1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
39 use chain::{Confirm, ChannelMonitorUpdateErr, Watch, BestBlock};
40 use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator};
41 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
42 use chain::transaction::{OutPoint, TransactionData};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
46 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
47 use ln::features::{InitFeatures, NodeFeatures};
48 use routing::router::{Payee, Route, RouteHop, RoutePath, RouteParameters};
50 use ln::msgs::NetAddress;
52 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
53 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
54 use util::config::UserConfig;
55 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
56 use util::{byte_utils, events};
57 use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
58 use util::chacha20::{ChaCha20, ChaChaReader};
59 use util::logger::{Logger, Level};
60 use util::errors::APIError;
65 use core::cell::RefCell;
66 use io::{Cursor, Read};
67 use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use core::sync::atomic::{AtomicUsize, Ordering};
69 use core::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
74 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
77 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
78 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
81 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
82 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
83 // before we forward it.
85 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
86 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
87 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
88 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
89 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
92 enum PendingHTLCRouting {
94 onion_packet: msgs::OnionPacket,
95 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
98 payment_data: msgs::FinalOnionHopData,
99 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
102 payment_preimage: PaymentPreimage,
103 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
107 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
108 pub(super) struct PendingHTLCInfo {
109 routing: PendingHTLCRouting,
110 incoming_shared_secret: [u8; 32],
111 payment_hash: PaymentHash,
112 pub(super) amt_to_forward: u64,
113 pub(super) outgoing_cltv_value: u32,
116 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
117 pub(super) enum HTLCFailureMsg {
118 Relay(msgs::UpdateFailHTLC),
119 Malformed(msgs::UpdateFailMalformedHTLC),
122 /// Stores whether we can't forward an HTLC or relevant forwarding info
123 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
124 pub(super) enum PendingHTLCStatus {
125 Forward(PendingHTLCInfo),
126 Fail(HTLCFailureMsg),
129 pub(super) enum HTLCForwardInfo {
131 forward_info: PendingHTLCInfo,
133 // These fields are produced in `forward_htlcs()` and consumed in
134 // `process_pending_htlc_forwards()` for constructing the
135 // `HTLCSource::PreviousHopData` for failed and forwarded
137 prev_short_channel_id: u64,
139 prev_funding_outpoint: OutPoint,
143 err_packet: msgs::OnionErrorPacket,
147 /// Tracks the inbound corresponding to an outbound HTLC
148 #[derive(Clone, Hash, PartialEq, Eq)]
149 pub(crate) struct HTLCPreviousHopData {
150 short_channel_id: u64,
152 incoming_packet_shared_secret: [u8; 32],
154 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
155 // channel with a preimage provided by the forward channel.
160 /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
161 /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
162 /// are part of the same payment.
163 Invoice(msgs::FinalOnionHopData),
164 /// Contains the payer-provided preimage.
165 Spontaneous(PaymentPreimage),
168 struct ClaimableHTLC {
169 prev_hop: HTLCPreviousHopData,
172 onion_payload: OnionPayload,
175 /// A payment identifier used to uniquely identify a payment to LDK.
176 /// (C-not exported) as we just use [u8; 32] directly
177 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
178 pub struct PaymentId(pub [u8; 32]);
180 impl Writeable for PaymentId {
181 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
186 impl Readable for PaymentId {
187 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
188 let buf: [u8; 32] = Readable::read(r)?;
192 /// Tracks the inbound corresponding to an outbound HTLC
193 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
194 #[derive(Clone, PartialEq, Eq)]
195 pub(crate) enum HTLCSource {
196 PreviousHopData(HTLCPreviousHopData),
199 session_priv: SecretKey,
200 /// Technically we can recalculate this from the route, but we cache it here to avoid
201 /// doing a double-pass on route when we get a failure back
202 first_hop_htlc_msat: u64,
203 payment_id: PaymentId,
204 payment_secret: Option<PaymentSecret>,
205 payee: Option<Payee>,
208 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
209 impl core::hash::Hash for HTLCSource {
210 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
212 HTLCSource::PreviousHopData(prev_hop_data) => {
214 prev_hop_data.hash(hasher);
216 HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payee } => {
219 session_priv[..].hash(hasher);
220 payment_id.hash(hasher);
221 payment_secret.hash(hasher);
222 first_hop_htlc_msat.hash(hasher);
230 pub fn dummy() -> Self {
231 HTLCSource::OutboundRoute {
233 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
234 first_hop_htlc_msat: 0,
235 payment_id: PaymentId([2; 32]),
236 payment_secret: None,
242 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
243 pub(super) enum HTLCFailReason {
245 err: msgs::OnionErrorPacket,
253 /// Return value for claim_funds_from_hop
254 enum ClaimFundsFromHop {
256 MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
261 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
263 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
264 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
265 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
266 /// channel_state lock. We then return the set of things that need to be done outside the lock in
267 /// this struct and call handle_error!() on it.
269 struct MsgHandleErrInternal {
270 err: msgs::LightningError,
271 chan_id: Option<([u8; 32], u64)>, // If Some a channel of ours has been closed
272 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
274 impl MsgHandleErrInternal {
276 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
278 err: LightningError {
280 action: msgs::ErrorAction::SendErrorMessage {
281 msg: msgs::ErrorMessage {
288 shutdown_finish: None,
292 fn ignore_no_close(err: String) -> Self {
294 err: LightningError {
296 action: msgs::ErrorAction::IgnoreError,
299 shutdown_finish: None,
303 fn from_no_close(err: msgs::LightningError) -> Self {
304 Self { err, chan_id: None, shutdown_finish: None }
307 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u64, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
309 err: LightningError {
311 action: msgs::ErrorAction::SendErrorMessage {
312 msg: msgs::ErrorMessage {
318 chan_id: Some((channel_id, user_channel_id)),
319 shutdown_finish: Some((shutdown_res, channel_update)),
323 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
326 ChannelError::Warn(msg) => LightningError {
328 action: msgs::ErrorAction::IgnoreError,
330 ChannelError::Ignore(msg) => LightningError {
332 action: msgs::ErrorAction::IgnoreError,
334 ChannelError::Close(msg) => LightningError {
336 action: msgs::ErrorAction::SendErrorMessage {
337 msg: msgs::ErrorMessage {
343 ChannelError::CloseDelayBroadcast(msg) => LightningError {
345 action: msgs::ErrorAction::SendErrorMessage {
346 msg: msgs::ErrorMessage {
354 shutdown_finish: None,
359 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
360 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
361 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
362 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
363 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
365 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
366 /// be sent in the order they appear in the return value, however sometimes the order needs to be
367 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
368 /// they were originally sent). In those cases, this enum is also returned.
369 #[derive(Clone, PartialEq)]
370 pub(super) enum RAACommitmentOrder {
371 /// Send the CommitmentUpdate messages first
373 /// Send the RevokeAndACK message first
377 // Note this is only exposed in cfg(test):
378 pub(super) struct ChannelHolder<Signer: Sign> {
379 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
380 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
381 /// short channel id -> forward infos. Key of 0 means payments received
382 /// Note that while this is held in the same mutex as the channels themselves, no consistency
383 /// guarantees are made about the existence of a channel with the short id here, nor the short
384 /// ids in the PendingHTLCInfo!
385 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
386 /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
387 /// Note that while this is held in the same mutex as the channels themselves, no consistency
388 /// guarantees are made about the channels given here actually existing anymore by the time you
390 claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
391 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
392 /// for broadcast messages, where ordering isn't as strict).
393 pub(super) pending_msg_events: Vec<MessageSendEvent>,
396 /// Events which we process internally but cannot be procsesed immediately at the generation site
397 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
398 /// quite some time lag.
399 enum BackgroundEvent {
400 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
401 /// commitment transaction.
402 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
405 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
406 /// the latest Init features we heard from the peer.
408 latest_features: InitFeatures,
411 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
412 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
414 /// For users who don't want to bother doing their own payment preimage storage, we also store that
416 struct PendingInboundPayment {
417 /// The payment secret that the sender must use for us to accept this payment
418 payment_secret: PaymentSecret,
419 /// Time at which this HTLC expires - blocks with a header time above this value will result in
420 /// this payment being removed.
422 /// Arbitrary identifier the user specifies (or not)
423 user_payment_id: u64,
424 // Other required attributes of the payment, optionally enforced:
425 payment_preimage: Option<PaymentPreimage>,
426 min_value_msat: Option<u64>,
429 /// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102
430 /// and later, also stores information for retrying the payment.
431 pub(crate) enum PendingOutboundPayment {
433 session_privs: HashSet<[u8; 32]>,
436 session_privs: HashSet<[u8; 32]>,
437 payment_hash: PaymentHash,
438 payment_secret: Option<PaymentSecret>,
439 pending_amt_msat: u64,
440 /// Used to track the fee paid. Only present if the payment was serialized on 0.0.103+.
441 pending_fee_msat: Option<u64>,
442 /// The total payment amount across all paths, used to verify that a retry is not overpaying.
444 /// Our best known block height at the time this payment was initiated.
445 starting_block_height: u32,
447 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
448 /// been resolved. This ensures we don't look up pending payments in ChannelMonitors on restart
449 /// and add a pending payment that was already fulfilled.
451 session_privs: HashSet<[u8; 32]>,
455 impl PendingOutboundPayment {
456 fn is_retryable(&self) -> bool {
458 PendingOutboundPayment::Retryable { .. } => true,
462 fn is_fulfilled(&self) -> bool {
464 PendingOutboundPayment::Fulfilled { .. } => true,
468 fn get_pending_fee_msat(&self) -> Option<u64> {
470 PendingOutboundPayment::Retryable { pending_fee_msat, .. } => pending_fee_msat.clone(),
475 fn mark_fulfilled(&mut self) {
476 let mut session_privs = HashSet::new();
477 core::mem::swap(&mut session_privs, match self {
478 PendingOutboundPayment::Legacy { session_privs } |
479 PendingOutboundPayment::Retryable { session_privs, .. } |
480 PendingOutboundPayment::Fulfilled { session_privs }
483 *self = PendingOutboundPayment::Fulfilled { session_privs };
486 /// panics if path is None and !self.is_fulfilled
487 fn remove(&mut self, session_priv: &[u8; 32], path: Option<&Vec<RouteHop>>) -> bool {
488 let remove_res = match self {
489 PendingOutboundPayment::Legacy { session_privs } |
490 PendingOutboundPayment::Retryable { session_privs, .. } |
491 PendingOutboundPayment::Fulfilled { session_privs } => {
492 session_privs.remove(session_priv)
496 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
497 let path = path.expect("Fulfilling a payment should always come with a path");
498 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
499 *pending_amt_msat -= path_last_hop.fee_msat;
500 if let Some(fee_msat) = pending_fee_msat.as_mut() {
501 *fee_msat -= path.get_path_fees();
508 fn insert(&mut self, session_priv: [u8; 32], path: &Vec<RouteHop>) -> bool {
509 let insert_res = match self {
510 PendingOutboundPayment::Legacy { session_privs } |
511 PendingOutboundPayment::Retryable { session_privs, .. } => {
512 session_privs.insert(session_priv)
514 PendingOutboundPayment::Fulfilled { .. } => false
517 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
518 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
519 *pending_amt_msat += path_last_hop.fee_msat;
520 if let Some(fee_msat) = pending_fee_msat.as_mut() {
521 *fee_msat += path.get_path_fees();
528 fn remaining_parts(&self) -> usize {
530 PendingOutboundPayment::Legacy { session_privs } |
531 PendingOutboundPayment::Retryable { session_privs, .. } |
532 PendingOutboundPayment::Fulfilled { session_privs } => {
539 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
540 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
541 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
542 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
543 /// issues such as overly long function definitions. Note that the ChannelManager can take any
544 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
545 /// concrete type of the KeysManager.
546 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
548 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
549 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
550 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
551 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
552 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
553 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
554 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
555 /// concrete type of the KeysManager.
556 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
558 /// Manager which keeps track of a number of channels and sends messages to the appropriate
559 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
561 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
562 /// to individual Channels.
564 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
565 /// all peers during write/read (though does not modify this instance, only the instance being
566 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
567 /// called funding_transaction_generated for outbound channels).
569 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
570 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
571 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
572 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
573 /// the serialization process). If the deserialized version is out-of-date compared to the
574 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
575 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
577 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
578 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
579 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
580 /// block_connected() to step towards your best block) upon deserialization before using the
583 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
584 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
585 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
586 /// offline for a full minute. In order to track this, you must call
587 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
589 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
590 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
591 /// essentially you should default to using a SimpleRefChannelManager, and use a
592 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
593 /// you're using lightning-net-tokio.
594 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
595 where M::Target: chain::Watch<Signer>,
596 T::Target: BroadcasterInterface,
597 K::Target: KeysInterface<Signer = Signer>,
598 F::Target: FeeEstimator,
601 default_configuration: UserConfig,
602 genesis_hash: BlockHash,
608 pub(super) best_block: RwLock<BestBlock>,
610 best_block: RwLock<BestBlock>,
611 secp_ctx: Secp256k1<secp256k1::All>,
613 #[cfg(any(test, feature = "_test_utils"))]
614 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
615 #[cfg(not(any(test, feature = "_test_utils")))]
616 channel_state: Mutex<ChannelHolder<Signer>>,
618 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
619 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
620 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
621 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
622 /// Locked *after* channel_state.
623 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
625 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
626 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
627 /// (if the channel has been force-closed), however we track them here to prevent duplicative
628 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
629 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
630 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
631 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
632 /// after reloading from disk while replaying blocks against ChannelMonitors.
634 /// See `PendingOutboundPayment` documentation for more info.
636 /// Locked *after* channel_state.
637 pending_outbound_payments: Mutex<HashMap<PaymentId, PendingOutboundPayment>>,
639 our_network_key: SecretKey,
640 our_network_pubkey: PublicKey,
642 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
643 /// value increases strictly since we don't assume access to a time source.
644 last_node_announcement_serial: AtomicUsize,
646 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
647 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
648 /// very far in the past, and can only ever be up to two hours in the future.
649 highest_seen_timestamp: AtomicUsize,
651 /// The bulk of our storage will eventually be here (channels and message queues and the like).
652 /// If we are connected to a peer we always at least have an entry here, even if no channels
653 /// are currently open with that peer.
654 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
655 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
658 /// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`.
659 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
661 pending_events: Mutex<Vec<events::Event>>,
662 pending_background_events: Mutex<Vec<BackgroundEvent>>,
663 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
664 /// Essentially just when we're serializing ourselves out.
665 /// Taken first everywhere where we are making changes before any other locks.
666 /// When acquiring this lock in read mode, rather than acquiring it directly, call
667 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
668 /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
669 total_consistency_lock: RwLock<()>,
671 persistence_notifier: PersistenceNotifier,
678 /// Chain-related parameters used to construct a new `ChannelManager`.
680 /// Typically, the block-specific parameters are derived from the best block hash for the network,
681 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
682 /// are not needed when deserializing a previously constructed `ChannelManager`.
683 #[derive(Clone, Copy, PartialEq)]
684 pub struct ChainParameters {
685 /// The network for determining the `chain_hash` in Lightning messages.
686 pub network: Network,
688 /// The hash and height of the latest block successfully connected.
690 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
691 pub best_block: BestBlock,
694 #[derive(Copy, Clone, PartialEq)]
700 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
701 /// desirable to notify any listeners on `await_persistable_update_timeout`/
702 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
703 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
704 /// sending the aforementioned notification (since the lock being released indicates that the
705 /// updates are ready for persistence).
707 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
708 /// notify or not based on whether relevant changes have been made, providing a closure to
709 /// `optionally_notify` which returns a `NotifyOption`.
710 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
711 persistence_notifier: &'a PersistenceNotifier,
713 // We hold onto this result so the lock doesn't get released immediately.
714 _read_guard: RwLockReadGuard<'a, ()>,
717 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
718 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
719 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
722 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
723 let read_guard = lock.read().unwrap();
725 PersistenceNotifierGuard {
726 persistence_notifier: notifier,
727 should_persist: persist_check,
728 _read_guard: read_guard,
733 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
735 if (self.should_persist)() == NotifyOption::DoPersist {
736 self.persistence_notifier.notify();
741 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
742 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
744 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
746 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
747 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
748 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
749 /// the maximum required amount in lnd as of March 2021.
750 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
752 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
753 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
755 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
757 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
758 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
759 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
760 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
761 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
762 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
763 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
765 /// Minimum CLTV difference between the current block height and received inbound payments.
766 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
768 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
769 // any payments to succeed. Further, we don't want payments to fail if a block was found while
770 // a payment was being routed, so we add an extra block to be safe.
771 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
773 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
774 // ie that if the next-hop peer fails the HTLC within
775 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
776 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
777 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
778 // LATENCY_GRACE_PERIOD_BLOCKS.
781 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
783 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
784 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
787 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
789 /// Information needed for constructing an invoice route hint for this channel.
790 #[derive(Clone, Debug, PartialEq)]
791 pub struct CounterpartyForwardingInfo {
792 /// Base routing fee in millisatoshis.
793 pub fee_base_msat: u32,
794 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
795 pub fee_proportional_millionths: u32,
796 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
797 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
798 /// `cltv_expiry_delta` for more details.
799 pub cltv_expiry_delta: u16,
802 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
803 /// to better separate parameters.
804 #[derive(Clone, Debug, PartialEq)]
805 pub struct ChannelCounterparty {
806 /// The node_id of our counterparty
807 pub node_id: PublicKey,
808 /// The Features the channel counterparty provided upon last connection.
809 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
810 /// many routing-relevant features are present in the init context.
811 pub features: InitFeatures,
812 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
813 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
814 /// claiming at least this value on chain.
816 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
818 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
819 pub unspendable_punishment_reserve: u64,
820 /// Information on the fees and requirements that the counterparty requires when forwarding
821 /// payments to us through this channel.
822 pub forwarding_info: Option<CounterpartyForwardingInfo>,
825 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
826 #[derive(Clone, Debug, PartialEq)]
827 pub struct ChannelDetails {
828 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
829 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
830 /// Note that this means this value is *not* persistent - it can change once during the
831 /// lifetime of the channel.
832 pub channel_id: [u8; 32],
833 /// Parameters which apply to our counterparty. See individual fields for more information.
834 pub counterparty: ChannelCounterparty,
835 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
836 /// our counterparty already.
838 /// Note that, if this has been set, `channel_id` will be equivalent to
839 /// `funding_txo.unwrap().to_channel_id()`.
840 pub funding_txo: Option<OutPoint>,
841 /// The position of the funding transaction in the chain. None if the funding transaction has
842 /// not yet been confirmed and the channel fully opened.
843 pub short_channel_id: Option<u64>,
844 /// The value, in satoshis, of this channel as appears in the funding output
845 pub channel_value_satoshis: u64,
846 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
847 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
848 /// this value on chain.
850 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
852 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
854 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
855 pub unspendable_punishment_reserve: Option<u64>,
856 /// The `user_channel_id` passed in to create_channel, or 0 if the channel was inbound.
857 pub user_channel_id: u64,
858 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
859 /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
860 /// available for inclusion in new outbound HTLCs). This further does not include any pending
861 /// outgoing HTLCs which are awaiting some other resolution to be sent.
863 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
864 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
865 /// should be able to spend nearly this amount.
866 pub outbound_capacity_msat: u64,
867 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
868 /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
869 /// available for inclusion in new inbound HTLCs).
870 /// Note that there are some corner cases not fully handled here, so the actual available
871 /// inbound capacity may be slightly higher than this.
873 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
874 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
875 /// However, our counterparty should be able to spend nearly this amount.
876 pub inbound_capacity_msat: u64,
877 /// The number of required confirmations on the funding transaction before the funding will be
878 /// considered "locked". This number is selected by the channel fundee (i.e. us if
879 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
880 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
881 /// [`ChannelHandshakeLimits::max_minimum_depth`].
883 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
885 /// [`is_outbound`]: ChannelDetails::is_outbound
886 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
887 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
888 pub confirmations_required: Option<u32>,
889 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
890 /// until we can claim our funds after we force-close the channel. During this time our
891 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
892 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
893 /// time to claim our non-HTLC-encumbered funds.
895 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
896 pub force_close_spend_delay: Option<u16>,
897 /// True if the channel was initiated (and thus funded) by us.
898 pub is_outbound: bool,
899 /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
900 /// channel is not currently being shut down. `funding_locked` message exchange implies the
901 /// required confirmation count has been reached (and we were connected to the peer at some
902 /// point after the funding transaction received enough confirmations). The required
903 /// confirmation count is provided in [`confirmations_required`].
905 /// [`confirmations_required`]: ChannelDetails::confirmations_required
906 pub is_funding_locked: bool,
907 /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
908 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
910 /// This is a strict superset of `is_funding_locked`.
912 /// True if this channel is (or will be) publicly-announced.
916 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
917 /// Err() type describing which state the payment is in, see the description of individual enum
919 #[derive(Clone, Debug)]
920 pub enum PaymentSendFailure {
921 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
922 /// send the payment at all. No channel state has been changed or messages sent to peers, and
923 /// once you've changed the parameter at error, you can freely retry the payment in full.
924 ParameterError(APIError),
925 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
926 /// from attempting to send the payment at all. No channel state has been changed or messages
927 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
930 /// The results here are ordered the same as the paths in the route object which was passed to
932 PathParameterError(Vec<Result<(), APIError>>),
933 /// All paths which were attempted failed to send, with no channel state change taking place.
934 /// You can freely retry the payment in full (though you probably want to do so over different
935 /// paths than the ones selected).
936 AllFailedRetrySafe(Vec<APIError>),
937 /// Some paths which were attempted failed to send, though possibly not all. At least some
938 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
939 /// in over-/re-payment.
941 /// The results here are ordered the same as the paths in the route object which was passed to
942 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
943 /// retried (though there is currently no API with which to do so).
945 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
946 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
947 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
948 /// with the latest update_id.
950 /// The errors themselves, in the same order as the route hops.
951 results: Vec<Result<(), APIError>>,
952 /// If some paths failed without irrevocably committing to the new HTLC(s), this will
953 /// contain a [`RouteParameters`] object which can be used to calculate a new route that
954 /// will pay all remaining unpaid balance.
955 failed_paths_retry: Option<RouteParameters>,
956 /// The payment id for the payment, which is now at least partially pending.
957 payment_id: PaymentId,
961 macro_rules! handle_error {
962 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
965 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
966 #[cfg(debug_assertions)]
968 // In testing, ensure there are no deadlocks where the lock is already held upon
969 // entering the macro.
970 assert!($self.channel_state.try_lock().is_ok());
971 assert!($self.pending_events.try_lock().is_ok());
974 let mut msg_events = Vec::with_capacity(2);
976 if let Some((shutdown_res, update_option)) = shutdown_finish {
977 $self.finish_force_close_channel(shutdown_res);
978 if let Some(update) = update_option {
979 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
983 if let Some((channel_id, user_channel_id)) = chan_id {
984 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
985 channel_id, user_channel_id,
986 reason: ClosureReason::ProcessingError { err: err.err.clone() }
991 log_error!($self.logger, "{}", err.err);
992 if let msgs::ErrorAction::IgnoreError = err.action {
994 msg_events.push(events::MessageSendEvent::HandleError {
995 node_id: $counterparty_node_id,
996 action: err.action.clone()
1000 if !msg_events.is_empty() {
1001 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
1004 // Return error in case higher-API need one
1011 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1012 macro_rules! convert_chan_err {
1013 ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
1015 ChannelError::Warn(msg) => {
1016 //TODO: Once warning messages are merged, we should send a `warning` message to our
1018 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1020 ChannelError::Ignore(msg) => {
1021 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1023 ChannelError::Close(msg) => {
1024 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1025 if let Some(short_id) = $channel.get_short_channel_id() {
1026 $short_to_id.remove(&short_id);
1028 let shutdown_res = $channel.force_shutdown(true);
1029 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1030 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1032 ChannelError::CloseDelayBroadcast(msg) => {
1033 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
1034 if let Some(short_id) = $channel.get_short_channel_id() {
1035 $short_to_id.remove(&short_id);
1037 let shutdown_res = $channel.force_shutdown(false);
1038 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1039 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1045 macro_rules! break_chan_entry {
1046 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1050 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
1052 $entry.remove_entry();
1060 macro_rules! try_chan_entry {
1061 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1065 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
1067 $entry.remove_entry();
1075 macro_rules! remove_channel {
1076 ($channel_state: expr, $entry: expr) => {
1078 let channel = $entry.remove_entry().1;
1079 if let Some(short_id) = channel.get_short_channel_id() {
1080 $channel_state.short_to_id.remove(&short_id);
1087 macro_rules! handle_monitor_err {
1088 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1089 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
1091 ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr, $chan_id: expr) => {
1093 ChannelMonitorUpdateErr::PermanentFailure => {
1094 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
1095 if let Some(short_id) = $chan.get_short_channel_id() {
1096 $short_to_id.remove(&short_id);
1098 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
1099 // chain in a confused state! We need to move them into the ChannelMonitor which
1100 // will be responsible for failing backwards once things confirm on-chain.
1101 // It's ok that we drop $failed_forwards here - at this point we'd rather they
1102 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
1103 // us bother trying to claim it just to forward on to another peer. If we're
1104 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
1105 // given up the preimage yet, so might as well just wait until the payment is
1106 // retried, avoiding the on-chain fees.
1107 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.get_user_id(),
1108 $chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
1111 ChannelMonitorUpdateErr::TemporaryFailure => {
1112 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards, {} fails, and {} fulfill finalizations",
1113 log_bytes!($chan_id[..]),
1114 if $resend_commitment && $resend_raa {
1115 match $action_type {
1116 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
1117 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
1119 } else if $resend_commitment { "commitment" }
1120 else if $resend_raa { "RAA" }
1122 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
1123 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len(),
1124 (&$failed_finalized_fulfills as &Vec<HTLCSource>).len());
1125 if !$resend_commitment {
1126 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
1129 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
1131 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills);
1132 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
1136 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr) => { {
1137 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills, $entry.key());
1139 $entry.remove_entry();
1143 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1144 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, Vec::new());
1148 macro_rules! return_monitor_err {
1149 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1150 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
1152 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1153 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1157 // Does not break in case of TemporaryFailure!
1158 macro_rules! maybe_break_monitor_err {
1159 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1160 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
1161 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
1164 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
1169 macro_rules! handle_chan_restoration_locked {
1170 ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
1171 $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
1172 $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
1173 let mut htlc_forwards = None;
1174 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
1176 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
1177 let chanmon_update_is_none = chanmon_update.is_none();
1179 let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
1180 if !forwards.is_empty() {
1181 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
1182 $channel_entry.get().get_funding_txo().unwrap(), forwards));
1185 if chanmon_update.is_some() {
1186 // On reconnect, we, by definition, only resend a funding_locked if there have been
1187 // no commitment updates, so the only channel monitor update which could also be
1188 // associated with a funding_locked would be the funding_created/funding_signed
1189 // monitor update. That monitor update failing implies that we won't send
1190 // funding_locked until it's been updated, so we can't have a funding_locked and a
1191 // monitor update here (so we don't bother to handle it correctly below).
1192 assert!($funding_locked.is_none());
1193 // A channel monitor update makes no sense without either a funding_locked or a
1194 // commitment update to process after it. Since we can't have a funding_locked, we
1195 // only bother to handle the monitor-update + commitment_update case below.
1196 assert!($commitment_update.is_some());
1199 if let Some(msg) = $funding_locked {
1200 // Similar to the above, this implies that we're letting the funding_locked fly
1201 // before it should be allowed to.
1202 assert!(chanmon_update.is_none());
1203 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
1204 node_id: counterparty_node_id,
1207 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
1208 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
1209 node_id: counterparty_node_id,
1210 msg: announcement_sigs,
1213 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
1216 let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1217 if let Some(monitor_update) = chanmon_update {
1218 // We only ever broadcast a funding transaction in response to a funding_signed
1219 // message and the resulting monitor update. Thus, on channel_reestablish
1220 // message handling we can't have a funding transaction to broadcast. When
1221 // processing a monitor update finishing resulting in a funding broadcast, we
1222 // cannot have a second monitor update, thus this case would indicate a bug.
1223 assert!(funding_broadcastable.is_none());
1224 // Given we were just reconnected or finished updating a channel monitor, the
1225 // only case where we can get a new ChannelMonitorUpdate would be if we also
1226 // have some commitment updates to send as well.
1227 assert!($commitment_update.is_some());
1228 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1229 // channel_reestablish doesn't guarantee the order it returns is sensical
1230 // for the messages it returns, but if we're setting what messages to
1231 // re-transmit on monitor update success, we need to make sure it is sane.
1232 let mut order = $order;
1234 order = RAACommitmentOrder::CommitmentFirst;
1236 break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1240 macro_rules! handle_cs { () => {
1241 if let Some(update) = $commitment_update {
1242 $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1243 node_id: counterparty_node_id,
1248 macro_rules! handle_raa { () => {
1249 if let Some(revoke_and_ack) = $raa {
1250 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1251 node_id: counterparty_node_id,
1252 msg: revoke_and_ack,
1257 RAACommitmentOrder::CommitmentFirst => {
1261 RAACommitmentOrder::RevokeAndACKFirst => {
1266 if let Some(tx) = funding_broadcastable {
1267 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1268 $self.tx_broadcaster.broadcast_transaction(&tx);
1273 if chanmon_update_is_none {
1274 // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1275 // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1276 // should *never* end up calling back to `chain_monitor.update_channel()`.
1277 assert!(res.is_ok());
1280 (htlc_forwards, res, counterparty_node_id)
1284 macro_rules! post_handle_chan_restoration {
1285 ($self: ident, $locked_res: expr) => { {
1286 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1288 let _ = handle_error!($self, res, counterparty_node_id);
1290 if let Some(forwards) = htlc_forwards {
1291 $self.forward_htlcs(&mut [forwards][..]);
1296 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1297 where M::Target: chain::Watch<Signer>,
1298 T::Target: BroadcasterInterface,
1299 K::Target: KeysInterface<Signer = Signer>,
1300 F::Target: FeeEstimator,
1303 /// Constructs a new ChannelManager to hold several channels and route between them.
1305 /// This is the main "logic hub" for all channel-related actions, and implements
1306 /// ChannelMessageHandler.
1308 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1310 /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1312 /// Users need to notify the new ChannelManager when a new block is connected or
1313 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1314 /// from after `params.latest_hash`.
1315 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1316 let mut secp_ctx = Secp256k1::new();
1317 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1320 default_configuration: config.clone(),
1321 genesis_hash: genesis_block(params.network).header.block_hash(),
1322 fee_estimator: fee_est,
1326 best_block: RwLock::new(params.best_block),
1328 channel_state: Mutex::new(ChannelHolder{
1329 by_id: HashMap::new(),
1330 short_to_id: HashMap::new(),
1331 forward_htlcs: HashMap::new(),
1332 claimable_htlcs: HashMap::new(),
1333 pending_msg_events: Vec::new(),
1335 pending_inbound_payments: Mutex::new(HashMap::new()),
1336 pending_outbound_payments: Mutex::new(HashMap::new()),
1338 our_network_key: keys_manager.get_node_secret(),
1339 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1342 last_node_announcement_serial: AtomicUsize::new(0),
1343 highest_seen_timestamp: AtomicUsize::new(0),
1345 per_peer_state: RwLock::new(HashMap::new()),
1347 pending_events: Mutex::new(Vec::new()),
1348 pending_background_events: Mutex::new(Vec::new()),
1349 total_consistency_lock: RwLock::new(()),
1350 persistence_notifier: PersistenceNotifier::new(),
1358 /// Gets the current configuration applied to all new channels, as
1359 pub fn get_current_default_configuration(&self) -> &UserConfig {
1360 &self.default_configuration
1363 /// Creates a new outbound channel to the given remote node and with the given value.
1365 /// `user_channel_id` will be provided back as in
1366 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1367 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to 0
1368 /// for inbound channels, so you may wish to avoid using 0 for `user_channel_id` here.
1369 /// `user_channel_id` has no meaning inside of LDK, it is simply copied to events and otherwise
1372 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1373 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1375 /// Note that we do not check if you are currently connected to the given peer. If no
1376 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1377 /// the channel eventually being silently forgotten (dropped on reload).
1379 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1380 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1381 /// [`ChannelDetails::channel_id`] until after
1382 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1383 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1384 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1386 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1387 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1388 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1389 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u64, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1390 if channel_value_satoshis < 1000 {
1391 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1395 let per_peer_state = self.per_peer_state.read().unwrap();
1396 match per_peer_state.get(&their_network_key) {
1397 Some(peer_state) => {
1398 let peer_state = peer_state.lock().unwrap();
1399 let their_features = &peer_state.latest_features;
1400 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1401 Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, their_features, channel_value_satoshis, push_msat, user_channel_id, config)?
1403 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
1406 let res = channel.get_open_channel(self.genesis_hash.clone());
1408 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1409 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1410 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1412 let temporary_channel_id = channel.channel_id();
1413 let mut channel_state = self.channel_state.lock().unwrap();
1414 match channel_state.by_id.entry(temporary_channel_id) {
1415 hash_map::Entry::Occupied(_) => {
1416 if cfg!(feature = "fuzztarget") {
1417 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1419 panic!("RNG is bad???");
1422 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1424 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1425 node_id: their_network_key,
1428 Ok(temporary_channel_id)
1431 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1432 let mut res = Vec::new();
1434 let channel_state = self.channel_state.lock().unwrap();
1435 res.reserve(channel_state.by_id.len());
1436 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1437 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1438 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1439 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1440 res.push(ChannelDetails {
1441 channel_id: (*channel_id).clone(),
1442 counterparty: ChannelCounterparty {
1443 node_id: channel.get_counterparty_node_id(),
1444 features: InitFeatures::empty(),
1445 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1446 forwarding_info: channel.counterparty_forwarding_info(),
1448 funding_txo: channel.get_funding_txo(),
1449 short_channel_id: channel.get_short_channel_id(),
1450 channel_value_satoshis: channel.get_value_satoshis(),
1451 unspendable_punishment_reserve: to_self_reserve_satoshis,
1452 inbound_capacity_msat,
1453 outbound_capacity_msat,
1454 user_channel_id: channel.get_user_id(),
1455 confirmations_required: channel.minimum_depth(),
1456 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1457 is_outbound: channel.is_outbound(),
1458 is_funding_locked: channel.is_usable(),
1459 is_usable: channel.is_live(),
1460 is_public: channel.should_announce(),
1464 let per_peer_state = self.per_peer_state.read().unwrap();
1465 for chan in res.iter_mut() {
1466 if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
1467 chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
1473 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1474 /// more information.
1475 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1476 self.list_channels_with_filter(|_| true)
1479 /// Gets the list of usable channels, in random order. Useful as an argument to
1480 /// get_route to ensure non-announced channels are used.
1482 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1483 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1485 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1486 // Note we use is_live here instead of usable which leads to somewhat confused
1487 // internal/external nomenclature, but that's ok cause that's probably what the user
1488 // really wanted anyway.
1489 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1492 /// Helper function that issues the channel close events
1493 fn issue_channel_close_events(&self, channel: &Channel<Signer>, closure_reason: ClosureReason) {
1494 let mut pending_events_lock = self.pending_events.lock().unwrap();
1495 match channel.unbroadcasted_funding() {
1496 Some(transaction) => {
1497 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1501 pending_events_lock.push(events::Event::ChannelClosed {
1502 channel_id: channel.channel_id(),
1503 user_channel_id: channel.get_user_id(),
1504 reason: closure_reason
1508 fn close_channel_internal(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1509 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1511 let counterparty_node_id;
1512 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1513 let result: Result<(), _> = loop {
1514 let mut channel_state_lock = self.channel_state.lock().unwrap();
1515 let channel_state = &mut *channel_state_lock;
1516 match channel_state.by_id.entry(channel_id.clone()) {
1517 hash_map::Entry::Occupied(mut chan_entry) => {
1518 counterparty_node_id = chan_entry.get().get_counterparty_node_id();
1519 let per_peer_state = self.per_peer_state.read().unwrap();
1520 let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
1521 Some(peer_state) => {
1522 let peer_state = peer_state.lock().unwrap();
1523 let their_features = &peer_state.latest_features;
1524 chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
1526 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
1528 failed_htlcs = htlcs;
1530 // Update the monitor with the shutdown script if necessary.
1531 if let Some(monitor_update) = monitor_update {
1532 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
1533 let (result, is_permanent) =
1534 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), Vec::new(), chan_entry.key());
1536 remove_channel!(channel_state, chan_entry);
1542 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1543 node_id: counterparty_node_id,
1547 if chan_entry.get().is_shutdown() {
1548 let channel = remove_channel!(channel_state, chan_entry);
1549 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1550 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1554 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1558 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1562 for htlc_source in failed_htlcs.drain(..) {
1563 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1566 let _ = handle_error!(self, result, counterparty_node_id);
1570 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1571 /// will be accepted on the given channel, and after additional timeout/the closing of all
1572 /// pending HTLCs, the channel will be closed on chain.
1574 /// * If we are the channel initiator, we will pay between our [`Background`] and
1575 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1577 /// * If our counterparty is the channel initiator, we will require a channel closing
1578 /// transaction feerate of at least our [`Background`] feerate or the feerate which
1579 /// would appear on a force-closure transaction, whichever is lower. We will allow our
1580 /// counterparty to pay as much fee as they'd like, however.
1582 /// May generate a SendShutdown message event on success, which should be relayed.
1584 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1585 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1586 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1587 pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1588 self.close_channel_internal(channel_id, None)
1591 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1592 /// will be accepted on the given channel, and after additional timeout/the closing of all
1593 /// pending HTLCs, the channel will be closed on chain.
1595 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1596 /// the channel being closed or not:
1597 /// * If we are the channel initiator, we will pay at least this feerate on the closing
1598 /// transaction. The upper-bound is set by
1599 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1600 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1601 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1602 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1603 /// will appear on a force-closure transaction, whichever is lower).
1605 /// May generate a SendShutdown message event on success, which should be relayed.
1607 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1608 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1609 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1610 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1611 self.close_channel_internal(channel_id, Some(target_feerate_sats_per_1000_weight))
1615 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1616 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1617 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1618 for htlc_source in failed_htlcs.drain(..) {
1619 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1621 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1622 // There isn't anything we can do if we get an update failure - we're already
1623 // force-closing. The monitor update on the required in-memory copy should broadcast
1624 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1625 // ignore the result here.
1626 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1630 /// `peer_node_id` should be set when we receive a message from a peer, but not set when the
1631 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1632 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>, peer_msg: Option<&String>) -> Result<PublicKey, APIError> {
1634 let mut channel_state_lock = self.channel_state.lock().unwrap();
1635 let channel_state = &mut *channel_state_lock;
1636 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1637 if let Some(node_id) = peer_node_id {
1638 if chan.get().get_counterparty_node_id() != *node_id {
1639 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1642 if let Some(short_id) = chan.get().get_short_channel_id() {
1643 channel_state.short_to_id.remove(&short_id);
1645 if peer_node_id.is_some() {
1646 if let Some(peer_msg) = peer_msg {
1647 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1650 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1652 chan.remove_entry().1
1654 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1657 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1658 self.finish_force_close_channel(chan.force_shutdown(true));
1659 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1660 let mut channel_state = self.channel_state.lock().unwrap();
1661 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1666 Ok(chan.get_counterparty_node_id())
1669 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1670 /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1671 pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1672 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1673 match self.force_close_channel_with_peer(channel_id, None, None) {
1674 Ok(counterparty_node_id) => {
1675 self.channel_state.lock().unwrap().pending_msg_events.push(
1676 events::MessageSendEvent::HandleError {
1677 node_id: counterparty_node_id,
1678 action: msgs::ErrorAction::SendErrorMessage {
1679 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1689 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1690 /// for each to the chain and rejecting new HTLCs on each.
1691 pub fn force_close_all_channels(&self) {
1692 for chan in self.list_channels() {
1693 let _ = self.force_close_channel(&chan.channel_id);
1697 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1698 macro_rules! return_malformed_err {
1699 ($msg: expr, $err_code: expr) => {
1701 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1702 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1703 channel_id: msg.channel_id,
1704 htlc_id: msg.htlc_id,
1705 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1706 failure_code: $err_code,
1707 })), self.channel_state.lock().unwrap());
1712 if let Err(_) = msg.onion_routing_packet.public_key {
1713 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1716 let shared_secret = {
1717 let mut arr = [0; 32];
1718 arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1721 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1723 if msg.onion_routing_packet.version != 0 {
1724 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1725 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1726 //the hash doesn't really serve any purpose - in the case of hashing all data, the
1727 //receiving node would have to brute force to figure out which version was put in the
1728 //packet by the node that send us the message, in the case of hashing the hop_data, the
1729 //node knows the HMAC matched, so they already know what is there...
1730 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1733 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1734 hmac.input(&msg.onion_routing_packet.hop_data);
1735 hmac.input(&msg.payment_hash.0[..]);
1736 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1737 return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1740 let mut channel_state = None;
1741 macro_rules! return_err {
1742 ($msg: expr, $err_code: expr, $data: expr) => {
1744 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1745 if channel_state.is_none() {
1746 channel_state = Some(self.channel_state.lock().unwrap());
1748 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1749 channel_id: msg.channel_id,
1750 htlc_id: msg.htlc_id,
1751 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1752 })), channel_state.unwrap());
1757 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1758 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1759 let (next_hop_data, next_hop_hmac): (msgs::OnionHopData, _) = {
1760 match <msgs::OnionHopData as Readable>::read(&mut chacha_stream) {
1762 let error_code = match err {
1763 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1764 msgs::DecodeError::UnknownRequiredFeature|
1765 msgs::DecodeError::InvalidValue|
1766 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1767 _ => 0x2000 | 2, // Should never happen
1769 return_err!("Unable to decode our hop data", error_code, &[0;0]);
1772 let mut hmac = [0; 32];
1773 if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1774 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1781 let pending_forward_info = if next_hop_hmac == [0; 32] {
1784 // In tests, make sure that the initial onion pcket data is, at least, non-0.
1785 // We could do some fancy randomness test here, but, ehh, whatever.
1786 // This checks for the issue where you can calculate the path length given the
1787 // onion data as all the path entries that the originator sent will be here
1788 // as-is (and were originally 0s).
1789 // Of course reverse path calculation is still pretty easy given naive routing
1790 // algorithms, but this fixes the most-obvious case.
1791 let mut next_bytes = [0; 32];
1792 chacha_stream.read_exact(&mut next_bytes).unwrap();
1793 assert_ne!(next_bytes[..], [0; 32][..]);
1794 chacha_stream.read_exact(&mut next_bytes).unwrap();
1795 assert_ne!(next_bytes[..], [0; 32][..]);
1799 // final_expiry_too_soon
1800 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
1801 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
1802 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
1803 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
1804 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
1805 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1806 return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1808 // final_incorrect_htlc_amount
1809 if next_hop_data.amt_to_forward > msg.amount_msat {
1810 return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1812 // final_incorrect_cltv_expiry
1813 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1814 return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1817 let routing = match next_hop_data.format {
1818 msgs::OnionHopDataFormat::Legacy { .. } => return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]),
1819 msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1820 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
1821 if payment_data.is_some() && keysend_preimage.is_some() {
1822 return_err!("We don't support MPP keysend payments", 0x4000|22, &[0;0]);
1823 } else if let Some(data) = payment_data {
1824 PendingHTLCRouting::Receive {
1826 incoming_cltv_expiry: msg.cltv_expiry,
1828 } else if let Some(payment_preimage) = keysend_preimage {
1829 // We need to check that the sender knows the keysend preimage before processing this
1830 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
1831 // could discover the final destination of X, by probing the adjacent nodes on the route
1832 // with a keysend payment of identical payment hash to X and observing the processing
1833 // time discrepancies due to a hash collision with X.
1834 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
1835 if hashed_preimage != msg.payment_hash {
1836 return_err!("Payment preimage didn't match payment hash", 0x4000|22, &[0;0]);
1839 PendingHTLCRouting::ReceiveKeysend {
1841 incoming_cltv_expiry: msg.cltv_expiry,
1844 return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1849 // Note that we could obviously respond immediately with an update_fulfill_htlc
1850 // message, however that would leak that we are the recipient of this payment, so
1851 // instead we stay symmetric with the forwarding case, only responding (after a
1852 // delay) once they've send us a commitment_signed!
1854 PendingHTLCStatus::Forward(PendingHTLCInfo {
1856 payment_hash: msg.payment_hash.clone(),
1857 incoming_shared_secret: shared_secret,
1858 amt_to_forward: next_hop_data.amt_to_forward,
1859 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1862 let mut new_packet_data = [0; 20*65];
1863 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1864 #[cfg(debug_assertions)]
1866 // Check two things:
1867 // a) that the behavior of our stream here will return Ok(0) even if the TLV
1868 // read above emptied out our buffer and the unwrap() wont needlessly panic
1869 // b) that we didn't somehow magically end up with extra data.
1871 debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1873 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1874 // fill the onion hop data we'll forward to our next-hop peer.
1875 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1877 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1879 let blinding_factor = {
1880 let mut sha = Sha256::engine();
1881 sha.input(&new_pubkey.serialize()[..]);
1882 sha.input(&shared_secret);
1883 Sha256::from_engine(sha).into_inner()
1886 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1888 } else { Ok(new_pubkey) };
1890 let outgoing_packet = msgs::OnionPacket {
1893 hop_data: new_packet_data,
1894 hmac: next_hop_hmac.clone(),
1897 let short_channel_id = match next_hop_data.format {
1898 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1899 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1900 msgs::OnionHopDataFormat::FinalNode { .. } => {
1901 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1905 PendingHTLCStatus::Forward(PendingHTLCInfo {
1906 routing: PendingHTLCRouting::Forward {
1907 onion_packet: outgoing_packet,
1910 payment_hash: msg.payment_hash.clone(),
1911 incoming_shared_secret: shared_secret,
1912 amt_to_forward: next_hop_data.amt_to_forward,
1913 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1917 channel_state = Some(self.channel_state.lock().unwrap());
1918 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1919 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1920 // with a short_channel_id of 0. This is important as various things later assume
1921 // short_channel_id is non-0 in any ::Forward.
1922 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1923 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1924 if let Some((err, code, chan_update)) = loop {
1925 let forwarding_id = match id_option {
1926 None => { // unknown_next_peer
1927 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
1929 Some(id) => id.clone(),
1932 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1934 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
1935 // Note that the behavior here should be identical to the above block - we
1936 // should NOT reveal the existence or non-existence of a private channel if
1937 // we don't allow forwards outbound over them.
1938 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
1941 // Note that we could technically not return an error yet here and just hope
1942 // that the connection is reestablished or monitor updated by the time we get
1943 // around to doing the actual forward, but better to fail early if we can and
1944 // hopefully an attacker trying to path-trace payments cannot make this occur
1945 // on a small/per-node/per-channel scale.
1946 if !chan.is_live() { // channel_disabled
1947 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1949 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1950 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1952 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
1953 .and_then(|prop_fee| { (prop_fee / 1000000)
1954 .checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
1955 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1956 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1958 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1959 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1961 let cur_height = self.best_block.read().unwrap().height() + 1;
1962 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1963 // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1964 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1965 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1967 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1968 break Some(("CLTV expiry is too far in the future", 21, None));
1970 // In theory, we would be safe against unintentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1971 // But, to be safe against policy reception, we use a longer delay.
1972 if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1973 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update_for_unicast(chan).unwrap())));
1979 let mut res = Vec::with_capacity(8 + 128);
1980 if let Some(chan_update) = chan_update {
1981 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1982 res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1984 else if code == 0x1000 | 13 {
1985 res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1987 else if code == 0x1000 | 20 {
1988 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1989 res.extend_from_slice(&byte_utils::be16_to_array(0));
1991 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1993 return_err!(err, code, &res[..]);
1998 (pending_forward_info, channel_state.unwrap())
2001 /// Gets the current channel_update for the given channel. This first checks if the channel is
2002 /// public, and thus should be called whenever the result is going to be passed out in a
2003 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2005 /// May be called with channel_state already locked!
2006 fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2007 if !chan.should_announce() {
2008 return Err(LightningError {
2009 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2010 action: msgs::ErrorAction::IgnoreError
2013 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2014 self.get_channel_update_for_unicast(chan)
2017 /// Gets the current channel_update for the given channel. This does not check if the channel
2018 /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2019 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2020 /// provided evidence that they know about the existence of the channel.
2021 /// May be called with channel_state already locked!
2022 fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2023 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2024 let short_channel_id = match chan.get_short_channel_id() {
2025 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2029 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2031 let unsigned = msgs::UnsignedChannelUpdate {
2032 chain_hash: self.genesis_hash,
2034 timestamp: chan.get_update_time_counter(),
2035 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2036 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2037 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2038 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
2039 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2040 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2041 excess_data: Vec::new(),
2044 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
2045 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
2047 Ok(msgs::ChannelUpdate {
2053 // Only public for testing, this should otherwise never be called direcly
2054 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payee: &Option<Payee>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>) -> Result<(), APIError> {
2055 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2056 let prng_seed = self.keys_manager.get_secure_random_bytes();
2057 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
2058 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2060 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2061 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
2062 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2063 if onion_utils::route_size_insane(&onion_payloads) {
2064 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
2066 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2068 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2070 let err: Result<(), _> = loop {
2071 let mut channel_lock = self.channel_state.lock().unwrap();
2073 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
2074 let payment_entry = pending_outbounds.entry(payment_id);
2075 if let hash_map::Entry::Occupied(payment) = &payment_entry {
2076 if !payment.get().is_retryable() {
2077 return Err(APIError::RouteError {
2078 err: "Payment already completed"
2083 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
2084 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2085 Some(id) => id.clone(),
2088 let channel_state = &mut *channel_lock;
2089 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
2091 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
2092 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
2094 if !chan.get().is_live() {
2095 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
2097 let send_res = break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(
2098 htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
2100 session_priv: session_priv.clone(),
2101 first_hop_htlc_msat: htlc_msat,
2103 payment_secret: payment_secret.clone(),
2104 payee: payee.clone(),
2105 }, onion_packet, &self.logger),
2106 channel_state, chan);
2108 let payment = payment_entry.or_insert_with(|| PendingOutboundPayment::Retryable {
2109 session_privs: HashSet::new(),
2110 pending_amt_msat: 0,
2111 pending_fee_msat: Some(0),
2112 payment_hash: *payment_hash,
2113 payment_secret: *payment_secret,
2114 starting_block_height: self.best_block.read().unwrap().height(),
2115 total_msat: total_value,
2117 assert!(payment.insert(session_priv_bytes, path));
2121 Some((update_add, commitment_signed, monitor_update)) => {
2122 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2123 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
2124 // Note that MonitorUpdateFailed here indicates (per function docs)
2125 // that we will resend the commitment update once monitor updating
2126 // is restored. Therefore, we must return an error indicating that
2127 // it is unsafe to retry the payment wholesale, which we do in the
2128 // send_payment check for MonitorUpdateFailed, below.
2129 return Err(APIError::MonitorUpdateFailed);
2132 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
2133 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2134 node_id: path.first().unwrap().pubkey,
2135 updates: msgs::CommitmentUpdate {
2136 update_add_htlcs: vec![update_add],
2137 update_fulfill_htlcs: Vec::new(),
2138 update_fail_htlcs: Vec::new(),
2139 update_fail_malformed_htlcs: Vec::new(),
2147 } else { unreachable!(); }
2151 match handle_error!(self, err, path.first().unwrap().pubkey) {
2152 Ok(_) => unreachable!(),
2154 Err(APIError::ChannelUnavailable { err: e.err })
2159 /// Sends a payment along a given route.
2161 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
2162 /// fields for more info.
2164 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
2165 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
2166 /// next hop knows the preimage to payment_hash they can claim an additional amount as
2167 /// specified in the last hop in the route! Thus, you should probably do your own
2168 /// payment_preimage tracking (which you should already be doing as they represent "proof of
2169 /// payment") and prevent double-sends yourself.
2171 /// May generate SendHTLCs message(s) event on success, which should be relayed.
2173 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2174 /// each entry matching the corresponding-index entry in the route paths, see
2175 /// PaymentSendFailure for more info.
2177 /// In general, a path may raise:
2178 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
2179 /// node public key) is specified.
2180 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
2181 /// (including due to previous monitor update failure or new permanent monitor update
2183 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
2184 /// relevant updates.
2186 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2187 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2188 /// different route unless you intend to pay twice!
2190 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
2191 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
2192 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
2193 /// must not contain multiple paths as multi-path payments require a recipient-provided
2195 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
2196 /// bit set (either as required or as available). If multiple paths are present in the Route,
2197 /// we assume the invoice had the basic_mpp feature set.
2198 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<PaymentId, PaymentSendFailure> {
2199 self.send_payment_internal(route, payment_hash, payment_secret, None, None, None)
2202 fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: Option<PaymentId>, recv_value_msat: Option<u64>) -> Result<PaymentId, PaymentSendFailure> {
2203 if route.paths.len() < 1 {
2204 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
2206 if route.paths.len() > 10 {
2207 // This limit is completely arbitrary - there aren't any real fundamental path-count
2208 // limits. After we support retrying individual paths we should likely bump this, but
2209 // for now more than 10 paths likely carries too much one-path failure.
2210 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
2212 if payment_secret.is_none() && route.paths.len() > 1 {
2213 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
2215 let mut total_value = 0;
2216 let our_node_id = self.get_our_node_id();
2217 let mut path_errs = Vec::with_capacity(route.paths.len());
2218 let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) };
2219 'path_check: for path in route.paths.iter() {
2220 if path.len() < 1 || path.len() > 20 {
2221 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
2222 continue 'path_check;
2224 for (idx, hop) in path.iter().enumerate() {
2225 if idx != path.len() - 1 && hop.pubkey == our_node_id {
2226 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
2227 continue 'path_check;
2230 total_value += path.last().unwrap().fee_msat;
2231 path_errs.push(Ok(()));
2233 if path_errs.iter().any(|e| e.is_err()) {
2234 return Err(PaymentSendFailure::PathParameterError(path_errs));
2236 if let Some(amt_msat) = recv_value_msat {
2237 debug_assert!(amt_msat >= total_value);
2238 total_value = amt_msat;
2241 let cur_height = self.best_block.read().unwrap().height() + 1;
2242 let mut results = Vec::new();
2243 for path in route.paths.iter() {
2244 results.push(self.send_payment_along_path(&path, &route.payee, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage));
2246 let mut has_ok = false;
2247 let mut has_err = false;
2248 let mut pending_amt_unsent = 0;
2249 let mut max_unsent_cltv_delta = 0;
2250 for (res, path) in results.iter().zip(route.paths.iter()) {
2251 if res.is_ok() { has_ok = true; }
2252 if res.is_err() { has_err = true; }
2253 if let &Err(APIError::MonitorUpdateFailed) = res {
2254 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
2258 } else if res.is_err() {
2259 pending_amt_unsent += path.last().unwrap().fee_msat;
2260 max_unsent_cltv_delta = cmp::max(max_unsent_cltv_delta, path.last().unwrap().cltv_expiry_delta);
2263 if has_err && has_ok {
2264 Err(PaymentSendFailure::PartialFailure {
2267 failed_paths_retry: if pending_amt_unsent != 0 {
2268 if let Some(payee) = &route.payee {
2269 Some(RouteParameters {
2270 payee: payee.clone(),
2271 final_value_msat: pending_amt_unsent,
2272 final_cltv_expiry_delta: max_unsent_cltv_delta,
2278 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
2284 /// Retries a payment along the given [`Route`].
2286 /// Errors returned are a superset of those returned from [`send_payment`], so see
2287 /// [`send_payment`] documentation for more details on errors. This method will also error if the
2288 /// retry amount puts the payment more than 10% over the payment's total amount, or if the payment
2289 /// for the given `payment_id` cannot be found (likely due to timeout or success).
2291 /// [`send_payment`]: [`ChannelManager::send_payment`]
2292 pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2293 const RETRY_OVERFLOW_PERCENTAGE: u64 = 10;
2294 for path in route.paths.iter() {
2295 if path.len() == 0 {
2296 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2297 err: "length-0 path in route".to_string()
2302 let (total_msat, payment_hash, payment_secret) = {
2303 let outbounds = self.pending_outbound_payments.lock().unwrap();
2304 if let Some(payment) = outbounds.get(&payment_id) {
2306 PendingOutboundPayment::Retryable {
2307 total_msat, payment_hash, payment_secret, pending_amt_msat, ..
2309 let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum();
2310 if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 {
2311 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2312 err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string()
2315 (*total_msat, *payment_hash, *payment_secret)
2317 PendingOutboundPayment::Legacy { .. } => {
2318 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2319 err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string()
2322 PendingOutboundPayment::Fulfilled { .. } => {
2323 return Err(PaymentSendFailure::ParameterError(APIError::RouteError {
2324 err: "Payment already completed"
2329 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2330 err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)),
2334 return self.send_payment_internal(route, payment_hash, &payment_secret, None, Some(payment_id), Some(total_msat)).map(|_| ())
2337 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2338 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2339 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2340 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2341 /// never reach the recipient.
2343 /// See [`send_payment`] documentation for more details on the return value of this function.
2345 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2346 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2348 /// Note that `route` must have exactly one path.
2350 /// [`send_payment`]: Self::send_payment
2351 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2352 let preimage = match payment_preimage {
2354 None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
2356 let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
2357 match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None, None) {
2358 Ok(payment_id) => Ok((payment_hash, payment_id)),
2363 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2364 /// which checks the correctness of the funding transaction given the associated channel.
2365 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
2366 (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
2368 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
2370 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2372 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2373 .map_err(|e| if let ChannelError::Close(msg) = e {
2374 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2375 } else { unreachable!(); })
2378 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
2380 match handle_error!(self, res, chan.get_counterparty_node_id()) {
2381 Ok(funding_msg) => {
2384 Err(_) => { return Err(APIError::ChannelUnavailable {
2385 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
2390 let mut channel_state = self.channel_state.lock().unwrap();
2391 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2392 node_id: chan.get_counterparty_node_id(),
2395 match channel_state.by_id.entry(chan.channel_id()) {
2396 hash_map::Entry::Occupied(_) => {
2397 panic!("Generated duplicate funding txid?");
2399 hash_map::Entry::Vacant(e) => {
2407 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2408 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
2409 Ok(OutPoint { txid: tx.txid(), index: output_index })
2413 /// Call this upon creation of a funding transaction for the given channel.
2415 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2416 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2418 /// Panics if a funding transaction has already been provided for this channel.
2420 /// May panic if the output found in the funding transaction is duplicative with some other
2421 /// channel (note that this should be trivially prevented by using unique funding transaction
2422 /// keys per-channel).
2424 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2425 /// counterparty's signature the funding transaction will automatically be broadcast via the
2426 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2428 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2429 /// not currently support replacing a funding transaction on an existing channel. Instead,
2430 /// create a new channel with a conflicting funding transaction.
2432 /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2433 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
2434 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2436 for inp in funding_transaction.input.iter() {
2437 if inp.witness.is_empty() {
2438 return Err(APIError::APIMisuseError {
2439 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2443 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
2444 let mut output_index = None;
2445 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2446 for (idx, outp) in tx.output.iter().enumerate() {
2447 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2448 if output_index.is_some() {
2449 return Err(APIError::APIMisuseError {
2450 err: "Multiple outputs matched the expected script and value".to_owned()
2453 if idx > u16::max_value() as usize {
2454 return Err(APIError::APIMisuseError {
2455 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2458 output_index = Some(idx as u16);
2461 if output_index.is_none() {
2462 return Err(APIError::APIMisuseError {
2463 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2466 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2470 fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
2471 if !chan.should_announce() {
2472 log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
2476 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
2478 Err(_) => return None, // Only in case of state precondition violations eg channel is closing
2480 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2481 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2483 Some(msgs::AnnouncementSignatures {
2484 channel_id: chan.channel_id(),
2485 short_channel_id: chan.get_short_channel_id().unwrap(),
2486 node_signature: our_node_sig,
2487 bitcoin_signature: our_bitcoin_sig,
2492 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2493 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
2494 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2496 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2499 // ...by failing to compile if the number of addresses that would be half of a message is
2500 // smaller than 500:
2501 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
2503 /// Regenerates channel_announcements and generates a signed node_announcement from the given
2504 /// arguments, providing them in corresponding events via
2505 /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
2506 /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
2507 /// announcement to ensure that the lightning P2P network is aware of the channels we have and
2508 /// our network addresses.
2510 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2511 /// node to humans. They carry no in-protocol meaning.
2513 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2514 /// accepts incoming connections. These will be included in the node_announcement, publicly
2515 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2516 /// addresses should likely contain only Tor Onion addresses.
2518 /// Panics if `addresses` is absurdly large (more than 500).
2520 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2521 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2522 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2524 if addresses.len() > 500 {
2525 panic!("More than half the message size was taken up by public addresses!");
2528 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2529 // addresses be sorted for future compatibility.
2530 addresses.sort_by_key(|addr| addr.get_id());
2532 let announcement = msgs::UnsignedNodeAnnouncement {
2533 features: NodeFeatures::known(),
2534 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
2535 node_id: self.get_our_node_id(),
2536 rgb, alias, addresses,
2537 excess_address_data: Vec::new(),
2538 excess_data: Vec::new(),
2540 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2541 let node_announce_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
2543 let mut channel_state_lock = self.channel_state.lock().unwrap();
2544 let channel_state = &mut *channel_state_lock;
2546 let mut announced_chans = false;
2547 for (_, chan) in channel_state.by_id.iter() {
2548 if let Some(msg) = chan.get_signed_channel_announcement(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone()) {
2549 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2551 update_msg: match self.get_channel_update_for_broadcast(chan) {
2556 announced_chans = true;
2558 // If the channel is not public or has not yet reached funding_locked, check the
2559 // next channel. If we don't yet have any public channels, we'll skip the broadcast
2560 // below as peers may not accept it without channels on chain first.
2564 if announced_chans {
2565 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2566 msg: msgs::NodeAnnouncement {
2567 signature: node_announce_sig,
2568 contents: announcement
2574 /// Processes HTLCs which are pending waiting on random forward delay.
2576 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2577 /// Will likely generate further events.
2578 pub fn process_pending_htlc_forwards(&self) {
2579 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2581 let mut new_events = Vec::new();
2582 let mut failed_forwards = Vec::new();
2583 let mut handle_errors = Vec::new();
2585 let mut channel_state_lock = self.channel_state.lock().unwrap();
2586 let channel_state = &mut *channel_state_lock;
2588 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2589 if short_chan_id != 0 {
2590 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2591 Some(chan_id) => chan_id.clone(),
2593 failed_forwards.reserve(pending_forwards.len());
2594 for forward_info in pending_forwards.drain(..) {
2595 match forward_info {
2596 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
2597 prev_funding_outpoint } => {
2598 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2599 short_channel_id: prev_short_channel_id,
2600 outpoint: prev_funding_outpoint,
2601 htlc_id: prev_htlc_id,
2602 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
2604 failed_forwards.push((htlc_source, forward_info.payment_hash,
2605 HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
2608 HTLCForwardInfo::FailHTLC { .. } => {
2609 // Channel went away before we could fail it. This implies
2610 // the channel is now on chain and our counterparty is
2611 // trying to broadcast the HTLC-Timeout, but that's their
2612 // problem, not ours.
2619 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2620 let mut add_htlc_msgs = Vec::new();
2621 let mut fail_htlc_msgs = Vec::new();
2622 for forward_info in pending_forwards.drain(..) {
2623 match forward_info {
2624 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2625 routing: PendingHTLCRouting::Forward {
2627 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2628 prev_funding_outpoint } => {
2629 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
2630 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2631 short_channel_id: prev_short_channel_id,
2632 outpoint: prev_funding_outpoint,
2633 htlc_id: prev_htlc_id,
2634 incoming_packet_shared_secret: incoming_shared_secret,
2636 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
2638 if let ChannelError::Ignore(msg) = e {
2639 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2641 panic!("Stated return value requirements in send_htlc() were not met");
2643 let chan_update = self.get_channel_update_for_unicast(chan.get()).unwrap();
2644 failed_forwards.push((htlc_source, payment_hash,
2645 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
2651 Some(msg) => { add_htlc_msgs.push(msg); },
2653 // Nothing to do here...we're waiting on a remote
2654 // revoke_and_ack before we can add anymore HTLCs. The Channel
2655 // will automatically handle building the update_add_htlc and
2656 // commitment_signed messages when we can.
2657 // TODO: Do some kind of timer to set the channel as !is_live()
2658 // as we don't really want others relying on us relaying through
2659 // this channel currently :/.
2665 HTLCForwardInfo::AddHTLC { .. } => {
2666 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
2668 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2669 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
2670 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
2672 if let ChannelError::Ignore(msg) = e {
2673 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
2675 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2677 // fail-backs are best-effort, we probably already have one
2678 // pending, and if not that's OK, if not, the channel is on
2679 // the chain and sending the HTLC-Timeout is their problem.
2682 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2684 // Nothing to do here...we're waiting on a remote
2685 // revoke_and_ack before we can update the commitment
2686 // transaction. The Channel will automatically handle
2687 // building the update_fail_htlc and commitment_signed
2688 // messages when we can.
2689 // We don't need any kind of timer here as they should fail
2690 // the channel onto the chain if they can't get our
2691 // update_fail_htlc in time, it's not our problem.
2698 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2699 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2702 // We surely failed send_commitment due to bad keys, in that case
2703 // close channel and then send error message to peer.
2704 let counterparty_node_id = chan.get().get_counterparty_node_id();
2705 let err: Result<(), _> = match e {
2706 ChannelError::Ignore(_) | ChannelError::Warn(_) => {
2707 panic!("Stated return value requirements in send_commitment() were not met");
2709 ChannelError::Close(msg) => {
2710 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2711 let (channel_id, mut channel) = chan.remove_entry();
2712 if let Some(short_id) = channel.get_short_channel_id() {
2713 channel_state.short_to_id.remove(&short_id);
2715 // ChannelClosed event is generated by handle_error for us.
2716 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.get_user_id(), channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
2718 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2720 handle_errors.push((counterparty_node_id, err));
2724 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2725 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2728 log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
2729 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
2730 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2731 node_id: chan.get().get_counterparty_node_id(),
2732 updates: msgs::CommitmentUpdate {
2733 update_add_htlcs: add_htlc_msgs,
2734 update_fulfill_htlcs: Vec::new(),
2735 update_fail_htlcs: fail_htlc_msgs,
2736 update_fail_malformed_htlcs: Vec::new(),
2738 commitment_signed: commitment_msg,
2746 for forward_info in pending_forwards.drain(..) {
2747 match forward_info {
2748 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2749 routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
2750 prev_funding_outpoint } => {
2751 let (cltv_expiry, onion_payload) = match routing {
2752 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry } =>
2753 (incoming_cltv_expiry, OnionPayload::Invoice(payment_data)),
2754 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
2755 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage)),
2757 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2760 let claimable_htlc = ClaimableHTLC {
2761 prev_hop: HTLCPreviousHopData {
2762 short_channel_id: prev_short_channel_id,
2763 outpoint: prev_funding_outpoint,
2764 htlc_id: prev_htlc_id,
2765 incoming_packet_shared_secret: incoming_shared_secret,
2767 value: amt_to_forward,
2772 macro_rules! fail_htlc {
2774 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2775 htlc_msat_height_data.extend_from_slice(
2776 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2778 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2779 short_channel_id: $htlc.prev_hop.short_channel_id,
2780 outpoint: prev_funding_outpoint,
2781 htlc_id: $htlc.prev_hop.htlc_id,
2782 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2784 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2789 // Check that the payment hash and secret are known. Note that we
2790 // MUST take care to handle the "unknown payment hash" and
2791 // "incorrect payment secret" cases here identically or we'd expose
2792 // that we are the ultimate recipient of the given payment hash.
2793 // Further, we must not expose whether we have any other HTLCs
2794 // associated with the same payment_hash pending or not.
2795 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2796 match payment_secrets.entry(payment_hash) {
2797 hash_map::Entry::Vacant(_) => {
2798 match claimable_htlc.onion_payload {
2799 OnionPayload::Invoice(_) => {
2800 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2801 fail_htlc!(claimable_htlc);
2803 OnionPayload::Spontaneous(preimage) => {
2804 match channel_state.claimable_htlcs.entry(payment_hash) {
2805 hash_map::Entry::Vacant(e) => {
2806 e.insert(vec![claimable_htlc]);
2807 new_events.push(events::Event::PaymentReceived {
2809 amt: amt_to_forward,
2810 purpose: events::PaymentPurpose::SpontaneousPayment(preimage),
2813 hash_map::Entry::Occupied(_) => {
2814 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
2815 fail_htlc!(claimable_htlc);
2821 hash_map::Entry::Occupied(inbound_payment) => {
2823 if let OnionPayload::Invoice(ref data) = claimable_htlc.onion_payload {
2826 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
2827 fail_htlc!(claimable_htlc);
2830 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2831 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2832 fail_htlc!(claimable_htlc);
2833 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2834 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2835 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2836 fail_htlc!(claimable_htlc);
2838 let mut total_value = 0;
2839 let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2840 .or_insert(Vec::new());
2841 if htlcs.len() == 1 {
2842 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
2843 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
2844 fail_htlc!(claimable_htlc);
2848 htlcs.push(claimable_htlc);
2849 for htlc in htlcs.iter() {
2850 total_value += htlc.value;
2851 match &htlc.onion_payload {
2852 OnionPayload::Invoice(htlc_payment_data) => {
2853 if htlc_payment_data.total_msat != payment_data.total_msat {
2854 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2855 log_bytes!(payment_hash.0), payment_data.total_msat, htlc_payment_data.total_msat);
2856 total_value = msgs::MAX_VALUE_MSAT;
2858 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2860 _ => unreachable!(),
2863 if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2864 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2865 log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2866 for htlc in htlcs.iter() {
2869 } else if total_value == payment_data.total_msat {
2870 new_events.push(events::Event::PaymentReceived {
2872 purpose: events::PaymentPurpose::InvoicePayment {
2873 payment_preimage: inbound_payment.get().payment_preimage,
2874 payment_secret: payment_data.payment_secret,
2875 user_payment_id: inbound_payment.get().user_payment_id,
2879 // Only ever generate at most one PaymentReceived
2880 // per registered payment_hash, even if it isn't
2882 inbound_payment.remove_entry();
2884 // Nothing to do - we haven't reached the total
2885 // payment value yet, wait until we receive more
2892 HTLCForwardInfo::FailHTLC { .. } => {
2893 panic!("Got pending fail of our own HTLC");
2901 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2902 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2905 for (counterparty_node_id, err) in handle_errors.drain(..) {
2906 let _ = handle_error!(self, err, counterparty_node_id);
2909 if new_events.is_empty() { return }
2910 let mut events = self.pending_events.lock().unwrap();
2911 events.append(&mut new_events);
2914 /// Free the background events, generally called from timer_tick_occurred.
2916 /// Exposed for testing to allow us to process events quickly without generating accidental
2917 /// BroadcastChannelUpdate events in timer_tick_occurred.
2919 /// Expects the caller to have a total_consistency_lock read lock.
2920 fn process_background_events(&self) -> bool {
2921 let mut background_events = Vec::new();
2922 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2923 if background_events.is_empty() {
2927 for event in background_events.drain(..) {
2929 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2930 // The channel has already been closed, so no use bothering to care about the
2931 // monitor updating completing.
2932 let _ = self.chain_monitor.update_channel(funding_txo, update);
2939 #[cfg(any(test, feature = "_test_utils"))]
2940 /// Process background events, for functional testing
2941 pub fn test_process_background_events(&self) {
2942 self.process_background_events();
2945 fn update_channel_fee(&self, short_to_id: &mut HashMap<u64, [u8; 32]>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
2946 if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
2947 // If the feerate has decreased by less than half, don't bother
2948 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
2949 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
2950 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2951 return (true, NotifyOption::SkipPersist, Ok(()));
2953 if !chan.is_live() {
2954 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
2955 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2956 return (true, NotifyOption::SkipPersist, Ok(()));
2958 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
2959 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
2961 let mut retain_channel = true;
2962 let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
2965 let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
2966 if drop { retain_channel = false; }
2970 let ret_err = match res {
2971 Ok(Some((update_fee, commitment_signed, monitor_update))) => {
2972 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
2973 let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), Vec::new(), chan_id);
2974 if drop { retain_channel = false; }
2977 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2978 node_id: chan.get_counterparty_node_id(),
2979 updates: msgs::CommitmentUpdate {
2980 update_add_htlcs: Vec::new(),
2981 update_fulfill_htlcs: Vec::new(),
2982 update_fail_htlcs: Vec::new(),
2983 update_fail_malformed_htlcs: Vec::new(),
2984 update_fee: Some(update_fee),
2994 (retain_channel, NotifyOption::DoPersist, ret_err)
2998 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
2999 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3000 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3001 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3002 pub fn maybe_update_chan_fees(&self) {
3003 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3004 let mut should_persist = NotifyOption::SkipPersist;
3006 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
3008 let mut handle_errors = Vec::new();
3010 let mut channel_state_lock = self.channel_state.lock().unwrap();
3011 let channel_state = &mut *channel_state_lock;
3012 let pending_msg_events = &mut channel_state.pending_msg_events;
3013 let short_to_id = &mut channel_state.short_to_id;
3014 channel_state.by_id.retain(|chan_id, chan| {
3015 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
3016 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3018 handle_errors.push(err);
3028 /// Performs actions which should happen on startup and roughly once per minute thereafter.
3030 /// This currently includes:
3031 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3032 /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3033 /// than a minute, informing the network that they should no longer attempt to route over
3036 /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3037 /// estimate fetches.
3038 pub fn timer_tick_occurred(&self) {
3039 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3040 let mut should_persist = NotifyOption::SkipPersist;
3041 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3043 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
3045 let mut handle_errors = Vec::new();
3047 let mut channel_state_lock = self.channel_state.lock().unwrap();
3048 let channel_state = &mut *channel_state_lock;
3049 let pending_msg_events = &mut channel_state.pending_msg_events;
3050 let short_to_id = &mut channel_state.short_to_id;
3051 channel_state.by_id.retain(|chan_id, chan| {
3052 let counterparty_node_id = chan.get_counterparty_node_id();
3053 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
3054 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3056 handle_errors.push((err, counterparty_node_id));
3058 if !retain_channel { return false; }
3060 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3061 let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
3062 handle_errors.push((Err(err), chan.get_counterparty_node_id()));
3063 if needs_close { return false; }
3066 match chan.channel_update_status() {
3067 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3068 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3069 ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3070 ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3071 ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3072 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3073 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3077 should_persist = NotifyOption::DoPersist;
3078 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3080 ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3081 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3082 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3086 should_persist = NotifyOption::DoPersist;
3087 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3096 for (err, counterparty_node_id) in handle_errors.drain(..) {
3097 let _ = handle_error!(self, err, counterparty_node_id);
3103 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3104 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
3105 /// along the path (including in our own channel on which we received it).
3106 /// Returns false if no payment was found to fail backwards, true if the process of failing the
3107 /// HTLC backwards has been started.
3108 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
3109 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3111 let mut channel_state = Some(self.channel_state.lock().unwrap());
3112 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
3113 if let Some(mut sources) = removed_source {
3114 for htlc in sources.drain(..) {
3115 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3116 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3117 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3118 self.best_block.read().unwrap().height()));
3119 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3120 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
3121 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
3127 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3128 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3129 // be surfaced to the user.
3130 fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
3131 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3133 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
3134 let (failure_code, onion_failure_data) =
3135 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
3136 hash_map::Entry::Occupied(chan_entry) => {
3137 if let Ok(upd) = self.get_channel_update_for_unicast(&chan_entry.get()) {
3138 (0x1000|7, upd.encode_with_len())
3140 (0x4000|10, Vec::new())
3143 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3145 let channel_state = self.channel_state.lock().unwrap();
3146 self.fail_htlc_backwards_internal(channel_state,
3147 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
3149 HTLCSource::OutboundRoute { session_priv, payment_id, path, payee, .. } => {
3150 let mut session_priv_bytes = [0; 32];
3151 session_priv_bytes.copy_from_slice(&session_priv[..]);
3152 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3153 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3154 if payment.get_mut().remove(&session_priv_bytes, Some(&path)) && !payment.get().is_fulfilled() {
3155 let retry = if let Some(payee_data) = payee {
3156 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3157 Some(RouteParameters {
3159 final_value_msat: path_last_hop.fee_msat,
3160 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3163 self.pending_events.lock().unwrap().push(
3164 events::Event::PaymentPathFailed {
3165 payment_id: Some(payment_id),
3167 rejected_by_dest: false,
3168 network_update: None,
3169 all_paths_failed: payment.get().remaining_parts() == 0,
3171 short_channel_id: None,
3181 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3188 /// Fails an HTLC backwards to the sender of it to us.
3189 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
3190 /// There are several callsites that do stupid things like loop over a list of payment_hashes
3191 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
3192 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
3193 /// still-available channels.
3194 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
3195 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3196 //identify whether we sent it or not based on the (I presume) very different runtime
3197 //between the branches here. We should make this async and move it into the forward HTLCs
3200 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3201 // from block_connected which may run during initialization prior to the chain_monitor
3202 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3204 HTLCSource::OutboundRoute { ref path, session_priv, payment_id, ref payee, .. } => {
3205 let mut session_priv_bytes = [0; 32];
3206 session_priv_bytes.copy_from_slice(&session_priv[..]);
3207 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3208 let mut all_paths_failed = false;
3209 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3210 if !payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
3211 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3214 if payment.get().is_fulfilled() {
3215 log_trace!(self.logger, "Received failure of HTLC with payment_hash {} after payment completion", log_bytes!(payment_hash.0));
3218 if payment.get().remaining_parts() == 0 {
3219 all_paths_failed = true;
3222 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3225 mem::drop(channel_state_lock);
3226 let retry = if let Some(payee_data) = payee {
3227 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3228 Some(RouteParameters {
3229 payee: payee_data.clone(),
3230 final_value_msat: path_last_hop.fee_msat,
3231 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3234 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3235 match &onion_error {
3236 &HTLCFailReason::LightningError { ref err } => {
3238 let (network_update, short_channel_id, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3240 let (network_update, short_channel_id, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3241 // TODO: If we decided to blame ourselves (or one of our channels) in
3242 // process_onion_failure we should close that channel as it implies our
3243 // next-hop is needlessly blaming us!
3244 self.pending_events.lock().unwrap().push(
3245 events::Event::PaymentPathFailed {
3246 payment_id: Some(payment_id),
3247 payment_hash: payment_hash.clone(),
3248 rejected_by_dest: !payment_retryable,
3255 error_code: onion_error_code,
3257 error_data: onion_error_data
3261 &HTLCFailReason::Reason {
3267 // we get a fail_malformed_htlc from the first hop
3268 // TODO: We'd like to generate a NetworkUpdate for temporary
3269 // failures here, but that would be insufficient as get_route
3270 // generally ignores its view of our own channels as we provide them via
3272 // TODO: For non-temporary failures, we really should be closing the
3273 // channel here as we apparently can't relay through them anyway.
3274 self.pending_events.lock().unwrap().push(
3275 events::Event::PaymentPathFailed {
3276 payment_id: Some(payment_id),
3277 payment_hash: payment_hash.clone(),
3278 rejected_by_dest: path.len() == 1,
3279 network_update: None,
3282 short_channel_id: Some(path.first().unwrap().short_channel_id),
3285 error_code: Some(*failure_code),
3287 error_data: Some(data.clone()),
3293 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
3294 let err_packet = match onion_error {
3295 HTLCFailReason::Reason { failure_code, data } => {
3296 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
3297 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
3298 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
3300 HTLCFailReason::LightningError { err } => {
3301 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
3302 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
3306 let mut forward_event = None;
3307 if channel_state_lock.forward_htlcs.is_empty() {
3308 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
3310 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
3311 hash_map::Entry::Occupied(mut entry) => {
3312 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
3314 hash_map::Entry::Vacant(entry) => {
3315 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
3318 mem::drop(channel_state_lock);
3319 if let Some(time) = forward_event {
3320 let mut pending_events = self.pending_events.lock().unwrap();
3321 pending_events.push(events::Event::PendingHTLCsForwardable {
3322 time_forwardable: time
3329 /// Provides a payment preimage in response to a PaymentReceived event, returning true and
3330 /// generating message events for the net layer to claim the payment, if possible. Thus, you
3331 /// should probably kick the net layer to go send messages if this returns true!
3333 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3334 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
3335 /// event matches your expectation. If you fail to do so and call this method, you may provide
3336 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3338 /// May panic if called except in response to a PaymentReceived event.
3340 /// [`create_inbound_payment`]: Self::create_inbound_payment
3341 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3342 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
3343 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3345 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3347 let mut channel_state = Some(self.channel_state.lock().unwrap());
3348 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
3349 if let Some(mut sources) = removed_source {
3350 assert!(!sources.is_empty());
3352 // If we are claiming an MPP payment, we have to take special care to ensure that each
3353 // channel exists before claiming all of the payments (inside one lock).
3354 // Note that channel existance is sufficient as we should always get a monitor update
3355 // which will take care of the real HTLC claim enforcement.
3357 // If we find an HTLC which we would need to claim but for which we do not have a
3358 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3359 // the sender retries the already-failed path(s), it should be a pretty rare case where
3360 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3361 // provide the preimage, so worrying too much about the optimal handling isn't worth
3363 let mut valid_mpp = true;
3364 for htlc in sources.iter() {
3365 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
3371 let mut errs = Vec::new();
3372 let mut claimed_any_htlcs = false;
3373 for htlc in sources.drain(..) {
3375 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3376 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3377 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3378 self.best_block.read().unwrap().height()));
3379 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3380 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
3381 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
3383 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
3384 ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
3385 if let msgs::ErrorAction::IgnoreError = err.err.action {
3386 // We got a temporary failure updating monitor, but will claim the
3387 // HTLC when the monitor updating is restored (or on chain).
3388 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3389 claimed_any_htlcs = true;
3390 } else { errs.push((pk, err)); }
3392 ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
3393 ClaimFundsFromHop::DuplicateClaim => {
3394 // While we should never get here in most cases, if we do, it likely
3395 // indicates that the HTLC was timed out some time ago and is no longer
3396 // available to be claimed. Thus, it does not make sense to set
3397 // `claimed_any_htlcs`.
3399 ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
3404 // Now that we've done the entire above loop in one lock, we can handle any errors
3405 // which were generated.
3406 channel_state.take();
3408 for (counterparty_node_id, err) in errs.drain(..) {
3409 let res: Result<(), _> = Err(err);
3410 let _ = handle_error!(self, res, counterparty_node_id);
3417 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
3418 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3419 let channel_state = &mut **channel_state_lock;
3420 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
3421 Some(chan_id) => chan_id.clone(),
3423 return ClaimFundsFromHop::PrevHopForceClosed
3427 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
3428 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
3429 Ok(msgs_monitor_option) => {
3430 if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
3431 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3432 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug },
3433 "Failed to update channel monitor with preimage {:?}: {:?}",
3434 payment_preimage, e);
3435 return ClaimFundsFromHop::MonitorUpdateFail(
3436 chan.get().get_counterparty_node_id(),
3437 handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
3438 Some(htlc_value_msat)
3441 if let Some((msg, commitment_signed)) = msgs {
3442 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
3443 log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
3444 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3445 node_id: chan.get().get_counterparty_node_id(),
3446 updates: msgs::CommitmentUpdate {
3447 update_add_htlcs: Vec::new(),
3448 update_fulfill_htlcs: vec![msg],
3449 update_fail_htlcs: Vec::new(),
3450 update_fail_malformed_htlcs: Vec::new(),
3456 return ClaimFundsFromHop::Success(htlc_value_msat);
3458 return ClaimFundsFromHop::DuplicateClaim;
3461 Err((e, monitor_update)) => {
3462 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3463 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info },
3464 "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
3465 payment_preimage, e);
3467 let counterparty_node_id = chan.get().get_counterparty_node_id();
3468 let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id);
3470 chan.remove_entry();
3472 return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
3475 } else { unreachable!(); }
3478 fn finalize_claims(&self, mut sources: Vec<HTLCSource>) {
3479 for source in sources.drain(..) {
3480 if let HTLCSource::OutboundRoute { session_priv, payment_id, .. } = source {
3481 let mut session_priv_bytes = [0; 32];
3482 session_priv_bytes.copy_from_slice(&session_priv[..]);
3483 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3484 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3485 assert!(payment.get().is_fulfilled());
3486 payment.get_mut().remove(&session_priv_bytes, None);
3487 if payment.get().remaining_parts() == 0 {
3495 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool) {
3497 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
3498 mem::drop(channel_state_lock);
3499 let mut session_priv_bytes = [0; 32];
3500 session_priv_bytes.copy_from_slice(&session_priv[..]);
3501 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3502 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3503 let found_payment = !payment.get().is_fulfilled();
3504 let fee_paid_msat = payment.get().get_pending_fee_msat();
3505 payment.get_mut().mark_fulfilled();
3507 // We currently immediately remove HTLCs which were fulfilled on-chain.
3508 // This could potentially lead to removing a pending payment too early,
3509 // with a reorg of one block causing us to re-add the fulfilled payment on
3511 // TODO: We should have a second monitor event that informs us of payments
3512 // irrevocably fulfilled.
3513 payment.get_mut().remove(&session_priv_bytes, Some(&path));
3514 if payment.get().remaining_parts() == 0 {
3519 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3520 self.pending_events.lock().unwrap().push(
3521 events::Event::PaymentSent {
3522 payment_id: Some(payment_id),
3524 payment_hash: payment_hash,
3530 log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
3533 HTLCSource::PreviousHopData(hop_data) => {
3534 let prev_outpoint = hop_data.outpoint;
3535 let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
3536 let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
3537 let htlc_claim_value_msat = match res {
3538 ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
3539 ClaimFundsFromHop::Success(amt) => Some(amt),
3542 if let ClaimFundsFromHop::PrevHopForceClosed = res {
3543 let preimage_update = ChannelMonitorUpdate {
3544 update_id: CLOSED_CHANNEL_UPDATE_ID,
3545 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
3546 payment_preimage: payment_preimage.clone(),
3549 // We update the ChannelMonitor on the backward link, after
3550 // receiving an offchain preimage event from the forward link (the
3551 // event being update_fulfill_htlc).
3552 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
3553 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
3554 payment_preimage, e);
3556 // Note that we do *not* set `claimed_htlc` to false here. In fact, this
3557 // totally could be a duplicate claim, but we have no way of knowing
3558 // without interrogating the `ChannelMonitor` we've provided the above
3559 // update to. Instead, we simply document in `PaymentForwarded` that this
3562 mem::drop(channel_state_lock);
3563 if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
3564 let result: Result<(), _> = Err(err);
3565 let _ = handle_error!(self, result, pk);
3569 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
3570 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
3571 Some(claimed_htlc_value - forwarded_htlc_value)
3574 let mut pending_events = self.pending_events.lock().unwrap();
3575 pending_events.push(events::Event::PaymentForwarded {
3577 claim_from_onchain_tx: from_onchain,
3585 /// Gets the node_id held by this ChannelManager
3586 pub fn get_our_node_id(&self) -> PublicKey {
3587 self.our_network_pubkey.clone()
3590 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
3591 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3593 let chan_restoration_res;
3594 let (mut pending_failures, finalized_claims) = {
3595 let mut channel_lock = self.channel_state.lock().unwrap();
3596 let channel_state = &mut *channel_lock;
3597 let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
3598 hash_map::Entry::Occupied(chan) => chan,
3599 hash_map::Entry::Vacant(_) => return,
3601 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
3605 let updates = channel.get_mut().monitor_updating_restored(&self.logger);
3606 let channel_update = if updates.funding_locked.is_some() && channel.get().is_usable() && !channel.get().should_announce() {
3607 // We only send a channel_update in the case where we are just now sending a
3608 // funding_locked and the channel is in a usable state. Further, we rely on the
3609 // normal announcement_signatures process to send a channel_update for public
3610 // channels, only generating a unicast channel_update if this is a private channel.
3611 Some(events::MessageSendEvent::SendChannelUpdate {
3612 node_id: channel.get().get_counterparty_node_id(),
3613 msg: self.get_channel_update_for_unicast(channel.get()).unwrap(),
3616 chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, updates.raa, updates.commitment_update, updates.order, None, updates.accepted_htlcs, updates.funding_broadcastable, updates.funding_locked);
3617 if let Some(upd) = channel_update {
3618 channel_state.pending_msg_events.push(upd);
3620 (updates.failed_htlcs, updates.finalized_claimed_htlcs)
3622 post_handle_chan_restoration!(self, chan_restoration_res);
3623 self.finalize_claims(finalized_claims);
3624 for failure in pending_failures.drain(..) {
3625 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3629 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
3630 if msg.chain_hash != self.genesis_hash {
3631 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
3634 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration)
3635 .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
3636 let mut channel_state_lock = self.channel_state.lock().unwrap();
3637 let channel_state = &mut *channel_state_lock;
3638 match channel_state.by_id.entry(channel.channel_id()) {
3639 hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
3640 hash_map::Entry::Vacant(entry) => {
3641 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
3642 node_id: counterparty_node_id.clone(),
3643 msg: channel.get_accept_channel(),
3645 entry.insert(channel);
3651 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
3652 let (value, output_script, user_id) = {
3653 let mut channel_lock = self.channel_state.lock().unwrap();
3654 let channel_state = &mut *channel_lock;
3655 match channel_state.by_id.entry(msg.temporary_channel_id) {
3656 hash_map::Entry::Occupied(mut chan) => {
3657 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3658 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
3660 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, &their_features), channel_state, chan);
3661 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
3663 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
3666 let mut pending_events = self.pending_events.lock().unwrap();
3667 pending_events.push(events::Event::FundingGenerationReady {
3668 temporary_channel_id: msg.temporary_channel_id,
3669 channel_value_satoshis: value,
3671 user_channel_id: user_id,
3676 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
3677 let ((funding_msg, monitor), mut chan) = {
3678 let best_block = *self.best_block.read().unwrap();
3679 let mut channel_lock = self.channel_state.lock().unwrap();
3680 let channel_state = &mut *channel_lock;
3681 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
3682 hash_map::Entry::Occupied(mut chan) => {
3683 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3684 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
3686 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
3688 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
3691 // Because we have exclusive ownership of the channel here we can release the channel_state
3692 // lock before watch_channel
3693 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
3695 ChannelMonitorUpdateErr::PermanentFailure => {
3696 // Note that we reply with the new channel_id in error messages if we gave up on the
3697 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
3698 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
3699 // any messages referencing a previously-closed channel anyway.
3700 // We do not do a force-close here as that would generate a monitor update for
3701 // a monitor that we didn't manage to store (and that we don't care about - we
3702 // don't respond with the funding_signed so the channel can never go on chain).
3703 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
3704 assert!(failed_htlcs.is_empty());
3705 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
3707 ChannelMonitorUpdateErr::TemporaryFailure => {
3708 // There's no problem signing a counterparty's funding transaction if our monitor
3709 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
3710 // accepted payment from yet. We do, however, need to wait to send our funding_locked
3711 // until we have persisted our monitor.
3712 chan.monitor_update_failed(false, false, Vec::new(), Vec::new(), Vec::new());
3716 let mut channel_state_lock = self.channel_state.lock().unwrap();
3717 let channel_state = &mut *channel_state_lock;
3718 match channel_state.by_id.entry(funding_msg.channel_id) {
3719 hash_map::Entry::Occupied(_) => {
3720 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
3722 hash_map::Entry::Vacant(e) => {
3723 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
3724 node_id: counterparty_node_id.clone(),
3733 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
3735 let best_block = *self.best_block.read().unwrap();
3736 let mut channel_lock = self.channel_state.lock().unwrap();
3737 let channel_state = &mut *channel_lock;
3738 match channel_state.by_id.entry(msg.channel_id) {
3739 hash_map::Entry::Occupied(mut chan) => {
3740 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3741 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3743 let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
3744 Ok(update) => update,
3745 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
3747 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
3748 let mut res = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
3749 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
3750 // We weren't able to watch the channel to begin with, so no updates should be made on
3751 // it. Previously, full_stack_target found an (unreachable) panic when the
3752 // monitor update contained within `shutdown_finish` was applied.
3753 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
3754 shutdown_finish.0.take();
3761 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3764 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
3765 self.tx_broadcaster.broadcast_transaction(&funding_tx);
3769 fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
3770 let mut channel_state_lock = self.channel_state.lock().unwrap();
3771 let channel_state = &mut *channel_state_lock;
3772 match channel_state.by_id.entry(msg.channel_id) {
3773 hash_map::Entry::Occupied(mut chan) => {
3774 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3775 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3777 try_chan_entry!(self, chan.get_mut().funding_locked(&msg, &self.logger), channel_state, chan);
3778 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
3779 log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
3780 // If we see locking block before receiving remote funding_locked, we broadcast our
3781 // announcement_sigs at remote funding_locked reception. If we receive remote
3782 // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
3783 // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
3784 // the order of the events but our peer may not receive it due to disconnection. The specs
3785 // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
3786 // connection in the future if simultaneous misses by both peers due to network/hardware
3787 // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
3788 // to be received, from then sigs are going to be flood to the whole network.
3789 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3790 node_id: counterparty_node_id.clone(),
3791 msg: announcement_sigs,
3793 } else if chan.get().is_usable() {
3794 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3795 node_id: counterparty_node_id.clone(),
3796 msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
3801 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3805 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
3806 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
3807 let result: Result<(), _> = loop {
3808 let mut channel_state_lock = self.channel_state.lock().unwrap();
3809 let channel_state = &mut *channel_state_lock;
3811 match channel_state.by_id.entry(msg.channel_id.clone()) {
3812 hash_map::Entry::Occupied(mut chan_entry) => {
3813 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3814 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3817 if !chan_entry.get().received_shutdown() {
3818 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
3819 log_bytes!(msg.channel_id),
3820 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
3823 let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
3824 dropped_htlcs = htlcs;
3826 // Update the monitor with the shutdown script if necessary.
3827 if let Some(monitor_update) = monitor_update {
3828 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
3829 let (result, is_permanent) =
3830 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, false, false, Vec::new(), Vec::new(), Vec::new(), chan_entry.key());
3832 remove_channel!(channel_state, chan_entry);
3838 if let Some(msg) = shutdown {
3839 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3840 node_id: *counterparty_node_id,
3847 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3850 for htlc_source in dropped_htlcs.drain(..) {
3851 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3854 let _ = handle_error!(self, result, *counterparty_node_id);
3858 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
3859 let (tx, chan_option) = {
3860 let mut channel_state_lock = self.channel_state.lock().unwrap();
3861 let channel_state = &mut *channel_state_lock;
3862 match channel_state.by_id.entry(msg.channel_id.clone()) {
3863 hash_map::Entry::Occupied(mut chan_entry) => {
3864 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
3865 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3867 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
3868 if let Some(msg) = closing_signed {
3869 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3870 node_id: counterparty_node_id.clone(),
3875 // We're done with this channel, we've got a signed closing transaction and
3876 // will send the closing_signed back to the remote peer upon return. This
3877 // also implies there are no pending HTLCs left on the channel, so we can
3878 // fully delete it from tracking (the channel monitor is still around to
3879 // watch for old state broadcasts)!
3880 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
3881 channel_state.short_to_id.remove(&short_id);
3883 (tx, Some(chan_entry.remove_entry().1))
3884 } else { (tx, None) }
3886 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3889 if let Some(broadcast_tx) = tx {
3890 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
3891 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
3893 if let Some(chan) = chan_option {
3894 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3895 let mut channel_state = self.channel_state.lock().unwrap();
3896 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3900 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
3905 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
3906 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
3907 //determine the state of the payment based on our response/if we forward anything/the time
3908 //we take to respond. We should take care to avoid allowing such an attack.
3910 //TODO: There exists a further attack where a node may garble the onion data, forward it to
3911 //us repeatedly garbled in different ways, and compare our error messages, which are
3912 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
3913 //but we should prevent it anyway.
3915 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
3916 let channel_state = &mut *channel_state_lock;
3918 match channel_state.by_id.entry(msg.channel_id) {
3919 hash_map::Entry::Occupied(mut chan) => {
3920 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3921 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3924 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
3925 // If the update_add is completely bogus, the call will Err and we will close,
3926 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
3927 // want to reject the new HTLC and fail it backwards instead of forwarding.
3928 match pending_forward_info {
3929 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
3930 let reason = if (error_code & 0x1000) != 0 {
3931 if let Ok(upd) = self.get_channel_update_for_unicast(chan) {
3932 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
3933 let mut res = Vec::with_capacity(8 + 128);
3934 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
3935 res.extend_from_slice(&byte_utils::be16_to_array(0));
3936 res.extend_from_slice(&upd.encode_with_len()[..]);
3940 // The only case where we'd be unable to
3941 // successfully get a channel update is if the
3942 // channel isn't in the fully-funded state yet,
3943 // implying our counterparty is trying to route
3944 // payments over the channel back to themselves
3945 // (because no one else should know the short_id
3946 // is a lightning channel yet). We should have
3947 // no problem just calling this
3948 // unknown_next_peer (0x4000|10).
3949 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
3952 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
3954 let msg = msgs::UpdateFailHTLC {
3955 channel_id: msg.channel_id,
3956 htlc_id: msg.htlc_id,
3959 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
3961 _ => pending_forward_info
3964 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3966 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3971 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3972 let mut channel_lock = self.channel_state.lock().unwrap();
3973 let (htlc_source, forwarded_htlc_value) = {
3974 let channel_state = &mut *channel_lock;
3975 match channel_state.by_id.entry(msg.channel_id) {
3976 hash_map::Entry::Occupied(mut chan) => {
3977 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3978 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3980 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3982 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3985 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false);
3989 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3990 let mut channel_lock = self.channel_state.lock().unwrap();
3991 let channel_state = &mut *channel_lock;
3992 match channel_state.by_id.entry(msg.channel_id) {
3993 hash_map::Entry::Occupied(mut chan) => {
3994 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3995 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3997 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3999 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4004 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4005 let mut channel_lock = self.channel_state.lock().unwrap();
4006 let channel_state = &mut *channel_lock;
4007 match channel_state.by_id.entry(msg.channel_id) {
4008 hash_map::Entry::Occupied(mut chan) => {
4009 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4010 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4012 if (msg.failure_code & 0x8000) == 0 {
4013 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4014 try_chan_entry!(self, Err(chan_err), channel_state, chan);
4016 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
4019 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4023 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4024 let mut channel_state_lock = self.channel_state.lock().unwrap();
4025 let channel_state = &mut *channel_state_lock;
4026 match channel_state.by_id.entry(msg.channel_id) {
4027 hash_map::Entry::Occupied(mut chan) => {
4028 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4029 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4031 let (revoke_and_ack, commitment_signed, monitor_update) =
4032 match chan.get_mut().commitment_signed(&msg, &self.logger) {
4033 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
4034 Err((Some(update), e)) => {
4035 assert!(chan.get().is_awaiting_monitor_update());
4036 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
4037 try_chan_entry!(self, Err(e), channel_state, chan);
4042 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
4043 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
4045 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4046 node_id: counterparty_node_id.clone(),
4047 msg: revoke_and_ack,
4049 if let Some(msg) = commitment_signed {
4050 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4051 node_id: counterparty_node_id.clone(),
4052 updates: msgs::CommitmentUpdate {
4053 update_add_htlcs: Vec::new(),
4054 update_fulfill_htlcs: Vec::new(),
4055 update_fail_htlcs: Vec::new(),
4056 update_fail_malformed_htlcs: Vec::new(),
4058 commitment_signed: msg,
4064 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4069 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
4070 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
4071 let mut forward_event = None;
4072 if !pending_forwards.is_empty() {
4073 let mut channel_state = self.channel_state.lock().unwrap();
4074 if channel_state.forward_htlcs.is_empty() {
4075 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
4077 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4078 match channel_state.forward_htlcs.entry(match forward_info.routing {
4079 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4080 PendingHTLCRouting::Receive { .. } => 0,
4081 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4083 hash_map::Entry::Occupied(mut entry) => {
4084 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
4085 prev_htlc_id, forward_info });
4087 hash_map::Entry::Vacant(entry) => {
4088 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
4089 prev_htlc_id, forward_info }));
4094 match forward_event {
4096 let mut pending_events = self.pending_events.lock().unwrap();
4097 pending_events.push(events::Event::PendingHTLCsForwardable {
4098 time_forwardable: time
4106 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4107 let mut htlcs_to_fail = Vec::new();
4109 let mut channel_state_lock = self.channel_state.lock().unwrap();
4110 let channel_state = &mut *channel_state_lock;
4111 match channel_state.by_id.entry(msg.channel_id) {
4112 hash_map::Entry::Occupied(mut chan) => {
4113 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4114 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4116 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
4117 let raa_updates = break_chan_entry!(self,
4118 chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
4119 htlcs_to_fail = raa_updates.holding_cell_failed_htlcs;
4120 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), raa_updates.monitor_update) {
4121 if was_frozen_for_monitor {
4122 assert!(raa_updates.commitment_update.is_none());
4123 assert!(raa_updates.accepted_htlcs.is_empty());
4124 assert!(raa_updates.failed_htlcs.is_empty());
4125 assert!(raa_updates.finalized_claimed_htlcs.is_empty());
4126 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
4128 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan,
4129 RAACommitmentOrder::CommitmentFirst, false,
4130 raa_updates.commitment_update.is_some(),
4131 raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
4132 raa_updates.finalized_claimed_htlcs) {
4134 } else { unreachable!(); }
4137 if let Some(updates) = raa_updates.commitment_update {
4138 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4139 node_id: counterparty_node_id.clone(),
4143 break Ok((raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
4144 raa_updates.finalized_claimed_htlcs,
4145 chan.get().get_short_channel_id()
4146 .expect("RAA should only work on a short-id-available channel"),
4147 chan.get().get_funding_txo().unwrap()))
4149 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4152 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
4154 Ok((pending_forwards, mut pending_failures, finalized_claim_htlcs,
4155 short_channel_id, channel_outpoint)) =>
4157 for failure in pending_failures.drain(..) {
4158 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
4160 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
4161 self.finalize_claims(finalized_claim_htlcs);
4168 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
4169 let mut channel_lock = self.channel_state.lock().unwrap();
4170 let channel_state = &mut *channel_lock;
4171 match channel_state.by_id.entry(msg.channel_id) {
4172 hash_map::Entry::Occupied(mut chan) => {
4173 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4174 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4176 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
4178 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4183 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
4184 let mut channel_state_lock = self.channel_state.lock().unwrap();
4185 let channel_state = &mut *channel_state_lock;
4187 match channel_state.by_id.entry(msg.channel_id) {
4188 hash_map::Entry::Occupied(mut chan) => {
4189 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4190 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4192 if !chan.get().is_usable() {
4193 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
4196 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
4197 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(&self.our_network_key, self.get_our_node_id(), self.genesis_hash.clone(), msg), channel_state, chan),
4198 // Note that announcement_signatures fails if the channel cannot be announced,
4199 // so get_channel_update_for_broadcast will never fail by the time we get here.
4200 update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
4203 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4208 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
4209 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
4210 let mut channel_state_lock = self.channel_state.lock().unwrap();
4211 let channel_state = &mut *channel_state_lock;
4212 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
4213 Some(chan_id) => chan_id.clone(),
4215 // It's not a local channel
4216 return Ok(NotifyOption::SkipPersist)
4219 match channel_state.by_id.entry(chan_id) {
4220 hash_map::Entry::Occupied(mut chan) => {
4221 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4222 if chan.get().should_announce() {
4223 // If the announcement is about a channel of ours which is public, some
4224 // other peer may simply be forwarding all its gossip to us. Don't provide
4225 // a scary-looking error message and return Ok instead.
4226 return Ok(NotifyOption::SkipPersist);
4228 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
4230 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
4231 let msg_from_node_one = msg.contents.flags & 1 == 0;
4232 if were_node_one == msg_from_node_one {
4233 return Ok(NotifyOption::SkipPersist);
4235 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
4238 hash_map::Entry::Vacant(_) => unreachable!()
4240 Ok(NotifyOption::DoPersist)
4243 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
4244 let chan_restoration_res;
4245 let (htlcs_failed_forward, need_lnd_workaround) = {
4246 let mut channel_state_lock = self.channel_state.lock().unwrap();
4247 let channel_state = &mut *channel_state_lock;
4249 match channel_state.by_id.entry(msg.channel_id) {
4250 hash_map::Entry::Occupied(mut chan) => {
4251 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4252 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4254 // Currently, we expect all holding cell update_adds to be dropped on peer
4255 // disconnect, so Channel's reestablish will never hand us any holding cell
4256 // freed HTLCs to fail backwards. If in the future we no longer drop pending
4257 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
4258 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, order, htlcs_failed_forward, shutdown) =
4259 try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
4260 let mut channel_update = None;
4261 if let Some(msg) = shutdown {
4262 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4263 node_id: counterparty_node_id.clone(),
4266 } else if chan.get().is_usable() {
4267 // If the channel is in a usable state (ie the channel is not being shut
4268 // down), send a unicast channel_update to our counterparty to make sure
4269 // they have the latest channel parameters.
4270 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
4271 node_id: chan.get().get_counterparty_node_id(),
4272 msg: self.get_channel_update_for_unicast(chan.get()).unwrap(),
4275 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
4276 chan_restoration_res = handle_chan_restoration_locked!(self, channel_state_lock, channel_state, chan, revoke_and_ack, commitment_update, order, monitor_update_opt, Vec::new(), None, funding_locked);
4277 if let Some(upd) = channel_update {
4278 channel_state.pending_msg_events.push(upd);
4280 (htlcs_failed_forward, need_lnd_workaround)
4282 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4285 post_handle_chan_restoration!(self, chan_restoration_res);
4286 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
4288 if let Some(funding_locked_msg) = need_lnd_workaround {
4289 self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
4294 /// Process pending events from the `chain::Watch`, returning whether any events were processed.
4295 fn process_pending_monitor_events(&self) -> bool {
4296 let mut failed_channels = Vec::new();
4297 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
4298 let has_pending_monitor_events = !pending_monitor_events.is_empty();
4299 for monitor_event in pending_monitor_events.drain(..) {
4300 match monitor_event {
4301 MonitorEvent::HTLCEvent(htlc_update) => {
4302 if let Some(preimage) = htlc_update.payment_preimage {
4303 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
4304 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.onchain_value_satoshis.map(|v| v * 1000), true);
4306 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
4307 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4310 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
4311 MonitorEvent::UpdateFailed(funding_outpoint) => {
4312 let mut channel_lock = self.channel_state.lock().unwrap();
4313 let channel_state = &mut *channel_lock;
4314 let by_id = &mut channel_state.by_id;
4315 let short_to_id = &mut channel_state.short_to_id;
4316 let pending_msg_events = &mut channel_state.pending_msg_events;
4317 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
4318 if let Some(short_id) = chan.get_short_channel_id() {
4319 short_to_id.remove(&short_id);
4321 failed_channels.push(chan.force_shutdown(false));
4322 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4323 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4327 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
4328 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
4330 ClosureReason::CommitmentTxConfirmed
4332 self.issue_channel_close_events(&chan, reason);
4333 pending_msg_events.push(events::MessageSendEvent::HandleError {
4334 node_id: chan.get_counterparty_node_id(),
4335 action: msgs::ErrorAction::SendErrorMessage {
4336 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
4341 MonitorEvent::UpdateCompleted { funding_txo, monitor_update_id } => {
4342 self.channel_monitor_updated(&funding_txo, monitor_update_id);
4347 for failure in failed_channels.drain(..) {
4348 self.finish_force_close_channel(failure);
4351 has_pending_monitor_events
4354 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
4355 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
4356 /// update events as a separate process method here.
4357 #[cfg(feature = "fuzztarget")]
4358 pub fn process_monitor_events(&self) {
4359 self.process_pending_monitor_events();
4362 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
4363 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
4364 /// update was applied.
4366 /// This should only apply to HTLCs which were added to the holding cell because we were
4367 /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
4368 /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
4369 /// code to inform them of a channel monitor update.
4370 fn check_free_holding_cells(&self) -> bool {
4371 let mut has_monitor_update = false;
4372 let mut failed_htlcs = Vec::new();
4373 let mut handle_errors = Vec::new();
4375 let mut channel_state_lock = self.channel_state.lock().unwrap();
4376 let channel_state = &mut *channel_state_lock;
4377 let by_id = &mut channel_state.by_id;
4378 let short_to_id = &mut channel_state.short_to_id;
4379 let pending_msg_events = &mut channel_state.pending_msg_events;
4381 by_id.retain(|channel_id, chan| {
4382 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
4383 Ok((commitment_opt, holding_cell_failed_htlcs)) => {
4384 if !holding_cell_failed_htlcs.is_empty() {
4385 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
4387 if let Some((commitment_update, monitor_update)) = commitment_opt {
4388 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
4389 has_monitor_update = true;
4390 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, false, true, Vec::new(), Vec::new(), Vec::new(), channel_id);
4391 handle_errors.push((chan.get_counterparty_node_id(), res));
4392 if close_channel { return false; }
4394 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4395 node_id: chan.get_counterparty_node_id(),
4396 updates: commitment_update,
4403 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4404 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4405 // ChannelClosed event is generated by handle_error for us
4412 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
4413 for (failures, channel_id) in failed_htlcs.drain(..) {
4414 self.fail_holding_cell_htlcs(failures, channel_id);
4417 for (counterparty_node_id, err) in handle_errors.drain(..) {
4418 let _ = handle_error!(self, err, counterparty_node_id);
4424 /// Check whether any channels have finished removing all pending updates after a shutdown
4425 /// exchange and can now send a closing_signed.
4426 /// Returns whether any closing_signed messages were generated.
4427 fn maybe_generate_initial_closing_signed(&self) -> bool {
4428 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
4429 let mut has_update = false;
4431 let mut channel_state_lock = self.channel_state.lock().unwrap();
4432 let channel_state = &mut *channel_state_lock;
4433 let by_id = &mut channel_state.by_id;
4434 let short_to_id = &mut channel_state.short_to_id;
4435 let pending_msg_events = &mut channel_state.pending_msg_events;
4437 by_id.retain(|channel_id, chan| {
4438 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
4439 Ok((msg_opt, tx_opt)) => {
4440 if let Some(msg) = msg_opt {
4442 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4443 node_id: chan.get_counterparty_node_id(), msg,
4446 if let Some(tx) = tx_opt {
4447 // We're done with this channel. We got a closing_signed and sent back
4448 // a closing_signed with a closing transaction to broadcast.
4449 if let Some(short_id) = chan.get_short_channel_id() {
4450 short_to_id.remove(&short_id);
4453 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4454 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4459 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
4461 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
4462 self.tx_broadcaster.broadcast_transaction(&tx);
4468 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4469 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4476 for (counterparty_node_id, err) in handle_errors.drain(..) {
4477 let _ = handle_error!(self, err, counterparty_node_id);
4483 /// Handle a list of channel failures during a block_connected or block_disconnected call,
4484 /// pushing the channel monitor update (if any) to the background events queue and removing the
4486 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
4487 for mut failure in failed_channels.drain(..) {
4488 // Either a commitment transactions has been confirmed on-chain or
4489 // Channel::block_disconnected detected that the funding transaction has been
4490 // reorganized out of the main chain.
4491 // We cannot broadcast our latest local state via monitor update (as
4492 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
4493 // so we track the update internally and handle it when the user next calls
4494 // timer_tick_occurred, guaranteeing we're running normally.
4495 if let Some((funding_txo, update)) = failure.0.take() {
4496 assert_eq!(update.updates.len(), 1);
4497 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
4498 assert!(should_broadcast);
4499 } else { unreachable!(); }
4500 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
4502 self.finish_force_close_channel(failure);
4506 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
4507 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
4509 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
4511 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4512 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4513 match payment_secrets.entry(payment_hash) {
4514 hash_map::Entry::Vacant(e) => {
4515 e.insert(PendingInboundPayment {
4516 payment_secret, min_value_msat, user_payment_id, payment_preimage,
4517 // We assume that highest_seen_timestamp is pretty close to the current time -
4518 // its updated when we receive a new block with the maximum time we've seen in
4519 // a header. It should never be more than two hours in the future.
4520 // Thus, we add two hours here as a buffer to ensure we absolutely
4521 // never fail a payment too early.
4522 // Note that we assume that received blocks have reasonably up-to-date
4524 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
4527 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
4532 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
4535 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
4536 /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
4538 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
4539 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
4540 /// passed directly to [`claim_funds`].
4542 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
4544 /// [`claim_funds`]: Self::claim_funds
4545 /// [`PaymentReceived`]: events::Event::PaymentReceived
4546 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
4547 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
4548 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
4549 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
4550 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
4553 self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
4554 .expect("RNG Generated Duplicate PaymentHash"))
4557 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
4558 /// stored external to LDK.
4560 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
4561 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
4562 /// the `min_value_msat` provided here, if one is provided.
4564 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
4565 /// method may return an Err if another payment with the same payment_hash is still pending.
4567 /// `user_payment_id` will be provided back in [`PaymentPurpose::InvoicePayment::user_payment_id`] events to
4568 /// allow tracking of which events correspond with which calls to this and
4569 /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
4570 /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
4571 /// with invoice metadata stored elsewhere.
4573 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
4574 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
4575 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
4576 /// sender "proof-of-payment" unless they have paid the required amount.
4578 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
4579 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
4580 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
4581 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
4582 /// invoices when no timeout is set.
4584 /// Note that we use block header time to time-out pending inbound payments (with some margin
4585 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
4586 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
4587 /// If you need exact expiry semantics, you should enforce them upon receipt of
4588 /// [`PaymentReceived`].
4590 /// Pending inbound payments are stored in memory and in serialized versions of this
4591 /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
4592 /// space is limited, you may wish to rate-limit inbound payment creation.
4594 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
4596 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
4597 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
4599 /// [`create_inbound_payment`]: Self::create_inbound_payment
4600 /// [`PaymentReceived`]: events::Event::PaymentReceived
4601 /// [`PaymentPurpose::InvoicePayment::user_payment_id`]: events::PaymentPurpose::InvoicePayment::user_payment_id
4602 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
4603 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
4606 #[cfg(any(test, feature = "fuzztarget", feature = "_test_utils"))]
4607 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
4608 let events = core::cell::RefCell::new(Vec::new());
4609 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
4610 self.process_pending_events(&event_handler);
4615 pub fn has_pending_payments(&self) -> bool {
4616 !self.pending_outbound_payments.lock().unwrap().is_empty()
4620 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
4621 where M::Target: chain::Watch<Signer>,
4622 T::Target: BroadcasterInterface,
4623 K::Target: KeysInterface<Signer = Signer>,
4624 F::Target: FeeEstimator,
4627 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
4628 let events = RefCell::new(Vec::new());
4629 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4630 let mut result = NotifyOption::SkipPersist;
4632 // TODO: This behavior should be documented. It's unintuitive that we query
4633 // ChannelMonitors when clearing other events.
4634 if self.process_pending_monitor_events() {
4635 result = NotifyOption::DoPersist;
4638 if self.check_free_holding_cells() {
4639 result = NotifyOption::DoPersist;
4641 if self.maybe_generate_initial_closing_signed() {
4642 result = NotifyOption::DoPersist;
4645 let mut pending_events = Vec::new();
4646 let mut channel_state = self.channel_state.lock().unwrap();
4647 mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
4649 if !pending_events.is_empty() {
4650 events.replace(pending_events);
4659 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
4661 M::Target: chain::Watch<Signer>,
4662 T::Target: BroadcasterInterface,
4663 K::Target: KeysInterface<Signer = Signer>,
4664 F::Target: FeeEstimator,
4667 /// Processes events that must be periodically handled.
4669 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
4670 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
4672 /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
4673 /// when processed, an [`EventHandler`] must be able to handle previously seen events when
4674 /// restarting from an old state.
4675 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
4676 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
4677 let mut result = NotifyOption::SkipPersist;
4679 // TODO: This behavior should be documented. It's unintuitive that we query
4680 // ChannelMonitors when clearing other events.
4681 if self.process_pending_monitor_events() {
4682 result = NotifyOption::DoPersist;
4685 let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
4686 if !pending_events.is_empty() {
4687 result = NotifyOption::DoPersist;
4690 for event in pending_events.drain(..) {
4691 handler.handle_event(&event);
4699 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
4701 M::Target: chain::Watch<Signer>,
4702 T::Target: BroadcasterInterface,
4703 K::Target: KeysInterface<Signer = Signer>,
4704 F::Target: FeeEstimator,
4707 fn block_connected(&self, block: &Block, height: u32) {
4709 let best_block = self.best_block.read().unwrap();
4710 assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
4711 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
4712 assert_eq!(best_block.height(), height - 1,
4713 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
4716 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
4717 self.transactions_confirmed(&block.header, &txdata, height);
4718 self.best_block_updated(&block.header, height);
4721 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
4722 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4723 let new_height = height - 1;
4725 let mut best_block = self.best_block.write().unwrap();
4726 assert_eq!(best_block.block_hash(), header.block_hash(),
4727 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
4728 assert_eq!(best_block.height(), height,
4729 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
4730 *best_block = BestBlock::new(header.prev_blockhash, new_height)
4733 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, &self.logger));
4737 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
4739 M::Target: chain::Watch<Signer>,
4740 T::Target: BroadcasterInterface,
4741 K::Target: KeysInterface<Signer = Signer>,
4742 F::Target: FeeEstimator,
4745 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
4746 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4747 // during initialization prior to the chain_monitor being fully configured in some cases.
4748 // See the docs for `ChannelManagerReadArgs` for more.
4750 let block_hash = header.block_hash();
4751 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
4753 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4754 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
4757 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
4758 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4759 // during initialization prior to the chain_monitor being fully configured in some cases.
4760 // See the docs for `ChannelManagerReadArgs` for more.
4762 let block_hash = header.block_hash();
4763 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
4765 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4767 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
4769 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, &self.logger));
4771 macro_rules! max_time {
4772 ($timestamp: expr) => {
4774 // Update $timestamp to be the max of its current value and the block
4775 // timestamp. This should keep us close to the current time without relying on
4776 // having an explicit local time source.
4777 // Just in case we end up in a race, we loop until we either successfully
4778 // update $timestamp or decide we don't need to.
4779 let old_serial = $timestamp.load(Ordering::Acquire);
4780 if old_serial >= header.time as usize { break; }
4781 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
4787 max_time!(self.last_node_announcement_serial);
4788 max_time!(self.highest_seen_timestamp);
4789 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4790 payment_secrets.retain(|_, inbound_payment| {
4791 inbound_payment.expiry_time > header.time as u64
4794 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
4795 outbounds.retain(|_, payment| {
4796 const PAYMENT_EXPIRY_BLOCKS: u32 = 3;
4797 if payment.remaining_parts() != 0 { return true }
4798 if let PendingOutboundPayment::Retryable { starting_block_height, .. } = payment {
4799 return *starting_block_height + PAYMENT_EXPIRY_BLOCKS > height
4805 fn get_relevant_txids(&self) -> Vec<Txid> {
4806 let channel_state = self.channel_state.lock().unwrap();
4807 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
4808 for chan in channel_state.by_id.values() {
4809 if let Some(funding_txo) = chan.get_funding_txo() {
4810 res.push(funding_txo.txid);
4816 fn transaction_unconfirmed(&self, txid: &Txid) {
4817 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4818 self.do_chain_event(None, |channel| {
4819 if let Some(funding_txo) = channel.get_funding_txo() {
4820 if funding_txo.txid == *txid {
4821 channel.funding_transaction_unconfirmed(&self.logger).map(|_| (None, Vec::new()))
4822 } else { Ok((None, Vec::new())) }
4823 } else { Ok((None, Vec::new())) }
4828 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
4830 M::Target: chain::Watch<Signer>,
4831 T::Target: BroadcasterInterface,
4832 K::Target: KeysInterface<Signer = Signer>,
4833 F::Target: FeeEstimator,
4836 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
4837 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
4839 fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
4840 (&self, height_opt: Option<u32>, f: FN) {
4841 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
4842 // during initialization prior to the chain_monitor being fully configured in some cases.
4843 // See the docs for `ChannelManagerReadArgs` for more.
4845 let mut failed_channels = Vec::new();
4846 let mut timed_out_htlcs = Vec::new();
4848 let mut channel_lock = self.channel_state.lock().unwrap();
4849 let channel_state = &mut *channel_lock;
4850 let short_to_id = &mut channel_state.short_to_id;
4851 let pending_msg_events = &mut channel_state.pending_msg_events;
4852 channel_state.by_id.retain(|_, channel| {
4853 let res = f(channel);
4854 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
4855 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
4856 let chan_update = self.get_channel_update_for_unicast(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
4857 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
4858 failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
4862 if let Some(funding_locked) = chan_res {
4863 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
4864 node_id: channel.get_counterparty_node_id(),
4865 msg: funding_locked,
4867 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
4868 log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
4869 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4870 node_id: channel.get_counterparty_node_id(),
4871 msg: announcement_sigs,
4873 } else if channel.is_usable() {
4874 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures but with private channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
4875 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4876 node_id: channel.get_counterparty_node_id(),
4877 msg: self.get_channel_update_for_unicast(channel).unwrap(),
4880 log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
4882 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
4884 } else if let Err(e) = res {
4885 if let Some(short_id) = channel.get_short_channel_id() {
4886 short_to_id.remove(&short_id);
4888 // It looks like our counterparty went on-chain or funding transaction was
4889 // reorged out of the main chain. Close the channel.
4890 failed_channels.push(channel.force_shutdown(true));
4891 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
4892 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4896 self.issue_channel_close_events(channel, ClosureReason::CommitmentTxConfirmed);
4897 pending_msg_events.push(events::MessageSendEvent::HandleError {
4898 node_id: channel.get_counterparty_node_id(),
4899 action: msgs::ErrorAction::SendErrorMessage { msg: e },
4906 if let Some(height) = height_opt {
4907 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
4908 htlcs.retain(|htlc| {
4909 // If height is approaching the number of blocks we think it takes us to get
4910 // our commitment transaction confirmed before the HTLC expires, plus the
4911 // number of blocks we generally consider it to take to do a commitment update,
4912 // just give up on it and fail the HTLC.
4913 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
4914 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
4915 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
4916 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
4917 failure_code: 0x4000 | 15,
4918 data: htlc_msat_height_data
4923 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
4928 self.handle_init_event_channel_failures(failed_channels);
4930 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
4931 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
4935 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
4936 /// indicating whether persistence is necessary. Only one listener on
4937 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4939 /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
4940 #[cfg(any(test, feature = "allow_wallclock_use"))]
4941 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
4942 self.persistence_notifier.wait_timeout(max_wait)
4945 /// Blocks until ChannelManager needs to be persisted. Only one listener on
4946 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
4948 pub fn await_persistable_update(&self) {
4949 self.persistence_notifier.wait()
4952 #[cfg(any(test, feature = "_test_utils"))]
4953 pub fn get_persistence_condvar_value(&self) -> bool {
4954 let mutcond = &self.persistence_notifier.persistence_lock;
4955 let &(ref mtx, _) = mutcond;
4956 let guard = mtx.lock().unwrap();
4960 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
4961 /// [`chain::Confirm`] interfaces.
4962 pub fn current_best_block(&self) -> BestBlock {
4963 self.best_block.read().unwrap().clone()
4967 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
4968 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
4969 where M::Target: chain::Watch<Signer>,
4970 T::Target: BroadcasterInterface,
4971 K::Target: KeysInterface<Signer = Signer>,
4972 F::Target: FeeEstimator,
4975 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
4976 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4977 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4980 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
4981 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4982 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
4985 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
4986 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4987 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
4990 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
4991 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4992 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
4995 fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
4996 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4997 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
5000 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
5001 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5002 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
5005 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
5006 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5007 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
5010 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
5011 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5012 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
5015 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
5016 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5017 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
5020 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
5021 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5022 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
5025 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
5026 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5027 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
5030 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
5031 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5032 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
5035 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
5036 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5037 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
5040 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
5041 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5042 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
5045 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
5046 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5047 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
5050 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
5051 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5052 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
5055 NotifyOption::SkipPersist
5060 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
5061 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5062 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
5065 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
5066 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5067 let mut failed_channels = Vec::new();
5068 let mut no_channels_remain = true;
5070 let mut channel_state_lock = self.channel_state.lock().unwrap();
5071 let channel_state = &mut *channel_state_lock;
5072 let short_to_id = &mut channel_state.short_to_id;
5073 let pending_msg_events = &mut channel_state.pending_msg_events;
5074 if no_connection_possible {
5075 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
5076 channel_state.by_id.retain(|_, chan| {
5077 if chan.get_counterparty_node_id() == *counterparty_node_id {
5078 if let Some(short_id) = chan.get_short_channel_id() {
5079 short_to_id.remove(&short_id);
5081 failed_channels.push(chan.force_shutdown(true));
5082 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5083 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5087 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
5094 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
5095 channel_state.by_id.retain(|_, chan| {
5096 if chan.get_counterparty_node_id() == *counterparty_node_id {
5097 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
5098 if chan.is_shutdown() {
5099 if let Some(short_id) = chan.get_short_channel_id() {
5100 short_to_id.remove(&short_id);
5102 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
5105 no_channels_remain = false;
5111 pending_msg_events.retain(|msg| {
5113 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
5114 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
5115 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
5116 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
5117 &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
5118 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
5119 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
5120 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
5121 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
5122 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
5123 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
5124 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
5125 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
5126 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
5127 &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
5128 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
5129 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
5130 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
5131 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
5135 if no_channels_remain {
5136 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
5139 for failure in failed_channels.drain(..) {
5140 self.finish_force_close_channel(failure);
5144 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
5145 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
5147 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5150 let mut peer_state_lock = self.per_peer_state.write().unwrap();
5151 match peer_state_lock.entry(counterparty_node_id.clone()) {
5152 hash_map::Entry::Vacant(e) => {
5153 e.insert(Mutex::new(PeerState {
5154 latest_features: init_msg.features.clone(),
5157 hash_map::Entry::Occupied(e) => {
5158 e.get().lock().unwrap().latest_features = init_msg.features.clone();
5163 let mut channel_state_lock = self.channel_state.lock().unwrap();
5164 let channel_state = &mut *channel_state_lock;
5165 let pending_msg_events = &mut channel_state.pending_msg_events;
5166 channel_state.by_id.retain(|_, chan| {
5167 if chan.get_counterparty_node_id() == *counterparty_node_id {
5168 if !chan.have_received_message() {
5169 // If we created this (outbound) channel while we were disconnected from the
5170 // peer we probably failed to send the open_channel message, which is now
5171 // lost. We can't have had anything pending related to this channel, so we just
5175 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
5176 node_id: chan.get_counterparty_node_id(),
5177 msg: chan.get_channel_reestablish(&self.logger),
5183 //TODO: Also re-broadcast announcement_signatures
5186 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
5187 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5189 if msg.channel_id == [0; 32] {
5190 for chan in self.list_channels() {
5191 if chan.counterparty.node_id == *counterparty_node_id {
5192 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
5193 let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id), Some(&msg.data));
5197 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
5198 let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id), Some(&msg.data));
5203 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
5204 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
5205 struct PersistenceNotifier {
5206 /// Users won't access the persistence_lock directly, but rather wait on its bool using
5207 /// `wait_timeout` and `wait`.
5208 persistence_lock: (Mutex<bool>, Condvar),
5211 impl PersistenceNotifier {
5214 persistence_lock: (Mutex::new(false), Condvar::new()),
5220 let &(ref mtx, ref cvar) = &self.persistence_lock;
5221 let mut guard = mtx.lock().unwrap();
5226 guard = cvar.wait(guard).unwrap();
5227 let result = *guard;
5235 #[cfg(any(test, feature = "allow_wallclock_use"))]
5236 fn wait_timeout(&self, max_wait: Duration) -> bool {
5237 let current_time = Instant::now();
5239 let &(ref mtx, ref cvar) = &self.persistence_lock;
5240 let mut guard = mtx.lock().unwrap();
5245 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
5246 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
5247 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
5248 // time. Note that this logic can be highly simplified through the use of
5249 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
5251 let elapsed = current_time.elapsed();
5252 let result = *guard;
5253 if result || elapsed >= max_wait {
5257 match max_wait.checked_sub(elapsed) {
5258 None => return result,
5264 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
5266 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
5267 let mut persistence_lock = persist_mtx.lock().unwrap();
5268 *persistence_lock = true;
5269 mem::drop(persistence_lock);
5274 const SERIALIZATION_VERSION: u8 = 1;
5275 const MIN_SERIALIZATION_VERSION: u8 = 1;
5277 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
5279 (0, onion_packet, required),
5280 (2, short_channel_id, required),
5283 (0, payment_data, required),
5284 (2, incoming_cltv_expiry, required),
5286 (2, ReceiveKeysend) => {
5287 (0, payment_preimage, required),
5288 (2, incoming_cltv_expiry, required),
5292 impl_writeable_tlv_based!(PendingHTLCInfo, {
5293 (0, routing, required),
5294 (2, incoming_shared_secret, required),
5295 (4, payment_hash, required),
5296 (6, amt_to_forward, required),
5297 (8, outgoing_cltv_value, required)
5301 impl Writeable for HTLCFailureMsg {
5302 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5304 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
5306 channel_id.write(writer)?;
5307 htlc_id.write(writer)?;
5308 reason.write(writer)?;
5310 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
5311 channel_id, htlc_id, sha256_of_onion, failure_code
5314 channel_id.write(writer)?;
5315 htlc_id.write(writer)?;
5316 sha256_of_onion.write(writer)?;
5317 failure_code.write(writer)?;
5324 impl Readable for HTLCFailureMsg {
5325 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5326 let id: u8 = Readable::read(reader)?;
5329 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
5330 channel_id: Readable::read(reader)?,
5331 htlc_id: Readable::read(reader)?,
5332 reason: Readable::read(reader)?,
5336 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
5337 channel_id: Readable::read(reader)?,
5338 htlc_id: Readable::read(reader)?,
5339 sha256_of_onion: Readable::read(reader)?,
5340 failure_code: Readable::read(reader)?,
5343 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
5344 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
5345 // messages contained in the variants.
5346 // In version 0.0.101, support for reading the variants with these types was added, and
5347 // we should migrate to writing these variants when UpdateFailHTLC or
5348 // UpdateFailMalformedHTLC get TLV fields.
5350 let length: BigSize = Readable::read(reader)?;
5351 let mut s = FixedLengthReader::new(reader, length.0);
5352 let res = Readable::read(&mut s)?;
5353 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
5354 Ok(HTLCFailureMsg::Relay(res))
5357 let length: BigSize = Readable::read(reader)?;
5358 let mut s = FixedLengthReader::new(reader, length.0);
5359 let res = Readable::read(&mut s)?;
5360 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
5361 Ok(HTLCFailureMsg::Malformed(res))
5363 _ => Err(DecodeError::UnknownRequiredFeature),
5368 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
5373 impl_writeable_tlv_based!(HTLCPreviousHopData, {
5374 (0, short_channel_id, required),
5375 (2, outpoint, required),
5376 (4, htlc_id, required),
5377 (6, incoming_packet_shared_secret, required)
5380 impl Writeable for ClaimableHTLC {
5381 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5382 let payment_data = match &self.onion_payload {
5383 OnionPayload::Invoice(data) => Some(data.clone()),
5386 let keysend_preimage = match self.onion_payload {
5387 OnionPayload::Invoice(_) => None,
5388 OnionPayload::Spontaneous(preimage) => Some(preimage.clone()),
5393 (0, self.prev_hop, required), (2, self.value, required),
5394 (4, payment_data, option), (6, self.cltv_expiry, required),
5395 (8, keysend_preimage, option),
5401 impl Readable for ClaimableHTLC {
5402 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5403 let mut prev_hop = ::util::ser::OptionDeserWrapper(None);
5405 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
5406 let mut cltv_expiry = 0;
5407 let mut keysend_preimage: Option<PaymentPreimage> = None;
5411 (0, prev_hop, required), (2, value, required),
5412 (4, payment_data, option), (6, cltv_expiry, required),
5413 (8, keysend_preimage, option)
5415 let onion_payload = match keysend_preimage {
5417 if payment_data.is_some() {
5418 return Err(DecodeError::InvalidValue)
5420 OnionPayload::Spontaneous(p)
5423 if payment_data.is_none() {
5424 return Err(DecodeError::InvalidValue)
5426 OnionPayload::Invoice(payment_data.unwrap())
5430 prev_hop: prev_hop.0.unwrap(),
5438 impl Readable for HTLCSource {
5439 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
5440 let id: u8 = Readable::read(reader)?;
5443 let mut session_priv: ::util::ser::OptionDeserWrapper<SecretKey> = ::util::ser::OptionDeserWrapper(None);
5444 let mut first_hop_htlc_msat: u64 = 0;
5445 let mut path = Some(Vec::new());
5446 let mut payment_id = None;
5447 let mut payment_secret = None;
5448 let mut payee = None;
5449 read_tlv_fields!(reader, {
5450 (0, session_priv, required),
5451 (1, payment_id, option),
5452 (2, first_hop_htlc_msat, required),
5453 (3, payment_secret, option),
5454 (4, path, vec_type),
5457 if payment_id.is_none() {
5458 // For backwards compat, if there was no payment_id written, use the session_priv bytes
5460 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
5462 Ok(HTLCSource::OutboundRoute {
5463 session_priv: session_priv.0.unwrap(),
5464 first_hop_htlc_msat: first_hop_htlc_msat,
5465 path: path.unwrap(),
5466 payment_id: payment_id.unwrap(),
5471 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
5472 _ => Err(DecodeError::UnknownRequiredFeature),
5477 impl Writeable for HTLCSource {
5478 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::io::Error> {
5480 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payee } => {
5482 let payment_id_opt = Some(payment_id);
5483 write_tlv_fields!(writer, {
5484 (0, session_priv, required),
5485 (1, payment_id_opt, option),
5486 (2, first_hop_htlc_msat, required),
5487 (3, payment_secret, option),
5488 (4, path, vec_type),
5492 HTLCSource::PreviousHopData(ref field) => {
5494 field.write(writer)?;
5501 impl_writeable_tlv_based_enum!(HTLCFailReason,
5502 (0, LightningError) => {
5506 (0, failure_code, required),
5507 (2, data, vec_type),
5511 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
5513 (0, forward_info, required),
5514 (2, prev_short_channel_id, required),
5515 (4, prev_htlc_id, required),
5516 (6, prev_funding_outpoint, required),
5519 (0, htlc_id, required),
5520 (2, err_packet, required),
5524 impl_writeable_tlv_based!(PendingInboundPayment, {
5525 (0, payment_secret, required),
5526 (2, expiry_time, required),
5527 (4, user_payment_id, required),
5528 (6, payment_preimage, required),
5529 (8, min_value_msat, required),
5532 impl_writeable_tlv_based_enum_upgradable!(PendingOutboundPayment,
5534 (0, session_privs, required),
5537 (0, session_privs, required),
5540 (0, session_privs, required),
5541 (1, pending_fee_msat, option),
5542 (2, payment_hash, required),
5543 (4, payment_secret, option),
5544 (6, total_msat, required),
5545 (8, pending_amt_msat, required),
5546 (10, starting_block_height, required),
5550 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
5551 where M::Target: chain::Watch<Signer>,
5552 T::Target: BroadcasterInterface,
5553 K::Target: KeysInterface<Signer = Signer>,
5554 F::Target: FeeEstimator,
5557 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5558 let _consistency_lock = self.total_consistency_lock.write().unwrap();
5560 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
5562 self.genesis_hash.write(writer)?;
5564 let best_block = self.best_block.read().unwrap();
5565 best_block.height().write(writer)?;
5566 best_block.block_hash().write(writer)?;
5569 let channel_state = self.channel_state.lock().unwrap();
5570 let mut unfunded_channels = 0;
5571 for (_, channel) in channel_state.by_id.iter() {
5572 if !channel.is_funding_initiated() {
5573 unfunded_channels += 1;
5576 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
5577 for (_, channel) in channel_state.by_id.iter() {
5578 if channel.is_funding_initiated() {
5579 channel.write(writer)?;
5583 (channel_state.forward_htlcs.len() as u64).write(writer)?;
5584 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
5585 short_channel_id.write(writer)?;
5586 (pending_forwards.len() as u64).write(writer)?;
5587 for forward in pending_forwards {
5588 forward.write(writer)?;
5592 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
5593 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
5594 payment_hash.write(writer)?;
5595 (previous_hops.len() as u64).write(writer)?;
5596 for htlc in previous_hops.iter() {
5597 htlc.write(writer)?;
5601 let per_peer_state = self.per_peer_state.write().unwrap();
5602 (per_peer_state.len() as u64).write(writer)?;
5603 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
5604 peer_pubkey.write(writer)?;
5605 let peer_state = peer_state_mutex.lock().unwrap();
5606 peer_state.latest_features.write(writer)?;
5609 let events = self.pending_events.lock().unwrap();
5610 (events.len() as u64).write(writer)?;
5611 for event in events.iter() {
5612 event.write(writer)?;
5615 let background_events = self.pending_background_events.lock().unwrap();
5616 (background_events.len() as u64).write(writer)?;
5617 for event in background_events.iter() {
5619 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
5621 funding_txo.write(writer)?;
5622 monitor_update.write(writer)?;
5627 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
5628 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
5630 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
5631 (pending_inbound_payments.len() as u64).write(writer)?;
5632 for (hash, pending_payment) in pending_inbound_payments.iter() {
5633 hash.write(writer)?;
5634 pending_payment.write(writer)?;
5637 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
5638 // For backwards compat, write the session privs and their total length.
5639 let mut num_pending_outbounds_compat: u64 = 0;
5640 for (_, outbound) in pending_outbound_payments.iter() {
5641 if !outbound.is_fulfilled() {
5642 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
5645 num_pending_outbounds_compat.write(writer)?;
5646 for (_, outbound) in pending_outbound_payments.iter() {
5648 PendingOutboundPayment::Legacy { session_privs } |
5649 PendingOutboundPayment::Retryable { session_privs, .. } => {
5650 for session_priv in session_privs.iter() {
5651 session_priv.write(writer)?;
5654 PendingOutboundPayment::Fulfilled { .. } => {},
5658 // Encode without retry info for 0.0.101 compatibility.
5659 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
5660 for (id, outbound) in pending_outbound_payments.iter() {
5662 PendingOutboundPayment::Legacy { session_privs } |
5663 PendingOutboundPayment::Retryable { session_privs, .. } => {
5664 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
5669 write_tlv_fields!(writer, {
5670 (1, pending_outbound_payments_no_retry, required),
5671 (3, pending_outbound_payments, required),
5678 /// Arguments for the creation of a ChannelManager that are not deserialized.
5680 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
5682 /// 1) Deserialize all stored [`ChannelMonitor`]s.
5683 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
5684 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
5685 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
5686 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
5687 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
5688 /// same way you would handle a [`chain::Filter`] call using
5689 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
5690 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
5691 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
5692 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
5693 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
5694 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
5696 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
5697 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
5699 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
5700 /// call any other methods on the newly-deserialized [`ChannelManager`].
5702 /// Note that because some channels may be closed during deserialization, it is critical that you
5703 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
5704 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
5705 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
5706 /// not force-close the same channels but consider them live), you may end up revoking a state for
5707 /// which you've already broadcasted the transaction.
5709 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
5710 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5711 where M::Target: chain::Watch<Signer>,
5712 T::Target: BroadcasterInterface,
5713 K::Target: KeysInterface<Signer = Signer>,
5714 F::Target: FeeEstimator,
5717 /// The keys provider which will give us relevant keys. Some keys will be loaded during
5718 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
5720 pub keys_manager: K,
5722 /// The fee_estimator for use in the ChannelManager in the future.
5724 /// No calls to the FeeEstimator will be made during deserialization.
5725 pub fee_estimator: F,
5726 /// The chain::Watch for use in the ChannelManager in the future.
5728 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
5729 /// you have deserialized ChannelMonitors separately and will add them to your
5730 /// chain::Watch after deserializing this ChannelManager.
5731 pub chain_monitor: M,
5733 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
5734 /// used to broadcast the latest local commitment transactions of channels which must be
5735 /// force-closed during deserialization.
5736 pub tx_broadcaster: T,
5737 /// The Logger for use in the ChannelManager and which may be used to log information during
5738 /// deserialization.
5740 /// Default settings used for new channels. Any existing channels will continue to use the
5741 /// runtime settings which were stored when the ChannelManager was serialized.
5742 pub default_config: UserConfig,
5744 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
5745 /// value.get_funding_txo() should be the key).
5747 /// If a monitor is inconsistent with the channel state during deserialization the channel will
5748 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
5749 /// is true for missing channels as well. If there is a monitor missing for which we find
5750 /// channel data Err(DecodeError::InvalidValue) will be returned.
5752 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
5755 /// (C-not exported) because we have no HashMap bindings
5756 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
5759 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5760 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
5761 where M::Target: chain::Watch<Signer>,
5762 T::Target: BroadcasterInterface,
5763 K::Target: KeysInterface<Signer = Signer>,
5764 F::Target: FeeEstimator,
5767 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
5768 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
5769 /// populate a HashMap directly from C.
5770 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
5771 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
5773 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
5774 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
5779 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
5780 // SipmleArcChannelManager type:
5781 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5782 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
5783 where M::Target: chain::Watch<Signer>,
5784 T::Target: BroadcasterInterface,
5785 K::Target: KeysInterface<Signer = Signer>,
5786 F::Target: FeeEstimator,
5789 fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
5790 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
5791 Ok((blockhash, Arc::new(chan_manager)))
5795 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
5796 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
5797 where M::Target: chain::Watch<Signer>,
5798 T::Target: BroadcasterInterface,
5799 K::Target: KeysInterface<Signer = Signer>,
5800 F::Target: FeeEstimator,
5803 fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
5804 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
5806 let genesis_hash: BlockHash = Readable::read(reader)?;
5807 let best_block_height: u32 = Readable::read(reader)?;
5808 let best_block_hash: BlockHash = Readable::read(reader)?;
5810 let mut failed_htlcs = Vec::new();
5812 let channel_count: u64 = Readable::read(reader)?;
5813 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
5814 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
5815 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
5816 let mut channel_closures = Vec::new();
5817 for _ in 0..channel_count {
5818 let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
5819 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
5820 funding_txo_set.insert(funding_txo.clone());
5821 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
5822 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
5823 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
5824 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
5825 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
5826 // If the channel is ahead of the monitor, return InvalidValue:
5827 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
5828 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
5829 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
5830 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
5831 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
5832 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
5833 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
5834 return Err(DecodeError::InvalidValue);
5835 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
5836 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
5837 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
5838 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
5839 // But if the channel is behind of the monitor, close the channel:
5840 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
5841 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
5842 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
5843 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
5844 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
5845 failed_htlcs.append(&mut new_failed_htlcs);
5846 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
5847 channel_closures.push(events::Event::ChannelClosed {
5848 channel_id: channel.channel_id(),
5849 user_channel_id: channel.get_user_id(),
5850 reason: ClosureReason::OutdatedChannelManager
5853 if let Some(short_channel_id) = channel.get_short_channel_id() {
5854 short_to_id.insert(short_channel_id, channel.channel_id());
5856 by_id.insert(channel.channel_id(), channel);
5859 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
5860 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
5861 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
5862 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
5863 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/rust-bitcoin/rust-lightning");
5864 return Err(DecodeError::InvalidValue);
5868 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
5869 if !funding_txo_set.contains(funding_txo) {
5870 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
5874 const MAX_ALLOC_SIZE: usize = 1024 * 64;
5875 let forward_htlcs_count: u64 = Readable::read(reader)?;
5876 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
5877 for _ in 0..forward_htlcs_count {
5878 let short_channel_id = Readable::read(reader)?;
5879 let pending_forwards_count: u64 = Readable::read(reader)?;
5880 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
5881 for _ in 0..pending_forwards_count {
5882 pending_forwards.push(Readable::read(reader)?);
5884 forward_htlcs.insert(short_channel_id, pending_forwards);
5887 let claimable_htlcs_count: u64 = Readable::read(reader)?;
5888 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
5889 for _ in 0..claimable_htlcs_count {
5890 let payment_hash = Readable::read(reader)?;
5891 let previous_hops_len: u64 = Readable::read(reader)?;
5892 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
5893 for _ in 0..previous_hops_len {
5894 previous_hops.push(Readable::read(reader)?);
5896 claimable_htlcs.insert(payment_hash, previous_hops);
5899 let peer_count: u64 = Readable::read(reader)?;
5900 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
5901 for _ in 0..peer_count {
5902 let peer_pubkey = Readable::read(reader)?;
5903 let peer_state = PeerState {
5904 latest_features: Readable::read(reader)?,
5906 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
5909 let event_count: u64 = Readable::read(reader)?;
5910 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
5911 for _ in 0..event_count {
5912 match MaybeReadable::read(reader)? {
5913 Some(event) => pending_events_read.push(event),
5917 if forward_htlcs_count > 0 {
5918 // If we have pending HTLCs to forward, assume we either dropped a
5919 // `PendingHTLCsForwardable` or the user received it but never processed it as they
5920 // shut down before the timer hit. Either way, set the time_forwardable to a small
5921 // constant as enough time has likely passed that we should simply handle the forwards
5922 // now, or at least after the user gets a chance to reconnect to our peers.
5923 pending_events_read.push(events::Event::PendingHTLCsForwardable {
5924 time_forwardable: Duration::from_secs(2),
5928 let background_event_count: u64 = Readable::read(reader)?;
5929 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
5930 for _ in 0..background_event_count {
5931 match <u8 as Readable>::read(reader)? {
5932 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
5933 _ => return Err(DecodeError::InvalidValue),
5937 let last_node_announcement_serial: u32 = Readable::read(reader)?;
5938 let highest_seen_timestamp: u32 = Readable::read(reader)?;
5940 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
5941 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
5942 for _ in 0..pending_inbound_payment_count {
5943 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
5944 return Err(DecodeError::InvalidValue);
5948 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
5949 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
5950 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
5951 for _ in 0..pending_outbound_payments_count_compat {
5952 let session_priv = Readable::read(reader)?;
5953 let payment = PendingOutboundPayment::Legacy {
5954 session_privs: [session_priv].iter().cloned().collect()
5956 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
5957 return Err(DecodeError::InvalidValue)
5961 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
5962 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
5963 let mut pending_outbound_payments = None;
5964 read_tlv_fields!(reader, {
5965 (1, pending_outbound_payments_no_retry, option),
5966 (3, pending_outbound_payments, option),
5968 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
5969 pending_outbound_payments = Some(pending_outbound_payments_compat);
5970 } else if pending_outbound_payments.is_none() {
5971 let mut outbounds = HashMap::new();
5972 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
5973 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
5975 pending_outbound_payments = Some(outbounds);
5977 // If we're tracking pending payments, ensure we haven't lost any by looking at the
5978 // ChannelMonitor data for any channels for which we do not have authorative state
5979 // (i.e. those for which we just force-closed above or we otherwise don't have a
5980 // corresponding `Channel` at all).
5981 // This avoids several edge-cases where we would otherwise "forget" about pending
5982 // payments which are still in-flight via their on-chain state.
5983 // We only rebuild the pending payments map if we were most recently serialized by
5985 for (_, monitor) in args.channel_monitors {
5986 if by_id.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
5987 for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() {
5988 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
5989 if path.is_empty() {
5990 log_error!(args.logger, "Got an empty path for a pending payment");
5991 return Err(DecodeError::InvalidValue);
5993 let path_amt = path.last().unwrap().fee_msat;
5994 let mut session_priv_bytes = [0; 32];
5995 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
5996 match pending_outbound_payments.as_mut().unwrap().entry(payment_id) {
5997 hash_map::Entry::Occupied(mut entry) => {
5998 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
5999 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
6000 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
6002 hash_map::Entry::Vacant(entry) => {
6003 let path_fee = path.get_path_fees();
6004 entry.insert(PendingOutboundPayment::Retryable {
6005 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
6006 payment_hash: htlc.payment_hash,
6008 pending_amt_msat: path_amt,
6009 pending_fee_msat: Some(path_fee),
6010 total_msat: path_amt,
6011 starting_block_height: best_block_height,
6013 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
6014 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
6023 let mut secp_ctx = Secp256k1::new();
6024 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
6026 if !channel_closures.is_empty() {
6027 pending_events_read.append(&mut channel_closures);
6030 let channel_manager = ChannelManager {
6032 fee_estimator: args.fee_estimator,
6033 chain_monitor: args.chain_monitor,
6034 tx_broadcaster: args.tx_broadcaster,
6036 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
6038 channel_state: Mutex::new(ChannelHolder {
6043 pending_msg_events: Vec::new(),
6045 pending_inbound_payments: Mutex::new(pending_inbound_payments),
6046 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
6048 our_network_key: args.keys_manager.get_node_secret(),
6049 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
6052 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
6053 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
6055 per_peer_state: RwLock::new(per_peer_state),
6057 pending_events: Mutex::new(pending_events_read),
6058 pending_background_events: Mutex::new(pending_background_events_read),
6059 total_consistency_lock: RwLock::new(()),
6060 persistence_notifier: PersistenceNotifier::new(),
6062 keys_manager: args.keys_manager,
6063 logger: args.logger,
6064 default_configuration: args.default_config,
6067 for htlc_source in failed_htlcs.drain(..) {
6068 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
6071 //TODO: Broadcast channel update for closed channels, but only after we've made a
6072 //connection or two.
6074 Ok((best_block_hash.clone(), channel_manager))
6080 use bitcoin::hashes::Hash;
6081 use bitcoin::hashes::sha256::Hash as Sha256;
6082 use core::time::Duration;
6083 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
6084 use ln::channelmanager::{PaymentId, PaymentSendFailure};
6085 use ln::features::InitFeatures;
6086 use ln::functional_test_utils::*;
6088 use ln::msgs::ChannelMessageHandler;
6089 use routing::router::{Payee, RouteParameters, find_route};
6090 use routing::scorer::Scorer;
6091 use util::errors::APIError;
6092 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
6094 #[cfg(feature = "std")]
6096 fn test_wait_timeout() {
6097 use ln::channelmanager::PersistenceNotifier;
6099 use core::sync::atomic::{AtomicBool, Ordering};
6102 let persistence_notifier = Arc::new(PersistenceNotifier::new());
6103 let thread_notifier = Arc::clone(&persistence_notifier);
6105 let exit_thread = Arc::new(AtomicBool::new(false));
6106 let exit_thread_clone = exit_thread.clone();
6107 thread::spawn(move || {
6109 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
6110 let mut persistence_lock = persist_mtx.lock().unwrap();
6111 *persistence_lock = true;
6114 if exit_thread_clone.load(Ordering::SeqCst) {
6120 // Check that we can block indefinitely until updates are available.
6121 let _ = persistence_notifier.wait();
6123 // Check that the PersistenceNotifier will return after the given duration if updates are
6126 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
6131 exit_thread.store(true, Ordering::SeqCst);
6133 // Check that the PersistenceNotifier will return after the given duration even if no updates
6136 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
6143 fn test_notify_limits() {
6144 // Check that a few cases which don't require the persistence of a new ChannelManager,
6145 // indeed, do not cause the persistence of a new ChannelManager.
6146 let chanmon_cfgs = create_chanmon_cfgs(3);
6147 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
6148 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
6149 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
6151 // All nodes start with a persistable update pending as `create_network` connects each node
6152 // with all other nodes to make most tests simpler.
6153 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6154 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6155 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6157 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6159 // We check that the channel info nodes have doesn't change too early, even though we try
6160 // to connect messages with new values
6161 chan.0.contents.fee_base_msat *= 2;
6162 chan.1.contents.fee_base_msat *= 2;
6163 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
6164 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
6166 // The first two nodes (which opened a channel) should now require fresh persistence
6167 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6168 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6169 // ... but the last node should not.
6170 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6171 // After persisting the first two nodes they should no longer need fresh persistence.
6172 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6173 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6175 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
6176 // about the channel.
6177 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
6178 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
6179 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6181 // The nodes which are a party to the channel should also ignore messages from unrelated
6183 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
6184 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
6185 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
6186 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
6187 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6188 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6190 // At this point the channel info given by peers should still be the same.
6191 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
6192 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
6194 // An earlier version of handle_channel_update didn't check the directionality of the
6195 // update message and would always update the local fee info, even if our peer was
6196 // (spuriously) forwarding us our own channel_update.
6197 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
6198 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
6199 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
6201 // First deliver each peers' own message, checking that the node doesn't need to be
6202 // persisted and that its channel info remains the same.
6203 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
6204 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
6205 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6206 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6207 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
6208 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
6210 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
6211 // the channel info has updated.
6212 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
6213 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
6214 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6215 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6216 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
6217 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
6221 fn test_keysend_dup_hash_partial_mpp() {
6222 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
6224 let chanmon_cfgs = create_chanmon_cfgs(2);
6225 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6226 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6227 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6228 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6230 // First, send a partial MPP payment.
6231 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
6232 let payment_id = PaymentId([42; 32]);
6233 // Use the utility function send_payment_along_path to send the payment with MPP data which
6234 // indicates there are more HTLCs coming.
6235 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
6236 nodes[0].node.send_payment_along_path(&route.paths[0], &route.payee, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
6237 check_added_monitors!(nodes[0], 1);
6238 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6239 assert_eq!(events.len(), 1);
6240 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
6242 // Next, send a keysend payment with the same payment_hash and make sure it fails.
6243 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
6244 check_added_monitors!(nodes[0], 1);
6245 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6246 assert_eq!(events.len(), 1);
6247 let ev = events.drain(..).next().unwrap();
6248 let payment_event = SendEvent::from_event(ev);
6249 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
6250 check_added_monitors!(nodes[1], 0);
6251 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
6252 expect_pending_htlcs_forwardable!(nodes[1]);
6253 expect_pending_htlcs_forwardable!(nodes[1]);
6254 check_added_monitors!(nodes[1], 1);
6255 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6256 assert!(updates.update_add_htlcs.is_empty());
6257 assert!(updates.update_fulfill_htlcs.is_empty());
6258 assert_eq!(updates.update_fail_htlcs.len(), 1);
6259 assert!(updates.update_fail_malformed_htlcs.is_empty());
6260 assert!(updates.update_fee.is_none());
6261 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
6262 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
6263 expect_payment_failed!(nodes[0], our_payment_hash, true);
6265 // Send the second half of the original MPP payment.
6266 nodes[0].node.send_payment_along_path(&route.paths[0], &route.payee, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
6267 check_added_monitors!(nodes[0], 1);
6268 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6269 assert_eq!(events.len(), 1);
6270 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
6272 // Claim the full MPP payment. Note that we can't use a test utility like
6273 // claim_funds_along_route because the ordering of the messages causes the second half of the
6274 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
6275 // lightning messages manually.
6276 assert!(nodes[1].node.claim_funds(payment_preimage));
6277 check_added_monitors!(nodes[1], 2);
6278 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6279 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
6280 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
6281 check_added_monitors!(nodes[0], 1);
6282 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6283 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
6284 check_added_monitors!(nodes[1], 1);
6285 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6286 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
6287 check_added_monitors!(nodes[1], 1);
6288 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
6289 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
6290 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
6291 check_added_monitors!(nodes[0], 1);
6292 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
6293 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
6294 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6295 check_added_monitors!(nodes[0], 1);
6296 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
6297 check_added_monitors!(nodes[1], 1);
6298 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
6299 check_added_monitors!(nodes[1], 1);
6300 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
6301 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
6302 check_added_monitors!(nodes[0], 1);
6304 // Note that successful MPP payments will generate 1 event upon the first path's success. No
6305 // further events will be generated for subsequence path successes.
6306 let events = nodes[0].node.get_and_clear_pending_events();
6308 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
6309 assert_eq!(Some(payment_id), *id);
6310 assert_eq!(payment_preimage, *preimage);
6311 assert_eq!(our_payment_hash, *hash);
6313 _ => panic!("Unexpected event"),
6318 fn test_keysend_dup_payment_hash() {
6319 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
6320 // outbound regular payment fails as expected.
6321 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
6322 // fails as expected.
6323 let chanmon_cfgs = create_chanmon_cfgs(2);
6324 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6325 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6326 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6327 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6328 let scorer = Scorer::with_fixed_penalty(0);
6330 // To start (1), send a regular payment but don't claim it.
6331 let expected_route = [&nodes[1]];
6332 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
6334 // Next, attempt a keysend payment and make sure it fails.
6335 let params = RouteParameters {
6336 payee: Payee::for_keysend(expected_route.last().unwrap().node.get_our_node_id()),
6337 final_value_msat: 100_000,
6338 final_cltv_expiry_delta: TEST_FINAL_CLTV,
6340 let route = find_route(
6341 &nodes[0].node.get_our_node_id(), ¶ms, nodes[0].network_graph, None,
6342 nodes[0].logger, &scorer
6344 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
6345 check_added_monitors!(nodes[0], 1);
6346 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6347 assert_eq!(events.len(), 1);
6348 let ev = events.drain(..).next().unwrap();
6349 let payment_event = SendEvent::from_event(ev);
6350 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
6351 check_added_monitors!(nodes[1], 0);
6352 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
6353 expect_pending_htlcs_forwardable!(nodes[1]);
6354 expect_pending_htlcs_forwardable!(nodes[1]);
6355 check_added_monitors!(nodes[1], 1);
6356 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6357 assert!(updates.update_add_htlcs.is_empty());
6358 assert!(updates.update_fulfill_htlcs.is_empty());
6359 assert_eq!(updates.update_fail_htlcs.len(), 1);
6360 assert!(updates.update_fail_malformed_htlcs.is_empty());
6361 assert!(updates.update_fee.is_none());
6362 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
6363 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
6364 expect_payment_failed!(nodes[0], payment_hash, true);
6366 // Finally, claim the original payment.
6367 claim_payment(&nodes[0], &expected_route, payment_preimage);
6369 // To start (2), send a keysend payment but don't claim it.
6370 let payment_preimage = PaymentPreimage([42; 32]);
6371 let route = find_route(
6372 &nodes[0].node.get_our_node_id(), ¶ms, nodes[0].network_graph, None,
6373 nodes[0].logger, &scorer
6375 let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
6376 check_added_monitors!(nodes[0], 1);
6377 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6378 assert_eq!(events.len(), 1);
6379 let event = events.pop().unwrap();
6380 let path = vec![&nodes[1]];
6381 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
6383 // Next, attempt a regular payment and make sure it fails.
6384 let payment_secret = PaymentSecret([43; 32]);
6385 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
6386 check_added_monitors!(nodes[0], 1);
6387 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6388 assert_eq!(events.len(), 1);
6389 let ev = events.drain(..).next().unwrap();
6390 let payment_event = SendEvent::from_event(ev);
6391 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
6392 check_added_monitors!(nodes[1], 0);
6393 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
6394 expect_pending_htlcs_forwardable!(nodes[1]);
6395 expect_pending_htlcs_forwardable!(nodes[1]);
6396 check_added_monitors!(nodes[1], 1);
6397 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
6398 assert!(updates.update_add_htlcs.is_empty());
6399 assert!(updates.update_fulfill_htlcs.is_empty());
6400 assert_eq!(updates.update_fail_htlcs.len(), 1);
6401 assert!(updates.update_fail_malformed_htlcs.is_empty());
6402 assert!(updates.update_fee.is_none());
6403 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
6404 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
6405 expect_payment_failed!(nodes[0], payment_hash, true);
6407 // Finally, succeed the keysend payment.
6408 claim_payment(&nodes[0], &expected_route, payment_preimage);
6412 fn test_keysend_hash_mismatch() {
6413 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
6414 // preimage doesn't match the msg's payment hash.
6415 let chanmon_cfgs = create_chanmon_cfgs(2);
6416 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6417 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6418 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6420 let payer_pubkey = nodes[0].node.get_our_node_id();
6421 let payee_pubkey = nodes[1].node.get_our_node_id();
6422 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
6423 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
6425 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
6426 let params = RouteParameters {
6427 payee: Payee::for_keysend(payee_pubkey),
6428 final_value_msat: 10000,
6429 final_cltv_expiry_delta: 40,
6431 let network_graph = nodes[0].network_graph;
6432 let first_hops = nodes[0].node.list_usable_channels();
6433 let scorer = Scorer::with_fixed_penalty(0);
6434 let route = find_route(
6435 &payer_pubkey, ¶ms, network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
6436 nodes[0].logger, &scorer
6439 let test_preimage = PaymentPreimage([42; 32]);
6440 let mismatch_payment_hash = PaymentHash([43; 32]);
6441 let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None, None).unwrap();
6442 check_added_monitors!(nodes[0], 1);
6444 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6445 assert_eq!(updates.update_add_htlcs.len(), 1);
6446 assert!(updates.update_fulfill_htlcs.is_empty());
6447 assert!(updates.update_fail_htlcs.is_empty());
6448 assert!(updates.update_fail_malformed_htlcs.is_empty());
6449 assert!(updates.update_fee.is_none());
6450 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
6452 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
6456 fn test_keysend_msg_with_secret_err() {
6457 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
6458 let chanmon_cfgs = create_chanmon_cfgs(2);
6459 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6460 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6461 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6463 let payer_pubkey = nodes[0].node.get_our_node_id();
6464 let payee_pubkey = nodes[1].node.get_our_node_id();
6465 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known() });
6466 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known() });
6468 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
6469 let params = RouteParameters {
6470 payee: Payee::for_keysend(payee_pubkey),
6471 final_value_msat: 10000,
6472 final_cltv_expiry_delta: 40,
6474 let network_graph = nodes[0].network_graph;
6475 let first_hops = nodes[0].node.list_usable_channels();
6476 let scorer = Scorer::with_fixed_penalty(0);
6477 let route = find_route(
6478 &payer_pubkey, ¶ms, network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
6479 nodes[0].logger, &scorer
6482 let test_preimage = PaymentPreimage([42; 32]);
6483 let test_secret = PaymentSecret([43; 32]);
6484 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
6485 let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None, None).unwrap();
6486 check_added_monitors!(nodes[0], 1);
6488 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
6489 assert_eq!(updates.update_add_htlcs.len(), 1);
6490 assert!(updates.update_fulfill_htlcs.is_empty());
6491 assert!(updates.update_fail_htlcs.is_empty());
6492 assert!(updates.update_fail_malformed_htlcs.is_empty());
6493 assert!(updates.update_fee.is_none());
6494 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
6496 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
6500 fn test_multi_hop_missing_secret() {
6501 let chanmon_cfgs = create_chanmon_cfgs(4);
6502 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
6503 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
6504 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
6506 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6507 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6508 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6509 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
6511 // Marshall an MPP route.
6512 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
6513 let path = route.paths[0].clone();
6514 route.paths.push(path);
6515 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
6516 route.paths[0][0].short_channel_id = chan_1_id;
6517 route.paths[0][1].short_channel_id = chan_3_id;
6518 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
6519 route.paths[1][0].short_channel_id = chan_2_id;
6520 route.paths[1][1].short_channel_id = chan_4_id;
6522 match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() {
6523 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
6524 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
6525 _ => panic!("unexpected error")
6530 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
6533 use chain::chainmonitor::{ChainMonitor, Persist};
6534 use chain::keysinterface::{KeysManager, InMemorySigner};
6535 use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
6536 use ln::features::{InitFeatures, InvoiceFeatures};
6537 use ln::functional_test_utils::*;
6538 use ln::msgs::{ChannelMessageHandler, Init};
6539 use routing::network_graph::NetworkGraph;
6540 use routing::router::{Payee, get_route};
6541 use routing::scorer::Scorer;
6542 use util::test_utils;
6543 use util::config::UserConfig;
6544 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider, PaymentPurpose};
6546 use bitcoin::hashes::Hash;
6547 use bitcoin::hashes::sha256::Hash as Sha256;
6548 use bitcoin::{Block, BlockHeader, Transaction, TxOut};
6550 use sync::{Arc, Mutex};
6554 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
6555 node: &'a ChannelManager<InMemorySigner,
6556 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
6557 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
6558 &'a test_utils::TestLogger, &'a P>,
6559 &'a test_utils::TestBroadcaster, &'a KeysManager,
6560 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
6565 fn bench_sends(bench: &mut Bencher) {
6566 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
6569 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
6570 // Do a simple benchmark of sending a payment back and forth between two nodes.
6571 // Note that this is unrealistic as each payment send will require at least two fsync
6573 let network = bitcoin::Network::Testnet;
6574 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
6576 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
6577 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
6579 let mut config: UserConfig = Default::default();
6580 config.own_channel_config.minimum_depth = 1;
6582 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
6583 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
6584 let seed_a = [1u8; 32];
6585 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
6586 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
6588 best_block: BestBlock::from_genesis(network),
6590 let node_a_holder = NodeHolder { node: &node_a };
6592 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
6593 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
6594 let seed_b = [2u8; 32];
6595 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
6596 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
6598 best_block: BestBlock::from_genesis(network),
6600 let node_b_holder = NodeHolder { node: &node_b };
6602 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known() });
6603 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known() });
6604 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
6605 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
6606 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
6609 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
6610 tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
6611 value: 8_000_000, script_pubkey: output_script,
6613 node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
6614 } else { panic!(); }
6616 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
6617 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
6619 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
6622 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
6625 Listen::block_connected(&node_a, &block, 1);
6626 Listen::block_connected(&node_b, &block, 1);
6628 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
6629 let msg_events = node_a.get_and_clear_pending_msg_events();
6630 assert_eq!(msg_events.len(), 2);
6631 match msg_events[0] {
6632 MessageSendEvent::SendFundingLocked { ref msg, .. } => {
6633 node_b.handle_funding_locked(&node_a.get_our_node_id(), msg);
6634 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
6638 match msg_events[1] {
6639 MessageSendEvent::SendChannelUpdate { .. } => {},
6643 let dummy_graph = NetworkGraph::new(genesis_hash);
6645 let mut payment_count: u64 = 0;
6646 macro_rules! send_payment {
6647 ($node_a: expr, $node_b: expr) => {
6648 let usable_channels = $node_a.list_usable_channels();
6649 let payee = Payee::new($node_b.get_our_node_id())
6650 .with_features(InvoiceFeatures::known());
6651 let scorer = Scorer::with_fixed_penalty(0);
6652 let route = get_route(&$node_a.get_our_node_id(), &payee, &dummy_graph,
6653 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer).unwrap();
6655 let mut payment_preimage = PaymentPreimage([0; 32]);
6656 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
6658 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
6659 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
6661 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
6662 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
6663 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
6664 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
6665 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
6666 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
6667 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
6668 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
6670 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
6671 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
6672 assert!($node_b.claim_funds(payment_preimage));
6674 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
6675 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
6676 assert_eq!(node_id, $node_a.get_our_node_id());
6677 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
6678 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
6680 _ => panic!("Failed to generate claim event"),
6683 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
6684 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
6685 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
6686 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
6688 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
6693 send_payment!(node_a, node_b);
6694 send_payment!(node_b, node_a);