1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteHop, RouteParameters, Router};
49 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
57 use crate::ln::wire::Encode;
58 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::BTreeMap;
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
81 use crate::ln::script::ShutdownScript;
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
103 onion_packet: msgs::OnionPacket,
104 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
109 payment_data: msgs::FinalOnionHopData,
110 payment_metadata: Option<Vec<u8>>,
111 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
112 phantom_shared_secret: Option<[u8; 32]>,
115 payment_preimage: PaymentPreimage,
116 payment_metadata: Option<Vec<u8>>,
117 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
121 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
122 pub(super) struct PendingHTLCInfo {
123 pub(super) routing: PendingHTLCRouting,
124 pub(super) incoming_shared_secret: [u8; 32],
125 payment_hash: PaymentHash,
127 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
128 /// Sender intended amount to forward or receive (actual amount received
129 /// may overshoot this in either case)
130 pub(super) outgoing_amt_msat: u64,
131 pub(super) outgoing_cltv_value: u32,
134 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
135 pub(super) enum HTLCFailureMsg {
136 Relay(msgs::UpdateFailHTLC),
137 Malformed(msgs::UpdateFailMalformedHTLC),
140 /// Stores whether we can't forward an HTLC or relevant forwarding info
141 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
142 pub(super) enum PendingHTLCStatus {
143 Forward(PendingHTLCInfo),
144 Fail(HTLCFailureMsg),
147 pub(super) struct PendingAddHTLCInfo {
148 pub(super) forward_info: PendingHTLCInfo,
150 // These fields are produced in `forward_htlcs()` and consumed in
151 // `process_pending_htlc_forwards()` for constructing the
152 // `HTLCSource::PreviousHopData` for failed and forwarded
155 // Note that this may be an outbound SCID alias for the associated channel.
156 prev_short_channel_id: u64,
158 prev_funding_outpoint: OutPoint,
159 prev_user_channel_id: u128,
162 pub(super) enum HTLCForwardInfo {
163 AddHTLC(PendingAddHTLCInfo),
166 err_packet: msgs::OnionErrorPacket,
170 /// Tracks the inbound corresponding to an outbound HTLC
171 #[derive(Clone, Hash, PartialEq, Eq)]
172 pub(crate) struct HTLCPreviousHopData {
173 // Note that this may be an outbound SCID alias for the associated channel.
174 short_channel_id: u64,
176 incoming_packet_shared_secret: [u8; 32],
177 phantom_shared_secret: Option<[u8; 32]>,
179 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
180 // channel with a preimage provided by the forward channel.
185 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
187 /// This is only here for backwards-compatibility in serialization, in the future it can be
188 /// removed, breaking clients running 0.0.106 and earlier.
189 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
191 /// Contains the payer-provided preimage.
192 Spontaneous(PaymentPreimage),
195 /// HTLCs that are to us and can be failed/claimed by the user
196 struct ClaimableHTLC {
197 prev_hop: HTLCPreviousHopData,
199 /// The amount (in msats) of this MPP part
201 /// The amount (in msats) that the sender intended to be sent in this MPP
202 /// part (used for validating total MPP amount)
203 sender_intended_value: u64,
204 onion_payload: OnionPayload,
206 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
207 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
208 total_value_received: Option<u64>,
209 /// The sender intended sum total of all MPP parts specified in the onion
213 /// A payment identifier used to uniquely identify a payment to LDK.
215 /// This is not exported to bindings users as we just use [u8; 32] directly
216 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
217 pub struct PaymentId(pub [u8; 32]);
219 impl Writeable for PaymentId {
220 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
225 impl Readable for PaymentId {
226 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
227 let buf: [u8; 32] = Readable::read(r)?;
232 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
234 /// This is not exported to bindings users as we just use [u8; 32] directly
235 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
236 pub struct InterceptId(pub [u8; 32]);
238 impl Writeable for InterceptId {
239 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
244 impl Readable for InterceptId {
245 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
246 let buf: [u8; 32] = Readable::read(r)?;
251 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
252 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
253 pub(crate) enum SentHTLCId {
254 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
255 OutboundRoute { session_priv: SecretKey },
258 pub(crate) fn from_source(source: &HTLCSource) -> Self {
260 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
261 short_channel_id: hop_data.short_channel_id,
262 htlc_id: hop_data.htlc_id,
264 HTLCSource::OutboundRoute { session_priv, .. } =>
265 Self::OutboundRoute { session_priv: *session_priv },
269 impl_writeable_tlv_based_enum!(SentHTLCId,
270 (0, PreviousHopData) => {
271 (0, short_channel_id, required),
272 (2, htlc_id, required),
274 (2, OutboundRoute) => {
275 (0, session_priv, required),
280 /// Tracks the inbound corresponding to an outbound HTLC
281 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
282 #[derive(Clone, PartialEq, Eq)]
283 pub(crate) enum HTLCSource {
284 PreviousHopData(HTLCPreviousHopData),
287 session_priv: SecretKey,
288 /// Technically we can recalculate this from the route, but we cache it here to avoid
289 /// doing a double-pass on route when we get a failure back
290 first_hop_htlc_msat: u64,
291 payment_id: PaymentId,
294 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
295 impl core::hash::Hash for HTLCSource {
296 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
298 HTLCSource::PreviousHopData(prev_hop_data) => {
300 prev_hop_data.hash(hasher);
302 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
305 session_priv[..].hash(hasher);
306 payment_id.hash(hasher);
307 first_hop_htlc_msat.hash(hasher);
313 #[cfg(not(feature = "grind_signatures"))]
315 pub fn dummy() -> Self {
316 HTLCSource::OutboundRoute {
317 path: Path { hops: Vec::new(), blinded_tail: None },
318 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
319 first_hop_htlc_msat: 0,
320 payment_id: PaymentId([2; 32]),
324 #[cfg(debug_assertions)]
325 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
326 /// transaction. Useful to ensure different datastructures match up.
327 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
328 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
329 *first_hop_htlc_msat == htlc.amount_msat
331 // There's nothing we can check for forwarded HTLCs
337 struct ReceiveError {
343 /// This enum is used to specify which error data to send to peers when failing back an HTLC
344 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
346 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
347 #[derive(Clone, Copy)]
348 pub enum FailureCode {
349 /// We had a temporary error processing the payment. Useful if no other error codes fit
350 /// and you want to indicate that the payer may want to retry.
351 TemporaryNodeFailure = 0x2000 | 2,
352 /// We have a required feature which was not in this onion. For example, you may require
353 /// some additional metadata that was not provided with this payment.
354 RequiredNodeFeatureMissing = 0x4000 | 0x2000 | 3,
355 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
356 /// the HTLC is too close to the current block height for safe handling.
357 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
358 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
359 IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
362 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
364 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
365 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
366 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
367 /// peer_state lock. We then return the set of things that need to be done outside the lock in
368 /// this struct and call handle_error!() on it.
370 struct MsgHandleErrInternal {
371 err: msgs::LightningError,
372 chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
373 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
375 impl MsgHandleErrInternal {
377 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
379 err: LightningError {
381 action: msgs::ErrorAction::SendErrorMessage {
382 msg: msgs::ErrorMessage {
389 shutdown_finish: None,
393 fn from_no_close(err: msgs::LightningError) -> Self {
394 Self { err, chan_id: None, shutdown_finish: None }
397 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
399 err: LightningError {
401 action: msgs::ErrorAction::SendErrorMessage {
402 msg: msgs::ErrorMessage {
408 chan_id: Some((channel_id, user_channel_id)),
409 shutdown_finish: Some((shutdown_res, channel_update)),
413 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
416 ChannelError::Warn(msg) => LightningError {
418 action: msgs::ErrorAction::SendWarningMessage {
419 msg: msgs::WarningMessage {
423 log_level: Level::Warn,
426 ChannelError::Ignore(msg) => LightningError {
428 action: msgs::ErrorAction::IgnoreError,
430 ChannelError::Close(msg) => LightningError {
432 action: msgs::ErrorAction::SendErrorMessage {
433 msg: msgs::ErrorMessage {
441 shutdown_finish: None,
446 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
447 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
448 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
449 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
450 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
452 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
453 /// be sent in the order they appear in the return value, however sometimes the order needs to be
454 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
455 /// they were originally sent). In those cases, this enum is also returned.
456 #[derive(Clone, PartialEq)]
457 pub(super) enum RAACommitmentOrder {
458 /// Send the CommitmentUpdate messages first
460 /// Send the RevokeAndACK message first
464 /// Information about a payment which is currently being claimed.
465 struct ClaimingPayment {
467 payment_purpose: events::PaymentPurpose,
468 receiver_node_id: PublicKey,
470 impl_writeable_tlv_based!(ClaimingPayment, {
471 (0, amount_msat, required),
472 (2, payment_purpose, required),
473 (4, receiver_node_id, required),
476 struct ClaimablePayment {
477 purpose: events::PaymentPurpose,
478 onion_fields: Option<RecipientOnionFields>,
479 htlcs: Vec<ClaimableHTLC>,
482 /// Information about claimable or being-claimed payments
483 struct ClaimablePayments {
484 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
485 /// failed/claimed by the user.
487 /// Note that, no consistency guarantees are made about the channels given here actually
488 /// existing anymore by the time you go to read them!
490 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
491 /// we don't get a duplicate payment.
492 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
494 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
495 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
496 /// as an [`events::Event::PaymentClaimed`].
497 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
500 /// Events which we process internally but cannot be procsesed immediately at the generation site
501 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
502 /// quite some time lag.
503 enum BackgroundEvent {
504 /// Handle a ChannelMonitorUpdate
506 /// Note that any such events are lost on shutdown, so in general they must be updates which
507 /// are regenerated on startup.
508 MonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
512 pub(crate) enum MonitorUpdateCompletionAction {
513 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
514 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
515 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
516 /// event can be generated.
517 PaymentClaimed { payment_hash: PaymentHash },
518 /// Indicates an [`events::Event`] should be surfaced to the user.
519 EmitEvent { event: events::Event },
522 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
523 (0, PaymentClaimed) => { (0, payment_hash, required) },
524 (2, EmitEvent) => { (0, event, upgradable_required) },
527 #[derive(Clone, Debug, PartialEq, Eq)]
528 pub(crate) enum EventCompletionAction {
529 ReleaseRAAChannelMonitorUpdate {
530 counterparty_node_id: PublicKey,
531 channel_funding_outpoint: OutPoint,
534 impl_writeable_tlv_based_enum!(EventCompletionAction,
535 (0, ReleaseRAAChannelMonitorUpdate) => {
536 (0, channel_funding_outpoint, required),
537 (2, counterparty_node_id, required),
541 /// State we hold per-peer.
542 pub(super) struct PeerState<Signer: ChannelSigner> {
543 /// `temporary_channel_id` or `channel_id` -> `channel`.
545 /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
546 /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
548 pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
549 /// The latest `InitFeatures` we heard from the peer.
550 latest_features: InitFeatures,
551 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
552 /// for broadcast messages, where ordering isn't as strict).
553 pub(super) pending_msg_events: Vec<MessageSendEvent>,
554 /// Map from a specific channel to some action(s) that should be taken when all pending
555 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
557 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
558 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
559 /// channels with a peer this will just be one allocation and will amount to a linear list of
560 /// channels to walk, avoiding the whole hashing rigmarole.
562 /// Note that the channel may no longer exist. For example, if a channel was closed but we
563 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
564 /// for a missing channel. While a malicious peer could construct a second channel with the
565 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
566 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
567 /// duplicates do not occur, so such channels should fail without a monitor update completing.
568 monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
569 /// The peer is currently connected (i.e. we've seen a
570 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
571 /// [`ChannelMessageHandler::peer_disconnected`].
575 impl <Signer: ChannelSigner> PeerState<Signer> {
576 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
577 /// If true is passed for `require_disconnected`, the function will return false if we haven't
578 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
579 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
580 if require_disconnected && self.is_connected {
583 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
587 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
588 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
590 /// For users who don't want to bother doing their own payment preimage storage, we also store that
593 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
594 /// and instead encoding it in the payment secret.
595 struct PendingInboundPayment {
596 /// The payment secret that the sender must use for us to accept this payment
597 payment_secret: PaymentSecret,
598 /// Time at which this HTLC expires - blocks with a header time above this value will result in
599 /// this payment being removed.
601 /// Arbitrary identifier the user specifies (or not)
602 user_payment_id: u64,
603 // Other required attributes of the payment, optionally enforced:
604 payment_preimage: Option<PaymentPreimage>,
605 min_value_msat: Option<u64>,
608 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
609 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
610 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
611 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
612 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
613 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
614 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
615 /// of [`KeysManager`] and [`DefaultRouter`].
617 /// This is not exported to bindings users as Arcs don't make sense in bindings
618 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
626 Arc<NetworkGraph<Arc<L>>>,
628 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
629 ProbabilisticScoringFeeParameters,
630 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
635 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
636 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
637 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
638 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
639 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
640 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
641 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
642 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
643 /// of [`KeysManager`] and [`DefaultRouter`].
645 /// This is not exported to bindings users as Arcs don't make sense in bindings
646 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>, ProbabilisticScoringFeeParameters, ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>, &'g L>;
648 /// A trivial trait which describes any [`ChannelManager`] used in testing.
649 #[cfg(any(test, feature = "_test_utils"))]
650 pub trait AChannelManager {
651 type Watch: chain::Watch<Self::Signer>;
652 type M: Deref<Target = Self::Watch>;
653 type Broadcaster: BroadcasterInterface;
654 type T: Deref<Target = Self::Broadcaster>;
655 type EntropySource: EntropySource;
656 type ES: Deref<Target = Self::EntropySource>;
657 type NodeSigner: NodeSigner;
658 type NS: Deref<Target = Self::NodeSigner>;
659 type Signer: WriteableEcdsaChannelSigner;
660 type SignerProvider: SignerProvider<Signer = Self::Signer>;
661 type SP: Deref<Target = Self::SignerProvider>;
662 type FeeEstimator: FeeEstimator;
663 type F: Deref<Target = Self::FeeEstimator>;
665 type R: Deref<Target = Self::Router>;
667 type L: Deref<Target = Self::Logger>;
668 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
670 #[cfg(any(test, feature = "_test_utils"))]
671 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
672 for ChannelManager<M, T, ES, NS, SP, F, R, L>
674 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer> + Sized,
675 T::Target: BroadcasterInterface + Sized,
676 ES::Target: EntropySource + Sized,
677 NS::Target: NodeSigner + Sized,
678 SP::Target: SignerProvider + Sized,
679 F::Target: FeeEstimator + Sized,
680 R::Target: Router + Sized,
681 L::Target: Logger + Sized,
683 type Watch = M::Target;
685 type Broadcaster = T::Target;
687 type EntropySource = ES::Target;
689 type NodeSigner = NS::Target;
691 type Signer = <SP::Target as SignerProvider>::Signer;
692 type SignerProvider = SP::Target;
694 type FeeEstimator = F::Target;
696 type Router = R::Target;
698 type Logger = L::Target;
700 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
703 /// Manager which keeps track of a number of channels and sends messages to the appropriate
704 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
706 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
707 /// to individual Channels.
709 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
710 /// all peers during write/read (though does not modify this instance, only the instance being
711 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
712 /// called [`funding_transaction_generated`] for outbound channels) being closed.
714 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
715 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
716 /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
717 /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
718 /// the serialization process). If the deserialized version is out-of-date compared to the
719 /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
720 /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
722 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
723 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
724 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
726 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
727 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
728 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
729 /// offline for a full minute. In order to track this, you must call
730 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
732 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
733 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
734 /// not have a channel with being unable to connect to us or open new channels with us if we have
735 /// many peers with unfunded channels.
737 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
738 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
739 /// never limited. Please ensure you limit the count of such channels yourself.
741 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
742 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
743 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
744 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
745 /// you're using lightning-net-tokio.
747 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
748 /// [`funding_created`]: msgs::FundingCreated
749 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
750 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
751 /// [`update_channel`]: chain::Watch::update_channel
752 /// [`ChannelUpdate`]: msgs::ChannelUpdate
753 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
754 /// [`read`]: ReadableArgs::read
757 // The tree structure below illustrates the lock order requirements for the different locks of the
758 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
759 // and should then be taken in the order of the lowest to the highest level in the tree.
760 // Note that locks on different branches shall not be taken at the same time, as doing so will
761 // create a new lock order for those specific locks in the order they were taken.
765 // `total_consistency_lock`
767 // |__`forward_htlcs`
769 // | |__`pending_intercepted_htlcs`
771 // |__`per_peer_state`
773 // | |__`pending_inbound_payments`
775 // | |__`claimable_payments`
777 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
783 // | |__`short_to_chan_info`
785 // | |__`outbound_scid_aliases`
789 // | |__`pending_events`
791 // | |__`pending_background_events`
793 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
795 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
796 T::Target: BroadcasterInterface,
797 ES::Target: EntropySource,
798 NS::Target: NodeSigner,
799 SP::Target: SignerProvider,
800 F::Target: FeeEstimator,
804 default_configuration: UserConfig,
805 genesis_hash: BlockHash,
806 fee_estimator: LowerBoundedFeeEstimator<F>,
812 /// See `ChannelManager` struct-level documentation for lock order requirements.
814 pub(super) best_block: RwLock<BestBlock>,
816 best_block: RwLock<BestBlock>,
817 secp_ctx: Secp256k1<secp256k1::All>,
819 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
820 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
821 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
822 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
824 /// See `ChannelManager` struct-level documentation for lock order requirements.
825 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
827 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
828 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
829 /// (if the channel has been force-closed), however we track them here to prevent duplicative
830 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
831 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
832 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
833 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
834 /// after reloading from disk while replaying blocks against ChannelMonitors.
836 /// See `PendingOutboundPayment` documentation for more info.
838 /// See `ChannelManager` struct-level documentation for lock order requirements.
839 pending_outbound_payments: OutboundPayments,
841 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
843 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
844 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
845 /// and via the classic SCID.
847 /// Note that no consistency guarantees are made about the existence of a channel with the
848 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
850 /// See `ChannelManager` struct-level documentation for lock order requirements.
852 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
854 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
855 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
856 /// until the user tells us what we should do with them.
858 /// See `ChannelManager` struct-level documentation for lock order requirements.
859 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
861 /// The sets of payments which are claimable or currently being claimed. See
862 /// [`ClaimablePayments`]' individual field docs for more info.
864 /// See `ChannelManager` struct-level documentation for lock order requirements.
865 claimable_payments: Mutex<ClaimablePayments>,
867 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
868 /// and some closed channels which reached a usable state prior to being closed. This is used
869 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
870 /// active channel list on load.
872 /// See `ChannelManager` struct-level documentation for lock order requirements.
873 outbound_scid_aliases: Mutex<HashSet<u64>>,
875 /// `channel_id` -> `counterparty_node_id`.
877 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
878 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
879 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
881 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
882 /// the corresponding channel for the event, as we only have access to the `channel_id` during
883 /// the handling of the events.
885 /// Note that no consistency guarantees are made about the existence of a peer with the
886 /// `counterparty_node_id` in our other maps.
889 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
890 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
891 /// would break backwards compatability.
892 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
893 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
894 /// required to access the channel with the `counterparty_node_id`.
896 /// See `ChannelManager` struct-level documentation for lock order requirements.
897 id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
899 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
901 /// Outbound SCID aliases are added here once the channel is available for normal use, with
902 /// SCIDs being added once the funding transaction is confirmed at the channel's required
903 /// confirmation depth.
905 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
906 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
907 /// channel with the `channel_id` in our other maps.
909 /// See `ChannelManager` struct-level documentation for lock order requirements.
911 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
913 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
915 our_network_pubkey: PublicKey,
917 inbound_payment_key: inbound_payment::ExpandedKey,
919 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
920 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
921 /// we encrypt the namespace identifier using these bytes.
923 /// [fake scids]: crate::util::scid_utils::fake_scid
924 fake_scid_rand_bytes: [u8; 32],
926 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
927 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
928 /// keeping additional state.
929 probing_cookie_secret: [u8; 32],
931 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
932 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
933 /// very far in the past, and can only ever be up to two hours in the future.
934 highest_seen_timestamp: AtomicUsize,
936 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
937 /// basis, as well as the peer's latest features.
939 /// If we are connected to a peer we always at least have an entry here, even if no channels
940 /// are currently open with that peer.
942 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
943 /// operate on the inner value freely. This opens up for parallel per-peer operation for
946 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
948 /// See `ChannelManager` struct-level documentation for lock order requirements.
949 #[cfg(not(any(test, feature = "_test_utils")))]
950 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
951 #[cfg(any(test, feature = "_test_utils"))]
952 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
954 /// The set of events which we need to give to the user to handle. In some cases an event may
955 /// require some further action after the user handles it (currently only blocking a monitor
956 /// update from being handed to the user to ensure the included changes to the channel state
957 /// are handled by the user before they're persisted durably to disk). In that case, the second
958 /// element in the tuple is set to `Some` with further details of the action.
960 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
961 /// could be in the middle of being processed without the direct mutex held.
963 /// See `ChannelManager` struct-level documentation for lock order requirements.
964 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
965 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
966 pending_events_processor: AtomicBool,
967 /// See `ChannelManager` struct-level documentation for lock order requirements.
968 pending_background_events: Mutex<Vec<BackgroundEvent>>,
969 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
970 /// Essentially just when we're serializing ourselves out.
971 /// Taken first everywhere where we are making changes before any other locks.
972 /// When acquiring this lock in read mode, rather than acquiring it directly, call
973 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
974 /// Notifier the lock contains sends out a notification when the lock is released.
975 total_consistency_lock: RwLock<()>,
977 persistence_notifier: Notifier,
986 /// Chain-related parameters used to construct a new `ChannelManager`.
988 /// Typically, the block-specific parameters are derived from the best block hash for the network,
989 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
990 /// are not needed when deserializing a previously constructed `ChannelManager`.
991 #[derive(Clone, Copy, PartialEq)]
992 pub struct ChainParameters {
993 /// The network for determining the `chain_hash` in Lightning messages.
994 pub network: Network,
996 /// The hash and height of the latest block successfully connected.
998 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
999 pub best_block: BestBlock,
1002 #[derive(Copy, Clone, PartialEq)]
1008 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1009 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1010 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1011 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1012 /// sending the aforementioned notification (since the lock being released indicates that the
1013 /// updates are ready for persistence).
1015 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1016 /// notify or not based on whether relevant changes have been made, providing a closure to
1017 /// `optionally_notify` which returns a `NotifyOption`.
1018 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
1019 persistence_notifier: &'a Notifier,
1021 // We hold onto this result so the lock doesn't get released immediately.
1022 _read_guard: RwLockReadGuard<'a, ()>,
1025 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1026 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
1027 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
1030 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1031 let read_guard = lock.read().unwrap();
1033 PersistenceNotifierGuard {
1034 persistence_notifier: notifier,
1035 should_persist: persist_check,
1036 _read_guard: read_guard,
1041 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1042 fn drop(&mut self) {
1043 if (self.should_persist)() == NotifyOption::DoPersist {
1044 self.persistence_notifier.notify();
1049 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1050 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1052 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1054 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1055 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1056 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1057 /// the maximum required amount in lnd as of March 2021.
1058 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1060 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1061 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1063 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1065 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1066 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1067 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1068 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1069 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1070 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1071 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1072 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1073 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1074 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1075 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1076 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1077 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1079 /// Minimum CLTV difference between the current block height and received inbound payments.
1080 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1082 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1083 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1084 // a payment was being routed, so we add an extra block to be safe.
1085 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1087 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1088 // ie that if the next-hop peer fails the HTLC within
1089 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1090 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1091 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1092 // LATENCY_GRACE_PERIOD_BLOCKS.
1095 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1097 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1098 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1101 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1103 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1104 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1106 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
1107 /// idempotency of payments by [`PaymentId`]. See
1108 /// [`OutboundPayments::remove_stale_resolved_payments`].
1109 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
1111 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1112 /// until we mark the channel disabled and gossip the update.
1113 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1115 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1116 /// we mark the channel enabled and gossip the update.
1117 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1119 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1120 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1121 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1122 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1124 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1125 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1126 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1128 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1129 /// many peers we reject new (inbound) connections.
1130 const MAX_NO_CHANNEL_PEERS: usize = 250;
1132 /// Information needed for constructing an invoice route hint for this channel.
1133 #[derive(Clone, Debug, PartialEq)]
1134 pub struct CounterpartyForwardingInfo {
1135 /// Base routing fee in millisatoshis.
1136 pub fee_base_msat: u32,
1137 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1138 pub fee_proportional_millionths: u32,
1139 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1140 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1141 /// `cltv_expiry_delta` for more details.
1142 pub cltv_expiry_delta: u16,
1145 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1146 /// to better separate parameters.
1147 #[derive(Clone, Debug, PartialEq)]
1148 pub struct ChannelCounterparty {
1149 /// The node_id of our counterparty
1150 pub node_id: PublicKey,
1151 /// The Features the channel counterparty provided upon last connection.
1152 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1153 /// many routing-relevant features are present in the init context.
1154 pub features: InitFeatures,
1155 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1156 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1157 /// claiming at least this value on chain.
1159 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1161 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1162 pub unspendable_punishment_reserve: u64,
1163 /// Information on the fees and requirements that the counterparty requires when forwarding
1164 /// payments to us through this channel.
1165 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1166 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1167 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1168 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1169 pub outbound_htlc_minimum_msat: Option<u64>,
1170 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1171 pub outbound_htlc_maximum_msat: Option<u64>,
1174 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1175 #[derive(Clone, Debug, PartialEq)]
1176 pub struct ChannelDetails {
1177 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1178 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1179 /// Note that this means this value is *not* persistent - it can change once during the
1180 /// lifetime of the channel.
1181 pub channel_id: [u8; 32],
1182 /// Parameters which apply to our counterparty. See individual fields for more information.
1183 pub counterparty: ChannelCounterparty,
1184 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1185 /// our counterparty already.
1187 /// Note that, if this has been set, `channel_id` will be equivalent to
1188 /// `funding_txo.unwrap().to_channel_id()`.
1189 pub funding_txo: Option<OutPoint>,
1190 /// The features which this channel operates with. See individual features for more info.
1192 /// `None` until negotiation completes and the channel type is finalized.
1193 pub channel_type: Option<ChannelTypeFeatures>,
1194 /// The position of the funding transaction in the chain. None if the funding transaction has
1195 /// not yet been confirmed and the channel fully opened.
1197 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1198 /// payments instead of this. See [`get_inbound_payment_scid`].
1200 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1201 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1203 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1204 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1205 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1206 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1207 /// [`confirmations_required`]: Self::confirmations_required
1208 pub short_channel_id: Option<u64>,
1209 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1210 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1211 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1214 /// This will be `None` as long as the channel is not available for routing outbound payments.
1216 /// [`short_channel_id`]: Self::short_channel_id
1217 /// [`confirmations_required`]: Self::confirmations_required
1218 pub outbound_scid_alias: Option<u64>,
1219 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1220 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1221 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1222 /// when they see a payment to be routed to us.
1224 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1225 /// previous values for inbound payment forwarding.
1227 /// [`short_channel_id`]: Self::short_channel_id
1228 pub inbound_scid_alias: Option<u64>,
1229 /// The value, in satoshis, of this channel as appears in the funding output
1230 pub channel_value_satoshis: u64,
1231 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1232 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1233 /// this value on chain.
1235 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1237 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1239 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1240 pub unspendable_punishment_reserve: Option<u64>,
1241 /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1242 /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1244 pub user_channel_id: u128,
1245 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1246 /// which is applied to commitment and HTLC transactions.
1248 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1249 pub feerate_sat_per_1000_weight: Option<u32>,
1250 /// Our total balance. This is the amount we would get if we close the channel.
1251 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1252 /// amount is not likely to be recoverable on close.
1254 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1255 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1256 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1257 /// This does not consider any on-chain fees.
1259 /// See also [`ChannelDetails::outbound_capacity_msat`]
1260 pub balance_msat: u64,
1261 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1262 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1263 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1264 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1266 /// See also [`ChannelDetails::balance_msat`]
1268 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1269 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1270 /// should be able to spend nearly this amount.
1271 pub outbound_capacity_msat: u64,
1272 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1273 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1274 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1275 /// to use a limit as close as possible to the HTLC limit we can currently send.
1277 /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1278 pub next_outbound_htlc_limit_msat: u64,
1279 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1280 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1281 /// available for inclusion in new inbound HTLCs).
1282 /// Note that there are some corner cases not fully handled here, so the actual available
1283 /// inbound capacity may be slightly higher than this.
1285 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1286 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1287 /// However, our counterparty should be able to spend nearly this amount.
1288 pub inbound_capacity_msat: u64,
1289 /// The number of required confirmations on the funding transaction before the funding will be
1290 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1291 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1292 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1293 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1295 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1297 /// [`is_outbound`]: ChannelDetails::is_outbound
1298 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1299 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1300 pub confirmations_required: Option<u32>,
1301 /// The current number of confirmations on the funding transaction.
1303 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1304 pub confirmations: Option<u32>,
1305 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1306 /// until we can claim our funds after we force-close the channel. During this time our
1307 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1308 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1309 /// time to claim our non-HTLC-encumbered funds.
1311 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1312 pub force_close_spend_delay: Option<u16>,
1313 /// True if the channel was initiated (and thus funded) by us.
1314 pub is_outbound: bool,
1315 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1316 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1317 /// required confirmation count has been reached (and we were connected to the peer at some
1318 /// point after the funding transaction received enough confirmations). The required
1319 /// confirmation count is provided in [`confirmations_required`].
1321 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1322 pub is_channel_ready: bool,
1323 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1324 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1326 /// This is a strict superset of `is_channel_ready`.
1327 pub is_usable: bool,
1328 /// True if this channel is (or will be) publicly-announced.
1329 pub is_public: bool,
1330 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1331 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1332 pub inbound_htlc_minimum_msat: Option<u64>,
1333 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1334 pub inbound_htlc_maximum_msat: Option<u64>,
1335 /// Set of configurable parameters that affect channel operation.
1337 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1338 pub config: Option<ChannelConfig>,
1341 impl ChannelDetails {
1342 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1343 /// This should be used for providing invoice hints or in any other context where our
1344 /// counterparty will forward a payment to us.
1346 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1347 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1348 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1349 self.inbound_scid_alias.or(self.short_channel_id)
1352 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1353 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1354 /// we're sending or forwarding a payment outbound over this channel.
1356 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1357 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1358 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1359 self.short_channel_id.or(self.outbound_scid_alias)
1362 fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
1363 best_block_height: u32, latest_features: InitFeatures) -> Self {
1365 let balance = channel.get_available_balances();
1366 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1367 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1369 channel_id: channel.channel_id(),
1370 counterparty: ChannelCounterparty {
1371 node_id: channel.get_counterparty_node_id(),
1372 features: latest_features,
1373 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1374 forwarding_info: channel.counterparty_forwarding_info(),
1375 // Ensures that we have actually received the `htlc_minimum_msat` value
1376 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1377 // message (as they are always the first message from the counterparty).
1378 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1379 // default `0` value set by `Channel::new_outbound`.
1380 outbound_htlc_minimum_msat: if channel.have_received_message() {
1381 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1382 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1384 funding_txo: channel.get_funding_txo(),
1385 // Note that accept_channel (or open_channel) is always the first message, so
1386 // `have_received_message` indicates that type negotiation has completed.
1387 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1388 short_channel_id: channel.get_short_channel_id(),
1389 outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1390 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1391 channel_value_satoshis: channel.get_value_satoshis(),
1392 feerate_sat_per_1000_weight: Some(channel.get_feerate_sat_per_1000_weight()),
1393 unspendable_punishment_reserve: to_self_reserve_satoshis,
1394 balance_msat: balance.balance_msat,
1395 inbound_capacity_msat: balance.inbound_capacity_msat,
1396 outbound_capacity_msat: balance.outbound_capacity_msat,
1397 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1398 user_channel_id: channel.get_user_id(),
1399 confirmations_required: channel.minimum_depth(),
1400 confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1401 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1402 is_outbound: channel.is_outbound(),
1403 is_channel_ready: channel.is_usable(),
1404 is_usable: channel.is_live(),
1405 is_public: channel.should_announce(),
1406 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1407 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1408 config: Some(channel.config()),
1413 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1414 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1415 #[derive(Debug, PartialEq)]
1416 pub enum RecentPaymentDetails {
1417 /// When a payment is still being sent and awaiting successful delivery.
1419 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1421 payment_hash: PaymentHash,
1422 /// Total amount (in msat, excluding fees) across all paths for this payment,
1423 /// not just the amount currently inflight.
1426 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1427 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1428 /// payment is removed from tracking.
1430 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1431 /// made before LDK version 0.0.104.
1432 payment_hash: Option<PaymentHash>,
1434 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1435 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1436 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1438 /// Hash of the payment that we have given up trying to send.
1439 payment_hash: PaymentHash,
1443 /// Route hints used in constructing invoices for [phantom node payents].
1445 /// [phantom node payments]: crate::sign::PhantomKeysManager
1447 pub struct PhantomRouteHints {
1448 /// The list of channels to be included in the invoice route hints.
1449 pub channels: Vec<ChannelDetails>,
1450 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1452 pub phantom_scid: u64,
1453 /// The pubkey of the real backing node that would ultimately receive the payment.
1454 pub real_node_pubkey: PublicKey,
1457 macro_rules! handle_error {
1458 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1459 // In testing, ensure there are no deadlocks where the lock is already held upon
1460 // entering the macro.
1461 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1462 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1466 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1467 let mut msg_events = Vec::with_capacity(2);
1469 if let Some((shutdown_res, update_option)) = shutdown_finish {
1470 $self.finish_force_close_channel(shutdown_res);
1471 if let Some(update) = update_option {
1472 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1476 if let Some((channel_id, user_channel_id)) = chan_id {
1477 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1478 channel_id, user_channel_id,
1479 reason: ClosureReason::ProcessingError { err: err.err.clone() }
1484 log_error!($self.logger, "{}", err.err);
1485 if let msgs::ErrorAction::IgnoreError = err.action {
1487 msg_events.push(events::MessageSendEvent::HandleError {
1488 node_id: $counterparty_node_id,
1489 action: err.action.clone()
1493 if !msg_events.is_empty() {
1494 let per_peer_state = $self.per_peer_state.read().unwrap();
1495 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1496 let mut peer_state = peer_state_mutex.lock().unwrap();
1497 peer_state.pending_msg_events.append(&mut msg_events);
1501 // Return error in case higher-API need one
1508 macro_rules! update_maps_on_chan_removal {
1509 ($self: expr, $channel: expr) => {{
1510 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1511 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1512 if let Some(short_id) = $channel.get_short_channel_id() {
1513 short_to_chan_info.remove(&short_id);
1515 // If the channel was never confirmed on-chain prior to its closure, remove the
1516 // outbound SCID alias we used for it from the collision-prevention set. While we
1517 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1518 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1519 // opening a million channels with us which are closed before we ever reach the funding
1521 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1522 debug_assert!(alias_removed);
1524 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1528 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1529 macro_rules! convert_chan_err {
1530 ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1532 ChannelError::Warn(msg) => {
1533 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1535 ChannelError::Ignore(msg) => {
1536 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1538 ChannelError::Close(msg) => {
1539 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1540 update_maps_on_chan_removal!($self, $channel);
1541 let shutdown_res = $channel.force_shutdown(true);
1542 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1543 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1549 macro_rules! break_chan_entry {
1550 ($self: ident, $res: expr, $entry: expr) => {
1554 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1556 $entry.remove_entry();
1564 macro_rules! try_chan_entry {
1565 ($self: ident, $res: expr, $entry: expr) => {
1569 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1571 $entry.remove_entry();
1579 macro_rules! remove_channel {
1580 ($self: expr, $entry: expr) => {
1582 let channel = $entry.remove_entry().1;
1583 update_maps_on_chan_removal!($self, channel);
1589 macro_rules! send_channel_ready {
1590 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1591 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1592 node_id: $channel.get_counterparty_node_id(),
1593 msg: $channel_ready_msg,
1595 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1596 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1597 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1598 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1599 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1600 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1601 if let Some(real_scid) = $channel.get_short_channel_id() {
1602 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1603 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1604 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1609 macro_rules! emit_channel_pending_event {
1610 ($locked_events: expr, $channel: expr) => {
1611 if $channel.should_emit_channel_pending_event() {
1612 $locked_events.push_back((events::Event::ChannelPending {
1613 channel_id: $channel.channel_id(),
1614 former_temporary_channel_id: $channel.temporary_channel_id(),
1615 counterparty_node_id: $channel.get_counterparty_node_id(),
1616 user_channel_id: $channel.get_user_id(),
1617 funding_txo: $channel.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1619 $channel.set_channel_pending_event_emitted();
1624 macro_rules! emit_channel_ready_event {
1625 ($locked_events: expr, $channel: expr) => {
1626 if $channel.should_emit_channel_ready_event() {
1627 debug_assert!($channel.channel_pending_event_emitted());
1628 $locked_events.push_back((events::Event::ChannelReady {
1629 channel_id: $channel.channel_id(),
1630 user_channel_id: $channel.get_user_id(),
1631 counterparty_node_id: $channel.get_counterparty_node_id(),
1632 channel_type: $channel.get_channel_type().clone(),
1634 $channel.set_channel_ready_event_emitted();
1639 macro_rules! handle_monitor_update_completion {
1640 ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1641 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1642 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1643 $self.best_block.read().unwrap().height());
1644 let counterparty_node_id = $chan.get_counterparty_node_id();
1645 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1646 // We only send a channel_update in the case where we are just now sending a
1647 // channel_ready and the channel is in a usable state. We may re-send a
1648 // channel_update later through the announcement_signatures process for public
1649 // channels, but there's no reason not to just inform our counterparty of our fees
1651 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1652 Some(events::MessageSendEvent::SendChannelUpdate {
1653 node_id: counterparty_node_id,
1659 let update_actions = $peer_state.monitor_update_blocked_actions
1660 .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1662 let htlc_forwards = $self.handle_channel_resumption(
1663 &mut $peer_state.pending_msg_events, $chan, updates.raa,
1664 updates.commitment_update, updates.order, updates.accepted_htlcs,
1665 updates.funding_broadcastable, updates.channel_ready,
1666 updates.announcement_sigs);
1667 if let Some(upd) = channel_update {
1668 $peer_state.pending_msg_events.push(upd);
1671 let channel_id = $chan.channel_id();
1672 core::mem::drop($peer_state_lock);
1673 core::mem::drop($per_peer_state_lock);
1675 $self.handle_monitor_update_completion_actions(update_actions);
1677 if let Some(forwards) = htlc_forwards {
1678 $self.forward_htlcs(&mut [forwards][..]);
1680 $self.finalize_claims(updates.finalized_claimed_htlcs);
1681 for failure in updates.failed_htlcs.drain(..) {
1682 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1683 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1688 macro_rules! handle_new_monitor_update {
1689 ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1690 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1691 // any case so that it won't deadlock.
1692 debug_assert_ne!($self.id_to_peer.held_by_thread(), LockHeldState::HeldByThread);
1694 ChannelMonitorUpdateStatus::InProgress => {
1695 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1696 log_bytes!($chan.channel_id()[..]));
1699 ChannelMonitorUpdateStatus::PermanentFailure => {
1700 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1701 log_bytes!($chan.channel_id()[..]));
1702 update_maps_on_chan_removal!($self, $chan);
1703 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1704 "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1705 $chan.get_user_id(), $chan.force_shutdown(false),
1706 $self.get_channel_update_for_broadcast(&$chan).ok()));
1710 ChannelMonitorUpdateStatus::Completed => {
1711 $chan.complete_one_mon_update($update_id);
1712 if $chan.no_monitor_updates_pending() {
1713 handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1719 ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1720 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1724 macro_rules! process_events_body {
1725 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
1726 let mut processed_all_events = false;
1727 while !processed_all_events {
1728 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
1732 let mut result = NotifyOption::SkipPersist;
1735 // We'll acquire our total consistency lock so that we can be sure no other
1736 // persists happen while processing monitor events.
1737 let _read_guard = $self.total_consistency_lock.read().unwrap();
1739 // TODO: This behavior should be documented. It's unintuitive that we query
1740 // ChannelMonitors when clearing other events.
1741 if $self.process_pending_monitor_events() {
1742 result = NotifyOption::DoPersist;
1746 let pending_events = $self.pending_events.lock().unwrap().clone();
1747 let num_events = pending_events.len();
1748 if !pending_events.is_empty() {
1749 result = NotifyOption::DoPersist;
1752 let mut post_event_actions = Vec::new();
1754 for (event, action_opt) in pending_events {
1755 $event_to_handle = event;
1757 if let Some(action) = action_opt {
1758 post_event_actions.push(action);
1763 let mut pending_events = $self.pending_events.lock().unwrap();
1764 pending_events.drain(..num_events);
1765 processed_all_events = pending_events.is_empty();
1766 $self.pending_events_processor.store(false, Ordering::Release);
1769 if !post_event_actions.is_empty() {
1770 $self.handle_post_event_actions(post_event_actions);
1771 // If we had some actions, go around again as we may have more events now
1772 processed_all_events = false;
1775 if result == NotifyOption::DoPersist {
1776 $self.persistence_notifier.notify();
1782 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1784 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1785 T::Target: BroadcasterInterface,
1786 ES::Target: EntropySource,
1787 NS::Target: NodeSigner,
1788 SP::Target: SignerProvider,
1789 F::Target: FeeEstimator,
1793 /// Constructs a new `ChannelManager` to hold several channels and route between them.
1795 /// This is the main "logic hub" for all channel-related actions, and implements
1796 /// [`ChannelMessageHandler`].
1798 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1800 /// Users need to notify the new `ChannelManager` when a new block is connected or
1801 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
1802 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
1805 /// [`block_connected`]: chain::Listen::block_connected
1806 /// [`block_disconnected`]: chain::Listen::block_disconnected
1807 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
1808 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1809 let mut secp_ctx = Secp256k1::new();
1810 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1811 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1812 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1814 default_configuration: config.clone(),
1815 genesis_hash: genesis_block(params.network).header.block_hash(),
1816 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1821 best_block: RwLock::new(params.best_block),
1823 outbound_scid_aliases: Mutex::new(HashSet::new()),
1824 pending_inbound_payments: Mutex::new(HashMap::new()),
1825 pending_outbound_payments: OutboundPayments::new(),
1826 forward_htlcs: Mutex::new(HashMap::new()),
1827 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1828 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1829 id_to_peer: Mutex::new(HashMap::new()),
1830 short_to_chan_info: FairRwLock::new(HashMap::new()),
1832 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1835 inbound_payment_key: expanded_inbound_key,
1836 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1838 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1840 highest_seen_timestamp: AtomicUsize::new(0),
1842 per_peer_state: FairRwLock::new(HashMap::new()),
1844 pending_events: Mutex::new(VecDeque::new()),
1845 pending_events_processor: AtomicBool::new(false),
1846 pending_background_events: Mutex::new(Vec::new()),
1847 total_consistency_lock: RwLock::new(()),
1848 persistence_notifier: Notifier::new(),
1858 /// Gets the current configuration applied to all new channels.
1859 pub fn get_current_default_configuration(&self) -> &UserConfig {
1860 &self.default_configuration
1863 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1864 let height = self.best_block.read().unwrap().height();
1865 let mut outbound_scid_alias = 0;
1868 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1869 outbound_scid_alias += 1;
1871 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1873 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1877 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1882 /// Creates a new outbound channel to the given remote node and with the given value.
1884 /// `user_channel_id` will be provided back as in
1885 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1886 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1887 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1888 /// is simply copied to events and otherwise ignored.
1890 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1891 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1893 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
1894 /// generate a shutdown scriptpubkey or destination script set by
1895 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
1897 /// Note that we do not check if you are currently connected to the given peer. If no
1898 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1899 /// the channel eventually being silently forgotten (dropped on reload).
1901 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1902 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1903 /// [`ChannelDetails::channel_id`] until after
1904 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1905 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1906 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1908 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1909 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1910 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1911 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1912 if channel_value_satoshis < 1000 {
1913 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1916 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1917 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1918 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1920 let per_peer_state = self.per_peer_state.read().unwrap();
1922 let peer_state_mutex = per_peer_state.get(&their_network_key)
1923 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1925 let mut peer_state = peer_state_mutex.lock().unwrap();
1927 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1928 let their_features = &peer_state.latest_features;
1929 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1930 match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1931 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1932 self.best_block.read().unwrap().height(), outbound_scid_alias)
1936 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1941 let res = channel.get_open_channel(self.genesis_hash.clone());
1943 let temporary_channel_id = channel.channel_id();
1944 match peer_state.channel_by_id.entry(temporary_channel_id) {
1945 hash_map::Entry::Occupied(_) => {
1947 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1949 panic!("RNG is bad???");
1952 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1955 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1956 node_id: their_network_key,
1959 Ok(temporary_channel_id)
1962 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1963 // Allocate our best estimate of the number of channels we have in the `res`
1964 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1965 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1966 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1967 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1968 // the same channel.
1969 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1971 let best_block_height = self.best_block.read().unwrap().height();
1972 let per_peer_state = self.per_peer_state.read().unwrap();
1973 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1974 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1975 let peer_state = &mut *peer_state_lock;
1976 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1977 let details = ChannelDetails::from_channel(channel, best_block_height,
1978 peer_state.latest_features.clone());
1986 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
1987 /// more information.
1988 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1989 self.list_channels_with_filter(|_| true)
1992 /// Gets the list of usable channels, in random order. Useful as an argument to
1993 /// [`Router::find_route`] to ensure non-announced channels are used.
1995 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1996 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1998 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1999 // Note we use is_live here instead of usable which leads to somewhat confused
2000 // internal/external nomenclature, but that's ok cause that's probably what the user
2001 // really wanted anyway.
2002 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
2005 /// Gets the list of channels we have with a given counterparty, in random order.
2006 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2007 let best_block_height = self.best_block.read().unwrap().height();
2008 let per_peer_state = self.per_peer_state.read().unwrap();
2010 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2011 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2012 let peer_state = &mut *peer_state_lock;
2013 let features = &peer_state.latest_features;
2014 return peer_state.channel_by_id
2017 ChannelDetails::from_channel(channel, best_block_height, features.clone()))
2023 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2024 /// successful path, or have unresolved HTLCs.
2026 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2027 /// result of a crash. If such a payment exists, is not listed here, and an
2028 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2030 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2031 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2032 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2033 .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
2034 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2035 Some(RecentPaymentDetails::Pending {
2036 payment_hash: *payment_hash,
2037 total_msat: *total_msat,
2040 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2041 Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
2043 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2044 Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
2046 PendingOutboundPayment::Legacy { .. } => None
2051 /// Helper function that issues the channel close events
2052 fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
2053 let mut pending_events_lock = self.pending_events.lock().unwrap();
2054 match channel.unbroadcasted_funding() {
2055 Some(transaction) => {
2056 pending_events_lock.push_back((events::Event::DiscardFunding {
2057 channel_id: channel.channel_id(), transaction
2062 pending_events_lock.push_back((events::Event::ChannelClosed {
2063 channel_id: channel.channel_id(),
2064 user_channel_id: channel.get_user_id(),
2065 reason: closure_reason
2069 fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2070 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2072 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2073 let result: Result<(), _> = loop {
2074 let per_peer_state = self.per_peer_state.read().unwrap();
2076 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2077 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2079 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2080 let peer_state = &mut *peer_state_lock;
2081 match peer_state.channel_by_id.entry(channel_id.clone()) {
2082 hash_map::Entry::Occupied(mut chan_entry) => {
2083 let funding_txo_opt = chan_entry.get().get_funding_txo();
2084 let their_features = &peer_state.latest_features;
2085 let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
2086 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2087 failed_htlcs = htlcs;
2089 // We can send the `shutdown` message before updating the `ChannelMonitor`
2090 // here as we don't need the monitor update to complete until we send a
2091 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2092 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2093 node_id: *counterparty_node_id,
2097 // Update the monitor with the shutdown script if necessary.
2098 if let Some(monitor_update) = monitor_update_opt.take() {
2099 let update_id = monitor_update.update_id;
2100 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
2101 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
2104 if chan_entry.get().is_shutdown() {
2105 let channel = remove_channel!(self, chan_entry);
2106 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
2107 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2111 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
2115 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
2119 for htlc_source in failed_htlcs.drain(..) {
2120 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2121 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2122 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2125 let _ = handle_error!(self, result, *counterparty_node_id);
2129 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2130 /// will be accepted on the given channel, and after additional timeout/the closing of all
2131 /// pending HTLCs, the channel will be closed on chain.
2133 /// * If we are the channel initiator, we will pay between our [`Background`] and
2134 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2136 /// * If our counterparty is the channel initiator, we will require a channel closing
2137 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2138 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2139 /// counterparty to pay as much fee as they'd like, however.
2141 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2143 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2144 /// generate a shutdown scriptpubkey or destination script set by
2145 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2148 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2149 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2150 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2151 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2152 pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2153 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2156 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2157 /// will be accepted on the given channel, and after additional timeout/the closing of all
2158 /// pending HTLCs, the channel will be closed on chain.
2160 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2161 /// the channel being closed or not:
2162 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2163 /// transaction. The upper-bound is set by
2164 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2165 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2166 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2167 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2168 /// will appear on a force-closure transaction, whichever is lower).
2170 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2171 /// Will fail if a shutdown script has already been set for this channel by
2172 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2173 /// also be compatible with our and the counterparty's features.
2175 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2177 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2178 /// generate a shutdown scriptpubkey or destination script set by
2179 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2182 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2183 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2184 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2185 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2186 pub fn close_channel_with_feerate_and_script(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2187 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2191 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2192 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2193 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2194 for htlc_source in failed_htlcs.drain(..) {
2195 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2196 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2197 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2198 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2200 if let Some((funding_txo, monitor_update)) = monitor_update_option {
2201 // There isn't anything we can do if we get an update failure - we're already
2202 // force-closing. The monitor update on the required in-memory copy should broadcast
2203 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2204 // ignore the result here.
2205 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2209 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2210 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2211 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2212 -> Result<PublicKey, APIError> {
2213 let per_peer_state = self.per_peer_state.read().unwrap();
2214 let peer_state_mutex = per_peer_state.get(peer_node_id)
2215 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2217 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2218 let peer_state = &mut *peer_state_lock;
2219 if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
2220 if let Some(peer_msg) = peer_msg {
2221 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) });
2223 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
2225 remove_channel!(self, chan)
2227 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2230 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2231 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2232 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2233 let mut peer_state = peer_state_mutex.lock().unwrap();
2234 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2239 Ok(chan.get_counterparty_node_id())
2242 fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2243 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2244 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2245 Ok(counterparty_node_id) => {
2246 let per_peer_state = self.per_peer_state.read().unwrap();
2247 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2248 let mut peer_state = peer_state_mutex.lock().unwrap();
2249 peer_state.pending_msg_events.push(
2250 events::MessageSendEvent::HandleError {
2251 node_id: counterparty_node_id,
2252 action: msgs::ErrorAction::SendErrorMessage {
2253 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2264 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2265 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2266 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2268 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2269 -> Result<(), APIError> {
2270 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2273 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2274 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2275 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2277 /// You can always get the latest local transaction(s) to broadcast from
2278 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2279 pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2280 -> Result<(), APIError> {
2281 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2284 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2285 /// for each to the chain and rejecting new HTLCs on each.
2286 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2287 for chan in self.list_channels() {
2288 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2292 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2293 /// local transaction(s).
2294 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2295 for chan in self.list_channels() {
2296 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2300 fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2301 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2303 // final_incorrect_cltv_expiry
2304 if hop_data.outgoing_cltv_value > cltv_expiry {
2305 return Err(ReceiveError {
2306 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2308 err_data: cltv_expiry.to_be_bytes().to_vec()
2311 // final_expiry_too_soon
2312 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2313 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2315 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2316 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2317 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2318 let current_height: u32 = self.best_block.read().unwrap().height();
2319 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2320 let mut err_data = Vec::with_capacity(12);
2321 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2322 err_data.extend_from_slice(¤t_height.to_be_bytes());
2323 return Err(ReceiveError {
2324 err_code: 0x4000 | 15, err_data,
2325 msg: "The final CLTV expiry is too soon to handle",
2328 if hop_data.amt_to_forward > amt_msat {
2329 return Err(ReceiveError {
2331 err_data: amt_msat.to_be_bytes().to_vec(),
2332 msg: "Upstream node sent less than we were supposed to receive in payment",
2336 let routing = match hop_data.format {
2337 msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2338 return Err(ReceiveError {
2339 err_code: 0x4000|22,
2340 err_data: Vec::new(),
2341 msg: "Got non final data with an HMAC of 0",
2344 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage, payment_metadata } => {
2345 if payment_data.is_some() && keysend_preimage.is_some() {
2346 return Err(ReceiveError {
2347 err_code: 0x4000|22,
2348 err_data: Vec::new(),
2349 msg: "We don't support MPP keysend payments",
2351 } else if let Some(data) = payment_data {
2352 PendingHTLCRouting::Receive {
2355 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2356 phantom_shared_secret,
2358 } else if let Some(payment_preimage) = keysend_preimage {
2359 // We need to check that the sender knows the keysend preimage before processing this
2360 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2361 // could discover the final destination of X, by probing the adjacent nodes on the route
2362 // with a keysend payment of identical payment hash to X and observing the processing
2363 // time discrepancies due to a hash collision with X.
2364 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2365 if hashed_preimage != payment_hash {
2366 return Err(ReceiveError {
2367 err_code: 0x4000|22,
2368 err_data: Vec::new(),
2369 msg: "Payment preimage didn't match payment hash",
2373 PendingHTLCRouting::ReceiveKeysend {
2376 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2379 return Err(ReceiveError {
2380 err_code: 0x4000|0x2000|3,
2381 err_data: Vec::new(),
2382 msg: "We require payment_secrets",
2387 Ok(PendingHTLCInfo {
2390 incoming_shared_secret: shared_secret,
2391 incoming_amt_msat: Some(amt_msat),
2392 outgoing_amt_msat: hop_data.amt_to_forward,
2393 outgoing_cltv_value: hop_data.outgoing_cltv_value,
2397 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2398 macro_rules! return_malformed_err {
2399 ($msg: expr, $err_code: expr) => {
2401 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2402 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2403 channel_id: msg.channel_id,
2404 htlc_id: msg.htlc_id,
2405 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2406 failure_code: $err_code,
2412 if let Err(_) = msg.onion_routing_packet.public_key {
2413 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2416 let shared_secret = self.node_signer.ecdh(
2417 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2418 ).unwrap().secret_bytes();
2420 if msg.onion_routing_packet.version != 0 {
2421 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2422 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2423 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2424 //receiving node would have to brute force to figure out which version was put in the
2425 //packet by the node that send us the message, in the case of hashing the hop_data, the
2426 //node knows the HMAC matched, so they already know what is there...
2427 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2429 macro_rules! return_err {
2430 ($msg: expr, $err_code: expr, $data: expr) => {
2432 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2433 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2434 channel_id: msg.channel_id,
2435 htlc_id: msg.htlc_id,
2436 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2437 .get_encrypted_failure_packet(&shared_secret, &None),
2443 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2445 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2446 return_malformed_err!(err_msg, err_code);
2448 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2449 return_err!(err_msg, err_code, &[0; 0]);
2453 let pending_forward_info = match next_hop {
2454 onion_utils::Hop::Receive(next_hop_data) => {
2456 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2458 // Note that we could obviously respond immediately with an update_fulfill_htlc
2459 // message, however that would leak that we are the recipient of this payment, so
2460 // instead we stay symmetric with the forwarding case, only responding (after a
2461 // delay) once they've send us a commitment_signed!
2462 PendingHTLCStatus::Forward(info)
2464 Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2467 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2468 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2469 let outgoing_packet = msgs::OnionPacket {
2471 public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2472 hop_data: new_packet_bytes,
2473 hmac: next_hop_hmac.clone(),
2476 let short_channel_id = match next_hop_data.format {
2477 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2478 msgs::OnionHopDataFormat::FinalNode { .. } => {
2479 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2483 PendingHTLCStatus::Forward(PendingHTLCInfo {
2484 routing: PendingHTLCRouting::Forward {
2485 onion_packet: outgoing_packet,
2488 payment_hash: msg.payment_hash.clone(),
2489 incoming_shared_secret: shared_secret,
2490 incoming_amt_msat: Some(msg.amount_msat),
2491 outgoing_amt_msat: next_hop_data.amt_to_forward,
2492 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2497 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2498 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2499 // with a short_channel_id of 0. This is important as various things later assume
2500 // short_channel_id is non-0 in any ::Forward.
2501 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2502 if let Some((err, mut code, chan_update)) = loop {
2503 let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2504 let forwarding_chan_info_opt = match id_option {
2505 None => { // unknown_next_peer
2506 // Note that this is likely a timing oracle for detecting whether an scid is a
2507 // phantom or an intercept.
2508 if (self.default_configuration.accept_intercept_htlcs &&
2509 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2510 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2514 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2517 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2519 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2520 let per_peer_state = self.per_peer_state.read().unwrap();
2521 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2522 if peer_state_mutex_opt.is_none() {
2523 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2525 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2526 let peer_state = &mut *peer_state_lock;
2527 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2529 // Channel was removed. The short_to_chan_info and channel_by_id maps
2530 // have no consistency guarantees.
2531 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2535 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2536 // Note that the behavior here should be identical to the above block - we
2537 // should NOT reveal the existence or non-existence of a private channel if
2538 // we don't allow forwards outbound over them.
2539 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2541 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2542 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2543 // "refuse to forward unless the SCID alias was used", so we pretend
2544 // we don't have the channel here.
2545 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2547 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2549 // Note that we could technically not return an error yet here and just hope
2550 // that the connection is reestablished or monitor updated by the time we get
2551 // around to doing the actual forward, but better to fail early if we can and
2552 // hopefully an attacker trying to path-trace payments cannot make this occur
2553 // on a small/per-node/per-channel scale.
2554 if !chan.is_live() { // channel_disabled
2555 // If the channel_update we're going to return is disabled (i.e. the
2556 // peer has been disabled for some time), return `channel_disabled`,
2557 // otherwise return `temporary_channel_failure`.
2558 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
2559 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
2561 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
2564 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2565 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2567 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2568 break Some((err, code, chan_update_opt));
2572 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2573 // We really should set `incorrect_cltv_expiry` here but as we're not
2574 // forwarding over a real channel we can't generate a channel_update
2575 // for it. Instead we just return a generic temporary_node_failure.
2577 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2584 let cur_height = self.best_block.read().unwrap().height() + 1;
2585 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2586 // but we want to be robust wrt to counterparty packet sanitization (see
2587 // HTLC_FAIL_BACK_BUFFER rationale).
2588 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2589 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2591 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2592 break Some(("CLTV expiry is too far in the future", 21, None));
2594 // If the HTLC expires ~now, don't bother trying to forward it to our
2595 // counterparty. They should fail it anyway, but we don't want to bother with
2596 // the round-trips or risk them deciding they definitely want the HTLC and
2597 // force-closing to ensure they get it if we're offline.
2598 // We previously had a much more aggressive check here which tried to ensure
2599 // our counterparty receives an HTLC which has *our* risk threshold met on it,
2600 // but there is no need to do that, and since we're a bit conservative with our
2601 // risk threshold it just results in failing to forward payments.
2602 if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2603 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2609 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2610 if let Some(chan_update) = chan_update {
2611 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2612 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2614 else if code == 0x1000 | 13 {
2615 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2617 else if code == 0x1000 | 20 {
2618 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2619 0u16.write(&mut res).expect("Writes cannot fail");
2621 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2622 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2623 chan_update.write(&mut res).expect("Writes cannot fail");
2624 } else if code & 0x1000 == 0x1000 {
2625 // If we're trying to return an error that requires a `channel_update` but
2626 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2627 // generate an update), just use the generic "temporary_node_failure"
2631 return_err!(err, code, &res.0[..]);
2636 pending_forward_info
2639 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
2640 /// public, and thus should be called whenever the result is going to be passed out in a
2641 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2643 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
2644 /// corresponding to the channel's counterparty locked, as the channel been removed from the
2645 /// storage and the `peer_state` lock has been dropped.
2647 /// [`channel_update`]: msgs::ChannelUpdate
2648 /// [`internal_closing_signed`]: Self::internal_closing_signed
2649 fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2650 if !chan.should_announce() {
2651 return Err(LightningError {
2652 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2653 action: msgs::ErrorAction::IgnoreError
2656 if chan.get_short_channel_id().is_none() {
2657 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2659 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2660 self.get_channel_update_for_unicast(chan)
2663 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
2664 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
2665 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2666 /// provided evidence that they know about the existence of the channel.
2668 /// Note that through [`internal_closing_signed`], this function is called without the
2669 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
2670 /// removed from the storage and the `peer_state` lock has been dropped.
2672 /// [`channel_update`]: msgs::ChannelUpdate
2673 /// [`internal_closing_signed`]: Self::internal_closing_signed
2674 fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2675 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2676 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2677 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2681 self.get_channel_update_for_onion(short_channel_id, chan)
2683 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2684 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2685 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2687 let enabled = chan.is_usable() && match chan.channel_update_status() {
2688 ChannelUpdateStatus::Enabled => true,
2689 ChannelUpdateStatus::DisabledStaged(_) => true,
2690 ChannelUpdateStatus::Disabled => false,
2691 ChannelUpdateStatus::EnabledStaged(_) => false,
2694 let unsigned = msgs::UnsignedChannelUpdate {
2695 chain_hash: self.genesis_hash,
2697 timestamp: chan.get_update_time_counter(),
2698 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
2699 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2700 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2701 htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2702 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2703 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2704 excess_data: Vec::new(),
2706 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2707 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2708 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2710 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2712 Ok(msgs::ChannelUpdate {
2719 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2720 let _lck = self.total_consistency_lock.read().unwrap();
2721 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2724 fn send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2725 // The top-level caller should hold the total_consistency_lock read lock.
2726 debug_assert!(self.total_consistency_lock.try_write().is_err());
2728 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.hops.first().unwrap().short_channel_id);
2729 let prng_seed = self.entropy_source.get_secure_random_bytes();
2730 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2732 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2733 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2734 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
2736 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
2737 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
2739 let err: Result<(), _> = loop {
2740 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
2741 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2742 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2745 let per_peer_state = self.per_peer_state.read().unwrap();
2746 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2747 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2748 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2749 let peer_state = &mut *peer_state_lock;
2750 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2751 if !chan.get().is_live() {
2752 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2754 let funding_txo = chan.get().get_funding_txo().unwrap();
2755 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2756 htlc_cltv, HTLCSource::OutboundRoute {
2758 session_priv: session_priv.clone(),
2759 first_hop_htlc_msat: htlc_msat,
2761 }, onion_packet, &self.logger);
2762 match break_chan_entry!(self, send_res, chan) {
2763 Some(monitor_update) => {
2764 let update_id = monitor_update.update_id;
2765 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2766 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2769 if update_res == ChannelMonitorUpdateStatus::InProgress {
2770 // Note that MonitorUpdateInProgress here indicates (per function
2771 // docs) that we will resend the commitment update once monitor
2772 // updating completes. Therefore, we must return an error
2773 // indicating that it is unsafe to retry the payment wholesale,
2774 // which we do in the send_payment check for
2775 // MonitorUpdateInProgress, below.
2776 return Err(APIError::MonitorUpdateInProgress);
2782 // The channel was likely removed after we fetched the id from the
2783 // `short_to_chan_info` map, but before we successfully locked the
2784 // `channel_by_id` map.
2785 // This can occur as no consistency guarantees exists between the two maps.
2786 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2791 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
2792 Ok(_) => unreachable!(),
2794 Err(APIError::ChannelUnavailable { err: e.err })
2799 /// Sends a payment along a given route.
2801 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2802 /// fields for more info.
2804 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
2805 /// [`PeerManager::process_events`]).
2807 /// # Avoiding Duplicate Payments
2809 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2810 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2811 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2812 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2813 /// second payment with the same [`PaymentId`].
2815 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2816 /// tracking of payments, including state to indicate once a payment has completed. Because you
2817 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2818 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2819 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2821 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2822 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2823 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2824 /// [`ChannelManager::list_recent_payments`] for more information.
2826 /// # Possible Error States on [`PaymentSendFailure`]
2828 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
2829 /// each entry matching the corresponding-index entry in the route paths, see
2830 /// [`PaymentSendFailure`] for more info.
2832 /// In general, a path may raise:
2833 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2834 /// node public key) is specified.
2835 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2836 /// (including due to previous monitor update failure or new permanent monitor update
2838 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2839 /// relevant updates.
2841 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
2842 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2843 /// different route unless you intend to pay twice!
2845 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2846 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2847 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
2848 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2849 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2850 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2851 let best_block_height = self.best_block.read().unwrap().height();
2852 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2853 self.pending_outbound_payments
2854 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2855 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2856 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2859 /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2860 /// `route_params` and retry failed payment paths based on `retry_strategy`.
2861 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2862 let best_block_height = self.best_block.read().unwrap().height();
2863 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2864 self.pending_outbound_payments
2865 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
2866 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2867 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2868 &self.pending_events,
2869 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2870 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2874 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2875 let best_block_height = self.best_block.read().unwrap().height();
2876 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2877 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2878 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2879 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2883 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2884 let best_block_height = self.best_block.read().unwrap().height();
2885 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
2889 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
2890 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
2894 /// Signals that no further retries for the given payment should occur. Useful if you have a
2895 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2896 /// retries are exhausted.
2898 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2899 /// as there are no remaining pending HTLCs for this payment.
2901 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2902 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2903 /// determine the ultimate status of a payment.
2905 /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2906 /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2908 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2909 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2910 pub fn abandon_payment(&self, payment_id: PaymentId) {
2911 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2912 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
2915 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2916 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2917 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2918 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2919 /// never reach the recipient.
2921 /// See [`send_payment`] documentation for more details on the return value of this function
2922 /// and idempotency guarantees provided by the [`PaymentId`] key.
2924 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2925 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2927 /// Note that `route` must have exactly one path.
2929 /// [`send_payment`]: Self::send_payment
2930 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2931 let best_block_height = self.best_block.read().unwrap().height();
2932 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2933 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2934 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
2935 &self.node_signer, best_block_height,
2936 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2937 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2940 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2941 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2943 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2946 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2947 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2948 let best_block_height = self.best_block.read().unwrap().height();
2949 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2950 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
2951 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
2952 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
2953 &self.logger, &self.pending_events,
2954 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2955 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2958 /// Send a payment that is probing the given route for liquidity. We calculate the
2959 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2960 /// us to easily discern them from real payments.
2961 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2962 let best_block_height = self.best_block.read().unwrap().height();
2963 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2964 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2965 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2966 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2969 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2972 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2973 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2976 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2977 /// which checks the correctness of the funding transaction given the associated channel.
2978 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2979 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2980 ) -> Result<(), APIError> {
2981 let per_peer_state = self.per_peer_state.read().unwrap();
2982 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2983 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2985 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2986 let peer_state = &mut *peer_state_lock;
2987 let (msg, chan) = match peer_state.channel_by_id.remove(temporary_channel_id) {
2989 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2991 let funding_res = chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2992 .map_err(|e| if let ChannelError::Close(msg) = e {
2993 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2994 } else { unreachable!(); });
2996 Ok(funding_msg) => (funding_msg, chan),
2998 mem::drop(peer_state_lock);
2999 mem::drop(per_peer_state);
3001 let _ = handle_error!(self, funding_res, chan.get_counterparty_node_id());
3002 return Err(APIError::ChannelUnavailable {
3003 err: "Signer refused to sign the initial commitment transaction".to_owned()
3009 return Err(APIError::ChannelUnavailable {
3011 "Channel with id {} not found for the passed counterparty node_id {}",
3012 log_bytes!(*temporary_channel_id), counterparty_node_id),
3017 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3018 node_id: chan.get_counterparty_node_id(),
3021 match peer_state.channel_by_id.entry(chan.channel_id()) {
3022 hash_map::Entry::Occupied(_) => {
3023 panic!("Generated duplicate funding txid?");
3025 hash_map::Entry::Vacant(e) => {
3026 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3027 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
3028 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3037 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3038 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
3039 Ok(OutPoint { txid: tx.txid(), index: output_index })
3043 /// Call this upon creation of a funding transaction for the given channel.
3045 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3046 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3048 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3049 /// across the p2p network.
3051 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3052 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3054 /// May panic if the output found in the funding transaction is duplicative with some other
3055 /// channel (note that this should be trivially prevented by using unique funding transaction
3056 /// keys per-channel).
3058 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3059 /// counterparty's signature the funding transaction will automatically be broadcast via the
3060 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3062 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3063 /// not currently support replacing a funding transaction on an existing channel. Instead,
3064 /// create a new channel with a conflicting funding transaction.
3066 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3067 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3068 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3069 /// for more details.
3071 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3072 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3073 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3074 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3076 for inp in funding_transaction.input.iter() {
3077 if inp.witness.is_empty() {
3078 return Err(APIError::APIMisuseError {
3079 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3084 let height = self.best_block.read().unwrap().height();
3085 // Transactions are evaluated as final by network mempools if their locktime is strictly
3086 // lower than the next block height. However, the modules constituting our Lightning
3087 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3088 // module is ahead of LDK, only allow one more block of headroom.
3089 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3090 return Err(APIError::APIMisuseError {
3091 err: "Funding transaction absolute timelock is non-final".to_owned()
3095 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
3096 if tx.output.len() > u16::max_value() as usize {
3097 return Err(APIError::APIMisuseError {
3098 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3102 let mut output_index = None;
3103 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
3104 for (idx, outp) in tx.output.iter().enumerate() {
3105 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
3106 if output_index.is_some() {
3107 return Err(APIError::APIMisuseError {
3108 err: "Multiple outputs matched the expected script and value".to_owned()
3111 output_index = Some(idx as u16);
3114 if output_index.is_none() {
3115 return Err(APIError::APIMisuseError {
3116 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3119 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3123 /// Atomically updates the [`ChannelConfig`] for the given channels.
3125 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3126 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3127 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3128 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3130 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3131 /// `counterparty_node_id` is provided.
3133 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3134 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3136 /// If an error is returned, none of the updates should be considered applied.
3138 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3139 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3140 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3141 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3142 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3143 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3144 /// [`APIMisuseError`]: APIError::APIMisuseError
3145 pub fn update_channel_config(
3146 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
3147 ) -> Result<(), APIError> {
3148 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
3149 return Err(APIError::APIMisuseError {
3150 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3154 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
3155 &self.total_consistency_lock, &self.persistence_notifier,
3157 let per_peer_state = self.per_peer_state.read().unwrap();
3158 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3159 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3160 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3161 let peer_state = &mut *peer_state_lock;
3162 for channel_id in channel_ids {
3163 if !peer_state.channel_by_id.contains_key(channel_id) {
3164 return Err(APIError::ChannelUnavailable {
3165 err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
3169 for channel_id in channel_ids {
3170 let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
3171 if !channel.update_config(config) {
3174 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3175 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3176 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3177 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3178 node_id: channel.get_counterparty_node_id(),
3186 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3187 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3189 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3190 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3192 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3193 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3194 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3195 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3196 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3198 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3199 /// you from forwarding more than you received.
3201 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3204 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3205 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3206 // TODO: when we move to deciding the best outbound channel at forward time, only take
3207 // `next_node_id` and not `next_hop_channel_id`
3208 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3209 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3211 let next_hop_scid = {
3212 let peer_state_lock = self.per_peer_state.read().unwrap();
3213 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3214 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3215 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3216 let peer_state = &mut *peer_state_lock;
3217 match peer_state.channel_by_id.get(next_hop_channel_id) {
3219 if !chan.is_usable() {
3220 return Err(APIError::ChannelUnavailable {
3221 err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
3224 chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
3226 None => return Err(APIError::ChannelUnavailable {
3227 err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
3232 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3233 .ok_or_else(|| APIError::APIMisuseError {
3234 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3237 let routing = match payment.forward_info.routing {
3238 PendingHTLCRouting::Forward { onion_packet, .. } => {
3239 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3241 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3243 let pending_htlc_info = PendingHTLCInfo {
3244 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3247 let mut per_source_pending_forward = [(
3248 payment.prev_short_channel_id,
3249 payment.prev_funding_outpoint,
3250 payment.prev_user_channel_id,
3251 vec![(pending_htlc_info, payment.prev_htlc_id)]
3253 self.forward_htlcs(&mut per_source_pending_forward);
3257 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3258 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3260 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3263 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3264 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3265 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3267 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3268 .ok_or_else(|| APIError::APIMisuseError {
3269 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3272 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3273 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3274 short_channel_id: payment.prev_short_channel_id,
3275 outpoint: payment.prev_funding_outpoint,
3276 htlc_id: payment.prev_htlc_id,
3277 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3278 phantom_shared_secret: None,
3281 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3282 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3283 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3284 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3289 /// Processes HTLCs which are pending waiting on random forward delay.
3291 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3292 /// Will likely generate further events.
3293 pub fn process_pending_htlc_forwards(&self) {
3294 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3296 let mut new_events = VecDeque::new();
3297 let mut failed_forwards = Vec::new();
3298 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3300 let mut forward_htlcs = HashMap::new();
3301 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3303 for (short_chan_id, mut pending_forwards) in forward_htlcs {
3304 if short_chan_id != 0 {
3305 macro_rules! forwarding_channel_not_found {
3307 for forward_info in pending_forwards.drain(..) {
3308 match forward_info {
3309 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3310 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3311 forward_info: PendingHTLCInfo {
3312 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3313 outgoing_cltv_value, incoming_amt_msat: _
3316 macro_rules! failure_handler {
3317 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3318 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3320 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3321 short_channel_id: prev_short_channel_id,
3322 outpoint: prev_funding_outpoint,
3323 htlc_id: prev_htlc_id,
3324 incoming_packet_shared_secret: incoming_shared_secret,
3325 phantom_shared_secret: $phantom_ss,
3328 let reason = if $next_hop_unknown {
3329 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3331 HTLCDestination::FailedPayment{ payment_hash }
3334 failed_forwards.push((htlc_source, payment_hash,
3335 HTLCFailReason::reason($err_code, $err_data),
3341 macro_rules! fail_forward {
3342 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3344 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3348 macro_rules! failed_payment {
3349 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3351 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3355 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3356 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3357 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3358 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3359 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3361 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3362 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3363 // In this scenario, the phantom would have sent us an
3364 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3365 // if it came from us (the second-to-last hop) but contains the sha256
3367 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3369 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3370 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3374 onion_utils::Hop::Receive(hop_data) => {
3375 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3376 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3377 Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3383 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3386 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3389 HTLCForwardInfo::FailHTLC { .. } => {
3390 // Channel went away before we could fail it. This implies
3391 // the channel is now on chain and our counterparty is
3392 // trying to broadcast the HTLC-Timeout, but that's their
3393 // problem, not ours.
3399 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3400 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3402 forwarding_channel_not_found!();
3406 let per_peer_state = self.per_peer_state.read().unwrap();
3407 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3408 if peer_state_mutex_opt.is_none() {
3409 forwarding_channel_not_found!();
3412 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3413 let peer_state = &mut *peer_state_lock;
3414 match peer_state.channel_by_id.entry(forward_chan_id) {
3415 hash_map::Entry::Vacant(_) => {
3416 forwarding_channel_not_found!();
3419 hash_map::Entry::Occupied(mut chan) => {
3420 for forward_info in pending_forwards.drain(..) {
3421 match forward_info {
3422 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3423 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3424 forward_info: PendingHTLCInfo {
3425 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3426 routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3429 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3430 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3431 short_channel_id: prev_short_channel_id,
3432 outpoint: prev_funding_outpoint,
3433 htlc_id: prev_htlc_id,
3434 incoming_packet_shared_secret: incoming_shared_secret,
3435 // Phantom payments are only PendingHTLCRouting::Receive.
3436 phantom_shared_secret: None,
3438 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3439 payment_hash, outgoing_cltv_value, htlc_source.clone(),
3440 onion_packet, &self.logger)
3442 if let ChannelError::Ignore(msg) = e {
3443 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3445 panic!("Stated return value requirements in send_htlc() were not met");
3447 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3448 failed_forwards.push((htlc_source, payment_hash,
3449 HTLCFailReason::reason(failure_code, data),
3450 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3455 HTLCForwardInfo::AddHTLC { .. } => {
3456 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3458 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3459 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3460 if let Err(e) = chan.get_mut().queue_fail_htlc(
3461 htlc_id, err_packet, &self.logger
3463 if let ChannelError::Ignore(msg) = e {
3464 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3466 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3468 // fail-backs are best-effort, we probably already have one
3469 // pending, and if not that's OK, if not, the channel is on
3470 // the chain and sending the HTLC-Timeout is their problem.
3479 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
3480 match forward_info {
3481 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3482 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3483 forward_info: PendingHTLCInfo {
3484 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat, ..
3487 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
3488 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret } => {
3489 let _legacy_hop_data = Some(payment_data.clone());
3491 RecipientOnionFields { payment_secret: Some(payment_data.payment_secret), payment_metadata };
3492 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
3493 Some(payment_data), phantom_shared_secret, onion_fields)
3495 PendingHTLCRouting::ReceiveKeysend { payment_preimage, payment_metadata, incoming_cltv_expiry } => {
3496 let onion_fields = RecipientOnionFields { payment_secret: None, payment_metadata };
3497 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
3498 None, None, onion_fields)
3501 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3504 let mut claimable_htlc = ClaimableHTLC {
3505 prev_hop: HTLCPreviousHopData {
3506 short_channel_id: prev_short_channel_id,
3507 outpoint: prev_funding_outpoint,
3508 htlc_id: prev_htlc_id,
3509 incoming_packet_shared_secret: incoming_shared_secret,
3510 phantom_shared_secret,
3512 // We differentiate the received value from the sender intended value
3513 // if possible so that we don't prematurely mark MPP payments complete
3514 // if routing nodes overpay
3515 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
3516 sender_intended_value: outgoing_amt_msat,
3518 total_value_received: None,
3519 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3524 let mut committed_to_claimable = false;
3526 macro_rules! fail_htlc {
3527 ($htlc: expr, $payment_hash: expr) => {
3528 debug_assert!(!committed_to_claimable);
3529 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3530 htlc_msat_height_data.extend_from_slice(
3531 &self.best_block.read().unwrap().height().to_be_bytes(),
3533 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3534 short_channel_id: $htlc.prev_hop.short_channel_id,
3535 outpoint: prev_funding_outpoint,
3536 htlc_id: $htlc.prev_hop.htlc_id,
3537 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3538 phantom_shared_secret,
3540 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3541 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3543 continue 'next_forwardable_htlc;
3546 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3547 let mut receiver_node_id = self.our_network_pubkey;
3548 if phantom_shared_secret.is_some() {
3549 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3550 .expect("Failed to get node_id for phantom node recipient");
3553 macro_rules! check_total_value {
3554 ($payment_data: expr, $payment_preimage: expr) => {{
3555 let mut payment_claimable_generated = false;
3557 events::PaymentPurpose::InvoicePayment {
3558 payment_preimage: $payment_preimage,
3559 payment_secret: $payment_data.payment_secret,
3562 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3563 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3564 fail_htlc!(claimable_htlc, payment_hash);
3566 let ref mut claimable_payment = claimable_payments.claimable_payments
3567 .entry(payment_hash)
3568 // Note that if we insert here we MUST NOT fail_htlc!()
3569 .or_insert_with(|| {
3570 committed_to_claimable = true;
3572 purpose: purpose(), htlcs: Vec::new(), onion_fields: None,
3575 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
3576 if earlier_fields.check_merge(&mut onion_fields).is_err() {
3577 fail_htlc!(claimable_htlc, payment_hash);
3580 claimable_payment.onion_fields = Some(onion_fields);
3582 let ref mut htlcs = &mut claimable_payment.htlcs;
3583 if htlcs.len() == 1 {
3584 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3585 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3586 fail_htlc!(claimable_htlc, payment_hash);
3589 let mut total_value = claimable_htlc.sender_intended_value;
3590 let mut earliest_expiry = claimable_htlc.cltv_expiry;
3591 for htlc in htlcs.iter() {
3592 total_value += htlc.sender_intended_value;
3593 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
3594 match &htlc.onion_payload {
3595 OnionPayload::Invoice { .. } => {
3596 if htlc.total_msat != $payment_data.total_msat {
3597 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3598 log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3599 total_value = msgs::MAX_VALUE_MSAT;
3601 if total_value >= msgs::MAX_VALUE_MSAT { break; }
3603 _ => unreachable!(),
3606 // The condition determining whether an MPP is complete must
3607 // match exactly the condition used in `timer_tick_occurred`
3608 if total_value >= msgs::MAX_VALUE_MSAT {
3609 fail_htlc!(claimable_htlc, payment_hash);
3610 } else if total_value - claimable_htlc.sender_intended_value >= $payment_data.total_msat {
3611 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
3612 log_bytes!(payment_hash.0));
3613 fail_htlc!(claimable_htlc, payment_hash);
3614 } else if total_value >= $payment_data.total_msat {
3615 #[allow(unused_assignments)] {
3616 committed_to_claimable = true;
3618 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3619 htlcs.push(claimable_htlc);
3620 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
3621 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
3622 new_events.push_back((events::Event::PaymentClaimable {
3623 receiver_node_id: Some(receiver_node_id),
3627 via_channel_id: Some(prev_channel_id),
3628 via_user_channel_id: Some(prev_user_channel_id),
3629 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
3630 onion_fields: claimable_payment.onion_fields.clone(),
3632 payment_claimable_generated = true;
3634 // Nothing to do - we haven't reached the total
3635 // payment value yet, wait until we receive more
3637 htlcs.push(claimable_htlc);
3638 #[allow(unused_assignments)] {
3639 committed_to_claimable = true;
3642 payment_claimable_generated
3646 // Check that the payment hash and secret are known. Note that we
3647 // MUST take care to handle the "unknown payment hash" and
3648 // "incorrect payment secret" cases here identically or we'd expose
3649 // that we are the ultimate recipient of the given payment hash.
3650 // Further, we must not expose whether we have any other HTLCs
3651 // associated with the same payment_hash pending or not.
3652 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3653 match payment_secrets.entry(payment_hash) {
3654 hash_map::Entry::Vacant(_) => {
3655 match claimable_htlc.onion_payload {
3656 OnionPayload::Invoice { .. } => {
3657 let payment_data = payment_data.unwrap();
3658 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3659 Ok(result) => result,
3661 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3662 fail_htlc!(claimable_htlc, payment_hash);
3665 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3666 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3667 if (cltv_expiry as u64) < expected_min_expiry_height {
3668 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3669 log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3670 fail_htlc!(claimable_htlc, payment_hash);
3673 check_total_value!(payment_data, payment_preimage);
3675 OnionPayload::Spontaneous(preimage) => {
3676 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3677 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3678 fail_htlc!(claimable_htlc, payment_hash);
3680 match claimable_payments.claimable_payments.entry(payment_hash) {
3681 hash_map::Entry::Vacant(e) => {
3682 let amount_msat = claimable_htlc.value;
3683 claimable_htlc.total_value_received = Some(amount_msat);
3684 let claim_deadline = Some(claimable_htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER);
3685 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3686 e.insert(ClaimablePayment {
3687 purpose: purpose.clone(),
3688 onion_fields: Some(onion_fields.clone()),
3689 htlcs: vec![claimable_htlc],
3691 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3692 new_events.push_back((events::Event::PaymentClaimable {
3693 receiver_node_id: Some(receiver_node_id),
3697 via_channel_id: Some(prev_channel_id),
3698 via_user_channel_id: Some(prev_user_channel_id),
3700 onion_fields: Some(onion_fields),
3703 hash_map::Entry::Occupied(_) => {
3704 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3705 fail_htlc!(claimable_htlc, payment_hash);
3711 hash_map::Entry::Occupied(inbound_payment) => {
3712 if payment_data.is_none() {
3713 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3714 fail_htlc!(claimable_htlc, payment_hash);
3716 let payment_data = payment_data.unwrap();
3717 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3718 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3719 fail_htlc!(claimable_htlc, payment_hash);
3720 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3721 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3722 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3723 fail_htlc!(claimable_htlc, payment_hash);
3725 let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3726 if payment_claimable_generated {
3727 inbound_payment.remove_entry();
3733 HTLCForwardInfo::FailHTLC { .. } => {
3734 panic!("Got pending fail of our own HTLC");
3742 let best_block_height = self.best_block.read().unwrap().height();
3743 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3744 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3745 &self.pending_events, &self.logger,
3746 |path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3747 self.send_payment_along_path(path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3749 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3750 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3752 self.forward_htlcs(&mut phantom_receives);
3754 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3755 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3756 // nice to do the work now if we can rather than while we're trying to get messages in the
3758 self.check_free_holding_cells();
3760 if new_events.is_empty() { return }
3761 let mut events = self.pending_events.lock().unwrap();
3762 events.append(&mut new_events);
3765 /// Free the background events, generally called from timer_tick_occurred.
3767 /// Exposed for testing to allow us to process events quickly without generating accidental
3768 /// BroadcastChannelUpdate events in timer_tick_occurred.
3770 /// Expects the caller to have a total_consistency_lock read lock.
3771 fn process_background_events(&self) -> bool {
3772 let mut background_events = Vec::new();
3773 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3774 if background_events.is_empty() {
3778 for event in background_events.drain(..) {
3780 BackgroundEvent::MonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
3781 // The channel has already been closed, so no use bothering to care about the
3782 // monitor updating completing.
3783 let _ = self.chain_monitor.update_channel(funding_txo, &update);
3790 #[cfg(any(test, feature = "_test_utils"))]
3791 /// Process background events, for functional testing
3792 pub fn test_process_background_events(&self) {
3793 self.process_background_events();
3796 fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3797 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3798 // If the feerate has decreased by less than half, don't bother
3799 if new_feerate <= chan.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.get_feerate_sat_per_1000_weight() {
3800 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3801 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3802 return NotifyOption::SkipPersist;
3804 if !chan.is_live() {
3805 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3806 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3807 return NotifyOption::SkipPersist;
3809 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3810 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3812 chan.queue_update_fee(new_feerate, &self.logger);
3813 NotifyOption::DoPersist
3817 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3818 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3819 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3820 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3821 pub fn maybe_update_chan_fees(&self) {
3822 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3823 let mut should_persist = NotifyOption::SkipPersist;
3825 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3827 let per_peer_state = self.per_peer_state.read().unwrap();
3828 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3829 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3830 let peer_state = &mut *peer_state_lock;
3831 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3832 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3833 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3841 /// Performs actions which should happen on startup and roughly once per minute thereafter.
3843 /// This currently includes:
3844 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3845 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
3846 /// than a minute, informing the network that they should no longer attempt to route over
3848 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
3849 /// with the current [`ChannelConfig`].
3850 /// * Removing peers which have disconnected but and no longer have any channels.
3852 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
3853 /// estimate fetches.
3855 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3856 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
3857 pub fn timer_tick_occurred(&self) {
3858 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3859 let mut should_persist = NotifyOption::SkipPersist;
3860 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3862 let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3864 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3865 let mut timed_out_mpp_htlcs = Vec::new();
3866 let mut pending_peers_awaiting_removal = Vec::new();
3868 let per_peer_state = self.per_peer_state.read().unwrap();
3869 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3870 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3871 let peer_state = &mut *peer_state_lock;
3872 let pending_msg_events = &mut peer_state.pending_msg_events;
3873 let counterparty_node_id = *counterparty_node_id;
3874 peer_state.channel_by_id.retain(|chan_id, chan| {
3875 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3876 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3878 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3879 let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3880 handle_errors.push((Err(err), counterparty_node_id));
3881 if needs_close { return false; }
3884 match chan.channel_update_status() {
3885 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
3886 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
3887 ChannelUpdateStatus::DisabledStaged(_) if chan.is_live()
3888 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3889 ChannelUpdateStatus::EnabledStaged(_) if !chan.is_live()
3890 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3891 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.is_live() => {
3893 if n >= DISABLE_GOSSIP_TICKS {
3894 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3895 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3896 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3900 should_persist = NotifyOption::DoPersist;
3902 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
3905 ChannelUpdateStatus::EnabledStaged(mut n) if chan.is_live() => {
3907 if n >= ENABLE_GOSSIP_TICKS {
3908 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3909 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3910 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3914 should_persist = NotifyOption::DoPersist;
3916 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
3922 chan.maybe_expire_prev_config();
3926 if peer_state.ok_to_remove(true) {
3927 pending_peers_awaiting_removal.push(counterparty_node_id);
3932 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3933 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3934 // of to that peer is later closed while still being disconnected (i.e. force closed),
3935 // we therefore need to remove the peer from `peer_state` separately.
3936 // To avoid having to take the `per_peer_state` `write` lock once the channels are
3937 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3938 // negative effects on parallelism as much as possible.
3939 if pending_peers_awaiting_removal.len() > 0 {
3940 let mut per_peer_state = self.per_peer_state.write().unwrap();
3941 for counterparty_node_id in pending_peers_awaiting_removal {
3942 match per_peer_state.entry(counterparty_node_id) {
3943 hash_map::Entry::Occupied(entry) => {
3944 // Remove the entry if the peer is still disconnected and we still
3945 // have no channels to the peer.
3946 let remove_entry = {
3947 let peer_state = entry.get().lock().unwrap();
3948 peer_state.ok_to_remove(true)
3951 entry.remove_entry();
3954 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3959 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
3960 if payment.htlcs.is_empty() {
3961 // This should be unreachable
3962 debug_assert!(false);
3965 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
3966 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3967 // In this case we're not going to handle any timeouts of the parts here.
3968 // This condition determining whether the MPP is complete here must match
3969 // exactly the condition used in `process_pending_htlc_forwards`.
3970 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
3971 .fold(0, |total, htlc| total + htlc.sender_intended_value)
3974 } else if payment.htlcs.iter_mut().any(|htlc| {
3975 htlc.timer_ticks += 1;
3976 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3978 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
3979 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3986 for htlc_source in timed_out_mpp_htlcs.drain(..) {
3987 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3988 let reason = HTLCFailReason::from_failure_code(23);
3989 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3990 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3993 for (err, counterparty_node_id) in handle_errors.drain(..) {
3994 let _ = handle_error!(self, err, counterparty_node_id);
3997 self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3999 // Technically we don't need to do this here, but if we have holding cell entries in a
4000 // channel that need freeing, it's better to do that here and block a background task
4001 // than block the message queueing pipeline.
4002 if self.check_free_holding_cells() {
4003 should_persist = NotifyOption::DoPersist;
4010 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
4011 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
4012 /// along the path (including in our own channel on which we received it).
4014 /// Note that in some cases around unclean shutdown, it is possible the payment may have
4015 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
4016 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
4017 /// may have already been failed automatically by LDK if it was nearing its expiration time.
4019 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
4020 /// [`ChannelManager::claim_funds`]), you should still monitor for
4021 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
4022 /// startup during which time claims that were in-progress at shutdown may be replayed.
4023 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
4024 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
4027 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
4028 /// reason for the failure.
4030 /// See [`FailureCode`] for valid failure codes.
4031 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
4032 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4034 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
4035 if let Some(payment) = removed_source {
4036 for htlc in payment.htlcs {
4037 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
4038 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4039 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
4040 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4045 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
4046 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
4047 match failure_code {
4048 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
4049 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
4050 FailureCode::IncorrectOrUnknownPaymentDetails => {
4051 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4052 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4053 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
4058 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4059 /// that we want to return and a channel.
4061 /// This is for failures on the channel on which the HTLC was *received*, not failures
4063 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
4064 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
4065 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
4066 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
4067 // an inbound SCID alias before the real SCID.
4068 let scid_pref = if chan.should_announce() {
4069 chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
4071 chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
4073 if let Some(scid) = scid_pref {
4074 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
4076 (0x4000|10, Vec::new())
4081 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4082 /// that we want to return and a channel.
4083 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
4084 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
4085 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
4086 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
4087 if desired_err_code == 0x1000 | 20 {
4088 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
4089 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
4090 0u16.write(&mut enc).expect("Writes cannot fail");
4092 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
4093 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
4094 upd.write(&mut enc).expect("Writes cannot fail");
4095 (desired_err_code, enc.0)
4097 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
4098 // which means we really shouldn't have gotten a payment to be forwarded over this
4099 // channel yet, or if we did it's from a route hint. Either way, returning an error of
4100 // PERM|no_such_channel should be fine.
4101 (0x4000|10, Vec::new())
4105 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
4106 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
4107 // be surfaced to the user.
4108 fn fail_holding_cell_htlcs(
4109 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
4110 counterparty_node_id: &PublicKey
4112 let (failure_code, onion_failure_data) = {
4113 let per_peer_state = self.per_peer_state.read().unwrap();
4114 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
4115 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4116 let peer_state = &mut *peer_state_lock;
4117 match peer_state.channel_by_id.entry(channel_id) {
4118 hash_map::Entry::Occupied(chan_entry) => {
4119 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
4121 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
4123 } else { (0x4000|10, Vec::new()) }
4126 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
4127 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
4128 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
4129 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
4133 /// Fails an HTLC backwards to the sender of it to us.
4134 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
4135 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
4136 // Ensure that no peer state channel storage lock is held when calling this function.
4137 // This ensures that future code doesn't introduce a lock-order requirement for
4138 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
4139 // this function with any `per_peer_state` peer lock acquired would.
4140 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
4141 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
4144 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
4145 //identify whether we sent it or not based on the (I presume) very different runtime
4146 //between the branches here. We should make this async and move it into the forward HTLCs
4149 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4150 // from block_connected which may run during initialization prior to the chain_monitor
4151 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
4153 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
4154 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
4155 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
4156 &self.pending_events, &self.logger)
4157 { self.push_pending_forwards_ev(); }
4159 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
4160 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
4161 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
4163 let mut push_forward_ev = false;
4164 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
4165 if forward_htlcs.is_empty() {
4166 push_forward_ev = true;
4168 match forward_htlcs.entry(*short_channel_id) {
4169 hash_map::Entry::Occupied(mut entry) => {
4170 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
4172 hash_map::Entry::Vacant(entry) => {
4173 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
4176 mem::drop(forward_htlcs);
4177 if push_forward_ev { self.push_pending_forwards_ev(); }
4178 let mut pending_events = self.pending_events.lock().unwrap();
4179 pending_events.push_back((events::Event::HTLCHandlingFailed {
4180 prev_channel_id: outpoint.to_channel_id(),
4181 failed_next_destination: destination,
4187 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
4188 /// [`MessageSendEvent`]s needed to claim the payment.
4190 /// This method is guaranteed to ensure the payment has been claimed but only if the current
4191 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
4192 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
4193 /// successful. It will generally be available in the next [`process_pending_events`] call.
4195 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
4196 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
4197 /// event matches your expectation. If you fail to do so and call this method, you may provide
4198 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
4200 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
4201 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
4202 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
4203 /// [`process_pending_events`]: EventsProvider::process_pending_events
4204 /// [`create_inbound_payment`]: Self::create_inbound_payment
4205 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4206 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
4207 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4209 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4212 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4213 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
4214 let mut receiver_node_id = self.our_network_pubkey;
4215 for htlc in payment.htlcs.iter() {
4216 if htlc.prev_hop.phantom_shared_secret.is_some() {
4217 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
4218 .expect("Failed to get node_id for phantom node recipient");
4219 receiver_node_id = phantom_pubkey;
4224 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
4225 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
4226 payment_purpose: payment.purpose, receiver_node_id,
4228 if dup_purpose.is_some() {
4229 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
4230 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
4231 log_bytes!(payment_hash.0));
4236 debug_assert!(!sources.is_empty());
4238 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
4239 // and when we got here we need to check that the amount we're about to claim matches the
4240 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
4241 // the MPP parts all have the same `total_msat`.
4242 let mut claimable_amt_msat = 0;
4243 let mut prev_total_msat = None;
4244 let mut expected_amt_msat = None;
4245 let mut valid_mpp = true;
4246 let mut errs = Vec::new();
4247 let per_peer_state = self.per_peer_state.read().unwrap();
4248 for htlc in sources.iter() {
4249 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
4250 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
4251 debug_assert!(false);
4255 prev_total_msat = Some(htlc.total_msat);
4257 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
4258 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
4259 debug_assert!(false);
4263 expected_amt_msat = htlc.total_value_received;
4265 if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
4266 // We don't currently support MPP for spontaneous payments, so just check
4267 // that there's one payment here and move on.
4268 if sources.len() != 1 {
4269 log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
4270 debug_assert!(false);
4276 claimable_amt_msat += htlc.value;
4278 mem::drop(per_peer_state);
4279 if sources.is_empty() || expected_amt_msat.is_none() {
4280 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4281 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4284 if claimable_amt_msat != expected_amt_msat.unwrap() {
4285 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4286 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4287 expected_amt_msat.unwrap(), claimable_amt_msat);
4291 for htlc in sources.drain(..) {
4292 if let Err((pk, err)) = self.claim_funds_from_hop(
4293 htlc.prev_hop, payment_preimage,
4294 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4296 if let msgs::ErrorAction::IgnoreError = err.err.action {
4297 // We got a temporary failure updating monitor, but will claim the
4298 // HTLC when the monitor updating is restored (or on chain).
4299 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4300 } else { errs.push((pk, err)); }
4305 for htlc in sources.drain(..) {
4306 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4307 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4308 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4309 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4310 let receiver = HTLCDestination::FailedPayment { payment_hash };
4311 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4313 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4316 // Now we can handle any errors which were generated.
4317 for (counterparty_node_id, err) in errs.drain(..) {
4318 let res: Result<(), _> = Err(err);
4319 let _ = handle_error!(self, res, counterparty_node_id);
4323 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4324 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4325 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4326 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4329 let per_peer_state = self.per_peer_state.read().unwrap();
4330 let chan_id = prev_hop.outpoint.to_channel_id();
4331 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4332 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4336 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4337 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
4338 .map(|peer_mutex| peer_mutex.lock().unwrap())
4341 if peer_state_opt.is_some() {
4342 let mut peer_state_lock = peer_state_opt.unwrap();
4343 let peer_state = &mut *peer_state_lock;
4344 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4345 let counterparty_node_id = chan.get().get_counterparty_node_id();
4346 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4348 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4349 if let Some(action) = completion_action(Some(htlc_value_msat)) {
4350 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4351 log_bytes!(chan_id), action);
4352 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4354 let update_id = monitor_update.update_id;
4355 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4356 let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4357 peer_state, per_peer_state, chan);
4358 if let Err(e) = res {
4359 // TODO: This is a *critical* error - we probably updated the outbound edge
4360 // of the HTLC's monitor with a preimage. We should retry this monitor
4361 // update over and over again until morale improves.
4362 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4363 return Err((counterparty_node_id, e));
4370 let preimage_update = ChannelMonitorUpdate {
4371 update_id: CLOSED_CHANNEL_UPDATE_ID,
4372 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4376 // We update the ChannelMonitor on the backward link, after
4377 // receiving an `update_fulfill_htlc` from the forward link.
4378 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4379 if update_res != ChannelMonitorUpdateStatus::Completed {
4380 // TODO: This needs to be handled somehow - if we receive a monitor update
4381 // with a preimage we *must* somehow manage to propagate it to the upstream
4382 // channel, or we must have an ability to receive the same event and try
4383 // again on restart.
4384 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4385 payment_preimage, update_res);
4387 // Note that we do process the completion action here. This totally could be a
4388 // duplicate claim, but we have no way of knowing without interrogating the
4389 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4390 // generally always allowed to be duplicative (and it's specifically noted in
4391 // `PaymentForwarded`).
4392 self.handle_monitor_update_completion_actions(completion_action(None));
4396 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4397 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4400 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4402 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4403 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4405 HTLCSource::PreviousHopData(hop_data) => {
4406 let prev_outpoint = hop_data.outpoint;
4407 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4408 |htlc_claim_value_msat| {
4409 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4410 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4411 Some(claimed_htlc_value - forwarded_htlc_value)
4414 let prev_channel_id = Some(prev_outpoint.to_channel_id());
4415 let next_channel_id = Some(next_channel_id);
4417 Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4419 claim_from_onchain_tx: from_onchain,
4422 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
4426 if let Err((pk, err)) = res {
4427 let result: Result<(), _> = Err(err);
4428 let _ = handle_error!(self, result, pk);
4434 /// Gets the node_id held by this ChannelManager
4435 pub fn get_our_node_id(&self) -> PublicKey {
4436 self.our_network_pubkey.clone()
4439 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4440 for action in actions.into_iter() {
4442 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4443 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4444 if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4445 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
4446 payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4450 MonitorUpdateCompletionAction::EmitEvent { event } => {
4451 self.pending_events.lock().unwrap().push_back((event, None));
4457 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4458 /// update completion.
4459 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4460 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4461 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4462 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4463 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4464 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4465 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4466 log_bytes!(channel.channel_id()),
4467 if raa.is_some() { "an" } else { "no" },
4468 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4469 if funding_broadcastable.is_some() { "" } else { "not " },
4470 if channel_ready.is_some() { "sending" } else { "without" },
4471 if announcement_sigs.is_some() { "sending" } else { "without" });
4473 let mut htlc_forwards = None;
4475 let counterparty_node_id = channel.get_counterparty_node_id();
4476 if !pending_forwards.is_empty() {
4477 htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4478 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4481 if let Some(msg) = channel_ready {
4482 send_channel_ready!(self, pending_msg_events, channel, msg);
4484 if let Some(msg) = announcement_sigs {
4485 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4486 node_id: counterparty_node_id,
4491 macro_rules! handle_cs { () => {
4492 if let Some(update) = commitment_update {
4493 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4494 node_id: counterparty_node_id,
4499 macro_rules! handle_raa { () => {
4500 if let Some(revoke_and_ack) = raa {
4501 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4502 node_id: counterparty_node_id,
4503 msg: revoke_and_ack,
4508 RAACommitmentOrder::CommitmentFirst => {
4512 RAACommitmentOrder::RevokeAndACKFirst => {
4518 if let Some(tx) = funding_broadcastable {
4519 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4520 self.tx_broadcaster.broadcast_transaction(&tx);
4524 let mut pending_events = self.pending_events.lock().unwrap();
4525 emit_channel_pending_event!(pending_events, channel);
4526 emit_channel_ready_event!(pending_events, channel);
4532 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4533 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4535 let counterparty_node_id = match counterparty_node_id {
4536 Some(cp_id) => cp_id.clone(),
4538 // TODO: Once we can rely on the counterparty_node_id from the
4539 // monitor event, this and the id_to_peer map should be removed.
4540 let id_to_peer = self.id_to_peer.lock().unwrap();
4541 match id_to_peer.get(&funding_txo.to_channel_id()) {
4542 Some(cp_id) => cp_id.clone(),
4547 let per_peer_state = self.per_peer_state.read().unwrap();
4548 let mut peer_state_lock;
4549 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4550 if peer_state_mutex_opt.is_none() { return }
4551 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4552 let peer_state = &mut *peer_state_lock;
4554 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4555 hash_map::Entry::Occupied(chan) => chan,
4556 hash_map::Entry::Vacant(_) => return,
4559 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4560 highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4561 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4564 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4567 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4569 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4570 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4573 /// The `user_channel_id` parameter will be provided back in
4574 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4575 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4577 /// Note that this method will return an error and reject the channel, if it requires support
4578 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4579 /// used to accept such channels.
4581 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4582 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4583 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4584 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4587 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4588 /// it as confirmed immediately.
4590 /// The `user_channel_id` parameter will be provided back in
4591 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4592 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4594 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4595 /// and (if the counterparty agrees), enables forwarding of payments immediately.
4597 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4598 /// transaction and blindly assumes that it will eventually confirm.
4600 /// If it does not confirm before we decide to close the channel, or if the funding transaction
4601 /// does not pay to the correct script the correct amount, *you will lose funds*.
4603 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4604 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4605 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4606 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4609 fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4610 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4612 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4613 let per_peer_state = self.per_peer_state.read().unwrap();
4614 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4615 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4616 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4617 let peer_state = &mut *peer_state_lock;
4618 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4619 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4620 hash_map::Entry::Occupied(mut channel) => {
4621 if !channel.get().inbound_is_awaiting_accept() {
4622 return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4625 channel.get_mut().set_0conf();
4626 } else if channel.get().get_channel_type().requires_zero_conf() {
4627 let send_msg_err_event = events::MessageSendEvent::HandleError {
4628 node_id: channel.get().get_counterparty_node_id(),
4629 action: msgs::ErrorAction::SendErrorMessage{
4630 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4633 peer_state.pending_msg_events.push(send_msg_err_event);
4634 let _ = remove_channel!(self, channel);
4635 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4637 // If this peer already has some channels, a new channel won't increase our number of peers
4638 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4639 // channels per-peer we can accept channels from a peer with existing ones.
4640 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4641 let send_msg_err_event = events::MessageSendEvent::HandleError {
4642 node_id: channel.get().get_counterparty_node_id(),
4643 action: msgs::ErrorAction::SendErrorMessage{
4644 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4647 peer_state.pending_msg_events.push(send_msg_err_event);
4648 let _ = remove_channel!(self, channel);
4649 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4653 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4654 node_id: channel.get().get_counterparty_node_id(),
4655 msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4658 hash_map::Entry::Vacant(_) => {
4659 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4665 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4666 /// or 0-conf channels.
4668 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4669 /// non-0-conf channels we have with the peer.
4670 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4671 where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4672 let mut peers_without_funded_channels = 0;
4673 let best_block_height = self.best_block.read().unwrap().height();
4675 let peer_state_lock = self.per_peer_state.read().unwrap();
4676 for (_, peer_mtx) in peer_state_lock.iter() {
4677 let peer = peer_mtx.lock().unwrap();
4678 if !maybe_count_peer(&*peer) { continue; }
4679 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4680 if num_unfunded_channels == peer.channel_by_id.len() {
4681 peers_without_funded_channels += 1;
4685 return peers_without_funded_channels;
4688 fn unfunded_channel_count(
4689 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4691 let mut num_unfunded_channels = 0;
4692 for (_, chan) in peer.channel_by_id.iter() {
4693 if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4694 chan.get_funding_tx_confirmations(best_block_height) == 0
4696 num_unfunded_channels += 1;
4699 num_unfunded_channels
4702 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4703 if msg.chain_hash != self.genesis_hash {
4704 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4707 if !self.default_configuration.accept_inbound_channels {
4708 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4711 let mut random_bytes = [0u8; 16];
4712 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4713 let user_channel_id = u128::from_be_bytes(random_bytes);
4714 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4716 // Get the number of peers with channels, but without funded ones. We don't care too much
4717 // about peers that never open a channel, so we filter by peers that have at least one
4718 // channel, and then limit the number of those with unfunded channels.
4719 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4721 let per_peer_state = self.per_peer_state.read().unwrap();
4722 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4724 debug_assert!(false);
4725 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4727 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4728 let peer_state = &mut *peer_state_lock;
4730 // If this peer already has some channels, a new channel won't increase our number of peers
4731 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4732 // channels per-peer we can accept channels from a peer with existing ones.
4733 if peer_state.channel_by_id.is_empty() &&
4734 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4735 !self.default_configuration.manually_accept_inbound_channels
4737 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4738 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4739 msg.temporary_channel_id.clone()));
4742 let best_block_height = self.best_block.read().unwrap().height();
4743 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4744 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4745 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4746 msg.temporary_channel_id.clone()));
4749 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4750 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4751 &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4754 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4755 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4759 match peer_state.channel_by_id.entry(channel.channel_id()) {
4760 hash_map::Entry::Occupied(_) => {
4761 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4762 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4764 hash_map::Entry::Vacant(entry) => {
4765 if !self.default_configuration.manually_accept_inbound_channels {
4766 if channel.get_channel_type().requires_zero_conf() {
4767 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4769 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4770 node_id: counterparty_node_id.clone(),
4771 msg: channel.accept_inbound_channel(user_channel_id),
4774 let mut pending_events = self.pending_events.lock().unwrap();
4775 pending_events.push_back((events::Event::OpenChannelRequest {
4776 temporary_channel_id: msg.temporary_channel_id.clone(),
4777 counterparty_node_id: counterparty_node_id.clone(),
4778 funding_satoshis: msg.funding_satoshis,
4779 push_msat: msg.push_msat,
4780 channel_type: channel.get_channel_type().clone(),
4784 entry.insert(channel);
4790 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4791 let (value, output_script, user_id) = {
4792 let per_peer_state = self.per_peer_state.read().unwrap();
4793 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4795 debug_assert!(false);
4796 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4798 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4799 let peer_state = &mut *peer_state_lock;
4800 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4801 hash_map::Entry::Occupied(mut chan) => {
4802 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4803 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4805 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4808 let mut pending_events = self.pending_events.lock().unwrap();
4809 pending_events.push_back((events::Event::FundingGenerationReady {
4810 temporary_channel_id: msg.temporary_channel_id,
4811 counterparty_node_id: *counterparty_node_id,
4812 channel_value_satoshis: value,
4814 user_channel_id: user_id,
4819 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4820 let best_block = *self.best_block.read().unwrap();
4822 let per_peer_state = self.per_peer_state.read().unwrap();
4823 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4825 debug_assert!(false);
4826 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4829 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4830 let peer_state = &mut *peer_state_lock;
4831 let ((funding_msg, monitor), chan) =
4832 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4833 hash_map::Entry::Occupied(mut chan) => {
4834 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4836 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4839 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4840 hash_map::Entry::Occupied(_) => {
4841 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4843 hash_map::Entry::Vacant(e) => {
4844 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4845 hash_map::Entry::Occupied(_) => {
4846 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4847 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4848 funding_msg.channel_id))
4850 hash_map::Entry::Vacant(i_e) => {
4851 i_e.insert(chan.get_counterparty_node_id());
4855 // There's no problem signing a counterparty's funding transaction if our monitor
4856 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4857 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4858 // until we have persisted our monitor.
4859 let new_channel_id = funding_msg.channel_id;
4860 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4861 node_id: counterparty_node_id.clone(),
4865 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4867 let chan = e.insert(chan);
4868 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4869 per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4871 // Note that we reply with the new channel_id in error messages if we gave up on the
4872 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4873 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4874 // any messages referencing a previously-closed channel anyway.
4875 // We do not propagate the monitor update to the user as it would be for a monitor
4876 // that we didn't manage to store (and that we don't care about - we don't respond
4877 // with the funding_signed so the channel can never go on chain).
4878 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4886 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4887 let best_block = *self.best_block.read().unwrap();
4888 let per_peer_state = self.per_peer_state.read().unwrap();
4889 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4891 debug_assert!(false);
4892 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4895 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4896 let peer_state = &mut *peer_state_lock;
4897 match peer_state.channel_by_id.entry(msg.channel_id) {
4898 hash_map::Entry::Occupied(mut chan) => {
4899 let monitor = try_chan_entry!(self,
4900 chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4901 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4902 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4903 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4904 // We weren't able to watch the channel to begin with, so no updates should be made on
4905 // it. Previously, full_stack_target found an (unreachable) panic when the
4906 // monitor update contained within `shutdown_finish` was applied.
4907 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4908 shutdown_finish.0.take();
4913 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4917 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4918 let per_peer_state = self.per_peer_state.read().unwrap();
4919 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4921 debug_assert!(false);
4922 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4924 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4925 let peer_state = &mut *peer_state_lock;
4926 match peer_state.channel_by_id.entry(msg.channel_id) {
4927 hash_map::Entry::Occupied(mut chan) => {
4928 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4929 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4930 if let Some(announcement_sigs) = announcement_sigs_opt {
4931 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4932 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4933 node_id: counterparty_node_id.clone(),
4934 msg: announcement_sigs,
4936 } else if chan.get().is_usable() {
4937 // If we're sending an announcement_signatures, we'll send the (public)
4938 // channel_update after sending a channel_announcement when we receive our
4939 // counterparty's announcement_signatures. Thus, we only bother to send a
4940 // channel_update here if the channel is not public, i.e. we're not sending an
4941 // announcement_signatures.
4942 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4943 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4944 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4945 node_id: counterparty_node_id.clone(),
4952 let mut pending_events = self.pending_events.lock().unwrap();
4953 emit_channel_ready_event!(pending_events, chan.get_mut());
4958 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4962 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4963 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4964 let result: Result<(), _> = loop {
4965 let per_peer_state = self.per_peer_state.read().unwrap();
4966 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4968 debug_assert!(false);
4969 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4971 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4972 let peer_state = &mut *peer_state_lock;
4973 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4974 hash_map::Entry::Occupied(mut chan_entry) => {
4976 if !chan_entry.get().received_shutdown() {
4977 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4978 log_bytes!(msg.channel_id),
4979 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4982 let funding_txo_opt = chan_entry.get().get_funding_txo();
4983 let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4984 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4985 dropped_htlcs = htlcs;
4987 if let Some(msg) = shutdown {
4988 // We can send the `shutdown` message before updating the `ChannelMonitor`
4989 // here as we don't need the monitor update to complete until we send a
4990 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4991 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4992 node_id: *counterparty_node_id,
4997 // Update the monitor with the shutdown script if necessary.
4998 if let Some(monitor_update) = monitor_update_opt {
4999 let update_id = monitor_update.update_id;
5000 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
5001 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
5005 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5008 for htlc_source in dropped_htlcs.drain(..) {
5009 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
5010 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5011 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
5017 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
5018 let per_peer_state = self.per_peer_state.read().unwrap();
5019 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5021 debug_assert!(false);
5022 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5024 let (tx, chan_option) = {
5025 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5026 let peer_state = &mut *peer_state_lock;
5027 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
5028 hash_map::Entry::Occupied(mut chan_entry) => {
5029 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
5030 if let Some(msg) = closing_signed {
5031 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5032 node_id: counterparty_node_id.clone(),
5037 // We're done with this channel, we've got a signed closing transaction and
5038 // will send the closing_signed back to the remote peer upon return. This
5039 // also implies there are no pending HTLCs left on the channel, so we can
5040 // fully delete it from tracking (the channel monitor is still around to
5041 // watch for old state broadcasts)!
5042 (tx, Some(remove_channel!(self, chan_entry)))
5043 } else { (tx, None) }
5045 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5048 if let Some(broadcast_tx) = tx {
5049 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
5050 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
5052 if let Some(chan) = chan_option {
5053 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5054 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5055 let peer_state = &mut *peer_state_lock;
5056 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5060 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
5065 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
5066 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
5067 //determine the state of the payment based on our response/if we forward anything/the time
5068 //we take to respond. We should take care to avoid allowing such an attack.
5070 //TODO: There exists a further attack where a node may garble the onion data, forward it to
5071 //us repeatedly garbled in different ways, and compare our error messages, which are
5072 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
5073 //but we should prevent it anyway.
5075 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
5076 let per_peer_state = self.per_peer_state.read().unwrap();
5077 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5079 debug_assert!(false);
5080 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5082 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5083 let peer_state = &mut *peer_state_lock;
5084 match peer_state.channel_by_id.entry(msg.channel_id) {
5085 hash_map::Entry::Occupied(mut chan) => {
5087 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
5088 // If the update_add is completely bogus, the call will Err and we will close,
5089 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
5090 // want to reject the new HTLC and fail it backwards instead of forwarding.
5091 match pending_forward_info {
5092 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
5093 let reason = if (error_code & 0x1000) != 0 {
5094 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
5095 HTLCFailReason::reason(real_code, error_data)
5097 HTLCFailReason::from_failure_code(error_code)
5098 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
5099 let msg = msgs::UpdateFailHTLC {
5100 channel_id: msg.channel_id,
5101 htlc_id: msg.htlc_id,
5104 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
5106 _ => pending_forward_info
5109 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
5111 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5116 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
5117 let (htlc_source, forwarded_htlc_value) = {
5118 let per_peer_state = self.per_peer_state.read().unwrap();
5119 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5121 debug_assert!(false);
5122 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5124 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5125 let peer_state = &mut *peer_state_lock;
5126 match peer_state.channel_by_id.entry(msg.channel_id) {
5127 hash_map::Entry::Occupied(mut chan) => {
5128 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
5130 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5133 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
5137 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
5138 let per_peer_state = self.per_peer_state.read().unwrap();
5139 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5141 debug_assert!(false);
5142 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5144 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5145 let peer_state = &mut *peer_state_lock;
5146 match peer_state.channel_by_id.entry(msg.channel_id) {
5147 hash_map::Entry::Occupied(mut chan) => {
5148 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
5150 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5155 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
5156 let per_peer_state = self.per_peer_state.read().unwrap();
5157 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5159 debug_assert!(false);
5160 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5162 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5163 let peer_state = &mut *peer_state_lock;
5164 match peer_state.channel_by_id.entry(msg.channel_id) {
5165 hash_map::Entry::Occupied(mut chan) => {
5166 if (msg.failure_code & 0x8000) == 0 {
5167 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
5168 try_chan_entry!(self, Err(chan_err), chan);
5170 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
5173 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5177 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
5178 let per_peer_state = self.per_peer_state.read().unwrap();
5179 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5181 debug_assert!(false);
5182 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5184 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5185 let peer_state = &mut *peer_state_lock;
5186 match peer_state.channel_by_id.entry(msg.channel_id) {
5187 hash_map::Entry::Occupied(mut chan) => {
5188 let funding_txo = chan.get().get_funding_txo();
5189 let monitor_update_opt = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
5190 if let Some(monitor_update) = monitor_update_opt {
5191 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5192 let update_id = monitor_update.update_id;
5193 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
5194 peer_state, per_peer_state, chan)
5197 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5202 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
5203 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
5204 let mut push_forward_event = false;
5205 let mut new_intercept_events = VecDeque::new();
5206 let mut failed_intercept_forwards = Vec::new();
5207 if !pending_forwards.is_empty() {
5208 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
5209 let scid = match forward_info.routing {
5210 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
5211 PendingHTLCRouting::Receive { .. } => 0,
5212 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
5214 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
5215 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
5217 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5218 let forward_htlcs_empty = forward_htlcs.is_empty();
5219 match forward_htlcs.entry(scid) {
5220 hash_map::Entry::Occupied(mut entry) => {
5221 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5222 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
5224 hash_map::Entry::Vacant(entry) => {
5225 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
5226 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
5228 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
5229 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
5230 match pending_intercepts.entry(intercept_id) {
5231 hash_map::Entry::Vacant(entry) => {
5232 new_intercept_events.push_back((events::Event::HTLCIntercepted {
5233 requested_next_hop_scid: scid,
5234 payment_hash: forward_info.payment_hash,
5235 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
5236 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
5239 entry.insert(PendingAddHTLCInfo {
5240 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
5242 hash_map::Entry::Occupied(_) => {
5243 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
5244 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5245 short_channel_id: prev_short_channel_id,
5246 outpoint: prev_funding_outpoint,
5247 htlc_id: prev_htlc_id,
5248 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
5249 phantom_shared_secret: None,
5252 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
5253 HTLCFailReason::from_failure_code(0x4000 | 10),
5254 HTLCDestination::InvalidForward { requested_forward_scid: scid },
5259 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
5260 // payments are being processed.
5261 if forward_htlcs_empty {
5262 push_forward_event = true;
5264 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5265 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
5272 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
5273 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5276 if !new_intercept_events.is_empty() {
5277 let mut events = self.pending_events.lock().unwrap();
5278 events.append(&mut new_intercept_events);
5280 if push_forward_event { self.push_pending_forwards_ev() }
5284 // We only want to push a PendingHTLCsForwardable event if no others are queued.
5285 fn push_pending_forwards_ev(&self) {
5286 let mut pending_events = self.pending_events.lock().unwrap();
5287 let forward_ev_exists = pending_events.iter()
5288 .find(|(ev, _)| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
5290 if !forward_ev_exists {
5291 pending_events.push_back((events::Event::PendingHTLCsForwardable {
5293 Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
5298 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5299 let (htlcs_to_fail, res) = {
5300 let per_peer_state = self.per_peer_state.read().unwrap();
5301 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
5303 debug_assert!(false);
5304 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5305 }).map(|mtx| mtx.lock().unwrap())?;
5306 let peer_state = &mut *peer_state_lock;
5307 match peer_state.channel_by_id.entry(msg.channel_id) {
5308 hash_map::Entry::Occupied(mut chan) => {
5309 let funding_txo = chan.get().get_funding_txo();
5310 let (htlcs_to_fail, monitor_update_opt) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5311 let res = if let Some(monitor_update) = monitor_update_opt {
5312 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5313 let update_id = monitor_update.update_id;
5314 handle_new_monitor_update!(self, update_res, update_id,
5315 peer_state_lock, peer_state, per_peer_state, chan)
5317 (htlcs_to_fail, res)
5319 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5322 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5326 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5327 let per_peer_state = self.per_peer_state.read().unwrap();
5328 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5330 debug_assert!(false);
5331 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5333 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5334 let peer_state = &mut *peer_state_lock;
5335 match peer_state.channel_by_id.entry(msg.channel_id) {
5336 hash_map::Entry::Occupied(mut chan) => {
5337 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5339 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5344 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5345 let per_peer_state = self.per_peer_state.read().unwrap();
5346 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5348 debug_assert!(false);
5349 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5351 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5352 let peer_state = &mut *peer_state_lock;
5353 match peer_state.channel_by_id.entry(msg.channel_id) {
5354 hash_map::Entry::Occupied(mut chan) => {
5355 if !chan.get().is_usable() {
5356 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5359 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5360 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5361 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5362 msg, &self.default_configuration
5364 // Note that announcement_signatures fails if the channel cannot be announced,
5365 // so get_channel_update_for_broadcast will never fail by the time we get here.
5366 update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5369 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5374 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5375 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5376 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5377 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5379 // It's not a local channel
5380 return Ok(NotifyOption::SkipPersist)
5383 let per_peer_state = self.per_peer_state.read().unwrap();
5384 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5385 if peer_state_mutex_opt.is_none() {
5386 return Ok(NotifyOption::SkipPersist)
5388 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5389 let peer_state = &mut *peer_state_lock;
5390 match peer_state.channel_by_id.entry(chan_id) {
5391 hash_map::Entry::Occupied(mut chan) => {
5392 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5393 if chan.get().should_announce() {
5394 // If the announcement is about a channel of ours which is public, some
5395 // other peer may simply be forwarding all its gossip to us. Don't provide
5396 // a scary-looking error message and return Ok instead.
5397 return Ok(NotifyOption::SkipPersist);
5399 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5401 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5402 let msg_from_node_one = msg.contents.flags & 1 == 0;
5403 if were_node_one == msg_from_node_one {
5404 return Ok(NotifyOption::SkipPersist);
5406 log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5407 try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5410 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5412 Ok(NotifyOption::DoPersist)
5415 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5417 let need_lnd_workaround = {
5418 let per_peer_state = self.per_peer_state.read().unwrap();
5420 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5422 debug_assert!(false);
5423 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5425 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5426 let peer_state = &mut *peer_state_lock;
5427 match peer_state.channel_by_id.entry(msg.channel_id) {
5428 hash_map::Entry::Occupied(mut chan) => {
5429 // Currently, we expect all holding cell update_adds to be dropped on peer
5430 // disconnect, so Channel's reestablish will never hand us any holding cell
5431 // freed HTLCs to fail backwards. If in the future we no longer drop pending
5432 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5433 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5434 msg, &self.logger, &self.node_signer, self.genesis_hash,
5435 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5436 let mut channel_update = None;
5437 if let Some(msg) = responses.shutdown_msg {
5438 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5439 node_id: counterparty_node_id.clone(),
5442 } else if chan.get().is_usable() {
5443 // If the channel is in a usable state (ie the channel is not being shut
5444 // down), send a unicast channel_update to our counterparty to make sure
5445 // they have the latest channel parameters.
5446 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5447 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5448 node_id: chan.get().get_counterparty_node_id(),
5453 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5454 htlc_forwards = self.handle_channel_resumption(
5455 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5456 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5457 if let Some(upd) = channel_update {
5458 peer_state.pending_msg_events.push(upd);
5462 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5466 if let Some(forwards) = htlc_forwards {
5467 self.forward_htlcs(&mut [forwards][..]);
5470 if let Some(channel_ready_msg) = need_lnd_workaround {
5471 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5476 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
5477 fn process_pending_monitor_events(&self) -> bool {
5478 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5480 let mut failed_channels = Vec::new();
5481 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5482 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5483 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5484 for monitor_event in monitor_events.drain(..) {
5485 match monitor_event {
5486 MonitorEvent::HTLCEvent(htlc_update) => {
5487 if let Some(preimage) = htlc_update.payment_preimage {
5488 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5489 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5491 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5492 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5493 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5494 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5497 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5498 MonitorEvent::UpdateFailed(funding_outpoint) => {
5499 let counterparty_node_id_opt = match counterparty_node_id {
5500 Some(cp_id) => Some(cp_id),
5502 // TODO: Once we can rely on the counterparty_node_id from the
5503 // monitor event, this and the id_to_peer map should be removed.
5504 let id_to_peer = self.id_to_peer.lock().unwrap();
5505 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5508 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5509 let per_peer_state = self.per_peer_state.read().unwrap();
5510 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5511 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5512 let peer_state = &mut *peer_state_lock;
5513 let pending_msg_events = &mut peer_state.pending_msg_events;
5514 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5515 let mut chan = remove_channel!(self, chan_entry);
5516 failed_channels.push(chan.force_shutdown(false));
5517 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5518 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5522 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5523 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5525 ClosureReason::CommitmentTxConfirmed
5527 self.issue_channel_close_events(&chan, reason);
5528 pending_msg_events.push(events::MessageSendEvent::HandleError {
5529 node_id: chan.get_counterparty_node_id(),
5530 action: msgs::ErrorAction::SendErrorMessage {
5531 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5538 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5539 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5545 for failure in failed_channels.drain(..) {
5546 self.finish_force_close_channel(failure);
5549 has_pending_monitor_events
5552 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5553 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5554 /// update events as a separate process method here.
5556 pub fn process_monitor_events(&self) {
5557 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5558 if self.process_pending_monitor_events() {
5559 NotifyOption::DoPersist
5561 NotifyOption::SkipPersist
5566 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5567 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5568 /// update was applied.
5569 fn check_free_holding_cells(&self) -> bool {
5570 let mut has_monitor_update = false;
5571 let mut failed_htlcs = Vec::new();
5572 let mut handle_errors = Vec::new();
5574 // Walk our list of channels and find any that need to update. Note that when we do find an
5575 // update, if it includes actions that must be taken afterwards, we have to drop the
5576 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5577 // manage to go through all our peers without finding a single channel to update.
5579 let per_peer_state = self.per_peer_state.read().unwrap();
5580 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5582 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5583 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5584 for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5585 let counterparty_node_id = chan.get_counterparty_node_id();
5586 let funding_txo = chan.get_funding_txo();
5587 let (monitor_opt, holding_cell_failed_htlcs) =
5588 chan.maybe_free_holding_cell_htlcs(&self.logger);
5589 if !holding_cell_failed_htlcs.is_empty() {
5590 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5592 if let Some(monitor_update) = monitor_opt {
5593 has_monitor_update = true;
5595 let update_res = self.chain_monitor.update_channel(
5596 funding_txo.expect("channel is live"), monitor_update);
5597 let update_id = monitor_update.update_id;
5598 let channel_id: [u8; 32] = *channel_id;
5599 let res = handle_new_monitor_update!(self, update_res, update_id,
5600 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5601 peer_state.channel_by_id.remove(&channel_id));
5603 handle_errors.push((counterparty_node_id, res));
5605 continue 'peer_loop;
5614 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5615 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5616 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5619 for (counterparty_node_id, err) in handle_errors.drain(..) {
5620 let _ = handle_error!(self, err, counterparty_node_id);
5626 /// Check whether any channels have finished removing all pending updates after a shutdown
5627 /// exchange and can now send a closing_signed.
5628 /// Returns whether any closing_signed messages were generated.
5629 fn maybe_generate_initial_closing_signed(&self) -> bool {
5630 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5631 let mut has_update = false;
5633 let per_peer_state = self.per_peer_state.read().unwrap();
5635 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5636 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5637 let peer_state = &mut *peer_state_lock;
5638 let pending_msg_events = &mut peer_state.pending_msg_events;
5639 peer_state.channel_by_id.retain(|channel_id, chan| {
5640 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5641 Ok((msg_opt, tx_opt)) => {
5642 if let Some(msg) = msg_opt {
5644 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5645 node_id: chan.get_counterparty_node_id(), msg,
5648 if let Some(tx) = tx_opt {
5649 // We're done with this channel. We got a closing_signed and sent back
5650 // a closing_signed with a closing transaction to broadcast.
5651 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5652 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5657 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5659 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5660 self.tx_broadcaster.broadcast_transaction(&tx);
5661 update_maps_on_chan_removal!(self, chan);
5667 let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5668 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5676 for (counterparty_node_id, err) in handle_errors.drain(..) {
5677 let _ = handle_error!(self, err, counterparty_node_id);
5683 /// Handle a list of channel failures during a block_connected or block_disconnected call,
5684 /// pushing the channel monitor update (if any) to the background events queue and removing the
5686 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5687 for mut failure in failed_channels.drain(..) {
5688 // Either a commitment transactions has been confirmed on-chain or
5689 // Channel::block_disconnected detected that the funding transaction has been
5690 // reorganized out of the main chain.
5691 // We cannot broadcast our latest local state via monitor update (as
5692 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5693 // so we track the update internally and handle it when the user next calls
5694 // timer_tick_occurred, guaranteeing we're running normally.
5695 if let Some((funding_txo, update)) = failure.0.take() {
5696 assert_eq!(update.updates.len(), 1);
5697 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5698 assert!(should_broadcast);
5699 } else { unreachable!(); }
5700 self.pending_background_events.lock().unwrap().push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup((funding_txo, update)));
5702 self.finish_force_close_channel(failure);
5706 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5707 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5709 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5710 return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5713 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5715 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5716 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5717 match payment_secrets.entry(payment_hash) {
5718 hash_map::Entry::Vacant(e) => {
5719 e.insert(PendingInboundPayment {
5720 payment_secret, min_value_msat, payment_preimage,
5721 user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5722 // We assume that highest_seen_timestamp is pretty close to the current time -
5723 // it's updated when we receive a new block with the maximum time we've seen in
5724 // a header. It should never be more than two hours in the future.
5725 // Thus, we add two hours here as a buffer to ensure we absolutely
5726 // never fail a payment too early.
5727 // Note that we assume that received blocks have reasonably up-to-date
5729 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5732 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5737 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5740 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5741 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5743 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5744 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5745 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5746 /// passed directly to [`claim_funds`].
5748 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5750 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5751 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5755 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5756 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5758 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5760 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5761 /// on versions of LDK prior to 0.0.114.
5763 /// [`claim_funds`]: Self::claim_funds
5764 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5765 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5766 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5767 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5768 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5769 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5770 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5771 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5772 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5773 min_final_cltv_expiry_delta)
5776 /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5777 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5779 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5782 /// This method is deprecated and will be removed soon.
5784 /// [`create_inbound_payment`]: Self::create_inbound_payment
5786 pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5787 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5788 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5789 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5790 Ok((payment_hash, payment_secret))
5793 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5794 /// stored external to LDK.
5796 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5797 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5798 /// the `min_value_msat` provided here, if one is provided.
5800 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5801 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5804 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5805 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5806 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5807 /// sender "proof-of-payment" unless they have paid the required amount.
5809 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5810 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5811 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5812 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5813 /// invoices when no timeout is set.
5815 /// Note that we use block header time to time-out pending inbound payments (with some margin
5816 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5817 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5818 /// If you need exact expiry semantics, you should enforce them upon receipt of
5819 /// [`PaymentClaimable`].
5821 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5822 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5824 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5825 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5829 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5830 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5832 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5834 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5835 /// on versions of LDK prior to 0.0.114.
5837 /// [`create_inbound_payment`]: Self::create_inbound_payment
5838 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5839 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5840 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5841 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5842 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5843 min_final_cltv_expiry)
5846 /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5847 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5849 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5852 /// This method is deprecated and will be removed soon.
5854 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5856 pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5857 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5860 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5861 /// previously returned from [`create_inbound_payment`].
5863 /// [`create_inbound_payment`]: Self::create_inbound_payment
5864 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5865 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5868 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5869 /// are used when constructing the phantom invoice's route hints.
5871 /// [phantom node payments]: crate::sign::PhantomKeysManager
5872 pub fn get_phantom_scid(&self) -> u64 {
5873 let best_block_height = self.best_block.read().unwrap().height();
5874 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5876 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5877 // Ensure the generated scid doesn't conflict with a real channel.
5878 match short_to_chan_info.get(&scid_candidate) {
5879 Some(_) => continue,
5880 None => return scid_candidate
5885 /// Gets route hints for use in receiving [phantom node payments].
5887 /// [phantom node payments]: crate::sign::PhantomKeysManager
5888 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5890 channels: self.list_usable_channels(),
5891 phantom_scid: self.get_phantom_scid(),
5892 real_node_pubkey: self.get_our_node_id(),
5896 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5897 /// used when constructing the route hints for HTLCs intended to be intercepted. See
5898 /// [`ChannelManager::forward_intercepted_htlc`].
5900 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5901 /// times to get a unique scid.
5902 pub fn get_intercept_scid(&self) -> u64 {
5903 let best_block_height = self.best_block.read().unwrap().height();
5904 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5906 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5907 // Ensure the generated scid doesn't conflict with a real channel.
5908 if short_to_chan_info.contains_key(&scid_candidate) { continue }
5909 return scid_candidate
5913 /// Gets inflight HTLC information by processing pending outbound payments that are in
5914 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5915 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5916 let mut inflight_htlcs = InFlightHtlcs::new();
5918 let per_peer_state = self.per_peer_state.read().unwrap();
5919 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5920 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5921 let peer_state = &mut *peer_state_lock;
5922 for chan in peer_state.channel_by_id.values() {
5923 for (htlc_source, _) in chan.inflight_htlc_sources() {
5924 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5925 inflight_htlcs.process_path(path, self.get_our_node_id());
5934 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5935 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5936 let events = core::cell::RefCell::new(Vec::new());
5937 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5938 self.process_pending_events(&event_handler);
5942 #[cfg(feature = "_test_utils")]
5943 pub fn push_pending_event(&self, event: events::Event) {
5944 let mut events = self.pending_events.lock().unwrap();
5945 events.push_back((event, None));
5949 pub fn pop_pending_event(&self) -> Option<events::Event> {
5950 let mut events = self.pending_events.lock().unwrap();
5951 events.pop_front().map(|(e, _)| e)
5955 pub fn has_pending_payments(&self) -> bool {
5956 self.pending_outbound_payments.has_pending_payments()
5960 pub fn clear_pending_payments(&self) {
5961 self.pending_outbound_payments.clear_pending_payments()
5964 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint) {
5965 let mut errors = Vec::new();
5967 let per_peer_state = self.per_peer_state.read().unwrap();
5968 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
5969 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
5970 let peer_state = &mut *peer_state_lck;
5971 if self.pending_events.lock().unwrap().iter()
5972 .any(|(_ev, action_opt)| action_opt == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5973 channel_funding_outpoint, counterparty_node_id
5976 // Check that, while holding the peer lock, we don't have another event
5977 // blocking any monitor updates for this channel. If we do, let those
5978 // events be the ones that ultimately release the monitor update(s).
5979 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another event is pending",
5980 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
5983 if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
5984 debug_assert_eq!(chan.get().get_funding_txo().unwrap(), channel_funding_outpoint);
5985 if let Some((monitor_update, further_update_exists)) = chan.get_mut().unblock_next_blocked_monitor_update() {
5986 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
5987 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
5988 let update_res = self.chain_monitor.update_channel(channel_funding_outpoint, monitor_update);
5989 let update_id = monitor_update.update_id;
5990 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id,
5991 peer_state_lck, peer_state, per_peer_state, chan)
5993 errors.push((e, counterparty_node_id));
5995 if further_update_exists {
5996 // If there are more `ChannelMonitorUpdate`s to process, restart at the
6001 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
6002 log_bytes!(&channel_funding_outpoint.to_channel_id()[..]));
6006 log_debug!(self.logger,
6007 "Got a release post-RAA monitor update for peer {} but the channel is gone",
6008 log_pubkey!(counterparty_node_id));
6012 for (err, counterparty_node_id) in errors {
6013 let res = Err::<(), _>(err);
6014 let _ = handle_error!(self, res, counterparty_node_id);
6018 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
6019 for action in actions {
6021 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6022 channel_funding_outpoint, counterparty_node_id
6024 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint);
6030 /// Processes any events asynchronously in the order they were generated since the last call
6031 /// using the given event handler.
6033 /// See the trait-level documentation of [`EventsProvider`] for requirements.
6034 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
6038 process_events_body!(self, ev, { handler(ev).await });
6042 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
6044 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6045 T::Target: BroadcasterInterface,
6046 ES::Target: EntropySource,
6047 NS::Target: NodeSigner,
6048 SP::Target: SignerProvider,
6049 F::Target: FeeEstimator,
6053 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
6054 /// The returned array will contain `MessageSendEvent`s for different peers if
6055 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
6056 /// is always placed next to each other.
6058 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
6059 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
6060 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
6061 /// will randomly be placed first or last in the returned array.
6063 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
6064 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
6065 /// the `MessageSendEvent`s to the specific peer they were generated under.
6066 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
6067 let events = RefCell::new(Vec::new());
6068 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6069 let mut result = NotifyOption::SkipPersist;
6071 // TODO: This behavior should be documented. It's unintuitive that we query
6072 // ChannelMonitors when clearing other events.
6073 if self.process_pending_monitor_events() {
6074 result = NotifyOption::DoPersist;
6077 if self.check_free_holding_cells() {
6078 result = NotifyOption::DoPersist;
6080 if self.maybe_generate_initial_closing_signed() {
6081 result = NotifyOption::DoPersist;
6084 let mut pending_events = Vec::new();
6085 let per_peer_state = self.per_peer_state.read().unwrap();
6086 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6087 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6088 let peer_state = &mut *peer_state_lock;
6089 if peer_state.pending_msg_events.len() > 0 {
6090 pending_events.append(&mut peer_state.pending_msg_events);
6094 if !pending_events.is_empty() {
6095 events.replace(pending_events);
6104 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
6106 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6107 T::Target: BroadcasterInterface,
6108 ES::Target: EntropySource,
6109 NS::Target: NodeSigner,
6110 SP::Target: SignerProvider,
6111 F::Target: FeeEstimator,
6115 /// Processes events that must be periodically handled.
6117 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
6118 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
6119 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
6121 process_events_body!(self, ev, handler.handle_event(ev));
6125 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
6127 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6128 T::Target: BroadcasterInterface,
6129 ES::Target: EntropySource,
6130 NS::Target: NodeSigner,
6131 SP::Target: SignerProvider,
6132 F::Target: FeeEstimator,
6136 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
6138 let best_block = self.best_block.read().unwrap();
6139 assert_eq!(best_block.block_hash(), header.prev_blockhash,
6140 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
6141 assert_eq!(best_block.height(), height - 1,
6142 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
6145 self.transactions_confirmed(header, txdata, height);
6146 self.best_block_updated(header, height);
6149 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
6150 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6151 let new_height = height - 1;
6153 let mut best_block = self.best_block.write().unwrap();
6154 assert_eq!(best_block.block_hash(), header.block_hash(),
6155 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
6156 assert_eq!(best_block.height(), height,
6157 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
6158 *best_block = BestBlock::new(header.prev_blockhash, new_height)
6161 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6165 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
6167 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6168 T::Target: BroadcasterInterface,
6169 ES::Target: EntropySource,
6170 NS::Target: NodeSigner,
6171 SP::Target: SignerProvider,
6172 F::Target: FeeEstimator,
6176 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
6177 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6178 // during initialization prior to the chain_monitor being fully configured in some cases.
6179 // See the docs for `ChannelManagerReadArgs` for more.
6181 let block_hash = header.block_hash();
6182 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
6184 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6185 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
6186 .map(|(a, b)| (a, Vec::new(), b)));
6188 let last_best_block_height = self.best_block.read().unwrap().height();
6189 if height < last_best_block_height {
6190 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
6191 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6195 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
6196 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6197 // during initialization prior to the chain_monitor being fully configured in some cases.
6198 // See the docs for `ChannelManagerReadArgs` for more.
6200 let block_hash = header.block_hash();
6201 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
6203 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6205 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
6207 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
6209 macro_rules! max_time {
6210 ($timestamp: expr) => {
6212 // Update $timestamp to be the max of its current value and the block
6213 // timestamp. This should keep us close to the current time without relying on
6214 // having an explicit local time source.
6215 // Just in case we end up in a race, we loop until we either successfully
6216 // update $timestamp or decide we don't need to.
6217 let old_serial = $timestamp.load(Ordering::Acquire);
6218 if old_serial >= header.time as usize { break; }
6219 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
6225 max_time!(self.highest_seen_timestamp);
6226 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
6227 payment_secrets.retain(|_, inbound_payment| {
6228 inbound_payment.expiry_time > header.time as u64
6232 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
6233 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
6234 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
6235 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6236 let peer_state = &mut *peer_state_lock;
6237 for chan in peer_state.channel_by_id.values() {
6238 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
6239 res.push((funding_txo.txid, Some(block_hash)));
6246 fn transaction_unconfirmed(&self, txid: &Txid) {
6247 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6248 self.do_chain_event(None, |channel| {
6249 if let Some(funding_txo) = channel.get_funding_txo() {
6250 if funding_txo.txid == *txid {
6251 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
6252 } else { Ok((None, Vec::new(), None)) }
6253 } else { Ok((None, Vec::new(), None)) }
6258 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
6260 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6261 T::Target: BroadcasterInterface,
6262 ES::Target: EntropySource,
6263 NS::Target: NodeSigner,
6264 SP::Target: SignerProvider,
6265 F::Target: FeeEstimator,
6269 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
6270 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
6272 fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
6273 (&self, height_opt: Option<u32>, f: FN) {
6274 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6275 // during initialization prior to the chain_monitor being fully configured in some cases.
6276 // See the docs for `ChannelManagerReadArgs` for more.
6278 let mut failed_channels = Vec::new();
6279 let mut timed_out_htlcs = Vec::new();
6281 let per_peer_state = self.per_peer_state.read().unwrap();
6282 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6283 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6284 let peer_state = &mut *peer_state_lock;
6285 let pending_msg_events = &mut peer_state.pending_msg_events;
6286 peer_state.channel_by_id.retain(|_, channel| {
6287 let res = f(channel);
6288 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
6289 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
6290 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
6291 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
6292 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
6294 if let Some(channel_ready) = channel_ready_opt {
6295 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
6296 if channel.is_usable() {
6297 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
6298 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
6299 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6300 node_id: channel.get_counterparty_node_id(),
6305 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
6310 let mut pending_events = self.pending_events.lock().unwrap();
6311 emit_channel_ready_event!(pending_events, channel);
6314 if let Some(announcement_sigs) = announcement_sigs {
6315 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
6316 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6317 node_id: channel.get_counterparty_node_id(),
6318 msg: announcement_sigs,
6320 if let Some(height) = height_opt {
6321 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
6322 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6324 // Note that announcement_signatures fails if the channel cannot be announced,
6325 // so get_channel_update_for_broadcast will never fail by the time we get here.
6326 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
6331 if channel.is_our_channel_ready() {
6332 if let Some(real_scid) = channel.get_short_channel_id() {
6333 // If we sent a 0conf channel_ready, and now have an SCID, we add it
6334 // to the short_to_chan_info map here. Note that we check whether we
6335 // can relay using the real SCID at relay-time (i.e.
6336 // enforce option_scid_alias then), and if the funding tx is ever
6337 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6338 // is always consistent.
6339 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6340 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
6341 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
6342 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6343 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6346 } else if let Err(reason) = res {
6347 update_maps_on_chan_removal!(self, channel);
6348 // It looks like our counterparty went on-chain or funding transaction was
6349 // reorged out of the main chain. Close the channel.
6350 failed_channels.push(channel.force_shutdown(true));
6351 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6352 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6356 let reason_message = format!("{}", reason);
6357 self.issue_channel_close_events(channel, reason);
6358 pending_msg_events.push(events::MessageSendEvent::HandleError {
6359 node_id: channel.get_counterparty_node_id(),
6360 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6361 channel_id: channel.channel_id(),
6362 data: reason_message,
6372 if let Some(height) = height_opt {
6373 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
6374 payment.htlcs.retain(|htlc| {
6375 // If height is approaching the number of blocks we think it takes us to get
6376 // our commitment transaction confirmed before the HTLC expires, plus the
6377 // number of blocks we generally consider it to take to do a commitment update,
6378 // just give up on it and fail the HTLC.
6379 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6380 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6381 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6383 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6384 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6385 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6389 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6392 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6393 intercepted_htlcs.retain(|_, htlc| {
6394 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6395 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6396 short_channel_id: htlc.prev_short_channel_id,
6397 htlc_id: htlc.prev_htlc_id,
6398 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6399 phantom_shared_secret: None,
6400 outpoint: htlc.prev_funding_outpoint,
6403 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6404 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6405 _ => unreachable!(),
6407 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6408 HTLCFailReason::from_failure_code(0x2000 | 2),
6409 HTLCDestination::InvalidForward { requested_forward_scid }));
6410 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6416 self.handle_init_event_channel_failures(failed_channels);
6418 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6419 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6423 /// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted.
6425 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
6426 /// [`ChannelManager`] and should instead register actions to be taken later.
6428 pub fn get_persistable_update_future(&self) -> Future {
6429 self.persistence_notifier.get_future()
6432 #[cfg(any(test, feature = "_test_utils"))]
6433 pub fn get_persistence_condvar_value(&self) -> bool {
6434 self.persistence_notifier.notify_pending()
6437 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6438 /// [`chain::Confirm`] interfaces.
6439 pub fn current_best_block(&self) -> BestBlock {
6440 self.best_block.read().unwrap().clone()
6443 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6444 /// [`ChannelManager`].
6445 pub fn node_features(&self) -> NodeFeatures {
6446 provided_node_features(&self.default_configuration)
6449 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6450 /// [`ChannelManager`].
6452 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6453 /// or not. Thus, this method is not public.
6454 #[cfg(any(feature = "_test_utils", test))]
6455 pub fn invoice_features(&self) -> InvoiceFeatures {
6456 provided_invoice_features(&self.default_configuration)
6459 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6460 /// [`ChannelManager`].
6461 pub fn channel_features(&self) -> ChannelFeatures {
6462 provided_channel_features(&self.default_configuration)
6465 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6466 /// [`ChannelManager`].
6467 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6468 provided_channel_type_features(&self.default_configuration)
6471 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6472 /// [`ChannelManager`].
6473 pub fn init_features(&self) -> InitFeatures {
6474 provided_init_features(&self.default_configuration)
6478 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6479 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6481 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6482 T::Target: BroadcasterInterface,
6483 ES::Target: EntropySource,
6484 NS::Target: NodeSigner,
6485 SP::Target: SignerProvider,
6486 F::Target: FeeEstimator,
6490 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6491 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6492 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6495 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
6496 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6497 "Dual-funded channels not supported".to_owned(),
6498 msg.temporary_channel_id.clone())), *counterparty_node_id);
6501 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6502 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6503 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6506 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
6507 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6508 "Dual-funded channels not supported".to_owned(),
6509 msg.temporary_channel_id.clone())), *counterparty_node_id);
6512 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6513 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6514 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6517 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6518 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6519 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6522 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6523 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6524 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6527 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6528 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6529 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6532 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6533 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6534 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6537 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6538 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6539 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6542 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6543 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6544 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6547 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6548 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6549 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6552 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6553 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6554 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6557 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6558 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6559 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6562 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6563 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6564 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6567 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6568 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6569 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6572 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6573 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6574 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6577 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6578 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6579 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6582 NotifyOption::SkipPersist
6587 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6588 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6589 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6592 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6593 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6594 let mut failed_channels = Vec::new();
6595 let mut per_peer_state = self.per_peer_state.write().unwrap();
6597 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6598 log_pubkey!(counterparty_node_id));
6599 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6600 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6601 let peer_state = &mut *peer_state_lock;
6602 let pending_msg_events = &mut peer_state.pending_msg_events;
6603 peer_state.channel_by_id.retain(|_, chan| {
6604 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6605 if chan.is_shutdown() {
6606 update_maps_on_chan_removal!(self, chan);
6607 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6612 pending_msg_events.retain(|msg| {
6614 // V1 Channel Establishment
6615 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6616 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6617 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6618 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6619 // V2 Channel Establishment
6620 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
6621 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
6622 // Common Channel Establishment
6623 &events::MessageSendEvent::SendChannelReady { .. } => false,
6624 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6625 // Interactive Transaction Construction
6626 &events::MessageSendEvent::SendTxAddInput { .. } => false,
6627 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
6628 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
6629 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
6630 &events::MessageSendEvent::SendTxComplete { .. } => false,
6631 &events::MessageSendEvent::SendTxSignatures { .. } => false,
6632 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
6633 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
6634 &events::MessageSendEvent::SendTxAbort { .. } => false,
6635 // Channel Operations
6636 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6637 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6638 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6639 &events::MessageSendEvent::SendShutdown { .. } => false,
6640 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6641 &events::MessageSendEvent::HandleError { .. } => false,
6643 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6644 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6645 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6646 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6647 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6648 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6649 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6650 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6651 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6654 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6655 peer_state.is_connected = false;
6656 peer_state.ok_to_remove(true)
6657 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6660 per_peer_state.remove(counterparty_node_id);
6662 mem::drop(per_peer_state);
6664 for failure in failed_channels.drain(..) {
6665 self.finish_force_close_channel(failure);
6669 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6670 if !init_msg.features.supports_static_remote_key() {
6671 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6675 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6677 // If we have too many peers connected which don't have funded channels, disconnect the
6678 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6679 // unfunded channels taking up space in memory for disconnected peers, we still let new
6680 // peers connect, but we'll reject new channels from them.
6681 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6682 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6685 let mut peer_state_lock = self.per_peer_state.write().unwrap();
6686 match peer_state_lock.entry(counterparty_node_id.clone()) {
6687 hash_map::Entry::Vacant(e) => {
6688 if inbound_peer_limited {
6691 e.insert(Mutex::new(PeerState {
6692 channel_by_id: HashMap::new(),
6693 latest_features: init_msg.features.clone(),
6694 pending_msg_events: Vec::new(),
6695 monitor_update_blocked_actions: BTreeMap::new(),
6699 hash_map::Entry::Occupied(e) => {
6700 let mut peer_state = e.get().lock().unwrap();
6701 peer_state.latest_features = init_msg.features.clone();
6703 let best_block_height = self.best_block.read().unwrap().height();
6704 if inbound_peer_limited &&
6705 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6706 peer_state.channel_by_id.len()
6711 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6712 peer_state.is_connected = true;
6717 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6719 let per_peer_state = self.per_peer_state.read().unwrap();
6720 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6721 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6722 let peer_state = &mut *peer_state_lock;
6723 let pending_msg_events = &mut peer_state.pending_msg_events;
6724 peer_state.channel_by_id.retain(|_, chan| {
6725 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6726 if !chan.have_received_message() {
6727 // If we created this (outbound) channel while we were disconnected from the
6728 // peer we probably failed to send the open_channel message, which is now
6729 // lost. We can't have had anything pending related to this channel, so we just
6733 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6734 node_id: chan.get_counterparty_node_id(),
6735 msg: chan.get_channel_reestablish(&self.logger),
6740 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6741 if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6742 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6743 pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6744 node_id: *counterparty_node_id,
6753 //TODO: Also re-broadcast announcement_signatures
6757 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6758 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6760 if msg.channel_id == [0; 32] {
6761 let channel_ids: Vec<[u8; 32]> = {
6762 let per_peer_state = self.per_peer_state.read().unwrap();
6763 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6764 if peer_state_mutex_opt.is_none() { return; }
6765 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6766 let peer_state = &mut *peer_state_lock;
6767 peer_state.channel_by_id.keys().cloned().collect()
6769 for channel_id in channel_ids {
6770 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6771 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6775 // First check if we can advance the channel type and try again.
6776 let per_peer_state = self.per_peer_state.read().unwrap();
6777 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6778 if peer_state_mutex_opt.is_none() { return; }
6779 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6780 let peer_state = &mut *peer_state_lock;
6781 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6782 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6783 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6784 node_id: *counterparty_node_id,
6792 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6793 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6797 fn provided_node_features(&self) -> NodeFeatures {
6798 provided_node_features(&self.default_configuration)
6801 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6802 provided_init_features(&self.default_configuration)
6805 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
6806 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6807 "Dual-funded channels not supported".to_owned(),
6808 msg.channel_id.clone())), *counterparty_node_id);
6811 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
6812 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6813 "Dual-funded channels not supported".to_owned(),
6814 msg.channel_id.clone())), *counterparty_node_id);
6817 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
6818 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6819 "Dual-funded channels not supported".to_owned(),
6820 msg.channel_id.clone())), *counterparty_node_id);
6823 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
6824 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6825 "Dual-funded channels not supported".to_owned(),
6826 msg.channel_id.clone())), *counterparty_node_id);
6829 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
6830 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6831 "Dual-funded channels not supported".to_owned(),
6832 msg.channel_id.clone())), *counterparty_node_id);
6835 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
6836 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6837 "Dual-funded channels not supported".to_owned(),
6838 msg.channel_id.clone())), *counterparty_node_id);
6841 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
6842 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6843 "Dual-funded channels not supported".to_owned(),
6844 msg.channel_id.clone())), *counterparty_node_id);
6847 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
6848 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6849 "Dual-funded channels not supported".to_owned(),
6850 msg.channel_id.clone())), *counterparty_node_id);
6853 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
6854 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
6855 "Dual-funded channels not supported".to_owned(),
6856 msg.channel_id.clone())), *counterparty_node_id);
6860 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6861 /// [`ChannelManager`].
6862 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6863 provided_init_features(config).to_context()
6866 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6867 /// [`ChannelManager`].
6869 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6870 /// or not. Thus, this method is not public.
6871 #[cfg(any(feature = "_test_utils", test))]
6872 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6873 provided_init_features(config).to_context()
6876 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6877 /// [`ChannelManager`].
6878 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6879 provided_init_features(config).to_context()
6882 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6883 /// [`ChannelManager`].
6884 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6885 ChannelTypeFeatures::from_init(&provided_init_features(config))
6888 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6889 /// [`ChannelManager`].
6890 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6891 // Note that if new features are added here which other peers may (eventually) require, we
6892 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
6893 // [`ErroringMessageHandler`].
6894 let mut features = InitFeatures::empty();
6895 features.set_data_loss_protect_required();
6896 features.set_upfront_shutdown_script_optional();
6897 features.set_variable_length_onion_required();
6898 features.set_static_remote_key_required();
6899 features.set_payment_secret_required();
6900 features.set_basic_mpp_optional();
6901 features.set_wumbo_optional();
6902 features.set_shutdown_any_segwit_optional();
6903 features.set_channel_type_optional();
6904 features.set_scid_privacy_optional();
6905 features.set_zero_conf_optional();
6907 { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6908 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6909 features.set_anchors_zero_fee_htlc_tx_optional();
6915 const SERIALIZATION_VERSION: u8 = 1;
6916 const MIN_SERIALIZATION_VERSION: u8 = 1;
6918 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6919 (2, fee_base_msat, required),
6920 (4, fee_proportional_millionths, required),
6921 (6, cltv_expiry_delta, required),
6924 impl_writeable_tlv_based!(ChannelCounterparty, {
6925 (2, node_id, required),
6926 (4, features, required),
6927 (6, unspendable_punishment_reserve, required),
6928 (8, forwarding_info, option),
6929 (9, outbound_htlc_minimum_msat, option),
6930 (11, outbound_htlc_maximum_msat, option),
6933 impl Writeable for ChannelDetails {
6934 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6935 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6936 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6937 let user_channel_id_low = self.user_channel_id as u64;
6938 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6939 write_tlv_fields!(writer, {
6940 (1, self.inbound_scid_alias, option),
6941 (2, self.channel_id, required),
6942 (3, self.channel_type, option),
6943 (4, self.counterparty, required),
6944 (5, self.outbound_scid_alias, option),
6945 (6, self.funding_txo, option),
6946 (7, self.config, option),
6947 (8, self.short_channel_id, option),
6948 (9, self.confirmations, option),
6949 (10, self.channel_value_satoshis, required),
6950 (12, self.unspendable_punishment_reserve, option),
6951 (14, user_channel_id_low, required),
6952 (16, self.balance_msat, required),
6953 (18, self.outbound_capacity_msat, required),
6954 // Note that by the time we get past the required read above, outbound_capacity_msat will be
6955 // filled in, so we can safely unwrap it here.
6956 (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6957 (20, self.inbound_capacity_msat, required),
6958 (22, self.confirmations_required, option),
6959 (24, self.force_close_spend_delay, option),
6960 (26, self.is_outbound, required),
6961 (28, self.is_channel_ready, required),
6962 (30, self.is_usable, required),
6963 (32, self.is_public, required),
6964 (33, self.inbound_htlc_minimum_msat, option),
6965 (35, self.inbound_htlc_maximum_msat, option),
6966 (37, user_channel_id_high_opt, option),
6967 (39, self.feerate_sat_per_1000_weight, option),
6973 impl Readable for ChannelDetails {
6974 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6975 _init_and_read_tlv_fields!(reader, {
6976 (1, inbound_scid_alias, option),
6977 (2, channel_id, required),
6978 (3, channel_type, option),
6979 (4, counterparty, required),
6980 (5, outbound_scid_alias, option),
6981 (6, funding_txo, option),
6982 (7, config, option),
6983 (8, short_channel_id, option),
6984 (9, confirmations, option),
6985 (10, channel_value_satoshis, required),
6986 (12, unspendable_punishment_reserve, option),
6987 (14, user_channel_id_low, required),
6988 (16, balance_msat, required),
6989 (18, outbound_capacity_msat, required),
6990 // Note that by the time we get past the required read above, outbound_capacity_msat will be
6991 // filled in, so we can safely unwrap it here.
6992 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6993 (20, inbound_capacity_msat, required),
6994 (22, confirmations_required, option),
6995 (24, force_close_spend_delay, option),
6996 (26, is_outbound, required),
6997 (28, is_channel_ready, required),
6998 (30, is_usable, required),
6999 (32, is_public, required),
7000 (33, inbound_htlc_minimum_msat, option),
7001 (35, inbound_htlc_maximum_msat, option),
7002 (37, user_channel_id_high_opt, option),
7003 (39, feerate_sat_per_1000_weight, option),
7006 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
7007 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
7008 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
7009 let user_channel_id = user_channel_id_low as u128 +
7010 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
7014 channel_id: channel_id.0.unwrap(),
7016 counterparty: counterparty.0.unwrap(),
7017 outbound_scid_alias,
7021 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
7022 unspendable_punishment_reserve,
7024 balance_msat: balance_msat.0.unwrap(),
7025 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
7026 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
7027 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
7028 confirmations_required,
7030 force_close_spend_delay,
7031 is_outbound: is_outbound.0.unwrap(),
7032 is_channel_ready: is_channel_ready.0.unwrap(),
7033 is_usable: is_usable.0.unwrap(),
7034 is_public: is_public.0.unwrap(),
7035 inbound_htlc_minimum_msat,
7036 inbound_htlc_maximum_msat,
7037 feerate_sat_per_1000_weight,
7042 impl_writeable_tlv_based!(PhantomRouteHints, {
7043 (2, channels, vec_type),
7044 (4, phantom_scid, required),
7045 (6, real_node_pubkey, required),
7048 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
7050 (0, onion_packet, required),
7051 (2, short_channel_id, required),
7054 (0, payment_data, required),
7055 (1, phantom_shared_secret, option),
7056 (2, incoming_cltv_expiry, required),
7057 (3, payment_metadata, option),
7059 (2, ReceiveKeysend) => {
7060 (0, payment_preimage, required),
7061 (2, incoming_cltv_expiry, required),
7062 (3, payment_metadata, option),
7066 impl_writeable_tlv_based!(PendingHTLCInfo, {
7067 (0, routing, required),
7068 (2, incoming_shared_secret, required),
7069 (4, payment_hash, required),
7070 (6, outgoing_amt_msat, required),
7071 (8, outgoing_cltv_value, required),
7072 (9, incoming_amt_msat, option),
7076 impl Writeable for HTLCFailureMsg {
7077 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7079 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
7081 channel_id.write(writer)?;
7082 htlc_id.write(writer)?;
7083 reason.write(writer)?;
7085 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
7086 channel_id, htlc_id, sha256_of_onion, failure_code
7089 channel_id.write(writer)?;
7090 htlc_id.write(writer)?;
7091 sha256_of_onion.write(writer)?;
7092 failure_code.write(writer)?;
7099 impl Readable for HTLCFailureMsg {
7100 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7101 let id: u8 = Readable::read(reader)?;
7104 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
7105 channel_id: Readable::read(reader)?,
7106 htlc_id: Readable::read(reader)?,
7107 reason: Readable::read(reader)?,
7111 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
7112 channel_id: Readable::read(reader)?,
7113 htlc_id: Readable::read(reader)?,
7114 sha256_of_onion: Readable::read(reader)?,
7115 failure_code: Readable::read(reader)?,
7118 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
7119 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
7120 // messages contained in the variants.
7121 // In version 0.0.101, support for reading the variants with these types was added, and
7122 // we should migrate to writing these variants when UpdateFailHTLC or
7123 // UpdateFailMalformedHTLC get TLV fields.
7125 let length: BigSize = Readable::read(reader)?;
7126 let mut s = FixedLengthReader::new(reader, length.0);
7127 let res = Readable::read(&mut s)?;
7128 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
7129 Ok(HTLCFailureMsg::Relay(res))
7132 let length: BigSize = Readable::read(reader)?;
7133 let mut s = FixedLengthReader::new(reader, length.0);
7134 let res = Readable::read(&mut s)?;
7135 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
7136 Ok(HTLCFailureMsg::Malformed(res))
7138 _ => Err(DecodeError::UnknownRequiredFeature),
7143 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
7148 impl_writeable_tlv_based!(HTLCPreviousHopData, {
7149 (0, short_channel_id, required),
7150 (1, phantom_shared_secret, option),
7151 (2, outpoint, required),
7152 (4, htlc_id, required),
7153 (6, incoming_packet_shared_secret, required)
7156 impl Writeable for ClaimableHTLC {
7157 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7158 let (payment_data, keysend_preimage) = match &self.onion_payload {
7159 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
7160 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
7162 write_tlv_fields!(writer, {
7163 (0, self.prev_hop, required),
7164 (1, self.total_msat, required),
7165 (2, self.value, required),
7166 (3, self.sender_intended_value, required),
7167 (4, payment_data, option),
7168 (5, self.total_value_received, option),
7169 (6, self.cltv_expiry, required),
7170 (8, keysend_preimage, option),
7176 impl Readable for ClaimableHTLC {
7177 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7178 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
7180 let mut sender_intended_value = None;
7181 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
7182 let mut cltv_expiry = 0;
7183 let mut total_value_received = None;
7184 let mut total_msat = None;
7185 let mut keysend_preimage: Option<PaymentPreimage> = None;
7186 read_tlv_fields!(reader, {
7187 (0, prev_hop, required),
7188 (1, total_msat, option),
7189 (2, value, required),
7190 (3, sender_intended_value, option),
7191 (4, payment_data, option),
7192 (5, total_value_received, option),
7193 (6, cltv_expiry, required),
7194 (8, keysend_preimage, option)
7196 let onion_payload = match keysend_preimage {
7198 if payment_data.is_some() {
7199 return Err(DecodeError::InvalidValue)
7201 if total_msat.is_none() {
7202 total_msat = Some(value);
7204 OnionPayload::Spontaneous(p)
7207 if total_msat.is_none() {
7208 if payment_data.is_none() {
7209 return Err(DecodeError::InvalidValue)
7211 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
7213 OnionPayload::Invoice { _legacy_hop_data: payment_data }
7217 prev_hop: prev_hop.0.unwrap(),
7220 sender_intended_value: sender_intended_value.unwrap_or(value),
7221 total_value_received,
7222 total_msat: total_msat.unwrap(),
7229 impl Readable for HTLCSource {
7230 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7231 let id: u8 = Readable::read(reader)?;
7234 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
7235 let mut first_hop_htlc_msat: u64 = 0;
7236 let mut path_hops: Option<Vec<RouteHop>> = Some(Vec::new());
7237 let mut payment_id = None;
7238 let mut payment_params: Option<PaymentParameters> = None;
7239 let mut blinded_tail: Option<BlindedTail> = None;
7240 read_tlv_fields!(reader, {
7241 (0, session_priv, required),
7242 (1, payment_id, option),
7243 (2, first_hop_htlc_msat, required),
7244 (4, path_hops, vec_type),
7245 (5, payment_params, (option: ReadableArgs, 0)),
7246 (6, blinded_tail, option),
7248 if payment_id.is_none() {
7249 // For backwards compat, if there was no payment_id written, use the session_priv bytes
7251 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
7253 let path = Path { hops: path_hops.ok_or(DecodeError::InvalidValue)?, blinded_tail };
7254 if path.hops.len() == 0 {
7255 return Err(DecodeError::InvalidValue);
7257 if let Some(params) = payment_params.as_mut() {
7258 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
7259 if final_cltv_expiry_delta == &0 {
7260 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
7264 Ok(HTLCSource::OutboundRoute {
7265 session_priv: session_priv.0.unwrap(),
7266 first_hop_htlc_msat,
7268 payment_id: payment_id.unwrap(),
7271 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
7272 _ => Err(DecodeError::UnknownRequiredFeature),
7277 impl Writeable for HTLCSource {
7278 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
7280 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
7282 let payment_id_opt = Some(payment_id);
7283 write_tlv_fields!(writer, {
7284 (0, session_priv, required),
7285 (1, payment_id_opt, option),
7286 (2, first_hop_htlc_msat, required),
7287 // 3 was previously used to write a PaymentSecret for the payment.
7288 (4, path.hops, vec_type),
7289 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
7290 (6, path.blinded_tail, option),
7293 HTLCSource::PreviousHopData(ref field) => {
7295 field.write(writer)?;
7302 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
7303 (0, forward_info, required),
7304 (1, prev_user_channel_id, (default_value, 0)),
7305 (2, prev_short_channel_id, required),
7306 (4, prev_htlc_id, required),
7307 (6, prev_funding_outpoint, required),
7310 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
7312 (0, htlc_id, required),
7313 (2, err_packet, required),
7318 impl_writeable_tlv_based!(PendingInboundPayment, {
7319 (0, payment_secret, required),
7320 (2, expiry_time, required),
7321 (4, user_payment_id, required),
7322 (6, payment_preimage, required),
7323 (8, min_value_msat, required),
7326 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
7328 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7329 T::Target: BroadcasterInterface,
7330 ES::Target: EntropySource,
7331 NS::Target: NodeSigner,
7332 SP::Target: SignerProvider,
7333 F::Target: FeeEstimator,
7337 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7338 let _consistency_lock = self.total_consistency_lock.write().unwrap();
7340 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
7342 self.genesis_hash.write(writer)?;
7344 let best_block = self.best_block.read().unwrap();
7345 best_block.height().write(writer)?;
7346 best_block.block_hash().write(writer)?;
7349 let mut serializable_peer_count: u64 = 0;
7351 let per_peer_state = self.per_peer_state.read().unwrap();
7352 let mut unfunded_channels = 0;
7353 let mut number_of_channels = 0;
7354 for (_, peer_state_mutex) in per_peer_state.iter() {
7355 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7356 let peer_state = &mut *peer_state_lock;
7357 if !peer_state.ok_to_remove(false) {
7358 serializable_peer_count += 1;
7360 number_of_channels += peer_state.channel_by_id.len();
7361 for (_, channel) in peer_state.channel_by_id.iter() {
7362 if !channel.is_funding_initiated() {
7363 unfunded_channels += 1;
7368 ((number_of_channels - unfunded_channels) as u64).write(writer)?;
7370 for (_, peer_state_mutex) in per_peer_state.iter() {
7371 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7372 let peer_state = &mut *peer_state_lock;
7373 for (_, channel) in peer_state.channel_by_id.iter() {
7374 if channel.is_funding_initiated() {
7375 channel.write(writer)?;
7382 let forward_htlcs = self.forward_htlcs.lock().unwrap();
7383 (forward_htlcs.len() as u64).write(writer)?;
7384 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
7385 short_channel_id.write(writer)?;
7386 (pending_forwards.len() as u64).write(writer)?;
7387 for forward in pending_forwards {
7388 forward.write(writer)?;
7393 let per_peer_state = self.per_peer_state.write().unwrap();
7395 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
7396 let claimable_payments = self.claimable_payments.lock().unwrap();
7397 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
7399 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
7400 let mut htlc_onion_fields: Vec<&_> = Vec::new();
7401 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
7402 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
7403 payment_hash.write(writer)?;
7404 (payment.htlcs.len() as u64).write(writer)?;
7405 for htlc in payment.htlcs.iter() {
7406 htlc.write(writer)?;
7408 htlc_purposes.push(&payment.purpose);
7409 htlc_onion_fields.push(&payment.onion_fields);
7412 let mut monitor_update_blocked_actions_per_peer = None;
7413 let mut peer_states = Vec::new();
7414 for (_, peer_state_mutex) in per_peer_state.iter() {
7415 // Because we're holding the owning `per_peer_state` write lock here there's no chance
7416 // of a lockorder violation deadlock - no other thread can be holding any
7417 // per_peer_state lock at all.
7418 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7421 (serializable_peer_count).write(writer)?;
7422 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7423 // Peers which we have no channels to should be dropped once disconnected. As we
7424 // disconnect all peers when shutting down and serializing the ChannelManager, we
7425 // consider all peers as disconnected here. There's therefore no need write peers with
7427 if !peer_state.ok_to_remove(false) {
7428 peer_pubkey.write(writer)?;
7429 peer_state.latest_features.write(writer)?;
7430 if !peer_state.monitor_update_blocked_actions.is_empty() {
7431 monitor_update_blocked_actions_per_peer
7432 .get_or_insert_with(Vec::new)
7433 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7438 let events = self.pending_events.lock().unwrap();
7439 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
7440 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
7441 // refuse to read the new ChannelManager.
7442 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
7443 if events_not_backwards_compatible {
7444 // If we're gonna write a even TLV that will overwrite our events anyway we might as
7445 // well save the space and not write any events here.
7446 0u64.write(writer)?;
7448 (events.len() as u64).write(writer)?;
7449 for (event, _) in events.iter() {
7450 event.write(writer)?;
7454 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
7455 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
7456 // the closing monitor updates were always effectively replayed on startup (either directly
7457 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
7458 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
7459 0u64.write(writer)?;
7461 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7462 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7463 // likely to be identical.
7464 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7465 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7467 (pending_inbound_payments.len() as u64).write(writer)?;
7468 for (hash, pending_payment) in pending_inbound_payments.iter() {
7469 hash.write(writer)?;
7470 pending_payment.write(writer)?;
7473 // For backwards compat, write the session privs and their total length.
7474 let mut num_pending_outbounds_compat: u64 = 0;
7475 for (_, outbound) in pending_outbound_payments.iter() {
7476 if !outbound.is_fulfilled() && !outbound.abandoned() {
7477 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7480 num_pending_outbounds_compat.write(writer)?;
7481 for (_, outbound) in pending_outbound_payments.iter() {
7483 PendingOutboundPayment::Legacy { session_privs } |
7484 PendingOutboundPayment::Retryable { session_privs, .. } => {
7485 for session_priv in session_privs.iter() {
7486 session_priv.write(writer)?;
7489 PendingOutboundPayment::Fulfilled { .. } => {},
7490 PendingOutboundPayment::Abandoned { .. } => {},
7494 // Encode without retry info for 0.0.101 compatibility.
7495 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7496 for (id, outbound) in pending_outbound_payments.iter() {
7498 PendingOutboundPayment::Legacy { session_privs } |
7499 PendingOutboundPayment::Retryable { session_privs, .. } => {
7500 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7506 let mut pending_intercepted_htlcs = None;
7507 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7508 if our_pending_intercepts.len() != 0 {
7509 pending_intercepted_htlcs = Some(our_pending_intercepts);
7512 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7513 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7514 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7515 // map. Thus, if there are no entries we skip writing a TLV for it.
7516 pending_claiming_payments = None;
7519 write_tlv_fields!(writer, {
7520 (1, pending_outbound_payments_no_retry, required),
7521 (2, pending_intercepted_htlcs, option),
7522 (3, pending_outbound_payments, required),
7523 (4, pending_claiming_payments, option),
7524 (5, self.our_network_pubkey, required),
7525 (6, monitor_update_blocked_actions_per_peer, option),
7526 (7, self.fake_scid_rand_bytes, required),
7527 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
7528 (9, htlc_purposes, vec_type),
7529 (11, self.probing_cookie_secret, required),
7530 (13, htlc_onion_fields, optional_vec),
7537 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
7538 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
7539 (self.len() as u64).write(w)?;
7540 for (event, action) in self.iter() {
7543 #[cfg(debug_assertions)] {
7544 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
7545 // be persisted and are regenerated on restart. However, if such an event has a
7546 // post-event-handling action we'll write nothing for the event and would have to
7547 // either forget the action or fail on deserialization (which we do below). Thus,
7548 // check that the event is sane here.
7549 let event_encoded = event.encode();
7550 let event_read: Option<Event> =
7551 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
7552 if action.is_some() { assert!(event_read.is_some()); }
7558 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
7559 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
7560 let len: u64 = Readable::read(reader)?;
7561 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
7562 let mut events: Self = VecDeque::with_capacity(cmp::min(
7563 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
7566 let ev_opt = MaybeReadable::read(reader)?;
7567 let action = Readable::read(reader)?;
7568 if let Some(ev) = ev_opt {
7569 events.push_back((ev, action));
7570 } else if action.is_some() {
7571 return Err(DecodeError::InvalidValue);
7578 /// Arguments for the creation of a ChannelManager that are not deserialized.
7580 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7582 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7583 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7584 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
7585 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7586 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7587 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7588 /// same way you would handle a [`chain::Filter`] call using
7589 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7590 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7591 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7592 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7593 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7594 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7596 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7597 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7599 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7600 /// call any other methods on the newly-deserialized [`ChannelManager`].
7602 /// Note that because some channels may be closed during deserialization, it is critical that you
7603 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7604 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7605 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7606 /// not force-close the same channels but consider them live), you may end up revoking a state for
7607 /// which you've already broadcasted the transaction.
7609 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7610 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7612 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7613 T::Target: BroadcasterInterface,
7614 ES::Target: EntropySource,
7615 NS::Target: NodeSigner,
7616 SP::Target: SignerProvider,
7617 F::Target: FeeEstimator,
7621 /// A cryptographically secure source of entropy.
7622 pub entropy_source: ES,
7624 /// A signer that is able to perform node-scoped cryptographic operations.
7625 pub node_signer: NS,
7627 /// The keys provider which will give us relevant keys. Some keys will be loaded during
7628 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7630 pub signer_provider: SP,
7632 /// The fee_estimator for use in the ChannelManager in the future.
7634 /// No calls to the FeeEstimator will be made during deserialization.
7635 pub fee_estimator: F,
7636 /// The chain::Watch for use in the ChannelManager in the future.
7638 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7639 /// you have deserialized ChannelMonitors separately and will add them to your
7640 /// chain::Watch after deserializing this ChannelManager.
7641 pub chain_monitor: M,
7643 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7644 /// used to broadcast the latest local commitment transactions of channels which must be
7645 /// force-closed during deserialization.
7646 pub tx_broadcaster: T,
7647 /// The router which will be used in the ChannelManager in the future for finding routes
7648 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7650 /// No calls to the router will be made during deserialization.
7652 /// The Logger for use in the ChannelManager and which may be used to log information during
7653 /// deserialization.
7655 /// Default settings used for new channels. Any existing channels will continue to use the
7656 /// runtime settings which were stored when the ChannelManager was serialized.
7657 pub default_config: UserConfig,
7659 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7660 /// value.get_funding_txo() should be the key).
7662 /// If a monitor is inconsistent with the channel state during deserialization the channel will
7663 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7664 /// is true for missing channels as well. If there is a monitor missing for which we find
7665 /// channel data Err(DecodeError::InvalidValue) will be returned.
7667 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7670 /// This is not exported to bindings users because we have no HashMap bindings
7671 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7674 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7675 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7677 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7678 T::Target: BroadcasterInterface,
7679 ES::Target: EntropySource,
7680 NS::Target: NodeSigner,
7681 SP::Target: SignerProvider,
7682 F::Target: FeeEstimator,
7686 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7687 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7688 /// populate a HashMap directly from C.
7689 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7690 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7692 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7693 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7698 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7699 // SipmleArcChannelManager type:
7700 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7701 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7703 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7704 T::Target: BroadcasterInterface,
7705 ES::Target: EntropySource,
7706 NS::Target: NodeSigner,
7707 SP::Target: SignerProvider,
7708 F::Target: FeeEstimator,
7712 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7713 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7714 Ok((blockhash, Arc::new(chan_manager)))
7718 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7719 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7721 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7722 T::Target: BroadcasterInterface,
7723 ES::Target: EntropySource,
7724 NS::Target: NodeSigner,
7725 SP::Target: SignerProvider,
7726 F::Target: FeeEstimator,
7730 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7731 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7733 let genesis_hash: BlockHash = Readable::read(reader)?;
7734 let best_block_height: u32 = Readable::read(reader)?;
7735 let best_block_hash: BlockHash = Readable::read(reader)?;
7737 let mut failed_htlcs = Vec::new();
7739 let channel_count: u64 = Readable::read(reader)?;
7740 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7741 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7742 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7743 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7744 let mut channel_closures = VecDeque::new();
7745 let mut pending_background_events = Vec::new();
7746 for _ in 0..channel_count {
7747 let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7748 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7750 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7751 funding_txo_set.insert(funding_txo.clone());
7752 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7753 if channel.get_latest_complete_monitor_update_id() > monitor.get_latest_update_id() {
7754 // If the channel is ahead of the monitor, return InvalidValue:
7755 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7756 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7757 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_complete_monitor_update_id());
7758 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7759 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7760 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7761 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7762 return Err(DecodeError::InvalidValue);
7763 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7764 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7765 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7766 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7767 // But if the channel is behind of the monitor, close the channel:
7768 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7769 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7770 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7771 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7772 let (monitor_update, mut new_failed_htlcs) = channel.force_shutdown(true);
7773 if let Some(monitor_update) = monitor_update {
7774 pending_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup(monitor_update));
7776 failed_htlcs.append(&mut new_failed_htlcs);
7777 channel_closures.push_back((events::Event::ChannelClosed {
7778 channel_id: channel.channel_id(),
7779 user_channel_id: channel.get_user_id(),
7780 reason: ClosureReason::OutdatedChannelManager
7782 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7783 let mut found_htlc = false;
7784 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7785 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7788 // If we have some HTLCs in the channel which are not present in the newer
7789 // ChannelMonitor, they have been removed and should be failed back to
7790 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7791 // were actually claimed we'd have generated and ensured the previous-hop
7792 // claim update ChannelMonitor updates were persisted prior to persising
7793 // the ChannelMonitor update for the forward leg, so attempting to fail the
7794 // backwards leg of the HTLC will simply be rejected.
7795 log_info!(args.logger,
7796 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7797 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7798 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7802 log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7803 if let Some(short_channel_id) = channel.get_short_channel_id() {
7804 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7806 if channel.is_funding_initiated() {
7807 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7809 match peer_channels.entry(channel.get_counterparty_node_id()) {
7810 hash_map::Entry::Occupied(mut entry) => {
7811 let by_id_map = entry.get_mut();
7812 by_id_map.insert(channel.channel_id(), channel);
7814 hash_map::Entry::Vacant(entry) => {
7815 let mut by_id_map = HashMap::new();
7816 by_id_map.insert(channel.channel_id(), channel);
7817 entry.insert(by_id_map);
7821 } else if channel.is_awaiting_initial_mon_persist() {
7822 // If we were persisted and shut down while the initial ChannelMonitor persistence
7823 // was in-progress, we never broadcasted the funding transaction and can still
7824 // safely discard the channel.
7825 let _ = channel.force_shutdown(false);
7826 channel_closures.push_back((events::Event::ChannelClosed {
7827 channel_id: channel.channel_id(),
7828 user_channel_id: channel.get_user_id(),
7829 reason: ClosureReason::DisconnectedPeer,
7832 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7833 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7834 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7835 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7836 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7837 return Err(DecodeError::InvalidValue);
7841 for (funding_txo, _) in args.channel_monitors.iter() {
7842 if !funding_txo_set.contains(funding_txo) {
7843 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
7844 log_bytes!(funding_txo.to_channel_id()));
7845 let monitor_update = ChannelMonitorUpdate {
7846 update_id: CLOSED_CHANNEL_UPDATE_ID,
7847 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
7849 pending_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
7853 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7854 let forward_htlcs_count: u64 = Readable::read(reader)?;
7855 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7856 for _ in 0..forward_htlcs_count {
7857 let short_channel_id = Readable::read(reader)?;
7858 let pending_forwards_count: u64 = Readable::read(reader)?;
7859 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7860 for _ in 0..pending_forwards_count {
7861 pending_forwards.push(Readable::read(reader)?);
7863 forward_htlcs.insert(short_channel_id, pending_forwards);
7866 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7867 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7868 for _ in 0..claimable_htlcs_count {
7869 let payment_hash = Readable::read(reader)?;
7870 let previous_hops_len: u64 = Readable::read(reader)?;
7871 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7872 for _ in 0..previous_hops_len {
7873 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7875 claimable_htlcs_list.push((payment_hash, previous_hops));
7878 let peer_count: u64 = Readable::read(reader)?;
7879 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7880 for _ in 0..peer_count {
7881 let peer_pubkey = Readable::read(reader)?;
7882 let peer_state = PeerState {
7883 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7884 latest_features: Readable::read(reader)?,
7885 pending_msg_events: Vec::new(),
7886 monitor_update_blocked_actions: BTreeMap::new(),
7887 is_connected: false,
7889 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7892 let event_count: u64 = Readable::read(reader)?;
7893 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
7894 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
7895 for _ in 0..event_count {
7896 match MaybeReadable::read(reader)? {
7897 Some(event) => pending_events_read.push_back((event, None)),
7902 let background_event_count: u64 = Readable::read(reader)?;
7903 for _ in 0..background_event_count {
7904 match <u8 as Readable>::read(reader)? {
7906 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
7907 // however we really don't (and never did) need them - we regenerate all
7908 // on-startup monitor updates.
7909 let _: OutPoint = Readable::read(reader)?;
7910 let _: ChannelMonitorUpdate = Readable::read(reader)?;
7912 _ => return Err(DecodeError::InvalidValue),
7916 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7917 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7919 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7920 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7921 for _ in 0..pending_inbound_payment_count {
7922 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7923 return Err(DecodeError::InvalidValue);
7927 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7928 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7929 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7930 for _ in 0..pending_outbound_payments_count_compat {
7931 let session_priv = Readable::read(reader)?;
7932 let payment = PendingOutboundPayment::Legacy {
7933 session_privs: [session_priv].iter().cloned().collect()
7935 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7936 return Err(DecodeError::InvalidValue)
7940 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7941 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7942 let mut pending_outbound_payments = None;
7943 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7944 let mut received_network_pubkey: Option<PublicKey> = None;
7945 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7946 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7947 let mut claimable_htlc_purposes = None;
7948 let mut claimable_htlc_onion_fields = None;
7949 let mut pending_claiming_payments = Some(HashMap::new());
7950 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7951 let mut events_override = None;
7952 read_tlv_fields!(reader, {
7953 (1, pending_outbound_payments_no_retry, option),
7954 (2, pending_intercepted_htlcs, option),
7955 (3, pending_outbound_payments, option),
7956 (4, pending_claiming_payments, option),
7957 (5, received_network_pubkey, option),
7958 (6, monitor_update_blocked_actions_per_peer, option),
7959 (7, fake_scid_rand_bytes, option),
7960 (8, events_override, option),
7961 (9, claimable_htlc_purposes, vec_type),
7962 (11, probing_cookie_secret, option),
7963 (13, claimable_htlc_onion_fields, optional_vec),
7965 if fake_scid_rand_bytes.is_none() {
7966 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7969 if probing_cookie_secret.is_none() {
7970 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7973 if let Some(events) = events_override {
7974 pending_events_read = events;
7977 if !channel_closures.is_empty() {
7978 pending_events_read.append(&mut channel_closures);
7981 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7982 pending_outbound_payments = Some(pending_outbound_payments_compat);
7983 } else if pending_outbound_payments.is_none() {
7984 let mut outbounds = HashMap::new();
7985 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7986 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7988 pending_outbound_payments = Some(outbounds);
7990 let pending_outbounds = OutboundPayments {
7991 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7992 retry_lock: Mutex::new(())
7996 // If we're tracking pending payments, ensure we haven't lost any by looking at the
7997 // ChannelMonitor data for any channels for which we do not have authorative state
7998 // (i.e. those for which we just force-closed above or we otherwise don't have a
7999 // corresponding `Channel` at all).
8000 // This avoids several edge-cases where we would otherwise "forget" about pending
8001 // payments which are still in-flight via their on-chain state.
8002 // We only rebuild the pending payments map if we were most recently serialized by
8004 for (_, monitor) in args.channel_monitors.iter() {
8005 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
8006 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
8007 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
8008 if path.hops.is_empty() {
8009 log_error!(args.logger, "Got an empty path for a pending payment");
8010 return Err(DecodeError::InvalidValue);
8013 let path_amt = path.final_value_msat();
8014 let mut session_priv_bytes = [0; 32];
8015 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
8016 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
8017 hash_map::Entry::Occupied(mut entry) => {
8018 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
8019 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
8020 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
8022 hash_map::Entry::Vacant(entry) => {
8023 let path_fee = path.fee_msat();
8024 entry.insert(PendingOutboundPayment::Retryable {
8025 retry_strategy: None,
8026 attempts: PaymentAttempts::new(),
8027 payment_params: None,
8028 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
8029 payment_hash: htlc.payment_hash,
8030 payment_secret: None, // only used for retries, and we'll never retry on startup
8031 payment_metadata: None, // only used for retries, and we'll never retry on startup
8032 keysend_preimage: None, // only used for retries, and we'll never retry on startup
8033 pending_amt_msat: path_amt,
8034 pending_fee_msat: Some(path_fee),
8035 total_msat: path_amt,
8036 starting_block_height: best_block_height,
8038 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
8039 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
8044 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
8046 HTLCSource::PreviousHopData(prev_hop_data) => {
8047 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
8048 info.prev_funding_outpoint == prev_hop_data.outpoint &&
8049 info.prev_htlc_id == prev_hop_data.htlc_id
8051 // The ChannelMonitor is now responsible for this HTLC's
8052 // failure/success and will let us know what its outcome is. If we
8053 // still have an entry for this HTLC in `forward_htlcs` or
8054 // `pending_intercepted_htlcs`, we were apparently not persisted after
8055 // the monitor was when forwarding the payment.
8056 forward_htlcs.retain(|_, forwards| {
8057 forwards.retain(|forward| {
8058 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
8059 if pending_forward_matches_htlc(&htlc_info) {
8060 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
8061 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
8066 !forwards.is_empty()
8068 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
8069 if pending_forward_matches_htlc(&htlc_info) {
8070 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
8071 log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
8072 pending_events_read.retain(|(event, _)| {
8073 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
8074 intercepted_id != ev_id
8081 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
8082 if let Some(preimage) = preimage_opt {
8083 let pending_events = Mutex::new(pending_events_read);
8084 // Note that we set `from_onchain` to "false" here,
8085 // deliberately keeping the pending payment around forever.
8086 // Given it should only occur when we have a channel we're
8087 // force-closing for being stale that's okay.
8088 // The alternative would be to wipe the state when claiming,
8089 // generating a `PaymentPathSuccessful` event but regenerating
8090 // it and the `PaymentSent` on every restart until the
8091 // `ChannelMonitor` is removed.
8092 pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
8093 pending_events_read = pending_events.into_inner().unwrap();
8102 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
8103 // If we have pending HTLCs to forward, assume we either dropped a
8104 // `PendingHTLCsForwardable` or the user received it but never processed it as they
8105 // shut down before the timer hit. Either way, set the time_forwardable to a small
8106 // constant as enough time has likely passed that we should simply handle the forwards
8107 // now, or at least after the user gets a chance to reconnect to our peers.
8108 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
8109 time_forwardable: Duration::from_secs(2),
8113 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
8114 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
8116 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
8117 if let Some(purposes) = claimable_htlc_purposes {
8118 if purposes.len() != claimable_htlcs_list.len() {
8119 return Err(DecodeError::InvalidValue);
8121 if let Some(onion_fields) = claimable_htlc_onion_fields {
8122 if onion_fields.len() != claimable_htlcs_list.len() {
8123 return Err(DecodeError::InvalidValue);
8125 for (purpose, (onion, (payment_hash, htlcs))) in
8126 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
8128 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
8129 purpose, htlcs, onion_fields: onion,
8131 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
8134 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
8135 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
8136 purpose, htlcs, onion_fields: None,
8138 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
8142 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
8143 // include a `_legacy_hop_data` in the `OnionPayload`.
8144 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
8145 if htlcs.is_empty() {
8146 return Err(DecodeError::InvalidValue);
8148 let purpose = match &htlcs[0].onion_payload {
8149 OnionPayload::Invoice { _legacy_hop_data } => {
8150 if let Some(hop_data) = _legacy_hop_data {
8151 events::PaymentPurpose::InvoicePayment {
8152 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
8153 Some(inbound_payment) => inbound_payment.payment_preimage,
8154 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
8155 Ok((payment_preimage, _)) => payment_preimage,
8157 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
8158 return Err(DecodeError::InvalidValue);
8162 payment_secret: hop_data.payment_secret,
8164 } else { return Err(DecodeError::InvalidValue); }
8166 OnionPayload::Spontaneous(payment_preimage) =>
8167 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
8169 claimable_payments.insert(payment_hash, ClaimablePayment {
8170 purpose, htlcs, onion_fields: None,
8175 let mut secp_ctx = Secp256k1::new();
8176 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
8178 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
8180 Err(()) => return Err(DecodeError::InvalidValue)
8182 if let Some(network_pubkey) = received_network_pubkey {
8183 if network_pubkey != our_network_pubkey {
8184 log_error!(args.logger, "Key that was generated does not match the existing key.");
8185 return Err(DecodeError::InvalidValue);
8189 let mut outbound_scid_aliases = HashSet::new();
8190 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
8191 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8192 let peer_state = &mut *peer_state_lock;
8193 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
8194 if chan.outbound_scid_alias() == 0 {
8195 let mut outbound_scid_alias;
8197 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
8198 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
8199 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
8201 chan.set_outbound_scid_alias(outbound_scid_alias);
8202 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
8203 // Note that in rare cases its possible to hit this while reading an older
8204 // channel if we just happened to pick a colliding outbound alias above.
8205 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
8206 return Err(DecodeError::InvalidValue);
8208 if chan.is_usable() {
8209 if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
8210 // Note that in rare cases its possible to hit this while reading an older
8211 // channel if we just happened to pick a colliding outbound alias above.
8212 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
8213 return Err(DecodeError::InvalidValue);
8219 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
8221 for (_, monitor) in args.channel_monitors.iter() {
8222 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
8223 if let Some(payment) = claimable_payments.remove(&payment_hash) {
8224 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
8225 let mut claimable_amt_msat = 0;
8226 let mut receiver_node_id = Some(our_network_pubkey);
8227 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
8228 if phantom_shared_secret.is_some() {
8229 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
8230 .expect("Failed to get node_id for phantom node recipient");
8231 receiver_node_id = Some(phantom_pubkey)
8233 for claimable_htlc in payment.htlcs {
8234 claimable_amt_msat += claimable_htlc.value;
8236 // Add a holding-cell claim of the payment to the Channel, which should be
8237 // applied ~immediately on peer reconnection. Because it won't generate a
8238 // new commitment transaction we can just provide the payment preimage to
8239 // the corresponding ChannelMonitor and nothing else.
8241 // We do so directly instead of via the normal ChannelMonitor update
8242 // procedure as the ChainMonitor hasn't yet been initialized, implying
8243 // we're not allowed to call it directly yet. Further, we do the update
8244 // without incrementing the ChannelMonitor update ID as there isn't any
8246 // If we were to generate a new ChannelMonitor update ID here and then
8247 // crash before the user finishes block connect we'd end up force-closing
8248 // this channel as well. On the flip side, there's no harm in restarting
8249 // without the new monitor persisted - we'll end up right back here on
8251 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
8252 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
8253 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
8254 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8255 let peer_state = &mut *peer_state_lock;
8256 if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
8257 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
8260 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
8261 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
8264 pending_events_read.push_back((events::Event::PaymentClaimed {
8267 purpose: payment.purpose,
8268 amount_msat: claimable_amt_msat,
8274 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
8275 if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
8276 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
8278 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
8279 return Err(DecodeError::InvalidValue);
8283 let channel_manager = ChannelManager {
8285 fee_estimator: bounded_fee_estimator,
8286 chain_monitor: args.chain_monitor,
8287 tx_broadcaster: args.tx_broadcaster,
8288 router: args.router,
8290 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
8292 inbound_payment_key: expanded_inbound_key,
8293 pending_inbound_payments: Mutex::new(pending_inbound_payments),
8294 pending_outbound_payments: pending_outbounds,
8295 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
8297 forward_htlcs: Mutex::new(forward_htlcs),
8298 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
8299 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
8300 id_to_peer: Mutex::new(id_to_peer),
8301 short_to_chan_info: FairRwLock::new(short_to_chan_info),
8302 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
8304 probing_cookie_secret: probing_cookie_secret.unwrap(),
8309 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
8311 per_peer_state: FairRwLock::new(per_peer_state),
8313 pending_events: Mutex::new(pending_events_read),
8314 pending_events_processor: AtomicBool::new(false),
8315 pending_background_events: Mutex::new(pending_background_events),
8316 total_consistency_lock: RwLock::new(()),
8317 persistence_notifier: Notifier::new(),
8319 entropy_source: args.entropy_source,
8320 node_signer: args.node_signer,
8321 signer_provider: args.signer_provider,
8323 logger: args.logger,
8324 default_configuration: args.default_config,
8327 for htlc_source in failed_htlcs.drain(..) {
8328 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
8329 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
8330 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8331 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
8334 //TODO: Broadcast channel update for closed channels, but only after we've made a
8335 //connection or two.
8337 Ok((best_block_hash.clone(), channel_manager))
8343 use bitcoin::hashes::Hash;
8344 use bitcoin::hashes::sha256::Hash as Sha256;
8345 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
8346 use core::sync::atomic::Ordering;
8347 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
8348 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
8349 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
8350 use crate::ln::functional_test_utils::*;
8351 use crate::ln::msgs;
8352 use crate::ln::msgs::ChannelMessageHandler;
8353 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
8354 use crate::util::errors::APIError;
8355 use crate::util::test_utils;
8356 use crate::util::config::ChannelConfig;
8357 use crate::sign::EntropySource;
8360 fn test_notify_limits() {
8361 // Check that a few cases which don't require the persistence of a new ChannelManager,
8362 // indeed, do not cause the persistence of a new ChannelManager.
8363 let chanmon_cfgs = create_chanmon_cfgs(3);
8364 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
8365 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
8366 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
8368 // All nodes start with a persistable update pending as `create_network` connects each node
8369 // with all other nodes to make most tests simpler.
8370 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8371 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8372 assert!(nodes[2].node.get_persistable_update_future().poll_is_complete());
8374 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8376 // We check that the channel info nodes have doesn't change too early, even though we try
8377 // to connect messages with new values
8378 chan.0.contents.fee_base_msat *= 2;
8379 chan.1.contents.fee_base_msat *= 2;
8380 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
8381 &nodes[1].node.get_our_node_id()).pop().unwrap();
8382 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
8383 &nodes[0].node.get_our_node_id()).pop().unwrap();
8385 // The first two nodes (which opened a channel) should now require fresh persistence
8386 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8387 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8388 // ... but the last node should not.
8389 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8390 // After persisting the first two nodes they should no longer need fresh persistence.
8391 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8392 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8394 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
8395 // about the channel.
8396 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
8397 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
8398 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
8400 // The nodes which are a party to the channel should also ignore messages from unrelated
8402 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8403 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8404 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8405 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8406 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8407 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8409 // At this point the channel info given by peers should still be the same.
8410 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8411 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8413 // An earlier version of handle_channel_update didn't check the directionality of the
8414 // update message and would always update the local fee info, even if our peer was
8415 // (spuriously) forwarding us our own channel_update.
8416 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
8417 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
8418 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
8420 // First deliver each peers' own message, checking that the node doesn't need to be
8421 // persisted and that its channel info remains the same.
8422 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
8423 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
8424 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8425 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8426 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8427 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8429 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
8430 // the channel info has updated.
8431 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
8432 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
8433 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8434 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8435 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
8436 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
8440 fn test_keysend_dup_hash_partial_mpp() {
8441 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
8443 let chanmon_cfgs = create_chanmon_cfgs(2);
8444 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8445 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8446 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8447 create_announced_chan_between_nodes(&nodes, 0, 1);
8449 // First, send a partial MPP payment.
8450 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
8451 let mut mpp_route = route.clone();
8452 mpp_route.paths.push(mpp_route.paths[0].clone());
8454 let payment_id = PaymentId([42; 32]);
8455 // Use the utility function send_payment_along_path to send the payment with MPP data which
8456 // indicates there are more HTLCs coming.
8457 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
8458 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
8459 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
8460 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
8461 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
8462 check_added_monitors!(nodes[0], 1);
8463 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8464 assert_eq!(events.len(), 1);
8465 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
8467 // Next, send a keysend payment with the same payment_hash and make sure it fails.
8468 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8469 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8470 check_added_monitors!(nodes[0], 1);
8471 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8472 assert_eq!(events.len(), 1);
8473 let ev = events.drain(..).next().unwrap();
8474 let payment_event = SendEvent::from_event(ev);
8475 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8476 check_added_monitors!(nodes[1], 0);
8477 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8478 expect_pending_htlcs_forwardable!(nodes[1]);
8479 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
8480 check_added_monitors!(nodes[1], 1);
8481 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8482 assert!(updates.update_add_htlcs.is_empty());
8483 assert!(updates.update_fulfill_htlcs.is_empty());
8484 assert_eq!(updates.update_fail_htlcs.len(), 1);
8485 assert!(updates.update_fail_malformed_htlcs.is_empty());
8486 assert!(updates.update_fee.is_none());
8487 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8488 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8489 expect_payment_failed!(nodes[0], our_payment_hash, true);
8491 // Send the second half of the original MPP payment.
8492 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
8493 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
8494 check_added_monitors!(nodes[0], 1);
8495 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8496 assert_eq!(events.len(), 1);
8497 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
8499 // Claim the full MPP payment. Note that we can't use a test utility like
8500 // claim_funds_along_route because the ordering of the messages causes the second half of the
8501 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
8502 // lightning messages manually.
8503 nodes[1].node.claim_funds(payment_preimage);
8504 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
8505 check_added_monitors!(nodes[1], 2);
8507 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8508 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
8509 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
8510 check_added_monitors!(nodes[0], 1);
8511 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8512 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
8513 check_added_monitors!(nodes[1], 1);
8514 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8515 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
8516 check_added_monitors!(nodes[1], 1);
8517 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8518 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
8519 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
8520 check_added_monitors!(nodes[0], 1);
8521 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
8522 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
8523 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8524 check_added_monitors!(nodes[0], 1);
8525 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8526 check_added_monitors!(nodes[1], 1);
8527 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8528 check_added_monitors!(nodes[1], 1);
8529 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8530 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8531 check_added_monitors!(nodes[0], 1);
8533 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8534 // path's success and a PaymentPathSuccessful event for each path's success.
8535 let events = nodes[0].node.get_and_clear_pending_events();
8536 assert_eq!(events.len(), 3);
8538 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8539 assert_eq!(Some(payment_id), *id);
8540 assert_eq!(payment_preimage, *preimage);
8541 assert_eq!(our_payment_hash, *hash);
8543 _ => panic!("Unexpected event"),
8546 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8547 assert_eq!(payment_id, *actual_payment_id);
8548 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8549 assert_eq!(route.paths[0], *path);
8551 _ => panic!("Unexpected event"),
8554 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8555 assert_eq!(payment_id, *actual_payment_id);
8556 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8557 assert_eq!(route.paths[0], *path);
8559 _ => panic!("Unexpected event"),
8564 fn test_keysend_dup_payment_hash() {
8565 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8566 // outbound regular payment fails as expected.
8567 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8568 // fails as expected.
8569 let chanmon_cfgs = create_chanmon_cfgs(2);
8570 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8571 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8572 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8573 create_announced_chan_between_nodes(&nodes, 0, 1);
8574 let scorer = test_utils::TestScorer::new();
8575 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8577 // To start (1), send a regular payment but don't claim it.
8578 let expected_route = [&nodes[1]];
8579 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8581 // Next, attempt a keysend payment and make sure it fails.
8582 let route_params = RouteParameters {
8583 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8584 final_value_msat: 100_000,
8586 let route = find_route(
8587 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8588 None, nodes[0].logger, &scorer, &(), &random_seed_bytes
8590 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8591 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8592 check_added_monitors!(nodes[0], 1);
8593 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8594 assert_eq!(events.len(), 1);
8595 let ev = events.drain(..).next().unwrap();
8596 let payment_event = SendEvent::from_event(ev);
8597 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8598 check_added_monitors!(nodes[1], 0);
8599 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8600 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8601 // fails), the second will process the resulting failure and fail the HTLC backward
8602 expect_pending_htlcs_forwardable!(nodes[1]);
8603 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8604 check_added_monitors!(nodes[1], 1);
8605 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8606 assert!(updates.update_add_htlcs.is_empty());
8607 assert!(updates.update_fulfill_htlcs.is_empty());
8608 assert_eq!(updates.update_fail_htlcs.len(), 1);
8609 assert!(updates.update_fail_malformed_htlcs.is_empty());
8610 assert!(updates.update_fee.is_none());
8611 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8612 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8613 expect_payment_failed!(nodes[0], payment_hash, true);
8615 // Finally, claim the original payment.
8616 claim_payment(&nodes[0], &expected_route, payment_preimage);
8618 // To start (2), send a keysend payment but don't claim it.
8619 let payment_preimage = PaymentPreimage([42; 32]);
8620 let route = find_route(
8621 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8622 None, nodes[0].logger, &scorer, &(), &random_seed_bytes
8624 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
8625 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
8626 check_added_monitors!(nodes[0], 1);
8627 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8628 assert_eq!(events.len(), 1);
8629 let event = events.pop().unwrap();
8630 let path = vec![&nodes[1]];
8631 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8633 // Next, attempt a regular payment and make sure it fails.
8634 let payment_secret = PaymentSecret([43; 32]);
8635 nodes[0].node.send_payment_with_route(&route, payment_hash,
8636 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
8637 check_added_monitors!(nodes[0], 1);
8638 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8639 assert_eq!(events.len(), 1);
8640 let ev = events.drain(..).next().unwrap();
8641 let payment_event = SendEvent::from_event(ev);
8642 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8643 check_added_monitors!(nodes[1], 0);
8644 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8645 expect_pending_htlcs_forwardable!(nodes[1]);
8646 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8647 check_added_monitors!(nodes[1], 1);
8648 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8649 assert!(updates.update_add_htlcs.is_empty());
8650 assert!(updates.update_fulfill_htlcs.is_empty());
8651 assert_eq!(updates.update_fail_htlcs.len(), 1);
8652 assert!(updates.update_fail_malformed_htlcs.is_empty());
8653 assert!(updates.update_fee.is_none());
8654 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8655 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8656 expect_payment_failed!(nodes[0], payment_hash, true);
8658 // Finally, succeed the keysend payment.
8659 claim_payment(&nodes[0], &expected_route, payment_preimage);
8663 fn test_keysend_hash_mismatch() {
8664 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8665 // preimage doesn't match the msg's payment hash.
8666 let chanmon_cfgs = create_chanmon_cfgs(2);
8667 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8668 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8669 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8671 let payer_pubkey = nodes[0].node.get_our_node_id();
8672 let payee_pubkey = nodes[1].node.get_our_node_id();
8674 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8675 let route_params = RouteParameters {
8676 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8677 final_value_msat: 10_000,
8679 let network_graph = nodes[0].network_graph.clone();
8680 let first_hops = nodes[0].node.list_usable_channels();
8681 let scorer = test_utils::TestScorer::new();
8682 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8683 let route = find_route(
8684 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8685 nodes[0].logger, &scorer, &(), &random_seed_bytes
8688 let test_preimage = PaymentPreimage([42; 32]);
8689 let mismatch_payment_hash = PaymentHash([43; 32]);
8690 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
8691 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
8692 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
8693 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8694 check_added_monitors!(nodes[0], 1);
8696 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8697 assert_eq!(updates.update_add_htlcs.len(), 1);
8698 assert!(updates.update_fulfill_htlcs.is_empty());
8699 assert!(updates.update_fail_htlcs.is_empty());
8700 assert!(updates.update_fail_malformed_htlcs.is_empty());
8701 assert!(updates.update_fee.is_none());
8702 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8704 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
8708 fn test_keysend_msg_with_secret_err() {
8709 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8710 let chanmon_cfgs = create_chanmon_cfgs(2);
8711 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8712 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8713 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8715 let payer_pubkey = nodes[0].node.get_our_node_id();
8716 let payee_pubkey = nodes[1].node.get_our_node_id();
8718 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8719 let route_params = RouteParameters {
8720 payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8721 final_value_msat: 10_000,
8723 let network_graph = nodes[0].network_graph.clone();
8724 let first_hops = nodes[0].node.list_usable_channels();
8725 let scorer = test_utils::TestScorer::new();
8726 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8727 let route = find_route(
8728 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8729 nodes[0].logger, &scorer, &(), &random_seed_bytes
8732 let test_preimage = PaymentPreimage([42; 32]);
8733 let test_secret = PaymentSecret([43; 32]);
8734 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8735 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
8736 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8737 nodes[0].node.test_send_payment_internal(&route, payment_hash,
8738 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
8739 PaymentId(payment_hash.0), None, session_privs).unwrap();
8740 check_added_monitors!(nodes[0], 1);
8742 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8743 assert_eq!(updates.update_add_htlcs.len(), 1);
8744 assert!(updates.update_fulfill_htlcs.is_empty());
8745 assert!(updates.update_fail_htlcs.is_empty());
8746 assert!(updates.update_fail_malformed_htlcs.is_empty());
8747 assert!(updates.update_fee.is_none());
8748 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8750 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
8754 fn test_multi_hop_missing_secret() {
8755 let chanmon_cfgs = create_chanmon_cfgs(4);
8756 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8757 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8758 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8760 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8761 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8762 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8763 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8765 // Marshall an MPP route.
8766 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8767 let path = route.paths[0].clone();
8768 route.paths.push(path);
8769 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
8770 route.paths[0].hops[0].short_channel_id = chan_1_id;
8771 route.paths[0].hops[1].short_channel_id = chan_3_id;
8772 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
8773 route.paths[1].hops[0].short_channel_id = chan_2_id;
8774 route.paths[1].hops[1].short_channel_id = chan_4_id;
8776 match nodes[0].node.send_payment_with_route(&route, payment_hash,
8777 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
8779 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8780 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
8782 _ => panic!("unexpected error")
8787 fn test_drop_disconnected_peers_when_removing_channels() {
8788 let chanmon_cfgs = create_chanmon_cfgs(2);
8789 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8790 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8791 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8793 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8795 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8796 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8798 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8799 check_closed_broadcast!(nodes[0], true);
8800 check_added_monitors!(nodes[0], 1);
8801 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8804 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8805 // disconnected and the channel between has been force closed.
8806 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8807 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8808 assert_eq!(nodes_0_per_peer_state.len(), 1);
8809 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8812 nodes[0].node.timer_tick_occurred();
8815 // Assert that nodes[1] has now been removed.
8816 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8821 fn bad_inbound_payment_hash() {
8822 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8823 let chanmon_cfgs = create_chanmon_cfgs(2);
8824 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8825 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8826 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8828 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8829 let payment_data = msgs::FinalOnionHopData {
8831 total_msat: 100_000,
8834 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8835 // payment verification fails as expected.
8836 let mut bad_payment_hash = payment_hash.clone();
8837 bad_payment_hash.0[0] += 1;
8838 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8839 Ok(_) => panic!("Unexpected ok"),
8841 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
8845 // Check that using the original payment hash succeeds.
8846 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8850 fn test_id_to_peer_coverage() {
8851 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8852 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8853 // the channel is successfully closed.
8854 let chanmon_cfgs = create_chanmon_cfgs(2);
8855 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8856 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8857 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8859 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8860 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8861 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8862 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8863 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8865 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8866 let channel_id = &tx.txid().into_inner();
8868 // Ensure that the `id_to_peer` map is empty until either party has received the
8869 // funding transaction, and have the real `channel_id`.
8870 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8871 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8874 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8876 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8877 // as it has the funding transaction.
8878 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8879 assert_eq!(nodes_0_lock.len(), 1);
8880 assert!(nodes_0_lock.contains_key(channel_id));
8883 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8885 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8887 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8889 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8890 assert_eq!(nodes_0_lock.len(), 1);
8891 assert!(nodes_0_lock.contains_key(channel_id));
8893 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8896 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8897 // as it has the funding transaction.
8898 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8899 assert_eq!(nodes_1_lock.len(), 1);
8900 assert!(nodes_1_lock.contains_key(channel_id));
8902 check_added_monitors!(nodes[1], 1);
8903 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8904 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8905 check_added_monitors!(nodes[0], 1);
8906 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8907 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8908 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8909 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8911 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8912 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8913 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8914 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8916 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8917 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8919 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8920 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8921 // fee for the closing transaction has been negotiated and the parties has the other
8922 // party's signature for the fee negotiated closing transaction.)
8923 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8924 assert_eq!(nodes_0_lock.len(), 1);
8925 assert!(nodes_0_lock.contains_key(channel_id));
8929 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8930 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8931 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8932 // kept in the `nodes[1]`'s `id_to_peer` map.
8933 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8934 assert_eq!(nodes_1_lock.len(), 1);
8935 assert!(nodes_1_lock.contains_key(channel_id));
8938 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8940 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8941 // therefore has all it needs to fully close the channel (both signatures for the
8942 // closing transaction).
8943 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8944 // fully closed by `nodes[0]`.
8945 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8947 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
8948 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8949 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8950 assert_eq!(nodes_1_lock.len(), 1);
8951 assert!(nodes_1_lock.contains_key(channel_id));
8954 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8956 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8958 // Assert that the channel has now been removed from both parties `id_to_peer` map once
8959 // they both have everything required to fully close the channel.
8960 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8962 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8964 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8965 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8968 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8969 let expected_message = format!("Not connected to node: {}", expected_public_key);
8970 check_api_error_message(expected_message, res_err)
8973 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8974 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8975 check_api_error_message(expected_message, res_err)
8978 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8980 Err(APIError::APIMisuseError { err }) => {
8981 assert_eq!(err, expected_err_message);
8983 Err(APIError::ChannelUnavailable { err }) => {
8984 assert_eq!(err, expected_err_message);
8986 Ok(_) => panic!("Unexpected Ok"),
8987 Err(_) => panic!("Unexpected Error"),
8992 fn test_api_calls_with_unkown_counterparty_node() {
8993 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8994 // expected if the `counterparty_node_id` is an unkown peer in the
8995 // `ChannelManager::per_peer_state` map.
8996 let chanmon_cfg = create_chanmon_cfgs(2);
8997 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8998 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8999 let nodes = create_network(2, &node_cfg, &node_chanmgr);
9002 let channel_id = [4; 32];
9003 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
9004 let intercept_id = InterceptId([0; 32]);
9006 // Test the API functions.
9007 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
9009 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
9011 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
9013 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
9015 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
9017 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
9019 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
9023 fn test_connection_limiting() {
9024 // Test that we limit un-channel'd peers and un-funded channels properly.
9025 let chanmon_cfgs = create_chanmon_cfgs(2);
9026 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9027 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9028 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9030 // Note that create_network connects the nodes together for us
9032 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9033 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9035 let mut funding_tx = None;
9036 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
9037 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9038 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
9041 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
9042 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
9043 funding_tx = Some(tx.clone());
9044 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
9045 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
9047 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
9048 check_added_monitors!(nodes[1], 1);
9049 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
9051 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
9053 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
9054 check_added_monitors!(nodes[0], 1);
9055 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
9057 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9060 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
9061 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9062 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9063 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
9064 open_channel_msg.temporary_channel_id);
9066 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
9067 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
9069 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
9070 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
9071 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
9072 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
9073 peer_pks.push(random_pk);
9074 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
9075 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
9077 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
9078 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
9079 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
9080 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
9082 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
9083 // them if we have too many un-channel'd peers.
9084 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
9085 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
9086 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
9087 for ev in chan_closed_events {
9088 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
9090 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
9091 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
9092 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
9093 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
9095 // but of course if the connection is outbound its allowed...
9096 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
9097 features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
9098 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
9100 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
9101 // Even though we accept one more connection from new peers, we won't actually let them
9103 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
9104 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
9105 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
9106 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
9107 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9109 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
9110 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
9111 open_channel_msg.temporary_channel_id);
9113 // Of course, however, outbound channels are always allowed
9114 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
9115 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
9117 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
9118 // "protected" and can connect again.
9119 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
9120 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
9121 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
9122 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
9124 // Further, because the first channel was funded, we can open another channel with
9126 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
9127 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
9131 fn test_outbound_chans_unlimited() {
9132 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
9133 let chanmon_cfgs = create_chanmon_cfgs(2);
9134 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9135 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9136 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9138 // Note that create_network connects the nodes together for us
9140 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9141 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9143 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
9144 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9145 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
9146 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9149 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
9151 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9152 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
9153 open_channel_msg.temporary_channel_id);
9155 // but we can still open an outbound channel.
9156 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9157 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
9159 // but even with such an outbound channel, additional inbound channels will still fail.
9160 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9161 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
9162 open_channel_msg.temporary_channel_id);
9166 fn test_0conf_limiting() {
9167 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
9168 // flag set and (sometimes) accept channels as 0conf.
9169 let chanmon_cfgs = create_chanmon_cfgs(2);
9170 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9171 let mut settings = test_default_channel_config();
9172 settings.manually_accept_inbound_channels = true;
9173 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
9174 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9176 // Note that create_network connects the nodes together for us
9178 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
9179 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9181 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
9182 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
9183 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
9184 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
9185 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
9186 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
9188 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
9189 let events = nodes[1].node.get_and_clear_pending_events();
9191 Event::OpenChannelRequest { temporary_channel_id, .. } => {
9192 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
9194 _ => panic!("Unexpected event"),
9196 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
9197 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
9200 // If we try to accept a channel from another peer non-0conf it will fail.
9201 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
9202 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
9203 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
9204 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
9205 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
9206 let events = nodes[1].node.get_and_clear_pending_events();
9208 Event::OpenChannelRequest { temporary_channel_id, .. } => {
9209 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
9210 Err(APIError::APIMisuseError { err }) =>
9211 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
9215 _ => panic!("Unexpected event"),
9217 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
9218 open_channel_msg.temporary_channel_id);
9220 // ...however if we accept the same channel 0conf it should work just fine.
9221 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
9222 let events = nodes[1].node.get_and_clear_pending_events();
9224 Event::OpenChannelRequest { temporary_channel_id, .. } => {
9225 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
9227 _ => panic!("Unexpected event"),
9229 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
9234 fn test_anchors_zero_fee_htlc_tx_fallback() {
9235 // Tests that if both nodes support anchors, but the remote node does not want to accept
9236 // anchor channels at the moment, an error it sent to the local node such that it can retry
9237 // the channel without the anchors feature.
9238 let chanmon_cfgs = create_chanmon_cfgs(2);
9239 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9240 let mut anchors_config = test_default_channel_config();
9241 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
9242 anchors_config.manually_accept_inbound_channels = true;
9243 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
9244 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9246 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
9247 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9248 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
9250 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
9251 let events = nodes[1].node.get_and_clear_pending_events();
9253 Event::OpenChannelRequest { temporary_channel_id, .. } => {
9254 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
9256 _ => panic!("Unexpected event"),
9259 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
9260 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
9262 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
9263 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
9265 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
9269 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
9271 use crate::chain::Listen;
9272 use crate::chain::chainmonitor::{ChainMonitor, Persist};
9273 use crate::sign::{KeysManager, InMemorySigner};
9274 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
9275 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
9276 use crate::ln::functional_test_utils::*;
9277 use crate::ln::msgs::{ChannelMessageHandler, Init};
9278 use crate::routing::gossip::NetworkGraph;
9279 use crate::routing::router::{PaymentParameters, RouteParameters};
9280 use crate::util::test_utils;
9281 use crate::util::config::UserConfig;
9283 use bitcoin::hashes::Hash;
9284 use bitcoin::hashes::sha256::Hash as Sha256;
9285 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
9287 use crate::sync::{Arc, Mutex};
9291 type Manager<'a, P> = ChannelManager<
9292 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
9293 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
9294 &'a test_utils::TestLogger, &'a P>,
9295 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
9296 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
9297 &'a test_utils::TestLogger>;
9299 struct ANodeHolder<'a, P: Persist<InMemorySigner>> {
9300 node: &'a Manager<'a, P>,
9302 impl<'a, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'a, P> {
9303 type CM = Manager<'a, P>;
9305 fn node(&self) -> &Manager<'a, P> { self.node }
9307 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
9312 fn bench_sends(bench: &mut Bencher) {
9313 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
9316 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
9317 // Do a simple benchmark of sending a payment back and forth between two nodes.
9318 // Note that this is unrealistic as each payment send will require at least two fsync
9320 let network = bitcoin::Network::Testnet;
9322 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
9323 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
9324 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
9325 let scorer = Mutex::new(test_utils::TestScorer::new());
9326 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
9328 let mut config: UserConfig = Default::default();
9329 config.channel_handshake_config.minimum_depth = 1;
9331 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
9332 let seed_a = [1u8; 32];
9333 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
9334 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
9336 best_block: BestBlock::from_network(network),
9338 let node_a_holder = ANodeHolder { node: &node_a };
9340 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
9341 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
9342 let seed_b = [2u8; 32];
9343 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
9344 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
9346 best_block: BestBlock::from_network(network),
9348 let node_b_holder = ANodeHolder { node: &node_b };
9350 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
9351 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
9352 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
9353 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
9354 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
9357 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
9358 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
9359 value: 8_000_000, script_pubkey: output_script,
9361 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
9362 } else { panic!(); }
9364 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
9365 let events_b = node_b.get_and_clear_pending_events();
9366 assert_eq!(events_b.len(), 1);
9368 Event::ChannelPending{ ref counterparty_node_id, .. } => {
9369 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
9371 _ => panic!("Unexpected event"),
9374 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
9375 let events_a = node_a.get_and_clear_pending_events();
9376 assert_eq!(events_a.len(), 1);
9378 Event::ChannelPending{ ref counterparty_node_id, .. } => {
9379 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
9381 _ => panic!("Unexpected event"),
9384 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
9386 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
9387 Listen::block_connected(&node_a, &block, 1);
9388 Listen::block_connected(&node_b, &block, 1);
9390 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
9391 let msg_events = node_a.get_and_clear_pending_msg_events();
9392 assert_eq!(msg_events.len(), 2);
9393 match msg_events[0] {
9394 MessageSendEvent::SendChannelReady { ref msg, .. } => {
9395 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
9396 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
9400 match msg_events[1] {
9401 MessageSendEvent::SendChannelUpdate { .. } => {},
9405 let events_a = node_a.get_and_clear_pending_events();
9406 assert_eq!(events_a.len(), 1);
9408 Event::ChannelReady{ ref counterparty_node_id, .. } => {
9409 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
9411 _ => panic!("Unexpected event"),
9414 let events_b = node_b.get_and_clear_pending_events();
9415 assert_eq!(events_b.len(), 1);
9417 Event::ChannelReady{ ref counterparty_node_id, .. } => {
9418 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
9420 _ => panic!("Unexpected event"),
9423 let mut payment_count: u64 = 0;
9424 macro_rules! send_payment {
9425 ($node_a: expr, $node_b: expr) => {
9426 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
9427 .with_bolt11_features($node_b.invoice_features()).unwrap();
9428 let mut payment_preimage = PaymentPreimage([0; 32]);
9429 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
9431 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
9432 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
9434 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
9435 PaymentId(payment_hash.0), RouteParameters {
9436 payment_params, final_value_msat: 10_000,
9437 }, Retry::Attempts(0)).unwrap();
9438 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
9439 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
9440 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
9441 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
9442 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
9443 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
9444 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
9446 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
9447 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
9448 $node_b.claim_funds(payment_preimage);
9449 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
9451 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
9452 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
9453 assert_eq!(node_id, $node_a.get_our_node_id());
9454 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
9455 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
9457 _ => panic!("Failed to generate claim event"),
9460 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
9461 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
9462 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
9463 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
9465 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
9470 send_payment!(node_a, node_b);
9471 send_payment!(node_b, node_a);