mut htlc_forwards = None;
1395 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
1396 let chanmon_update_is_none = chanmon_update.is_none();
1397 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
1399 let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
1400 if !forwards.is_empty() {
1401 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
1402 $channel_entry.get().get_funding_txo().unwrap(), forwards));
1405 if chanmon_update.is_some() {
1406 // On reconnect, we, by definition, only resend a funding_locked if there have been
1407 // no commitment updates, so the only channel monitor update which could also be
1408 // associated with a funding_locked would be the funding_created/funding_signed
1409 // monitor update. That monitor update failing implies that we won't send
1410 // funding_locked until it's been updated, so we can't have a funding_locked and a
1411 // monitor update here (so we don't bother to handle it correctly below).
1412 assert!($funding_locked.is_none());
1413 // A channel monitor update makes no sense without either a funding_locked or a
1414 // commitment update to process after it. Since we can't have a funding_locked, we
1415 // only bother to handle the monitor-update + commitment_update case below.
1416 assert!($commitment_update.is_some());
1419 if let Some(msg) = $funding_locked {
1420 // Similar to the above, this implies that we're letting the funding_locked fly
1421 // before it should be allowed to.
1422 assert!(chanmon_update.is_none());
1423 send_funding_locked!($channel_state.short_to_id, $channel_state.pending_msg_events, $channel_entry.get(), msg);
1425 if let Some(msg) = $announcement_sigs {
1426 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
1427 node_id: counterparty_node_id,
1432 let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1433 if let Some(monitor_update) = chanmon_update {
1434 // We only ever broadcast a funding transaction in response to a funding_signed
1435 // message and the resulting monitor update. Thus, on channel_reestablish
1436 // message handling we can't have a funding transaction to broadcast. When
1437 // processing a monitor update finishing resulting in a funding broadcast, we
1438 // cannot have a second monitor update, thus this case would indicate a bug.
1439 assert!(funding_broadcastable.is_none());
1440 // Given we were just reconnected or finished updating a channel monitor, the
1441 // only case where we can get a new ChannelMonitorUpdate would be if we also
1442 // have some commitment updates to send as well.
1443 assert!($commitment_update.is_some());
1444 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1445 // channel_reestablish doesn't guarantee the order it returns is sensical
1446 // for the messages it returns, but if we're setting what messages to
1447 // re-transmit on monitor update success, we need to make sure it is sane.
1448 let mut order = $order;
1450 order = RAACommitmentOrder::CommitmentFirst;
1452 break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1456 macro_rules! handle_cs { () => {
1457 if let Some(update) = $commitment_update {
1458 $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1459 node_id: counterparty_node_id,
1464 macro_rules! handle_raa { () => {
1465 if let Some(revoke_and_ack) = $raa {
1466 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1467 node_id: counterparty_node_id,
1468 msg: revoke_and_ack,
1473 RAACommitmentOrder::CommitmentFirst => {
1477 RAACommitmentOrder::RevokeAndACKFirst => {
1482 if let Some(tx) = funding_broadcastable {
1483 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1484 $self.tx_broadcaster.broadcast_transaction(&tx);
1489 if chanmon_update_is_none {
1490 // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1491 // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1492 // should *never* end up calling back to `chain_monitor.update_channel()`.
1493 assert!(res.is_ok());
1496 (htlc_forwards, res, counterparty_node_id)
1500 macro_rules! post_handle_chan_restoration {
1501 ($self: ident, $locked_res: expr) => { {
1502 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1504 let _ = handle_error!($self, res, counterparty_node_id);
1506 if let Some(forwards) = htlc_forwards {
1507 $self.forward_htlcs(&mut [forwards][..]);
1512 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1513 where M::Target: chain::Watch<Signer>,
1514 T::Target: BroadcasterInterface,
1515 K::Target: KeysInterface<Signer = Signer>,
1516 F::Target: FeeEstimator,
1519 /// Constructs a new ChannelManager to hold several channels and route between them.
1521 /// This is the main "logic hub" for all channel-related actions, and implements
1522 /// ChannelMessageHandler.
1524 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1526 /// Users need to notify the new ChannelManager when a new block is connected or
1527 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1528 /// from after `params.latest_hash`.
1529 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1530 let mut secp_ctx = Secp256k1::new();
1531 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1532 let inbound_pmt_key_material = keys_manager.get_inbound_payment_key_material();
1533 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1535 default_configuration: config.clone(),
1536 genesis_hash: genesis_block(params.network).header.block_hash(),
1537 fee_estimator: fee_est,
1541 best_block: RwLock::new(params.best_block),
1543 channel_state: Mutex::new(ChannelHolder{
1544 by_id: HashMap::new(),
1545 short_to_id: HashMap::new(),
1546 forward_htlcs: HashMap::new(),
1547 claimable_htlcs: HashMap::new(),
1548 pending_msg_events: Vec::new(),
1550 outbound_scid_aliases: Mutex::new(HashSet::new()),
1551 pending_inbound_payments: Mutex::new(HashMap::new()),
1552 pending_outbound_payments: Mutex::new(HashMap::new()),
1554 our_network_key: keys_manager.get_node_secret(Recipient::Node).unwrap(),
1555 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret(Recipient::Node).unwrap()),
1558 inbound_payment_key: expanded_inbound_key,
1559 fake_scid_rand_bytes: keys_manager.get_secure_random_bytes(),
1561 last_node_announcement_serial: AtomicUsize::new(0),
1562 highest_seen_timestamp: AtomicUsize::new(0),
1564 per_peer_state: RwLock::new(HashMap::new()),
1566 pending_events: Mutex::new(Vec::new()),
1567 pending_background_events: Mutex::new(Vec::new()),
1568 total_consistency_lock: RwLock::new(()),
1569 persistence_notifier: PersistenceNotifier::new(),
1577 /// Gets the current configuration applied to all new channels, as
1578 pub fn get_current_default_configuration(&self) -> &UserConfig {
1579 &self.default_configuration
1582 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1583 let height = self.best_block.read().unwrap().height();
1584 let mut outbound_scid_alias = 0;
1587 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1588 outbound_scid_alias += 1;
1590 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.keys_manager);
1592 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1596 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1601 /// Creates a new outbound channel to the given remote node and with the given value.
1603 /// `user_channel_id` will be provided back as in
1604 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1605 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to 0
1606 /// for inbound channels, so you may wish to avoid using 0 for `user_channel_id` here.
1607 /// `user_channel_id` has no meaning inside of LDK, it is simply copied to events and otherwise
1610 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1611 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1613 /// Note that we do not check if you are currently connected to the given peer. If no
1614 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1615 /// the channel eventually being silently forgotten (dropped on reload).
1617 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1618 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1619 /// [`ChannelDetails::channel_id`] until after
1620 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1621 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1622 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1624 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1625 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1626 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1627 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u64, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1628 if channel_value_satoshis < 1000 {
1629 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1633 let per_peer_state = self.per_peer_state.read().unwrap();
1634 match per_peer_state.get(&their_network_key) {
1635 Some(peer_state) => {
1636 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1637 let peer_state = peer_state.lock().unwrap();
1638 let their_features = &peer_state.latest_features;
1639 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1640 match Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key,
1641 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1642 self.best_block.read().unwrap().height(), outbound_scid_alias)
1646 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1651 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
1654 let res = channel.get_open_channel(self.genesis_hash.clone());
1656 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1657 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1658 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1660 let temporary_channel_id = channel.channel_id();
1661 let mut channel_state = self.channel_state.lock().unwrap();
1662 match channel_state.by_id.entry(temporary_channel_id) {
1663 hash_map::Entry::Occupied(_) => {
1665 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1667 panic!("RNG is bad???");
1670 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1672 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1673 node_id: their_network_key,
1676 Ok(temporary_channel_id)
1679 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1680 let mut res = Vec::new();
1682 let channel_state = self.channel_state.lock().unwrap();
1683 res.reserve(channel_state.by_id.len());
1684 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1685 let balance = channel.get_available_balances();
1686 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1687 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1688 res.push(ChannelDetails {
1689 channel_id: (*channel_id).clone(),
1690 counterparty: ChannelCounterparty {
1691 node_id: channel.get_counterparty_node_id(),
1692 features: InitFeatures::empty(),
1693 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1694 forwarding_info: channel.counterparty_forwarding_info(),
1695 // Ensures that we have actually received the `htlc_minimum_msat` value
1696 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1697 // message (as they are always the first message from the counterparty).
1698 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1699 // default `0` value set by `Channel::new_outbound`.
1700 outbound_htlc_minimum_msat: if channel.have_received_message() {
1701 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1702 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1704 funding_txo: channel.get_funding_txo(),
1705 // Note that accept_channel (or open_channel) is always the first message, so
1706 // `have_received_message` indicates that type negotiation has completed.
1707 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1708 short_channel_id: channel.get_short_channel_id(),
1709 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1710 channel_value_satoshis: channel.get_value_satoshis(),
1711 unspendable_punishment_reserve: to_self_reserve_satoshis,
1712 balance_msat: balance.balance_msat,
1713 inbound_capacity_msat: balance.inbound_capacity_msat,
1714 outbound_capacity_msat: balance.outbound_capacity_msat,
1715 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1716 user_channel_id: channel.get_user_id(),
1717 confirmations_required: channel.minimum_depth(),
1718 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1719 is_outbound: channel.is_outbound(),
1720 is_funding_locked: channel.is_usable(),
1721 is_usable: channel.is_live(),
1722 is_public: channel.should_announce(),
1723 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1724 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat()
1728 let per_peer_state = self.per_peer_state.read().unwrap();
1729 for chan in res.iter_mut() {
1730 if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
1731 chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
1737 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1738 /// more information.
1739 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1740 self.list_channels_with_filter(|_| true)
1743 /// Gets the list of usable channels, in random order. Useful as an argument to
1744 /// get_route to ensure non-announced channels are used.
1746 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1747 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1749 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1750 // Note we use is_live here instead of usable which leads to somewhat confused
1751 // internal/external nomenclature, but that's ok cause that's probably what the user
1752 // really wanted anyway.
1753 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1756 /// Helper function that issues the channel close events
1757 fn issue_channel_close_events(&self, channel: &Channel<Signer>, closure_reason: ClosureReason) {
1758 let mut pending_events_lock = self.pending_events.lock().unwrap();
1759 match channel.unbroadcasted_funding() {
1760 Some(transaction) => {
1761 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1765 pending_events_lock.push(events::Event::ChannelClosed {
1766 channel_id: channel.channel_id(),
1767 user_channel_id: channel.get_user_id(),
1768 reason: closure_reason
1772 fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1773 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1775 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1776 let result: Result<(), _> = loop {
1777 let mut channel_state_lock = self.channel_state.lock().unwrap();
1778 let channel_state = &mut *channel_state_lock;
1779 match channel_state.by_id.entry(channel_id.clone()) {
1780 hash_map::Entry::Occupied(mut chan_entry) => {
1781 if *counterparty_node_id != chan_entry.get().get_counterparty_node_id(){
1782 return Err(APIError::APIMisuseError { err: "The passed counterparty_node_id doesn't match the channel's counterparty node_id".to_owned() });
1784 let per_peer_state = self.per_peer_state.read().unwrap();
1785 let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
1786 Some(peer_state) => {
1787 let peer_state = peer_state.lock().unwrap();
1788 let their_features = &peer_state.latest_features;
1789 chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
1791 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
1793 failed_htlcs = htlcs;
1795 // Update the monitor with the shutdown script if necessary.
1796 if let Some(monitor_update) = monitor_update {
1797 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
1798 let (result, is_permanent) =
1799 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE);
1801 remove_channel!(self, channel_state, chan_entry);
1807 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1808 node_id: *counterparty_node_id,
1812 if chan_entry.get().is_shutdown() {
1813 let channel = remove_channel!(self, channel_state, chan_entry);
1814 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1815 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1819 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1823 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1827 for htlc_source in failed_htlcs.drain(..) {
1828 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1831 let _ = handle_error!(self, result, *counterparty_node_id);
1835 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1836 /// will be accepted on the given channel, and after additional timeout/the closing of all
1837 /// pending HTLCs, the channel will be closed on chain.
1839 /// * If we are the channel initiator, we will pay between our [`Background`] and
1840 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1842 /// * If our counterparty is the channel initiator, we will require a channel closing
1843 /// transaction feerate of at least our [`Background`] feerate or the feerate which
1844 /// would appear on a force-closure transaction, whichever is lower. We will allow our
1845 /// counterparty to pay as much fee as they'd like, however.
1847 /// May generate a SendShutdown message event on success, which should be relayed.
1849 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1850 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1851 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1852 pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1853 self.close_channel_internal(channel_id, counterparty_node_id, None)
1856 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1857 /// will be accepted on the given channel, and after additional timeout/the closing of all
1858 /// pending HTLCs, the channel will be closed on chain.
1860 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1861 /// the channel being closed or not:
1862 /// * If we are the channel initiator, we will pay at least this feerate on the closing
1863 /// transaction. The upper-bound is set by
1864 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1865 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1866 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1867 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1868 /// will appear on a force-closure transaction, whichever is lower).
1870 /// May generate a SendShutdown message event on success, which should be relayed.
1872 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1873 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1874 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1875 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1876 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1880 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1881 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1882 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1883 for htlc_source in failed_htlcs.drain(..) {
1884 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1886 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1887 // There isn't anything we can do if we get an update failure - we're already
1888 // force-closing. The monitor update on the required in-memory copy should broadcast
1889 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1890 // ignore the result here.
1891 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1895 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1896 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1897 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>) -> Result<PublicKey, APIError> {
1899 let mut channel_state_lock = self.channel_state.lock().unwrap();
1900 let channel_state = &mut *channel_state_lock;
1901 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1902 if chan.get().get_counterparty_node_id() != *peer_node_id {
1903 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1905 if let Some(peer_msg) = peer_msg {
1906 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1908 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1910 remove_channel!(self, channel_state, chan)
1912 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1915 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1916 self.finish_force_close_channel(chan.force_shutdown(true));
1917 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1918 let mut channel_state = self.channel_state.lock().unwrap();
1919 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1924 Ok(chan.get_counterparty_node_id())
1927 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1928 /// the chain and rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
1929 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
1931 pub fn force_close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1932 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1933 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None) {
1934 Ok(counterparty_node_id) => {
1935 self.channel_state.lock().unwrap().pending_msg_events.push(
1936 events::MessageSendEvent::HandleError {
1937 node_id: counterparty_node_id,
1938 action: msgs::ErrorAction::SendErrorMessage {
1939 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1949 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1950 /// for each to the chain and rejecting new HTLCs on each.
1951 pub fn force_close_all_channels(&self) {
1952 for chan in self.list_channels() {
1953 let _ = self.force_close_channel(&chan.channel_id, &chan.counterparty.node_id);
1957 fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
1958 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
1960 // final_incorrect_cltv_expiry
1961 if hop_data.outgoing_cltv_value != cltv_expiry {
1962 return Err(ReceiveError {
1963 msg: "Upstream node set CLTV to the wrong value",
1965 err_data: byte_utils::be32_to_array(cltv_expiry).to_vec()
1968 // final_expiry_too_soon
1969 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
1970 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
1971 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
1972 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
1973 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
1974 if (hop_data.outgoing_cltv_value as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1975 return Err(ReceiveError {
1977 err_data: Vec::new(),
1978 msg: "The final CLTV expiry is too soon to handle",
1981 if hop_data.amt_to_forward > amt_msat {
1982 return Err(ReceiveError {
1984 err_data: byte_utils::be64_to_array(amt_msat).to_vec(),
1985 msg: "Upstream node sent less than we were supposed to receive in payment",
1989 let routing = match hop_data.format {
1990 msgs::OnionHopDataFormat::Legacy { .. } => {
1991 return Err(ReceiveError {
1992 err_code: 0x4000|0x2000|3,
1993 err_data: Vec::new(),
1994 msg: "We require payment_secrets",
1997 msgs::OnionHopDataFormat::NonFinalNode { .. } => {
1998 return Err(ReceiveError {
1999 err_code: 0x4000|22,
2000 err_data: Vec::new(),
2001 msg: "Got non final data with an HMAC of 0",
2004 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2005 if payment_data.is_some() && keysend_preimage.is_some() {
2006 return Err(ReceiveError {
2007 err_code: 0x4000|22,
2008 err_data: Vec::new(),
2009 msg: "We don't support MPP keysend payments",
2011 } else if let Some(data) = payment_data {
2012 PendingHTLCRouting::Receive {
2014 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2015 phantom_shared_secret,
2017 } else if let Some(payment_preimage) = keysend_preimage {
2018 // We need to check that the sender knows the keysend preimage before processing this
2019 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2020 // could discover the final destination of X, by probing the adjacent nodes on the route
2021 // with a keysend payment of identical payment hash to X and observing the processing
2022 // time discrepancies due to a hash collision with X.
2023 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2024 if hashed_preimage != payment_hash {
2025 return Err(ReceiveError {
2026 err_code: 0x4000|22,
2027 err_data: Vec::new(),
2028 msg: "Payment preimage didn't match payment hash",
2032 PendingHTLCRouting::ReceiveKeysend {
2034 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2037 return Err(ReceiveError {
2038 err_code: 0x4000|0x2000|3,
2039 err_data: Vec::new(),
2040 msg: "We require payment_secrets",
2045 Ok(PendingHTLCInfo {
2048 incoming_shared_secret: shared_secret,
2049 amt_to_forward: amt_msat,
2050 outgoing_cltv_value: hop_data.outgoing_cltv_value,
2054 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
2055 macro_rules! return_malformed_err {
2056 ($msg: expr, $err_code: expr) => {
2058 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2059 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2060 channel_id: msg.channel_id,
2061 htlc_id: msg.htlc_id,
2062 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2063 failure_code: $err_code,
2064 })), self.channel_state.lock().unwrap());
2069 if let Err(_) = msg.onion_routing_packet.public_key {
2070 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2073 let shared_secret = SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key).secret_bytes();
2075 if msg.onion_routing_packet.version != 0 {
2076 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2077 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2078 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2079 //receiving node would have to brute force to figure out which version was put in the
2080 //packet by the node that send us the message, in the case of hashing the hop_data, the
2081 //node knows the HMAC matched, so they already know what is there...
2082 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2085 let mut channel_state = None;
2086 macro_rules! return_err {
2087 ($msg: expr, $err_code: expr, $data: expr) => {
2089 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2090 if channel_state.is_none() {
2091 channel_state = Some(self.channel_state.lock().unwrap());
2093 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2094 channel_id: msg.channel_id,
2095 htlc_id: msg.htlc_id,
2096 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
2097 })), channel_state.unwrap());
2102 let next_hop = match onion_utils::decode_next_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2104 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2105 return_malformed_err!(err_msg, err_code);
2107 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2108 return_err!(err_msg, err_code, &[0; 0]);
2112 let pending_forward_info = match next_hop {
2113 onion_utils::Hop::Receive(next_hop_data) => {
2115 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2117 // Note that we could obviously respond immediately with an update_fulfill_htlc
2118 // message, however that would leak that we are the recipient of this payment, so
2119 // instead we stay symmetric with the forwarding case, only responding (after a
2120 // delay) once they've send us a commitment_signed!
2121 PendingHTLCStatus::Forward(info)
2123 Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2126 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2127 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2129 let blinding_factor = {
2130 let mut sha = Sha256::engine();
2131 sha.input(&new_pubkey.serialize()[..]);
2132 sha.input(&shared_secret);
2133 Sha256::from_engine(sha).into_inner()
2136 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
2138 } else { Ok(new_pubkey) };
2140 let outgoing_packet = msgs::OnionPacket {
2143 hop_data: new_packet_bytes,
2144 hmac: next_hop_hmac.clone(),
2147 let short_channel_id = match next_hop_data.format {
2148 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
2149 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2150 msgs::OnionHopDataFormat::FinalNode { .. } => {
2151 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2155 PendingHTLCStatus::Forward(PendingHTLCInfo {
2156 routing: PendingHTLCRouting::Forward {
2157 onion_packet: outgoing_packet,
2160 payment_hash: msg.payment_hash.clone(),
2161 incoming_shared_secret: shared_secret,
2162 amt_to_forward: next_hop_data.amt_to_forward,
2163 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2168 channel_state = Some(self.channel_state.lock().unwrap());
2169 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2170 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2171 // with a short_channel_id of 0. This is important as various things later assume
2172 // short_channel_id is non-0 in any ::Forward.
2173 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2174 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
2175 if let Some((err, code, chan_update)) = loop {
2176 let forwarding_id_opt = match id_option {
2177 None => { // unknown_next_peer
2178 // Note that this is likely a timing oracle for detecting whether an scid is a
2180 if fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id) {
2183 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2186 Some(id) => Some(id.clone()),
2188 let (chan_update_opt, forwardee_cltv_expiry_delta) = if let Some(forwarding_id) = forwarding_id_opt {
2189 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
2190 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2191 // Note that the behavior here should be identical to the above block - we
2192 // should NOT reveal the existence or non-existence of a private channel if
2193 // we don't allow forwards outbound over them.
2194 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2196 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2197 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2198 // "refuse to forward unless the SCID alias was used", so we pretend
2199 // we don't have the channel here.
2200 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2202 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2204 // Note that we could technically not return an error yet here and just hope
2205 // that the connection is reestablished or monitor updated by the time we get
2206 // around to doing the actual forward, but better to fail early if we can and
2207 // hopefully an attacker trying to path-trace payments cannot make this occur
2208 // on a small/per-node/per-channel scale.
2209 if !chan.is_live() { // channel_disabled
2210 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2212 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2213 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2215 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
2216 .and_then(|prop_fee| { (prop_fee / 1000000)
2217 .checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
2218 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
2219 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, chan_update_opt));
2221 (chan_update_opt, chan.get_cltv_expiry_delta())
2222 } else { (None, MIN_CLTV_EXPIRY_DELTA) };
2224 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + forwardee_cltv_expiry_delta as u64 { // incorrect_cltv_expiry
2225 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, chan_update_opt));
2227 let cur_height = self.best_block.read().unwrap().height() + 1;
2228 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2229 // but we want to be robust wrt to counterparty packet sanitization (see
2230 // HTLC_FAIL_BACK_BUFFER rationale).
2231 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2232 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2234 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2235 break Some(("CLTV expiry is too far in the future", 21, None));
2237 // If the HTLC expires ~now, don't bother trying to forward it to our
2238 // counterparty. They should fail it anyway, but we don't want to bother with
2239 // the round-trips or risk them deciding they definitely want the HTLC and
2240 // force-closing to ensure they get it if we're offline.
2241 // We previously had a much more aggressive check here which tried to ensure
2242 // our counterparty receives an HTLC which has *our* risk threshold met on it,
2243 // but there is no need to do that, and since we're a bit conservative with our
2244 // risk threshold it just results in failing to forward payments.
2245 if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2246 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2252 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2253 if let Some(chan_update) = chan_update {
2254 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2255 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2257 else if code == 0x1000 | 13 {
2258 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2260 else if code == 0x1000 | 20 {
2261 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2262 0u16.write(&mut res).expect("Writes cannot fail");
2264 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2265 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2266 chan_update.write(&mut res).expect("Writes cannot fail");
2268 return_err!(err, code, &res.0[..]);
2273 (pending_forward_info, channel_state.unwrap())
2276 /// Gets the current channel_update for the given channel. This first checks if the channel is
2277 /// public, and thus should be called whenever the result is going to be passed out in a
2278 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2280 /// May be called with channel_state already locked!
2281 fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2282 if !chan.should_announce() {
2283 return Err(LightningError {
2284 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2285 action: msgs::ErrorAction::IgnoreError
2288 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2289 self.get_channel_update_for_unicast(chan)
2292 /// Gets the current channel_update for the given channel. This does not check if the channel
2293 /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2294 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2295 /// provided evidence that they know about the existence of the channel.
2296 /// May be called with channel_state already locked!
2297 fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2298 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2299 let short_channel_id = match chan.get_short_channel_id() {
2300 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2304 self.get_channel_update_for_onion(short_channel_id, chan)
2306 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2307 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2308 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2310 let unsigned = msgs::UnsignedChannelUpdate {
2311 chain_hash: self.genesis_hash,
2313 timestamp: chan.get_update_time_counter(),
2314 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2315 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2316 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2317 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
2318 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2319 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2320 excess_data: Vec::new(),
2323 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
2324 let sig = self.secp_ctx.sign_ecdsa(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
2326 Ok(msgs::ChannelUpdate {
2332 // Only public for testing, this should otherwise never be called direcly
2333 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>) -> Result<(), APIError> {
2334 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2335 let prng_seed = self.keys_manager.get_secure_random_bytes();
2336 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
2337 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2339 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2340 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
2341 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2342 if onion_utils::route_size_insane(&onion_payloads) {
2343 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
2345 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2347 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2349 let err: Result<(), _> = loop {
2350 let mut channel_lock = self.channel_state.lock().unwrap();
2352 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
2353 let payment_entry = pending_outbounds.entry(payment_id);
2354 if let hash_map::Entry::Occupied(payment) = &payment_entry {
2355 if !payment.get().is_retryable() {
2356 return Err(APIError::RouteError {
2357 err: "Payment already completed"
2362 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
2363 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2364 Some(id) => id.clone(),
2367 macro_rules! insert_outbound_payment {
2369 let payment = payment_entry.or_insert_with(|| PendingOutboundPayment::Retryable {
2370 session_privs: HashSet::new(),
2371 pending_amt_msat: 0,
2372 pending_fee_msat: Some(0),
2373 payment_hash: *payment_hash,
2374 payment_secret: *payment_secret,
2375 starting_block_height: self.best_block.read().unwrap().height(),
2376 total_msat: total_value,
2378 assert!(payment.insert(session_priv_bytes, path));
2382 let channel_state = &mut *channel_lock;
2383 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
2385 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
2386 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
2388 if !chan.get().is_live() {
2389 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
2391 break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(
2392 htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
2394 session_priv: session_priv.clone(),
2395 first_hop_htlc_msat: htlc_msat,
2397 payment_secret: payment_secret.clone(),
2398 payment_params: payment_params.clone(),
2399 }, onion_packet, &self.logger),
2400 channel_state, chan)
2402 Some((update_add, commitment_signed, monitor_update)) => {
2403 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2404 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
2405 // Note that MonitorUpdateFailed here indicates (per function docs)
2406 // that we will resend the commitment update once monitor updating
2407 // is restored. Therefore, we must return an error indicating that
2408 // it is unsafe to retry the payment wholesale, which we do in the
2409 // send_payment check for MonitorUpdateFailed, below.
2410 insert_outbound_payment!(); // Only do this after possibly break'ing on Perm failure above.
2411 return Err(APIError::MonitorUpdateFailed);
2413 insert_outbound_payment!();
2415 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
2416 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2417 node_id: path.first().unwrap().pubkey,
2418 updates: msgs::CommitmentUpdate {
2419 update_add_htlcs: vec![update_add],
2420 update_fulfill_htlcs: Vec::new(),
2421 update_fail_htlcs: Vec::new(),
2422 update_fail_malformed_htlcs: Vec::new(),
2428 None => { insert_outbound_payment!(); },
2430 } else { unreachable!(); }
2434 match handle_error!(self, err, path.first().unwrap().pubkey) {
2435 Ok(_) => unreachable!(),
2437 Err(APIError::ChannelUnavailable { err: e.err })
2442 /// Sends a payment along a given route.
2444 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
2445 /// fields for more info.
2447 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
2448 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
2449 /// next hop knows the preimage to payment_hash they can claim an additional amount as
2450 /// specified in the last hop in the route! Thus, you should probably do your own
2451 /// payment_preimage tracking (which you should already be doing as they represent "proof of
2452 /// payment") and prevent double-sends yourself.
2454 /// May generate SendHTLCs message(s) event on success, which should be relayed.
2456 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2457 /// each entry matching the corresponding-index entry in the route paths, see
2458 /// PaymentSendFailure for more info.
2460 /// In general, a path may raise:
2461 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
2462 /// node public key) is specified.
2463 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
2464 /// (including due to previous monitor update failure or new permanent monitor update
2466 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
2467 /// relevant updates.
2469 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2470 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2471 /// different route unless you intend to pay twice!
2473 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
2474 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
2475 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
2476 /// must not contain multiple paths as multi-path payments require a recipient-provided
2478 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
2479 /// bit set (either as required or as available). If multiple paths are present in the Route,
2480 /// we assume the invoice had the basic_mpp feature set.
2481 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<PaymentId, PaymentSendFailure> {
2482 self.send_payment_internal(route, payment_hash, payment_secret, None, None, None)
2485 fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: Option<PaymentId>, recv_value_msat: Option<u64>) -> Result<PaymentId, PaymentSendFailure> {
2486 if route.paths.len() < 1 {
2487 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
2489 if route.paths.len() > 10 {
2490 // This limit is completely arbitrary - there aren't any real fundamental path-count
2491 // limits. After we support retrying individual paths we should likely bump this, but
2492 // for now more than 10 paths likely carries too much one-path failure.
2493 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
2495 if payment_secret.is_none() && route.paths.len() > 1 {
2496 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
2498 let mut total_value = 0;
2499 let our_node_id = self.get_our_node_id();
2500 let mut path_errs = Vec::with_capacity(route.paths.len());
2501 let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) };
2502 'path_check: for path in route.paths.iter() {
2503 if path.len() < 1 || path.len() > 20 {
2504 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
2505 continue 'path_check;
2507 for (idx, hop) in path.iter().enumerate() {
2508 if idx != path.len() - 1 && hop.pubkey == our_node_id {
2509 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
2510 continue 'path_check;
2513 total_value += path.last().unwrap().fee_msat;
2514 path_errs.push(Ok(()));
2516 if path_errs.iter().any(|e| e.is_err()) {
2517 return Err(PaymentSendFailure::PathParameterError(path_errs));
2519 if let Some(amt_msat) = recv_value_msat {
2520 debug_assert!(amt_msat >= total_value);
2521 total_value = amt_msat;
2524 let cur_height = self.best_block.read().unwrap().height() + 1;
2525 let mut results = Vec::new();
2526 for path in route.paths.iter() {
2527 results.push(self.send_payment_along_path(&path, &route.payment_params, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage));
2529 let mut has_ok = false;
2530 let mut has_err = false;
2531 let mut pending_amt_unsent = 0;
2532 let mut max_unsent_cltv_delta = 0;
2533 for (res, path) in results.iter().zip(route.paths.iter()) {
2534 if res.is_ok() { has_ok = true; }
2535 if res.is_err() { has_err = true; }
2536 if let &Err(APIError::MonitorUpdateFailed) = res {
2537 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
2541 } else if res.is_err() {
2542 pending_amt_unsent += path.last().unwrap().fee_msat;
2543 max_unsent_cltv_delta = cmp::max(max_unsent_cltv_delta, path.last().unwrap().cltv_expiry_delta);
2546 if has_err && has_ok {
2547 Err(PaymentSendFailure::PartialFailure {
2550 failed_paths_retry: if pending_amt_unsent != 0 {
2551 if let Some(payment_params) = &route.payment_params {
2552 Some(RouteParameters {
2553 payment_params: payment_params.clone(),
2554 final_value_msat: pending_amt_unsent,
2555 final_cltv_expiry_delta: max_unsent_cltv_delta,
2561 // If we failed to send any paths, we shouldn't have inserted the new PaymentId into
2562 // our `pending_outbound_payments` map at all.
2563 debug_assert!(self.pending_outbound_payments.lock().unwrap().get(&payment_id).is_none());
2564 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
2570 /// Retries a payment along the given [`Route`].
2572 /// Errors returned are a superset of those returned from [`send_payment`], so see
2573 /// [`send_payment`] documentation for more details on errors. This method will also error if the
2574 /// retry amount puts the payment more than 10% over the payment's total amount, if the payment
2575 /// for the given `payment_id` cannot be found (likely due to timeout or success), or if
2576 /// further retries have been disabled with [`abandon_payment`].
2578 /// [`send_payment`]: [`ChannelManager::send_payment`]
2579 /// [`abandon_payment`]: [`ChannelManager::abandon_payment`]
2580 pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2581 const RETRY_OVERFLOW_PERCENTAGE: u64 = 10;
2582 for path in route.paths.iter() {
2583 if path.len() == 0 {
2584 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2585 err: "length-0 path in route".to_string()
2590 let (total_msat, payment_hash, payment_secret) = {
2591 let outbounds = self.pending_outbound_payments.lock().unwrap();
2592 if let Some(payment) = outbounds.get(&payment_id) {
2594 PendingOutboundPayment::Retryable {
2595 total_msat, payment_hash, payment_secret, pending_amt_msat, ..
2597 let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum();
2598 if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 {
2599 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2600 err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string()
2603 (*total_msat, *payment_hash, *payment_secret)
2605 PendingOutboundPayment::Legacy { .. } => {
2606 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2607 err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string()
2610 PendingOutboundPayment::Fulfilled { .. } => {
2611 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2612 err: "Payment already completed".to_owned()
2615 PendingOutboundPayment::Abandoned { .. } => {
2616 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2617 err: "Payment already abandoned (with some HTLCs still pending)".to_owned()
2622 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2623 err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)),
2627 return self.send_payment_internal(route, payment_hash, &payment_secret, None, Some(payment_id), Some(total_msat)).map(|_| ())
2630 /// Signals that no further retries for the given payment will occur.
2632 /// After this method returns, any future calls to [`retry_payment`] for the given `payment_id`
2633 /// will fail with [`PaymentSendFailure::ParameterError`]. If no such event has been generated,
2634 /// an [`Event::PaymentFailed`] event will be generated as soon as there are no remaining
2635 /// pending HTLCs for this payment.
2637 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2638 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2639 /// determine the ultimate status of a payment.
2641 /// [`retry_payment`]: Self::retry_payment
2642 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2643 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2644 pub fn abandon_payment(&self, payment_id: PaymentId) {
2645 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2647 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
2648 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
2649 if let Ok(()) = payment.get_mut().mark_abandoned() {
2650 if payment.get().remaining_parts() == 0 {
2651 self.pending_events.lock().unwrap().push(events::Event::PaymentFailed {
2653 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
2661 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2662 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2663 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2664 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2665 /// never reach the recipient.
2667 /// See [`send_payment`] documentation for more details on the return value of this function.
2669 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2670 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2672 /// Note that `route` must have exactly one path.
2674 /// [`send_payment`]: Self::send_payment
2675 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2676 let preimage = match payment_preimage {
2678 None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
2680 let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
2681 match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None, None) {
2682 Ok(payment_id) => Ok((payment_hash, payment_id)),
2687 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2688 /// which checks the correctness of the funding transaction given the associated channel.
2689 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2690 &self, temporary_channel_id: &[u8; 32], _counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2691 ) -> Result<(), APIError> {
2693 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
2695 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2697 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2698 .map_err(|e| if let ChannelError::Close(msg) = e {
2699 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2700 } else { unreachable!(); })
2703 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
2705 match handle_error!(self, res, chan.get_counterparty_node_id()) {
2706 Ok(funding_msg) => {
2709 Err(_) => { return Err(APIError::ChannelUnavailable {
2710 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
2715 let mut channel_state = self.channel_state.lock().unwrap();
2716 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2717 node_id: chan.get_counterparty_node_id(),
2720 match channel_state.by_id.entry(chan.channel_id()) {
2721 hash_map::Entry::Occupied(_) => {
2722 panic!("Generated duplicate funding txid?");
2724 hash_map::Entry::Vacant(e) => {
2732 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2733 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2734 Ok(OutPoint { txid: tx.txid(), index: output_index })
2738 /// Call this upon creation of a funding transaction for the given channel.
2740 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2741 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2743 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2744 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2746 /// May panic if the output found in the funding transaction is duplicative with some other
2747 /// channel (note that this should be trivially prevented by using unique funding transaction
2748 /// keys per-channel).
2750 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2751 /// counterparty's signature the funding transaction will automatically be broadcast via the
2752 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2754 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2755 /// not currently support replacing a funding transaction on an existing channel. Instead,
2756 /// create a new channel with a conflicting funding transaction.
2758 /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2759 /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2760 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2761 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2763 for inp in funding_transaction.input.iter() {
2764 if inp.witness.is_empty() {
2765 return Err(APIError::APIMisuseError {
2766 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2770 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2771 let mut output_index = None;
2772 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2773 for (idx, outp) in tx.output.iter().enumerate() {
2774 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2775 if output_index.is_some() {
2776 return Err(APIError::APIMisuseError {
2777 err: "Multiple outputs matched the expected script and value".to_owned()
2780 if idx > u16::max_value() as usize {
2781 return Err(APIError::APIMisuseError {
2782 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2785 output_index = Some(idx as u16);
2788 if output_index.is_none() {
2789 return Err(APIError::APIMisuseError {
2790 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2793 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2798 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2799 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
2800 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2802 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2805 // ...by failing to compile if the number of addresses that would be half of a message is
2806 // smaller than 500:
2807 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
2809 /// Regenerates channel_announcements and generates a signed node_announcement from the given
2810 /// arguments, providing them in corresponding events via
2811 /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
2812 /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
2813 /// announcement to ensure that the lightning P2P network is aware of the channels we have and
2814 /// our network addresses.
2816 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2817 /// node to humans. They carry no in-protocol meaning.
2819 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2820 /// accepts incoming connections. These will be included in the node_announcement, publicly
2821 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2822 /// addresses should likely contain only Tor Onion addresses.
2824 /// Panics if `addresses` is absurdly large (more than 500).
2826 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2827 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2828 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2830 if addresses.len() > 500 {
2831 panic!("More than half the message size was taken up by public addresses!");
2834 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2835 // addresses be sorted for future compatibility.
2836 addresses.sort_by_key(|addr| addr.get_id());
2838 let announcement = msgs::UnsignedNodeAnnouncement {
2839 features: NodeFeatures::known(),
2840 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
2841 node_id: self.get_our_node_id(),
2842 rgb, alias, addresses,
2843 excess_address_data: Vec::new(),
2844 excess_data: Vec::new(),
2846 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2847 let node_announce_sig = sign(&self.secp_ctx, &msghash, &self.our_network_key);
2849 let mut channel_state_lock = self.channel_state.lock().unwrap();
2850 let channel_state = &mut *channel_state_lock;
2852 let mut announced_chans = false;
2853 for (_, chan) in channel_state.by_id.iter() {
2854 if let Some(msg) = chan.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height()) {
2855 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2857 update_msg: match self.get_channel_update_for_broadcast(chan) {
2862 announced_chans = true;
2864 // If the channel is not public or has not yet reached funding_locked, check the
2865 // next channel. If we don't yet have any public channels, we'll skip the broadcast
2866 // below as peers may not accept it without channels on chain first.
2870 if announced_chans {
2871 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2872 msg: msgs::NodeAnnouncement {
2873 signature: node_announce_sig,
2874 contents: announcement
2880 /// Processes HTLCs which are pending waiting on random forward delay.
2882 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2883 /// Will likely generate further events.
2884 pub fn process_pending_htlc_forwards(&self) {
2885 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2887 let mut new_events = Vec::new();
2888 let mut failed_forwards = Vec::new();
2889 let mut phantom_receives: Vec<(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
2890 let mut handle_errors = Vec::new();
2892 let mut channel_state_lock = self.channel_state.lock().unwrap();
2893 let channel_state = &mut *channel_state_lock;
2895 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2896 if short_chan_id != 0 {
2897 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2898 Some(chan_id) => chan_id.clone(),
2900 for forward_info in pending_forwards.drain(..) {
2901 match forward_info {
2902 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2903 routing, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2904 prev_funding_outpoint } => {
2905 macro_rules! fail_forward {
2906 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
2908 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2909 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2910 short_channel_id: prev_short_channel_id,
2911 outpoint: prev_funding_outpoint,
2912 htlc_id: prev_htlc_id,
2913 incoming_packet_shared_secret: incoming_shared_secret,
2914 phantom_shared_secret: $phantom_ss,
2916 failed_forwards.push((htlc_source, payment_hash,
2917 HTLCFailReason::Reason { failure_code: $err_code, data: $err_data }
2923 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
2924 let phantom_secret_res = self.keys_manager.get_node_secret(Recipient::PhantomNode);
2925 if phantom_secret_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id) {
2926 let phantom_shared_secret = SharedSecret::new(&onion_packet.public_key.unwrap(), &phantom_secret_res.unwrap()).secret_bytes();
2927 let next_hop = match onion_utils::decode_next_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
2929 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2930 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
2931 // In this scenario, the phantom would have sent us an
2932 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
2933 // if it came from us (the second-to-last hop) but contains the sha256
2935 fail_forward!(err_msg, err_code, sha256_of_onion.to_vec(), None);
2937 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2938 fail_forward!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
2942 onion_utils::Hop::Receive(hop_data) => {
2943 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value, Some(phantom_shared_secret)) {
2944 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, vec![(info, prev_htlc_id)])),
2945 Err(ReceiveError { err_code, err_data, msg }) => fail_forward!(msg, err_code, err_data, Some(phantom_shared_secret))
2951 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
2954 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
2957 HTLCForwardInfo::FailHTLC { .. } => {
2958 // Channel went away before we could fail it. This implies
2959 // the channel is now on chain and our counterparty is
2960 // trying to broadcast the HTLC-Timeout, but that's their
2961 // problem, not ours.
2968 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2969 let mut add_htlc_msgs = Vec::new();
2970 let mut fail_htlc_msgs = Vec::new();
2971 for forward_info in pending_forwards.drain(..) {
2972 match forward_info {
2973 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2974 routing: PendingHTLCRouting::Forward {
2976 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2977 prev_funding_outpoint } => {
2978 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
2979 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2980 short_channel_id: prev_short_channel_id,
2981 outpoint: prev_funding_outpoint,
2982 htlc_id: prev_htlc_id,
2983 incoming_packet_shared_secret: incoming_shared_secret,
2984 // Phantom payments are only PendingHTLCRouting::Receive.
2985 phantom_shared_secret: None,
2987 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet, &self.logger) {
2989 if let ChannelError::Ignore(msg) = e {
2990 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2992 panic!("Stated return value requirements in send_htlc() were not met");
2994 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
2995 failed_forwards.push((htlc_source, payment_hash,
2996 HTLCFailReason::Reason { failure_code, data }
3002 Some(msg) => { add_htlc_msgs.push(msg); },
3004 // Nothing to do here...we're waiting on a remote
3005 // revoke_and_ack before we can add anymore HTLCs. The Channel
3006 // will automatically handle building the update_add_htlc and
3007 // commitment_signed messages when we can.
3008 // TODO: Do some kind of timer to set the channel as !is_live()
3009 // as we don't really want others relying on us relaying through
3010 // this channel currently :/.
3016 HTLCForwardInfo::AddHTLC { .. } => {
3017 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3019 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3020 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3021 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
3023 if let ChannelError::Ignore(msg) = e {
3024 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3026 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
3028 // fail-backs are best-effort, we probably already have one
3029 // pending, and if not that's OK, if not, the channel is on
3030 // the chain and sending the HTLC-Timeout is their problem.
3033 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
3035 // Nothing to do here...we're waiting on a remote
3036 // revoke_and_ack before we can update the commitment
3037 // transaction. The Channel will automatically handle
3038 // building the update_fail_htlc and commitment_signed
3039 // messages when we can.
3040 // We don't need any kind of timer here as they should fail
3041 // the channel onto the chain if they can't get our
3042 // update_fail_htlc in time, it's not our problem.
3049 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
3050 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
3053 // We surely failed send_commitment due to bad keys, in that case
3054 // close channel and then send error message to peer.
3055 let counterparty_node_id = chan.get().get_counterparty_node_id();
3056 let err: Result<(), _> = match e {
3057 ChannelError::Ignore(_) | ChannelError::Warn(_) => {
3058 panic!("Stated return value requirements in send_commitment() were not met");
3060 ChannelError::Close(msg) => {
3061 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
3062 let mut channel = remove_channel!(self, channel_state, chan);
3063 // ChannelClosed event is generated by handle_error for us.
3064 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel.channel_id(), channel.get_user_id(), channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
3066 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
3068 handle_errors.push((counterparty_node_id, err));
3072 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3073 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
3076 log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
3077 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
3078 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3079 node_id: chan.get().get_counterparty_node_id(),
3080 updates: msgs::CommitmentUpdate {
3081 update_add_htlcs: add_htlc_msgs,
3082 update_fulfill_htlcs: Vec::new(),
3083 update_fail_htlcs: fail_htlc_msgs,
3084 update_fail_malformed_htlcs: Vec::new(),
3086 commitment_signed: commitment_msg,
3094 for forward_info in pending_forwards.drain(..) {
3095 match forward_info {
3096 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
3097 routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
3098 prev_funding_outpoint } => {
3099 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3100 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3101 let _legacy_hop_data = payment_data.clone();
3102 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3104 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3105 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3107 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3110 let claimable_htlc = ClaimableHTLC {
3111 prev_hop: HTLCPreviousHopData {
3112 short_channel_id: prev_short_channel_id,
3113 outpoint: prev_funding_outpoint,
3114 htlc_id: prev_htlc_id,
3115 incoming_packet_shared_secret: incoming_shared_secret,
3116 phantom_shared_secret,
3118 value: amt_to_forward,
3120 total_msat: if let Some(data) = &payment_data { data.total_msat } else { amt_to_forward },
3125 macro_rules! fail_htlc {
3127 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
3128 htlc_msat_height_data.extend_from_slice(
3129 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
3131 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3132 short_channel_id: $htlc.prev_hop.short_channel_id,
3133 outpoint: prev_funding_outpoint,
3134 htlc_id: $htlc.prev_hop.htlc_id,
3135 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3136 phantom_shared_secret,
3138 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
3143 macro_rules! check_total_value {
3144 ($payment_data: expr, $payment_preimage: expr) => {{
3145 let mut payment_received_generated = false;
3146 let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
3147 .or_insert(Vec::new());
3148 if htlcs.len() == 1 {
3149 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3150 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3151 fail_htlc!(claimable_htlc);
3155 let mut total_value = claimable_htlc.value;
3156 for htlc in htlcs.iter() {
3157 total_value += htlc.value;
3158 match &htlc.onion_payload {
3159 OnionPayload::Invoice { .. } => {
3160 if htlc.total_msat != $payment_data.total_msat {
3161 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3162 log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3163 total_value = msgs::MAX_VALUE_MSAT;
3165 if total_value >= msgs::MAX_VALUE_MSAT { break; }
3167 _ => unreachable!(),
3170 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3171 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3172 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3173 fail_htlc!(claimable_htlc);
3174 } else if total_value == $payment_data.total_msat {
3175 htlcs.push(claimable_htlc);
3176 new_events.push(events::Event::PaymentReceived {
3178 purpose: events::PaymentPurpose::InvoicePayment {
3179 payment_preimage: $payment_preimage,
3180 payment_secret: $payment_data.payment_secret,
3184 payment_received_generated = true;
3186 // Nothing to do - we haven't reached the total
3187 // payment value yet, wait until we receive more
3189 htlcs.push(claimable_htlc);
3191 payment_received_generated
3195 // Check that the payment hash and secret are known. Note that we
3196 // MUST take care to handle the "unknown payment hash" and
3197 // "incorrect payment secret" cases here identically or we'd expose
3198 // that we are the ultimate recipient of the given payment hash.
3199 // Further, we must not expose whether we have any other HTLCs
3200 // associated with the same payment_hash pending or not.
3201 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3202 match payment_secrets.entry(payment_hash) {
3203 hash_map::Entry::Vacant(_) => {
3204 match claimable_htlc.onion_payload {
3205 OnionPayload::Invoice { .. } => {
3206 let payment_data = payment_data.unwrap();
3207 let payment_preimage = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3208 Ok(payment_preimage) => payment_preimage,
3210 fail_htlc!(claimable_htlc);
3214 check_total_value!(payment_data, payment_preimage);
3216 OnionPayload::Spontaneous(preimage) => {
3217 match channel_state.claimable_htlcs.entry(payment_hash) {
3218 hash_map::Entry::Vacant(e) => {
3219 e.insert(vec![claimable_htlc]);
3220 new_events.push(events::Event::PaymentReceived {
3222 amt: amt_to_forward,
3223 purpose: events::PaymentPurpose::SpontaneousPayment(preimage),
3226 hash_map::Entry::Occupied(_) => {
3227 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3228 fail_htlc!(claimable_htlc);
3234 hash_map::Entry::Occupied(inbound_payment) => {
3235 if payment_data.is_none() {
3236 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3237 fail_htlc!(claimable_htlc);
3240 let payment_data = payment_data.unwrap();
3241 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3242 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3243 fail_htlc!(claimable_htlc);
3244 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3245 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3246 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3247 fail_htlc!(claimable_htlc);
3249 let payment_received_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3250 if payment_received_generated {
3251 inbound_payment.remove_entry();
3257 HTLCForwardInfo::FailHTLC { .. } => {
3258 panic!("Got pending fail of our own HTLC");
3266 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
3267 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
3269 self.forward_htlcs(&mut phantom_receives);
3271 for (counterparty_node_id, err) in handle_errors.drain(..) {
3272 let _ = handle_error!(self, err, counterparty_node_id);
3275 if new_events.is_empty() { return }
3276 let mut events = self.pending_events.lock().unwrap();
3277 events.append(&mut new_events);
3280 /// Free the background events, generally called from timer_tick_occurred.
3282 /// Exposed for testing to allow us to process events quickly without generating accidental
3283 /// BroadcastChannelUpdate events in timer_tick_occurred.
3285 /// Expects the caller to have a total_consistency_lock read lock.
3286 fn process_background_events(&self) -> bool {
3287 let mut background_events = Vec::new();
3288 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3289 if background_events.is_empty() {
3293 for event in background_events.drain(..) {
3295 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3296 // The channel has already been closed, so no use bothering to care about the
3297 // monitor updating completing.
3298 let _ = self.chain_monitor.update_channel(funding_txo, update);
3305 #[cfg(any(test, feature = "_test_utils"))]
3306 /// Process background events, for functional testing
3307 pub fn test_process_background_events(&self) {
3308 self.process_background_events();
3311 fn update_channel_fee(&self, short_to_id: &mut HashMap<u64, [u8; 32]>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
3312 if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
3313 // If the feerate has decreased by less than half, don't bother
3314 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3315 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3316 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3317 return (true, NotifyOption::SkipPersist, Ok(()));
3319 if !chan.is_live() {
3320 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3321 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3322 return (true, NotifyOption::SkipPersist, Ok(()));
3324 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3325 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3327 let mut retain_channel = true;
3328 let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
3331 let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
3332 if drop { retain_channel = false; }
3336 let ret_err = match res {
3337 Ok(Some((update_fee, commitment_signed, monitor_update))) => {
3338 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3339 let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, chan_id, COMMITMENT_UPDATE_ONLY);
3340 if drop { retain_channel = false; }
3343 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3344 node_id: chan.get_counterparty_node_id(),
3345 updates: msgs::CommitmentUpdate {
3346 update_add_htlcs: Vec::new(),
3347 update_fulfill_htlcs: Vec::new(),
3348 update_fail_htlcs: Vec::new(),
3349 update_fail_malformed_htlcs: Vec::new(),
3350 update_fee: Some(update_fee),
3360 (retain_channel, NotifyOption::DoPersist, ret_err)
3364 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3365 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3366 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3367 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3368 pub fn maybe_update_chan_fees(&self) {
3369 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3370 let mut should_persist = NotifyOption::SkipPersist;
3372 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
3374 let mut handle_errors = Vec::new();
3376 let mut channel_state_lock = self.channel_state.lock().unwrap();
3377 let channel_state = &mut *channel_state_lock;
3378 let pending_msg_events = &mut channel_state.pending_msg_events;
3379 let short_to_id = &mut channel_state.short_to_id;
3380 channel_state.by_id.retain(|chan_id, chan| {
3381 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
3382 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3384 handle_errors.push(err);
3394 /// Performs actions which should happen on startup and roughly once per minute thereafter.
3396 /// This currently includes:
3397 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3398 /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3399 /// than a minute, informing the network that they should no longer attempt to route over
3402 /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3403 /// estimate fetches.
3404 pub fn timer_tick_occurred(&self) {
3405 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3406 let mut should_persist = NotifyOption::SkipPersist;
3407 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3409 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
3411 let mut handle_errors = Vec::new();
3412 let mut timed_out_mpp_htlcs = Vec::new();
3414 let mut channel_state_lock = self.channel_state.lock().unwrap();
3415 let channel_state = &mut *channel_state_lock;
3416 let pending_msg_events = &mut channel_state.pending_msg_events;
3417 let short_to_id = &mut channel_state.short_to_id;
3418 channel_state.by_id.retain(|chan_id, chan| {
3419 let counterparty_node_id = chan.get_counterparty_node_id();
3420 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
3421 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3423 handle_errors.push((err, counterparty_node_id));
3425 if !retain_channel { return false; }
3427 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3428 let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
3429 handle_errors.push((Err(err), chan.get_counterparty_node_id()));
3430 if needs_close { return false; }
3433 match chan.channel_update_status() {
3434 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3435 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3436 ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3437 ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3438 ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3439 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3440 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3444 should_persist = NotifyOption::DoPersist;
3445 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3447 ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3448 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3449 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3453 should_persist = NotifyOption::DoPersist;
3454 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3462 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3463 if htlcs.is_empty() {
3464 // This should be unreachable
3465 debug_assert!(false);
3468 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3469 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3470 // In this case we're not going to handle any timeouts of the parts here.
3471 if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3473 } else if htlcs.into_iter().any(|htlc| {
3474 htlc.timer_ticks += 1;
3475 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3477 timed_out_mpp_htlcs.extend(htlcs.into_iter().map(|htlc| (htlc.prev_hop.clone(), payment_hash.clone())));
3485 for htlc_source in timed_out_mpp_htlcs.drain(..) {
3486 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), HTLCSource::PreviousHopData(htlc_source.0), &htlc_source.1, HTLCFailReason::Reason { failure_code: 23, data: Vec::new() });
3489 for (err, counterparty_node_id) in handle_errors.drain(..) {
3490 let _ = handle_error!(self, err, counterparty_node_id);
3496 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3497 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
3498 /// along the path (including in our own channel on which we received it).
3499 /// Returns false if no payment was found to fail backwards, true if the process of failing the
3500 /// HTLC backwards has been started.
3501 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
3502 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3504 let mut channel_state = Some(self.channel_state.lock().unwrap());
3505 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
3506 if let Some(mut sources) = removed_source {
3507 for htlc in sources.drain(..) {
3508 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3509 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3510 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3511 self.best_block.read().unwrap().height()));
3512 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3513 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
3514 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
3520 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3521 /// that we want to return and a channel.
3523 /// This is for failures on the channel on which the HTLC was *received*, not failures
3525 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<Signer>) -> (u16, Vec<u8>) {
3526 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3527 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3528 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3529 // an inbound SCID alias before the real SCID.
3530 let scid_pref = if chan.should_announce() {
3531 chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3533 chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3535 if let Some(scid) = scid_pref {
3536 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3538 (0x4000|10, Vec::new())
3543 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3544 /// that we want to return and a channel.
3545 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<Signer>) -> (u16, Vec<u8>) {
3546 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3547 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3548 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3549 if desired_err_code == 0x1000 | 20 {
3550 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3551 0u16.write(&mut enc).expect("Writes cannot fail");
3553 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3554 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3555 upd.write(&mut enc).expect("Writes cannot fail");
3556 (desired_err_code, enc.0)
3558 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3559 // which means we really shouldn't have gotten a payment to be forwarded over this
3560 // channel yet, or if we did it's from a route hint. Either way, returning an error of
3561 // PERM|no_such_channel should be fine.
3562 (0x4000|10, Vec::new())
3566 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3567 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3568 // be surfaced to the user.
3569 fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
3570 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3572 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
3573 let (failure_code, onion_failure_data) =
3574 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
3575 hash_map::Entry::Occupied(chan_entry) => {
3576 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3578 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3580 let channel_state = self.channel_state.lock().unwrap();
3581 self.fail_htlc_backwards_internal(channel_state,
3582 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
3584 HTLCSource::OutboundRoute { session_priv, payment_id, path, payment_params, .. } => {
3585 let mut session_priv_bytes = [0; 32];
3586 session_priv_bytes.copy_from_slice(&session_priv[..]);
3587 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3588 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3589 if payment.get_mut().remove(&session_priv_bytes, Some(&path)) && !payment.get().is_fulfilled() {
3590 let retry = if let Some(payment_params_data) = payment_params {
3591 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3592 Some(RouteParameters {
3593 payment_params: payment_params_data,
3594 final_value_msat: path_last_hop.fee_msat,
3595 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3598 let mut pending_events = self.pending_events.lock().unwrap();
3599 pending_events.push(events::Event::PaymentPathFailed {
3600 payment_id: Some(payment_id),
3602 rejected_by_dest: false,
3603 network_update: None,
3604 all_paths_failed: payment.get().remaining_parts() == 0,
3606 short_channel_id: None,
3613 if payment.get().abandoned() && payment.get().remaining_parts() == 0 {
3614 pending_events.push(events::Event::PaymentFailed {
3616 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
3622 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3629 /// Fails an HTLC backwards to the sender of it to us.
3630 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
3631 /// There are several callsites that do stupid things like loop over a list of payment_hashes
3632 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
3633 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
3634 /// still-available channels.
3635 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
3636 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3637 //identify whether we sent it or not based on the (I presume) very different runtime
3638 //between the branches here. We should make this async and move it into the forward HTLCs
3641 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3642 // from block_connected which may run during initialization prior to the chain_monitor
3643 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3645 HTLCSource::OutboundRoute { ref path, session_priv, payment_id, ref payment_params, .. } => {
3646 let mut session_priv_bytes = [0; 32];
3647 session_priv_bytes.copy_from_slice(&session_priv[..]);
3648 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3649 let mut all_paths_failed = false;
3650 let mut full_failure_ev = None;
3651 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3652 if !payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
3653 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3656 if payment.get().is_fulfilled() {
3657 log_trace!(self.logger, "Received failure of HTLC with payment_hash {} after payment completion", log_bytes!(payment_hash.0));
3660 if payment.get().remaining_parts() == 0 {
3661 all_paths_failed = true;
3662 if payment.get().abandoned() {
3663 full_failure_ev = Some(events::Event::PaymentFailed {
3665 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
3671 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3674 mem::drop(channel_state_lock);
3675 let retry = if let Some(payment_params_data) = payment_params {
3676 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3677 Some(RouteParameters {
3678 payment_params: payment_params_data.clone(),
3679 final_value_msat: path_last_hop.fee_msat,
3680 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3683 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3685 let path_failure = match &onion_error {
3686 &HTLCFailReason::LightningError { ref err } => {
3688 let (network_update, short_channel_id, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3690 let (network_update, short_channel_id, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3691 // TODO: If we decided to blame ourselves (or one of our channels) in
3692 // process_onion_failure we should close that channel as it implies our
3693 // next-hop is needlessly blaming us!
3694 events::Event::PaymentPathFailed {
3695 payment_id: Some(payment_id),
3696 payment_hash: payment_hash.clone(),
3697 rejected_by_dest: !payment_retryable,
3704 error_code: onion_error_code,
3706 error_data: onion_error_data
3709 &HTLCFailReason::Reason {
3715 // we get a fail_malformed_htlc from the first hop
3716 // TODO: We'd like to generate a NetworkUpdate for temporary
3717 // failures here, but that would be insufficient as get_route
3718 // generally ignores its view of our own channels as we provide them via
3720 // TODO: For non-temporary failures, we really should be closing the
3721 // channel here as we apparently can't relay through them anyway.
3722 events::Event::PaymentPathFailed {
3723 payment_id: Some(payment_id),
3724 payment_hash: payment_hash.clone(),
3725 rejected_by_dest: path.len() == 1,
3726 network_update: None,
3729 short_channel_id: Some(path.first().unwrap().short_channel_id),
3732 error_code: Some(*failure_code),
3734 error_data: Some(data.clone()),
3738 let mut pending_events = self.pending_events.lock().unwrap();
3739 pending_events.push(path_failure);
3740 if let Some(ev) = full_failure_ev { pending_events.push(ev); }
3742 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, phantom_shared_secret, .. }) => {
3743 let err_packet = match onion_error {
3744 HTLCFailReason::Reason { failure_code, data } => {
3745 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
3746 if let Some(phantom_ss) = phantom_shared_secret {
3747 let phantom_packet = onion_utils::build_failure_packet(&phantom_ss, failure_code, &data[..]).encode();
3748 let encrypted_phantom_packet = onion_utils::encrypt_failure_packet(&phantom_ss, &phantom_packet);
3749 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &encrypted_phantom_packet.data[..])
3751 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
3752 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
3755 HTLCFailReason::LightningError { err } => {
3756 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
3757 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
3761 let mut forward_event = None;
3762 if channel_state_lock.forward_htlcs.is_empty() {
3763 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
3765 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
3766 hash_map::Entry::Occupied(mut entry) => {
3767 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
3769 hash_map::Entry::Vacant(entry) => {
3770 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
3773 mem::drop(channel_state_lock);
3774 if let Some(time) = forward_event {
3775 let mut pending_events = self.pending_events.lock().unwrap();
3776 pending_events.push(events::Event::PendingHTLCsForwardable {
3777 time_forwardable: time
3784 /// Provides a payment preimage in response to [`Event::PaymentReceived`], generating any
3785 /// [`MessageSendEvent`]s needed to claim the payment.
3787 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3788 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
3789 /// event matches your expectation. If you fail to do so and call this method, you may provide
3790 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3792 /// Returns whether any HTLCs were claimed, and thus if any new [`MessageSendEvent`]s are now
3793 /// pending for processing via [`get_and_clear_pending_msg_events`].
3795 /// [`Event::PaymentReceived`]: crate::util::events::Event::PaymentReceived
3796 /// [`create_inbound_payment`]: Self::create_inbound_payment
3797 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3798 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
3799 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
3800 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3802 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3804 let mut channel_state = Some(self.channel_state.lock().unwrap());
3805 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
3806 if let Some(mut sources) = removed_source {
3807 assert!(!sources.is_empty());
3809 // If we are claiming an MPP payment, we have to take special care to ensure that each
3810 // channel exists before claiming all of the payments (inside one lock).
3811 // Note that channel existance is sufficient as we should always get a monitor update
3812 // which will take care of the real HTLC claim enforcement.
3814 // If we find an HTLC which we would need to claim but for which we do not have a
3815 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3816 // the sender retries the already-failed path(s), it should be a pretty rare case where
3817 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3818 // provide the preimage, so worrying too much about the optimal handling isn't worth
3820 let mut valid_mpp = true;
3821 for htlc in sources.iter() {
3822 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
3828 let mut errs = Vec::new();
3829 let mut claimed_any_htlcs = false;
3830 for htlc in sources.drain(..) {
3832 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3833 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3834 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3835 self.best_block.read().unwrap().height()));
3836 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3837 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
3838 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
3840 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
3841 ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
3842 if let msgs::ErrorAction::IgnoreError = err.err.action {
3843 // We got a temporary failure updating monitor, but will claim the
3844 // HTLC when the monitor updating is restored (or on chain).
3845 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3846 claimed_any_htlcs = true;
3847 } else { errs.push((pk, err)); }
3849 ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
3850 ClaimFundsFromHop::DuplicateClaim => {
3851 // While we should never get here in most cases, if we do, it likely
3852 // indicates that the HTLC was timed out some time ago and is no longer
3853 // available to be claimed. Thus, it does not make sense to set
3854 // `claimed_any_htlcs`.
3856 ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
3861 // Now that we've done the entire above loop in one lock, we can handle any errors
3862 // which were generated.
3863 channel_state.take();
3865 for (counterparty_node_id, err) in errs.drain(..) {
3866 let res: Result<(), _> = Err(err);
3867 let _ = handle_error!(self, res, counterparty_node_id);
3874 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
3875 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3876 let channel_state = &mut **channel_state_lock;
3877 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
3878 Some(chan_id) => chan_id.clone(),
3880 return ClaimFundsFromHop::PrevHopForceClosed
3884 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
3885 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
3886 Ok(msgs_monitor_option) => {
3887 if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
3888 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3889 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug },
3890 "Failed to update channel monitor with preimage {:?}: {:?}",
3891 payment_preimage, e);
3892 return ClaimFundsFromHop::MonitorUpdateFail(
3893 chan.get().get_counterparty_node_id(),
3894 handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
3895 Some(htlc_value_msat)
3898 if let Some((msg, commitment_signed)) = msgs {
3899 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
3900 log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
3901 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3902 node_id: chan.get().get_counterparty_node_id(),
3903 updates: msgs::CommitmentUpdate {
3904 update_add_htlcs: Vec::new(),
3905 update_fulfill_htlcs: vec![msg],
3906 update_fail_htlcs: Vec::new(),
3907 update_fail_malformed_htlcs: Vec::new(),
3913 return ClaimFundsFromHop::Success(htlc_value_msat);
3915 return ClaimFundsFromHop::DuplicateClaim;
3918 Err((e, monitor_update)) => {
3919 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3920 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info },
3921 "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
3922 payment_preimage, e);
3924 let counterparty_node_id = chan.get().get_counterparty_node_id();
3925 let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id);
3927 chan.remove_entry();
3929 return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
3932 } else { unreachable!(); }
3935 fn finalize_claims(&self, mut sources: Vec<HTLCSource>) {
3936 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3937 let mut pending_events = self.pending_events.lock().unwrap();
3938 for source in sources.drain(..) {
3939 if let HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } = source {
3940 let mut session_priv_bytes = [0; 32];
3941 session_priv_bytes.copy_from_slice(&session_priv[..]);
3942 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3943 assert!(payment.get().is_fulfilled());
3944 if payment.get_mut().remove(&session_priv_bytes, None) {
3945 pending_events.push(
3946 events::Event::PaymentPathSuccessful {
3948 payment_hash: payment.get().payment_hash(),
3953 if payment.get().remaining_parts() == 0 {
3961 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool) {
3963 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
3964 mem::drop(channel_state_lock);
3965 let mut session_priv_bytes = [0; 32];
3966 session_priv_bytes.copy_from_slice(&session_priv[..]);
3967 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3968 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3969 let mut pending_events = self.pending_events.lock().unwrap();
3970 if !payment.get().is_fulfilled() {
3971 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3972 let fee_paid_msat = payment.get().get_pending_fee_msat();
3973 pending_events.push(
3974 events::Event::PaymentSent {
3975 payment_id: Some(payment_id),
3981 payment.get_mut().mark_fulfilled();
3985 // We currently immediately remove HTLCs which were fulfilled on-chain.
3986 // This could potentially lead to removing a pending payment too early,
3987 // with a reorg of one block causing us to re-add the fulfilled payment on
3989 // TODO: We should have a second monitor event that informs us of payments
3990 // irrevocably fulfilled.
3991 if payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
3992 let payment_hash = Some(PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()));
3993 pending_events.push(
3994 events::Event::PaymentPathSuccessful {
4002 if payment.get().remaining_parts() == 0 {
4007 log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
4010 HTLCSource::PreviousHopData(hop_data) => {
4011 let prev_outpoint = hop_data.outpoint;
4012 let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
4013 let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
4014 let htlc_claim_value_msat = match res {
4015 ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
4016 ClaimFundsFromHop::Success(amt) => Some(amt),
4019 if let ClaimFundsFromHop::PrevHopForceClosed = res {
4020 let preimage_update = ChannelMonitorUpdate {
4021 update_id: CLOSED_CHANNEL_UPDATE_ID,
4022 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4023 payment_preimage: payment_preimage.clone(),
4026 // We update the ChannelMonitor on the backward link, after
4027 // receiving an offchain preimage event from the forward link (the
4028 // event being update_fulfill_htlc).
4029 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
4030 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4031 payment_preimage, e);
4033 // Note that we do *not* set `claimed_htlc` to false here. In fact, this
4034 // totally could be a duplicate claim, but we have no way of knowing
4035 // without interrogating the `ChannelMonitor` we've provided the above
4036 // update to. Instead, we simply document in `PaymentForwarded` that this
4039 mem::drop(channel_state_lock);
4040 if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
4041 let result: Result<(), _> = Err(err);
4042 let _ = handle_error!(self, result, pk);
4046 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4047 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4048 Some(claimed_htlc_value - forwarded_htlc_value)
4051 let mut pending_events = self.pending_events.lock().unwrap();
4053 let source_channel_id = Some(prev_outpoint.to_channel_id());
4054 pending_events.push(events::Event::PaymentForwarded {
4057 claim_from_onchain_tx: from_onchain,
4065 /// Gets the node_id held by this ChannelManager
4066 pub fn get_our_node_id(&self) -> PublicKey {
4067 self.our_network_pubkey.clone()
4070 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
4071 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4073 let chan_restoration_res;
4074 let (mut pending_failures, finalized_claims) = {
4075 let mut channel_lock = self.channel_state.lock().unwrap();
4076 let channel_state = &mut *channel_lock;
4077 let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
4078 hash_map::Entry::Occupied(chan) => chan,
4079 hash_map::Entry::Vacant(_) => return,
4081 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4085 let updates = channel.get_mut().monitor_updating_restored(&self.logger, self.get_our_node_id(), self.genesis_hash, self.best_block.read().unwrap().height());
4086 let channel_update = if updates.funding_locked.is_some() && channel.get().is_usable() {
4087 // We only send a channel_update in the case where we are just now sending a
4088 // funding_locked and the channel is in a usable state. We may re-send a
4089 // channel_update later through the announcement_signatures process for public
4090 // channels, but there's no reason not to just inform our counterparty of our fees
4092 if let Ok(msg) = self.get_channel_update_for_unicast(channel.get()) {
4093 Some(events::MessageSendEvent::SendChannelUpdate {
4094 node_id: channel.get().get_counterparty_node_id(),
4099 chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, updates.raa, updates.commitment_update, updates.order, None, updates.accepted_htlcs, updates.funding_broadcastable, updates.funding_locked, updates.announcement_sigs);
4100 if let Some(upd) = channel_update {
4101 channel_state.pending_msg_events.push(upd);
4103 (updates.failed_htlcs, updates.finalized_claimed_htlcs)
4105 post_handle_chan_restoration!(self, chan_restoration_res);
4106 self.finalize_claims(finalized_claims);
4107 for failure in pending_failures.drain(..) {
4108 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
4112 /// Called to accept a request to open a channel after [`Event::OpenChannelRequest`] has been
4115 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted.
4117 /// For inbound channels, the `user_channel_id` parameter will be provided back in
4118 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4119 /// with which `accept_inbound_channel` call.
4121 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4122 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4123 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], user_channel_id: u64) -> Result<(), APIError> {
4124 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4126 let mut channel_state_lock = self.channel_state.lock().unwrap();
4127 let channel_state = &mut *channel_state_lock;
4128 match channel_state.by_id.entry(temporary_channel_id.clone()) {
4129 hash_map::Entry::Occupied(mut channel) => {
4130 if !channel.get().inbound_is_awaiting_accept() {
4131 return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4133 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4134 node_id: channel.get().get_counterparty_node_id(),
4135 msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4138 hash_map::Entry::Vacant(_) => {
4139 return Err(APIError::ChannelUnavailable { err: "Can't accept a channel that doesn't exist".to_owned() });
4145 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4146 if msg.chain_hash != self.genesis_hash {
4147 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4150 if !self.default_configuration.accept_inbound_channels {
4151 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4154 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4155 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.keys_manager,
4156 counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration,
4157 self.best_block.read().unwrap().height(), &self.logger, outbound_scid_alias)
4160 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4161 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4165 let mut channel_state_lock = self.channel_state.lock().unwrap();
4166 let channel_state = &mut *channel_state_lock;
4167 match channel_state.by_id.entry(channel.channel_id()) {
4168 hash_map::Entry::Occupied(_) => {
4169 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4170 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone()))
4172 hash_map::Entry::Vacant(entry) => {
4173 if !self.default_configuration.manually_accept_inbound_channels {
4174 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4175 node_id: counterparty_node_id.clone(),
4176 msg: channel.accept_inbound_channel(0),
4179 let mut pending_events = self.pending_events.lock().unwrap();
4180 pending_events.push(
4181 events::Event::OpenChannelRequest {
4182 temporary_channel_id: msg.temporary_channel_id.clone(),
4183 counterparty_node_id: counterparty_node_id.clone(),
4184 funding_satoshis: msg.funding_satoshis,
4185 push_msat: msg.push_msat,
4186 channel_type: channel.get_channel_type().clone(),
4191 entry.insert(channel);
4197 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4198 let (value, output_script, user_id) = {
4199 let mut channel_lock = self.channel_state.lock().unwrap();
4200 let channel_state = &mut *channel_lock;
4201 match channel_state.by_id.entry(msg.temporary_channel_id) {
4202 hash_map::Entry::Occupied(mut chan) => {
4203 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4204 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
4206 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.peer_channel_config_limits, &their_features), channel_state, chan);
4207 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4209 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
4212 let mut pending_events = self.pending_events.lock().unwrap();
4213 pending_events.push(events::Event::FundingGenerationReady {
4214 temporary_channel_id: msg.temporary_channel_id,
4215 counterparty_node_id: *counterparty_node_id,
4216 channel_value_satoshis: value,
4218 user_channel_id: user_id,
4223 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4224 let ((funding_msg, monitor), mut chan) = {
4225 let best_block = *self.best_block.read().unwrap();
4226 let mut channel_lock = self.channel_state.lock().unwrap();
4227 let channel_state = &mut *channel_lock;
4228 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
4229 hash_map::Entry::Occupied(mut chan) => {
4230 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4231 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
4233 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
4235 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
4238 // Because we have exclusive ownership of the channel here we can release the channel_state
4239 // lock before watch_channel
4240 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
4242 ChannelMonitorUpdateErr::PermanentFailure => {
4243 // Note that we reply with the new channel_id in error messages if we gave up on the
4244 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4245 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4246 // any messages referencing a previously-closed channel anyway.
4247 // We do not do a force-close here as that would generate a monitor update for
4248 // a monitor that we didn't manage to store (and that we don't care about - we
4249 // don't respond with the funding_signed so the channel can never go on chain).
4250 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
4251 assert!(failed_htlcs.is_empty());
4252 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
4254 ChannelMonitorUpdateErr::TemporaryFailure => {
4255 // There's no problem signing a counterparty's funding transaction if our monitor
4256 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4257 // accepted payment from yet. We do, however, need to wait to send our funding_locked
4258 // until we have persisted our monitor.
4259 chan.monitor_update_failed(false, false, Vec::new(), Vec::new(), Vec::new());
4263 let mut channel_state_lock = self.channel_state.lock().unwrap();
4264 let channel_state = &mut *channel_state_lock;
4265 match channel_state.by_id.entry(funding_msg.channel_id) {
4266 hash_map::Entry::Occupied(_) => {
4267 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4269 hash_map::Entry::Vacant(e) => {
4270 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4271 node_id: counterparty_node_id.clone(),
4280 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4282 let best_block = *self.best_block.read().unwrap();
4283 let mut channel_lock = self.channel_state.lock().unwrap();
4284 let channel_state = &mut *channel_lock;
4285 match channel_state.by_id.entry(msg.channel_id) {
4286 hash_map::Entry::Occupied(mut chan) => {
4287 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4288 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4290 let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
4291 Ok(update) => update,
4292 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
4294 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
4295 let mut res = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
4296 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4297 // We weren't able to watch the channel to begin with, so no updates should be made on
4298 // it. Previously, full_stack_target found an (unreachable) panic when the
4299 // monitor update contained within `shutdown_finish` was applied.
4300 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4301 shutdown_finish.0.take();
4308 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4311 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
4312 self.tx_broadcaster.broadcast_transaction(&funding_tx);
4316 fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
4317 let mut channel_state_lock = self.channel_state.lock().unwrap();
4318 let channel_state = &mut *channel_state_lock;
4319 match channel_state.by_id.entry(msg.channel_id) {
4320 hash_map::Entry::Occupied(mut chan) => {
4321 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4322 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4324 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().funding_locked(&msg, self.get_our_node_id(),
4325 self.genesis_hash.clone(), &self.best_block.read().unwrap(), &self.logger), channel_state, chan);
4326 if let Some(announcement_sigs) = announcement_sigs_opt {
4327 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4328 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4329 node_id: counterparty_node_id.clone(),
4330 msg: announcement_sigs,
4332 } else if chan.get().is_usable() {
4333 // If we're sending an announcement_signatures, we'll send the (public)
4334 // channel_update after sending a channel_announcement when we receive our
4335 // counterparty's announcement_signatures. Thus, we only bother to send a
4336 // channel_update here if the channel is not public, i.e. we're not sending an
4337 // announcement_signatures.
4338 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4339 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4340 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4341 node_id: counterparty_node_id.clone(),
4348 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4352 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4353 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4354 let result: Result<(), _> = loop {
4355 let mut channel_state_lock = self.channel_state.lock().unwrap();
4356 let channel_state = &mut *channel_state_lock;
4358 match channel_state.by_id.entry(msg.channel_id.clone()) {
4359 hash_map::Entry::Occupied(mut chan_entry) => {
4360 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
4361 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4364 if !chan_entry.get().received_shutdown() {
4365 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4366 log_bytes!(msg.channel_id),
4367 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4370 let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
4371 dropped_htlcs = htlcs;
4373 // Update the monitor with the shutdown script if necessary.
4374 if let Some(monitor_update) = monitor_update {
4375 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
4376 let (result, is_permanent) =
4377 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE);
4379 remove_channel!(self, channel_state, chan_entry);
4385 if let Some(msg) = shutdown {
4386 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4387 node_id: *counterparty_node_id,
4394 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4397 for htlc_source in dropped_htlcs.drain(..) {
4398 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4401 let _ = handle_error!(self, result, *counterparty_node_id);
4405 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4406 let (tx, chan_option) = {
4407 let mut channel_state_lock = self.channel_state.lock().unwrap();
4408 let channel_state = &mut *channel_state_lock;
4409 match channel_state.by_id.entry(msg.channel_id.clone()) {
4410 hash_map::Entry::Occupied(mut chan_entry) => {
4411 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
4412 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4414 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
4415 if let Some(msg) = closing_signed {
4416 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4417 node_id: counterparty_node_id.clone(),
4422 // We're done with this channel, we've got a signed closing transaction and
4423 // will send the closing_signed back to the remote peer upon return. This
4424 // also implies there are no pending HTLCs left on the channel, so we can
4425 // fully delete it from tracking (the channel monitor is still around to
4426 // watch for old state broadcasts)!
4427 (tx, Some(remove_channel!(self, channel_state, chan_entry)))
4428 } else { (tx, None) }
4430 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4433 if let Some(broadcast_tx) = tx {
4434 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4435 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4437 if let Some(chan) = chan_option {
4438 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4439 let mut channel_state = self.channel_state.lock().unwrap();
4440 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4444 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4449 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4450 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4451 //determine the state of the payment based on our response/if we forward anything/the time
4452 //we take to respond. We should take care to avoid allowing such an attack.
4454 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4455 //us repeatedly garbled in different ways, and compare our error messages, which are
4456 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4457 //but we should prevent it anyway.
4459 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
4460 let channel_state = &mut *channel_state_lock;
4462 match channel_state.by_id.entry(msg.channel_id) {
4463 hash_map::Entry::Occupied(mut chan) => {
4464 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4465 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4468 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4469 // If the update_add is completely bogus, the call will Err and we will close,
4470 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4471 // want to reject the new HTLC and fail it backwards instead of forwarding.
4472 match pending_forward_info {
4473 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4474 let reason = if (error_code & 0x1000) != 0 {
4475 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4476 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, real_code, &error_data)
4478 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
4480 let msg = msgs::UpdateFailHTLC {
4481 channel_id: msg.channel_id,
4482 htlc_id: msg.htlc_id,
4485 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4487 _ => pending_forward_info
4490 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
4492 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4497 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4498 let mut channel_lock = self.channel_state.lock().unwrap();
4499 let (htlc_source, forwarded_htlc_value) = {
4500 let channel_state = &mut *channel_lock;
4501 match channel_state.by_id.entry(msg.channel_id) {
4502 hash_map::Entry::Occupied(mut chan) => {
4503 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4504 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4506 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
4508 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4511 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false);
4515 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4516 let mut channel_lock = self.channel_state.lock().unwrap();
4517 let channel_state = &mut *channel_lock;
4518 match channel_state.by_id.entry(msg.channel_id) {
4519 hash_map::Entry::Occupied(mut chan) => {
4520 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4521 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4523 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
4525 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4530 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4531 let mut channel_lock = self.channel_state.lock().unwrap();
4532 let channel_state = &mut *channel_lock;
4533 match channel_state.by_id.entry(msg.channel_id) {
4534 hash_map::Entry::Occupied(mut chan) => {
4535 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4536 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4538 if (msg.failure_code & 0x8000) == 0 {
4539 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4540 try_chan_entry!(self, Err(chan_err), channel_state, chan);
4542 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
4545 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4549 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4550 let mut channel_state_lock = self.channel_state.lock().unwrap();
4551 let channel_state = &mut *channel_state_lock;
4552 match channel_state.by_id.entry(msg.channel_id) {
4553 hash_map::Entry::Occupied(mut chan) => {
4554 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4555 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4557 let (revoke_and_ack, commitment_signed, monitor_update) =
4558 match chan.get_mut().commitment_signed(&msg, &self.logger) {
4559 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
4560 Err((Some(update), e)) => {
4561 assert!(chan.get().is_awaiting_monitor_update());
4562 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
4563 try_chan_entry!(self, Err(e), channel_state, chan);
4568 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
4569 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
4571 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4572 node_id: counterparty_node_id.clone(),
4573 msg: revoke_and_ack,
4575 if let Some(msg) = commitment_signed {
4576 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4577 node_id: counterparty_node_id.clone(),
4578 updates: msgs::CommitmentUpdate {
4579 update_add_htlcs: Vec::new(),
4580 update_fulfill_htlcs: Vec::new(),
4581 update_fail_htlcs: Vec::new(),
4582 update_fail_malformed_htlcs: Vec::new(),
4584 commitment_signed: msg,
4590 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4595 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
4596 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
4597 let mut forward_event = None;
4598 if !pending_forwards.is_empty() {
4599 let mut channel_state = self.channel_state.lock().unwrap();
4600 if channel_state.forward_htlcs.is_empty() {
4601 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
4603 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4604 match channel_state.forward_htlcs.entry(match forward_info.routing {
4605 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4606 PendingHTLCRouting::Receive { .. } => 0,
4607 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4609 hash_map::Entry::Occupied(mut entry) => {
4610 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
4611 prev_htlc_id, forward_info });
4613 hash_map::Entry::Vacant(entry) => {
4614 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
4615 prev_htlc_id, forward_info }));
4620 match forward_event {
4622 let mut pending_events = self.pending_events.lock().unwrap();
4623 pending_events.push(events::Event::PendingHTLCsForwardable {
4624 time_forwardable: time
4632 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4633 let mut htlcs_to_fail = Vec::new();
4635 let mut channel_state_lock = self.channel_state.lock().unwrap();
4636 let channel_state = &mut *channel_state_lock;
4637 match channel_state.by_id.entry(msg.channel_id) {
4638 hash_map::Entry::Occupied(mut chan) => {
4639 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4640 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4642 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
4643 let raa_updates = break_chan_entry!(self,
4644 chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
4645 htlcs_to_fail = raa_updates.holding_cell_failed_htlcs;
4646 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), raa_updates.monitor_update) {
4647 if was_frozen_for_monitor {
4648 assert!(raa_updates.commitment_update.is_none());
4649 assert!(raa_updates.accepted_htlcs.is_empty());
4650 assert!(raa_updates.failed_htlcs.is_empty());
4651 assert!(raa_updates.finalized_claimed_htlcs.is_empty());
4652 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
4654 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan,
4655 RAACommitmentOrder::CommitmentFirst, false,
4656 raa_updates.commitment_update.is_some(),
4657 raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
4658 raa_updates.finalized_claimed_htlcs) {
4660 } else { unreachable!(); }
4663 if let Some(updates) = raa_updates.commitment_update {
4664 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4665 node_id: counterparty_node_id.clone(),
4669 break Ok((raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
4670 raa_updates.finalized_claimed_htlcs,
4671 chan.get().get_short_channel_id()
4672 .expect("RAA should only work on a short-id-available channel"),
4673 chan.get().get_funding_txo().unwrap()))
4675 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4678 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
4680 Ok((pending_forwards, mut pending_failures, finalized_claim_htlcs,
4681 short_channel_id, channel_outpoint)) =>
4683 for failure in pending_failures.drain(..) {
4684 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
4686 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
4687 self.finalize_claims(finalized_claim_htlcs);
4694 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
4695 let mut channel_lock = self.channel_state.lock().unwrap();
4696 let channel_state = &mut *channel_lock;
4697 match channel_state.by_id.entry(msg.channel_id) {
4698 hash_map::Entry::Occupied(mut chan) => {
4699 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4700 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4702 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
4704 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4709 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
4710 let mut channel_state_lock = self.channel_state.lock().unwrap();
4711 let channel_state = &mut *channel_state_lock;
4713 match channel_state.by_id.entry(msg.channel_id) {
4714 hash_map::Entry::Occupied(mut chan) => {
4715 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4716 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4718 if !chan.get().is_usable() {
4719 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
4722 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
4723 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
4724 self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height(), msg), channel_state, chan),
4725 // Note that announcement_signatures fails if the channel cannot be announced,
4726 // so get_channel_update_for_broadcast will never fail by the time we get here.
4727 update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
4730 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4735 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
4736 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
4737 let mut channel_state_lock = self.channel_state.lock().unwrap();
4738 let channel_state = &mut *channel_state_lock;
4739 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
4740 Some(chan_id) => chan_id.clone(),
4742 // It's not a local channel
4743 return Ok(NotifyOption::SkipPersist)
4746 match channel_state.by_id.entry(chan_id) {
4747 hash_map::Entry::Occupied(mut chan) => {
4748 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4749 if chan.get().should_announce() {
4750 // If the announcement is about a channel of ours which is public, some
4751 // other peer may simply be forwarding all its gossip to us. Don't provide
4752 // a scary-looking error message and return Ok instead.
4753 return Ok(NotifyOption::SkipPersist);
4755 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
4757 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
4758 let msg_from_node_one = msg.contents.flags & 1 == 0;
4759 if were_node_one == msg_from_node_one {
4760 return Ok(NotifyOption::SkipPersist);
4762 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
4765 hash_map::Entry::Vacant(_) => unreachable!()
4767 Ok(NotifyOption::DoPersist)
4770 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
4771 let chan_restoration_res;
4772 let (htlcs_failed_forward, need_lnd_workaround) = {
4773 let mut channel_state_lock = self.channel_state.lock().unwrap();
4774 let channel_state = &mut *channel_state_lock;
4776 match channel_state.by_id.entry(msg.channel_id) {
4777 hash_map::Entry::Occupied(mut chan) => {
4778 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4779 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4781 // Currently, we expect all holding cell update_adds to be dropped on peer
4782 // disconnect, so Channel's reestablish will never hand us any holding cell
4783 // freed HTLCs to fail backwards. If in the future we no longer drop pending
4784 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
4785 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
4786 msg, &self.logger, self.our_network_pubkey.clone(), self.genesis_hash,
4787 &*self.best_block.read().unwrap()), channel_state, chan);
4788 let mut channel_update = None;
4789 if let Some(msg) = responses.shutdown_msg {
4790 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4791 node_id: counterparty_node_id.clone(),
4794 } else if chan.get().is_usable() {
4795 // If the channel is in a usable state (ie the channel is not being shut
4796 // down), send a unicast channel_update to our counterparty to make sure
4797 // they have the latest channel parameters.
4798 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4799 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
4800 node_id: chan.get().get_counterparty_node_id(),
4805 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
4806 chan_restoration_res = handle_chan_restoration_locked!(
4807 self, channel_state_lock, channel_state, chan, responses.raa, responses.commitment_update, responses.order,
4808 responses.mon_update, Vec::new(), None, responses.funding_locked, responses.announcement_sigs);
4809 if let Some(upd) = channel_update {
4810 channel_state.pending_msg_events.push(upd);
4812 (responses.holding_cell_failed_htlcs, need_lnd_workaround)
4814 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4817 post_handle_chan_restoration!(self, chan_restoration_res);
4818 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
4820 if let Some(funding_locked_msg) = need_lnd_workaround {
4821 self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
4826 /// Process pending events from the `chain::Watch`, returning whether any events were processed.
4827 fn process_pending_monitor_events(&self) -> bool {
4828 let mut failed_channels = Vec::new();
4829 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
4830 let has_pending_monitor_events = !pending_monitor_events.is_empty();
4831 for monitor_event in pending_monitor_events.drain(..) {
4832 match monitor_event {
4833 MonitorEvent::HTLCEvent(htlc_update) => {
4834 if let Some(preimage) = htlc_update.payment_preimage {
4835 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
4836 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.onchain_value_satoshis.map(|v| v * 1000), true);
4838 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
4839 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4842 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
4843 MonitorEvent::UpdateFailed(funding_outpoint) => {
4844 let mut channel_lock = self.channel_state.lock().unwrap();
4845 let channel_state = &mut *channel_lock;
4846 let by_id = &mut channel_state.by_id;
4847 let pending_msg_events = &mut channel_state.pending_msg_events;
4848 if let hash_map::Entry::Occupied(chan_entry) = by_id.entry(funding_outpoint.to_channel_id()) {
4849 let mut chan = remove_channel!(self, channel_state, chan_entry);
4850 failed_channels.push(chan.force_shutdown(false));
4851 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4852 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4856 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
4857 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
4859 ClosureReason::CommitmentTxConfirmed
4861 self.issue_channel_close_events(&chan, reason);
4862 pending_msg_events.push(events::MessageSendEvent::HandleError {
4863 node_id: chan.get_counterparty_node_id(),
4864 action: msgs::ErrorAction::SendErrorMessage {
4865 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
4870 MonitorEvent::UpdateCompleted { funding_txo, monitor_update_id } => {
4871 self.channel_monitor_updated(&funding_txo, monitor_update_id);
4876 for failure in failed_channels.drain(..) {
4877 self.finish_force_close_channel(failure);
4880 has_pending_monitor_events
4883 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
4884 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
4885 /// update events as a separate process method here.
4887 pub fn process_monitor_events(&self) {
4888 self.process_pending_monitor_events();
4891 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
4892 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
4893 /// update was applied.
4895 /// This should only apply to HTLCs which were added to the holding cell because we were
4896 /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
4897 /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
4898 /// code to inform them of a channel monitor update.
4899 fn check_free_holding_cells(&self) -> bool {
4900 let mut has_monitor_update = false;
4901 let mut failed_htlcs = Vec::new();
4902 let mut handle_errors = Vec::new();
4904 let mut channel_state_lock = self.channel_state.lock().unwrap();
4905 let channel_state = &mut *channel_state_lock;
4906 let by_id = &mut channel_state.by_id;
4907 let short_to_id = &mut channel_state.short_to_id;
4908 let pending_msg_events = &mut channel_state.pending_msg_events;
4910 by_id.retain(|channel_id, chan| {
4911 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
4912 Ok((commitment_opt, holding_cell_failed_htlcs)) => {
4913 if !holding_cell_failed_htlcs.is_empty() {
4914 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
4916 if let Some((commitment_update, monitor_update)) = commitment_opt {
4917 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
4918 has_monitor_update = true;
4919 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, channel_id, COMMITMENT_UPDATE_ONLY);
4920 handle_errors.push((chan.get_counterparty_node_id(), res));
4921 if close_channel { return false; }
4923 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4924 node_id: chan.get_counterparty_node_id(),
4925 updates: commitment_update,
4932 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4933 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4934 // ChannelClosed event is generated by handle_error for us
4941 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
4942 for (failures, channel_id) in failed_htlcs.drain(..) {
4943 self.fail_holding_cell_htlcs(failures, channel_id);
4946 for (counterparty_node_id, err) in handle_errors.drain(..) {
4947 let _ = handle_error!(self, err, counterparty_node_id);
4953 /// Check whether any channels have finished removing all pending updates after a shutdown
4954 /// exchange and can now send a closing_signed.
4955 /// Returns whether any closing_signed messages were generated.
4956 fn maybe_generate_initial_closing_signed(&self) -> bool {
4957 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
4958 let mut has_update = false;
4960 let mut channel_state_lock = self.channel_state.lock().unwrap();
4961 let channel_state = &mut *channel_state_lock;
4962 let by_id = &mut channel_state.by_id;
4963 let short_to_id = &mut channel_state.short_to_id;
4964 let pending_msg_events = &mut channel_state.pending_msg_events;
4966 by_id.retain(|channel_id, chan| {
4967 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
4968 Ok((msg_opt, tx_opt)) => {
4969 if let Some(msg) = msg_opt {
4971 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4972 node_id: chan.get_counterparty_node_id(), msg,
4975 if let Some(tx) = tx_opt {
4976 // We're done with this channel. We got a closing_signed and sent back
4977 // a closing_signed with a closing transaction to broadcast.
4978 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4979 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4984 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
4986 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
4987 self.tx_broadcaster.broadcast_transaction(&tx);
4988 update_maps_on_chan_removal!(self, short_to_id, chan);
4994 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4995 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5002 for (counterparty_node_id, err) in handle_errors.drain(..) {
5003 let _ = handle_error!(self, err, counterparty_node_id);
5009 /// Handle a list of channel failures during a block_connected or block_disconnected call,
5010 /// pushing the channel monitor update (if any) to the background events queue and removing the
5012 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5013 for mut failure in failed_channels.drain(..) {
5014 // Either a commitment transactions has been confirmed on-chain or
5015 // Channel::block_disconnected detected that the funding transaction has been
5016 // reorganized out of the main chain.
5017 // We cannot broadcast our latest local state via monitor update (as
5018 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5019 // so we track the update internally and handle it when the user next calls
5020 // timer_tick_occurred, guaranteeing we're running normally.
5021 if let Some((funding_txo, update)) = failure.0.take() {
5022 assert_eq!(update.updates.len(), 1);
5023 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5024 assert!(should_broadcast);
5025 } else { unreachable!(); }
5026 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5028 self.finish_force_close_channel(failure);
5032 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5033 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5035 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5036 return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5039 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
5041 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5042 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5043 match payment_secrets.entry(payment_hash) {
5044 hash_map::Entry::Vacant(e) => {
5045 e.insert(PendingInboundPayment {
5046 payment_secret, min_value_msat, payment_preimage,
5047 user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5048 // We assume that highest_seen_timestamp is pretty close to the current time -
5049 // it's updated when we receive a new block with the maximum time we've seen in
5050 // a header. It should never be more than two hours in the future.
5051 // Thus, we add two hours here as a buffer to ensure we absolutely
5052 // never fail a payment too early.
5053 // Note that we assume that received blocks have reasonably up-to-date
5055 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5058 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5063 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5066 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5067 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5069 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
5070 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
5071 /// passed directly to [`claim_funds`].
5073 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5075 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5076 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5080 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5081 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5083 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5085 /// [`claim_funds`]: Self::claim_funds
5086 /// [`PaymentReceived`]: events::Event::PaymentReceived
5087 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
5088 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5089 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), ()> {
5090 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs, &self.keys_manager, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
5093 /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5094 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5096 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5099 /// This method is deprecated and will be removed soon.
5101 /// [`create_inbound_payment`]: Self::create_inbound_payment
5103 pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5104 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
5105 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5106 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5107 Ok((payment_hash, payment_secret))
5110 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5111 /// stored external to LDK.
5113 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
5114 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5115 /// the `min_value_msat` provided here, if one is provided.
5117 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5118 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5121 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5122 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5123 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
5124 /// sender "proof-of-payment" unless they have paid the required amount.
5126 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5127 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5128 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5129 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5130 /// invoices when no timeout is set.
5132 /// Note that we use block header time to time-out pending inbound payments (with some margin
5133 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5134 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
5135 /// If you need exact expiry semantics, you should enforce them upon receipt of
5136 /// [`PaymentReceived`].
5138 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
5139 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
5141 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5142 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5146 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5147 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5149 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5151 /// [`create_inbound_payment`]: Self::create_inbound_payment
5152 /// [`PaymentReceived`]: events::Event::PaymentReceived
5153 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, ()> {
5154 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash, invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
5157 /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5158 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5160 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5163 /// This method is deprecated and will be removed soon.
5165 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5167 pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5168 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5171 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5172 /// previously returned from [`create_inbound_payment`].
5174 /// [`create_inbound_payment`]: Self::create_inbound_payment
5175 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5176 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5179 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5180 /// are used when constructing the phantom invoice's route hints.
5182 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5183 pub fn get_phantom_scid(&self) -> u64 {
5184 let mut channel_state = self.channel_state.lock().unwrap();
5185 let best_block = self.best_block.read().unwrap();
5187 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block.height(), &self.genesis_hash, &self.fake_scid_rand_bytes, &self.keys_manager);
5188 // Ensure the generated scid doesn't conflict with a real channel.
5189 match channel_state.short_to_id.entry(scid_candidate) {
5190 hash_map::Entry::Occupied(_) => continue,
5191 hash_map::Entry::Vacant(_) => return scid_candidate
5196 /// Gets route hints for use in receiving [phantom node payments].
5198 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5199 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5201 channels: self.list_usable_channels(),
5202 phantom_scid: self.get_phantom_scid(),
5203 real_node_pubkey: self.get_our_node_id(),
5207 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5208 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5209 let events = core::cell::RefCell::new(Vec::new());
5210 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
5211 self.process_pending_events(&event_handler);
5216 pub fn has_pending_payments(&self) -> bool {
5217 !self.pending_outbound_payments.lock().unwrap().is_empty()
5221 pub fn clear_pending_payments(&self) {
5222 self.pending_outbound_payments.lock().unwrap().clear()
5226 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
5227 where M::Target: chain::Watch<Signer>,
5228 T::Target: BroadcasterInterface,
5229 K::Target: KeysInterface<Signer = Signer>,
5230 F::Target: FeeEstimator,
5233 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5234 let events = RefCell::new(Vec::new());
5235 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5236 let mut result = NotifyOption::SkipPersist;
5238 // TODO: This behavior should be documented. It's unintuitive that we query
5239 // ChannelMonitors when clearing other events.
5240 if self.process_pending_monitor_events() {
5241 result = NotifyOption::DoPersist;
5244 if self.check_free_holding_cells() {
5245 result = NotifyOption::DoPersist;
5247 if self.maybe_generate_initial_closing_signed() {
5248 result = NotifyOption::DoPersist;
5251 let mut pending_events = Vec::new();
5252 let mut channel_state = self.channel_state.lock().unwrap();
5253 mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
5255 if !pending_events.is_empty() {
5256 events.replace(pending_events);
5265 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
5267 M::Target: chain::Watch<Signer>,
5268 T::Target: BroadcasterInterface,
5269 K::Target: KeysInterface<Signer = Signer>,
5270 F::Target: FeeEstimator,
5273 /// Processes events that must be periodically handled.
5275 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5276 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5278 /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
5279 /// when processed, an [`EventHandler`] must be able to handle previously seen events when
5280 /// restarting from an old state.
5281 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5282 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5283 let mut result = NotifyOption::SkipPersist;
5285 // TODO: This behavior should be documented. It's unintuitive that we query
5286 // ChannelMonitors when clearing other events.
5287 if self.process_pending_monitor_events() {
5288 result = NotifyOption::DoPersist;
5291 let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5292 if !pending_events.is_empty() {
5293 result = NotifyOption::DoPersist;
5296 for event in pending_events.drain(..) {
5297 handler.handle_event(&event);
5305 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
5307 M::Target: chain::Watch<Signer>,
5308 T::Target: BroadcasterInterface,
5309 K::Target: KeysInterface<Signer = Signer>,
5310 F::Target: FeeEstimator,
5313 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5315 let best_block = self.best_block.read().unwrap();
5316 assert_eq!(best_block.block_hash(), header.prev_blockhash,
5317 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5318 assert_eq!(best_block.height(), height - 1,
5319 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5322 self.transactions_confirmed(header, txdata, height);
5323 self.best_block_updated(header, height);
5326 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5327 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5328 let new_height = height - 1;
5330 let mut best_block = self.best_block.write().unwrap();
5331 assert_eq!(best_block.block_hash(), header.block_hash(),
5332 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5333 assert_eq!(best_block.height(), height,
5334 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5335 *best_block = BestBlock::new(header.prev_blockhash, new_height)
5338 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5342 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
5344 M::Target: chain::Watch<Signer>,
5345 T::Target: BroadcasterInterface,
5346 K::Target: KeysInterface<Signer = Signer>,
5347 F::Target: FeeEstimator,
5350 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5351 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5352 // during initialization prior to the chain_monitor being fully configured in some cases.
5353 // See the docs for `ChannelManagerReadArgs` for more.
5355 let block_hash = header.block_hash();
5356 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5358 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5359 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger)
5360 .map(|(a, b)| (a, Vec::new(), b)));
5362 let last_best_block_height = self.best_block.read().unwrap().height();
5363 if height < last_best_block_height {
5364 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5365 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5369 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5370 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5371 // during initialization prior to the chain_monitor being fully configured in some cases.
5372 // See the docs for `ChannelManagerReadArgs` for more.
5374 let block_hash = header.block_hash();
5375 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5377 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5379 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5381 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5383 macro_rules! max_time {
5384 ($timestamp: expr) => {
5386 // Update $timestamp to be the max of its current value and the block
5387 // timestamp. This should keep us close to the current time without relying on
5388 // having an explicit local time source.
5389 // Just in case we end up in a race, we loop until we either successfully
5390 // update $timestamp or decide we don't need to.
5391 let old_serial = $timestamp.load(Ordering::Acquire);
5392 if old_serial >= header.time as usize { break; }
5393 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5399 max_time!(self.last_node_announcement_serial);
5400 max_time!(self.highest_seen_timestamp);
5401 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5402 payment_secrets.retain(|_, inbound_payment| {
5403 inbound_payment.expiry_time > header.time as u64
5406 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
5407 let mut pending_events = self.pending_events.lock().unwrap();
5408 outbounds.retain(|payment_id, payment| {
5409 if payment.remaining_parts() != 0 { return true }
5410 if let PendingOutboundPayment::Retryable { starting_block_height, payment_hash, .. } = payment {
5411 if *starting_block_height + PAYMENT_EXPIRY_BLOCKS <= height {
5412 log_info!(self.logger, "Timing out payment with id {} and hash {}", log_bytes!(payment_id.0), log_bytes!(payment_hash.0));
5413 pending_events.push(events::Event::PaymentFailed {
5414 payment_id: *payment_id, payment_hash: *payment_hash,
5422 fn get_relevant_txids(&self) -> Vec<Txid> {
5423 let channel_state = self.channel_state.lock().unwrap();
5424 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
5425 for chan in channel_state.by_id.values() {
5426 if let Some(funding_txo) = chan.get_funding_txo() {
5427 res.push(funding_txo.txid);
5433 fn transaction_unconfirmed(&self, txid: &Txid) {
5434 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5435 self.do_chain_event(None, |channel| {
5436 if let Some(funding_txo) = channel.get_funding_txo() {
5437 if funding_txo.txid == *txid {
5438 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5439 } else { Ok((None, Vec::new(), None)) }
5440 } else { Ok((None, Vec::new(), None)) }
5445 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
5447 M::Target: chain::Watch<Signer>,
5448 T::Target: BroadcasterInterface,
5449 K::Target: KeysInterface<Signer = Signer>,
5450 F::Target: FeeEstimator,
5453 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5454 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5456 fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5457 (&self, height_opt: Option<u32>, f: FN) {
5458 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5459 // during initialization prior to the chain_monitor being fully configured in some cases.
5460 // See the docs for `ChannelManagerReadArgs` for more.
5462 let mut failed_channels = Vec::new();
5463 let mut timed_out_htlcs = Vec::new();
5465 let mut channel_lock = self.channel_state.lock().unwrap();
5466 let channel_state = &mut *channel_lock;
5467 let short_to_id = &mut channel_state.short_to_id;
5468 let pending_msg_events = &mut channel_state.pending_msg_events;
5469 channel_state.by_id.retain(|_, channel| {
5470 let res = f(channel);
5471 if let Ok((funding_locked_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5472 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5473 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5474 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
5478 if let Some(funding_locked) = funding_locked_opt {
5479 send_funding_locked!(short_to_id, pending_msg_events, channel, funding_locked);
5480 if channel.is_usable() {
5481 log_trace!(self.logger, "Sending funding_locked with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5482 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5483 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5484 node_id: channel.get_counterparty_node_id(),
5489 log_trace!(self.logger, "Sending funding_locked WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5492 if let Some(announcement_sigs) = announcement_sigs {
5493 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5494 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5495 node_id: channel.get_counterparty_node_id(),
5496 msg: announcement_sigs,
5498 if let Some(height) = height_opt {
5499 if let Some(announcement) = channel.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash, height) {
5500 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5502 // Note that announcement_signatures fails if the channel cannot be announced,
5503 // so get_channel_update_for_broadcast will never fail by the time we get here.
5504 update_msg: self.get_channel_update_for_broadcast(channel).unwrap(),
5509 } else if let Err(reason) = res {
5510 update_maps_on_chan_removal!(self, short_to_id, channel);
5511 // It looks like our counterparty went on-chain or funding transaction was
5512 // reorged out of the main chain. Close the channel.
5513 failed_channels.push(channel.force_shutdown(true));
5514 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
5515 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5519 let reason_message = format!("{}", reason);
5520 self.issue_channel_close_events(channel, reason);
5521 pending_msg_events.push(events::MessageSendEvent::HandleError {
5522 node_id: channel.get_counterparty_node_id(),
5523 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
5524 channel_id: channel.channel_id(),
5525 data: reason_message,
5533 if let Some(height) = height_opt {
5534 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
5535 htlcs.retain(|htlc| {
5536 // If height is approaching the number of blocks we think it takes us to get
5537 // our commitment transaction confirmed before the HTLC expires, plus the
5538 // number of blocks we generally consider it to take to do a commitment update,
5539 // just give up on it and fail the HTLC.
5540 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
5541 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
5542 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
5543 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
5544 failure_code: 0x4000 | 15,
5545 data: htlc_msat_height_data
5550 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
5555 self.handle_init_event_channel_failures(failed_channels);
5557 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
5558 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
5562 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
5563 /// indicating whether persistence is necessary. Only one listener on
5564 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
5567 /// Note that this method is not available with the `no-std` feature.
5568 #[cfg(any(test, feature = "std"))]
5569 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
5570 self.persistence_notifier.wait_timeout(max_wait)
5573 /// Blocks until ChannelManager needs to be persisted. Only one listener on
5574 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
5576 pub fn await_persistable_update(&self) {
5577 self.persistence_notifier.wait()
5580 #[cfg(any(test, feature = "_test_utils"))]
5581 pub fn get_persistence_condvar_value(&self) -> bool {
5582 let mutcond = &self.persistence_notifier.persistence_lock;
5583 let &(ref mtx, _) = mutcond;
5584 let guard = mtx.lock().unwrap();
5588 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
5589 /// [`chain::Confirm`] interfaces.
5590 pub fn current_best_block(&self) -> BestBlock {
5591 self.best_block.read().unwrap().clone()
5595 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
5596 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
5597 where M::Target: chain::Watch<Signer>,
5598 T::Target: BroadcasterInterface,
5599 K::Target: KeysInterface<Signer = Signer>,
5600 F::Target: FeeEstimator,
5603 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
5604 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5605 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
5608 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
5609 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5610 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
5613 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
5614 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5615 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
5618 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
5619 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5620 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
5623 fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
5624 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5625 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
5628 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
5629 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5630 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
5633 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
5634 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5635 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
5638 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
5639 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5640 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
5643 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
5644 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5645 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
5648 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
5649 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5650 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
5653 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
5654 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5655 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
5658 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
5659 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5660 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
5663 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
5664 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5665 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
5668 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
5669 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5670 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
5673 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
5674 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5675 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
5678 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
5679 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5680 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
5683 NotifyOption::SkipPersist
5688 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
5689 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5690 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
5693 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
5694 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5695 let mut failed_channels = Vec::new();
5696 let mut no_channels_remain = true;
5698 let mut channel_state_lock = self.channel_state.lock().unwrap();
5699 let channel_state = &mut *channel_state_lock;
5700 let pending_msg_events = &mut channel_state.pending_msg_events;
5701 let short_to_id = &mut channel_state.short_to_id;
5702 if no_connection_possible {
5703 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
5704 channel_state.by_id.retain(|_, chan| {
5705 if chan.get_counterparty_node_id() == *counterparty_node_id {
5706 update_maps_on_chan_removal!(self, short_to_id, chan);
5707 failed_channels.push(chan.force_shutdown(true));
5708 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5709 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5713 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
5720 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
5721 channel_state.by_id.retain(|_, chan| {
5722 if chan.get_counterparty_node_id() == *counterparty_node_id {
5723 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
5724 if chan.is_shutdown() {
5725 update_maps_on_chan_removal!(self, short_to_id, chan);
5726 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
5729 no_channels_remain = false;
5735 pending_msg_events.retain(|msg| {
5737 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
5738 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
5739 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
5740 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
5741 &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
5742 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
5743 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
5744 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
5745 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
5746 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
5747 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
5748 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
5749 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
5750 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
5751 &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
5752 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
5753 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
5754 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
5755 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
5756 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
5760 if no_channels_remain {
5761 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
5764 for failure in failed_channels.drain(..) {
5765 self.finish_force_close_channel(failure);
5769 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
5770 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
5772 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5775 let mut peer_state_lock = self.per_peer_state.write().unwrap();
5776 match peer_state_lock.entry(counterparty_node_id.clone()) {
5777 hash_map::Entry::Vacant(e) => {
5778 e.insert(Mutex::new(PeerState {
5779 latest_features: init_msg.features.clone(),
5782 hash_map::Entry::Occupied(e) => {
5783 e.get().lock().unwrap().latest_features = init_msg.features.clone();
5788 let mut channel_state_lock = self.channel_state.lock().unwrap();
5789 let channel_state = &mut *channel_state_lock;
5790 let pending_msg_events = &mut channel_state.pending_msg_events;
5791 channel_state.by_id.retain(|_, chan| {
5792 if chan.get_counterparty_node_id() == *counterparty_node_id {
5793 if !chan.have_received_message() {
5794 // If we created this (outbound) channel while we were disconnected from the
5795 // peer we probably failed to send the open_channel message, which is now
5796 // lost. We can't have had anything pending related to this channel, so we just
5800 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
5801 node_id: chan.get_counterparty_node_id(),
5802 msg: chan.get_channel_reestablish(&self.logger),
5808 //TODO: Also re-broadcast announcement_signatures
5811 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
5812 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5814 if msg.channel_id == [0; 32] {
5815 for chan in self.list_channels() {
5816 if chan.counterparty.node_id == *counterparty_node_id {
5817 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
5818 let _ = self.force_close_channel_with_peer(&chan.channel_id, counterparty_node_id, Some(&msg.data));
5823 // First check if we can advance the channel type and try again.
5824 let mut channel_state = self.channel_state.lock().unwrap();
5825 if let Some(chan) = channel_state.by_id.get_mut(&msg.channel_id) {
5826 if chan.get_counterparty_node_id() != *counterparty_node_id {
5829 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
5830 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
5831 node_id: *counterparty_node_id,
5839 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
5840 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data));
5845 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
5846 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
5847 struct PersistenceNotifier {
5848 /// Users won't access the persistence_lock directly, but rather wait on its bool using
5849 /// `wait_timeout` and `wait`.
5850 persistence_lock: (Mutex<bool>, Condvar),
5853 impl PersistenceNotifier {
5856 persistence_lock: (Mutex::new(false), Condvar::new()),
5862 let &(ref mtx, ref cvar) = &self.persistence_lock;
5863 let mut guard = mtx.lock().unwrap();
5868 guard = cvar.wait(guard).unwrap();
5869 let result = *guard;
5877 #[cfg(any(test, feature = "std"))]
5878 fn wait_timeout(&self, max_wait: Duration) -> bool {
5879 let current_time = Instant::now();
5881 let &(ref mtx, ref cvar) = &self.persistence_lock;
5882 let mut guard = mtx.lock().unwrap();
5887 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
5888 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
5889 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
5890 // time. Note that this logic can be highly simplified through the use of
5891 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
5893 let elapsed = current_time.elapsed();
5894 let result = *guard;
5895 if result || elapsed >= max_wait {
5899 match max_wait.checked_sub(elapsed) {
5900 None => return result,
5906 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
5908 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
5909 let mut persistence_lock = persist_mtx.lock().unwrap();
5910 *persistence_lock = true;
5911 mem::drop(persistence_lock);
5916 const SERIALIZATION_VERSION: u8 = 1;
5917 const MIN_SERIALIZATION_VERSION: u8 = 1;
5919 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
5920 (2, fee_base_msat, required),
5921 (4, fee_proportional_millionths, required),
5922 (6, cltv_expiry_delta, required),
5925 impl_writeable_tlv_based!(ChannelCounterparty, {
5926 (2, node_id, required),
5927 (4, features, required),
5928 (6, unspendable_punishment_reserve, required),
5929 (8, forwarding_info, option),
5930 (9, outbound_htlc_minimum_msat, option),
5931 (11, outbound_htlc_maximum_msat, option),
5934 impl_writeable_tlv_based!(ChannelDetails, {
5935 (1, inbound_scid_alias, option),
5936 (2, channel_id, required),
5937 (3, channel_type, option),
5938 (4, counterparty, required),
5939 (6, funding_txo, option),
5940 (8, short_channel_id, option),
5941 (10, channel_value_satoshis, required),
5942 (12, unspendable_punishment_reserve, option),
5943 (14, user_channel_id, required),
5944 (16, balance_msat, required),
5945 (18, outbound_capacity_msat, required),
5946 // Note that by the time we get past the required read above, outbound_capacity_msat will be
5947 // filled in, so we can safely unwrap it here.
5948 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap())),
5949 (20, inbound_capacity_msat, required),
5950 (22, confirmations_required, option),
5951 (24, force_close_spend_delay, option),
5952 (26, is_outbound, required),
5953 (28, is_funding_locked, required),
5954 (30, is_usable, required),
5955 (32, is_public, required),
5956 (33, inbound_htlc_minimum_msat, option),
5957 (35, inbound_htlc_maximum_msat, option),
5960 impl_writeable_tlv_based!(PhantomRouteHints, {
5961 (2, channels, vec_type),
5962 (4, phantom_scid, required),
5963 (6, real_node_pubkey, required),
5966 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
5968 (0, onion_packet, required),
5969 (2, short_channel_id, required),
5972 (0, payment_data, required),
5973 (1, phantom_shared_secret, option),
5974 (2, incoming_cltv_expiry, required),
5976 (2, ReceiveKeysend) => {
5977 (0, payment_preimage, required),
5978 (2, incoming_cltv_expiry, required),
5982 impl_writeable_tlv_based!(PendingHTLCInfo, {
5983 (0, routing, required),
5984 (2, incoming_shared_secret, required),
5985 (4, payment_hash, required),
5986 (6, amt_to_forward, required),
5987 (8, outgoing_cltv_value, required)
5991 impl Writeable for HTLCFailureMsg {
5992 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5994 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
5996 channel_id.write(writer)?;
5997 htlc_id.write(writer)?;
5998 reason.write(writer)?;
6000 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6001 channel_id, htlc_id, sha256_of_onion, failure_code
6004 channel_id.write(writer)?;
6005 htlc_id.write(writer)?;
6006 sha256_of_onion.write(writer)?;
6007 failure_code.write(writer)?;
6014 impl Readable for HTLCFailureMsg {
6015 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6016 let id: u8 = Readable::read(reader)?;
6019 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6020 channel_id: Readable::read(reader)?,
6021 htlc_id: Readable::read(reader)?,
6022 reason: Readable::read(reader)?,
6026 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6027 channel_id: Readable::read(reader)?,
6028 htlc_id: Readable::read(reader)?,
6029 sha256_of_onion: Readable::read(reader)?,
6030 failure_code: Readable::read(reader)?,
6033 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6034 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6035 // messages contained in the variants.
6036 // In version 0.0.101, support for reading the variants with these types was added, and
6037 // we should migrate to writing these variants when UpdateFailHTLC or
6038 // UpdateFailMalformedHTLC get TLV fields.
6040 let length: BigSize = Readable::read(reader)?;
6041 let mut s = FixedLengthReader::new(reader, length.0);
6042 let res = Readable::read(&mut s)?;
6043 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6044 Ok(HTLCFailureMsg::Relay(res))
6047 let length: BigSize = Readable::read(reader)?;
6048 let mut s = FixedLengthReader::new(reader, length.0);
6049 let res = Readable::read(&mut s)?;
6050 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6051 Ok(HTLCFailureMsg::Malformed(res))
6053 _ => Err(DecodeError::UnknownRequiredFeature),
6058 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6063 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6064 (0, short_channel_id, required),
6065 (1, phantom_shared_secret, option),
6066 (2, outpoint, required),
6067 (4, htlc_id, required),
6068 (6, incoming_packet_shared_secret, required)
6071 impl Writeable for ClaimableHTLC {
6072 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6073 let payment_data = match &self.onion_payload {
6074 OnionPayload::Invoice { _legacy_hop_data } => Some(_legacy_hop_data),
6077 let keysend_preimage = match self.onion_payload {
6078 OnionPayload::Invoice { .. } => None,
6079 OnionPayload::Spontaneous(preimage) => Some(preimage.clone()),
6081 write_tlv_fields!(writer, {
6082 (0, self.prev_hop, required),
6083 (1, self.total_msat, required),
6084 (2, self.value, required),
6085 (4, payment_data, option),
6086 (6, self.cltv_expiry, required),
6087 (8, keysend_preimage, option),
6093 impl Readable for ClaimableHTLC {
6094 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6095 let mut prev_hop = ::util::ser::OptionDeserWrapper(None);
6097 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6098 let mut cltv_expiry = 0;
6099 let mut total_msat = None;
6100 let mut keysend_preimage: Option<PaymentPreimage> = None;
6101 read_tlv_fields!(reader, {
6102 (0, prev_hop, required),
6103 (1, total_msat, option),
6104 (2, value, required),
6105 (4, payment_data, option),
6106 (6, cltv_expiry, required),
6107 (8, keysend_preimage, option)
6109 let onion_payload = match keysend_preimage {
6111 if payment_data.is_some() {
6112 return Err(DecodeError::InvalidValue)
6114 if total_msat.is_none() {
6115 total_msat = Some(value);
6117 OnionPayload::Spontaneous(p)
6120 if payment_data.is_none() {
6121 return Err(DecodeError::InvalidValue)
6123 if total_msat.is_none() {
6124 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6126 OnionPayload::Invoice { _legacy_hop_data: payment_data.unwrap() }
6130 prev_hop: prev_hop.0.unwrap(),
6133 total_msat: total_msat.unwrap(),
6140 impl Readable for HTLCSource {
6141 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6142 let id: u8 = Readable::read(reader)?;
6145 let mut session_priv: ::util::ser::OptionDeserWrapper<SecretKey> = ::util::ser::OptionDeserWrapper(None);
6146 let mut first_hop_htlc_msat: u64 = 0;
6147 let mut path = Some(Vec::new());
6148 let mut payment_id = None;
6149 let mut payment_secret = None;
6150 let mut payment_params = None;
6151 read_tlv_fields!(reader, {
6152 (0, session_priv, required),
6153 (1, payment_id, option),
6154 (2, first_hop_htlc_msat, required),
6155 (3, payment_secret, option),
6156 (4, path, vec_type),
6157 (5, payment_params, option),
6159 if payment_id.is_none() {
6160 // For backwards compat, if there was no payment_id written, use the session_priv bytes
6162 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6164 Ok(HTLCSource::OutboundRoute {
6165 session_priv: session_priv.0.unwrap(),
6166 first_hop_htlc_msat: first_hop_htlc_msat,
6167 path: path.unwrap(),
6168 payment_id: payment_id.unwrap(),
6173 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6174 _ => Err(DecodeError::UnknownRequiredFeature),
6179 impl Writeable for HTLCSource {
6180 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::io::Error> {
6182 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6184 let payment_id_opt = Some(payment_id);
6185 write_tlv_fields!(writer, {
6186 (0, session_priv, required),
6187 (1, payment_id_opt, option),
6188 (2, first_hop_htlc_msat, required),
6189 (3, payment_secret, option),
6190 (4, path, vec_type),
6191 (5, payment_params, option),
6194 HTLCSource::PreviousHopData(ref field) => {
6196 field.write(writer)?;
6203 impl_writeable_tlv_based_enum!(HTLCFailReason,
6204 (0, LightningError) => {
6208 (0, failure_code, required),
6209 (2, data, vec_type),
6213 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6215 (0, forward_info, required),
6216 (2, prev_short_channel_id, required),
6217 (4, prev_htlc_id, required),
6218 (6, prev_funding_outpoint, required),
6221 (0, htlc_id, required),
6222 (2, err_packet, required),
6226 impl_writeable_tlv_based!(PendingInboundPayment, {
6227 (0, payment_secret, required),
6228 (2, expiry_time, required),
6229 (4, user_payment_id, required),
6230 (6, payment_preimage, required),
6231 (8, min_value_msat, required),
6234 impl_writeable_tlv_based_enum_upgradable!(PendingOutboundPayment,
6236 (0, session_privs, required),
6239 (0, session_privs, required),
6240 (1, payment_hash, option),
6243 (0, session_privs, required),
6244 (1, pending_fee_msat, option),
6245 (2, payment_hash, required),
6246 (4, payment_secret, option),
6247 (6, total_msat, required),
6248 (8, pending_amt_msat, required),
6249 (10, starting_block_height, required),
6252 (0, session_privs, required),
6253 (2, payment_hash, required),
6257 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
6258 where M::Target: chain::Watch<Signer>,
6259 T::Target: BroadcasterInterface,
6260 K::Target: KeysInterface<Signer = Signer>,
6261 F::Target: FeeEstimator,
6264 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6265 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6267 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6269 self.genesis_hash.write(writer)?;
6271 let best_block = self.best_block.read().unwrap();
6272 best_block.height().write(writer)?;
6273 best_block.block_hash().write(writer)?;
6276 let channel_state = self.channel_state.lock().unwrap();
6277 let mut unfunded_channels = 0;
6278 for (_, channel) in channel_state.by_id.iter() {
6279 if !channel.is_funding_initiated() {
6280 unfunded_channels += 1;
6283 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
6284 for (_, channel) in channel_state.by_id.iter() {
6285 if channel.is_funding_initiated() {
6286 channel.write(writer)?;
6290 (channel_state.forward_htlcs.len() as u64).write(writer)?;
6291 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
6292 short_channel_id.write(writer)?;
6293 (pending_forwards.len() as u64).write(writer)?;
6294 for forward in pending_forwards {
6295 forward.write(writer)?;
6299 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
6300 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
6301 payment_hash.write(writer)?;
6302 (previous_hops.len() as u64).write(writer)?;
6303 for htlc in previous_hops.iter() {
6304 htlc.write(writer)?;
6308 let per_peer_state = self.per_peer_state.write().unwrap();
6309 (per_peer_state.len() as u64).write(writer)?;
6310 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
6311 peer_pubkey.write(writer)?;
6312 let peer_state = peer_state_mutex.lock().unwrap();
6313 peer_state.latest_features.write(writer)?;
6316 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6317 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
6318 let events = self.pending_events.lock().unwrap();
6319 (events.len() as u64).write(writer)?;
6320 for event in events.iter() {
6321 event.write(writer)?;
6324 let background_events = self.pending_background_events.lock().unwrap();
6325 (background_events.len() as u64).write(writer)?;
6326 for event in background_events.iter() {
6328 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
6330 funding_txo.write(writer)?;
6331 monitor_update.write(writer)?;
6336 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
6337 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6339 (pending_inbound_payments.len() as u64).write(writer)?;
6340 for (hash, pending_payment) in pending_inbound_payments.iter() {
6341 hash.write(writer)?;
6342 pending_payment.write(writer)?;
6345 // For backwards compat, write the session privs and their total length.
6346 let mut num_pending_outbounds_compat: u64 = 0;
6347 for (_, outbound) in pending_outbound_payments.iter() {
6348 if !outbound.is_fulfilled() && !outbound.abandoned() {
6349 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
6352 num_pending_outbounds_compat.write(writer)?;
6353 for (_, outbound) in pending_outbound_payments.iter() {
6355 PendingOutboundPayment::Legacy { session_privs } |
6356 PendingOutboundPayment::Retryable { session_privs, .. } => {
6357 for session_priv in session_privs.iter() {
6358 session_priv.write(writer)?;
6361 PendingOutboundPayment::Fulfilled { .. } => {},
6362 PendingOutboundPayment::Abandoned { .. } => {},
6366 // Encode without retry info for 0.0.101 compatibility.
6367 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
6368 for (id, outbound) in pending_outbound_payments.iter() {
6370 PendingOutboundPayment::Legacy { session_privs } |
6371 PendingOutboundPayment::Retryable { session_privs, .. } => {
6372 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
6377 write_tlv_fields!(writer, {
6378 (1, pending_outbound_payments_no_retry, required),
6379 (3, pending_outbound_payments, required),
6380 (5, self.our_network_pubkey, required),
6381 (7, self.fake_scid_rand_bytes, required),
6388 /// Arguments for the creation of a ChannelManager that are not deserialized.
6390 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
6392 /// 1) Deserialize all stored [`ChannelMonitor`]s.
6393 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
6394 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
6395 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
6396 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
6397 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
6398 /// same way you would handle a [`chain::Filter`] call using
6399 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
6400 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
6401 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
6402 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
6403 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
6404 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
6406 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
6407 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
6409 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
6410 /// call any other methods on the newly-deserialized [`ChannelManager`].
6412 /// Note that because some channels may be closed during deserialization, it is critical that you
6413 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
6414 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
6415 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
6416 /// not force-close the same channels but consider them live), you may end up revoking a state for
6417 /// which you've already broadcasted the transaction.
6419 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
6420 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6421 where M::Target: chain::Watch<Signer>,
6422 T::Target: BroadcasterInterface,
6423 K::Target: KeysInterface<Signer = Signer>,
6424 F::Target: FeeEstimator,
6427 /// The keys provider which will give us relevant keys. Some keys will be loaded during
6428 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
6430 pub keys_manager: K,
6432 /// The fee_estimator for use in the ChannelManager in the future.
6434 /// No calls to the FeeEstimator will be made during deserialization.
6435 pub fee_estimator: F,
6436 /// The chain::Watch for use in the ChannelManager in the future.
6438 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
6439 /// you have deserialized ChannelMonitors separately and will add them to your
6440 /// chain::Watch after deserializing this ChannelManager.
6441 pub chain_monitor: M,
6443 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
6444 /// used to broadcast the latest local commitment transactions of channels which must be
6445 /// force-closed during deserialization.
6446 pub tx_broadcaster: T,
6447 /// The Logger for use in the ChannelManager and which may be used to log information during
6448 /// deserialization.
6450 /// Default settings used for new channels. Any existing channels will continue to use the
6451 /// runtime settings which were stored when the ChannelManager was serialized.
6452 pub default_config: UserConfig,
6454 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
6455 /// value.get_funding_txo() should be the key).
6457 /// If a monitor is inconsistent with the channel state during deserialization the channel will
6458 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
6459 /// is true for missing channels as well. If there is a monitor missing for which we find
6460 /// channel data Err(DecodeError::InvalidValue) will be returned.
6462 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
6465 /// (C-not exported) because we have no HashMap bindings
6466 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
6469 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6470 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
6471 where M::Target: chain::Watch<Signer>,
6472 T::Target: BroadcasterInterface,
6473 K::Target: KeysInterface<Signer = Signer>,
6474 F::Target: FeeEstimator,
6477 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
6478 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
6479 /// populate a HashMap directly from C.
6480 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
6481 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
6483 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
6484 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
6489 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
6490 // SipmleArcChannelManager type:
6491 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6492 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
6493 where M::Target: chain::Watch<Signer>,
6494 T::Target: BroadcasterInterface,
6495 K::Target: KeysInterface<Signer = Signer>,
6496 F::Target: FeeEstimator,
6499 fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
6500 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
6501 Ok((blockhash, Arc::new(chan_manager)))
6505 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6506 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
6507 where M::Target: chain::Watch<Signer>,
6508 T::Target: BroadcasterInterface,
6509 K::Target: KeysInterface<Signer = Signer>,
6510 F::Target: FeeEstimator,
6513 fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
6514 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
6516 let genesis_hash: BlockHash = Readable::read(reader)?;
6517 let best_block_height: u32 = Readable::read(reader)?;
6518 let best_block_hash: BlockHash = Readable::read(reader)?;
6520 let mut failed_htlcs = Vec::new();
6522 let channel_count: u64 = Readable::read(reader)?;
6523 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
6524 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6525 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6526 let mut channel_closures = Vec::new();
6527 for _ in 0..channel_count {
6528 let mut channel: Channel<Signer> = Channel::read(reader, (&args.keys_manager, best_block_height))?;
6529 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
6530 funding_txo_set.insert(funding_txo.clone());
6531 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
6532 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
6533 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
6534 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
6535 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
6536 // If the channel is ahead of the monitor, return InvalidValue:
6537 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
6538 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
6539 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
6540 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
6541 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
6542 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
6543 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
6544 return Err(DecodeError::InvalidValue);
6545 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
6546 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
6547 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
6548 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
6549 // But if the channel is behind of the monitor, close the channel:
6550 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
6551 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
6552 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
6553 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
6554 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
6555 failed_htlcs.append(&mut new_failed_htlcs);
6556 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
6557 channel_closures.push(events::Event::ChannelClosed {
6558 channel_id: channel.channel_id(),
6559 user_channel_id: channel.get_user_id(),
6560 reason: ClosureReason::OutdatedChannelManager
6563 log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
6564 if let Some(short_channel_id) = channel.get_short_channel_id() {
6565 short_to_id.insert(short_channel_id, channel.channel_id());
6567 by_id.insert(channel.channel_id(), channel);
6570 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
6571 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
6572 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
6573 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
6574 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
6575 return Err(DecodeError::InvalidValue);
6579 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
6580 if !funding_txo_set.contains(funding_txo) {
6581 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
6582 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
6586 const MAX_ALLOC_SIZE: usize = 1024 * 64;
6587 let forward_htlcs_count: u64 = Readable::read(reader)?;
6588 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
6589 for _ in 0..forward_htlcs_count {
6590 let short_channel_id = Readable::read(reader)?;
6591 let pending_forwards_count: u64 = Readable::read(reader)?;
6592 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
6593 for _ in 0..pending_forwards_count {
6594 pending_forwards.push(Readable::read(reader)?);
6596 forward_htlcs.insert(short_channel_id, pending_forwards);
6599 let claimable_htlcs_count: u64 = Readable::read(reader)?;
6600 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
6601 for _ in 0..claimable_htlcs_count {
6602 let payment_hash = Readable::read(reader)?;
6603 let previous_hops_len: u64 = Readable::read(reader)?;
6604 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
6605 for _ in 0..previous_hops_len {
6606 previous_hops.push(Readable::read(reader)?);
6608 claimable_htlcs.insert(payment_hash, previous_hops);
6611 let peer_count: u64 = Readable::read(reader)?;
6612 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
6613 for _ in 0..peer_count {
6614 let peer_pubkey = Readable::read(reader)?;
6615 let peer_state = PeerState {
6616 latest_features: Readable::read(reader)?,
6618 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
6621 let event_count: u64 = Readable::read(reader)?;
6622 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
6623 for _ in 0..event_count {
6624 match MaybeReadable::read(reader)? {
6625 Some(event) => pending_events_read.push(event),
6629 if forward_htlcs_count > 0 {
6630 // If we have pending HTLCs to forward, assume we either dropped a
6631 // `PendingHTLCsForwardable` or the user received it but never processed it as they
6632 // shut down before the timer hit. Either way, set the time_forwardable to a small
6633 // constant as enough time has likely passed that we should simply handle the forwards
6634 // now, or at least after the user gets a chance to reconnect to our peers.
6635 pending_events_read.push(events::Event::PendingHTLCsForwardable {
6636 time_forwardable: Duration::from_secs(2),
6640 let background_event_count: u64 = Readable::read(reader)?;
6641 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
6642 for _ in 0..background_event_count {
6643 match <u8 as Readable>::read(reader)? {
6644 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
6645 _ => return Err(DecodeError::InvalidValue),
6649 let last_node_announcement_serial: u32 = Readable::read(reader)?;
6650 let highest_seen_timestamp: u32 = Readable::read(reader)?;
6652 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
6653 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
6654 for _ in 0..pending_inbound_payment_count {
6655 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
6656 return Err(DecodeError::InvalidValue);
6660 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
6661 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
6662 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
6663 for _ in 0..pending_outbound_payments_count_compat {
6664 let session_priv = Readable::read(reader)?;
6665 let payment = PendingOutboundPayment::Legacy {
6666 session_privs: [session_priv].iter().cloned().collect()
6668 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
6669 return Err(DecodeError::InvalidValue)
6673 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
6674 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
6675 let mut pending_outbound_payments = None;
6676 let mut received_network_pubkey: Option<PublicKey> = None;
6677 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
6678 read_tlv_fields!(reader, {
6679 (1, pending_outbound_payments_no_retry, option),
6680 (3, pending_outbound_payments, option),
6681 (5, received_network_pubkey, option),
6682 (7, fake_scid_rand_bytes, option),
6684 if fake_scid_rand_bytes.is_none() {
6685 fake_scid_rand_bytes = Some(args.keys_manager.get_secure_random_bytes());
6688 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
6689 pending_outbound_payments = Some(pending_outbound_payments_compat);
6690 } else if pending_outbound_payments.is_none() {
6691 let mut outbounds = HashMap::new();
6692 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
6693 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
6695 pending_outbound_payments = Some(outbounds);
6697 // If we're tracking pending payments, ensure we haven't lost any by looking at the
6698 // ChannelMonitor data for any channels for which we do not have authorative state
6699 // (i.e. those for which we just force-closed above or we otherwise don't have a
6700 // corresponding `Channel` at all).
6701 // This avoids several edge-cases where we would otherwise "forget" about pending
6702 // payments which are still in-flight via their on-chain state.
6703 // We only rebuild the pending payments map if we were most recently serialized by
6705 for (_, monitor) in args.channel_monitors {
6706 if by_id.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
6707 for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() {
6708 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
6709 if path.is_empty() {
6710 log_error!(args.logger, "Got an empty path for a pending payment");
6711 return Err(DecodeError::InvalidValue);
6713 let path_amt = path.last().unwrap().fee_msat;
6714 let mut session_priv_bytes = [0; 32];
6715 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
6716 match pending_outbound_payments.as_mut().unwrap().entry(payment_id) {
6717 hash_map::Entry::Occupied(mut entry) => {
6718 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
6719 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
6720 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
6722 hash_map::Entry::Vacant(entry) => {
6723 let path_fee = path.get_path_fees();
6724 entry.insert(PendingOutboundPayment::Retryable {
6725 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
6726 payment_hash: htlc.payment_hash,
6728 pending_amt_msat: path_amt,
6729 pending_fee_msat: Some(path_fee),
6730 total_msat: path_amt,
6731 starting_block_height: best_block_height,
6733 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
6734 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
6743 let mut secp_ctx = Secp256k1::new();
6744 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
6746 if !channel_closures.is_empty() {
6747 pending_events_read.append(&mut channel_closures);
6750 let our_network_key = match args.keys_manager.get_node_secret(Recipient::Node) {
6752 Err(()) => return Err(DecodeError::InvalidValue)
6754 let our_network_pubkey = PublicKey::from_secret_key(&secp_ctx, &our_network_key);
6755 if let Some(network_pubkey) = received_network_pubkey {
6756 if network_pubkey != our_network_pubkey {
6757 log_error!(args.logger, "Key that was generated does not match the existing key.");
6758 return Err(DecodeError::InvalidValue);
6762 let mut outbound_scid_aliases = HashSet::new();
6763 for (chan_id, chan) in by_id.iter_mut() {
6764 if chan.outbound_scid_alias() == 0 {
6765 let mut outbound_scid_alias;
6767 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
6768 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.keys_manager);
6769 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
6771 chan.set_outbound_scid_alias(outbound_scid_alias);
6772 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
6773 // Note that in rare cases its possible to hit this while reading an older
6774 // channel if we just happened to pick a colliding outbound alias above.
6775 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
6776 return Err(DecodeError::InvalidValue);
6778 if chan.is_usable() {
6779 if short_to_id.insert(chan.outbound_scid_alias(), *chan_id).is_some() {
6780 // Note that in rare cases its possible to hit this while reading an older
6781 // channel if we just happened to pick a colliding outbound alias above.
6782 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
6783 return Err(DecodeError::InvalidValue);
6788 let inbound_pmt_key_material = args.keys_manager.get_inbound_payment_key_material();
6789 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
6790 let channel_manager = ChannelManager {
6792 fee_estimator: args.fee_estimator,
6793 chain_monitor: args.chain_monitor,
6794 tx_broadcaster: args.tx_broadcaster,
6796 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
6798 channel_state: Mutex::new(ChannelHolder {
6803 pending_msg_events: Vec::new(),
6805 inbound_payment_key: expanded_inbound_key,
6806 pending_inbound_payments: Mutex::new(pending_inbound_payments),
6807 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
6809 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
6810 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
6816 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
6817 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
6819 per_peer_state: RwLock::new(per_peer_state),
6821 pending_events: Mutex::new(pending_events_read),
6822 pending_background_events: Mutex::new(pending_background_events_read),
6823 total_consistency_lock: RwLock::new(()),
6824 persistence_notifier: PersistenceNotifier::new(),
6826 keys_manager: args.keys_manager,
6827 logger: args.logger,
6828 default_configuration: args.default_config,
6831 for htlc_source in failed_htlcs.drain(..) {
6832 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
6835 //TODO: Broadcast channel update for closed channels, but only after we've made a
6836 //connection or two.
6838 Ok((best_block_hash.clone(), channel_manager))
6844 use bitcoin::hashes::Hash;
6845 use bitcoin::hashes::sha256::Hash as Sha256;
6846 use core::time::Duration;
6847 use core::sync::atomic::Ordering;
6848 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
6849 use ln::channelmanager::{PaymentId, PaymentSendFailure};
6850 use ln::channelmanager::inbound_payment;
6851 use ln::features::InitFeatures;
6852 use ln::functional_test_utils::*;
6854 use ln::msgs::ChannelMessageHandler;
6855 use routing::router::{PaymentParameters, RouteParameters, find_route};
6856 use util::errors::APIError;
6857 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
6858 use util::test_utils;
6859 use chain::keysinterface::KeysInterface;
6861 #[cfg(feature = "std")]
6863 fn test_wait_timeout() {
6864 use ln::channelmanager::PersistenceNotifier;
6866 use core::sync::atomic::AtomicBool;
6869 let persistence_notifier = Arc::new(PersistenceNotifier::new());
6870 let thread_notifier = Arc::clone(&persistence_notifier);
6872 let exit_thread = Arc::new(AtomicBool::new(false));
6873 let exit_thread_clone = exit_thread.clone();
6874 thread::spawn(move || {
6876 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
6877 let mut persistence_lock = persist_mtx.lock().unwrap();
6878 *persistence_lock = true;
6881 if exit_thread_clone.load(Ordering::SeqCst) {
6887 // Check that we can block indefinitely until updates are available.
6888 let _ = persistence_notifier.wait();
6890 // Check that the PersistenceNotifier will return after the given duration if updates are
6893 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
6898 exit_thread.store(true, Ordering::SeqCst);
6900 // Check that the PersistenceNotifier will return after the given duration even if no updates
6903 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
6910 fn test_notify_limits() {
6911 // Check that a few cases which don't require the persistence of a new ChannelManager,
6912 // indeed, do not cause the persistence of a new ChannelManager.
6913 let chanmon_cfgs = create_chanmon_cfgs(3);
6914 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
6915 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
6916 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
6918 // All nodes start with a persistable update pending as `create_network` connects each node
6919 // with all other nodes to make most tests simpler.
6920 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6921 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6922 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6924 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6926 // We check that the channel info nodes have doesn't change too early, even though we try
6927 // to connect messages with new values
6928 chan.0.contents.fee_base_msat *= 2;
6929 chan.1.contents.fee_base_msat *= 2;
6930 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
6931 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
6933 // The first two nodes (which opened a channel) should now require fresh persistence
6934 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6935 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6936 // ... but the last node should not.
6937 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6938 // After persisting the first two nodes they should no longer need fresh persistence.
6939 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6940 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6942 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
6943 // about the channel.
6944 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
6945 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
6946 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6948 // The nodes which are a party to the channel should also ignore messages from unrelated
6950 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
6951 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
6952 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
6953 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
6954 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6955 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6957 // At this point the channel info given by peers should still be the same.
6958 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
6959 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
6961 // An earlier version of handle_channel_update didn't check the directionality of the
6962 // update message and would always update the local fee info, even if our peer was
6963 // (spuriously) forwarding us our own channel_update.
6964 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
6965 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
6966 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
6968 // First deliver each peers' own message, checking that the node doesn't need to be
6969 // persisted and that its channel info remains the same.
6970 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
6971 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
6972 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6973 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6974 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
6975 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
6977 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
6978 // the channel info has updated.
6979 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
6980 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
6981 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6982 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6983 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
6984 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
6988 fn test_keysend_dup_hash_partial_mpp() {
6989 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
6991 let chanmon_cfgs = create_chanmon_cfgs(2);
6992 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6993 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6994 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6995 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6997 // First, send a partial MPP payment.
6998 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
6999 let payment_id = PaymentId([42; 32]);
7000 // Use the utility function send_payment_along_path to send the payment with MPP data which
7001 // indicates there are more HTLCs coming.
7002 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7003 nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
7004 check_added_monitors!(nodes[0], 1);
7005 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7006 assert_eq!(events.len(), 1);
7007 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7009 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7010 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
7011 check_added_monitors!(nodes[0], 1);
7012 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7013 assert_eq!(events.len(), 1);
7014 let ev = events.drain(..).next().unwrap();
7015 let payment_event = SendEvent::from_event(ev);
7016 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7017 check_added_monitors!(nodes[1], 0);
7018 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7019 expect_pending_htlcs_forwardable!(nodes[1]);
7020 expect_pending_htlcs_forwardable!(nodes[1]);
7021 check_added_monitors!(nodes[1], 1);
7022 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7023 assert!(updates.update_add_htlcs.is_empty());
7024 assert!(updates.update_fulfill_htlcs.is_empty());
7025 assert_eq!(updates.update_fail_htlcs.len(), 1);
7026 assert!(updates.update_fail_malformed_htlcs.is_empty());
7027 assert!(updates.update_fee.is_none());
7028 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7029 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7030 expect_payment_failed!(nodes[0], our_payment_hash, true);
7032 // Send the second half of the original MPP payment.
7033 nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
7034 check_added_monitors!(nodes[0], 1);
7035 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7036 assert_eq!(events.len(), 1);
7037 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7039 // Claim the full MPP payment. Note that we can't use a test utility like
7040 // claim_funds_along_route because the ordering of the messages causes the second half of the
7041 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
7042 // lightning messages manually.
7043 assert!(nodes[1].node.claim_funds(payment_preimage));
7044 check_added_monitors!(nodes[1], 2);
7045 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7046 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
7047 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
7048 check_added_monitors!(nodes[0], 1);
7049 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7050 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
7051 check_added_monitors!(nodes[1], 1);
7052 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7053 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
7054 check_added_monitors!(nodes[1], 1);
7055 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7056 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
7057 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
7058 check_added_monitors!(nodes[0], 1);
7059 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
7060 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
7061 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7062 check_added_monitors!(nodes[0], 1);
7063 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
7064 check_added_monitors!(nodes[1], 1);
7065 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
7066 check_added_monitors!(nodes[1], 1);
7067 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7068 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
7069 check_added_monitors!(nodes[0], 1);
7071 // Note that successful MPP payments will generate a single PaymentSent event upon the first
7072 // path's success and a PaymentPathSuccessful event for each path's success.
7073 let events = nodes[0].node.get_and_clear_pending_events();
7074 assert_eq!(events.len(), 3);
7076 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
7077 assert_eq!(Some(payment_id), *id);
7078 assert_eq!(payment_preimage, *preimage);
7079 assert_eq!(our_payment_hash, *hash);
7081 _ => panic!("Unexpected event"),
7084 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7085 assert_eq!(payment_id, *actual_payment_id);
7086 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7087 assert_eq!(route.paths[0], *path);
7089 _ => panic!("Unexpected event"),
7092 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7093 assert_eq!(payment_id, *actual_payment_id);
7094 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7095 assert_eq!(route.paths[0], *path);
7097 _ => panic!("Unexpected event"),
7102 fn test_keysend_dup_payment_hash() {
7103 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
7104 // outbound regular payment fails as expected.
7105 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
7106 // fails as expected.
7107 let chanmon_cfgs = create_chanmon_cfgs(2);
7108 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7109 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7110 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7111 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
7112 let scorer = test_utils::TestScorer::with_penalty(0);
7113 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7115 // To start (1), send a regular payment but don't claim it.
7116 let expected_route = [&nodes[1]];
7117 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
7119 // Next, attempt a keysend payment and make sure it fails.
7120 let route_params = RouteParameters {
7121 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id()),
7122 final_value_msat: 100_000,
7123 final_cltv_expiry_delta: TEST_FINAL_CLTV,
7125 let route = find_route(
7126 &nodes[0].node.get_our_node_id(), &route_params, nodes[0].network_graph, None,
7127 nodes[0].logger, &scorer, &random_seed_bytes
7129 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
7130 check_added_monitors!(nodes[0], 1);
7131 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7132 assert_eq!(events.len(), 1);
7133 let ev = events.drain(..).next().unwrap();
7134 let payment_event = SendEvent::from_event(ev);
7135 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7136 check_added_monitors!(nodes[1], 0);
7137 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7138 expect_pending_htlcs_forwardable!(nodes[1]);
7139 expect_pending_htlcs_forwardable!(nodes[1]);
7140 check_added_monitors!(nodes[1], 1);
7141 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7142 assert!(updates.update_add_htlcs.is_empty());
7143 assert!(updates.update_fulfill_htlcs.is_empty());
7144 assert_eq!(updates.update_fail_htlcs.len(), 1);
7145 assert!(updates.update_fail_malformed_htlcs.is_empty());
7146 assert!(updates.update_fee.is_none());
7147 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7148 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7149 expect_payment_failed!(nodes[0], payment_hash, true);
7151 // Finally, claim the original payment.
7152 claim_payment(&nodes[0], &expected_route, payment_preimage);
7154 // To start (2), send a keysend payment but don't claim it.
7155 let payment_preimage = PaymentPreimage([42; 32]);
7156 let route = find_route(
7157 &nodes[0].node.get_our_node_id(), &route_params, nodes[0].network_graph, None,
7158 nodes[0].logger, &scorer, &random_seed_bytes
7160 let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
7161 check_added_monitors!(nodes[0], 1);
7162 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7163 assert_eq!(events.len(), 1);
7164 let event = events.pop().unwrap();
7165 let path = vec![&nodes[1]];
7166 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
7168 // Next, attempt a regular payment and make sure it fails.
7169 let payment_secret = PaymentSecret([43; 32]);
7170 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
7171 check_added_monitors!(nodes[0], 1);
7172 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7173 assert_eq!(events.len(), 1);
7174 let ev = events.drain(..).next().unwrap();
7175 let payment_event = SendEvent::from_event(ev);
7176 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7177 check_added_monitors!(nodes[1], 0);
7178 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7179 expect_pending_htlcs_forwardable!(nodes[1]);
7180 expect_pending_htlcs_forwardable!(nodes[1]);
7181 check_added_monitors!(nodes[1], 1);
7182 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7183 assert!(updates.update_add_htlcs.is_empty());
7184 assert!(updates.update_fulfill_htlcs.is_empty());
7185 assert_eq!(updates.update_fail_htlcs.len(), 1);
7186 assert!(updates.update_fail_malformed_htlcs.is_empty());
7187 assert!(updates.update_fee.is_none());
7188 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7189 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7190 expect_payment_failed!(nodes[0], payment_hash, true);
7192 // Finally, succeed the keysend payment.
7193 claim_payment(&nodes[0], &expected_route, payment_preimage);
7197 fn test_keysend_hash_mismatch() {
7198 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
7199 // preimage doesn't match the msg's payment hash.
7200 let chanmon_cfgs = create_chanmon_cfgs(2);
7201 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7202 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7203 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7205 let payer_pubkey = nodes[0].node.get_our_node_id();
7206 let payee_pubkey = nodes[1].node.get_our_node_id();
7207 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7208 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7210 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
7211 let route_params = RouteParameters {
7212 payment_params: PaymentParameters::for_keysend(payee_pubkey),
7213 final_value_msat: 10000,
7214 final_cltv_expiry_delta: 40,
7216 let network_graph = nodes[0].network_graph;
7217 let first_hops = nodes[0].node.list_usable_channels();
7218 let scorer = test_utils::TestScorer::with_penalty(0);
7219 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7220 let route = find_route(
7221 &payer_pubkey, &route_params, network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
7222 nodes[0].logger, &scorer, &random_seed_bytes
7225 let test_preimage = PaymentPreimage([42; 32]);
7226 let mismatch_payment_hash = PaymentHash([43; 32]);
7227 let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None, None).unwrap();
7228 check_added_monitors!(nodes[0], 1);
7230 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7231 assert_eq!(updates.update_add_htlcs.len(), 1);
7232 assert!(updates.update_fulfill_htlcs.is_empty());
7233 assert!(updates.update_fail_htlcs.is_empty());
7234 assert!(updates.update_fail_malformed_htlcs.is_empty());
7235 assert!(updates.update_fee.is_none());
7236 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
7238 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
7242 fn test_keysend_msg_with_secret_err() {
7243 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
7244 let chanmon_cfgs = create_chanmon_cfgs(2);
7245 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7246 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7247 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7249 let payer_pubkey = nodes[0].node.get_our_node_id();
7250 let payee_pubkey = nodes[1].node.get_our_node_id();
7251 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7252 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7254 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
7255 let route_params = RouteParameters {
7256 payment_params: PaymentParameters::for_keysend(payee_pubkey),
7257 final_value_msat: 10000,
7258 final_cltv_expiry_delta: 40,
7260 let network_graph = nodes[0].network_graph;
7261 let first_hops = nodes[0].node.list_usable_channels();
7262 let scorer = test_utils::TestScorer::with_penalty(0);
7263 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7264 let route = find_route(
7265 &payer_pubkey, &route_params, network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
7266 nodes[0].logger, &scorer, &random_seed_bytes
7269 let test_preimage = PaymentPreimage([42; 32]);
7270 let test_secret = PaymentSecret([43; 32]);
7271 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
7272 let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None, None).unwrap();
7273 check_added_monitors!(nodes[0], 1);
7275 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7276 assert_eq!(updates.update_add_htlcs.len(), 1);
7277 assert!(updates.update_fulfill_htlcs.is_empty());
7278 assert!(updates.update_fail_htlcs.is_empty());
7279 assert!(updates.update_fail_malformed_htlcs.is_empty());
7280 assert!(updates.update_fee.is_none());
7281 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
7283 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
7287 fn test_multi_hop_missing_secret() {
7288 let chanmon_cfgs = create_chanmon_cfgs(4);
7289 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
7290 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
7291 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
7293 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7294 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7295 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7296 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7298 // Marshall an MPP route.
7299 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
7300 let path = route.paths[0].clone();
7301 route.paths.push(path);
7302 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
7303 route.paths[0][0].short_channel_id = chan_1_id;
7304 route.paths[0][1].short_channel_id = chan_3_id;
7305 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
7306 route.paths[1][0].short_channel_id = chan_2_id;
7307 route.paths[1][1].short_channel_id = chan_4_id;
7309 match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() {
7310 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
7311 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
7312 _ => panic!("unexpected error")
7317 fn bad_inbound_payment_hash() {
7318 // Add coverage for checking that a user-provided payment hash matches the payment secret.
7319 let chanmon_cfgs = create_chanmon_cfgs(2);
7320 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7321 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7322 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7324 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
7325 let payment_data = msgs::FinalOnionHopData {
7327 total_msat: 100_000,
7330 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
7331 // payment verification fails as expected.
7332 let mut bad_payment_hash = payment_hash.clone();
7333 bad_payment_hash.0[0] += 1;
7334 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
7335 Ok(_) => panic!("Unexpected ok"),
7337 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
7341 // Check that using the original payment hash succeeds.
7342 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
7346 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
7349 use chain::chainmonitor::{ChainMonitor, Persist};
7350 use chain::keysinterface::{KeysManager, KeysInterface, InMemorySigner};
7351 use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
7352 use ln::features::{InitFeatures, InvoiceFeatures};
7353 use ln::functional_test_utils::*;
7354 use ln::msgs::{ChannelMessageHandler, Init};
7355 use routing::network_graph::NetworkGraph;
7356 use routing::router::{PaymentParameters, get_route};
7357 use util::test_utils;
7358 use util::config::UserConfig;
7359 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
7361 use bitcoin::hashes::Hash;
7362 use bitcoin::hashes::sha256::Hash as Sha256;
7363 use bitcoin::{Block, BlockHeader, Transaction, TxOut};
7365 use sync::{Arc, Mutex};
7369 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
7370 node: &'a ChannelManager<InMemorySigner,
7371 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
7372 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
7373 &'a test_utils::TestLogger, &'a P>,
7374 &'a test_utils::TestBroadcaster, &'a KeysManager,
7375 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
7380 fn bench_sends(bench: &mut Bencher) {
7381 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
7384 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
7385 // Do a simple benchmark of sending a payment back and forth between two nodes.
7386 // Note that this is unrealistic as each payment send will require at least two fsync
7388 let network = bitcoin::Network::Testnet;
7389 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
7391 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
7392 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
7394 let mut config: UserConfig = Default::default();
7395 config.own_channel_config.minimum_depth = 1;
7397 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
7398 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
7399 let seed_a = [1u8; 32];
7400 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
7401 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
7403 best_block: BestBlock::from_genesis(network),
7405 let node_a_holder = NodeHolder { node: &node_a };
7407 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
7408 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
7409 let seed_b = [2u8; 32];
7410 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
7411 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
7413 best_block: BestBlock::from_genesis(network),
7415 let node_b_holder = NodeHolder { node: &node_b };
7417 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None });
7418 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None });
7419 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
7420 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
7421 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
7424 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
7425 tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
7426 value: 8_000_000, script_pubkey: output_script,
7428 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
7429 } else { panic!(); }
7431 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
7432 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
7434 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
7437 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
7440 Listen::block_connected(&node_a, &block, 1);
7441 Listen::block_connected(&node_b, &block, 1);
7443 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
7444 let msg_events = node_a.get_and_clear_pending_msg_events();
7445 assert_eq!(msg_events.len(), 2);
7446 match msg_events[0] {
7447 MessageSendEvent::SendFundingLocked { ref msg, .. } => {
7448 node_b.handle_funding_locked(&node_a.get_our_node_id(), msg);
7449 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
7453 match msg_events[1] {
7454 MessageSendEvent::SendChannelUpdate { .. } => {},
7458 let dummy_graph = NetworkGraph::new(genesis_hash);
7460 let mut payment_count: u64 = 0;
7461 macro_rules! send_payment {
7462 ($node_a: expr, $node_b: expr) => {
7463 let usable_channels = $node_a.list_usable_channels();
7464 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id())
7465 .with_features(InvoiceFeatures::known());
7466 let scorer = test_utils::TestScorer::with_penalty(0);
7467 let seed = [3u8; 32];
7468 let keys_manager = KeysManager::new(&seed, 42, 42);
7469 let random_seed_bytes = keys_manager.get_secure_random_bytes();
7470 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
7471 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
7473 let mut payment_preimage = PaymentPreimage([0; 32]);
7474 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
7476 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
7477 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200).unwrap();
7479 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
7480 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
7481 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
7482 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
7483 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
7484 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
7485 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
7486 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
7488 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
7489 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
7490 assert!($node_b.claim_funds(payment_preimage));
7492 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
7493 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
7494 assert_eq!(node_id, $node_a.get_our_node_id());
7495 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
7496 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
7498 _ => panic!("Failed to generate claim event"),
7501 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
7502 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
7503 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
7504 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
7506 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
7511 send_payment!(node_a, node_b);
7512 send_payment!(node_b, node_a);