Reference `Router` in `ChannelManager` docs
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
28
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
32
33 use crate::chain;
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
38 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
39 // construct one themselves.
40 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
41 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
42 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
43 #[cfg(any(feature = "_test_utils", test))]
44 use crate::ln::features::InvoiceFeatures;
45 use crate::routing::gossip::NetworkGraph;
46 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
47 use crate::routing::scoring::ProbabilisticScorer;
48 use crate::ln::msgs;
49 use crate::ln::onion_utils;
50 use crate::ln::onion_utils::HTLCFailReason;
51 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
52 #[cfg(test)]
53 use crate::ln::outbound_payment;
54 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
55 use crate::ln::wire::Encode;
56 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner};
57 use crate::util::config::{UserConfig, ChannelConfig};
58 use crate::util::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
59 use crate::util::events;
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
63 use crate::util::logger::{Level, Logger};
64 use crate::util::errors::APIError;
65
66 use alloc::collections::BTreeMap;
67
68 use crate::io;
69 use crate::prelude::*;
70 use core::{cmp, mem};
71 use core::cell::RefCell;
72 use crate::io::Read;
73 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
74 use core::sync::atomic::{AtomicUsize, Ordering};
75 use core::time::Duration;
76 use core::ops::Deref;
77
78 // Re-export this for use in the public API.
79 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure};
80
81 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
82 //
83 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
84 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
85 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
86 //
87 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
88 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
89 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
90 // before we forward it.
91 //
92 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
93 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
94 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
95 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
96 // our payment, which we can use to decode errors or inform the user that the payment was sent.
97
98 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
99 pub(super) enum PendingHTLCRouting {
100         Forward {
101                 onion_packet: msgs::OnionPacket,
102                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
103                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
104                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
105         },
106         Receive {
107                 payment_data: msgs::FinalOnionHopData,
108                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
109                 phantom_shared_secret: Option<[u8; 32]>,
110         },
111         ReceiveKeysend {
112                 payment_preimage: PaymentPreimage,
113                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
114         },
115 }
116
117 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
118 pub(super) struct PendingHTLCInfo {
119         pub(super) routing: PendingHTLCRouting,
120         pub(super) incoming_shared_secret: [u8; 32],
121         payment_hash: PaymentHash,
122         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
123         pub(super) outgoing_amt_msat: u64,
124         pub(super) outgoing_cltv_value: u32,
125 }
126
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) enum HTLCFailureMsg {
129         Relay(msgs::UpdateFailHTLC),
130         Malformed(msgs::UpdateFailMalformedHTLC),
131 }
132
133 /// Stores whether we can't forward an HTLC or relevant forwarding info
134 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
135 pub(super) enum PendingHTLCStatus {
136         Forward(PendingHTLCInfo),
137         Fail(HTLCFailureMsg),
138 }
139
140 pub(super) struct PendingAddHTLCInfo {
141         pub(super) forward_info: PendingHTLCInfo,
142
143         // These fields are produced in `forward_htlcs()` and consumed in
144         // `process_pending_htlc_forwards()` for constructing the
145         // `HTLCSource::PreviousHopData` for failed and forwarded
146         // HTLCs.
147         //
148         // Note that this may be an outbound SCID alias for the associated channel.
149         prev_short_channel_id: u64,
150         prev_htlc_id: u64,
151         prev_funding_outpoint: OutPoint,
152         prev_user_channel_id: u128,
153 }
154
155 pub(super) enum HTLCForwardInfo {
156         AddHTLC(PendingAddHTLCInfo),
157         FailHTLC {
158                 htlc_id: u64,
159                 err_packet: msgs::OnionErrorPacket,
160         },
161 }
162
163 /// Tracks the inbound corresponding to an outbound HTLC
164 #[derive(Clone, Hash, PartialEq, Eq)]
165 pub(crate) struct HTLCPreviousHopData {
166         // Note that this may be an outbound SCID alias for the associated channel.
167         short_channel_id: u64,
168         htlc_id: u64,
169         incoming_packet_shared_secret: [u8; 32],
170         phantom_shared_secret: Option<[u8; 32]>,
171
172         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
173         // channel with a preimage provided by the forward channel.
174         outpoint: OutPoint,
175 }
176
177 enum OnionPayload {
178         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
179         Invoice {
180                 /// This is only here for backwards-compatibility in serialization, in the future it can be
181                 /// removed, breaking clients running 0.0.106 and earlier.
182                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
183         },
184         /// Contains the payer-provided preimage.
185         Spontaneous(PaymentPreimage),
186 }
187
188 /// HTLCs that are to us and can be failed/claimed by the user
189 struct ClaimableHTLC {
190         prev_hop: HTLCPreviousHopData,
191         cltv_expiry: u32,
192         /// The amount (in msats) of this MPP part
193         value: u64,
194         onion_payload: OnionPayload,
195         timer_ticks: u8,
196         /// The sum total of all MPP parts
197         total_msat: u64,
198 }
199
200 /// A payment identifier used to uniquely identify a payment to LDK.
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentId(pub [u8; 32]);
204
205 impl Writeable for PaymentId {
206         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
207                 self.0.write(w)
208         }
209 }
210
211 impl Readable for PaymentId {
212         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
213                 let buf: [u8; 32] = Readable::read(r)?;
214                 Ok(PaymentId(buf))
215         }
216 }
217
218 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
219 /// (C-not exported) as we just use [u8; 32] directly
220 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
221 pub struct InterceptId(pub [u8; 32]);
222
223 impl Writeable for InterceptId {
224         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
225                 self.0.write(w)
226         }
227 }
228
229 impl Readable for InterceptId {
230         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
231                 let buf: [u8; 32] = Readable::read(r)?;
232                 Ok(InterceptId(buf))
233         }
234 }
235 /// Tracks the inbound corresponding to an outbound HTLC
236 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
237 #[derive(Clone, PartialEq, Eq)]
238 pub(crate) enum HTLCSource {
239         PreviousHopData(HTLCPreviousHopData),
240         OutboundRoute {
241                 path: Vec<RouteHop>,
242                 session_priv: SecretKey,
243                 /// Technically we can recalculate this from the route, but we cache it here to avoid
244                 /// doing a double-pass on route when we get a failure back
245                 first_hop_htlc_msat: u64,
246                 payment_id: PaymentId,
247                 payment_secret: Option<PaymentSecret>,
248                 /// Note that this is now "deprecated" - we write it for forwards (and read it for
249                 /// backwards) compatibility reasons, but prefer to use the data in the
250                 /// [`super::outbound_payment`] module, which stores per-payment data once instead of in
251                 /// each HTLC.
252                 payment_params: Option<PaymentParameters>,
253         },
254 }
255 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
256 impl core::hash::Hash for HTLCSource {
257         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
258                 match self {
259                         HTLCSource::PreviousHopData(prev_hop_data) => {
260                                 0u8.hash(hasher);
261                                 prev_hop_data.hash(hasher);
262                         },
263                         HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
264                                 1u8.hash(hasher);
265                                 path.hash(hasher);
266                                 session_priv[..].hash(hasher);
267                                 payment_id.hash(hasher);
268                                 payment_secret.hash(hasher);
269                                 first_hop_htlc_msat.hash(hasher);
270                                 payment_params.hash(hasher);
271                         },
272                 }
273         }
274 }
275 #[cfg(not(feature = "grind_signatures"))]
276 #[cfg(test)]
277 impl HTLCSource {
278         pub fn dummy() -> Self {
279                 HTLCSource::OutboundRoute {
280                         path: Vec::new(),
281                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
282                         first_hop_htlc_msat: 0,
283                         payment_id: PaymentId([2; 32]),
284                         payment_secret: None,
285                         payment_params: None,
286                 }
287         }
288 }
289
290 struct ReceiveError {
291         err_code: u16,
292         err_data: Vec<u8>,
293         msg: &'static str,
294 }
295
296 /// This enum is used to specify which error data to send to peers when failing back an HTLC
297 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
298 ///
299 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
300 #[derive(Clone, Copy)]
301 pub enum FailureCode {
302         /// We had a temporary error processing the payment. Useful if no other error codes fit
303         /// and you want to indicate that the payer may want to retry.
304         TemporaryNodeFailure             = 0x2000 | 2,
305         /// We have a required feature which was not in this onion. For example, you may require
306         /// some additional metadata that was not provided with this payment.
307         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
308         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
309         /// the HTLC is too close to the current block height for safe handling.
310         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
311         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
312         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
313 }
314
315 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
316
317 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
318 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
319 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
320 /// peer_state lock. We then return the set of things that need to be done outside the lock in
321 /// this struct and call handle_error!() on it.
322
323 struct MsgHandleErrInternal {
324         err: msgs::LightningError,
325         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
326         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
327 }
328 impl MsgHandleErrInternal {
329         #[inline]
330         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
331                 Self {
332                         err: LightningError {
333                                 err: err.clone(),
334                                 action: msgs::ErrorAction::SendErrorMessage {
335                                         msg: msgs::ErrorMessage {
336                                                 channel_id,
337                                                 data: err
338                                         },
339                                 },
340                         },
341                         chan_id: None,
342                         shutdown_finish: None,
343                 }
344         }
345         #[inline]
346         fn from_no_close(err: msgs::LightningError) -> Self {
347                 Self { err, chan_id: None, shutdown_finish: None }
348         }
349         #[inline]
350         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
351                 Self {
352                         err: LightningError {
353                                 err: err.clone(),
354                                 action: msgs::ErrorAction::SendErrorMessage {
355                                         msg: msgs::ErrorMessage {
356                                                 channel_id,
357                                                 data: err
358                                         },
359                                 },
360                         },
361                         chan_id: Some((channel_id, user_channel_id)),
362                         shutdown_finish: Some((shutdown_res, channel_update)),
363                 }
364         }
365         #[inline]
366         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
367                 Self {
368                         err: match err {
369                                 ChannelError::Warn(msg) =>  LightningError {
370                                         err: msg.clone(),
371                                         action: msgs::ErrorAction::SendWarningMessage {
372                                                 msg: msgs::WarningMessage {
373                                                         channel_id,
374                                                         data: msg
375                                                 },
376                                                 log_level: Level::Warn,
377                                         },
378                                 },
379                                 ChannelError::Ignore(msg) => LightningError {
380                                         err: msg,
381                                         action: msgs::ErrorAction::IgnoreError,
382                                 },
383                                 ChannelError::Close(msg) => LightningError {
384                                         err: msg.clone(),
385                                         action: msgs::ErrorAction::SendErrorMessage {
386                                                 msg: msgs::ErrorMessage {
387                                                         channel_id,
388                                                         data: msg
389                                                 },
390                                         },
391                                 },
392                         },
393                         chan_id: None,
394                         shutdown_finish: None,
395                 }
396         }
397 }
398
399 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
400 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
401 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
402 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
403 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
404
405 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
406 /// be sent in the order they appear in the return value, however sometimes the order needs to be
407 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
408 /// they were originally sent). In those cases, this enum is also returned.
409 #[derive(Clone, PartialEq)]
410 pub(super) enum RAACommitmentOrder {
411         /// Send the CommitmentUpdate messages first
412         CommitmentFirst,
413         /// Send the RevokeAndACK message first
414         RevokeAndACKFirst,
415 }
416
417 /// Information about a payment which is currently being claimed.
418 struct ClaimingPayment {
419         amount_msat: u64,
420         payment_purpose: events::PaymentPurpose,
421         receiver_node_id: PublicKey,
422 }
423 impl_writeable_tlv_based!(ClaimingPayment, {
424         (0, amount_msat, required),
425         (2, payment_purpose, required),
426         (4, receiver_node_id, required),
427 });
428
429 /// Information about claimable or being-claimed payments
430 struct ClaimablePayments {
431         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
432         /// failed/claimed by the user.
433         ///
434         /// Note that, no consistency guarantees are made about the channels given here actually
435         /// existing anymore by the time you go to read them!
436         ///
437         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
438         /// we don't get a duplicate payment.
439         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
440
441         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
442         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
443         /// as an [`events::Event::PaymentClaimed`].
444         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
445 }
446
447 /// Events which we process internally but cannot be procsesed immediately at the generation site
448 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
449 /// quite some time lag.
450 enum BackgroundEvent {
451         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
452         /// commitment transaction.
453         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
454 }
455
456 #[derive(Debug)]
457 pub(crate) enum MonitorUpdateCompletionAction {
458         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
459         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
460         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
461         /// event can be generated.
462         PaymentClaimed { payment_hash: PaymentHash },
463         /// Indicates an [`events::Event`] should be surfaced to the user.
464         EmitEvent { event: events::Event },
465 }
466
467 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
468         (0, PaymentClaimed) => { (0, payment_hash, required) },
469         (2, EmitEvent) => { (0, event, upgradable_required) },
470 );
471
472 /// State we hold per-peer.
473 pub(super) struct PeerState<Signer: ChannelSigner> {
474         /// `temporary_channel_id` or `channel_id` -> `channel`.
475         ///
476         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
477         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
478         /// `channel_id`.
479         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
480         /// The latest `InitFeatures` we heard from the peer.
481         latest_features: InitFeatures,
482         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
483         /// for broadcast messages, where ordering isn't as strict).
484         pub(super) pending_msg_events: Vec<MessageSendEvent>,
485         /// Map from a specific channel to some action(s) that should be taken when all pending
486         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
487         ///
488         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
489         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
490         /// channels with a peer this will just be one allocation and will amount to a linear list of
491         /// channels to walk, avoiding the whole hashing rigmarole.
492         ///
493         /// Note that the channel may no longer exist. For example, if a channel was closed but we
494         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
495         /// for a missing channel. While a malicious peer could construct a second channel with the
496         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
497         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
498         /// duplicates do not occur, so such channels should fail without a monitor update completing.
499         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
500         /// The peer is currently connected (i.e. we've seen a
501         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
502         /// [`ChannelMessageHandler::peer_disconnected`].
503         is_connected: bool,
504 }
505
506 impl <Signer: ChannelSigner> PeerState<Signer> {
507         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
508         /// If true is passed for `require_disconnected`, the function will return false if we haven't
509         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
510         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
511                 if require_disconnected && self.is_connected {
512                         return false
513                 }
514                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
515         }
516 }
517
518 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
519 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
520 ///
521 /// For users who don't want to bother doing their own payment preimage storage, we also store that
522 /// here.
523 ///
524 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
525 /// and instead encoding it in the payment secret.
526 struct PendingInboundPayment {
527         /// The payment secret that the sender must use for us to accept this payment
528         payment_secret: PaymentSecret,
529         /// Time at which this HTLC expires - blocks with a header time above this value will result in
530         /// this payment being removed.
531         expiry_time: u64,
532         /// Arbitrary identifier the user specifies (or not)
533         user_payment_id: u64,
534         // Other required attributes of the payment, optionally enforced:
535         payment_preimage: Option<PaymentPreimage>,
536         min_value_msat: Option<u64>,
537 }
538
539 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
540 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
541 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
542 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
543 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
544 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
545 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
546 ///
547 /// (C-not exported) as Arcs don't make sense in bindings
548 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
549         Arc<M>,
550         Arc<T>,
551         Arc<KeysManager>,
552         Arc<KeysManager>,
553         Arc<KeysManager>,
554         Arc<F>,
555         Arc<DefaultRouter<
556                 Arc<NetworkGraph<Arc<L>>>,
557                 Arc<L>,
558                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
559         >>,
560         Arc<L>
561 >;
562
563 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
564 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
565 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
566 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
567 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
568 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
569 /// that implements KeysInterface or Router for its keys manager and router, respectively, but this
570 /// type alias chooses the concrete types of KeysManager and DefaultRouter.
571 ///
572 /// (C-not exported) as Arcs don't make sense in bindings
573 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
574
575 /// Manager which keeps track of a number of channels and sends messages to the appropriate
576 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
577 ///
578 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
579 /// to individual Channels.
580 ///
581 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
582 /// all peers during write/read (though does not modify this instance, only the instance being
583 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
584 /// called funding_transaction_generated for outbound channels).
585 ///
586 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
587 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
588 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
589 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
590 /// the serialization process). If the deserialized version is out-of-date compared to the
591 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
592 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
593 ///
594 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
595 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
596 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
597 /// block_connected() to step towards your best block) upon deserialization before using the
598 /// object!
599 ///
600 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
601 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
602 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
603 /// offline for a full minute. In order to track this, you must call
604 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
605 ///
606 /// To avoid trivial DoS issues, ChannelManager limits the number of inbound connections and
607 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
608 /// not have a channel with being unable to connect to us or open new channels with us if we have
609 /// many peers with unfunded channels.
610 ///
611 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
612 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
613 /// never limited. Please ensure you limit the count of such channels yourself.
614 ///
615 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
616 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
617 /// essentially you should default to using a SimpleRefChannelManager, and use a
618 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
619 /// you're using lightning-net-tokio.
620 //
621 // Lock order:
622 // The tree structure below illustrates the lock order requirements for the different locks of the
623 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
624 // and should then be taken in the order of the lowest to the highest level in the tree.
625 // Note that locks on different branches shall not be taken at the same time, as doing so will
626 // create a new lock order for those specific locks in the order they were taken.
627 //
628 // Lock order tree:
629 //
630 // `total_consistency_lock`
631 //  |
632 //  |__`forward_htlcs`
633 //  |   |
634 //  |   |__`pending_intercepted_htlcs`
635 //  |
636 //  |__`per_peer_state`
637 //  |   |
638 //  |   |__`pending_inbound_payments`
639 //  |       |
640 //  |       |__`claimable_payments`
641 //  |       |
642 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
643 //  |           |
644 //  |           |__`peer_state`
645 //  |               |
646 //  |               |__`id_to_peer`
647 //  |               |
648 //  |               |__`short_to_chan_info`
649 //  |               |
650 //  |               |__`outbound_scid_aliases`
651 //  |               |
652 //  |               |__`best_block`
653 //  |               |
654 //  |               |__`pending_events`
655 //  |                   |
656 //  |                   |__`pending_background_events`
657 //
658 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
659 where
660         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
661         T::Target: BroadcasterInterface,
662         ES::Target: EntropySource,
663         NS::Target: NodeSigner,
664         SP::Target: SignerProvider,
665         F::Target: FeeEstimator,
666         R::Target: Router,
667         L::Target: Logger,
668 {
669         default_configuration: UserConfig,
670         genesis_hash: BlockHash,
671         fee_estimator: LowerBoundedFeeEstimator<F>,
672         chain_monitor: M,
673         tx_broadcaster: T,
674         #[allow(unused)]
675         router: R,
676
677         /// See `ChannelManager` struct-level documentation for lock order requirements.
678         #[cfg(test)]
679         pub(super) best_block: RwLock<BestBlock>,
680         #[cfg(not(test))]
681         best_block: RwLock<BestBlock>,
682         secp_ctx: Secp256k1<secp256k1::All>,
683
684         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
685         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
686         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
687         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
688         ///
689         /// See `ChannelManager` struct-level documentation for lock order requirements.
690         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
691
692         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
693         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
694         /// (if the channel has been force-closed), however we track them here to prevent duplicative
695         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
696         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
697         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
698         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
699         /// after reloading from disk while replaying blocks against ChannelMonitors.
700         ///
701         /// See `PendingOutboundPayment` documentation for more info.
702         ///
703         /// See `ChannelManager` struct-level documentation for lock order requirements.
704         pending_outbound_payments: OutboundPayments,
705
706         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
707         ///
708         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
709         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
710         /// and via the classic SCID.
711         ///
712         /// Note that no consistency guarantees are made about the existence of a channel with the
713         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
714         ///
715         /// See `ChannelManager` struct-level documentation for lock order requirements.
716         #[cfg(test)]
717         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
718         #[cfg(not(test))]
719         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
720         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
721         /// until the user tells us what we should do with them.
722         ///
723         /// See `ChannelManager` struct-level documentation for lock order requirements.
724         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
725
726         /// The sets of payments which are claimable or currently being claimed. See
727         /// [`ClaimablePayments`]' individual field docs for more info.
728         ///
729         /// See `ChannelManager` struct-level documentation for lock order requirements.
730         claimable_payments: Mutex<ClaimablePayments>,
731
732         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
733         /// and some closed channels which reached a usable state prior to being closed. This is used
734         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
735         /// active channel list on load.
736         ///
737         /// See `ChannelManager` struct-level documentation for lock order requirements.
738         outbound_scid_aliases: Mutex<HashSet<u64>>,
739
740         /// `channel_id` -> `counterparty_node_id`.
741         ///
742         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
743         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
744         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
745         ///
746         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
747         /// the corresponding channel for the event, as we only have access to the `channel_id` during
748         /// the handling of the events.
749         ///
750         /// Note that no consistency guarantees are made about the existence of a peer with the
751         /// `counterparty_node_id` in our other maps.
752         ///
753         /// TODO:
754         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
755         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
756         /// would break backwards compatability.
757         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
758         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
759         /// required to access the channel with the `counterparty_node_id`.
760         ///
761         /// See `ChannelManager` struct-level documentation for lock order requirements.
762         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
763
764         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
765         ///
766         /// Outbound SCID aliases are added here once the channel is available for normal use, with
767         /// SCIDs being added once the funding transaction is confirmed at the channel's required
768         /// confirmation depth.
769         ///
770         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
771         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
772         /// channel with the `channel_id` in our other maps.
773         ///
774         /// See `ChannelManager` struct-level documentation for lock order requirements.
775         #[cfg(test)]
776         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
777         #[cfg(not(test))]
778         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
779
780         our_network_pubkey: PublicKey,
781
782         inbound_payment_key: inbound_payment::ExpandedKey,
783
784         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
785         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
786         /// we encrypt the namespace identifier using these bytes.
787         ///
788         /// [fake scids]: crate::util::scid_utils::fake_scid
789         fake_scid_rand_bytes: [u8; 32],
790
791         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
792         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
793         /// keeping additional state.
794         probing_cookie_secret: [u8; 32],
795
796         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
797         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
798         /// very far in the past, and can only ever be up to two hours in the future.
799         highest_seen_timestamp: AtomicUsize,
800
801         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
802         /// basis, as well as the peer's latest features.
803         ///
804         /// If we are connected to a peer we always at least have an entry here, even if no channels
805         /// are currently open with that peer.
806         ///
807         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
808         /// operate on the inner value freely. This opens up for parallel per-peer operation for
809         /// channels.
810         ///
811         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
812         ///
813         /// See `ChannelManager` struct-level documentation for lock order requirements.
814         #[cfg(not(any(test, feature = "_test_utils")))]
815         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
816         #[cfg(any(test, feature = "_test_utils"))]
817         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
818
819         /// See `ChannelManager` struct-level documentation for lock order requirements.
820         pending_events: Mutex<Vec<events::Event>>,
821         /// See `ChannelManager` struct-level documentation for lock order requirements.
822         pending_background_events: Mutex<Vec<BackgroundEvent>>,
823         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
824         /// Essentially just when we're serializing ourselves out.
825         /// Taken first everywhere where we are making changes before any other locks.
826         /// When acquiring this lock in read mode, rather than acquiring it directly, call
827         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
828         /// Notifier the lock contains sends out a notification when the lock is released.
829         total_consistency_lock: RwLock<()>,
830
831         persistence_notifier: Notifier,
832
833         entropy_source: ES,
834         node_signer: NS,
835         signer_provider: SP,
836
837         logger: L,
838 }
839
840 /// Chain-related parameters used to construct a new `ChannelManager`.
841 ///
842 /// Typically, the block-specific parameters are derived from the best block hash for the network,
843 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
844 /// are not needed when deserializing a previously constructed `ChannelManager`.
845 #[derive(Clone, Copy, PartialEq)]
846 pub struct ChainParameters {
847         /// The network for determining the `chain_hash` in Lightning messages.
848         pub network: Network,
849
850         /// The hash and height of the latest block successfully connected.
851         ///
852         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
853         pub best_block: BestBlock,
854 }
855
856 #[derive(Copy, Clone, PartialEq)]
857 enum NotifyOption {
858         DoPersist,
859         SkipPersist,
860 }
861
862 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
863 /// desirable to notify any listeners on `await_persistable_update_timeout`/
864 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
865 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
866 /// sending the aforementioned notification (since the lock being released indicates that the
867 /// updates are ready for persistence).
868 ///
869 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
870 /// notify or not based on whether relevant changes have been made, providing a closure to
871 /// `optionally_notify` which returns a `NotifyOption`.
872 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
873         persistence_notifier: &'a Notifier,
874         should_persist: F,
875         // We hold onto this result so the lock doesn't get released immediately.
876         _read_guard: RwLockReadGuard<'a, ()>,
877 }
878
879 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
880         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
881                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
882         }
883
884         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
885                 let read_guard = lock.read().unwrap();
886
887                 PersistenceNotifierGuard {
888                         persistence_notifier: notifier,
889                         should_persist: persist_check,
890                         _read_guard: read_guard,
891                 }
892         }
893 }
894
895 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
896         fn drop(&mut self) {
897                 if (self.should_persist)() == NotifyOption::DoPersist {
898                         self.persistence_notifier.notify();
899                 }
900         }
901 }
902
903 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
904 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
905 ///
906 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
907 ///
908 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
909 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
910 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
911 /// the maximum required amount in lnd as of March 2021.
912 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
913
914 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
915 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
916 ///
917 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
918 ///
919 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
920 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
921 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
922 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
923 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
924 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
925 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
926 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
927 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
928 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
929 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
930 // routing failure for any HTLC sender picking up an LDK node among the first hops.
931 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
932
933 /// Minimum CLTV difference between the current block height and received inbound payments.
934 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
935 /// this value.
936 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
937 // any payments to succeed. Further, we don't want payments to fail if a block was found while
938 // a payment was being routed, so we add an extra block to be safe.
939 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
940
941 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
942 // ie that if the next-hop peer fails the HTLC within
943 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
944 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
945 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
946 // LATENCY_GRACE_PERIOD_BLOCKS.
947 #[deny(const_err)]
948 #[allow(dead_code)]
949 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
950
951 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
952 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
953 #[deny(const_err)]
954 #[allow(dead_code)]
955 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
956
957 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
958 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
959
960 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
961 /// idempotency of payments by [`PaymentId`]. See
962 /// [`OutboundPayments::remove_stale_resolved_payments`].
963 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
964
965 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
966 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
967 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
968 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
969
970 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
971 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
972 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
973
974 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
975 /// many peers we reject new (inbound) connections.
976 const MAX_NO_CHANNEL_PEERS: usize = 250;
977
978 /// Information needed for constructing an invoice route hint for this channel.
979 #[derive(Clone, Debug, PartialEq)]
980 pub struct CounterpartyForwardingInfo {
981         /// Base routing fee in millisatoshis.
982         pub fee_base_msat: u32,
983         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
984         pub fee_proportional_millionths: u32,
985         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
986         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
987         /// `cltv_expiry_delta` for more details.
988         pub cltv_expiry_delta: u16,
989 }
990
991 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
992 /// to better separate parameters.
993 #[derive(Clone, Debug, PartialEq)]
994 pub struct ChannelCounterparty {
995         /// The node_id of our counterparty
996         pub node_id: PublicKey,
997         /// The Features the channel counterparty provided upon last connection.
998         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
999         /// many routing-relevant features are present in the init context.
1000         pub features: InitFeatures,
1001         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1002         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1003         /// claiming at least this value on chain.
1004         ///
1005         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1006         ///
1007         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1008         pub unspendable_punishment_reserve: u64,
1009         /// Information on the fees and requirements that the counterparty requires when forwarding
1010         /// payments to us through this channel.
1011         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1012         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1013         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1014         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1015         pub outbound_htlc_minimum_msat: Option<u64>,
1016         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1017         pub outbound_htlc_maximum_msat: Option<u64>,
1018 }
1019
1020 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
1021 #[derive(Clone, Debug, PartialEq)]
1022 pub struct ChannelDetails {
1023         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1024         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1025         /// Note that this means this value is *not* persistent - it can change once during the
1026         /// lifetime of the channel.
1027         pub channel_id: [u8; 32],
1028         /// Parameters which apply to our counterparty. See individual fields for more information.
1029         pub counterparty: ChannelCounterparty,
1030         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1031         /// our counterparty already.
1032         ///
1033         /// Note that, if this has been set, `channel_id` will be equivalent to
1034         /// `funding_txo.unwrap().to_channel_id()`.
1035         pub funding_txo: Option<OutPoint>,
1036         /// The features which this channel operates with. See individual features for more info.
1037         ///
1038         /// `None` until negotiation completes and the channel type is finalized.
1039         pub channel_type: Option<ChannelTypeFeatures>,
1040         /// The position of the funding transaction in the chain. None if the funding transaction has
1041         /// not yet been confirmed and the channel fully opened.
1042         ///
1043         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1044         /// payments instead of this. See [`get_inbound_payment_scid`].
1045         ///
1046         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1047         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1048         ///
1049         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1050         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1051         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1052         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1053         /// [`confirmations_required`]: Self::confirmations_required
1054         pub short_channel_id: Option<u64>,
1055         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1056         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1057         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1058         /// `Some(0)`).
1059         ///
1060         /// This will be `None` as long as the channel is not available for routing outbound payments.
1061         ///
1062         /// [`short_channel_id`]: Self::short_channel_id
1063         /// [`confirmations_required`]: Self::confirmations_required
1064         pub outbound_scid_alias: Option<u64>,
1065         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1066         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1067         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1068         /// when they see a payment to be routed to us.
1069         ///
1070         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1071         /// previous values for inbound payment forwarding.
1072         ///
1073         /// [`short_channel_id`]: Self::short_channel_id
1074         pub inbound_scid_alias: Option<u64>,
1075         /// The value, in satoshis, of this channel as appears in the funding output
1076         pub channel_value_satoshis: u64,
1077         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1078         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1079         /// this value on chain.
1080         ///
1081         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1082         ///
1083         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1084         ///
1085         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1086         pub unspendable_punishment_reserve: Option<u64>,
1087         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1088         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1089         /// 0.0.113.
1090         pub user_channel_id: u128,
1091         /// Our total balance.  This is the amount we would get if we close the channel.
1092         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1093         /// amount is not likely to be recoverable on close.
1094         ///
1095         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1096         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1097         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1098         /// This does not consider any on-chain fees.
1099         ///
1100         /// See also [`ChannelDetails::outbound_capacity_msat`]
1101         pub balance_msat: u64,
1102         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1103         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1104         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1105         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1106         ///
1107         /// See also [`ChannelDetails::balance_msat`]
1108         ///
1109         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1110         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1111         /// should be able to spend nearly this amount.
1112         pub outbound_capacity_msat: u64,
1113         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1114         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1115         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1116         /// to use a limit as close as possible to the HTLC limit we can currently send.
1117         ///
1118         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1119         pub next_outbound_htlc_limit_msat: u64,
1120         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1121         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1122         /// available for inclusion in new inbound HTLCs).
1123         /// Note that there are some corner cases not fully handled here, so the actual available
1124         /// inbound capacity may be slightly higher than this.
1125         ///
1126         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1127         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1128         /// However, our counterparty should be able to spend nearly this amount.
1129         pub inbound_capacity_msat: u64,
1130         /// The number of required confirmations on the funding transaction before the funding will be
1131         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1132         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1133         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1134         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1135         ///
1136         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1137         ///
1138         /// [`is_outbound`]: ChannelDetails::is_outbound
1139         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1140         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1141         pub confirmations_required: Option<u32>,
1142         /// The current number of confirmations on the funding transaction.
1143         ///
1144         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1145         pub confirmations: Option<u32>,
1146         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1147         /// until we can claim our funds after we force-close the channel. During this time our
1148         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1149         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1150         /// time to claim our non-HTLC-encumbered funds.
1151         ///
1152         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1153         pub force_close_spend_delay: Option<u16>,
1154         /// True if the channel was initiated (and thus funded) by us.
1155         pub is_outbound: bool,
1156         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1157         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1158         /// required confirmation count has been reached (and we were connected to the peer at some
1159         /// point after the funding transaction received enough confirmations). The required
1160         /// confirmation count is provided in [`confirmations_required`].
1161         ///
1162         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1163         pub is_channel_ready: bool,
1164         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1165         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1166         ///
1167         /// This is a strict superset of `is_channel_ready`.
1168         pub is_usable: bool,
1169         /// True if this channel is (or will be) publicly-announced.
1170         pub is_public: bool,
1171         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1172         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1173         pub inbound_htlc_minimum_msat: Option<u64>,
1174         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1175         pub inbound_htlc_maximum_msat: Option<u64>,
1176         /// Set of configurable parameters that affect channel operation.
1177         ///
1178         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1179         pub config: Option<ChannelConfig>,
1180 }
1181
1182 impl ChannelDetails {
1183         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1184         /// This should be used for providing invoice hints or in any other context where our
1185         /// counterparty will forward a payment to us.
1186         ///
1187         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1188         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1189         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1190                 self.inbound_scid_alias.or(self.short_channel_id)
1191         }
1192
1193         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1194         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1195         /// we're sending or forwarding a payment outbound over this channel.
1196         ///
1197         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1198         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1199         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1200                 self.short_channel_id.or(self.outbound_scid_alias)
1201         }
1202 }
1203
1204 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1205 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1206 #[derive(Debug, PartialEq)]
1207 pub enum RecentPaymentDetails {
1208         /// When a payment is still being sent and awaiting successful delivery.
1209         Pending {
1210                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1211                 /// abandoned.
1212                 payment_hash: PaymentHash,
1213                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1214                 /// not just the amount currently inflight.
1215                 total_msat: u64,
1216         },
1217         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1218         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1219         /// payment is removed from tracking.
1220         Fulfilled {
1221                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1222                 /// made before LDK version 0.0.104.
1223                 payment_hash: Option<PaymentHash>,
1224         },
1225         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1226         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1227         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1228         Abandoned {
1229                 /// Hash of the payment that we have given up trying to send.
1230                 payment_hash: PaymentHash,
1231         },
1232 }
1233
1234 /// Route hints used in constructing invoices for [phantom node payents].
1235 ///
1236 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1237 #[derive(Clone)]
1238 pub struct PhantomRouteHints {
1239         /// The list of channels to be included in the invoice route hints.
1240         pub channels: Vec<ChannelDetails>,
1241         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1242         /// route hints.
1243         pub phantom_scid: u64,
1244         /// The pubkey of the real backing node that would ultimately receive the payment.
1245         pub real_node_pubkey: PublicKey,
1246 }
1247
1248 macro_rules! handle_error {
1249         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1250                 match $internal {
1251                         Ok(msg) => Ok(msg),
1252                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1253                                 // In testing, ensure there are no deadlocks where the lock is already held upon
1254                                 // entering the macro.
1255                                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1256                                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1257
1258                                 let mut msg_events = Vec::with_capacity(2);
1259
1260                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1261                                         $self.finish_force_close_channel(shutdown_res);
1262                                         if let Some(update) = update_option {
1263                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1264                                                         msg: update
1265                                                 });
1266                                         }
1267                                         if let Some((channel_id, user_channel_id)) = chan_id {
1268                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1269                                                         channel_id, user_channel_id,
1270                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1271                                                 });
1272                                         }
1273                                 }
1274
1275                                 log_error!($self.logger, "{}", err.err);
1276                                 if let msgs::ErrorAction::IgnoreError = err.action {
1277                                 } else {
1278                                         msg_events.push(events::MessageSendEvent::HandleError {
1279                                                 node_id: $counterparty_node_id,
1280                                                 action: err.action.clone()
1281                                         });
1282                                 }
1283
1284                                 if !msg_events.is_empty() {
1285                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1286                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1287                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1288                                                 peer_state.pending_msg_events.append(&mut msg_events);
1289                                         }
1290                                 }
1291
1292                                 // Return error in case higher-API need one
1293                                 Err(err)
1294                         },
1295                 }
1296         }
1297 }
1298
1299 macro_rules! update_maps_on_chan_removal {
1300         ($self: expr, $channel: expr) => {{
1301                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1302                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1303                 if let Some(short_id) = $channel.get_short_channel_id() {
1304                         short_to_chan_info.remove(&short_id);
1305                 } else {
1306                         // If the channel was never confirmed on-chain prior to its closure, remove the
1307                         // outbound SCID alias we used for it from the collision-prevention set. While we
1308                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1309                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1310                         // opening a million channels with us which are closed before we ever reach the funding
1311                         // stage.
1312                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1313                         debug_assert!(alias_removed);
1314                 }
1315                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1316         }}
1317 }
1318
1319 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1320 macro_rules! convert_chan_err {
1321         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1322                 match $err {
1323                         ChannelError::Warn(msg) => {
1324                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1325                         },
1326                         ChannelError::Ignore(msg) => {
1327                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1328                         },
1329                         ChannelError::Close(msg) => {
1330                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1331                                 update_maps_on_chan_removal!($self, $channel);
1332                                 let shutdown_res = $channel.force_shutdown(true);
1333                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1334                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1335                         },
1336                 }
1337         }
1338 }
1339
1340 macro_rules! break_chan_entry {
1341         ($self: ident, $res: expr, $entry: expr) => {
1342                 match $res {
1343                         Ok(res) => res,
1344                         Err(e) => {
1345                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1346                                 if drop {
1347                                         $entry.remove_entry();
1348                                 }
1349                                 break Err(res);
1350                         }
1351                 }
1352         }
1353 }
1354
1355 macro_rules! try_chan_entry {
1356         ($self: ident, $res: expr, $entry: expr) => {
1357                 match $res {
1358                         Ok(res) => res,
1359                         Err(e) => {
1360                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1361                                 if drop {
1362                                         $entry.remove_entry();
1363                                 }
1364                                 return Err(res);
1365                         }
1366                 }
1367         }
1368 }
1369
1370 macro_rules! remove_channel {
1371         ($self: expr, $entry: expr) => {
1372                 {
1373                         let channel = $entry.remove_entry().1;
1374                         update_maps_on_chan_removal!($self, channel);
1375                         channel
1376                 }
1377         }
1378 }
1379
1380 macro_rules! send_channel_ready {
1381         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1382                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1383                         node_id: $channel.get_counterparty_node_id(),
1384                         msg: $channel_ready_msg,
1385                 });
1386                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1387                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1388                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1389                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1390                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1391                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1392                 if let Some(real_scid) = $channel.get_short_channel_id() {
1393                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1394                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1395                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1396                 }
1397         }}
1398 }
1399
1400 macro_rules! emit_channel_ready_event {
1401         ($self: expr, $channel: expr) => {
1402                 if $channel.should_emit_channel_ready_event() {
1403                         {
1404                                 let mut pending_events = $self.pending_events.lock().unwrap();
1405                                 pending_events.push(events::Event::ChannelReady {
1406                                         channel_id: $channel.channel_id(),
1407                                         user_channel_id: $channel.get_user_id(),
1408                                         counterparty_node_id: $channel.get_counterparty_node_id(),
1409                                         channel_type: $channel.get_channel_type().clone(),
1410                                 });
1411                         }
1412                         $channel.set_channel_ready_event_emitted();
1413                 }
1414         }
1415 }
1416
1417 macro_rules! handle_monitor_update_completion {
1418         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1419                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1420                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1421                         $self.best_block.read().unwrap().height());
1422                 let counterparty_node_id = $chan.get_counterparty_node_id();
1423                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1424                         // We only send a channel_update in the case where we are just now sending a
1425                         // channel_ready and the channel is in a usable state. We may re-send a
1426                         // channel_update later through the announcement_signatures process for public
1427                         // channels, but there's no reason not to just inform our counterparty of our fees
1428                         // now.
1429                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1430                                 Some(events::MessageSendEvent::SendChannelUpdate {
1431                                         node_id: counterparty_node_id,
1432                                         msg,
1433                                 })
1434                         } else { None }
1435                 } else { None };
1436
1437                 let update_actions = $peer_state.monitor_update_blocked_actions
1438                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1439
1440                 let htlc_forwards = $self.handle_channel_resumption(
1441                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1442                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1443                         updates.funding_broadcastable, updates.channel_ready,
1444                         updates.announcement_sigs);
1445                 if let Some(upd) = channel_update {
1446                         $peer_state.pending_msg_events.push(upd);
1447                 }
1448
1449                 let channel_id = $chan.channel_id();
1450                 core::mem::drop($peer_state_lock);
1451                 core::mem::drop($per_peer_state_lock);
1452
1453                 $self.handle_monitor_update_completion_actions(update_actions);
1454
1455                 if let Some(forwards) = htlc_forwards {
1456                         $self.forward_htlcs(&mut [forwards][..]);
1457                 }
1458                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1459                 for failure in updates.failed_htlcs.drain(..) {
1460                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1461                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1462                 }
1463         } }
1464 }
1465
1466 macro_rules! handle_new_monitor_update {
1467         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1468                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1469                 // any case so that it won't deadlock.
1470                 debug_assert!($self.id_to_peer.try_lock().is_ok());
1471                 match $update_res {
1472                         ChannelMonitorUpdateStatus::InProgress => {
1473                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1474                                         log_bytes!($chan.channel_id()[..]));
1475                                 Ok(())
1476                         },
1477                         ChannelMonitorUpdateStatus::PermanentFailure => {
1478                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1479                                         log_bytes!($chan.channel_id()[..]));
1480                                 update_maps_on_chan_removal!($self, $chan);
1481                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1482                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1483                                         $chan.get_user_id(), $chan.force_shutdown(false),
1484                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1485                                 $remove;
1486                                 res
1487                         },
1488                         ChannelMonitorUpdateStatus::Completed => {
1489                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1490                                         .expect("We can't be processing a monitor update if it isn't queued")
1491                                         .update_id == $update_id) &&
1492                                         $chan.get_latest_monitor_update_id() == $update_id
1493                                 {
1494                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1495                                 }
1496                                 Ok(())
1497                         },
1498                 }
1499         } };
1500         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1501                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1502         }
1503 }
1504
1505 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1506 where
1507         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1508         T::Target: BroadcasterInterface,
1509         ES::Target: EntropySource,
1510         NS::Target: NodeSigner,
1511         SP::Target: SignerProvider,
1512         F::Target: FeeEstimator,
1513         R::Target: Router,
1514         L::Target: Logger,
1515 {
1516         /// Constructs a new ChannelManager to hold several channels and route between them.
1517         ///
1518         /// This is the main "logic hub" for all channel-related actions, and implements
1519         /// ChannelMessageHandler.
1520         ///
1521         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1522         ///
1523         /// Users need to notify the new ChannelManager when a new block is connected or
1524         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1525         /// from after `params.latest_hash`.
1526         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1527                 let mut secp_ctx = Secp256k1::new();
1528                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1529                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1530                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1531                 ChannelManager {
1532                         default_configuration: config.clone(),
1533                         genesis_hash: genesis_block(params.network).header.block_hash(),
1534                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1535                         chain_monitor,
1536                         tx_broadcaster,
1537                         router,
1538
1539                         best_block: RwLock::new(params.best_block),
1540
1541                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1542                         pending_inbound_payments: Mutex::new(HashMap::new()),
1543                         pending_outbound_payments: OutboundPayments::new(),
1544                         forward_htlcs: Mutex::new(HashMap::new()),
1545                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1546                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1547                         id_to_peer: Mutex::new(HashMap::new()),
1548                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1549
1550                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1551                         secp_ctx,
1552
1553                         inbound_payment_key: expanded_inbound_key,
1554                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1555
1556                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1557
1558                         highest_seen_timestamp: AtomicUsize::new(0),
1559
1560                         per_peer_state: FairRwLock::new(HashMap::new()),
1561
1562                         pending_events: Mutex::new(Vec::new()),
1563                         pending_background_events: Mutex::new(Vec::new()),
1564                         total_consistency_lock: RwLock::new(()),
1565                         persistence_notifier: Notifier::new(),
1566
1567                         entropy_source,
1568                         node_signer,
1569                         signer_provider,
1570
1571                         logger,
1572                 }
1573         }
1574
1575         /// Gets the current configuration applied to all new channels.
1576         pub fn get_current_default_configuration(&self) -> &UserConfig {
1577                 &self.default_configuration
1578         }
1579
1580         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1581                 let height = self.best_block.read().unwrap().height();
1582                 let mut outbound_scid_alias = 0;
1583                 let mut i = 0;
1584                 loop {
1585                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1586                                 outbound_scid_alias += 1;
1587                         } else {
1588                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1589                         }
1590                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1591                                 break;
1592                         }
1593                         i += 1;
1594                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1595                 }
1596                 outbound_scid_alias
1597         }
1598
1599         /// Creates a new outbound channel to the given remote node and with the given value.
1600         ///
1601         /// `user_channel_id` will be provided back as in
1602         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1603         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1604         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1605         /// is simply copied to events and otherwise ignored.
1606         ///
1607         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1608         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1609         ///
1610         /// Note that we do not check if you are currently connected to the given peer. If no
1611         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1612         /// the channel eventually being silently forgotten (dropped on reload).
1613         ///
1614         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1615         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1616         /// [`ChannelDetails::channel_id`] until after
1617         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1618         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1619         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1620         ///
1621         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1622         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1623         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1624         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1625                 if channel_value_satoshis < 1000 {
1626                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1627                 }
1628
1629                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1630                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1631                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1632
1633                 let per_peer_state = self.per_peer_state.read().unwrap();
1634
1635                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1636                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1637
1638                 let mut peer_state = peer_state_mutex.lock().unwrap();
1639                 let channel = {
1640                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1641                         let their_features = &peer_state.latest_features;
1642                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1643                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1644                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1645                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1646                         {
1647                                 Ok(res) => res,
1648                                 Err(e) => {
1649                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1650                                         return Err(e);
1651                                 },
1652                         }
1653                 };
1654                 let res = channel.get_open_channel(self.genesis_hash.clone());
1655
1656                 let temporary_channel_id = channel.channel_id();
1657                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1658                         hash_map::Entry::Occupied(_) => {
1659                                 if cfg!(fuzzing) {
1660                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1661                                 } else {
1662                                         panic!("RNG is bad???");
1663                                 }
1664                         },
1665                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1666                 }
1667
1668                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1669                         node_id: their_network_key,
1670                         msg: res,
1671                 });
1672                 Ok(temporary_channel_id)
1673         }
1674
1675         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1676                 // Allocate our best estimate of the number of channels we have in the `res`
1677                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1678                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1679                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1680                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1681                 // the same channel.
1682                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1683                 {
1684                         let best_block_height = self.best_block.read().unwrap().height();
1685                         let per_peer_state = self.per_peer_state.read().unwrap();
1686                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1687                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1688                                 let peer_state = &mut *peer_state_lock;
1689                                 for (channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1690                                         let balance = channel.get_available_balances();
1691                                         let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1692                                                 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1693                                         res.push(ChannelDetails {
1694                                                 channel_id: (*channel_id).clone(),
1695                                                 counterparty: ChannelCounterparty {
1696                                                         node_id: channel.get_counterparty_node_id(),
1697                                                         features: peer_state.latest_features.clone(),
1698                                                         unspendable_punishment_reserve: to_remote_reserve_satoshis,
1699                                                         forwarding_info: channel.counterparty_forwarding_info(),
1700                                                         // Ensures that we have actually received the `htlc_minimum_msat` value
1701                                                         // from the counterparty through the `OpenChannel` or `AcceptChannel`
1702                                                         // message (as they are always the first message from the counterparty).
1703                                                         // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1704                                                         // default `0` value set by `Channel::new_outbound`.
1705                                                         outbound_htlc_minimum_msat: if channel.have_received_message() {
1706                                                                 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1707                                                         outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1708                                                 },
1709                                                 funding_txo: channel.get_funding_txo(),
1710                                                 // Note that accept_channel (or open_channel) is always the first message, so
1711                                                 // `have_received_message` indicates that type negotiation has completed.
1712                                                 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1713                                                 short_channel_id: channel.get_short_channel_id(),
1714                                                 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1715                                                 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1716                                                 channel_value_satoshis: channel.get_value_satoshis(),
1717                                                 unspendable_punishment_reserve: to_self_reserve_satoshis,
1718                                                 balance_msat: balance.balance_msat,
1719                                                 inbound_capacity_msat: balance.inbound_capacity_msat,
1720                                                 outbound_capacity_msat: balance.outbound_capacity_msat,
1721                                                 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1722                                                 user_channel_id: channel.get_user_id(),
1723                                                 confirmations_required: channel.minimum_depth(),
1724                                                 confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1725                                                 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1726                                                 is_outbound: channel.is_outbound(),
1727                                                 is_channel_ready: channel.is_usable(),
1728                                                 is_usable: channel.is_live(),
1729                                                 is_public: channel.should_announce(),
1730                                                 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1731                                                 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1732                                                 config: Some(channel.config()),
1733                                         });
1734                                 }
1735                         }
1736                 }
1737                 res
1738         }
1739
1740         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1741         /// more information.
1742         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1743                 self.list_channels_with_filter(|_| true)
1744         }
1745
1746         /// Gets the list of usable channels, in random order. Useful as an argument to
1747         /// [`Router::find_route`] to ensure non-announced channels are used.
1748         ///
1749         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1750         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1751         /// are.
1752         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1753                 // Note we use is_live here instead of usable which leads to somewhat confused
1754                 // internal/external nomenclature, but that's ok cause that's probably what the user
1755                 // really wanted anyway.
1756                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1757         }
1758
1759         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1760         /// successful path, or have unresolved HTLCs.
1761         ///
1762         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1763         /// result of a crash. If such a payment exists, is not listed here, and an
1764         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1765         ///
1766         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1767         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1768                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1769                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1770                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1771                                         Some(RecentPaymentDetails::Pending {
1772                                                 payment_hash: *payment_hash,
1773                                                 total_msat: *total_msat,
1774                                         })
1775                                 },
1776                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1777                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1778                                 },
1779                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1780                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1781                                 },
1782                                 PendingOutboundPayment::Legacy { .. } => None
1783                         })
1784                         .collect()
1785         }
1786
1787         /// Helper function that issues the channel close events
1788         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1789                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1790                 match channel.unbroadcasted_funding() {
1791                         Some(transaction) => {
1792                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1793                         },
1794                         None => {},
1795                 }
1796                 pending_events_lock.push(events::Event::ChannelClosed {
1797                         channel_id: channel.channel_id(),
1798                         user_channel_id: channel.get_user_id(),
1799                         reason: closure_reason
1800                 });
1801         }
1802
1803         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1804                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1805
1806                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1807                 let result: Result<(), _> = loop {
1808                         let per_peer_state = self.per_peer_state.read().unwrap();
1809
1810                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1811                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
1812
1813                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1814                         let peer_state = &mut *peer_state_lock;
1815                         match peer_state.channel_by_id.entry(channel_id.clone()) {
1816                                 hash_map::Entry::Occupied(mut chan_entry) => {
1817                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
1818                                         let their_features = &peer_state.latest_features;
1819                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
1820                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
1821                                         failed_htlcs = htlcs;
1822
1823                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
1824                                         // here as we don't need the monitor update to complete until we send a
1825                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
1826                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1827                                                 node_id: *counterparty_node_id,
1828                                                 msg: shutdown_msg,
1829                                         });
1830
1831                                         // Update the monitor with the shutdown script if necessary.
1832                                         if let Some(monitor_update) = monitor_update_opt.take() {
1833                                                 let update_id = monitor_update.update_id;
1834                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
1835                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
1836                                         }
1837
1838                                         if chan_entry.get().is_shutdown() {
1839                                                 let channel = remove_channel!(self, chan_entry);
1840                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1841                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1842                                                                 msg: channel_update
1843                                                         });
1844                                                 }
1845                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1846                                         }
1847                                         break Ok(());
1848                                 },
1849                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
1850                         }
1851                 };
1852
1853                 for htlc_source in failed_htlcs.drain(..) {
1854                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1855                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1856                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
1857                 }
1858
1859                 let _ = handle_error!(self, result, *counterparty_node_id);
1860                 Ok(())
1861         }
1862
1863         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1864         /// will be accepted on the given channel, and after additional timeout/the closing of all
1865         /// pending HTLCs, the channel will be closed on chain.
1866         ///
1867         ///  * If we are the channel initiator, we will pay between our [`Background`] and
1868         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1869         ///    estimate.
1870         ///  * If our counterparty is the channel initiator, we will require a channel closing
1871         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
1872         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
1873         ///    counterparty to pay as much fee as they'd like, however.
1874         ///
1875         /// May generate a SendShutdown message event on success, which should be relayed.
1876         ///
1877         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1878         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1879         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1880         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1881                 self.close_channel_internal(channel_id, counterparty_node_id, None)
1882         }
1883
1884         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1885         /// will be accepted on the given channel, and after additional timeout/the closing of all
1886         /// pending HTLCs, the channel will be closed on chain.
1887         ///
1888         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1889         /// the channel being closed or not:
1890         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
1891         ///    transaction. The upper-bound is set by
1892         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1893         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1894         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1895         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1896         ///    will appear on a force-closure transaction, whichever is lower).
1897         ///
1898         /// May generate a SendShutdown message event on success, which should be relayed.
1899         ///
1900         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1901         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1902         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1903         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1904                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
1905         }
1906
1907         #[inline]
1908         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1909                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1910                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1911                 for htlc_source in failed_htlcs.drain(..) {
1912                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
1913                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1914                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1915                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
1916                 }
1917                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1918                         // There isn't anything we can do if we get an update failure - we're already
1919                         // force-closing. The monitor update on the required in-memory copy should broadcast
1920                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1921                         // ignore the result here.
1922                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
1923                 }
1924         }
1925
1926         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
1927         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1928         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
1929         -> Result<PublicKey, APIError> {
1930                 let per_peer_state = self.per_peer_state.read().unwrap();
1931                 let peer_state_mutex = per_peer_state.get(peer_node_id)
1932                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
1933                 let mut chan = {
1934                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1935                         let peer_state = &mut *peer_state_lock;
1936                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
1937                                 if let Some(peer_msg) = peer_msg {
1938                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1939                                 } else {
1940                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1941                                 }
1942                                 remove_channel!(self, chan)
1943                         } else {
1944                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
1945                         }
1946                 };
1947                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1948                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
1949                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1950                         let mut peer_state = peer_state_mutex.lock().unwrap();
1951                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1952                                 msg: update
1953                         });
1954                 }
1955
1956                 Ok(chan.get_counterparty_node_id())
1957         }
1958
1959         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
1960                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1961                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
1962                         Ok(counterparty_node_id) => {
1963                                 let per_peer_state = self.per_peer_state.read().unwrap();
1964                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
1965                                         let mut peer_state = peer_state_mutex.lock().unwrap();
1966                                         peer_state.pending_msg_events.push(
1967                                                 events::MessageSendEvent::HandleError {
1968                                                         node_id: counterparty_node_id,
1969                                                         action: msgs::ErrorAction::SendErrorMessage {
1970                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1971                                                         },
1972                                                 }
1973                                         );
1974                                 }
1975                                 Ok(())
1976                         },
1977                         Err(e) => Err(e)
1978                 }
1979         }
1980
1981         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
1982         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
1983         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
1984         /// channel.
1985         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
1986         -> Result<(), APIError> {
1987                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
1988         }
1989
1990         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
1991         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
1992         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
1993         ///
1994         /// You can always get the latest local transaction(s) to broadcast from
1995         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
1996         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
1997         -> Result<(), APIError> {
1998                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
1999         }
2000
2001         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2002         /// for each to the chain and rejecting new HTLCs on each.
2003         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2004                 for chan in self.list_channels() {
2005                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2006                 }
2007         }
2008
2009         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2010         /// local transaction(s).
2011         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2012                 for chan in self.list_channels() {
2013                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2014                 }
2015         }
2016
2017         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2018                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2019         {
2020                 // final_incorrect_cltv_expiry
2021                 if hop_data.outgoing_cltv_value != cltv_expiry {
2022                         return Err(ReceiveError {
2023                                 msg: "Upstream node set CLTV to the wrong value",
2024                                 err_code: 18,
2025                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2026                         })
2027                 }
2028                 // final_expiry_too_soon
2029                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2030                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2031                 //
2032                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2033                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2034                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2035                 let current_height: u32 = self.best_block.read().unwrap().height();
2036                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2037                         let mut err_data = Vec::with_capacity(12);
2038                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2039                         err_data.extend_from_slice(&current_height.to_be_bytes());
2040                         return Err(ReceiveError {
2041                                 err_code: 0x4000 | 15, err_data,
2042                                 msg: "The final CLTV expiry is too soon to handle",
2043                         });
2044                 }
2045                 if hop_data.amt_to_forward > amt_msat {
2046                         return Err(ReceiveError {
2047                                 err_code: 19,
2048                                 err_data: amt_msat.to_be_bytes().to_vec(),
2049                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2050                         });
2051                 }
2052
2053                 let routing = match hop_data.format {
2054                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2055                                 return Err(ReceiveError {
2056                                         err_code: 0x4000|22,
2057                                         err_data: Vec::new(),
2058                                         msg: "Got non final data with an HMAC of 0",
2059                                 });
2060                         },
2061                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2062                                 if payment_data.is_some() && keysend_preimage.is_some() {
2063                                         return Err(ReceiveError {
2064                                                 err_code: 0x4000|22,
2065                                                 err_data: Vec::new(),
2066                                                 msg: "We don't support MPP keysend payments",
2067                                         });
2068                                 } else if let Some(data) = payment_data {
2069                                         PendingHTLCRouting::Receive {
2070                                                 payment_data: data,
2071                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2072                                                 phantom_shared_secret,
2073                                         }
2074                                 } else if let Some(payment_preimage) = keysend_preimage {
2075                                         // We need to check that the sender knows the keysend preimage before processing this
2076                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2077                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2078                                         // with a keysend payment of identical payment hash to X and observing the processing
2079                                         // time discrepancies due to a hash collision with X.
2080                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2081                                         if hashed_preimage != payment_hash {
2082                                                 return Err(ReceiveError {
2083                                                         err_code: 0x4000|22,
2084                                                         err_data: Vec::new(),
2085                                                         msg: "Payment preimage didn't match payment hash",
2086                                                 });
2087                                         }
2088
2089                                         PendingHTLCRouting::ReceiveKeysend {
2090                                                 payment_preimage,
2091                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2092                                         }
2093                                 } else {
2094                                         return Err(ReceiveError {
2095                                                 err_code: 0x4000|0x2000|3,
2096                                                 err_data: Vec::new(),
2097                                                 msg: "We require payment_secrets",
2098                                         });
2099                                 }
2100                         },
2101                 };
2102                 Ok(PendingHTLCInfo {
2103                         routing,
2104                         payment_hash,
2105                         incoming_shared_secret: shared_secret,
2106                         incoming_amt_msat: Some(amt_msat),
2107                         outgoing_amt_msat: amt_msat,
2108                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2109                 })
2110         }
2111
2112         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2113                 macro_rules! return_malformed_err {
2114                         ($msg: expr, $err_code: expr) => {
2115                                 {
2116                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2117                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2118                                                 channel_id: msg.channel_id,
2119                                                 htlc_id: msg.htlc_id,
2120                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2121                                                 failure_code: $err_code,
2122                                         }));
2123                                 }
2124                         }
2125                 }
2126
2127                 if let Err(_) = msg.onion_routing_packet.public_key {
2128                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2129                 }
2130
2131                 let shared_secret = self.node_signer.ecdh(
2132                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2133                 ).unwrap().secret_bytes();
2134
2135                 if msg.onion_routing_packet.version != 0 {
2136                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2137                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2138                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2139                         //receiving node would have to brute force to figure out which version was put in the
2140                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2141                         //node knows the HMAC matched, so they already know what is there...
2142                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2143                 }
2144                 macro_rules! return_err {
2145                         ($msg: expr, $err_code: expr, $data: expr) => {
2146                                 {
2147                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2148                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2149                                                 channel_id: msg.channel_id,
2150                                                 htlc_id: msg.htlc_id,
2151                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2152                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2153                                         }));
2154                                 }
2155                         }
2156                 }
2157
2158                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2159                         Ok(res) => res,
2160                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2161                                 return_malformed_err!(err_msg, err_code);
2162                         },
2163                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2164                                 return_err!(err_msg, err_code, &[0; 0]);
2165                         },
2166                 };
2167
2168                 let pending_forward_info = match next_hop {
2169                         onion_utils::Hop::Receive(next_hop_data) => {
2170                                 // OUR PAYMENT!
2171                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2172                                         Ok(info) => {
2173                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2174                                                 // message, however that would leak that we are the recipient of this payment, so
2175                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2176                                                 // delay) once they've send us a commitment_signed!
2177                                                 PendingHTLCStatus::Forward(info)
2178                                         },
2179                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2180                                 }
2181                         },
2182                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2183                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2184                                 let outgoing_packet = msgs::OnionPacket {
2185                                         version: 0,
2186                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2187                                         hop_data: new_packet_bytes,
2188                                         hmac: next_hop_hmac.clone(),
2189                                 };
2190
2191                                 let short_channel_id = match next_hop_data.format {
2192                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2193                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2194                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2195                                         },
2196                                 };
2197
2198                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2199                                         routing: PendingHTLCRouting::Forward {
2200                                                 onion_packet: outgoing_packet,
2201                                                 short_channel_id,
2202                                         },
2203                                         payment_hash: msg.payment_hash.clone(),
2204                                         incoming_shared_secret: shared_secret,
2205                                         incoming_amt_msat: Some(msg.amount_msat),
2206                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2207                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2208                                 })
2209                         }
2210                 };
2211
2212                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2213                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2214                         // with a short_channel_id of 0. This is important as various things later assume
2215                         // short_channel_id is non-0 in any ::Forward.
2216                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2217                                 if let Some((err, mut code, chan_update)) = loop {
2218                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2219                                         let forwarding_chan_info_opt = match id_option {
2220                                                 None => { // unknown_next_peer
2221                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2222                                                         // phantom or an intercept.
2223                                                         if (self.default_configuration.accept_intercept_htlcs &&
2224                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2225                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2226                                                         {
2227                                                                 None
2228                                                         } else {
2229                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2230                                                         }
2231                                                 },
2232                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2233                                         };
2234                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2235                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2236                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2237                                                 if peer_state_mutex_opt.is_none() {
2238                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2239                                                 }
2240                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2241                                                 let peer_state = &mut *peer_state_lock;
2242                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2243                                                         None => {
2244                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2245                                                                 // have no consistency guarantees.
2246                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2247                                                         },
2248                                                         Some(chan) => chan
2249                                                 };
2250                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2251                                                         // Note that the behavior here should be identical to the above block - we
2252                                                         // should NOT reveal the existence or non-existence of a private channel if
2253                                                         // we don't allow forwards outbound over them.
2254                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2255                                                 }
2256                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2257                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2258                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2259                                                         // we don't have the channel here.
2260                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2261                                                 }
2262                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2263
2264                                                 // Note that we could technically not return an error yet here and just hope
2265                                                 // that the connection is reestablished or monitor updated by the time we get
2266                                                 // around to doing the actual forward, but better to fail early if we can and
2267                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2268                                                 // on a small/per-node/per-channel scale.
2269                                                 if !chan.is_live() { // channel_disabled
2270                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2271                                                 }
2272                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2273                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2274                                                 }
2275                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2276                                                         break Some((err, code, chan_update_opt));
2277                                                 }
2278                                                 chan_update_opt
2279                                         } else {
2280                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2281                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2282                                                         // forwarding over a real channel we can't generate a channel_update
2283                                                         // for it. Instead we just return a generic temporary_node_failure.
2284                                                         break Some((
2285                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2286                                                                 0x2000 | 2, None,
2287                                                         ));
2288                                                 }
2289                                                 None
2290                                         };
2291
2292                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2293                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2294                                         // but we want to be robust wrt to counterparty packet sanitization (see
2295                                         // HTLC_FAIL_BACK_BUFFER rationale).
2296                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2297                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2298                                         }
2299                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2300                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2301                                         }
2302                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2303                                         // counterparty. They should fail it anyway, but we don't want to bother with
2304                                         // the round-trips or risk them deciding they definitely want the HTLC and
2305                                         // force-closing to ensure they get it if we're offline.
2306                                         // We previously had a much more aggressive check here which tried to ensure
2307                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2308                                         // but there is no need to do that, and since we're a bit conservative with our
2309                                         // risk threshold it just results in failing to forward payments.
2310                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2311                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2312                                         }
2313
2314                                         break None;
2315                                 }
2316                                 {
2317                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2318                                         if let Some(chan_update) = chan_update {
2319                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2320                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2321                                                 }
2322                                                 else if code == 0x1000 | 13 {
2323                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2324                                                 }
2325                                                 else if code == 0x1000 | 20 {
2326                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2327                                                         0u16.write(&mut res).expect("Writes cannot fail");
2328                                                 }
2329                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2330                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2331                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2332                                         } else if code & 0x1000 == 0x1000 {
2333                                                 // If we're trying to return an error that requires a `channel_update` but
2334                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2335                                                 // generate an update), just use the generic "temporary_node_failure"
2336                                                 // instead.
2337                                                 code = 0x2000 | 2;
2338                                         }
2339                                         return_err!(err, code, &res.0[..]);
2340                                 }
2341                         }
2342                 }
2343
2344                 pending_forward_info
2345         }
2346
2347         /// Gets the current channel_update for the given channel. This first checks if the channel is
2348         /// public, and thus should be called whenever the result is going to be passed out in a
2349         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2350         ///
2351         /// Note that in `internal_closing_signed`, this function is called without the `peer_state`
2352         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2353         /// storage and the `peer_state` lock has been dropped.
2354         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2355                 if !chan.should_announce() {
2356                         return Err(LightningError {
2357                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2358                                 action: msgs::ErrorAction::IgnoreError
2359                         });
2360                 }
2361                 if chan.get_short_channel_id().is_none() {
2362                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2363                 }
2364                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2365                 self.get_channel_update_for_unicast(chan)
2366         }
2367
2368         /// Gets the current channel_update for the given channel. This does not check if the channel
2369         /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2370         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2371         /// provided evidence that they know about the existence of the channel.
2372         ///
2373         /// Note that through `internal_closing_signed`, this function is called without the
2374         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2375         /// removed from the storage and the `peer_state` lock has been dropped.
2376         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2377                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2378                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2379                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2380                         Some(id) => id,
2381                 };
2382
2383                 self.get_channel_update_for_onion(short_channel_id, chan)
2384         }
2385         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2386                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2387                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2388
2389                 let unsigned = msgs::UnsignedChannelUpdate {
2390                         chain_hash: self.genesis_hash,
2391                         short_channel_id,
2392                         timestamp: chan.get_update_time_counter(),
2393                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2394                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2395                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2396                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2397                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2398                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2399                         excess_data: Vec::new(),
2400                 };
2401                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2402                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2403                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2404                 // channel.
2405                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2406
2407                 Ok(msgs::ChannelUpdate {
2408                         signature: sig,
2409                         contents: unsigned
2410                 })
2411         }
2412
2413         #[cfg(test)]
2414         pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2415                 let _lck = self.total_consistency_lock.read().unwrap();
2416                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2417         }
2418
2419         fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2420                 // The top-level caller should hold the total_consistency_lock read lock.
2421                 debug_assert!(self.total_consistency_lock.try_write().is_err());
2422
2423                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2424                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2425                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2426
2427                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2428                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2429                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2430                 if onion_utils::route_size_insane(&onion_payloads) {
2431                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2432                 }
2433                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2434
2435                 let err: Result<(), _> = loop {
2436                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2437                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2438                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2439                         };
2440
2441                         let per_peer_state = self.per_peer_state.read().unwrap();
2442                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2443                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2444                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2445                         let peer_state = &mut *peer_state_lock;
2446                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2447                                 if !chan.get().is_live() {
2448                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2449                                 }
2450                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2451                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2452                                         htlc_cltv, HTLCSource::OutboundRoute {
2453                                                 path: path.clone(),
2454                                                 session_priv: session_priv.clone(),
2455                                                 first_hop_htlc_msat: htlc_msat,
2456                                                 payment_id,
2457                                                 payment_secret: payment_secret.clone(),
2458                                                 payment_params: payment_params.clone(),
2459                                         }, onion_packet, &self.logger);
2460                                 match break_chan_entry!(self, send_res, chan) {
2461                                         Some(monitor_update) => {
2462                                                 let update_id = monitor_update.update_id;
2463                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2464                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2465                                                         break Err(e);
2466                                                 }
2467                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2468                                                         // Note that MonitorUpdateInProgress here indicates (per function
2469                                                         // docs) that we will resend the commitment update once monitor
2470                                                         // updating completes. Therefore, we must return an error
2471                                                         // indicating that it is unsafe to retry the payment wholesale,
2472                                                         // which we do in the send_payment check for
2473                                                         // MonitorUpdateInProgress, below.
2474                                                         return Err(APIError::MonitorUpdateInProgress);
2475                                                 }
2476                                         },
2477                                         None => { },
2478                                 }
2479                         } else {
2480                                 // The channel was likely removed after we fetched the id from the
2481                                 // `short_to_chan_info` map, but before we successfully locked the
2482                                 // `channel_by_id` map.
2483                                 // This can occur as no consistency guarantees exists between the two maps.
2484                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2485                         }
2486                         return Ok(());
2487                 };
2488
2489                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2490                         Ok(_) => unreachable!(),
2491                         Err(e) => {
2492                                 Err(APIError::ChannelUnavailable { err: e.err })
2493                         },
2494                 }
2495         }
2496
2497         /// Sends a payment along a given route.
2498         ///
2499         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2500         /// fields for more info.
2501         ///
2502         /// May generate SendHTLCs message(s) event on success, which should be relayed (e.g. via
2503         /// [`PeerManager::process_events`]).
2504         ///
2505         /// # Avoiding Duplicate Payments
2506         ///
2507         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2508         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2509         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2510         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2511         /// second payment with the same [`PaymentId`].
2512         ///
2513         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2514         /// tracking of payments, including state to indicate once a payment has completed. Because you
2515         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2516         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2517         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2518         ///
2519         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2520         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2521         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2522         /// [`ChannelManager::list_recent_payments`] for more information.
2523         ///
2524         /// # Possible Error States on [`PaymentSendFailure`]
2525         ///
2526         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2527         /// each entry matching the corresponding-index entry in the route paths, see
2528         /// [`PaymentSendFailure`] for more info.
2529         ///
2530         /// In general, a path may raise:
2531         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2532         ///    node public key) is specified.
2533         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2534         ///    (including due to previous monitor update failure or new permanent monitor update
2535         ///    failure).
2536         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2537         ///    relevant updates.
2538         ///
2539         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2540         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2541         /// different route unless you intend to pay twice!
2542         ///
2543         /// # A caution on `payment_secret`
2544         ///
2545         /// `payment_secret` is unrelated to `payment_hash` (or [`PaymentPreimage`]) and exists to
2546         /// authenticate the sender to the recipient and prevent payment-probing (deanonymization)
2547         /// attacks. For newer nodes, it will be provided to you in the invoice. If you do not have one,
2548         /// the [`Route`] must not contain multiple paths as multi-path payments require a
2549         /// recipient-provided `payment_secret`.
2550         ///
2551         /// If a `payment_secret` *is* provided, we assume that the invoice had the payment_secret
2552         /// feature bit set (either as required or as available). If multiple paths are present in the
2553         /// [`Route`], we assume the invoice had the basic_mpp feature set.
2554         ///
2555         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2556         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2557         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2558         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2559         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2560                 let best_block_height = self.best_block.read().unwrap().height();
2561                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2562                 self.pending_outbound_payments
2563                         .send_payment_with_route(route, payment_hash, payment_secret, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2564                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2565                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2566         }
2567
2568         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2569         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2570         pub fn send_payment_with_retry(&self, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2571                 let best_block_height = self.best_block.read().unwrap().height();
2572                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2573                 self.pending_outbound_payments
2574                         .send_payment(payment_hash, payment_secret, payment_id, retry_strategy, route_params,
2575                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2576                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2577                                 &self.pending_events,
2578                                 |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2579                                 self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2580         }
2581
2582         #[cfg(test)]
2583         fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2584                 let best_block_height = self.best_block.read().unwrap().height();
2585                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2586                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, payment_secret, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2587                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2588                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2589         }
2590
2591         #[cfg(test)]
2592         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2593                 let best_block_height = self.best_block.read().unwrap().height();
2594                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, payment_secret, payment_id, route, None, &self.entropy_source, best_block_height)
2595         }
2596
2597
2598         /// Signals that no further retries for the given payment should occur. Useful if you have a
2599         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2600         /// retries are exhausted.
2601         ///
2602         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2603         /// as there are no remaining pending HTLCs for this payment.
2604         ///
2605         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2606         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2607         /// determine the ultimate status of a payment.
2608         ///
2609         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2610         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2611         ///
2612         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2613         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2614         pub fn abandon_payment(&self, payment_id: PaymentId) {
2615                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2616                 self.pending_outbound_payments.abandon_payment(payment_id, &self.pending_events);
2617         }
2618
2619         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2620         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2621         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2622         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2623         /// never reach the recipient.
2624         ///
2625         /// See [`send_payment`] documentation for more details on the return value of this function
2626         /// and idempotency guarantees provided by the [`PaymentId`] key.
2627         ///
2628         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2629         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2630         ///
2631         /// Note that `route` must have exactly one path.
2632         ///
2633         /// [`send_payment`]: Self::send_payment
2634         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2635                 let best_block_height = self.best_block.read().unwrap().height();
2636                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2637                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2638                         route, payment_preimage, payment_id, &self.entropy_source, &self.node_signer,
2639                         best_block_height,
2640                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2641                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2642         }
2643
2644         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2645         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2646         ///
2647         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2648         /// payments.
2649         ///
2650         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2651         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2652                 let best_block_height = self.best_block.read().unwrap().height();
2653                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2654                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, payment_id,
2655                         retry_strategy, route_params, &self.router, self.list_usable_channels(),
2656                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2657                         &self.logger, &self.pending_events,
2658                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2659                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2660         }
2661
2662         /// Send a payment that is probing the given route for liquidity. We calculate the
2663         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2664         /// us to easily discern them from real payments.
2665         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2666                 let best_block_height = self.best_block.read().unwrap().height();
2667                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2668                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2669                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2670                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2671         }
2672
2673         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2674         /// payment probe.
2675         #[cfg(test)]
2676         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2677                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2678         }
2679
2680         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2681         /// which checks the correctness of the funding transaction given the associated channel.
2682         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2683                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2684         ) -> Result<(), APIError> {
2685                 let per_peer_state = self.per_peer_state.read().unwrap();
2686                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2687                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2688
2689                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2690                 let peer_state = &mut *peer_state_lock;
2691                 let (chan, msg) = {
2692                         let (res, chan) = {
2693                                 match peer_state.channel_by_id.remove(temporary_channel_id) {
2694                                         Some(mut chan) => {
2695                                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2696
2697                                                 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2698                                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2699                                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2700                                                         } else { unreachable!(); })
2701                                                 , chan)
2702                                         },
2703                                         None => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }) },
2704                                 }
2705                         };
2706                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
2707                                 Ok(funding_msg) => {
2708                                         (chan, funding_msg)
2709                                 },
2710                                 Err(_) => { return Err(APIError::ChannelUnavailable {
2711                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2712                                 }) },
2713                         }
2714                 };
2715
2716                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2717                         node_id: chan.get_counterparty_node_id(),
2718                         msg,
2719                 });
2720                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2721                         hash_map::Entry::Occupied(_) => {
2722                                 panic!("Generated duplicate funding txid?");
2723                         },
2724                         hash_map::Entry::Vacant(e) => {
2725                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2726                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2727                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2728                                 }
2729                                 e.insert(chan);
2730                         }
2731                 }
2732                 Ok(())
2733         }
2734
2735         #[cfg(test)]
2736         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2737                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2738                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2739                 })
2740         }
2741
2742         /// Call this upon creation of a funding transaction for the given channel.
2743         ///
2744         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2745         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2746         ///
2747         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2748         /// across the p2p network.
2749         ///
2750         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2751         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2752         ///
2753         /// May panic if the output found in the funding transaction is duplicative with some other
2754         /// channel (note that this should be trivially prevented by using unique funding transaction
2755         /// keys per-channel).
2756         ///
2757         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2758         /// counterparty's signature the funding transaction will automatically be broadcast via the
2759         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2760         ///
2761         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2762         /// not currently support replacing a funding transaction on an existing channel. Instead,
2763         /// create a new channel with a conflicting funding transaction.
2764         ///
2765         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2766         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2767         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2768         /// for more details.
2769         ///
2770         /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2771         /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2772         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2773                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2774
2775                 for inp in funding_transaction.input.iter() {
2776                         if inp.witness.is_empty() {
2777                                 return Err(APIError::APIMisuseError {
2778                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2779                                 });
2780                         }
2781                 }
2782                 {
2783                         let height = self.best_block.read().unwrap().height();
2784                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2785                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2786                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2787                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2788                                 return Err(APIError::APIMisuseError {
2789                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2790                                 });
2791                         }
2792                 }
2793                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2794                         let mut output_index = None;
2795                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2796                         for (idx, outp) in tx.output.iter().enumerate() {
2797                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2798                                         if output_index.is_some() {
2799                                                 return Err(APIError::APIMisuseError {
2800                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2801                                                 });
2802                                         }
2803                                         if idx > u16::max_value() as usize {
2804                                                 return Err(APIError::APIMisuseError {
2805                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2806                                                 });
2807                                         }
2808                                         output_index = Some(idx as u16);
2809                                 }
2810                         }
2811                         if output_index.is_none() {
2812                                 return Err(APIError::APIMisuseError {
2813                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2814                                 });
2815                         }
2816                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2817                 })
2818         }
2819
2820         /// Atomically updates the [`ChannelConfig`] for the given channels.
2821         ///
2822         /// Once the updates are applied, each eligible channel (advertised with a known short channel
2823         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
2824         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
2825         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
2826         ///
2827         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
2828         /// `counterparty_node_id` is provided.
2829         ///
2830         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
2831         /// below [`MIN_CLTV_EXPIRY_DELTA`].
2832         ///
2833         /// If an error is returned, none of the updates should be considered applied.
2834         ///
2835         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
2836         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
2837         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
2838         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
2839         /// [`ChannelUpdate`]: msgs::ChannelUpdate
2840         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
2841         /// [`APIMisuseError`]: APIError::APIMisuseError
2842         pub fn update_channel_config(
2843                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
2844         ) -> Result<(), APIError> {
2845                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
2846                         return Err(APIError::APIMisuseError {
2847                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
2848                         });
2849                 }
2850
2851                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
2852                         &self.total_consistency_lock, &self.persistence_notifier,
2853                 );
2854                 let per_peer_state = self.per_peer_state.read().unwrap();
2855                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2856                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2857                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2858                 let peer_state = &mut *peer_state_lock;
2859                 for channel_id in channel_ids {
2860                         if !peer_state.channel_by_id.contains_key(channel_id) {
2861                                 return Err(APIError::ChannelUnavailable {
2862                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
2863                                 });
2864                         }
2865                 }
2866                 for channel_id in channel_ids {
2867                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
2868                         if !channel.update_config(config) {
2869                                 continue;
2870                         }
2871                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
2872                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
2873                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
2874                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
2875                                         node_id: channel.get_counterparty_node_id(),
2876                                         msg,
2877                                 });
2878                         }
2879                 }
2880                 Ok(())
2881         }
2882
2883         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
2884         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
2885         ///
2886         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
2887         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
2888         ///
2889         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
2890         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
2891         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
2892         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
2893         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
2894         ///
2895         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
2896         /// you from forwarding more than you received.
2897         ///
2898         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2899         /// backwards.
2900         ///
2901         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
2902         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2903         // TODO: when we move to deciding the best outbound channel at forward time, only take
2904         // `next_node_id` and not `next_hop_channel_id`
2905         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
2906                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2907
2908                 let next_hop_scid = {
2909                         let peer_state_lock = self.per_peer_state.read().unwrap();
2910                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
2911                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
2912                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2913                         let peer_state = &mut *peer_state_lock;
2914                         match peer_state.channel_by_id.get(next_hop_channel_id) {
2915                                 Some(chan) => {
2916                                         if !chan.is_usable() {
2917                                                 return Err(APIError::ChannelUnavailable {
2918                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
2919                                                 })
2920                                         }
2921                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
2922                                 },
2923                                 None => return Err(APIError::ChannelUnavailable {
2924                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
2925                                 })
2926                         }
2927                 };
2928
2929                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2930                         .ok_or_else(|| APIError::APIMisuseError {
2931                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2932                         })?;
2933
2934                 let routing = match payment.forward_info.routing {
2935                         PendingHTLCRouting::Forward { onion_packet, .. } => {
2936                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
2937                         },
2938                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
2939                 };
2940                 let pending_htlc_info = PendingHTLCInfo {
2941                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
2942                 };
2943
2944                 let mut per_source_pending_forward = [(
2945                         payment.prev_short_channel_id,
2946                         payment.prev_funding_outpoint,
2947                         payment.prev_user_channel_id,
2948                         vec![(pending_htlc_info, payment.prev_htlc_id)]
2949                 )];
2950                 self.forward_htlcs(&mut per_source_pending_forward);
2951                 Ok(())
2952         }
2953
2954         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
2955         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
2956         ///
2957         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
2958         /// backwards.
2959         ///
2960         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
2961         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
2962                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2963
2964                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
2965                         .ok_or_else(|| APIError::APIMisuseError {
2966                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
2967                         })?;
2968
2969                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
2970                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2971                                 short_channel_id: payment.prev_short_channel_id,
2972                                 outpoint: payment.prev_funding_outpoint,
2973                                 htlc_id: payment.prev_htlc_id,
2974                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
2975                                 phantom_shared_secret: None,
2976                         });
2977
2978                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
2979                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
2980                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
2981                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
2982
2983                 Ok(())
2984         }
2985
2986         /// Processes HTLCs which are pending waiting on random forward delay.
2987         ///
2988         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2989         /// Will likely generate further events.
2990         pub fn process_pending_htlc_forwards(&self) {
2991                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2992
2993                 let mut new_events = Vec::new();
2994                 let mut failed_forwards = Vec::new();
2995                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
2996                 {
2997                         let mut forward_htlcs = HashMap::new();
2998                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
2999
3000                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
3001                                 if short_chan_id != 0 {
3002                                         macro_rules! forwarding_channel_not_found {
3003                                                 () => {
3004                                                         for forward_info in pending_forwards.drain(..) {
3005                                                                 match forward_info {
3006                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3007                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3008                                                                                 forward_info: PendingHTLCInfo {
3009                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3010                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3011                                                                                 }
3012                                                                         }) => {
3013                                                                                 macro_rules! failure_handler {
3014                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3015                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3016
3017                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3018                                                                                                         short_channel_id: prev_short_channel_id,
3019                                                                                                         outpoint: prev_funding_outpoint,
3020                                                                                                         htlc_id: prev_htlc_id,
3021                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3022                                                                                                         phantom_shared_secret: $phantom_ss,
3023                                                                                                 });
3024
3025                                                                                                 let reason = if $next_hop_unknown {
3026                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3027                                                                                                 } else {
3028                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3029                                                                                                 };
3030
3031                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3032                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3033                                                                                                         reason
3034                                                                                                 ));
3035                                                                                                 continue;
3036                                                                                         }
3037                                                                                 }
3038                                                                                 macro_rules! fail_forward {
3039                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3040                                                                                                 {
3041                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3042                                                                                                 }
3043                                                                                         }
3044                                                                                 }
3045                                                                                 macro_rules! failed_payment {
3046                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3047                                                                                                 {
3048                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3049                                                                                                 }
3050                                                                                         }
3051                                                                                 }
3052                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3053                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3054                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3055                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3056                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3057                                                                                                         Ok(res) => res,
3058                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3059                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3060                                                                                                                 // In this scenario, the phantom would have sent us an
3061                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3062                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3063                                                                                                                 // of the onion.
3064                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3065                                                                                                         },
3066                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3067                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3068                                                                                                         },
3069                                                                                                 };
3070                                                                                                 match next_hop {
3071                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3072                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3073                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3074                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3075                                                                                                                 }
3076                                                                                                         },
3077                                                                                                         _ => panic!(),
3078                                                                                                 }
3079                                                                                         } else {
3080                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3081                                                                                         }
3082                                                                                 } else {
3083                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3084                                                                                 }
3085                                                                         },
3086                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3087                                                                                 // Channel went away before we could fail it. This implies
3088                                                                                 // the channel is now on chain and our counterparty is
3089                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3090                                                                                 // problem, not ours.
3091                                                                         }
3092                                                                 }
3093                                                         }
3094                                                 }
3095                                         }
3096                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3097                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3098                                                 None => {
3099                                                         forwarding_channel_not_found!();
3100                                                         continue;
3101                                                 }
3102                                         };
3103                                         let per_peer_state = self.per_peer_state.read().unwrap();
3104                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3105                                         if peer_state_mutex_opt.is_none() {
3106                                                 forwarding_channel_not_found!();
3107                                                 continue;
3108                                         }
3109                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3110                                         let peer_state = &mut *peer_state_lock;
3111                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3112                                                 hash_map::Entry::Vacant(_) => {
3113                                                         forwarding_channel_not_found!();
3114                                                         continue;
3115                                                 },
3116                                                 hash_map::Entry::Occupied(mut chan) => {
3117                                                         for forward_info in pending_forwards.drain(..) {
3118                                                                 match forward_info {
3119                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3120                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3121                                                                                 forward_info: PendingHTLCInfo {
3122                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3123                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3124                                                                                 },
3125                                                                         }) => {
3126                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3127                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3128                                                                                         short_channel_id: prev_short_channel_id,
3129                                                                                         outpoint: prev_funding_outpoint,
3130                                                                                         htlc_id: prev_htlc_id,
3131                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3132                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3133                                                                                         phantom_shared_secret: None,
3134                                                                                 });
3135                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3136                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3137                                                                                         onion_packet, &self.logger)
3138                                                                                 {
3139                                                                                         if let ChannelError::Ignore(msg) = e {
3140                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3141                                                                                         } else {
3142                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3143                                                                                         }
3144                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3145                                                                                         failed_forwards.push((htlc_source, payment_hash,
3146                                                                                                 HTLCFailReason::reason(failure_code, data),
3147                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3148                                                                                         ));
3149                                                                                         continue;
3150                                                                                 }
3151                                                                         },
3152                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3153                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3154                                                                         },
3155                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3156                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3157                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3158                                                                                         htlc_id, err_packet, &self.logger
3159                                                                                 ) {
3160                                                                                         if let ChannelError::Ignore(msg) = e {
3161                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3162                                                                                         } else {
3163                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3164                                                                                         }
3165                                                                                         // fail-backs are best-effort, we probably already have one
3166                                                                                         // pending, and if not that's OK, if not, the channel is on
3167                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3168                                                                                         continue;
3169                                                                                 }
3170                                                                         },
3171                                                                 }
3172                                                         }
3173                                                 }
3174                                         }
3175                                 } else {
3176                                         for forward_info in pending_forwards.drain(..) {
3177                                                 match forward_info {
3178                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3179                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3180                                                                 forward_info: PendingHTLCInfo {
3181                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat, ..
3182                                                                 }
3183                                                         }) => {
3184                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3185                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3186                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3187                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3188                                                                         },
3189                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3190                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3191                                                                         _ => {
3192                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3193                                                                         }
3194                                                                 };
3195                                                                 let claimable_htlc = ClaimableHTLC {
3196                                                                         prev_hop: HTLCPreviousHopData {
3197                                                                                 short_channel_id: prev_short_channel_id,
3198                                                                                 outpoint: prev_funding_outpoint,
3199                                                                                 htlc_id: prev_htlc_id,
3200                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3201                                                                                 phantom_shared_secret,
3202                                                                         },
3203                                                                         value: outgoing_amt_msat,
3204                                                                         timer_ticks: 0,
3205                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3206                                                                         cltv_expiry,
3207                                                                         onion_payload,
3208                                                                 };
3209
3210                                                                 macro_rules! fail_htlc {
3211                                                                         ($htlc: expr, $payment_hash: expr) => {
3212                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3213                                                                                 htlc_msat_height_data.extend_from_slice(
3214                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3215                                                                                 );
3216                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3217                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3218                                                                                                 outpoint: prev_funding_outpoint,
3219                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3220                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3221                                                                                                 phantom_shared_secret,
3222                                                                                         }), payment_hash,
3223                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3224                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3225                                                                                 ));
3226                                                                         }
3227                                                                 }
3228                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3229                                                                 let mut receiver_node_id = self.our_network_pubkey;
3230                                                                 if phantom_shared_secret.is_some() {
3231                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3232                                                                                 .expect("Failed to get node_id for phantom node recipient");
3233                                                                 }
3234
3235                                                                 macro_rules! check_total_value {
3236                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3237                                                                                 let mut payment_claimable_generated = false;
3238                                                                                 let purpose = || {
3239                                                                                         events::PaymentPurpose::InvoicePayment {
3240                                                                                                 payment_preimage: $payment_preimage,
3241                                                                                                 payment_secret: $payment_data.payment_secret,
3242                                                                                         }
3243                                                                                 };
3244                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3245                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3246                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3247                                                                                         continue
3248                                                                                 }
3249                                                                                 let (_, htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3250                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3251                                                                                 if htlcs.len() == 1 {
3252                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3253                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3254                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3255                                                                                                 continue
3256                                                                                         }
3257                                                                                 }
3258                                                                                 let mut total_value = claimable_htlc.value;
3259                                                                                 for htlc in htlcs.iter() {
3260                                                                                         total_value += htlc.value;
3261                                                                                         match &htlc.onion_payload {
3262                                                                                                 OnionPayload::Invoice { .. } => {
3263                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3264                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3265                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3266                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3267                                                                                                         }
3268                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3269                                                                                                 },
3270                                                                                                 _ => unreachable!(),
3271                                                                                         }
3272                                                                                 }
3273                                                                                 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data.total_msat {
3274                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3275                                                                                                 log_bytes!(payment_hash.0), total_value, $payment_data.total_msat);
3276                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3277                                                                                 } else if total_value == $payment_data.total_msat {
3278                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3279                                                                                         htlcs.push(claimable_htlc);
3280                                                                                         new_events.push(events::Event::PaymentClaimable {
3281                                                                                                 receiver_node_id: Some(receiver_node_id),
3282                                                                                                 payment_hash,
3283                                                                                                 purpose: purpose(),
3284                                                                                                 amount_msat: total_value,
3285                                                                                                 via_channel_id: Some(prev_channel_id),
3286                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3287                                                                                         });
3288                                                                                         payment_claimable_generated = true;
3289                                                                                 } else {
3290                                                                                         // Nothing to do - we haven't reached the total
3291                                                                                         // payment value yet, wait until we receive more
3292                                                                                         // MPP parts.
3293                                                                                         htlcs.push(claimable_htlc);
3294                                                                                 }
3295                                                                                 payment_claimable_generated
3296                                                                         }}
3297                                                                 }
3298
3299                                                                 // Check that the payment hash and secret are known. Note that we
3300                                                                 // MUST take care to handle the "unknown payment hash" and
3301                                                                 // "incorrect payment secret" cases here identically or we'd expose
3302                                                                 // that we are the ultimate recipient of the given payment hash.
3303                                                                 // Further, we must not expose whether we have any other HTLCs
3304                                                                 // associated with the same payment_hash pending or not.
3305                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3306                                                                 match payment_secrets.entry(payment_hash) {
3307                                                                         hash_map::Entry::Vacant(_) => {
3308                                                                                 match claimable_htlc.onion_payload {
3309                                                                                         OnionPayload::Invoice { .. } => {
3310                                                                                                 let payment_data = payment_data.unwrap();
3311                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3312                                                                                                         Ok(result) => result,
3313                                                                                                         Err(()) => {
3314                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3315                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3316                                                                                                                 continue
3317                                                                                                         }
3318                                                                                                 };
3319                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3320                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3321                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3322                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3323                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3324                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3325                                                                                                                 continue;
3326                                                                                                         }
3327                                                                                                 }
3328                                                                                                 check_total_value!(payment_data, payment_preimage);
3329                                                                                         },
3330                                                                                         OnionPayload::Spontaneous(preimage) => {
3331                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3332                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3333                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3334                                                                                                         continue
3335                                                                                                 }
3336                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3337                                                                                                         hash_map::Entry::Vacant(e) => {
3338                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3339                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3340                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3341                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3342                                                                                                                         receiver_node_id: Some(receiver_node_id),
3343                                                                                                                         payment_hash,
3344                                                                                                                         amount_msat: outgoing_amt_msat,
3345                                                                                                                         purpose,
3346                                                                                                                         via_channel_id: Some(prev_channel_id),
3347                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3348                                                                                                                 });
3349                                                                                                         },
3350                                                                                                         hash_map::Entry::Occupied(_) => {
3351                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3352                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3353                                                                                                         }
3354                                                                                                 }
3355                                                                                         }
3356                                                                                 }
3357                                                                         },
3358                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3359                                                                                 if payment_data.is_none() {
3360                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3361                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3362                                                                                         continue
3363                                                                                 };
3364                                                                                 let payment_data = payment_data.unwrap();
3365                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3366                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3367                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3368                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3369                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3370                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3371                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3372                                                                                 } else {
3373                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3374                                                                                         if payment_claimable_generated {
3375                                                                                                 inbound_payment.remove_entry();
3376                                                                                         }
3377                                                                                 }
3378                                                                         },
3379                                                                 };
3380                                                         },
3381                                                         HTLCForwardInfo::FailHTLC { .. } => {
3382                                                                 panic!("Got pending fail of our own HTLC");
3383                                                         }
3384                                                 }
3385                                         }
3386                                 }
3387                         }
3388                 }
3389
3390                 let best_block_height = self.best_block.read().unwrap().height();
3391                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3392                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3393                         &self.pending_events, &self.logger,
3394                         |path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3395                         self.send_payment_along_path(path, payment_params, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3396
3397                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3398                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3399                 }
3400                 self.forward_htlcs(&mut phantom_receives);
3401
3402                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3403                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3404                 // nice to do the work now if we can rather than while we're trying to get messages in the
3405                 // network stack.
3406                 self.check_free_holding_cells();
3407
3408                 if new_events.is_empty() { return }
3409                 let mut events = self.pending_events.lock().unwrap();
3410                 events.append(&mut new_events);
3411         }
3412
3413         /// Free the background events, generally called from timer_tick_occurred.
3414         ///
3415         /// Exposed for testing to allow us to process events quickly without generating accidental
3416         /// BroadcastChannelUpdate events in timer_tick_occurred.
3417         ///
3418         /// Expects the caller to have a total_consistency_lock read lock.
3419         fn process_background_events(&self) -> bool {
3420                 let mut background_events = Vec::new();
3421                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3422                 if background_events.is_empty() {
3423                         return false;
3424                 }
3425
3426                 for event in background_events.drain(..) {
3427                         match event {
3428                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3429                                         // The channel has already been closed, so no use bothering to care about the
3430                                         // monitor updating completing.
3431                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3432                                 },
3433                         }
3434                 }
3435                 true
3436         }
3437
3438         #[cfg(any(test, feature = "_test_utils"))]
3439         /// Process background events, for functional testing
3440         pub fn test_process_background_events(&self) {
3441                 self.process_background_events();
3442         }
3443
3444         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3445                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3446                 // If the feerate has decreased by less than half, don't bother
3447                 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3448                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3449                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3450                         return NotifyOption::SkipPersist;
3451                 }
3452                 if !chan.is_live() {
3453                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3454                                 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3455                         return NotifyOption::SkipPersist;
3456                 }
3457                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3458                         log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3459
3460                 chan.queue_update_fee(new_feerate, &self.logger);
3461                 NotifyOption::DoPersist
3462         }
3463
3464         #[cfg(fuzzing)]
3465         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3466         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3467         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3468         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3469         pub fn maybe_update_chan_fees(&self) {
3470                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3471                         let mut should_persist = NotifyOption::SkipPersist;
3472
3473                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3474
3475                         let per_peer_state = self.per_peer_state.read().unwrap();
3476                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3477                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3478                                 let peer_state = &mut *peer_state_lock;
3479                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3480                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3481                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3482                                 }
3483                         }
3484
3485                         should_persist
3486                 });
3487         }
3488
3489         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3490         ///
3491         /// This currently includes:
3492         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3493         ///  * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3494         ///    than a minute, informing the network that they should no longer attempt to route over
3495         ///    the channel.
3496         ///  * Expiring a channel's previous `ChannelConfig` if necessary to only allow forwarding HTLCs
3497         ///    with the current `ChannelConfig`.
3498         ///  * Removing peers which have disconnected but and no longer have any channels.
3499         ///
3500         /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3501         /// estimate fetches.
3502         pub fn timer_tick_occurred(&self) {
3503                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3504                         let mut should_persist = NotifyOption::SkipPersist;
3505                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3506
3507                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3508
3509                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3510                         let mut timed_out_mpp_htlcs = Vec::new();
3511                         let mut pending_peers_awaiting_removal = Vec::new();
3512                         {
3513                                 let per_peer_state = self.per_peer_state.read().unwrap();
3514                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3515                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3516                                         let peer_state = &mut *peer_state_lock;
3517                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3518                                         let counterparty_node_id = *counterparty_node_id;
3519                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3520                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3521                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3522
3523                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3524                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3525                                                         handle_errors.push((Err(err), counterparty_node_id));
3526                                                         if needs_close { return false; }
3527                                                 }
3528
3529                                                 match chan.channel_update_status() {
3530                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3531                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3532                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3533                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3534                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3535                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3536                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3537                                                                                 msg: update
3538                                                                         });
3539                                                                 }
3540                                                                 should_persist = NotifyOption::DoPersist;
3541                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3542                                                         },
3543                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3544                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3545                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3546                                                                                 msg: update
3547                                                                         });
3548                                                                 }
3549                                                                 should_persist = NotifyOption::DoPersist;
3550                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3551                                                         },
3552                                                         _ => {},
3553                                                 }
3554
3555                                                 chan.maybe_expire_prev_config();
3556
3557                                                 true
3558                                         });
3559                                         if peer_state.ok_to_remove(true) {
3560                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3561                                         }
3562                                 }
3563                         }
3564
3565                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3566                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3567                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3568                         // we therefore need to remove the peer from `peer_state` separately.
3569                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3570                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3571                         // negative effects on parallelism as much as possible.
3572                         if pending_peers_awaiting_removal.len() > 0 {
3573                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3574                                 for counterparty_node_id in pending_peers_awaiting_removal {
3575                                         match per_peer_state.entry(counterparty_node_id) {
3576                                                 hash_map::Entry::Occupied(entry) => {
3577                                                         // Remove the entry if the peer is still disconnected and we still
3578                                                         // have no channels to the peer.
3579                                                         let remove_entry = {
3580                                                                 let peer_state = entry.get().lock().unwrap();
3581                                                                 peer_state.ok_to_remove(true)
3582                                                         };
3583                                                         if remove_entry {
3584                                                                 entry.remove_entry();
3585                                                         }
3586                                                 },
3587                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3588                                         }
3589                                 }
3590                         }
3591
3592                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3593                                 if htlcs.is_empty() {
3594                                         // This should be unreachable
3595                                         debug_assert!(false);
3596                                         return false;
3597                                 }
3598                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3599                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3600                                         // In this case we're not going to handle any timeouts of the parts here.
3601                                         if htlcs[0].total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3602                                                 return true;
3603                                         } else if htlcs.into_iter().any(|htlc| {
3604                                                 htlc.timer_ticks += 1;
3605                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3606                                         }) {
3607                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3608                                                 return false;
3609                                         }
3610                                 }
3611                                 true
3612                         });
3613
3614                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3615                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3616                                 let reason = HTLCFailReason::from_failure_code(23);
3617                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3618                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3619                         }
3620
3621                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3622                                 let _ = handle_error!(self, err, counterparty_node_id);
3623                         }
3624
3625                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3626
3627                         // Technically we don't need to do this here, but if we have holding cell entries in a
3628                         // channel that need freeing, it's better to do that here and block a background task
3629                         // than block the message queueing pipeline.
3630                         if self.check_free_holding_cells() {
3631                                 should_persist = NotifyOption::DoPersist;
3632                         }
3633
3634                         should_persist
3635                 });
3636         }
3637
3638         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3639         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3640         /// along the path (including in our own channel on which we received it).
3641         ///
3642         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3643         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3644         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3645         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3646         ///
3647         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3648         /// [`ChannelManager::claim_funds`]), you should still monitor for
3649         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3650         /// startup during which time claims that were in-progress at shutdown may be replayed.
3651         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3652                 self.fail_htlc_backwards_with_reason(payment_hash, &FailureCode::IncorrectOrUnknownPaymentDetails);
3653         }
3654
3655         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3656         /// reason for the failure.
3657         ///
3658         /// See [`FailureCode`] for valid failure codes.
3659         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: &FailureCode) {
3660                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3661
3662                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3663                 if let Some((_, mut sources)) = removed_source {
3664                         for htlc in sources.drain(..) {
3665                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3666                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3667                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3668                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3669                         }
3670                 }
3671         }
3672
3673         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3674         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: &FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3675                 match failure_code {
3676                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(*failure_code as u16),
3677                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(*failure_code as u16),
3678                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3679                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3680                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3681                                 HTLCFailReason::reason(*failure_code as u16, htlc_msat_height_data)
3682                         }
3683                 }
3684         }
3685
3686         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3687         /// that we want to return and a channel.
3688         ///
3689         /// This is for failures on the channel on which the HTLC was *received*, not failures
3690         /// forwarding
3691         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3692                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3693                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3694                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3695                 // an inbound SCID alias before the real SCID.
3696                 let scid_pref = if chan.should_announce() {
3697                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3698                 } else {
3699                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3700                 };
3701                 if let Some(scid) = scid_pref {
3702                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3703                 } else {
3704                         (0x4000|10, Vec::new())
3705                 }
3706         }
3707
3708
3709         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3710         /// that we want to return and a channel.
3711         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3712                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3713                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3714                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3715                         if desired_err_code == 0x1000 | 20 {
3716                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3717                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3718                                 0u16.write(&mut enc).expect("Writes cannot fail");
3719                         }
3720                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3721                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3722                         upd.write(&mut enc).expect("Writes cannot fail");
3723                         (desired_err_code, enc.0)
3724                 } else {
3725                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3726                         // which means we really shouldn't have gotten a payment to be forwarded over this
3727                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3728                         // PERM|no_such_channel should be fine.
3729                         (0x4000|10, Vec::new())
3730                 }
3731         }
3732
3733         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3734         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3735         // be surfaced to the user.
3736         fn fail_holding_cell_htlcs(
3737                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3738                 counterparty_node_id: &PublicKey
3739         ) {
3740                 let (failure_code, onion_failure_data) = {
3741                         let per_peer_state = self.per_peer_state.read().unwrap();
3742                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3743                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3744                                 let peer_state = &mut *peer_state_lock;
3745                                 match peer_state.channel_by_id.entry(channel_id) {
3746                                         hash_map::Entry::Occupied(chan_entry) => {
3747                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3748                                         },
3749                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3750                                 }
3751                         } else { (0x4000|10, Vec::new()) }
3752                 };
3753
3754                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3755                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3756                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3757                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3758                 }
3759         }
3760
3761         /// Fails an HTLC backwards to the sender of it to us.
3762         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3763         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3764                 // Ensure that no peer state channel storage lock is held when calling this function.
3765                 // This ensures that future code doesn't introduce a lock-order requirement for
3766                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3767                 // this function with any `per_peer_state` peer lock acquired would.
3768                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3769                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3770                 }
3771
3772                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3773                 //identify whether we sent it or not based on the (I presume) very different runtime
3774                 //between the branches here. We should make this async and move it into the forward HTLCs
3775                 //timer handling.
3776
3777                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3778                 // from block_connected which may run during initialization prior to the chain_monitor
3779                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3780                 match source {
3781                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, ref payment_params, .. } => {
3782                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3783                                         session_priv, payment_id, payment_params, self.probing_cookie_secret, &self.secp_ctx,
3784                                         &self.pending_events, &self.logger)
3785                                 { self.push_pending_forwards_ev(); }
3786                         },
3787                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3788                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
3789                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
3790
3791                                 let mut push_forward_ev = false;
3792                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
3793                                 if forward_htlcs.is_empty() {
3794                                         push_forward_ev = true;
3795                                 }
3796                                 match forward_htlcs.entry(*short_channel_id) {
3797                                         hash_map::Entry::Occupied(mut entry) => {
3798                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
3799                                         },
3800                                         hash_map::Entry::Vacant(entry) => {
3801                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
3802                                         }
3803                                 }
3804                                 mem::drop(forward_htlcs);
3805                                 if push_forward_ev { self.push_pending_forwards_ev(); }
3806                                 let mut pending_events = self.pending_events.lock().unwrap();
3807                                 pending_events.push(events::Event::HTLCHandlingFailed {
3808                                         prev_channel_id: outpoint.to_channel_id(),
3809                                         failed_next_destination: destination,
3810                                 });
3811                         },
3812                 }
3813         }
3814
3815         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
3816         /// [`MessageSendEvent`]s needed to claim the payment.
3817         ///
3818         /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3819         /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3820         /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3821         ///
3822         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3823         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
3824         /// event matches your expectation. If you fail to do so and call this method, you may provide
3825         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3826         ///
3827         /// [`Event::PaymentClaimable`]: crate::util::events::Event::PaymentClaimable
3828         /// [`Event::PaymentClaimed`]: crate::util::events::Event::PaymentClaimed
3829         /// [`process_pending_events`]: EventsProvider::process_pending_events
3830         /// [`create_inbound_payment`]: Self::create_inbound_payment
3831         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3832         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3833                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3834
3835                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3836
3837                 let mut sources = {
3838                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
3839                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
3840                                 let mut receiver_node_id = self.our_network_pubkey;
3841                                 for htlc in sources.iter() {
3842                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
3843                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
3844                                                         .expect("Failed to get node_id for phantom node recipient");
3845                                                 receiver_node_id = phantom_pubkey;
3846                                                 break;
3847                                         }
3848                                 }
3849
3850                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
3851                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
3852                                         payment_purpose, receiver_node_id,
3853                                 });
3854                                 if dup_purpose.is_some() {
3855                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
3856                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
3857                                                 log_bytes!(payment_hash.0));
3858                                 }
3859                                 sources
3860                         } else { return; }
3861                 };
3862                 debug_assert!(!sources.is_empty());
3863
3864                 // If we are claiming an MPP payment, we check that all channels which contain a claimable
3865                 // HTLC still exist. While this isn't guaranteed to remain true if a channel closes while
3866                 // we're claiming (or even after we claim, before the commitment update dance completes),
3867                 // it should be a relatively rare race, and we'd rather not claim HTLCs that require us to
3868                 // go on-chain (and lose the on-chain fee to do so) than just reject the payment.
3869                 //
3870                 // Note that we'll still always get our funds - as long as the generated
3871                 // `ChannelMonitorUpdate` makes it out to the relevant monitor we can claim on-chain.
3872                 //
3873                 // If we find an HTLC which we would need to claim but for which we do not have a
3874                 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3875                 // the sender retries the already-failed path(s), it should be a pretty rare case where
3876                 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3877                 // provide the preimage, so worrying too much about the optimal handling isn't worth
3878                 // it.
3879                 let mut claimable_amt_msat = 0;
3880                 let mut expected_amt_msat = None;
3881                 let mut valid_mpp = true;
3882                 let mut errs = Vec::new();
3883                 let per_peer_state = self.per_peer_state.read().unwrap();
3884                 for htlc in sources.iter() {
3885                         let (counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&htlc.prev_hop.short_channel_id) {
3886                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3887                                 None => {
3888                                         valid_mpp = false;
3889                                         break;
3890                                 }
3891                         };
3892
3893                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3894                         if peer_state_mutex_opt.is_none() {
3895                                 valid_mpp = false;
3896                                 break;
3897                         }
3898
3899                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3900                         let peer_state = &mut *peer_state_lock;
3901
3902                         if peer_state.channel_by_id.get(&chan_id).is_none() {
3903                                 valid_mpp = false;
3904                                 break;
3905                         }
3906
3907                         if expected_amt_msat.is_some() && expected_amt_msat != Some(htlc.total_msat) {
3908                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different total amounts - this should not be reachable!");
3909                                 debug_assert!(false);
3910                                 valid_mpp = false;
3911                                 break;
3912                         }
3913
3914                         expected_amt_msat = Some(htlc.total_msat);
3915                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
3916                                 // We don't currently support MPP for spontaneous payments, so just check
3917                                 // that there's one payment here and move on.
3918                                 if sources.len() != 1 {
3919                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
3920                                         debug_assert!(false);
3921                                         valid_mpp = false;
3922                                         break;
3923                                 }
3924                         }
3925
3926                         claimable_amt_msat += htlc.value;
3927                 }
3928                 mem::drop(per_peer_state);
3929                 if sources.is_empty() || expected_amt_msat.is_none() {
3930                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3931                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
3932                         return;
3933                 }
3934                 if claimable_amt_msat != expected_amt_msat.unwrap() {
3935                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3936                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
3937                                 expected_amt_msat.unwrap(), claimable_amt_msat);
3938                         return;
3939                 }
3940                 if valid_mpp {
3941                         for htlc in sources.drain(..) {
3942                                 if let Err((pk, err)) = self.claim_funds_from_hop(
3943                                         htlc.prev_hop, payment_preimage,
3944                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
3945                                 {
3946                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
3947                                                 // We got a temporary failure updating monitor, but will claim the
3948                                                 // HTLC when the monitor updating is restored (or on chain).
3949                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3950                                         } else { errs.push((pk, err)); }
3951                                 }
3952                         }
3953                 }
3954                 if !valid_mpp {
3955                         for htlc in sources.drain(..) {
3956                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3957                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3958                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3959                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
3960                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
3961                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3962                         }
3963                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
3964                 }
3965
3966                 // Now we can handle any errors which were generated.
3967                 for (counterparty_node_id, err) in errs.drain(..) {
3968                         let res: Result<(), _> = Err(err);
3969                         let _ = handle_error!(self, res, counterparty_node_id);
3970                 }
3971         }
3972
3973         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
3974                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
3975         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
3976                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3977
3978                 let per_peer_state = self.per_peer_state.read().unwrap();
3979                 let chan_id = prev_hop.outpoint.to_channel_id();
3980                 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
3981                         Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
3982                         None => None
3983                 };
3984
3985                 let mut peer_state_opt = counterparty_node_id_opt.as_ref().map(
3986                         |counterparty_node_id| per_peer_state.get(counterparty_node_id).map(
3987                                 |peer_mutex| peer_mutex.lock().unwrap()
3988                         )
3989                 ).unwrap_or(None);
3990
3991                 if peer_state_opt.is_some() {
3992                         let mut peer_state_lock = peer_state_opt.unwrap();
3993                         let peer_state = &mut *peer_state_lock;
3994                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
3995                                 let counterparty_node_id = chan.get().get_counterparty_node_id();
3996                                 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
3997
3998                                 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
3999                                         if let Some(action) = completion_action(Some(htlc_value_msat)) {
4000                                                 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4001                                                         log_bytes!(chan_id), action);
4002                                                 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4003                                         }
4004                                         let update_id = monitor_update.update_id;
4005                                         let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4006                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4007                                                 peer_state, per_peer_state, chan);
4008                                         if let Err(e) = res {
4009                                                 // TODO: This is a *critical* error - we probably updated the outbound edge
4010                                                 // of the HTLC's monitor with a preimage. We should retry this monitor
4011                                                 // update over and over again until morale improves.
4012                                                 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4013                                                 return Err((counterparty_node_id, e));
4014                                         }
4015                                 }
4016                                 return Ok(());
4017                         }
4018                 }
4019                 let preimage_update = ChannelMonitorUpdate {
4020                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4021                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4022                                 payment_preimage,
4023                         }],
4024                 };
4025                 // We update the ChannelMonitor on the backward link, after
4026                 // receiving an `update_fulfill_htlc` from the forward link.
4027                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4028                 if update_res != ChannelMonitorUpdateStatus::Completed {
4029                         // TODO: This needs to be handled somehow - if we receive a monitor update
4030                         // with a preimage we *must* somehow manage to propagate it to the upstream
4031                         // channel, or we must have an ability to receive the same event and try
4032                         // again on restart.
4033                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4034                                 payment_preimage, update_res);
4035                 }
4036                 // Note that we do process the completion action here. This totally could be a
4037                 // duplicate claim, but we have no way of knowing without interrogating the
4038                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4039                 // generally always allowed to be duplicative (and it's specifically noted in
4040                 // `PaymentForwarded`).
4041                 self.handle_monitor_update_completion_actions(completion_action(None));
4042                 Ok(())
4043         }
4044
4045         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4046                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4047         }
4048
4049         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4050                 match source {
4051                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4052                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4053                         },
4054                         HTLCSource::PreviousHopData(hop_data) => {
4055                                 let prev_outpoint = hop_data.outpoint;
4056                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4057                                         |htlc_claim_value_msat| {
4058                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4059                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4060                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4061                                                         } else { None };
4062
4063                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4064                                                         let next_channel_id = Some(next_channel_id);
4065
4066                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4067                                                                 fee_earned_msat,
4068                                                                 claim_from_onchain_tx: from_onchain,
4069                                                                 prev_channel_id,
4070                                                                 next_channel_id,
4071                                                         }})
4072                                                 } else { None }
4073                                         });
4074                                 if let Err((pk, err)) = res {
4075                                         let result: Result<(), _> = Err(err);
4076                                         let _ = handle_error!(self, result, pk);
4077                                 }
4078                         },
4079                 }
4080         }
4081
4082         /// Gets the node_id held by this ChannelManager
4083         pub fn get_our_node_id(&self) -> PublicKey {
4084                 self.our_network_pubkey.clone()
4085         }
4086
4087         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4088                 for action in actions.into_iter() {
4089                         match action {
4090                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4091                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4092                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4093                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4094                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4095                                                 });
4096                                         }
4097                                 },
4098                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4099                                         self.pending_events.lock().unwrap().push(event);
4100                                 },
4101                         }
4102                 }
4103         }
4104
4105         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4106         /// update completion.
4107         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4108                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4109                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4110                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4111                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4112         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4113                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4114                         log_bytes!(channel.channel_id()),
4115                         if raa.is_some() { "an" } else { "no" },
4116                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4117                         if funding_broadcastable.is_some() { "" } else { "not " },
4118                         if channel_ready.is_some() { "sending" } else { "without" },
4119                         if announcement_sigs.is_some() { "sending" } else { "without" });
4120
4121                 let mut htlc_forwards = None;
4122
4123                 let counterparty_node_id = channel.get_counterparty_node_id();
4124                 if !pending_forwards.is_empty() {
4125                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4126                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4127                 }
4128
4129                 if let Some(msg) = channel_ready {
4130                         send_channel_ready!(self, pending_msg_events, channel, msg);
4131                 }
4132                 if let Some(msg) = announcement_sigs {
4133                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4134                                 node_id: counterparty_node_id,
4135                                 msg,
4136                         });
4137                 }
4138
4139                 emit_channel_ready_event!(self, channel);
4140
4141                 macro_rules! handle_cs { () => {
4142                         if let Some(update) = commitment_update {
4143                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4144                                         node_id: counterparty_node_id,
4145                                         updates: update,
4146                                 });
4147                         }
4148                 } }
4149                 macro_rules! handle_raa { () => {
4150                         if let Some(revoke_and_ack) = raa {
4151                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4152                                         node_id: counterparty_node_id,
4153                                         msg: revoke_and_ack,
4154                                 });
4155                         }
4156                 } }
4157                 match order {
4158                         RAACommitmentOrder::CommitmentFirst => {
4159                                 handle_cs!();
4160                                 handle_raa!();
4161                         },
4162                         RAACommitmentOrder::RevokeAndACKFirst => {
4163                                 handle_raa!();
4164                                 handle_cs!();
4165                         },
4166                 }
4167
4168                 if let Some(tx) = funding_broadcastable {
4169                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4170                         self.tx_broadcaster.broadcast_transaction(&tx);
4171                 }
4172
4173                 htlc_forwards
4174         }
4175
4176         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4177                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4178
4179                 let counterparty_node_id = match counterparty_node_id {
4180                         Some(cp_id) => cp_id.clone(),
4181                         None => {
4182                                 // TODO: Once we can rely on the counterparty_node_id from the
4183                                 // monitor event, this and the id_to_peer map should be removed.
4184                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4185                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4186                                         Some(cp_id) => cp_id.clone(),
4187                                         None => return,
4188                                 }
4189                         }
4190                 };
4191                 let per_peer_state = self.per_peer_state.read().unwrap();
4192                 let mut peer_state_lock;
4193                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4194                 if peer_state_mutex_opt.is_none() { return }
4195                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4196                 let peer_state = &mut *peer_state_lock;
4197                 let mut channel = {
4198                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4199                                 hash_map::Entry::Occupied(chan) => chan,
4200                                 hash_map::Entry::Vacant(_) => return,
4201                         }
4202                 };
4203                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4204                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4205                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4206                         return;
4207                 }
4208                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4209         }
4210
4211         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4212         ///
4213         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4214         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4215         /// the channel.
4216         ///
4217         /// The `user_channel_id` parameter will be provided back in
4218         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4219         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4220         ///
4221         /// Note that this method will return an error and reject the channel, if it requires support
4222         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4223         /// used to accept such channels.
4224         ///
4225         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4226         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4227         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4228                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4229         }
4230
4231         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4232         /// it as confirmed immediately.
4233         ///
4234         /// The `user_channel_id` parameter will be provided back in
4235         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4236         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4237         ///
4238         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4239         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4240         ///
4241         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4242         /// transaction and blindly assumes that it will eventually confirm.
4243         ///
4244         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4245         /// does not pay to the correct script the correct amount, *you will lose funds*.
4246         ///
4247         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4248         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4249         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4250                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4251         }
4252
4253         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4254                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4255
4256                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4257                 let per_peer_state = self.per_peer_state.read().unwrap();
4258                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4259                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4260                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4261                 let peer_state = &mut *peer_state_lock;
4262                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4263                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4264                         hash_map::Entry::Occupied(mut channel) => {
4265                                 if !channel.get().inbound_is_awaiting_accept() {
4266                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4267                                 }
4268                                 if accept_0conf {
4269                                         channel.get_mut().set_0conf();
4270                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4271                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4272                                                 node_id: channel.get().get_counterparty_node_id(),
4273                                                 action: msgs::ErrorAction::SendErrorMessage{
4274                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4275                                                 }
4276                                         };
4277                                         peer_state.pending_msg_events.push(send_msg_err_event);
4278                                         let _ = remove_channel!(self, channel);
4279                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4280                                 } else {
4281                                         // If this peer already has some channels, a new channel won't increase our number of peers
4282                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4283                                         // channels per-peer we can accept channels from a peer with existing ones.
4284                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4285                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4286                                                         node_id: channel.get().get_counterparty_node_id(),
4287                                                         action: msgs::ErrorAction::SendErrorMessage{
4288                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4289                                                         }
4290                                                 };
4291                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4292                                                 let _ = remove_channel!(self, channel);
4293                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4294                                         }
4295                                 }
4296
4297                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4298                                         node_id: channel.get().get_counterparty_node_id(),
4299                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4300                                 });
4301                         }
4302                         hash_map::Entry::Vacant(_) => {
4303                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4304                         }
4305                 }
4306                 Ok(())
4307         }
4308
4309         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4310         /// or 0-conf channels.
4311         ///
4312         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4313         /// non-0-conf channels we have with the peer.
4314         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4315         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4316                 let mut peers_without_funded_channels = 0;
4317                 let best_block_height = self.best_block.read().unwrap().height();
4318                 {
4319                         let peer_state_lock = self.per_peer_state.read().unwrap();
4320                         for (_, peer_mtx) in peer_state_lock.iter() {
4321                                 let peer = peer_mtx.lock().unwrap();
4322                                 if !maybe_count_peer(&*peer) { continue; }
4323                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4324                                 if num_unfunded_channels == peer.channel_by_id.len() {
4325                                         peers_without_funded_channels += 1;
4326                                 }
4327                         }
4328                 }
4329                 return peers_without_funded_channels;
4330         }
4331
4332         fn unfunded_channel_count(
4333                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4334         ) -> usize {
4335                 let mut num_unfunded_channels = 0;
4336                 for (_, chan) in peer.channel_by_id.iter() {
4337                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4338                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4339                         {
4340                                 num_unfunded_channels += 1;
4341                         }
4342                 }
4343                 num_unfunded_channels
4344         }
4345
4346         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4347                 if msg.chain_hash != self.genesis_hash {
4348                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4349                 }
4350
4351                 if !self.default_configuration.accept_inbound_channels {
4352                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4353                 }
4354
4355                 let mut random_bytes = [0u8; 16];
4356                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4357                 let user_channel_id = u128::from_be_bytes(random_bytes);
4358                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4359
4360                 // Get the number of peers with channels, but without funded ones. We don't care too much
4361                 // about peers that never open a channel, so we filter by peers that have at least one
4362                 // channel, and then limit the number of those with unfunded channels.
4363                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4364
4365                 let per_peer_state = self.per_peer_state.read().unwrap();
4366                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4367                     .ok_or_else(|| {
4368                                 debug_assert!(false);
4369                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4370                         })?;
4371                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4372                 let peer_state = &mut *peer_state_lock;
4373
4374                 // If this peer already has some channels, a new channel won't increase our number of peers
4375                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4376                 // channels per-peer we can accept channels from a peer with existing ones.
4377                 if peer_state.channel_by_id.is_empty() &&
4378                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4379                         !self.default_configuration.manually_accept_inbound_channels
4380                 {
4381                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4382                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4383                                 msg.temporary_channel_id.clone()));
4384                 }
4385
4386                 let best_block_height = self.best_block.read().unwrap().height();
4387                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4388                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4389                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4390                                 msg.temporary_channel_id.clone()));
4391                 }
4392
4393                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4394                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4395                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4396                 {
4397                         Err(e) => {
4398                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4399                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4400                         },
4401                         Ok(res) => res
4402                 };
4403                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4404                         hash_map::Entry::Occupied(_) => {
4405                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4406                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4407                         },
4408                         hash_map::Entry::Vacant(entry) => {
4409                                 if !self.default_configuration.manually_accept_inbound_channels {
4410                                         if channel.get_channel_type().requires_zero_conf() {
4411                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4412                                         }
4413                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4414                                                 node_id: counterparty_node_id.clone(),
4415                                                 msg: channel.accept_inbound_channel(user_channel_id),
4416                                         });
4417                                 } else {
4418                                         let mut pending_events = self.pending_events.lock().unwrap();
4419                                         pending_events.push(
4420                                                 events::Event::OpenChannelRequest {
4421                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4422                                                         counterparty_node_id: counterparty_node_id.clone(),
4423                                                         funding_satoshis: msg.funding_satoshis,
4424                                                         push_msat: msg.push_msat,
4425                                                         channel_type: channel.get_channel_type().clone(),
4426                                                 }
4427                                         );
4428                                 }
4429
4430                                 entry.insert(channel);
4431                         }
4432                 }
4433                 Ok(())
4434         }
4435
4436         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4437                 let (value, output_script, user_id) = {
4438                         let per_peer_state = self.per_peer_state.read().unwrap();
4439                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4440                                 .ok_or_else(|| {
4441                                         debug_assert!(false);
4442                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4443                                 })?;
4444                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4445                         let peer_state = &mut *peer_state_lock;
4446                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4447                                 hash_map::Entry::Occupied(mut chan) => {
4448                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4449                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4450                                 },
4451                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4452                         }
4453                 };
4454                 let mut pending_events = self.pending_events.lock().unwrap();
4455                 pending_events.push(events::Event::FundingGenerationReady {
4456                         temporary_channel_id: msg.temporary_channel_id,
4457                         counterparty_node_id: *counterparty_node_id,
4458                         channel_value_satoshis: value,
4459                         output_script,
4460                         user_channel_id: user_id,
4461                 });
4462                 Ok(())
4463         }
4464
4465         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4466                 let best_block = *self.best_block.read().unwrap();
4467
4468                 let per_peer_state = self.per_peer_state.read().unwrap();
4469                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4470                         .ok_or_else(|| {
4471                                 debug_assert!(false);
4472                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4473                         })?;
4474
4475                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4476                 let peer_state = &mut *peer_state_lock;
4477                 let ((funding_msg, monitor), chan) =
4478                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4479                                 hash_map::Entry::Occupied(mut chan) => {
4480                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4481                                 },
4482                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4483                         };
4484
4485                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4486                         hash_map::Entry::Occupied(_) => {
4487                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4488                         },
4489                         hash_map::Entry::Vacant(e) => {
4490                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4491                                         hash_map::Entry::Occupied(_) => {
4492                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4493                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4494                                                         funding_msg.channel_id))
4495                                         },
4496                                         hash_map::Entry::Vacant(i_e) => {
4497                                                 i_e.insert(chan.get_counterparty_node_id());
4498                                         }
4499                                 }
4500
4501                                 // There's no problem signing a counterparty's funding transaction if our monitor
4502                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4503                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4504                                 // until we have persisted our monitor.
4505                                 let new_channel_id = funding_msg.channel_id;
4506                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4507                                         node_id: counterparty_node_id.clone(),
4508                                         msg: funding_msg,
4509                                 });
4510
4511                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4512
4513                                 let chan = e.insert(chan);
4514                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4515                                         per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4516
4517                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4518                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4519                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4520                                 // any messages referencing a previously-closed channel anyway.
4521                                 // We do not propagate the monitor update to the user as it would be for a monitor
4522                                 // that we didn't manage to store (and that we don't care about - we don't respond
4523                                 // with the funding_signed so the channel can never go on chain).
4524                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4525                                         res.0 = None;
4526                                 }
4527                                 res
4528                         }
4529                 }
4530         }
4531
4532         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4533                 let best_block = *self.best_block.read().unwrap();
4534                 let per_peer_state = self.per_peer_state.read().unwrap();
4535                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4536                         .ok_or_else(|| {
4537                                 debug_assert!(false);
4538                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4539                         })?;
4540
4541                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4542                 let peer_state = &mut *peer_state_lock;
4543                 match peer_state.channel_by_id.entry(msg.channel_id) {
4544                         hash_map::Entry::Occupied(mut chan) => {
4545                                 let monitor = try_chan_entry!(self,
4546                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4547                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4548                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4549                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4550                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4551                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4552                                         // monitor update contained within `shutdown_finish` was applied.
4553                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4554                                                 shutdown_finish.0.take();
4555                                         }
4556                                 }
4557                                 res
4558                         },
4559                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4560                 }
4561         }
4562
4563         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4564                 let per_peer_state = self.per_peer_state.read().unwrap();
4565                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4566                         .ok_or_else(|| {
4567                                 debug_assert!(false);
4568                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4569                         })?;
4570                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4571                 let peer_state = &mut *peer_state_lock;
4572                 match peer_state.channel_by_id.entry(msg.channel_id) {
4573                         hash_map::Entry::Occupied(mut chan) => {
4574                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4575                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4576                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4577                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4578                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4579                                                 node_id: counterparty_node_id.clone(),
4580                                                 msg: announcement_sigs,
4581                                         });
4582                                 } else if chan.get().is_usable() {
4583                                         // If we're sending an announcement_signatures, we'll send the (public)
4584                                         // channel_update after sending a channel_announcement when we receive our
4585                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4586                                         // channel_update here if the channel is not public, i.e. we're not sending an
4587                                         // announcement_signatures.
4588                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4589                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4590                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4591                                                         node_id: counterparty_node_id.clone(),
4592                                                         msg,
4593                                                 });
4594                                         }
4595                                 }
4596
4597                                 emit_channel_ready_event!(self, chan.get_mut());
4598
4599                                 Ok(())
4600                         },
4601                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4602                 }
4603         }
4604
4605         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4606                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4607                 let result: Result<(), _> = loop {
4608                         let per_peer_state = self.per_peer_state.read().unwrap();
4609                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4610                                 .ok_or_else(|| {
4611                                         debug_assert!(false);
4612                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4613                                 })?;
4614                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4615                         let peer_state = &mut *peer_state_lock;
4616                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4617                                 hash_map::Entry::Occupied(mut chan_entry) => {
4618
4619                                         if !chan_entry.get().received_shutdown() {
4620                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4621                                                         log_bytes!(msg.channel_id),
4622                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4623                                         }
4624
4625                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4626                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4627                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4628                                         dropped_htlcs = htlcs;
4629
4630                                         if let Some(msg) = shutdown {
4631                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4632                                                 // here as we don't need the monitor update to complete until we send a
4633                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4634                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4635                                                         node_id: *counterparty_node_id,
4636                                                         msg,
4637                                                 });
4638                                         }
4639
4640                                         // Update the monitor with the shutdown script if necessary.
4641                                         if let Some(monitor_update) = monitor_update_opt {
4642                                                 let update_id = monitor_update.update_id;
4643                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4644                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4645                                         }
4646                                         break Ok(());
4647                                 },
4648                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4649                         }
4650                 };
4651                 for htlc_source in dropped_htlcs.drain(..) {
4652                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4653                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4654                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4655                 }
4656
4657                 result
4658         }
4659
4660         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4661                 let per_peer_state = self.per_peer_state.read().unwrap();
4662                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4663                         .ok_or_else(|| {
4664                                 debug_assert!(false);
4665                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4666                         })?;
4667                 let (tx, chan_option) = {
4668                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4669                         let peer_state = &mut *peer_state_lock;
4670                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4671                                 hash_map::Entry::Occupied(mut chan_entry) => {
4672                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4673                                         if let Some(msg) = closing_signed {
4674                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4675                                                         node_id: counterparty_node_id.clone(),
4676                                                         msg,
4677                                                 });
4678                                         }
4679                                         if tx.is_some() {
4680                                                 // We're done with this channel, we've got a signed closing transaction and
4681                                                 // will send the closing_signed back to the remote peer upon return. This
4682                                                 // also implies there are no pending HTLCs left on the channel, so we can
4683                                                 // fully delete it from tracking (the channel monitor is still around to
4684                                                 // watch for old state broadcasts)!
4685                                                 (tx, Some(remove_channel!(self, chan_entry)))
4686                                         } else { (tx, None) }
4687                                 },
4688                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4689                         }
4690                 };
4691                 if let Some(broadcast_tx) = tx {
4692                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4693                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4694                 }
4695                 if let Some(chan) = chan_option {
4696                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4697                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4698                                 let peer_state = &mut *peer_state_lock;
4699                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4700                                         msg: update
4701                                 });
4702                         }
4703                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4704                 }
4705                 Ok(())
4706         }
4707
4708         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4709                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4710                 //determine the state of the payment based on our response/if we forward anything/the time
4711                 //we take to respond. We should take care to avoid allowing such an attack.
4712                 //
4713                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4714                 //us repeatedly garbled in different ways, and compare our error messages, which are
4715                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4716                 //but we should prevent it anyway.
4717
4718                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4719                 let per_peer_state = self.per_peer_state.read().unwrap();
4720                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4721                         .ok_or_else(|| {
4722                                 debug_assert!(false);
4723                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4724                         })?;
4725                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4726                 let peer_state = &mut *peer_state_lock;
4727                 match peer_state.channel_by_id.entry(msg.channel_id) {
4728                         hash_map::Entry::Occupied(mut chan) => {
4729
4730                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4731                                         // If the update_add is completely bogus, the call will Err and we will close,
4732                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4733                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4734                                         match pending_forward_info {
4735                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4736                                                         let reason = if (error_code & 0x1000) != 0 {
4737                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4738                                                                 HTLCFailReason::reason(real_code, error_data)
4739                                                         } else {
4740                                                                 HTLCFailReason::from_failure_code(error_code)
4741                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4742                                                         let msg = msgs::UpdateFailHTLC {
4743                                                                 channel_id: msg.channel_id,
4744                                                                 htlc_id: msg.htlc_id,
4745                                                                 reason
4746                                                         };
4747                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4748                                                 },
4749                                                 _ => pending_forward_info
4750                                         }
4751                                 };
4752                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4753                         },
4754                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4755                 }
4756                 Ok(())
4757         }
4758
4759         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4760                 let (htlc_source, forwarded_htlc_value) = {
4761                         let per_peer_state = self.per_peer_state.read().unwrap();
4762                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4763                                 .ok_or_else(|| {
4764                                         debug_assert!(false);
4765                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4766                                 })?;
4767                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4768                         let peer_state = &mut *peer_state_lock;
4769                         match peer_state.channel_by_id.entry(msg.channel_id) {
4770                                 hash_map::Entry::Occupied(mut chan) => {
4771                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4772                                 },
4773                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4774                         }
4775                 };
4776                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4777                 Ok(())
4778         }
4779
4780         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4781                 let per_peer_state = self.per_peer_state.read().unwrap();
4782                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4783                         .ok_or_else(|| {
4784                                 debug_assert!(false);
4785                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4786                         })?;
4787                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4788                 let peer_state = &mut *peer_state_lock;
4789                 match peer_state.channel_by_id.entry(msg.channel_id) {
4790                         hash_map::Entry::Occupied(mut chan) => {
4791                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4792                         },
4793                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4794                 }
4795                 Ok(())
4796         }
4797
4798         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4799                 let per_peer_state = self.per_peer_state.read().unwrap();
4800                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4801                         .ok_or_else(|| {
4802                                 debug_assert!(false);
4803                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4804                         })?;
4805                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4806                 let peer_state = &mut *peer_state_lock;
4807                 match peer_state.channel_by_id.entry(msg.channel_id) {
4808                         hash_map::Entry::Occupied(mut chan) => {
4809                                 if (msg.failure_code & 0x8000) == 0 {
4810                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4811                                         try_chan_entry!(self, Err(chan_err), chan);
4812                                 }
4813                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
4814                                 Ok(())
4815                         },
4816                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4817                 }
4818         }
4819
4820         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4821                 let per_peer_state = self.per_peer_state.read().unwrap();
4822                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4823                         .ok_or_else(|| {
4824                                 debug_assert!(false);
4825                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4826                         })?;
4827                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4828                 let peer_state = &mut *peer_state_lock;
4829                 match peer_state.channel_by_id.entry(msg.channel_id) {
4830                         hash_map::Entry::Occupied(mut chan) => {
4831                                 let funding_txo = chan.get().get_funding_txo();
4832                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
4833                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4834                                 let update_id = monitor_update.update_id;
4835                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4836                                         peer_state, per_peer_state, chan)
4837                         },
4838                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4839                 }
4840         }
4841
4842         #[inline]
4843         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
4844                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
4845                         let mut push_forward_event = false;
4846                         let mut new_intercept_events = Vec::new();
4847                         let mut failed_intercept_forwards = Vec::new();
4848                         if !pending_forwards.is_empty() {
4849                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4850                                         let scid = match forward_info.routing {
4851                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4852                                                 PendingHTLCRouting::Receive { .. } => 0,
4853                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4854                                         };
4855                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
4856                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
4857
4858                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4859                                         let forward_htlcs_empty = forward_htlcs.is_empty();
4860                                         match forward_htlcs.entry(scid) {
4861                                                 hash_map::Entry::Occupied(mut entry) => {
4862                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4863                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
4864                                                 },
4865                                                 hash_map::Entry::Vacant(entry) => {
4866                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
4867                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
4868                                                         {
4869                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
4870                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
4871                                                                 match pending_intercepts.entry(intercept_id) {
4872                                                                         hash_map::Entry::Vacant(entry) => {
4873                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
4874                                                                                         requested_next_hop_scid: scid,
4875                                                                                         payment_hash: forward_info.payment_hash,
4876                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
4877                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
4878                                                                                         intercept_id
4879                                                                                 });
4880                                                                                 entry.insert(PendingAddHTLCInfo {
4881                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
4882                                                                         },
4883                                                                         hash_map::Entry::Occupied(_) => {
4884                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
4885                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4886                                                                                         short_channel_id: prev_short_channel_id,
4887                                                                                         outpoint: prev_funding_outpoint,
4888                                                                                         htlc_id: prev_htlc_id,
4889                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
4890                                                                                         phantom_shared_secret: None,
4891                                                                                 });
4892
4893                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
4894                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
4895                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
4896                                                                                 ));
4897                                                                         }
4898                                                                 }
4899                                                         } else {
4900                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
4901                                                                 // payments are being processed.
4902                                                                 if forward_htlcs_empty {
4903                                                                         push_forward_event = true;
4904                                                                 }
4905                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4906                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
4907                                                         }
4908                                                 }
4909                                         }
4910                                 }
4911                         }
4912
4913                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
4914                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4915                         }
4916
4917                         if !new_intercept_events.is_empty() {
4918                                 let mut events = self.pending_events.lock().unwrap();
4919                                 events.append(&mut new_intercept_events);
4920                         }
4921                         if push_forward_event { self.push_pending_forwards_ev() }
4922                 }
4923         }
4924
4925         // We only want to push a PendingHTLCsForwardable event if no others are queued.
4926         fn push_pending_forwards_ev(&self) {
4927                 let mut pending_events = self.pending_events.lock().unwrap();
4928                 let forward_ev_exists = pending_events.iter()
4929                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
4930                         .is_some();
4931                 if !forward_ev_exists {
4932                         pending_events.push(events::Event::PendingHTLCsForwardable {
4933                                 time_forwardable:
4934                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
4935                         });
4936                 }
4937         }
4938
4939         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4940                 let (htlcs_to_fail, res) = {
4941                         let per_peer_state = self.per_peer_state.read().unwrap();
4942                         let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
4943                                 .ok_or_else(|| {
4944                                         debug_assert!(false);
4945                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4946                                 }).map(|mtx| mtx.lock().unwrap())?;
4947                         let peer_state = &mut *peer_state_lock;
4948                         match peer_state.channel_by_id.entry(msg.channel_id) {
4949                                 hash_map::Entry::Occupied(mut chan) => {
4950                                         let funding_txo = chan.get().get_funding_txo();
4951                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
4952                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4953                                         let update_id = monitor_update.update_id;
4954                                         let res = handle_new_monitor_update!(self, update_res, update_id,
4955                                                 peer_state_lock, peer_state, per_peer_state, chan);
4956                                         (htlcs_to_fail, res)
4957                                 },
4958                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4959                         }
4960                 };
4961                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
4962                 res
4963         }
4964
4965         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
4966                 let per_peer_state = self.per_peer_state.read().unwrap();
4967                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4968                         .ok_or_else(|| {
4969                                 debug_assert!(false);
4970                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4971                         })?;
4972                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4973                 let peer_state = &mut *peer_state_lock;
4974                 match peer_state.channel_by_id.entry(msg.channel_id) {
4975                         hash_map::Entry::Occupied(mut chan) => {
4976                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
4977                         },
4978                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4979                 }
4980                 Ok(())
4981         }
4982
4983         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
4984                 let per_peer_state = self.per_peer_state.read().unwrap();
4985                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4986                         .ok_or_else(|| {
4987                                 debug_assert!(false);
4988                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4989                         })?;
4990                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4991                 let peer_state = &mut *peer_state_lock;
4992                 match peer_state.channel_by_id.entry(msg.channel_id) {
4993                         hash_map::Entry::Occupied(mut chan) => {
4994                                 if !chan.get().is_usable() {
4995                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
4996                                 }
4997
4998                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
4999                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5000                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5001                                                 msg, &self.default_configuration
5002                                         ), chan),
5003                                         // Note that announcement_signatures fails if the channel cannot be announced,
5004                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
5005                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5006                                 });
5007                         },
5008                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5009                 }
5010                 Ok(())
5011         }
5012
5013         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5014         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5015                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5016                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5017                         None => {
5018                                 // It's not a local channel
5019                                 return Ok(NotifyOption::SkipPersist)
5020                         }
5021                 };
5022                 let per_peer_state = self.per_peer_state.read().unwrap();
5023                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5024                 if peer_state_mutex_opt.is_none() {
5025                         return Ok(NotifyOption::SkipPersist)
5026                 }
5027                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5028                 let peer_state = &mut *peer_state_lock;
5029                 match peer_state.channel_by_id.entry(chan_id) {
5030                         hash_map::Entry::Occupied(mut chan) => {
5031                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5032                                         if chan.get().should_announce() {
5033                                                 // If the announcement is about a channel of ours which is public, some
5034                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5035                                                 // a scary-looking error message and return Ok instead.
5036                                                 return Ok(NotifyOption::SkipPersist);
5037                                         }
5038                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5039                                 }
5040                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5041                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5042                                 if were_node_one == msg_from_node_one {
5043                                         return Ok(NotifyOption::SkipPersist);
5044                                 } else {
5045                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5046                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5047                                 }
5048                         },
5049                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5050                 }
5051                 Ok(NotifyOption::DoPersist)
5052         }
5053
5054         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5055                 let htlc_forwards;
5056                 let need_lnd_workaround = {
5057                         let per_peer_state = self.per_peer_state.read().unwrap();
5058
5059                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5060                                 .ok_or_else(|| {
5061                                         debug_assert!(false);
5062                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5063                                 })?;
5064                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5065                         let peer_state = &mut *peer_state_lock;
5066                         match peer_state.channel_by_id.entry(msg.channel_id) {
5067                                 hash_map::Entry::Occupied(mut chan) => {
5068                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5069                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5070                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5071                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5072                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5073                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5074                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5075                                         let mut channel_update = None;
5076                                         if let Some(msg) = responses.shutdown_msg {
5077                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5078                                                         node_id: counterparty_node_id.clone(),
5079                                                         msg,
5080                                                 });
5081                                         } else if chan.get().is_usable() {
5082                                                 // If the channel is in a usable state (ie the channel is not being shut
5083                                                 // down), send a unicast channel_update to our counterparty to make sure
5084                                                 // they have the latest channel parameters.
5085                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5086                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5087                                                                 node_id: chan.get().get_counterparty_node_id(),
5088                                                                 msg,
5089                                                         });
5090                                                 }
5091                                         }
5092                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5093                                         htlc_forwards = self.handle_channel_resumption(
5094                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5095                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5096                                         if let Some(upd) = channel_update {
5097                                                 peer_state.pending_msg_events.push(upd);
5098                                         }
5099                                         need_lnd_workaround
5100                                 },
5101                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5102                         }
5103                 };
5104
5105                 if let Some(forwards) = htlc_forwards {
5106                         self.forward_htlcs(&mut [forwards][..]);
5107                 }
5108
5109                 if let Some(channel_ready_msg) = need_lnd_workaround {
5110                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5111                 }
5112                 Ok(())
5113         }
5114
5115         /// Process pending events from the `chain::Watch`, returning whether any events were processed.
5116         fn process_pending_monitor_events(&self) -> bool {
5117                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5118
5119                 let mut failed_channels = Vec::new();
5120                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5121                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5122                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5123                         for monitor_event in monitor_events.drain(..) {
5124                                 match monitor_event {
5125                                         MonitorEvent::HTLCEvent(htlc_update) => {
5126                                                 if let Some(preimage) = htlc_update.payment_preimage {
5127                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5128                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5129                                                 } else {
5130                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5131                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5132                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5133                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5134                                                 }
5135                                         },
5136                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5137                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5138                                                 let counterparty_node_id_opt = match counterparty_node_id {
5139                                                         Some(cp_id) => Some(cp_id),
5140                                                         None => {
5141                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5142                                                                 // monitor event, this and the id_to_peer map should be removed.
5143                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5144                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5145                                                         }
5146                                                 };
5147                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5148                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5149                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5150                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5151                                                                 let peer_state = &mut *peer_state_lock;
5152                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5153                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5154                                                                         let mut chan = remove_channel!(self, chan_entry);
5155                                                                         failed_channels.push(chan.force_shutdown(false));
5156                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5157                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5158                                                                                         msg: update
5159                                                                                 });
5160                                                                         }
5161                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5162                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5163                                                                         } else {
5164                                                                                 ClosureReason::CommitmentTxConfirmed
5165                                                                         };
5166                                                                         self.issue_channel_close_events(&chan, reason);
5167                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5168                                                                                 node_id: chan.get_counterparty_node_id(),
5169                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5170                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5171                                                                                 },
5172                                                                         });
5173                                                                 }
5174                                                         }
5175                                                 }
5176                                         },
5177                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5178                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5179                                         },
5180                                 }
5181                         }
5182                 }
5183
5184                 for failure in failed_channels.drain(..) {
5185                         self.finish_force_close_channel(failure);
5186                 }
5187
5188                 has_pending_monitor_events
5189         }
5190
5191         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5192         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5193         /// update events as a separate process method here.
5194         #[cfg(fuzzing)]
5195         pub fn process_monitor_events(&self) {
5196                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5197                         if self.process_pending_monitor_events() {
5198                                 NotifyOption::DoPersist
5199                         } else {
5200                                 NotifyOption::SkipPersist
5201                         }
5202                 });
5203         }
5204
5205         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5206         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5207         /// update was applied.
5208         fn check_free_holding_cells(&self) -> bool {
5209                 let mut has_monitor_update = false;
5210                 let mut failed_htlcs = Vec::new();
5211                 let mut handle_errors = Vec::new();
5212
5213                 // Walk our list of channels and find any that need to update. Note that when we do find an
5214                 // update, if it includes actions that must be taken afterwards, we have to drop the
5215                 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5216                 // manage to go through all our peers without finding a single channel to update.
5217                 'peer_loop: loop {
5218                         let per_peer_state = self.per_peer_state.read().unwrap();
5219                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5220                                 'chan_loop: loop {
5221                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5222                                         let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5223                                         for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5224                                                 let counterparty_node_id = chan.get_counterparty_node_id();
5225                                                 let funding_txo = chan.get_funding_txo();
5226                                                 let (monitor_opt, holding_cell_failed_htlcs) =
5227                                                         chan.maybe_free_holding_cell_htlcs(&self.logger);
5228                                                 if !holding_cell_failed_htlcs.is_empty() {
5229                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5230                                                 }
5231                                                 if let Some(monitor_update) = monitor_opt {
5232                                                         has_monitor_update = true;
5233
5234                                                         let update_res = self.chain_monitor.update_channel(
5235                                                                 funding_txo.expect("channel is live"), monitor_update);
5236                                                         let update_id = monitor_update.update_id;
5237                                                         let channel_id: [u8; 32] = *channel_id;
5238                                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5239                                                                 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5240                                                                 peer_state.channel_by_id.remove(&channel_id));
5241                                                         if res.is_err() {
5242                                                                 handle_errors.push((counterparty_node_id, res));
5243                                                         }
5244                                                         continue 'peer_loop;
5245                                                 }
5246                                         }
5247                                         break 'chan_loop;
5248                                 }
5249                         }
5250                         break 'peer_loop;
5251                 }
5252
5253                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5254                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5255                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5256                 }
5257
5258                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5259                         let _ = handle_error!(self, err, counterparty_node_id);
5260                 }
5261
5262                 has_update
5263         }
5264
5265         /// Check whether any channels have finished removing all pending updates after a shutdown
5266         /// exchange and can now send a closing_signed.
5267         /// Returns whether any closing_signed messages were generated.
5268         fn maybe_generate_initial_closing_signed(&self) -> bool {
5269                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5270                 let mut has_update = false;
5271                 {
5272                         let per_peer_state = self.per_peer_state.read().unwrap();
5273
5274                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5275                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5276                                 let peer_state = &mut *peer_state_lock;
5277                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5278                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5279                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5280                                                 Ok((msg_opt, tx_opt)) => {
5281                                                         if let Some(msg) = msg_opt {
5282                                                                 has_update = true;
5283                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5284                                                                         node_id: chan.get_counterparty_node_id(), msg,
5285                                                                 });
5286                                                         }
5287                                                         if let Some(tx) = tx_opt {
5288                                                                 // We're done with this channel. We got a closing_signed and sent back
5289                                                                 // a closing_signed with a closing transaction to broadcast.
5290                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5291                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5292                                                                                 msg: update
5293                                                                         });
5294                                                                 }
5295
5296                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5297
5298                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5299                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5300                                                                 update_maps_on_chan_removal!(self, chan);
5301                                                                 false
5302                                                         } else { true }
5303                                                 },
5304                                                 Err(e) => {
5305                                                         has_update = true;
5306                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5307                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5308                                                         !close_channel
5309                                                 }
5310                                         }
5311                                 });
5312                         }
5313                 }
5314
5315                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5316                         let _ = handle_error!(self, err, counterparty_node_id);
5317                 }
5318
5319                 has_update
5320         }
5321
5322         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5323         /// pushing the channel monitor update (if any) to the background events queue and removing the
5324         /// Channel object.
5325         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5326                 for mut failure in failed_channels.drain(..) {
5327                         // Either a commitment transactions has been confirmed on-chain or
5328                         // Channel::block_disconnected detected that the funding transaction has been
5329                         // reorganized out of the main chain.
5330                         // We cannot broadcast our latest local state via monitor update (as
5331                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5332                         // so we track the update internally and handle it when the user next calls
5333                         // timer_tick_occurred, guaranteeing we're running normally.
5334                         if let Some((funding_txo, update)) = failure.0.take() {
5335                                 assert_eq!(update.updates.len(), 1);
5336                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5337                                         assert!(should_broadcast);
5338                                 } else { unreachable!(); }
5339                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5340                         }
5341                         self.finish_force_close_channel(failure);
5342                 }
5343         }
5344
5345         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5346                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5347
5348                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5349                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5350                 }
5351
5352                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5353
5354                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5355                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5356                 match payment_secrets.entry(payment_hash) {
5357                         hash_map::Entry::Vacant(e) => {
5358                                 e.insert(PendingInboundPayment {
5359                                         payment_secret, min_value_msat, payment_preimage,
5360                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5361                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5362                                         // it's updated when we receive a new block with the maximum time we've seen in
5363                                         // a header. It should never be more than two hours in the future.
5364                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5365                                         // never fail a payment too early.
5366                                         // Note that we assume that received blocks have reasonably up-to-date
5367                                         // timestamps.
5368                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5369                                 });
5370                         },
5371                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5372                 }
5373                 Ok(payment_secret)
5374         }
5375
5376         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5377         /// to pay us.
5378         ///
5379         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5380         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5381         ///
5382         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5383         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5384         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5385         /// passed directly to [`claim_funds`].
5386         ///
5387         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5388         ///
5389         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5390         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5391         ///
5392         /// # Note
5393         ///
5394         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5395         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5396         ///
5397         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5398         ///
5399         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5400         /// on versions of LDK prior to 0.0.114.
5401         ///
5402         /// [`claim_funds`]: Self::claim_funds
5403         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5404         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5405         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5406         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5407         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5408         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5409                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5410                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5411                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5412                         min_final_cltv_expiry_delta)
5413         }
5414
5415         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5416         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5417         ///
5418         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5419         ///
5420         /// # Note
5421         /// This method is deprecated and will be removed soon.
5422         ///
5423         /// [`create_inbound_payment`]: Self::create_inbound_payment
5424         #[deprecated]
5425         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5426                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5427                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5428                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5429                 Ok((payment_hash, payment_secret))
5430         }
5431
5432         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5433         /// stored external to LDK.
5434         ///
5435         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5436         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5437         /// the `min_value_msat` provided here, if one is provided.
5438         ///
5439         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5440         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5441         /// payments.
5442         ///
5443         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5444         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5445         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5446         /// sender "proof-of-payment" unless they have paid the required amount.
5447         ///
5448         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5449         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5450         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5451         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5452         /// invoices when no timeout is set.
5453         ///
5454         /// Note that we use block header time to time-out pending inbound payments (with some margin
5455         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5456         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5457         /// If you need exact expiry semantics, you should enforce them upon receipt of
5458         /// [`PaymentClaimable`].
5459         ///
5460         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5461         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5462         ///
5463         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5464         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5465         ///
5466         /// # Note
5467         ///
5468         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5469         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5470         ///
5471         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5472         ///
5473         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5474         /// on versions of LDK prior to 0.0.114.
5475         ///
5476         /// [`create_inbound_payment`]: Self::create_inbound_payment
5477         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5478         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5479                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5480                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5481                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5482                         min_final_cltv_expiry)
5483         }
5484
5485         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5486         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5487         ///
5488         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5489         ///
5490         /// # Note
5491         /// This method is deprecated and will be removed soon.
5492         ///
5493         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5494         #[deprecated]
5495         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5496                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5497         }
5498
5499         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5500         /// previously returned from [`create_inbound_payment`].
5501         ///
5502         /// [`create_inbound_payment`]: Self::create_inbound_payment
5503         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5504                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5505         }
5506
5507         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5508         /// are used when constructing the phantom invoice's route hints.
5509         ///
5510         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5511         pub fn get_phantom_scid(&self) -> u64 {
5512                 let best_block_height = self.best_block.read().unwrap().height();
5513                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5514                 loop {
5515                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5516                         // Ensure the generated scid doesn't conflict with a real channel.
5517                         match short_to_chan_info.get(&scid_candidate) {
5518                                 Some(_) => continue,
5519                                 None => return scid_candidate
5520                         }
5521                 }
5522         }
5523
5524         /// Gets route hints for use in receiving [phantom node payments].
5525         ///
5526         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5527         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5528                 PhantomRouteHints {
5529                         channels: self.list_usable_channels(),
5530                         phantom_scid: self.get_phantom_scid(),
5531                         real_node_pubkey: self.get_our_node_id(),
5532                 }
5533         }
5534
5535         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5536         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5537         /// [`ChannelManager::forward_intercepted_htlc`].
5538         ///
5539         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5540         /// times to get a unique scid.
5541         pub fn get_intercept_scid(&self) -> u64 {
5542                 let best_block_height = self.best_block.read().unwrap().height();
5543                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5544                 loop {
5545                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5546                         // Ensure the generated scid doesn't conflict with a real channel.
5547                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5548                         return scid_candidate
5549                 }
5550         }
5551
5552         /// Gets inflight HTLC information by processing pending outbound payments that are in
5553         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5554         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5555                 let mut inflight_htlcs = InFlightHtlcs::new();
5556
5557                 let per_peer_state = self.per_peer_state.read().unwrap();
5558                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5559                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5560                         let peer_state = &mut *peer_state_lock;
5561                         for chan in peer_state.channel_by_id.values() {
5562                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5563                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5564                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5565                                         }
5566                                 }
5567                         }
5568                 }
5569
5570                 inflight_htlcs
5571         }
5572
5573         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5574         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5575                 let events = core::cell::RefCell::new(Vec::new());
5576                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5577                 self.process_pending_events(&event_handler);
5578                 events.into_inner()
5579         }
5580
5581         #[cfg(feature = "_test_utils")]
5582         pub fn push_pending_event(&self, event: events::Event) {
5583                 let mut events = self.pending_events.lock().unwrap();
5584                 events.push(event);
5585         }
5586
5587         #[cfg(test)]
5588         pub fn pop_pending_event(&self) -> Option<events::Event> {
5589                 let mut events = self.pending_events.lock().unwrap();
5590                 if events.is_empty() { None } else { Some(events.remove(0)) }
5591         }
5592
5593         #[cfg(test)]
5594         pub fn has_pending_payments(&self) -> bool {
5595                 self.pending_outbound_payments.has_pending_payments()
5596         }
5597
5598         #[cfg(test)]
5599         pub fn clear_pending_payments(&self) {
5600                 self.pending_outbound_payments.clear_pending_payments()
5601         }
5602
5603         /// Processes any events asynchronously in the order they were generated since the last call
5604         /// using the given event handler.
5605         ///
5606         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5607         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5608                 &self, handler: H
5609         ) {
5610                 // We'll acquire our total consistency lock until the returned future completes so that
5611                 // we can be sure no other persists happen while processing events.
5612                 let _read_guard = self.total_consistency_lock.read().unwrap();
5613
5614                 let mut result = NotifyOption::SkipPersist;
5615
5616                 // TODO: This behavior should be documented. It's unintuitive that we query
5617                 // ChannelMonitors when clearing other events.
5618                 if self.process_pending_monitor_events() {
5619                         result = NotifyOption::DoPersist;
5620                 }
5621
5622                 let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5623                 if !pending_events.is_empty() {
5624                         result = NotifyOption::DoPersist;
5625                 }
5626
5627                 for event in pending_events {
5628                         handler(event).await;
5629                 }
5630
5631                 if result == NotifyOption::DoPersist {
5632                         self.persistence_notifier.notify();
5633                 }
5634         }
5635 }
5636
5637 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5638 where
5639         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5640         T::Target: BroadcasterInterface,
5641         ES::Target: EntropySource,
5642         NS::Target: NodeSigner,
5643         SP::Target: SignerProvider,
5644         F::Target: FeeEstimator,
5645         R::Target: Router,
5646         L::Target: Logger,
5647 {
5648         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5649         /// The returned array will contain `MessageSendEvent`s for different peers if
5650         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5651         /// is always placed next to each other.
5652         ///
5653         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5654         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5655         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5656         /// will randomly be placed first or last in the returned array.
5657         ///
5658         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5659         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5660         /// the `MessageSendEvent`s to the specific peer they were generated under.
5661         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5662                 let events = RefCell::new(Vec::new());
5663                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5664                         let mut result = NotifyOption::SkipPersist;
5665
5666                         // TODO: This behavior should be documented. It's unintuitive that we query
5667                         // ChannelMonitors when clearing other events.
5668                         if self.process_pending_monitor_events() {
5669                                 result = NotifyOption::DoPersist;
5670                         }
5671
5672                         if self.check_free_holding_cells() {
5673                                 result = NotifyOption::DoPersist;
5674                         }
5675                         if self.maybe_generate_initial_closing_signed() {
5676                                 result = NotifyOption::DoPersist;
5677                         }
5678
5679                         let mut pending_events = Vec::new();
5680                         let per_peer_state = self.per_peer_state.read().unwrap();
5681                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5682                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5683                                 let peer_state = &mut *peer_state_lock;
5684                                 if peer_state.pending_msg_events.len() > 0 {
5685                                         pending_events.append(&mut peer_state.pending_msg_events);
5686                                 }
5687                         }
5688
5689                         if !pending_events.is_empty() {
5690                                 events.replace(pending_events);
5691                         }
5692
5693                         result
5694                 });
5695                 events.into_inner()
5696         }
5697 }
5698
5699 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5700 where
5701         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5702         T::Target: BroadcasterInterface,
5703         ES::Target: EntropySource,
5704         NS::Target: NodeSigner,
5705         SP::Target: SignerProvider,
5706         F::Target: FeeEstimator,
5707         R::Target: Router,
5708         L::Target: Logger,
5709 {
5710         /// Processes events that must be periodically handled.
5711         ///
5712         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5713         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5714         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5715                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5716                         let mut result = NotifyOption::SkipPersist;
5717
5718                         // TODO: This behavior should be documented. It's unintuitive that we query
5719                         // ChannelMonitors when clearing other events.
5720                         if self.process_pending_monitor_events() {
5721                                 result = NotifyOption::DoPersist;
5722                         }
5723
5724                         let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5725                         if !pending_events.is_empty() {
5726                                 result = NotifyOption::DoPersist;
5727                         }
5728
5729                         for event in pending_events {
5730                                 handler.handle_event(event);
5731                         }
5732
5733                         result
5734                 });
5735         }
5736 }
5737
5738 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5739 where
5740         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5741         T::Target: BroadcasterInterface,
5742         ES::Target: EntropySource,
5743         NS::Target: NodeSigner,
5744         SP::Target: SignerProvider,
5745         F::Target: FeeEstimator,
5746         R::Target: Router,
5747         L::Target: Logger,
5748 {
5749         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5750                 {
5751                         let best_block = self.best_block.read().unwrap();
5752                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5753                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5754                         assert_eq!(best_block.height(), height - 1,
5755                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5756                 }
5757
5758                 self.transactions_confirmed(header, txdata, height);
5759                 self.best_block_updated(header, height);
5760         }
5761
5762         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5763                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5764                 let new_height = height - 1;
5765                 {
5766                         let mut best_block = self.best_block.write().unwrap();
5767                         assert_eq!(best_block.block_hash(), header.block_hash(),
5768                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5769                         assert_eq!(best_block.height(), height,
5770                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5771                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5772                 }
5773
5774                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5775         }
5776 }
5777
5778 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5779 where
5780         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5781         T::Target: BroadcasterInterface,
5782         ES::Target: EntropySource,
5783         NS::Target: NodeSigner,
5784         SP::Target: SignerProvider,
5785         F::Target: FeeEstimator,
5786         R::Target: Router,
5787         L::Target: Logger,
5788 {
5789         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5790                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5791                 // during initialization prior to the chain_monitor being fully configured in some cases.
5792                 // See the docs for `ChannelManagerReadArgs` for more.
5793
5794                 let block_hash = header.block_hash();
5795                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5796
5797                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5798                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5799                         .map(|(a, b)| (a, Vec::new(), b)));
5800
5801                 let last_best_block_height = self.best_block.read().unwrap().height();
5802                 if height < last_best_block_height {
5803                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5804                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5805                 }
5806         }
5807
5808         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5809                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5810                 // during initialization prior to the chain_monitor being fully configured in some cases.
5811                 // See the docs for `ChannelManagerReadArgs` for more.
5812
5813                 let block_hash = header.block_hash();
5814                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5815
5816                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5817
5818                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5819
5820                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5821
5822                 macro_rules! max_time {
5823                         ($timestamp: expr) => {
5824                                 loop {
5825                                         // Update $timestamp to be the max of its current value and the block
5826                                         // timestamp. This should keep us close to the current time without relying on
5827                                         // having an explicit local time source.
5828                                         // Just in case we end up in a race, we loop until we either successfully
5829                                         // update $timestamp or decide we don't need to.
5830                                         let old_serial = $timestamp.load(Ordering::Acquire);
5831                                         if old_serial >= header.time as usize { break; }
5832                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5833                                                 break;
5834                                         }
5835                                 }
5836                         }
5837                 }
5838                 max_time!(self.highest_seen_timestamp);
5839                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5840                 payment_secrets.retain(|_, inbound_payment| {
5841                         inbound_payment.expiry_time > header.time as u64
5842                 });
5843         }
5844
5845         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
5846                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
5847                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
5848                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5849                         let peer_state = &mut *peer_state_lock;
5850                         for chan in peer_state.channel_by_id.values() {
5851                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
5852                                         res.push((funding_txo.txid, Some(block_hash)));
5853                                 }
5854                         }
5855                 }
5856                 res
5857         }
5858
5859         fn transaction_unconfirmed(&self, txid: &Txid) {
5860                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5861                 self.do_chain_event(None, |channel| {
5862                         if let Some(funding_txo) = channel.get_funding_txo() {
5863                                 if funding_txo.txid == *txid {
5864                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5865                                 } else { Ok((None, Vec::new(), None)) }
5866                         } else { Ok((None, Vec::new(), None)) }
5867                 });
5868         }
5869 }
5870
5871 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
5872 where
5873         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5874         T::Target: BroadcasterInterface,
5875         ES::Target: EntropySource,
5876         NS::Target: NodeSigner,
5877         SP::Target: SignerProvider,
5878         F::Target: FeeEstimator,
5879         R::Target: Router,
5880         L::Target: Logger,
5881 {
5882         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5883         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5884         /// the function.
5885         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5886                         (&self, height_opt: Option<u32>, f: FN) {
5887                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5888                 // during initialization prior to the chain_monitor being fully configured in some cases.
5889                 // See the docs for `ChannelManagerReadArgs` for more.
5890
5891                 let mut failed_channels = Vec::new();
5892                 let mut timed_out_htlcs = Vec::new();
5893                 {
5894                         let per_peer_state = self.per_peer_state.read().unwrap();
5895                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5896                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5897                                 let peer_state = &mut *peer_state_lock;
5898                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5899                                 peer_state.channel_by_id.retain(|_, channel| {
5900                                         let res = f(channel);
5901                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5902                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5903                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5904                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
5905                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
5906                                                 }
5907                                                 if let Some(channel_ready) = channel_ready_opt {
5908                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
5909                                                         if channel.is_usable() {
5910                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5911                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5912                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5913                                                                                 node_id: channel.get_counterparty_node_id(),
5914                                                                                 msg,
5915                                                                         });
5916                                                                 }
5917                                                         } else {
5918                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5919                                                         }
5920                                                 }
5921
5922                                                 emit_channel_ready_event!(self, channel);
5923
5924                                                 if let Some(announcement_sigs) = announcement_sigs {
5925                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5926                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5927                                                                 node_id: channel.get_counterparty_node_id(),
5928                                                                 msg: announcement_sigs,
5929                                                         });
5930                                                         if let Some(height) = height_opt {
5931                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
5932                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5933                                                                                 msg: announcement,
5934                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
5935                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
5936                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
5937                                                                         });
5938                                                                 }
5939                                                         }
5940                                                 }
5941                                                 if channel.is_our_channel_ready() {
5942                                                         if let Some(real_scid) = channel.get_short_channel_id() {
5943                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
5944                                                                 // to the short_to_chan_info map here. Note that we check whether we
5945                                                                 // can relay using the real SCID at relay-time (i.e.
5946                                                                 // enforce option_scid_alias then), and if the funding tx is ever
5947                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
5948                                                                 // is always consistent.
5949                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
5950                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
5951                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
5952                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
5953                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
5954                                                         }
5955                                                 }
5956                                         } else if let Err(reason) = res {
5957                                                 update_maps_on_chan_removal!(self, channel);
5958                                                 // It looks like our counterparty went on-chain or funding transaction was
5959                                                 // reorged out of the main chain. Close the channel.
5960                                                 failed_channels.push(channel.force_shutdown(true));
5961                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
5962                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5963                                                                 msg: update
5964                                                         });
5965                                                 }
5966                                                 let reason_message = format!("{}", reason);
5967                                                 self.issue_channel_close_events(channel, reason);
5968                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
5969                                                         node_id: channel.get_counterparty_node_id(),
5970                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
5971                                                                 channel_id: channel.channel_id(),
5972                                                                 data: reason_message,
5973                                                         } },
5974                                                 });
5975                                                 return false;
5976                                         }
5977                                         true
5978                                 });
5979                         }
5980                 }
5981
5982                 if let Some(height) = height_opt {
5983                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
5984                                 htlcs.retain(|htlc| {
5985                                         // If height is approaching the number of blocks we think it takes us to get
5986                                         // our commitment transaction confirmed before the HTLC expires, plus the
5987                                         // number of blocks we generally consider it to take to do a commitment update,
5988                                         // just give up on it and fail the HTLC.
5989                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
5990                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5991                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
5992
5993                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
5994                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5995                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
5996                                                 false
5997                                         } else { true }
5998                                 });
5999                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6000                         });
6001
6002                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6003                         intercepted_htlcs.retain(|_, htlc| {
6004                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6005                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6006                                                 short_channel_id: htlc.prev_short_channel_id,
6007                                                 htlc_id: htlc.prev_htlc_id,
6008                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6009                                                 phantom_shared_secret: None,
6010                                                 outpoint: htlc.prev_funding_outpoint,
6011                                         });
6012
6013                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6014                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6015                                                 _ => unreachable!(),
6016                                         };
6017                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6018                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
6019                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
6020                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6021                                         false
6022                                 } else { true }
6023                         });
6024                 }
6025
6026                 self.handle_init_event_channel_failures(failed_channels);
6027
6028                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6029                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6030                 }
6031         }
6032
6033         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
6034         /// indicating whether persistence is necessary. Only one listener on
6035         /// [`await_persistable_update`], [`await_persistable_update_timeout`], or a future returned by
6036         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6037         ///
6038         /// Note that this method is not available with the `no-std` feature.
6039         ///
6040         /// [`await_persistable_update`]: Self::await_persistable_update
6041         /// [`await_persistable_update_timeout`]: Self::await_persistable_update_timeout
6042         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6043         #[cfg(any(test, feature = "std"))]
6044         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
6045                 self.persistence_notifier.wait_timeout(max_wait)
6046         }
6047
6048         /// Blocks until ChannelManager needs to be persisted. Only one listener on
6049         /// [`await_persistable_update`], `await_persistable_update_timeout`, or a future returned by
6050         /// [`get_persistable_update_future`] is guaranteed to be woken up.
6051         ///
6052         /// [`await_persistable_update`]: Self::await_persistable_update
6053         /// [`get_persistable_update_future`]: Self::get_persistable_update_future
6054         pub fn await_persistable_update(&self) {
6055                 self.persistence_notifier.wait()
6056         }
6057
6058         /// Gets a [`Future`] that completes when a persistable update is available. Note that
6059         /// callbacks registered on the [`Future`] MUST NOT call back into this [`ChannelManager`] and
6060         /// should instead register actions to be taken later.
6061         pub fn get_persistable_update_future(&self) -> Future {
6062                 self.persistence_notifier.get_future()
6063         }
6064
6065         #[cfg(any(test, feature = "_test_utils"))]
6066         pub fn get_persistence_condvar_value(&self) -> bool {
6067                 self.persistence_notifier.notify_pending()
6068         }
6069
6070         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6071         /// [`chain::Confirm`] interfaces.
6072         pub fn current_best_block(&self) -> BestBlock {
6073                 self.best_block.read().unwrap().clone()
6074         }
6075
6076         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6077         /// [`ChannelManager`].
6078         pub fn node_features(&self) -> NodeFeatures {
6079                 provided_node_features(&self.default_configuration)
6080         }
6081
6082         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6083         /// [`ChannelManager`].
6084         ///
6085         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6086         /// or not. Thus, this method is not public.
6087         #[cfg(any(feature = "_test_utils", test))]
6088         pub fn invoice_features(&self) -> InvoiceFeatures {
6089                 provided_invoice_features(&self.default_configuration)
6090         }
6091
6092         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6093         /// [`ChannelManager`].
6094         pub fn channel_features(&self) -> ChannelFeatures {
6095                 provided_channel_features(&self.default_configuration)
6096         }
6097
6098         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6099         /// [`ChannelManager`].
6100         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6101                 provided_channel_type_features(&self.default_configuration)
6102         }
6103
6104         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6105         /// [`ChannelManager`].
6106         pub fn init_features(&self) -> InitFeatures {
6107                 provided_init_features(&self.default_configuration)
6108         }
6109 }
6110
6111 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6112         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6113 where
6114         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6115         T::Target: BroadcasterInterface,
6116         ES::Target: EntropySource,
6117         NS::Target: NodeSigner,
6118         SP::Target: SignerProvider,
6119         F::Target: FeeEstimator,
6120         R::Target: Router,
6121         L::Target: Logger,
6122 {
6123         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6124                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6125                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6126         }
6127
6128         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6129                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6130                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6131         }
6132
6133         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6134                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6135                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6136         }
6137
6138         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6139                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6140                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6141         }
6142
6143         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6144                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6145                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6146         }
6147
6148         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6149                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6150                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6151         }
6152
6153         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6154                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6155                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6156         }
6157
6158         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6159                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6160                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6161         }
6162
6163         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6164                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6165                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6166         }
6167
6168         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6169                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6170                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6171         }
6172
6173         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6174                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6175                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6176         }
6177
6178         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6179                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6180                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6181         }
6182
6183         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6184                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6185                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6186         }
6187
6188         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6189                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6190                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6191         }
6192
6193         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6194                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6195                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6196         }
6197
6198         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6199                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6200                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6201                                 persist
6202                         } else {
6203                                 NotifyOption::SkipPersist
6204                         }
6205                 });
6206         }
6207
6208         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6209                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6210                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6211         }
6212
6213         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6214                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6215                 let mut failed_channels = Vec::new();
6216                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6217                 let remove_peer = {
6218                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6219                                 log_pubkey!(counterparty_node_id));
6220                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6221                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6222                                 let peer_state = &mut *peer_state_lock;
6223                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6224                                 peer_state.channel_by_id.retain(|_, chan| {
6225                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6226                                         if chan.is_shutdown() {
6227                                                 update_maps_on_chan_removal!(self, chan);
6228                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6229                                                 return false;
6230                                         }
6231                                         true
6232                                 });
6233                                 pending_msg_events.retain(|msg| {
6234                                         match msg {
6235                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6236                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6237                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6238                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6239                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6240                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6241                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6242                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6243                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6244                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6245                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6246                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6247                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6248                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6249                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6250                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6251                                                 &events::MessageSendEvent::HandleError { .. } => false,
6252                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6253                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6254                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6255                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6256                                         }
6257                                 });
6258                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6259                                 peer_state.is_connected = false;
6260                                 peer_state.ok_to_remove(true)
6261                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6262                 };
6263                 if remove_peer {
6264                         per_peer_state.remove(counterparty_node_id);
6265                 }
6266                 mem::drop(per_peer_state);
6267
6268                 for failure in failed_channels.drain(..) {
6269                         self.finish_force_close_channel(failure);
6270                 }
6271         }
6272
6273         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6274                 if !init_msg.features.supports_static_remote_key() {
6275                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6276                         return Err(());
6277                 }
6278
6279                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6280
6281                 // If we have too many peers connected which don't have funded channels, disconnect the
6282                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6283                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6284                 // peers connect, but we'll reject new channels from them.
6285                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6286                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6287
6288                 {
6289                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6290                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6291                                 hash_map::Entry::Vacant(e) => {
6292                                         if inbound_peer_limited {
6293                                                 return Err(());
6294                                         }
6295                                         e.insert(Mutex::new(PeerState {
6296                                                 channel_by_id: HashMap::new(),
6297                                                 latest_features: init_msg.features.clone(),
6298                                                 pending_msg_events: Vec::new(),
6299                                                 monitor_update_blocked_actions: BTreeMap::new(),
6300                                                 is_connected: true,
6301                                         }));
6302                                 },
6303                                 hash_map::Entry::Occupied(e) => {
6304                                         let mut peer_state = e.get().lock().unwrap();
6305                                         peer_state.latest_features = init_msg.features.clone();
6306
6307                                         let best_block_height = self.best_block.read().unwrap().height();
6308                                         if inbound_peer_limited &&
6309                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6310                                                 peer_state.channel_by_id.len()
6311                                         {
6312                                                 return Err(());
6313                                         }
6314
6315                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6316                                         peer_state.is_connected = true;
6317                                 },
6318                         }
6319                 }
6320
6321                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6322
6323                 let per_peer_state = self.per_peer_state.read().unwrap();
6324                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6325                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6326                         let peer_state = &mut *peer_state_lock;
6327                         let pending_msg_events = &mut peer_state.pending_msg_events;
6328                         peer_state.channel_by_id.retain(|_, chan| {
6329                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6330                                         if !chan.have_received_message() {
6331                                                 // If we created this (outbound) channel while we were disconnected from the
6332                                                 // peer we probably failed to send the open_channel message, which is now
6333                                                 // lost. We can't have had anything pending related to this channel, so we just
6334                                                 // drop it.
6335                                                 false
6336                                         } else {
6337                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6338                                                         node_id: chan.get_counterparty_node_id(),
6339                                                         msg: chan.get_channel_reestablish(&self.logger),
6340                                                 });
6341                                                 true
6342                                         }
6343                                 } else { true };
6344                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6345                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6346                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6347                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6348                                                                 node_id: *counterparty_node_id,
6349                                                                 msg, update_msg,
6350                                                         });
6351                                                 }
6352                                         }
6353                                 }
6354                                 retain
6355                         });
6356                 }
6357                 //TODO: Also re-broadcast announcement_signatures
6358                 Ok(())
6359         }
6360
6361         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6362                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6363
6364                 if msg.channel_id == [0; 32] {
6365                         let channel_ids: Vec<[u8; 32]> = {
6366                                 let per_peer_state = self.per_peer_state.read().unwrap();
6367                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6368                                 if peer_state_mutex_opt.is_none() { return; }
6369                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6370                                 let peer_state = &mut *peer_state_lock;
6371                                 peer_state.channel_by_id.keys().cloned().collect()
6372                         };
6373                         for channel_id in channel_ids {
6374                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6375                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6376                         }
6377                 } else {
6378                         {
6379                                 // First check if we can advance the channel type and try again.
6380                                 let per_peer_state = self.per_peer_state.read().unwrap();
6381                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6382                                 if peer_state_mutex_opt.is_none() { return; }
6383                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6384                                 let peer_state = &mut *peer_state_lock;
6385                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6386                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6387                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6388                                                         node_id: *counterparty_node_id,
6389                                                         msg,
6390                                                 });
6391                                                 return;
6392                                         }
6393                                 }
6394                         }
6395
6396                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6397                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6398                 }
6399         }
6400
6401         fn provided_node_features(&self) -> NodeFeatures {
6402                 provided_node_features(&self.default_configuration)
6403         }
6404
6405         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6406                 provided_init_features(&self.default_configuration)
6407         }
6408 }
6409
6410 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6411 /// [`ChannelManager`].
6412 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6413         provided_init_features(config).to_context()
6414 }
6415
6416 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6417 /// [`ChannelManager`].
6418 ///
6419 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6420 /// or not. Thus, this method is not public.
6421 #[cfg(any(feature = "_test_utils", test))]
6422 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6423         provided_init_features(config).to_context()
6424 }
6425
6426 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6427 /// [`ChannelManager`].
6428 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6429         provided_init_features(config).to_context()
6430 }
6431
6432 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6433 /// [`ChannelManager`].
6434 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6435         ChannelTypeFeatures::from_init(&provided_init_features(config))
6436 }
6437
6438 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6439 /// [`ChannelManager`].
6440 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6441         // Note that if new features are added here which other peers may (eventually) require, we
6442         // should also add the corresponding (optional) bit to the ChannelMessageHandler impl for
6443         // ErroringMessageHandler.
6444         let mut features = InitFeatures::empty();
6445         features.set_data_loss_protect_optional();
6446         features.set_upfront_shutdown_script_optional();
6447         features.set_variable_length_onion_required();
6448         features.set_static_remote_key_required();
6449         features.set_payment_secret_required();
6450         features.set_basic_mpp_optional();
6451         features.set_wumbo_optional();
6452         features.set_shutdown_any_segwit_optional();
6453         features.set_channel_type_optional();
6454         features.set_scid_privacy_optional();
6455         features.set_zero_conf_optional();
6456         #[cfg(anchors)]
6457         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6458                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6459                         features.set_anchors_zero_fee_htlc_tx_optional();
6460                 }
6461         }
6462         features
6463 }
6464
6465 const SERIALIZATION_VERSION: u8 = 1;
6466 const MIN_SERIALIZATION_VERSION: u8 = 1;
6467
6468 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6469         (2, fee_base_msat, required),
6470         (4, fee_proportional_millionths, required),
6471         (6, cltv_expiry_delta, required),
6472 });
6473
6474 impl_writeable_tlv_based!(ChannelCounterparty, {
6475         (2, node_id, required),
6476         (4, features, required),
6477         (6, unspendable_punishment_reserve, required),
6478         (8, forwarding_info, option),
6479         (9, outbound_htlc_minimum_msat, option),
6480         (11, outbound_htlc_maximum_msat, option),
6481 });
6482
6483 impl Writeable for ChannelDetails {
6484         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6485                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6486                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6487                 let user_channel_id_low = self.user_channel_id as u64;
6488                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6489                 write_tlv_fields!(writer, {
6490                         (1, self.inbound_scid_alias, option),
6491                         (2, self.channel_id, required),
6492                         (3, self.channel_type, option),
6493                         (4, self.counterparty, required),
6494                         (5, self.outbound_scid_alias, option),
6495                         (6, self.funding_txo, option),
6496                         (7, self.config, option),
6497                         (8, self.short_channel_id, option),
6498                         (9, self.confirmations, option),
6499                         (10, self.channel_value_satoshis, required),
6500                         (12, self.unspendable_punishment_reserve, option),
6501                         (14, user_channel_id_low, required),
6502                         (16, self.balance_msat, required),
6503                         (18, self.outbound_capacity_msat, required),
6504                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6505                         // filled in, so we can safely unwrap it here.
6506                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6507                         (20, self.inbound_capacity_msat, required),
6508                         (22, self.confirmations_required, option),
6509                         (24, self.force_close_spend_delay, option),
6510                         (26, self.is_outbound, required),
6511                         (28, self.is_channel_ready, required),
6512                         (30, self.is_usable, required),
6513                         (32, self.is_public, required),
6514                         (33, self.inbound_htlc_minimum_msat, option),
6515                         (35, self.inbound_htlc_maximum_msat, option),
6516                         (37, user_channel_id_high_opt, option),
6517                 });
6518                 Ok(())
6519         }
6520 }
6521
6522 impl Readable for ChannelDetails {
6523         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6524                 _init_and_read_tlv_fields!(reader, {
6525                         (1, inbound_scid_alias, option),
6526                         (2, channel_id, required),
6527                         (3, channel_type, option),
6528                         (4, counterparty, required),
6529                         (5, outbound_scid_alias, option),
6530                         (6, funding_txo, option),
6531                         (7, config, option),
6532                         (8, short_channel_id, option),
6533                         (9, confirmations, option),
6534                         (10, channel_value_satoshis, required),
6535                         (12, unspendable_punishment_reserve, option),
6536                         (14, user_channel_id_low, required),
6537                         (16, balance_msat, required),
6538                         (18, outbound_capacity_msat, required),
6539                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6540                         // filled in, so we can safely unwrap it here.
6541                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6542                         (20, inbound_capacity_msat, required),
6543                         (22, confirmations_required, option),
6544                         (24, force_close_spend_delay, option),
6545                         (26, is_outbound, required),
6546                         (28, is_channel_ready, required),
6547                         (30, is_usable, required),
6548                         (32, is_public, required),
6549                         (33, inbound_htlc_minimum_msat, option),
6550                         (35, inbound_htlc_maximum_msat, option),
6551                         (37, user_channel_id_high_opt, option),
6552                 });
6553
6554                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6555                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6556                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6557                 let user_channel_id = user_channel_id_low as u128 +
6558                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6559
6560                 Ok(Self {
6561                         inbound_scid_alias,
6562                         channel_id: channel_id.0.unwrap(),
6563                         channel_type,
6564                         counterparty: counterparty.0.unwrap(),
6565                         outbound_scid_alias,
6566                         funding_txo,
6567                         config,
6568                         short_channel_id,
6569                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6570                         unspendable_punishment_reserve,
6571                         user_channel_id,
6572                         balance_msat: balance_msat.0.unwrap(),
6573                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6574                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6575                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6576                         confirmations_required,
6577                         confirmations,
6578                         force_close_spend_delay,
6579                         is_outbound: is_outbound.0.unwrap(),
6580                         is_channel_ready: is_channel_ready.0.unwrap(),
6581                         is_usable: is_usable.0.unwrap(),
6582                         is_public: is_public.0.unwrap(),
6583                         inbound_htlc_minimum_msat,
6584                         inbound_htlc_maximum_msat,
6585                 })
6586         }
6587 }
6588
6589 impl_writeable_tlv_based!(PhantomRouteHints, {
6590         (2, channels, vec_type),
6591         (4, phantom_scid, required),
6592         (6, real_node_pubkey, required),
6593 });
6594
6595 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6596         (0, Forward) => {
6597                 (0, onion_packet, required),
6598                 (2, short_channel_id, required),
6599         },
6600         (1, Receive) => {
6601                 (0, payment_data, required),
6602                 (1, phantom_shared_secret, option),
6603                 (2, incoming_cltv_expiry, required),
6604         },
6605         (2, ReceiveKeysend) => {
6606                 (0, payment_preimage, required),
6607                 (2, incoming_cltv_expiry, required),
6608         },
6609 ;);
6610
6611 impl_writeable_tlv_based!(PendingHTLCInfo, {
6612         (0, routing, required),
6613         (2, incoming_shared_secret, required),
6614         (4, payment_hash, required),
6615         (6, outgoing_amt_msat, required),
6616         (8, outgoing_cltv_value, required),
6617         (9, incoming_amt_msat, option),
6618 });
6619
6620
6621 impl Writeable for HTLCFailureMsg {
6622         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6623                 match self {
6624                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6625                                 0u8.write(writer)?;
6626                                 channel_id.write(writer)?;
6627                                 htlc_id.write(writer)?;
6628                                 reason.write(writer)?;
6629                         },
6630                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6631                                 channel_id, htlc_id, sha256_of_onion, failure_code
6632                         }) => {
6633                                 1u8.write(writer)?;
6634                                 channel_id.write(writer)?;
6635                                 htlc_id.write(writer)?;
6636                                 sha256_of_onion.write(writer)?;
6637                                 failure_code.write(writer)?;
6638                         },
6639                 }
6640                 Ok(())
6641         }
6642 }
6643
6644 impl Readable for HTLCFailureMsg {
6645         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6646                 let id: u8 = Readable::read(reader)?;
6647                 match id {
6648                         0 => {
6649                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6650                                         channel_id: Readable::read(reader)?,
6651                                         htlc_id: Readable::read(reader)?,
6652                                         reason: Readable::read(reader)?,
6653                                 }))
6654                         },
6655                         1 => {
6656                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6657                                         channel_id: Readable::read(reader)?,
6658                                         htlc_id: Readable::read(reader)?,
6659                                         sha256_of_onion: Readable::read(reader)?,
6660                                         failure_code: Readable::read(reader)?,
6661                                 }))
6662                         },
6663                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6664                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6665                         // messages contained in the variants.
6666                         // In version 0.0.101, support for reading the variants with these types was added, and
6667                         // we should migrate to writing these variants when UpdateFailHTLC or
6668                         // UpdateFailMalformedHTLC get TLV fields.
6669                         2 => {
6670                                 let length: BigSize = Readable::read(reader)?;
6671                                 let mut s = FixedLengthReader::new(reader, length.0);
6672                                 let res = Readable::read(&mut s)?;
6673                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6674                                 Ok(HTLCFailureMsg::Relay(res))
6675                         },
6676                         3 => {
6677                                 let length: BigSize = Readable::read(reader)?;
6678                                 let mut s = FixedLengthReader::new(reader, length.0);
6679                                 let res = Readable::read(&mut s)?;
6680                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6681                                 Ok(HTLCFailureMsg::Malformed(res))
6682                         },
6683                         _ => Err(DecodeError::UnknownRequiredFeature),
6684                 }
6685         }
6686 }
6687
6688 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6689         (0, Forward),
6690         (1, Fail),
6691 );
6692
6693 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6694         (0, short_channel_id, required),
6695         (1, phantom_shared_secret, option),
6696         (2, outpoint, required),
6697         (4, htlc_id, required),
6698         (6, incoming_packet_shared_secret, required)
6699 });
6700
6701 impl Writeable for ClaimableHTLC {
6702         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6703                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6704                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6705                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6706                 };
6707                 write_tlv_fields!(writer, {
6708                         (0, self.prev_hop, required),
6709                         (1, self.total_msat, required),
6710                         (2, self.value, required),
6711                         (4, payment_data, option),
6712                         (6, self.cltv_expiry, required),
6713                         (8, keysend_preimage, option),
6714                 });
6715                 Ok(())
6716         }
6717 }
6718
6719 impl Readable for ClaimableHTLC {
6720         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6721                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6722                 let mut value = 0;
6723                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6724                 let mut cltv_expiry = 0;
6725                 let mut total_msat = None;
6726                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6727                 read_tlv_fields!(reader, {
6728                         (0, prev_hop, required),
6729                         (1, total_msat, option),
6730                         (2, value, required),
6731                         (4, payment_data, option),
6732                         (6, cltv_expiry, required),
6733                         (8, keysend_preimage, option)
6734                 });
6735                 let onion_payload = match keysend_preimage {
6736                         Some(p) => {
6737                                 if payment_data.is_some() {
6738                                         return Err(DecodeError::InvalidValue)
6739                                 }
6740                                 if total_msat.is_none() {
6741                                         total_msat = Some(value);
6742                                 }
6743                                 OnionPayload::Spontaneous(p)
6744                         },
6745                         None => {
6746                                 if total_msat.is_none() {
6747                                         if payment_data.is_none() {
6748                                                 return Err(DecodeError::InvalidValue)
6749                                         }
6750                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6751                                 }
6752                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6753                         },
6754                 };
6755                 Ok(Self {
6756                         prev_hop: prev_hop.0.unwrap(),
6757                         timer_ticks: 0,
6758                         value,
6759                         total_msat: total_msat.unwrap(),
6760                         onion_payload,
6761                         cltv_expiry,
6762                 })
6763         }
6764 }
6765
6766 impl Readable for HTLCSource {
6767         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6768                 let id: u8 = Readable::read(reader)?;
6769                 match id {
6770                         0 => {
6771                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6772                                 let mut first_hop_htlc_msat: u64 = 0;
6773                                 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6774                                 let mut payment_id = None;
6775                                 let mut payment_secret = None;
6776                                 let mut payment_params: Option<PaymentParameters> = None;
6777                                 read_tlv_fields!(reader, {
6778                                         (0, session_priv, required),
6779                                         (1, payment_id, option),
6780                                         (2, first_hop_htlc_msat, required),
6781                                         (3, payment_secret, option),
6782                                         (4, path, vec_type),
6783                                         (5, payment_params, (option: ReadableArgs, 0)),
6784                                 });
6785                                 if payment_id.is_none() {
6786                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6787                                         // instead.
6788                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6789                                 }
6790                                 if path.is_none() || path.as_ref().unwrap().is_empty() {
6791                                         return Err(DecodeError::InvalidValue);
6792                                 }
6793                                 let path = path.unwrap();
6794                                 if let Some(params) = payment_params.as_mut() {
6795                                         if params.final_cltv_expiry_delta == 0 {
6796                                                 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6797                                         }
6798                                 }
6799                                 Ok(HTLCSource::OutboundRoute {
6800                                         session_priv: session_priv.0.unwrap(),
6801                                         first_hop_htlc_msat,
6802                                         path,
6803                                         payment_id: payment_id.unwrap(),
6804                                         payment_secret,
6805                                         payment_params,
6806                                 })
6807                         }
6808                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6809                         _ => Err(DecodeError::UnknownRequiredFeature),
6810                 }
6811         }
6812 }
6813
6814 impl Writeable for HTLCSource {
6815         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6816                 match self {
6817                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6818                                 0u8.write(writer)?;
6819                                 let payment_id_opt = Some(payment_id);
6820                                 write_tlv_fields!(writer, {
6821                                         (0, session_priv, required),
6822                                         (1, payment_id_opt, option),
6823                                         (2, first_hop_htlc_msat, required),
6824                                         (3, payment_secret, option),
6825                                         (4, *path, vec_type),
6826                                         (5, payment_params, option),
6827                                  });
6828                         }
6829                         HTLCSource::PreviousHopData(ref field) => {
6830                                 1u8.write(writer)?;
6831                                 field.write(writer)?;
6832                         }
6833                 }
6834                 Ok(())
6835         }
6836 }
6837
6838 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6839         (0, forward_info, required),
6840         (1, prev_user_channel_id, (default_value, 0)),
6841         (2, prev_short_channel_id, required),
6842         (4, prev_htlc_id, required),
6843         (6, prev_funding_outpoint, required),
6844 });
6845
6846 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6847         (1, FailHTLC) => {
6848                 (0, htlc_id, required),
6849                 (2, err_packet, required),
6850         };
6851         (0, AddHTLC)
6852 );
6853
6854 impl_writeable_tlv_based!(PendingInboundPayment, {
6855         (0, payment_secret, required),
6856         (2, expiry_time, required),
6857         (4, user_payment_id, required),
6858         (6, payment_preimage, required),
6859         (8, min_value_msat, required),
6860 });
6861
6862 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
6863 where
6864         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6865         T::Target: BroadcasterInterface,
6866         ES::Target: EntropySource,
6867         NS::Target: NodeSigner,
6868         SP::Target: SignerProvider,
6869         F::Target: FeeEstimator,
6870         R::Target: Router,
6871         L::Target: Logger,
6872 {
6873         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6874                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6875
6876                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6877
6878                 self.genesis_hash.write(writer)?;
6879                 {
6880                         let best_block = self.best_block.read().unwrap();
6881                         best_block.height().write(writer)?;
6882                         best_block.block_hash().write(writer)?;
6883                 }
6884
6885                 let mut serializable_peer_count: u64 = 0;
6886                 {
6887                         let per_peer_state = self.per_peer_state.read().unwrap();
6888                         let mut unfunded_channels = 0;
6889                         let mut number_of_channels = 0;
6890                         for (_, peer_state_mutex) in per_peer_state.iter() {
6891                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6892                                 let peer_state = &mut *peer_state_lock;
6893                                 if !peer_state.ok_to_remove(false) {
6894                                         serializable_peer_count += 1;
6895                                 }
6896                                 number_of_channels += peer_state.channel_by_id.len();
6897                                 for (_, channel) in peer_state.channel_by_id.iter() {
6898                                         if !channel.is_funding_initiated() {
6899                                                 unfunded_channels += 1;
6900                                         }
6901                                 }
6902                         }
6903
6904                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
6905
6906                         for (_, peer_state_mutex) in per_peer_state.iter() {
6907                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6908                                 let peer_state = &mut *peer_state_lock;
6909                                 for (_, channel) in peer_state.channel_by_id.iter() {
6910                                         if channel.is_funding_initiated() {
6911                                                 channel.write(writer)?;
6912                                         }
6913                                 }
6914                         }
6915                 }
6916
6917                 {
6918                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
6919                         (forward_htlcs.len() as u64).write(writer)?;
6920                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
6921                                 short_channel_id.write(writer)?;
6922                                 (pending_forwards.len() as u64).write(writer)?;
6923                                 for forward in pending_forwards {
6924                                         forward.write(writer)?;
6925                                 }
6926                         }
6927                 }
6928
6929                 let per_peer_state = self.per_peer_state.write().unwrap();
6930
6931                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6932                 let claimable_payments = self.claimable_payments.lock().unwrap();
6933                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
6934
6935                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
6936                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
6937                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
6938                         payment_hash.write(writer)?;
6939                         (previous_hops.len() as u64).write(writer)?;
6940                         for htlc in previous_hops.iter() {
6941                                 htlc.write(writer)?;
6942                         }
6943                         htlc_purposes.push(purpose);
6944                 }
6945
6946                 let mut monitor_update_blocked_actions_per_peer = None;
6947                 let mut peer_states = Vec::new();
6948                 for (_, peer_state_mutex) in per_peer_state.iter() {
6949                         // Because we're holding the owning `per_peer_state` write lock here there's no chance
6950                         // of a lockorder violation deadlock - no other thread can be holding any
6951                         // per_peer_state lock at all.
6952                         peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
6953                 }
6954
6955                 (serializable_peer_count).write(writer)?;
6956                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
6957                         // Peers which we have no channels to should be dropped once disconnected. As we
6958                         // disconnect all peers when shutting down and serializing the ChannelManager, we
6959                         // consider all peers as disconnected here. There's therefore no need write peers with
6960                         // no channels.
6961                         if !peer_state.ok_to_remove(false) {
6962                                 peer_pubkey.write(writer)?;
6963                                 peer_state.latest_features.write(writer)?;
6964                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
6965                                         monitor_update_blocked_actions_per_peer
6966                                                 .get_or_insert_with(Vec::new)
6967                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
6968                                 }
6969                         }
6970                 }
6971
6972                 let events = self.pending_events.lock().unwrap();
6973                 (events.len() as u64).write(writer)?;
6974                 for event in events.iter() {
6975                         event.write(writer)?;
6976                 }
6977
6978                 let background_events = self.pending_background_events.lock().unwrap();
6979                 (background_events.len() as u64).write(writer)?;
6980                 for event in background_events.iter() {
6981                         match event {
6982                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
6983                                         0u8.write(writer)?;
6984                                         funding_txo.write(writer)?;
6985                                         monitor_update.write(writer)?;
6986                                 },
6987                         }
6988                 }
6989
6990                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
6991                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
6992                 // likely to be identical.
6993                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6994                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6995
6996                 (pending_inbound_payments.len() as u64).write(writer)?;
6997                 for (hash, pending_payment) in pending_inbound_payments.iter() {
6998                         hash.write(writer)?;
6999                         pending_payment.write(writer)?;
7000                 }
7001
7002                 // For backwards compat, write the session privs and their total length.
7003                 let mut num_pending_outbounds_compat: u64 = 0;
7004                 for (_, outbound) in pending_outbound_payments.iter() {
7005                         if !outbound.is_fulfilled() && !outbound.abandoned() {
7006                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7007                         }
7008                 }
7009                 num_pending_outbounds_compat.write(writer)?;
7010                 for (_, outbound) in pending_outbound_payments.iter() {
7011                         match outbound {
7012                                 PendingOutboundPayment::Legacy { session_privs } |
7013                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7014                                         for session_priv in session_privs.iter() {
7015                                                 session_priv.write(writer)?;
7016                                         }
7017                                 }
7018                                 PendingOutboundPayment::Fulfilled { .. } => {},
7019                                 PendingOutboundPayment::Abandoned { .. } => {},
7020                         }
7021                 }
7022
7023                 // Encode without retry info for 0.0.101 compatibility.
7024                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7025                 for (id, outbound) in pending_outbound_payments.iter() {
7026                         match outbound {
7027                                 PendingOutboundPayment::Legacy { session_privs } |
7028                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7029                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7030                                 },
7031                                 _ => {},
7032                         }
7033                 }
7034
7035                 let mut pending_intercepted_htlcs = None;
7036                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7037                 if our_pending_intercepts.len() != 0 {
7038                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7039                 }
7040
7041                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7042                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7043                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7044                         // map. Thus, if there are no entries we skip writing a TLV for it.
7045                         pending_claiming_payments = None;
7046                 }
7047
7048                 write_tlv_fields!(writer, {
7049                         (1, pending_outbound_payments_no_retry, required),
7050                         (2, pending_intercepted_htlcs, option),
7051                         (3, pending_outbound_payments, required),
7052                         (4, pending_claiming_payments, option),
7053                         (5, self.our_network_pubkey, required),
7054                         (6, monitor_update_blocked_actions_per_peer, option),
7055                         (7, self.fake_scid_rand_bytes, required),
7056                         (9, htlc_purposes, vec_type),
7057                         (11, self.probing_cookie_secret, required),
7058                 });
7059
7060                 Ok(())
7061         }
7062 }
7063
7064 /// Arguments for the creation of a ChannelManager that are not deserialized.
7065 ///
7066 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7067 /// is:
7068 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7069 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7070 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7071 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7072 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7073 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7074 ///    same way you would handle a [`chain::Filter`] call using
7075 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7076 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7077 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7078 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7079 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7080 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7081 ///    the next step.
7082 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7083 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7084 ///
7085 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7086 /// call any other methods on the newly-deserialized [`ChannelManager`].
7087 ///
7088 /// Note that because some channels may be closed during deserialization, it is critical that you
7089 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7090 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7091 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7092 /// not force-close the same channels but consider them live), you may end up revoking a state for
7093 /// which you've already broadcasted the transaction.
7094 ///
7095 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7096 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7097 where
7098         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7099         T::Target: BroadcasterInterface,
7100         ES::Target: EntropySource,
7101         NS::Target: NodeSigner,
7102         SP::Target: SignerProvider,
7103         F::Target: FeeEstimator,
7104         R::Target: Router,
7105         L::Target: Logger,
7106 {
7107         /// A cryptographically secure source of entropy.
7108         pub entropy_source: ES,
7109
7110         /// A signer that is able to perform node-scoped cryptographic operations.
7111         pub node_signer: NS,
7112
7113         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7114         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7115         /// signing data.
7116         pub signer_provider: SP,
7117
7118         /// The fee_estimator for use in the ChannelManager in the future.
7119         ///
7120         /// No calls to the FeeEstimator will be made during deserialization.
7121         pub fee_estimator: F,
7122         /// The chain::Watch for use in the ChannelManager in the future.
7123         ///
7124         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7125         /// you have deserialized ChannelMonitors separately and will add them to your
7126         /// chain::Watch after deserializing this ChannelManager.
7127         pub chain_monitor: M,
7128
7129         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7130         /// used to broadcast the latest local commitment transactions of channels which must be
7131         /// force-closed during deserialization.
7132         pub tx_broadcaster: T,
7133         /// The router which will be used in the ChannelManager in the future for finding routes
7134         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7135         ///
7136         /// No calls to the router will be made during deserialization.
7137         pub router: R,
7138         /// The Logger for use in the ChannelManager and which may be used to log information during
7139         /// deserialization.
7140         pub logger: L,
7141         /// Default settings used for new channels. Any existing channels will continue to use the
7142         /// runtime settings which were stored when the ChannelManager was serialized.
7143         pub default_config: UserConfig,
7144
7145         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7146         /// value.get_funding_txo() should be the key).
7147         ///
7148         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7149         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7150         /// is true for missing channels as well. If there is a monitor missing for which we find
7151         /// channel data Err(DecodeError::InvalidValue) will be returned.
7152         ///
7153         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7154         /// this struct.
7155         ///
7156         /// (C-not exported) because we have no HashMap bindings
7157         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7158 }
7159
7160 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7161                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7162 where
7163         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7164         T::Target: BroadcasterInterface,
7165         ES::Target: EntropySource,
7166         NS::Target: NodeSigner,
7167         SP::Target: SignerProvider,
7168         F::Target: FeeEstimator,
7169         R::Target: Router,
7170         L::Target: Logger,
7171 {
7172         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7173         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7174         /// populate a HashMap directly from C.
7175         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7176                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7177                 Self {
7178                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7179                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7180                 }
7181         }
7182 }
7183
7184 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7185 // SipmleArcChannelManager type:
7186 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7187         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7188 where
7189         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7190         T::Target: BroadcasterInterface,
7191         ES::Target: EntropySource,
7192         NS::Target: NodeSigner,
7193         SP::Target: SignerProvider,
7194         F::Target: FeeEstimator,
7195         R::Target: Router,
7196         L::Target: Logger,
7197 {
7198         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7199                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7200                 Ok((blockhash, Arc::new(chan_manager)))
7201         }
7202 }
7203
7204 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7205         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7206 where
7207         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7208         T::Target: BroadcasterInterface,
7209         ES::Target: EntropySource,
7210         NS::Target: NodeSigner,
7211         SP::Target: SignerProvider,
7212         F::Target: FeeEstimator,
7213         R::Target: Router,
7214         L::Target: Logger,
7215 {
7216         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7217                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7218
7219                 let genesis_hash: BlockHash = Readable::read(reader)?;
7220                 let best_block_height: u32 = Readable::read(reader)?;
7221                 let best_block_hash: BlockHash = Readable::read(reader)?;
7222
7223                 let mut failed_htlcs = Vec::new();
7224
7225                 let channel_count: u64 = Readable::read(reader)?;
7226                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7227                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7228                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7229                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7230                 let mut channel_closures = Vec::new();
7231                 for _ in 0..channel_count {
7232                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7233                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7234                         ))?;
7235                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7236                         funding_txo_set.insert(funding_txo.clone());
7237                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7238                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7239                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7240                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7241                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7242                                         // If the channel is ahead of the monitor, return InvalidValue:
7243                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7244                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7245                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7246                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7247                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7248                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7249                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7250                                         return Err(DecodeError::InvalidValue);
7251                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7252                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7253                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7254                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7255                                         // But if the channel is behind of the monitor, close the channel:
7256                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7257                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7258                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7259                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7260                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
7261                                         failed_htlcs.append(&mut new_failed_htlcs);
7262                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7263                                         channel_closures.push(events::Event::ChannelClosed {
7264                                                 channel_id: channel.channel_id(),
7265                                                 user_channel_id: channel.get_user_id(),
7266                                                 reason: ClosureReason::OutdatedChannelManager
7267                                         });
7268                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7269                                                 let mut found_htlc = false;
7270                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7271                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7272                                                 }
7273                                                 if !found_htlc {
7274                                                         // If we have some HTLCs in the channel which are not present in the newer
7275                                                         // ChannelMonitor, they have been removed and should be failed back to
7276                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7277                                                         // were actually claimed we'd have generated and ensured the previous-hop
7278                                                         // claim update ChannelMonitor updates were persisted prior to persising
7279                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7280                                                         // backwards leg of the HTLC will simply be rejected.
7281                                                         log_info!(args.logger,
7282                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7283                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7284                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7285                                                 }
7286                                         }
7287                                 } else {
7288                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7289                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7290                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7291                                         }
7292                                         if channel.is_funding_initiated() {
7293                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7294                                         }
7295                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7296                                                 hash_map::Entry::Occupied(mut entry) => {
7297                                                         let by_id_map = entry.get_mut();
7298                                                         by_id_map.insert(channel.channel_id(), channel);
7299                                                 },
7300                                                 hash_map::Entry::Vacant(entry) => {
7301                                                         let mut by_id_map = HashMap::new();
7302                                                         by_id_map.insert(channel.channel_id(), channel);
7303                                                         entry.insert(by_id_map);
7304                                                 }
7305                                         }
7306                                 }
7307                         } else if channel.is_awaiting_initial_mon_persist() {
7308                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7309                                 // was in-progress, we never broadcasted the funding transaction and can still
7310                                 // safely discard the channel.
7311                                 let _ = channel.force_shutdown(false);
7312                                 channel_closures.push(events::Event::ChannelClosed {
7313                                         channel_id: channel.channel_id(),
7314                                         user_channel_id: channel.get_user_id(),
7315                                         reason: ClosureReason::DisconnectedPeer,
7316                                 });
7317                         } else {
7318                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7319                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7320                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7321                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7322                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7323                                 return Err(DecodeError::InvalidValue);
7324                         }
7325                 }
7326
7327                 for (funding_txo, monitor) in args.channel_monitors.iter_mut() {
7328                         if !funding_txo_set.contains(funding_txo) {
7329                                 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
7330                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
7331                         }
7332                 }
7333
7334                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7335                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7336                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7337                 for _ in 0..forward_htlcs_count {
7338                         let short_channel_id = Readable::read(reader)?;
7339                         let pending_forwards_count: u64 = Readable::read(reader)?;
7340                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7341                         for _ in 0..pending_forwards_count {
7342                                 pending_forwards.push(Readable::read(reader)?);
7343                         }
7344                         forward_htlcs.insert(short_channel_id, pending_forwards);
7345                 }
7346
7347                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7348                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7349                 for _ in 0..claimable_htlcs_count {
7350                         let payment_hash = Readable::read(reader)?;
7351                         let previous_hops_len: u64 = Readable::read(reader)?;
7352                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7353                         for _ in 0..previous_hops_len {
7354                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7355                         }
7356                         claimable_htlcs_list.push((payment_hash, previous_hops));
7357                 }
7358
7359                 let peer_count: u64 = Readable::read(reader)?;
7360                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7361                 for _ in 0..peer_count {
7362                         let peer_pubkey = Readable::read(reader)?;
7363                         let peer_state = PeerState {
7364                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7365                                 latest_features: Readable::read(reader)?,
7366                                 pending_msg_events: Vec::new(),
7367                                 monitor_update_blocked_actions: BTreeMap::new(),
7368                                 is_connected: false,
7369                         };
7370                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7371                 }
7372
7373                 let event_count: u64 = Readable::read(reader)?;
7374                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7375                 for _ in 0..event_count {
7376                         match MaybeReadable::read(reader)? {
7377                                 Some(event) => pending_events_read.push(event),
7378                                 None => continue,
7379                         }
7380                 }
7381
7382                 let background_event_count: u64 = Readable::read(reader)?;
7383                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
7384                 for _ in 0..background_event_count {
7385                         match <u8 as Readable>::read(reader)? {
7386                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
7387                                 _ => return Err(DecodeError::InvalidValue),
7388                         }
7389                 }
7390
7391                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7392                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7393
7394                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7395                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7396                 for _ in 0..pending_inbound_payment_count {
7397                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7398                                 return Err(DecodeError::InvalidValue);
7399                         }
7400                 }
7401
7402                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7403                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7404                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7405                 for _ in 0..pending_outbound_payments_count_compat {
7406                         let session_priv = Readable::read(reader)?;
7407                         let payment = PendingOutboundPayment::Legacy {
7408                                 session_privs: [session_priv].iter().cloned().collect()
7409                         };
7410                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7411                                 return Err(DecodeError::InvalidValue)
7412                         };
7413                 }
7414
7415                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7416                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7417                 let mut pending_outbound_payments = None;
7418                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7419                 let mut received_network_pubkey: Option<PublicKey> = None;
7420                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7421                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7422                 let mut claimable_htlc_purposes = None;
7423                 let mut pending_claiming_payments = Some(HashMap::new());
7424                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7425                 read_tlv_fields!(reader, {
7426                         (1, pending_outbound_payments_no_retry, option),
7427                         (2, pending_intercepted_htlcs, option),
7428                         (3, pending_outbound_payments, option),
7429                         (4, pending_claiming_payments, option),
7430                         (5, received_network_pubkey, option),
7431                         (6, monitor_update_blocked_actions_per_peer, option),
7432                         (7, fake_scid_rand_bytes, option),
7433                         (9, claimable_htlc_purposes, vec_type),
7434                         (11, probing_cookie_secret, option),
7435                 });
7436                 if fake_scid_rand_bytes.is_none() {
7437                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7438                 }
7439
7440                 if probing_cookie_secret.is_none() {
7441                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7442                 }
7443
7444                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7445                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7446                 } else if pending_outbound_payments.is_none() {
7447                         let mut outbounds = HashMap::new();
7448                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7449                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7450                         }
7451                         pending_outbound_payments = Some(outbounds);
7452                 } else {
7453                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7454                         // ChannelMonitor data for any channels for which we do not have authorative state
7455                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7456                         // corresponding `Channel` at all).
7457                         // This avoids several edge-cases where we would otherwise "forget" about pending
7458                         // payments which are still in-flight via their on-chain state.
7459                         // We only rebuild the pending payments map if we were most recently serialized by
7460                         // 0.0.102+
7461                         for (_, monitor) in args.channel_monitors.iter() {
7462                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7463                                         for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() {
7464                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7465                                                         if path.is_empty() {
7466                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7467                                                                 return Err(DecodeError::InvalidValue);
7468                                                         }
7469                                                         let path_amt = path.last().unwrap().fee_msat;
7470                                                         let mut session_priv_bytes = [0; 32];
7471                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7472                                                         match pending_outbound_payments.as_mut().unwrap().entry(payment_id) {
7473                                                                 hash_map::Entry::Occupied(mut entry) => {
7474                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7475                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7476                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7477                                                                 },
7478                                                                 hash_map::Entry::Vacant(entry) => {
7479                                                                         let path_fee = path.get_path_fees();
7480                                                                         entry.insert(PendingOutboundPayment::Retryable {
7481                                                                                 retry_strategy: None,
7482                                                                                 attempts: PaymentAttempts::new(),
7483                                                                                 payment_params: None,
7484                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7485                                                                                 payment_hash: htlc.payment_hash,
7486                                                                                 payment_secret,
7487                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7488                                                                                 pending_amt_msat: path_amt,
7489                                                                                 pending_fee_msat: Some(path_fee),
7490                                                                                 total_msat: path_amt,
7491                                                                                 starting_block_height: best_block_height,
7492                                                                         });
7493                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7494                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7495                                                                 }
7496                                                         }
7497                                                 }
7498                                         }
7499                                         for (htlc_source, htlc) in monitor.get_all_current_outbound_htlcs() {
7500                                                 if let HTLCSource::PreviousHopData(prev_hop_data) = htlc_source {
7501                                                         let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7502                                                                 info.prev_funding_outpoint == prev_hop_data.outpoint &&
7503                                                                         info.prev_htlc_id == prev_hop_data.htlc_id
7504                                                         };
7505                                                         // The ChannelMonitor is now responsible for this HTLC's
7506                                                         // failure/success and will let us know what its outcome is. If we
7507                                                         // still have an entry for this HTLC in `forward_htlcs` or
7508                                                         // `pending_intercepted_htlcs`, we were apparently not persisted after
7509                                                         // the monitor was when forwarding the payment.
7510                                                         forward_htlcs.retain(|_, forwards| {
7511                                                                 forwards.retain(|forward| {
7512                                                                         if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7513                                                                                 if pending_forward_matches_htlc(&htlc_info) {
7514                                                                                         log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7515                                                                                                 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7516                                                                                         false
7517                                                                                 } else { true }
7518                                                                         } else { true }
7519                                                                 });
7520                                                                 !forwards.is_empty()
7521                                                         });
7522                                                         pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7523                                                                 if pending_forward_matches_htlc(&htlc_info) {
7524                                                                         log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7525                                                                                 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7526                                                                         pending_events_read.retain(|event| {
7527                                                                                 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7528                                                                                         intercepted_id != ev_id
7529                                                                                 } else { true }
7530                                                                         });
7531                                                                         false
7532                                                                 } else { true }
7533                                                         });
7534                                                 }
7535                                         }
7536                                 }
7537                         }
7538                 }
7539
7540                 let pending_outbounds = OutboundPayments {
7541                         pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7542                         retry_lock: Mutex::new(())
7543                 };
7544                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7545                         // If we have pending HTLCs to forward, assume we either dropped a
7546                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7547                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7548                         // constant as enough time has likely passed that we should simply handle the forwards
7549                         // now, or at least after the user gets a chance to reconnect to our peers.
7550                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7551                                 time_forwardable: Duration::from_secs(2),
7552                         });
7553                 }
7554
7555                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7556                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7557
7558                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7559                 if let Some(mut purposes) = claimable_htlc_purposes {
7560                         if purposes.len() != claimable_htlcs_list.len() {
7561                                 return Err(DecodeError::InvalidValue);
7562                         }
7563                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7564                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7565                         }
7566                 } else {
7567                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7568                         // include a `_legacy_hop_data` in the `OnionPayload`.
7569                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7570                                 if previous_hops.is_empty() {
7571                                         return Err(DecodeError::InvalidValue);
7572                                 }
7573                                 let purpose = match &previous_hops[0].onion_payload {
7574                                         OnionPayload::Invoice { _legacy_hop_data } => {
7575                                                 if let Some(hop_data) = _legacy_hop_data {
7576                                                         events::PaymentPurpose::InvoicePayment {
7577                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7578                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7579                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7580                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7581                                                                                 Err(()) => {
7582                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7583                                                                                         return Err(DecodeError::InvalidValue);
7584                                                                                 }
7585                                                                         }
7586                                                                 },
7587                                                                 payment_secret: hop_data.payment_secret,
7588                                                         }
7589                                                 } else { return Err(DecodeError::InvalidValue); }
7590                                         },
7591                                         OnionPayload::Spontaneous(payment_preimage) =>
7592                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7593                                 };
7594                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7595                         }
7596                 }
7597
7598                 let mut secp_ctx = Secp256k1::new();
7599                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7600
7601                 if !channel_closures.is_empty() {
7602                         pending_events_read.append(&mut channel_closures);
7603                 }
7604
7605                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7606                         Ok(key) => key,
7607                         Err(()) => return Err(DecodeError::InvalidValue)
7608                 };
7609                 if let Some(network_pubkey) = received_network_pubkey {
7610                         if network_pubkey != our_network_pubkey {
7611                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7612                                 return Err(DecodeError::InvalidValue);
7613                         }
7614                 }
7615
7616                 let mut outbound_scid_aliases = HashSet::new();
7617                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7618                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7619                         let peer_state = &mut *peer_state_lock;
7620                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7621                                 if chan.outbound_scid_alias() == 0 {
7622                                         let mut outbound_scid_alias;
7623                                         loop {
7624                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7625                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7626                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7627                                         }
7628                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7629                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7630                                         // Note that in rare cases its possible to hit this while reading an older
7631                                         // channel if we just happened to pick a colliding outbound alias above.
7632                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7633                                         return Err(DecodeError::InvalidValue);
7634                                 }
7635                                 if chan.is_usable() {
7636                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7637                                                 // Note that in rare cases its possible to hit this while reading an older
7638                                                 // channel if we just happened to pick a colliding outbound alias above.
7639                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7640                                                 return Err(DecodeError::InvalidValue);
7641                                         }
7642                                 }
7643                         }
7644                 }
7645
7646                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7647
7648                 for (_, monitor) in args.channel_monitors.iter() {
7649                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7650                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7651                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7652                                         let mut claimable_amt_msat = 0;
7653                                         let mut receiver_node_id = Some(our_network_pubkey);
7654                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7655                                         if phantom_shared_secret.is_some() {
7656                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7657                                                         .expect("Failed to get node_id for phantom node recipient");
7658                                                 receiver_node_id = Some(phantom_pubkey)
7659                                         }
7660                                         for claimable_htlc in claimable_htlcs {
7661                                                 claimable_amt_msat += claimable_htlc.value;
7662
7663                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7664                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7665                                                 // new commitment transaction we can just provide the payment preimage to
7666                                                 // the corresponding ChannelMonitor and nothing else.
7667                                                 //
7668                                                 // We do so directly instead of via the normal ChannelMonitor update
7669                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7670                                                 // we're not allowed to call it directly yet. Further, we do the update
7671                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7672                                                 // reason to.
7673                                                 // If we were to generate a new ChannelMonitor update ID here and then
7674                                                 // crash before the user finishes block connect we'd end up force-closing
7675                                                 // this channel as well. On the flip side, there's no harm in restarting
7676                                                 // without the new monitor persisted - we'll end up right back here on
7677                                                 // restart.
7678                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7679                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7680                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7681                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7682                                                         let peer_state = &mut *peer_state_lock;
7683                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7684                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7685                                                         }
7686                                                 }
7687                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7688                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7689                                                 }
7690                                         }
7691                                         pending_events_read.push(events::Event::PaymentClaimed {
7692                                                 receiver_node_id,
7693                                                 payment_hash,
7694                                                 purpose: payment_purpose,
7695                                                 amount_msat: claimable_amt_msat,
7696                                         });
7697                                 }
7698                         }
7699                 }
7700
7701                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7702                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7703                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7704                         } else {
7705                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7706                                 return Err(DecodeError::InvalidValue);
7707                         }
7708                 }
7709
7710                 let channel_manager = ChannelManager {
7711                         genesis_hash,
7712                         fee_estimator: bounded_fee_estimator,
7713                         chain_monitor: args.chain_monitor,
7714                         tx_broadcaster: args.tx_broadcaster,
7715                         router: args.router,
7716
7717                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7718
7719                         inbound_payment_key: expanded_inbound_key,
7720                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7721                         pending_outbound_payments: pending_outbounds,
7722                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7723
7724                         forward_htlcs: Mutex::new(forward_htlcs),
7725                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7726                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7727                         id_to_peer: Mutex::new(id_to_peer),
7728                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7729                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7730
7731                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7732
7733                         our_network_pubkey,
7734                         secp_ctx,
7735
7736                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7737
7738                         per_peer_state: FairRwLock::new(per_peer_state),
7739
7740                         pending_events: Mutex::new(pending_events_read),
7741                         pending_background_events: Mutex::new(pending_background_events_read),
7742                         total_consistency_lock: RwLock::new(()),
7743                         persistence_notifier: Notifier::new(),
7744
7745                         entropy_source: args.entropy_source,
7746                         node_signer: args.node_signer,
7747                         signer_provider: args.signer_provider,
7748
7749                         logger: args.logger,
7750                         default_configuration: args.default_config,
7751                 };
7752
7753                 for htlc_source in failed_htlcs.drain(..) {
7754                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7755                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7756                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7757                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7758                 }
7759
7760                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7761                 //connection or two.
7762
7763                 Ok((best_block_hash.clone(), channel_manager))
7764         }
7765 }
7766
7767 #[cfg(test)]
7768 mod tests {
7769         use bitcoin::hashes::Hash;
7770         use bitcoin::hashes::sha256::Hash as Sha256;
7771         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7772         use core::time::Duration;
7773         use core::sync::atomic::Ordering;
7774         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7775         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, InterceptId};
7776         use crate::ln::functional_test_utils::*;
7777         use crate::ln::msgs;
7778         use crate::ln::msgs::ChannelMessageHandler;
7779         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7780         use crate::util::errors::APIError;
7781         use crate::util::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7782         use crate::util::test_utils;
7783         use crate::util::config::ChannelConfig;
7784         use crate::chain::keysinterface::EntropySource;
7785
7786         #[test]
7787         fn test_notify_limits() {
7788                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7789                 // indeed, do not cause the persistence of a new ChannelManager.
7790                 let chanmon_cfgs = create_chanmon_cfgs(3);
7791                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7792                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7793                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7794
7795                 // All nodes start with a persistable update pending as `create_network` connects each node
7796                 // with all other nodes to make most tests simpler.
7797                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7798                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7799                 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7800
7801                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7802
7803                 // We check that the channel info nodes have doesn't change too early, even though we try
7804                 // to connect messages with new values
7805                 chan.0.contents.fee_base_msat *= 2;
7806                 chan.1.contents.fee_base_msat *= 2;
7807                 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
7808                 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
7809
7810                 // The first two nodes (which opened a channel) should now require fresh persistence
7811                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7812                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7813                 // ... but the last node should not.
7814                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7815                 // After persisting the first two nodes they should no longer need fresh persistence.
7816                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7817                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7818
7819                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7820                 // about the channel.
7821                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7822                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7823                 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
7824
7825                 // The nodes which are a party to the channel should also ignore messages from unrelated
7826                 // parties.
7827                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7828                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7829                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
7830                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
7831                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7832                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7833
7834                 // At this point the channel info given by peers should still be the same.
7835                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7836                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7837
7838                 // An earlier version of handle_channel_update didn't check the directionality of the
7839                 // update message and would always update the local fee info, even if our peer was
7840                 // (spuriously) forwarding us our own channel_update.
7841                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
7842                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
7843                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
7844
7845                 // First deliver each peers' own message, checking that the node doesn't need to be
7846                 // persisted and that its channel info remains the same.
7847                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
7848                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
7849                 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7850                 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7851                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
7852                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
7853
7854                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
7855                 // the channel info has updated.
7856                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
7857                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
7858                 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
7859                 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
7860                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
7861                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
7862         }
7863
7864         #[test]
7865         fn test_keysend_dup_hash_partial_mpp() {
7866                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
7867                 // expected.
7868                 let chanmon_cfgs = create_chanmon_cfgs(2);
7869                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7870                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7871                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7872                 create_announced_chan_between_nodes(&nodes, 0, 1);
7873
7874                 // First, send a partial MPP payment.
7875                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
7876                 let mut mpp_route = route.clone();
7877                 mpp_route.paths.push(mpp_route.paths[0].clone());
7878
7879                 let payment_id = PaymentId([42; 32]);
7880                 // Use the utility function send_payment_along_path to send the payment with MPP data which
7881                 // indicates there are more HTLCs coming.
7882                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
7883                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
7884                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
7885                 check_added_monitors!(nodes[0], 1);
7886                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7887                 assert_eq!(events.len(), 1);
7888                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
7889
7890                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
7891                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
7892                 check_added_monitors!(nodes[0], 1);
7893                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7894                 assert_eq!(events.len(), 1);
7895                 let ev = events.drain(..).next().unwrap();
7896                 let payment_event = SendEvent::from_event(ev);
7897                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7898                 check_added_monitors!(nodes[1], 0);
7899                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7900                 expect_pending_htlcs_forwardable!(nodes[1]);
7901                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
7902                 check_added_monitors!(nodes[1], 1);
7903                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7904                 assert!(updates.update_add_htlcs.is_empty());
7905                 assert!(updates.update_fulfill_htlcs.is_empty());
7906                 assert_eq!(updates.update_fail_htlcs.len(), 1);
7907                 assert!(updates.update_fail_malformed_htlcs.is_empty());
7908                 assert!(updates.update_fee.is_none());
7909                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7910                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7911                 expect_payment_failed!(nodes[0], our_payment_hash, true);
7912
7913                 // Send the second half of the original MPP payment.
7914                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
7915                 check_added_monitors!(nodes[0], 1);
7916                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7917                 assert_eq!(events.len(), 1);
7918                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7919
7920                 // Claim the full MPP payment. Note that we can't use a test utility like
7921                 // claim_funds_along_route because the ordering of the messages causes the second half of the
7922                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
7923                 // lightning messages manually.
7924                 nodes[1].node.claim_funds(payment_preimage);
7925                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
7926                 check_added_monitors!(nodes[1], 2);
7927
7928                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7929                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
7930                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
7931                 check_added_monitors!(nodes[0], 1);
7932                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7933                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
7934                 check_added_monitors!(nodes[1], 1);
7935                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7936                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
7937                 check_added_monitors!(nodes[1], 1);
7938                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7939                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
7940                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
7941                 check_added_monitors!(nodes[0], 1);
7942                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
7943                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
7944                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7945                 check_added_monitors!(nodes[0], 1);
7946                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
7947                 check_added_monitors!(nodes[1], 1);
7948                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
7949                 check_added_monitors!(nodes[1], 1);
7950                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7951                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
7952                 check_added_monitors!(nodes[0], 1);
7953
7954                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
7955                 // path's success and a PaymentPathSuccessful event for each path's success.
7956                 let events = nodes[0].node.get_and_clear_pending_events();
7957                 assert_eq!(events.len(), 3);
7958                 match events[0] {
7959                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
7960                                 assert_eq!(Some(payment_id), *id);
7961                                 assert_eq!(payment_preimage, *preimage);
7962                                 assert_eq!(our_payment_hash, *hash);
7963                         },
7964                         _ => panic!("Unexpected event"),
7965                 }
7966                 match events[1] {
7967                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7968                                 assert_eq!(payment_id, *actual_payment_id);
7969                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7970                                 assert_eq!(route.paths[0], *path);
7971                         },
7972                         _ => panic!("Unexpected event"),
7973                 }
7974                 match events[2] {
7975                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7976                                 assert_eq!(payment_id, *actual_payment_id);
7977                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7978                                 assert_eq!(route.paths[0], *path);
7979                         },
7980                         _ => panic!("Unexpected event"),
7981                 }
7982         }
7983
7984         #[test]
7985         fn test_keysend_dup_payment_hash() {
7986                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
7987                 //      outbound regular payment fails as expected.
7988                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
7989                 //      fails as expected.
7990                 let chanmon_cfgs = create_chanmon_cfgs(2);
7991                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7992                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7993                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7994                 create_announced_chan_between_nodes(&nodes, 0, 1);
7995                 let scorer = test_utils::TestScorer::new();
7996                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7997
7998                 // To start (1), send a regular payment but don't claim it.
7999                 let expected_route = [&nodes[1]];
8000                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8001
8002                 // Next, attempt a keysend payment and make sure it fails.
8003                 let route_params = RouteParameters {
8004                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8005                         final_value_msat: 100_000,
8006                 };
8007                 let route = find_route(
8008                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8009                         None, nodes[0].logger, &scorer, &random_seed_bytes
8010                 ).unwrap();
8011                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8012                 check_added_monitors!(nodes[0], 1);
8013                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8014                 assert_eq!(events.len(), 1);
8015                 let ev = events.drain(..).next().unwrap();
8016                 let payment_event = SendEvent::from_event(ev);
8017                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8018                 check_added_monitors!(nodes[1], 0);
8019                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8020                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8021                 // fails), the second will process the resulting failure and fail the HTLC backward
8022                 expect_pending_htlcs_forwardable!(nodes[1]);
8023                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8024                 check_added_monitors!(nodes[1], 1);
8025                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8026                 assert!(updates.update_add_htlcs.is_empty());
8027                 assert!(updates.update_fulfill_htlcs.is_empty());
8028                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8029                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8030                 assert!(updates.update_fee.is_none());
8031                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8032                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8033                 expect_payment_failed!(nodes[0], payment_hash, true);
8034
8035                 // Finally, claim the original payment.
8036                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8037
8038                 // To start (2), send a keysend payment but don't claim it.
8039                 let payment_preimage = PaymentPreimage([42; 32]);
8040                 let route = find_route(
8041                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8042                         None, nodes[0].logger, &scorer, &random_seed_bytes
8043                 ).unwrap();
8044                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8045                 check_added_monitors!(nodes[0], 1);
8046                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8047                 assert_eq!(events.len(), 1);
8048                 let event = events.pop().unwrap();
8049                 let path = vec![&nodes[1]];
8050                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8051
8052                 // Next, attempt a regular payment and make sure it fails.
8053                 let payment_secret = PaymentSecret([43; 32]);
8054                 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8055                 check_added_monitors!(nodes[0], 1);
8056                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8057                 assert_eq!(events.len(), 1);
8058                 let ev = events.drain(..).next().unwrap();
8059                 let payment_event = SendEvent::from_event(ev);
8060                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8061                 check_added_monitors!(nodes[1], 0);
8062                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8063                 expect_pending_htlcs_forwardable!(nodes[1]);
8064                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8065                 check_added_monitors!(nodes[1], 1);
8066                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8067                 assert!(updates.update_add_htlcs.is_empty());
8068                 assert!(updates.update_fulfill_htlcs.is_empty());
8069                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8070                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8071                 assert!(updates.update_fee.is_none());
8072                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8073                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8074                 expect_payment_failed!(nodes[0], payment_hash, true);
8075
8076                 // Finally, succeed the keysend payment.
8077                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8078         }
8079
8080         #[test]
8081         fn test_keysend_hash_mismatch() {
8082                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8083                 // preimage doesn't match the msg's payment hash.
8084                 let chanmon_cfgs = create_chanmon_cfgs(2);
8085                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8086                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8087                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8088
8089                 let payer_pubkey = nodes[0].node.get_our_node_id();
8090                 let payee_pubkey = nodes[1].node.get_our_node_id();
8091
8092                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8093                 let route_params = RouteParameters {
8094                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8095                         final_value_msat: 10_000,
8096                 };
8097                 let network_graph = nodes[0].network_graph.clone();
8098                 let first_hops = nodes[0].node.list_usable_channels();
8099                 let scorer = test_utils::TestScorer::new();
8100                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8101                 let route = find_route(
8102                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8103                         nodes[0].logger, &scorer, &random_seed_bytes
8104                 ).unwrap();
8105
8106                 let test_preimage = PaymentPreimage([42; 32]);
8107                 let mismatch_payment_hash = PaymentHash([43; 32]);
8108                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
8109                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8110                 check_added_monitors!(nodes[0], 1);
8111
8112                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8113                 assert_eq!(updates.update_add_htlcs.len(), 1);
8114                 assert!(updates.update_fulfill_htlcs.is_empty());
8115                 assert!(updates.update_fail_htlcs.is_empty());
8116                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8117                 assert!(updates.update_fee.is_none());
8118                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8119
8120                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
8121         }
8122
8123         #[test]
8124         fn test_keysend_msg_with_secret_err() {
8125                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8126                 let chanmon_cfgs = create_chanmon_cfgs(2);
8127                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8128                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8129                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8130
8131                 let payer_pubkey = nodes[0].node.get_our_node_id();
8132                 let payee_pubkey = nodes[1].node.get_our_node_id();
8133
8134                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8135                 let route_params = RouteParameters {
8136                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8137                         final_value_msat: 10_000,
8138                 };
8139                 let network_graph = nodes[0].network_graph.clone();
8140                 let first_hops = nodes[0].node.list_usable_channels();
8141                 let scorer = test_utils::TestScorer::new();
8142                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8143                 let route = find_route(
8144                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8145                         nodes[0].logger, &scorer, &random_seed_bytes
8146                 ).unwrap();
8147
8148                 let test_preimage = PaymentPreimage([42; 32]);
8149                 let test_secret = PaymentSecret([43; 32]);
8150                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8151                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8152                 nodes[0].node.test_send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
8153                 check_added_monitors!(nodes[0], 1);
8154
8155                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8156                 assert_eq!(updates.update_add_htlcs.len(), 1);
8157                 assert!(updates.update_fulfill_htlcs.is_empty());
8158                 assert!(updates.update_fail_htlcs.is_empty());
8159                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8160                 assert!(updates.update_fee.is_none());
8161                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8162
8163                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
8164         }
8165
8166         #[test]
8167         fn test_multi_hop_missing_secret() {
8168                 let chanmon_cfgs = create_chanmon_cfgs(4);
8169                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8170                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8171                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8172
8173                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8174                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8175                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8176                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8177
8178                 // Marshall an MPP route.
8179                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8180                 let path = route.paths[0].clone();
8181                 route.paths.push(path);
8182                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8183                 route.paths[0][0].short_channel_id = chan_1_id;
8184                 route.paths[0][1].short_channel_id = chan_3_id;
8185                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8186                 route.paths[1][0].short_channel_id = chan_2_id;
8187                 route.paths[1][1].short_channel_id = chan_4_id;
8188
8189                 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
8190                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8191                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))                        },
8192                         _ => panic!("unexpected error")
8193                 }
8194         }
8195
8196         #[test]
8197         fn test_drop_disconnected_peers_when_removing_channels() {
8198                 let chanmon_cfgs = create_chanmon_cfgs(2);
8199                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8200                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8201                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8202
8203                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8204
8205                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8206                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8207
8208                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8209                 check_closed_broadcast!(nodes[0], true);
8210                 check_added_monitors!(nodes[0], 1);
8211                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8212
8213                 {
8214                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8215                         // disconnected and the channel between has been force closed.
8216                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8217                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8218                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8219                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8220                 }
8221
8222                 nodes[0].node.timer_tick_occurred();
8223
8224                 {
8225                         // Assert that nodes[1] has now been removed.
8226                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8227                 }
8228         }
8229
8230         #[test]
8231         fn bad_inbound_payment_hash() {
8232                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8233                 let chanmon_cfgs = create_chanmon_cfgs(2);
8234                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8235                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8236                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8237
8238                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8239                 let payment_data = msgs::FinalOnionHopData {
8240                         payment_secret,
8241                         total_msat: 100_000,
8242                 };
8243
8244                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8245                 // payment verification fails as expected.
8246                 let mut bad_payment_hash = payment_hash.clone();
8247                 bad_payment_hash.0[0] += 1;
8248                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8249                         Ok(_) => panic!("Unexpected ok"),
8250                         Err(()) => {
8251                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
8252                         }
8253                 }
8254
8255                 // Check that using the original payment hash succeeds.
8256                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8257         }
8258
8259         #[test]
8260         fn test_id_to_peer_coverage() {
8261                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8262                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8263                 // the channel is successfully closed.
8264                 let chanmon_cfgs = create_chanmon_cfgs(2);
8265                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8266                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8267                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8268
8269                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8270                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8271                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8272                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8273                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8274
8275                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8276                 let channel_id = &tx.txid().into_inner();
8277                 {
8278                         // Ensure that the `id_to_peer` map is empty until either party has received the
8279                         // funding transaction, and have the real `channel_id`.
8280                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8281                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8282                 }
8283
8284                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8285                 {
8286                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8287                         // as it has the funding transaction.
8288                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8289                         assert_eq!(nodes_0_lock.len(), 1);
8290                         assert!(nodes_0_lock.contains_key(channel_id));
8291                 }
8292
8293                 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8294
8295                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8296
8297                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8298                 {
8299                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8300                         assert_eq!(nodes_0_lock.len(), 1);
8301                         assert!(nodes_0_lock.contains_key(channel_id));
8302                 }
8303
8304                 {
8305                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8306                         // as it has the funding transaction.
8307                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8308                         assert_eq!(nodes_1_lock.len(), 1);
8309                         assert!(nodes_1_lock.contains_key(channel_id));
8310                 }
8311                 check_added_monitors!(nodes[1], 1);
8312                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8313                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8314                 check_added_monitors!(nodes[0], 1);
8315                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8316                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8317                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8318
8319                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8320                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8321                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8322                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8323
8324                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8325                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8326                 {
8327                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8328                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8329                         // fee for the closing transaction has been negotiated and the parties has the other
8330                         // party's signature for the fee negotiated closing transaction.)
8331                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8332                         assert_eq!(nodes_0_lock.len(), 1);
8333                         assert!(nodes_0_lock.contains_key(channel_id));
8334                 }
8335
8336                 {
8337                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8338                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8339                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8340                         // kept in the `nodes[1]`'s `id_to_peer` map.
8341                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8342                         assert_eq!(nodes_1_lock.len(), 1);
8343                         assert!(nodes_1_lock.contains_key(channel_id));
8344                 }
8345
8346                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8347                 {
8348                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8349                         // therefore has all it needs to fully close the channel (both signatures for the
8350                         // closing transaction).
8351                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8352                         // fully closed by `nodes[0]`.
8353                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8354
8355                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8356                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8357                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8358                         assert_eq!(nodes_1_lock.len(), 1);
8359                         assert!(nodes_1_lock.contains_key(channel_id));
8360                 }
8361
8362                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8363
8364                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8365                 {
8366                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8367                         // they both have everything required to fully close the channel.
8368                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8369                 }
8370                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8371
8372                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8373                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8374         }
8375
8376         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8377                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8378                 check_api_error_message(expected_message, res_err)
8379         }
8380
8381         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8382                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8383                 check_api_error_message(expected_message, res_err)
8384         }
8385
8386         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8387                 match res_err {
8388                         Err(APIError::APIMisuseError { err }) => {
8389                                 assert_eq!(err, expected_err_message);
8390                         },
8391                         Err(APIError::ChannelUnavailable { err }) => {
8392                                 assert_eq!(err, expected_err_message);
8393                         },
8394                         Ok(_) => panic!("Unexpected Ok"),
8395                         Err(_) => panic!("Unexpected Error"),
8396                 }
8397         }
8398
8399         #[test]
8400         fn test_api_calls_with_unkown_counterparty_node() {
8401                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8402                 // expected if the `counterparty_node_id` is an unkown peer in the
8403                 // `ChannelManager::per_peer_state` map.
8404                 let chanmon_cfg = create_chanmon_cfgs(2);
8405                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8406                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8407                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8408
8409                 // Dummy values
8410                 let channel_id = [4; 32];
8411                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8412                 let intercept_id = InterceptId([0; 32]);
8413
8414                 // Test the API functions.
8415                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8416
8417                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8418
8419                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8420
8421                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8422
8423                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8424
8425                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8426
8427                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8428         }
8429
8430         #[test]
8431         fn test_connection_limiting() {
8432                 // Test that we limit un-channel'd peers and un-funded channels properly.
8433                 let chanmon_cfgs = create_chanmon_cfgs(2);
8434                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8435                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8436                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8437
8438                 // Note that create_network connects the nodes together for us
8439
8440                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8441                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8442
8443                 let mut funding_tx = None;
8444                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8445                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8446                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8447
8448                         if idx == 0 {
8449                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8450                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8451                                 funding_tx = Some(tx.clone());
8452                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8453                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8454
8455                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8456                                 check_added_monitors!(nodes[1], 1);
8457                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8458
8459                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8460                                 check_added_monitors!(nodes[0], 1);
8461                         }
8462                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8463                 }
8464
8465                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8466                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8467                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8468                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8469                         open_channel_msg.temporary_channel_id);
8470
8471                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8472                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8473                 // limit.
8474                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8475                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8476                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8477                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8478                         peer_pks.push(random_pk);
8479                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8480                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8481                 }
8482                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8483                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8484                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8485                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8486
8487                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8488                 // them if we have too many un-channel'd peers.
8489                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8490                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8491                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8492                 for ev in chan_closed_events {
8493                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8494                 }
8495                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8496                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8497                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8498                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8499
8500                 // but of course if the connection is outbound its allowed...
8501                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8502                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8503                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8504
8505                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8506                 // Even though we accept one more connection from new peers, we won't actually let them
8507                 // open channels.
8508                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8509                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8510                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8511                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8512                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8513                 }
8514                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8515                 assert_eq!(get_err_msg!(nodes[1], last_random_pk).channel_id,
8516                         open_channel_msg.temporary_channel_id);
8517
8518                 // Of course, however, outbound channels are always allowed
8519                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8520                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8521
8522                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8523                 // "protected" and can connect again.
8524                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8525                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8526                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8527                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8528
8529                 // Further, because the first channel was funded, we can open another channel with
8530                 // last_random_pk.
8531                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8532                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8533         }
8534
8535         #[test]
8536         fn test_outbound_chans_unlimited() {
8537                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8538                 let chanmon_cfgs = create_chanmon_cfgs(2);
8539                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8540                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8541                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8542
8543                 // Note that create_network connects the nodes together for us
8544
8545                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8546                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8547
8548                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8549                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8550                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8551                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8552                 }
8553
8554                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8555                 // rejected.
8556                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8557                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8558                         open_channel_msg.temporary_channel_id);
8559
8560                 // but we can still open an outbound channel.
8561                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8562                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8563
8564                 // but even with such an outbound channel, additional inbound channels will still fail.
8565                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8566                 assert_eq!(get_err_msg!(nodes[1], nodes[0].node.get_our_node_id()).channel_id,
8567                         open_channel_msg.temporary_channel_id);
8568         }
8569
8570         #[test]
8571         fn test_0conf_limiting() {
8572                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8573                 // flag set and (sometimes) accept channels as 0conf.
8574                 let chanmon_cfgs = create_chanmon_cfgs(2);
8575                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8576                 let mut settings = test_default_channel_config();
8577                 settings.manually_accept_inbound_channels = true;
8578                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8579                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8580
8581                 // Note that create_network connects the nodes together for us
8582
8583                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8584                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8585
8586                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8587                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8588                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8589                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8590                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8591                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8592
8593                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8594                         let events = nodes[1].node.get_and_clear_pending_events();
8595                         match events[0] {
8596                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8597                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8598                                 }
8599                                 _ => panic!("Unexpected event"),
8600                         }
8601                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8602                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8603                 }
8604
8605                 // If we try to accept a channel from another peer non-0conf it will fail.
8606                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8607                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8608                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8609                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8610                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8611                 let events = nodes[1].node.get_and_clear_pending_events();
8612                 match events[0] {
8613                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8614                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8615                                         Err(APIError::APIMisuseError { err }) =>
8616                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8617                                         _ => panic!(),
8618                                 }
8619                         }
8620                         _ => panic!("Unexpected event"),
8621                 }
8622                 assert_eq!(get_err_msg!(nodes[1], last_random_pk).channel_id,
8623                         open_channel_msg.temporary_channel_id);
8624
8625                 // ...however if we accept the same channel 0conf it should work just fine.
8626                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8627                 let events = nodes[1].node.get_and_clear_pending_events();
8628                 match events[0] {
8629                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8630                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8631                         }
8632                         _ => panic!("Unexpected event"),
8633                 }
8634                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8635         }
8636
8637         #[cfg(anchors)]
8638         #[test]
8639         fn test_anchors_zero_fee_htlc_tx_fallback() {
8640                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8641                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8642                 // the channel without the anchors feature.
8643                 let chanmon_cfgs = create_chanmon_cfgs(2);
8644                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8645                 let mut anchors_config = test_default_channel_config();
8646                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8647                 anchors_config.manually_accept_inbound_channels = true;
8648                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8649                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8650
8651                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8652                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8653                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8654
8655                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8656                 let events = nodes[1].node.get_and_clear_pending_events();
8657                 match events[0] {
8658                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8659                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8660                         }
8661                         _ => panic!("Unexpected event"),
8662                 }
8663
8664                 let error_msg = get_err_msg!(nodes[1], nodes[0].node.get_our_node_id());
8665                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8666
8667                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8668                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8669
8670                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8671         }
8672 }
8673
8674 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8675 pub mod bench {
8676         use crate::chain::Listen;
8677         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8678         use crate::chain::keysinterface::{EntropySource, KeysManager, InMemorySigner};
8679         use crate::ln::channelmanager::{self, BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
8680         use crate::ln::functional_test_utils::*;
8681         use crate::ln::msgs::{ChannelMessageHandler, Init};
8682         use crate::routing::gossip::NetworkGraph;
8683         use crate::routing::router::{PaymentParameters, get_route};
8684         use crate::util::test_utils;
8685         use crate::util::config::UserConfig;
8686         use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8687
8688         use bitcoin::hashes::Hash;
8689         use bitcoin::hashes::sha256::Hash as Sha256;
8690         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8691
8692         use crate::sync::{Arc, Mutex};
8693
8694         use test::Bencher;
8695
8696         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8697                 node: &'a ChannelManager<
8698                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8699                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8700                                 &'a test_utils::TestLogger, &'a P>,
8701                         &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8702                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8703                         &'a test_utils::TestLogger>,
8704         }
8705
8706         #[cfg(test)]
8707         #[bench]
8708         fn bench_sends(bench: &mut Bencher) {
8709                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8710         }
8711
8712         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8713                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8714                 // Note that this is unrealistic as each payment send will require at least two fsync
8715                 // calls per node.
8716                 let network = bitcoin::Network::Testnet;
8717
8718                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8719                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8720                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8721                 let scorer = Mutex::new(test_utils::TestScorer::new());
8722                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8723
8724                 let mut config: UserConfig = Default::default();
8725                 config.channel_handshake_config.minimum_depth = 1;
8726
8727                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8728                 let seed_a = [1u8; 32];
8729                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8730                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8731                         network,
8732                         best_block: BestBlock::from_network(network),
8733                 });
8734                 let node_a_holder = NodeHolder { node: &node_a };
8735
8736                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8737                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8738                 let seed_b = [2u8; 32];
8739                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8740                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8741                         network,
8742                         best_block: BestBlock::from_network(network),
8743                 });
8744                 let node_b_holder = NodeHolder { node: &node_b };
8745
8746                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8747                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8748                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8749                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8750                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8751
8752                 let tx;
8753                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8754                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8755                                 value: 8_000_000, script_pubkey: output_script,
8756                         }]};
8757                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8758                 } else { panic!(); }
8759
8760                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8761                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8762
8763                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8764
8765                 let block = Block {
8766                         header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8767                         txdata: vec![tx],
8768                 };
8769                 Listen::block_connected(&node_a, &block, 1);
8770                 Listen::block_connected(&node_b, &block, 1);
8771
8772                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8773                 let msg_events = node_a.get_and_clear_pending_msg_events();
8774                 assert_eq!(msg_events.len(), 2);
8775                 match msg_events[0] {
8776                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
8777                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8778                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8779                         },
8780                         _ => panic!(),
8781                 }
8782                 match msg_events[1] {
8783                         MessageSendEvent::SendChannelUpdate { .. } => {},
8784                         _ => panic!(),
8785                 }
8786
8787                 let events_a = node_a.get_and_clear_pending_events();
8788                 assert_eq!(events_a.len(), 1);
8789                 match events_a[0] {
8790                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8791                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8792                         },
8793                         _ => panic!("Unexpected event"),
8794                 }
8795
8796                 let events_b = node_b.get_and_clear_pending_events();
8797                 assert_eq!(events_b.len(), 1);
8798                 match events_b[0] {
8799                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8800                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8801                         },
8802                         _ => panic!("Unexpected event"),
8803                 }
8804
8805                 let dummy_graph = NetworkGraph::new(network, &logger_a);
8806
8807                 let mut payment_count: u64 = 0;
8808                 macro_rules! send_payment {
8809                         ($node_a: expr, $node_b: expr) => {
8810                                 let usable_channels = $node_a.list_usable_channels();
8811                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
8812                                         .with_features($node_b.invoice_features());
8813                                 let scorer = test_utils::TestScorer::new();
8814                                 let seed = [3u8; 32];
8815                                 let keys_manager = KeysManager::new(&seed, 42, 42);
8816                                 let random_seed_bytes = keys_manager.get_secure_random_bytes();
8817                                 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
8818                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
8819
8820                                 let mut payment_preimage = PaymentPreimage([0; 32]);
8821                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
8822                                 payment_count += 1;
8823                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
8824                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
8825
8826                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8827                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
8828                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
8829                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
8830                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
8831                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
8832                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
8833                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
8834
8835                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
8836                                 expect_payment_claimable!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
8837                                 $node_b.claim_funds(payment_preimage);
8838                                 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
8839
8840                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
8841                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
8842                                                 assert_eq!(node_id, $node_a.get_our_node_id());
8843                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
8844                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
8845                                         },
8846                                         _ => panic!("Failed to generate claim event"),
8847                                 }
8848
8849                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
8850                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
8851                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
8852                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
8853
8854                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
8855                         }
8856                 }
8857
8858                 bench.iter(|| {
8859                         send_payment!(node_a, node_b);
8860                         send_payment!(node_b, node_a);
8861                 });
8862         }
8863 }