1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
48 #[cfg(any(feature = "_test_utils", test))]
49 use crate::ln::features::Bolt11InvoiceFeatures;
50 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
51 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
53 use crate::ln::onion_utils;
54 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
55 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
57 use crate::ln::outbound_payment;
58 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
59 use crate::ln::wire::Encode;
60 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, InvoiceBuilder};
61 use crate::offers::invoice_error::InvoiceError;
62 use crate::offers::merkle::SignError;
63 use crate::offers::offer::{DerivedMetadata, Offer, OfferBuilder};
64 use crate::offers::parse::Bolt12SemanticError;
65 use crate::offers::refund::{Refund, RefundBuilder};
66 use crate::onion_message::messenger::{Destination, MessageRouter, PendingOnionMessage, new_pending_onion_message};
67 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
68 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
69 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
70 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
71 use crate::util::wakers::{Future, Notifier};
72 use crate::util::scid_utils::fake_scid;
73 use crate::util::string::UntrustedString;
74 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
75 use crate::util::logger::{Level, Logger, WithContext};
76 use crate::util::errors::APIError;
77 #[cfg(not(c_bindings))]
79 crate::routing::router::DefaultRouter,
80 crate::routing::gossip::NetworkGraph,
81 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
82 crate::sign::KeysManager,
85 use alloc::collections::{btree_map, BTreeMap};
88 use crate::prelude::*;
90 use core::cell::RefCell;
92 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
93 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
94 use core::time::Duration;
97 // Re-export this for use in the public API.
98 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
99 use crate::ln::script::ShutdownScript;
101 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
103 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
104 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
105 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
107 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
108 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
109 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
110 // before we forward it.
112 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
113 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
114 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
115 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
116 // our payment, which we can use to decode errors or inform the user that the payment was sent.
118 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
119 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
120 #[cfg_attr(test, derive(Debug, PartialEq))]
121 pub enum PendingHTLCRouting {
122 /// An HTLC which should be forwarded on to another node.
124 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
125 /// do with the HTLC.
126 onion_packet: msgs::OnionPacket,
127 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
129 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
130 /// to the receiving node, such as one returned from
131 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
132 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
133 /// Set if this HTLC is being forwarded within a blinded path.
134 blinded: Option<BlindedForward>,
136 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
138 /// Note that at this point, we have not checked that the invoice being paid was actually
139 /// generated by us, but rather it's claiming to pay an invoice of ours.
141 /// Information about the amount the sender intended to pay and (potential) proof that this
142 /// is a payment for an invoice we generated. This proof of payment is is also used for
143 /// linking MPP parts of a larger payment.
144 payment_data: msgs::FinalOnionHopData,
145 /// Additional data which we (allegedly) instructed the sender to include in the onion.
147 /// For HTLCs received by LDK, this will ultimately be exposed in
148 /// [`Event::PaymentClaimable::onion_fields`] as
149 /// [`RecipientOnionFields::payment_metadata`].
150 payment_metadata: Option<Vec<u8>>,
151 /// CLTV expiry of the received HTLC.
153 /// Used to track when we should expire pending HTLCs that go unclaimed.
154 incoming_cltv_expiry: u32,
155 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
156 /// provide the onion shared secret used to decrypt the next level of forwarding
158 phantom_shared_secret: Option<[u8; 32]>,
159 /// Custom TLVs which were set by the sender.
161 /// For HTLCs received by LDK, this will ultimately be exposed in
162 /// [`Event::PaymentClaimable::onion_fields`] as
163 /// [`RecipientOnionFields::custom_tlvs`].
164 custom_tlvs: Vec<(u64, Vec<u8>)>,
165 /// Set if this HTLC is the final hop in a multi-hop blinded path.
166 requires_blinded_error: bool,
168 /// The onion indicates that this is for payment to us but which contains the preimage for
169 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
170 /// "keysend" or "spontaneous" payment).
172 /// Information about the amount the sender intended to pay and possibly a token to
173 /// associate MPP parts of a larger payment.
175 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
176 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
177 payment_data: Option<msgs::FinalOnionHopData>,
178 /// Preimage for this onion payment. This preimage is provided by the sender and will be
179 /// used to settle the spontaneous payment.
180 payment_preimage: PaymentPreimage,
181 /// Additional data which we (allegedly) instructed the sender to include in the onion.
183 /// For HTLCs received by LDK, this will ultimately bubble back up as
184 /// [`RecipientOnionFields::payment_metadata`].
185 payment_metadata: Option<Vec<u8>>,
186 /// CLTV expiry of the received HTLC.
188 /// Used to track when we should expire pending HTLCs that go unclaimed.
189 incoming_cltv_expiry: u32,
190 /// Custom TLVs which were set by the sender.
192 /// For HTLCs received by LDK, these will ultimately bubble back up as
193 /// [`RecipientOnionFields::custom_tlvs`].
194 custom_tlvs: Vec<(u64, Vec<u8>)>,
198 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
199 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
200 pub struct BlindedForward {
201 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
202 /// onion payload if we're the introduction node. Useful for calculating the next hop's
203 /// [`msgs::UpdateAddHTLC::blinding_point`].
204 pub inbound_blinding_point: PublicKey,
205 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
206 /// the introduction node.
207 pub failure: BlindedFailure,
210 impl PendingHTLCRouting {
211 // Used to override the onion failure code and data if the HTLC is blinded.
212 fn blinded_failure(&self) -> Option<BlindedFailure> {
214 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
215 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
221 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
223 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
224 #[cfg_attr(test, derive(Debug, PartialEq))]
225 pub struct PendingHTLCInfo {
226 /// Further routing details based on whether the HTLC is being forwarded or received.
227 pub routing: PendingHTLCRouting,
228 /// The onion shared secret we build with the sender used to decrypt the onion.
230 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
231 pub incoming_shared_secret: [u8; 32],
232 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
233 pub payment_hash: PaymentHash,
234 /// Amount received in the incoming HTLC.
236 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
238 pub incoming_amt_msat: Option<u64>,
239 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
240 /// intended for us to receive for received payments.
242 /// If the received amount is less than this for received payments, an intermediary hop has
243 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
244 /// it along another path).
246 /// Because nodes can take less than their required fees, and because senders may wish to
247 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
248 /// received payments. In such cases, recipients must handle this HTLC as if it had received
249 /// [`Self::outgoing_amt_msat`].
250 pub outgoing_amt_msat: u64,
251 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
252 /// should have been set on the received HTLC for received payments).
253 pub outgoing_cltv_value: u32,
254 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
256 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
259 /// If this is a received payment, this is the fee that our counterparty took.
261 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
263 pub skimmed_fee_msat: Option<u64>,
266 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
267 pub(super) enum HTLCFailureMsg {
268 Relay(msgs::UpdateFailHTLC),
269 Malformed(msgs::UpdateFailMalformedHTLC),
272 /// Stores whether we can't forward an HTLC or relevant forwarding info
273 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
274 pub(super) enum PendingHTLCStatus {
275 Forward(PendingHTLCInfo),
276 Fail(HTLCFailureMsg),
279 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
280 pub(super) struct PendingAddHTLCInfo {
281 pub(super) forward_info: PendingHTLCInfo,
283 // These fields are produced in `forward_htlcs()` and consumed in
284 // `process_pending_htlc_forwards()` for constructing the
285 // `HTLCSource::PreviousHopData` for failed and forwarded
288 // Note that this may be an outbound SCID alias for the associated channel.
289 prev_short_channel_id: u64,
291 prev_funding_outpoint: OutPoint,
292 prev_user_channel_id: u128,
295 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
296 pub(super) enum HTLCForwardInfo {
297 AddHTLC(PendingAddHTLCInfo),
300 err_packet: msgs::OnionErrorPacket,
305 sha256_of_onion: [u8; 32],
309 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
310 /// which determines the failure message that should be used.
311 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
312 pub enum BlindedFailure {
313 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
314 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
315 FromIntroductionNode,
316 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
317 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
321 /// Tracks the inbound corresponding to an outbound HTLC
322 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
323 pub(crate) struct HTLCPreviousHopData {
324 // Note that this may be an outbound SCID alias for the associated channel.
325 short_channel_id: u64,
326 user_channel_id: Option<u128>,
328 incoming_packet_shared_secret: [u8; 32],
329 phantom_shared_secret: Option<[u8; 32]>,
330 blinded_failure: Option<BlindedFailure>,
332 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
333 // channel with a preimage provided by the forward channel.
338 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
340 /// This is only here for backwards-compatibility in serialization, in the future it can be
341 /// removed, breaking clients running 0.0.106 and earlier.
342 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
344 /// Contains the payer-provided preimage.
345 Spontaneous(PaymentPreimage),
348 /// HTLCs that are to us and can be failed/claimed by the user
349 struct ClaimableHTLC {
350 prev_hop: HTLCPreviousHopData,
352 /// The amount (in msats) of this MPP part
354 /// The amount (in msats) that the sender intended to be sent in this MPP
355 /// part (used for validating total MPP amount)
356 sender_intended_value: u64,
357 onion_payload: OnionPayload,
359 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
360 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
361 total_value_received: Option<u64>,
362 /// The sender intended sum total of all MPP parts specified in the onion
364 /// The extra fee our counterparty skimmed off the top of this HTLC.
365 counterparty_skimmed_fee_msat: Option<u64>,
368 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
369 fn from(val: &ClaimableHTLC) -> Self {
370 events::ClaimedHTLC {
371 channel_id: val.prev_hop.outpoint.to_channel_id(),
372 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
373 cltv_expiry: val.cltv_expiry,
374 value_msat: val.value,
375 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
380 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
381 /// a payment and ensure idempotency in LDK.
383 /// This is not exported to bindings users as we just use [u8; 32] directly
384 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
385 pub struct PaymentId(pub [u8; Self::LENGTH]);
388 /// Number of bytes in the id.
389 pub const LENGTH: usize = 32;
392 impl Writeable for PaymentId {
393 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
398 impl Readable for PaymentId {
399 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
400 let buf: [u8; 32] = Readable::read(r)?;
405 impl core::fmt::Display for PaymentId {
406 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
407 crate::util::logger::DebugBytes(&self.0).fmt(f)
411 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
413 /// This is not exported to bindings users as we just use [u8; 32] directly
414 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
415 pub struct InterceptId(pub [u8; 32]);
417 impl Writeable for InterceptId {
418 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
423 impl Readable for InterceptId {
424 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
425 let buf: [u8; 32] = Readable::read(r)?;
430 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
431 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
432 pub(crate) enum SentHTLCId {
433 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
434 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
437 pub(crate) fn from_source(source: &HTLCSource) -> Self {
439 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
440 short_channel_id: hop_data.short_channel_id,
441 htlc_id: hop_data.htlc_id,
443 HTLCSource::OutboundRoute { session_priv, .. } =>
444 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
448 impl_writeable_tlv_based_enum!(SentHTLCId,
449 (0, PreviousHopData) => {
450 (0, short_channel_id, required),
451 (2, htlc_id, required),
453 (2, OutboundRoute) => {
454 (0, session_priv, required),
459 /// Tracks the inbound corresponding to an outbound HTLC
460 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
461 #[derive(Clone, Debug, PartialEq, Eq)]
462 pub(crate) enum HTLCSource {
463 PreviousHopData(HTLCPreviousHopData),
466 session_priv: SecretKey,
467 /// Technically we can recalculate this from the route, but we cache it here to avoid
468 /// doing a double-pass on route when we get a failure back
469 first_hop_htlc_msat: u64,
470 payment_id: PaymentId,
473 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
474 impl core::hash::Hash for HTLCSource {
475 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
477 HTLCSource::PreviousHopData(prev_hop_data) => {
479 prev_hop_data.hash(hasher);
481 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
484 session_priv[..].hash(hasher);
485 payment_id.hash(hasher);
486 first_hop_htlc_msat.hash(hasher);
492 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
494 pub fn dummy() -> Self {
495 HTLCSource::OutboundRoute {
496 path: Path { hops: Vec::new(), blinded_tail: None },
497 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
498 first_hop_htlc_msat: 0,
499 payment_id: PaymentId([2; 32]),
503 #[cfg(debug_assertions)]
504 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
505 /// transaction. Useful to ensure different datastructures match up.
506 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
507 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
508 *first_hop_htlc_msat == htlc.amount_msat
510 // There's nothing we can check for forwarded HTLCs
516 /// This enum is used to specify which error data to send to peers when failing back an HTLC
517 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
519 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
520 #[derive(Clone, Copy)]
521 pub enum FailureCode {
522 /// We had a temporary error processing the payment. Useful if no other error codes fit
523 /// and you want to indicate that the payer may want to retry.
524 TemporaryNodeFailure,
525 /// We have a required feature which was not in this onion. For example, you may require
526 /// some additional metadata that was not provided with this payment.
527 RequiredNodeFeatureMissing,
528 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
529 /// the HTLC is too close to the current block height for safe handling.
530 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
531 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
532 IncorrectOrUnknownPaymentDetails,
533 /// We failed to process the payload after the onion was decrypted. You may wish to
534 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
536 /// If available, the tuple data may include the type number and byte offset in the
537 /// decrypted byte stream where the failure occurred.
538 InvalidOnionPayload(Option<(u64, u16)>),
541 impl Into<u16> for FailureCode {
542 fn into(self) -> u16 {
544 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
545 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
546 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
547 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
552 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
553 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
554 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
555 /// peer_state lock. We then return the set of things that need to be done outside the lock in
556 /// this struct and call handle_error!() on it.
558 struct MsgHandleErrInternal {
559 err: msgs::LightningError,
560 closes_channel: bool,
561 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
563 impl MsgHandleErrInternal {
565 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
567 err: LightningError {
569 action: msgs::ErrorAction::SendErrorMessage {
570 msg: msgs::ErrorMessage {
576 closes_channel: false,
577 shutdown_finish: None,
581 fn from_no_close(err: msgs::LightningError) -> Self {
582 Self { err, closes_channel: false, shutdown_finish: None }
585 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
586 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
587 let action = if shutdown_res.monitor_update.is_some() {
588 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
589 // should disconnect our peer such that we force them to broadcast their latest
590 // commitment upon reconnecting.
591 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
593 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
596 err: LightningError { err, action },
597 closes_channel: true,
598 shutdown_finish: Some((shutdown_res, channel_update)),
602 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
605 ChannelError::Warn(msg) => LightningError {
607 action: msgs::ErrorAction::SendWarningMessage {
608 msg: msgs::WarningMessage {
612 log_level: Level::Warn,
615 ChannelError::Ignore(msg) => LightningError {
617 action: msgs::ErrorAction::IgnoreError,
619 ChannelError::Close(msg) => LightningError {
621 action: msgs::ErrorAction::SendErrorMessage {
622 msg: msgs::ErrorMessage {
629 closes_channel: false,
630 shutdown_finish: None,
634 fn closes_channel(&self) -> bool {
639 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
640 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
641 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
642 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
643 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
645 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
646 /// be sent in the order they appear in the return value, however sometimes the order needs to be
647 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
648 /// they were originally sent). In those cases, this enum is also returned.
649 #[derive(Clone, PartialEq)]
650 pub(super) enum RAACommitmentOrder {
651 /// Send the CommitmentUpdate messages first
653 /// Send the RevokeAndACK message first
657 /// Information about a payment which is currently being claimed.
658 struct ClaimingPayment {
660 payment_purpose: events::PaymentPurpose,
661 receiver_node_id: PublicKey,
662 htlcs: Vec<events::ClaimedHTLC>,
663 sender_intended_value: Option<u64>,
665 impl_writeable_tlv_based!(ClaimingPayment, {
666 (0, amount_msat, required),
667 (2, payment_purpose, required),
668 (4, receiver_node_id, required),
669 (5, htlcs, optional_vec),
670 (7, sender_intended_value, option),
673 struct ClaimablePayment {
674 purpose: events::PaymentPurpose,
675 onion_fields: Option<RecipientOnionFields>,
676 htlcs: Vec<ClaimableHTLC>,
679 /// Information about claimable or being-claimed payments
680 struct ClaimablePayments {
681 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
682 /// failed/claimed by the user.
684 /// Note that, no consistency guarantees are made about the channels given here actually
685 /// existing anymore by the time you go to read them!
687 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
688 /// we don't get a duplicate payment.
689 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
691 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
692 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
693 /// as an [`events::Event::PaymentClaimed`].
694 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
697 /// Events which we process internally but cannot be processed immediately at the generation site
698 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
699 /// running normally, and specifically must be processed before any other non-background
700 /// [`ChannelMonitorUpdate`]s are applied.
702 enum BackgroundEvent {
703 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
704 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
705 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
706 /// channel has been force-closed we do not need the counterparty node_id.
708 /// Note that any such events are lost on shutdown, so in general they must be updates which
709 /// are regenerated on startup.
710 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
711 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
712 /// channel to continue normal operation.
714 /// In general this should be used rather than
715 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
716 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
717 /// error the other variant is acceptable.
719 /// Note that any such events are lost on shutdown, so in general they must be updates which
720 /// are regenerated on startup.
721 MonitorUpdateRegeneratedOnStartup {
722 counterparty_node_id: PublicKey,
723 funding_txo: OutPoint,
724 update: ChannelMonitorUpdate
726 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
727 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
729 MonitorUpdatesComplete {
730 counterparty_node_id: PublicKey,
731 channel_id: ChannelId,
736 pub(crate) enum MonitorUpdateCompletionAction {
737 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
738 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
739 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
740 /// event can be generated.
741 PaymentClaimed { payment_hash: PaymentHash },
742 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
743 /// operation of another channel.
745 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
746 /// from completing a monitor update which removes the payment preimage until the inbound edge
747 /// completes a monitor update containing the payment preimage. In that case, after the inbound
748 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
750 EmitEventAndFreeOtherChannel {
751 event: events::Event,
752 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
754 /// Indicates we should immediately resume the operation of another channel, unless there is
755 /// some other reason why the channel is blocked. In practice this simply means immediately
756 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
758 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
759 /// from completing a monitor update which removes the payment preimage until the inbound edge
760 /// completes a monitor update containing the payment preimage. However, we use this variant
761 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
762 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
764 /// This variant should thus never be written to disk, as it is processed inline rather than
765 /// stored for later processing.
766 FreeOtherChannelImmediately {
767 downstream_counterparty_node_id: PublicKey,
768 downstream_funding_outpoint: OutPoint,
769 blocking_action: RAAMonitorUpdateBlockingAction,
773 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
774 (0, PaymentClaimed) => { (0, payment_hash, required) },
775 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
776 // *immediately*. However, for simplicity we implement read/write here.
777 (1, FreeOtherChannelImmediately) => {
778 (0, downstream_counterparty_node_id, required),
779 (2, downstream_funding_outpoint, required),
780 (4, blocking_action, required),
782 (2, EmitEventAndFreeOtherChannel) => {
783 (0, event, upgradable_required),
784 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
785 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
786 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
787 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
788 // downgrades to prior versions.
789 (1, downstream_counterparty_and_funding_outpoint, option),
793 #[derive(Clone, Debug, PartialEq, Eq)]
794 pub(crate) enum EventCompletionAction {
795 ReleaseRAAChannelMonitorUpdate {
796 counterparty_node_id: PublicKey,
797 channel_funding_outpoint: OutPoint,
800 impl_writeable_tlv_based_enum!(EventCompletionAction,
801 (0, ReleaseRAAChannelMonitorUpdate) => {
802 (0, channel_funding_outpoint, required),
803 (2, counterparty_node_id, required),
807 #[derive(Clone, PartialEq, Eq, Debug)]
808 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
809 /// the blocked action here. See enum variants for more info.
810 pub(crate) enum RAAMonitorUpdateBlockingAction {
811 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
812 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
814 ForwardedPaymentInboundClaim {
815 /// The upstream channel ID (i.e. the inbound edge).
816 channel_id: ChannelId,
817 /// The HTLC ID on the inbound edge.
822 impl RAAMonitorUpdateBlockingAction {
823 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
824 Self::ForwardedPaymentInboundClaim {
825 channel_id: prev_hop.outpoint.to_channel_id(),
826 htlc_id: prev_hop.htlc_id,
831 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
832 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
836 /// State we hold per-peer.
837 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
838 /// `channel_id` -> `ChannelPhase`
840 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
841 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
842 /// `temporary_channel_id` -> `InboundChannelRequest`.
844 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
845 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
846 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
847 /// the channel is rejected, then the entry is simply removed.
848 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
849 /// The latest `InitFeatures` we heard from the peer.
850 latest_features: InitFeatures,
851 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
852 /// for broadcast messages, where ordering isn't as strict).
853 pub(super) pending_msg_events: Vec<MessageSendEvent>,
854 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
855 /// user but which have not yet completed.
857 /// Note that the channel may no longer exist. For example if the channel was closed but we
858 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
859 /// for a missing channel.
860 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
861 /// Map from a specific channel to some action(s) that should be taken when all pending
862 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
864 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
865 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
866 /// channels with a peer this will just be one allocation and will amount to a linear list of
867 /// channels to walk, avoiding the whole hashing rigmarole.
869 /// Note that the channel may no longer exist. For example, if a channel was closed but we
870 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
871 /// for a missing channel. While a malicious peer could construct a second channel with the
872 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
873 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
874 /// duplicates do not occur, so such channels should fail without a monitor update completing.
875 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
876 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
877 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
878 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
879 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
880 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
881 /// The peer is currently connected (i.e. we've seen a
882 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
883 /// [`ChannelMessageHandler::peer_disconnected`].
887 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
888 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
889 /// If true is passed for `require_disconnected`, the function will return false if we haven't
890 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
891 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
892 if require_disconnected && self.is_connected {
895 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
896 && self.monitor_update_blocked_actions.is_empty()
897 && self.in_flight_monitor_updates.is_empty()
900 // Returns a count of all channels we have with this peer, including unfunded channels.
901 fn total_channel_count(&self) -> usize {
902 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
905 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
906 fn has_channel(&self, channel_id: &ChannelId) -> bool {
907 self.channel_by_id.contains_key(channel_id) ||
908 self.inbound_channel_request_by_id.contains_key(channel_id)
912 /// A not-yet-accepted inbound (from counterparty) channel. Once
913 /// accepted, the parameters will be used to construct a channel.
914 pub(super) struct InboundChannelRequest {
915 /// The original OpenChannel message.
916 pub open_channel_msg: msgs::OpenChannel,
917 /// The number of ticks remaining before the request expires.
918 pub ticks_remaining: i32,
921 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
922 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
923 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
925 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
926 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
928 /// For users who don't want to bother doing their own payment preimage storage, we also store that
931 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
932 /// and instead encoding it in the payment secret.
933 struct PendingInboundPayment {
934 /// The payment secret that the sender must use for us to accept this payment
935 payment_secret: PaymentSecret,
936 /// Time at which this HTLC expires - blocks with a header time above this value will result in
937 /// this payment being removed.
939 /// Arbitrary identifier the user specifies (or not)
940 user_payment_id: u64,
941 // Other required attributes of the payment, optionally enforced:
942 payment_preimage: Option<PaymentPreimage>,
943 min_value_msat: Option<u64>,
946 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
947 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
948 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
949 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
950 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
951 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
952 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
953 /// of [`KeysManager`] and [`DefaultRouter`].
955 /// This is not exported to bindings users as type aliases aren't supported in most languages.
956 #[cfg(not(c_bindings))]
957 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
965 Arc<NetworkGraph<Arc<L>>>,
967 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
968 ProbabilisticScoringFeeParameters,
969 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
974 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
975 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
976 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
977 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
978 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
979 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
980 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
981 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
982 /// of [`KeysManager`] and [`DefaultRouter`].
984 /// This is not exported to bindings users as type aliases aren't supported in most languages.
985 #[cfg(not(c_bindings))]
986 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
995 &'f NetworkGraph<&'g L>,
997 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
998 ProbabilisticScoringFeeParameters,
999 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1004 /// A trivial trait which describes any [`ChannelManager`].
1006 /// This is not exported to bindings users as general cover traits aren't useful in other
1008 pub trait AChannelManager {
1009 /// A type implementing [`chain::Watch`].
1010 type Watch: chain::Watch<Self::Signer> + ?Sized;
1011 /// A type that may be dereferenced to [`Self::Watch`].
1012 type M: Deref<Target = Self::Watch>;
1013 /// A type implementing [`BroadcasterInterface`].
1014 type Broadcaster: BroadcasterInterface + ?Sized;
1015 /// A type that may be dereferenced to [`Self::Broadcaster`].
1016 type T: Deref<Target = Self::Broadcaster>;
1017 /// A type implementing [`EntropySource`].
1018 type EntropySource: EntropySource + ?Sized;
1019 /// A type that may be dereferenced to [`Self::EntropySource`].
1020 type ES: Deref<Target = Self::EntropySource>;
1021 /// A type implementing [`NodeSigner`].
1022 type NodeSigner: NodeSigner + ?Sized;
1023 /// A type that may be dereferenced to [`Self::NodeSigner`].
1024 type NS: Deref<Target = Self::NodeSigner>;
1025 /// A type implementing [`WriteableEcdsaChannelSigner`].
1026 type Signer: WriteableEcdsaChannelSigner + Sized;
1027 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1028 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1029 /// A type that may be dereferenced to [`Self::SignerProvider`].
1030 type SP: Deref<Target = Self::SignerProvider>;
1031 /// A type implementing [`FeeEstimator`].
1032 type FeeEstimator: FeeEstimator + ?Sized;
1033 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1034 type F: Deref<Target = Self::FeeEstimator>;
1035 /// A type implementing [`Router`].
1036 type Router: Router + ?Sized;
1037 /// A type that may be dereferenced to [`Self::Router`].
1038 type R: Deref<Target = Self::Router>;
1039 /// A type implementing [`Logger`].
1040 type Logger: Logger + ?Sized;
1041 /// A type that may be dereferenced to [`Self::Logger`].
1042 type L: Deref<Target = Self::Logger>;
1043 /// Returns a reference to the actual [`ChannelManager`] object.
1044 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1047 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1048 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1050 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1051 T::Target: BroadcasterInterface,
1052 ES::Target: EntropySource,
1053 NS::Target: NodeSigner,
1054 SP::Target: SignerProvider,
1055 F::Target: FeeEstimator,
1059 type Watch = M::Target;
1061 type Broadcaster = T::Target;
1063 type EntropySource = ES::Target;
1065 type NodeSigner = NS::Target;
1067 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1068 type SignerProvider = SP::Target;
1070 type FeeEstimator = F::Target;
1072 type Router = R::Target;
1074 type Logger = L::Target;
1076 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1079 /// Manager which keeps track of a number of channels and sends messages to the appropriate
1080 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
1082 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
1083 /// to individual Channels.
1085 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1086 /// all peers during write/read (though does not modify this instance, only the instance being
1087 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1088 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1090 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1091 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1092 /// [`ChannelMonitorUpdate`] before returning from
1093 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1094 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1095 /// `ChannelManager` operations from occurring during the serialization process). If the
1096 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1097 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1098 /// will be lost (modulo on-chain transaction fees).
1100 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1101 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1102 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1104 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1105 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1106 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1107 /// offline for a full minute. In order to track this, you must call
1108 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1110 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1111 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1112 /// not have a channel with being unable to connect to us or open new channels with us if we have
1113 /// many peers with unfunded channels.
1115 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1116 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1117 /// never limited. Please ensure you limit the count of such channels yourself.
1119 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1120 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1121 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1122 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1123 /// you're using lightning-net-tokio.
1125 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1126 /// [`funding_created`]: msgs::FundingCreated
1127 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1128 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1129 /// [`update_channel`]: chain::Watch::update_channel
1130 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1131 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1132 /// [`read`]: ReadableArgs::read
1135 // The tree structure below illustrates the lock order requirements for the different locks of the
1136 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1137 // and should then be taken in the order of the lowest to the highest level in the tree.
1138 // Note that locks on different branches shall not be taken at the same time, as doing so will
1139 // create a new lock order for those specific locks in the order they were taken.
1143 // `pending_offers_messages`
1145 // `total_consistency_lock`
1147 // |__`forward_htlcs`
1149 // | |__`pending_intercepted_htlcs`
1151 // |__`per_peer_state`
1153 // |__`pending_inbound_payments`
1155 // |__`claimable_payments`
1157 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1161 // |__`outpoint_to_peer`
1163 // |__`short_to_chan_info`
1165 // |__`outbound_scid_aliases`
1169 // |__`pending_events`
1171 // |__`pending_background_events`
1173 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1175 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1176 T::Target: BroadcasterInterface,
1177 ES::Target: EntropySource,
1178 NS::Target: NodeSigner,
1179 SP::Target: SignerProvider,
1180 F::Target: FeeEstimator,
1184 default_configuration: UserConfig,
1185 chain_hash: ChainHash,
1186 fee_estimator: LowerBoundedFeeEstimator<F>,
1192 /// See `ChannelManager` struct-level documentation for lock order requirements.
1194 pub(super) best_block: RwLock<BestBlock>,
1196 best_block: RwLock<BestBlock>,
1197 secp_ctx: Secp256k1<secp256k1::All>,
1199 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1200 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1201 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1202 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1204 /// See `ChannelManager` struct-level documentation for lock order requirements.
1205 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1207 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1208 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1209 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1210 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1211 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1212 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1213 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1214 /// after reloading from disk while replaying blocks against ChannelMonitors.
1216 /// See `PendingOutboundPayment` documentation for more info.
1218 /// See `ChannelManager` struct-level documentation for lock order requirements.
1219 pending_outbound_payments: OutboundPayments,
1221 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1223 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1224 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1225 /// and via the classic SCID.
1227 /// Note that no consistency guarantees are made about the existence of a channel with the
1228 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1230 /// See `ChannelManager` struct-level documentation for lock order requirements.
1232 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1234 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1235 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1236 /// until the user tells us what we should do with them.
1238 /// See `ChannelManager` struct-level documentation for lock order requirements.
1239 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1241 /// The sets of payments which are claimable or currently being claimed. See
1242 /// [`ClaimablePayments`]' individual field docs for more info.
1244 /// See `ChannelManager` struct-level documentation for lock order requirements.
1245 claimable_payments: Mutex<ClaimablePayments>,
1247 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1248 /// and some closed channels which reached a usable state prior to being closed. This is used
1249 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1250 /// active channel list on load.
1252 /// See `ChannelManager` struct-level documentation for lock order requirements.
1253 outbound_scid_aliases: Mutex<HashSet<u64>>,
1255 /// Channel funding outpoint -> `counterparty_node_id`.
1257 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1258 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1259 /// the handling of the events.
1261 /// Note that no consistency guarantees are made about the existence of a peer with the
1262 /// `counterparty_node_id` in our other maps.
1265 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1266 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1267 /// would break backwards compatability.
1268 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1269 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1270 /// required to access the channel with the `counterparty_node_id`.
1272 /// See `ChannelManager` struct-level documentation for lock order requirements.
1274 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1276 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1278 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1280 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1281 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1282 /// confirmation depth.
1284 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1285 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1286 /// channel with the `channel_id` in our other maps.
1288 /// See `ChannelManager` struct-level documentation for lock order requirements.
1290 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1292 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1294 our_network_pubkey: PublicKey,
1296 inbound_payment_key: inbound_payment::ExpandedKey,
1298 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1299 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1300 /// we encrypt the namespace identifier using these bytes.
1302 /// [fake scids]: crate::util::scid_utils::fake_scid
1303 fake_scid_rand_bytes: [u8; 32],
1305 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1306 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1307 /// keeping additional state.
1308 probing_cookie_secret: [u8; 32],
1310 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1311 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1312 /// very far in the past, and can only ever be up to two hours in the future.
1313 highest_seen_timestamp: AtomicUsize,
1315 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1316 /// basis, as well as the peer's latest features.
1318 /// If we are connected to a peer we always at least have an entry here, even if no channels
1319 /// are currently open with that peer.
1321 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1322 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1325 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1327 /// See `ChannelManager` struct-level documentation for lock order requirements.
1328 #[cfg(not(any(test, feature = "_test_utils")))]
1329 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1330 #[cfg(any(test, feature = "_test_utils"))]
1331 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1333 /// The set of events which we need to give to the user to handle. In some cases an event may
1334 /// require some further action after the user handles it (currently only blocking a monitor
1335 /// update from being handed to the user to ensure the included changes to the channel state
1336 /// are handled by the user before they're persisted durably to disk). In that case, the second
1337 /// element in the tuple is set to `Some` with further details of the action.
1339 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1340 /// could be in the middle of being processed without the direct mutex held.
1342 /// See `ChannelManager` struct-level documentation for lock order requirements.
1343 #[cfg(not(any(test, feature = "_test_utils")))]
1344 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1345 #[cfg(any(test, feature = "_test_utils"))]
1346 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1348 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1349 pending_events_processor: AtomicBool,
1351 /// If we are running during init (either directly during the deserialization method or in
1352 /// block connection methods which run after deserialization but before normal operation) we
1353 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1354 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1355 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1357 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1359 /// See `ChannelManager` struct-level documentation for lock order requirements.
1361 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1362 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1363 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1364 /// Essentially just when we're serializing ourselves out.
1365 /// Taken first everywhere where we are making changes before any other locks.
1366 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1367 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1368 /// Notifier the lock contains sends out a notification when the lock is released.
1369 total_consistency_lock: RwLock<()>,
1370 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1371 /// received and the monitor has been persisted.
1373 /// This information does not need to be persisted as funding nodes can forget
1374 /// unfunded channels upon disconnection.
1375 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1377 background_events_processed_since_startup: AtomicBool,
1379 event_persist_notifier: Notifier,
1380 needs_persist_flag: AtomicBool,
1382 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
1386 signer_provider: SP,
1391 /// Chain-related parameters used to construct a new `ChannelManager`.
1393 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1394 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1395 /// are not needed when deserializing a previously constructed `ChannelManager`.
1396 #[derive(Clone, Copy, PartialEq)]
1397 pub struct ChainParameters {
1398 /// The network for determining the `chain_hash` in Lightning messages.
1399 pub network: Network,
1401 /// The hash and height of the latest block successfully connected.
1403 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1404 pub best_block: BestBlock,
1407 #[derive(Copy, Clone, PartialEq)]
1411 SkipPersistHandleEvents,
1412 SkipPersistNoEvents,
1415 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1416 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1417 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1418 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1419 /// sending the aforementioned notification (since the lock being released indicates that the
1420 /// updates are ready for persistence).
1422 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1423 /// notify or not based on whether relevant changes have been made, providing a closure to
1424 /// `optionally_notify` which returns a `NotifyOption`.
1425 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1426 event_persist_notifier: &'a Notifier,
1427 needs_persist_flag: &'a AtomicBool,
1429 // We hold onto this result so the lock doesn't get released immediately.
1430 _read_guard: RwLockReadGuard<'a, ()>,
1433 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1434 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1435 /// events to handle.
1437 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1438 /// other cases where losing the changes on restart may result in a force-close or otherwise
1440 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1441 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1444 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1445 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1446 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1447 let force_notify = cm.get_cm().process_background_events();
1449 PersistenceNotifierGuard {
1450 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1451 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1452 should_persist: move || {
1453 // Pick the "most" action between `persist_check` and the background events
1454 // processing and return that.
1455 let notify = persist_check();
1456 match (notify, force_notify) {
1457 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1458 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1459 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1460 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1461 _ => NotifyOption::SkipPersistNoEvents,
1464 _read_guard: read_guard,
1468 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1469 /// [`ChannelManager::process_background_events`] MUST be called first (or
1470 /// [`Self::optionally_notify`] used).
1471 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1472 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1473 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1475 PersistenceNotifierGuard {
1476 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1477 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1478 should_persist: persist_check,
1479 _read_guard: read_guard,
1484 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1485 fn drop(&mut self) {
1486 match (self.should_persist)() {
1487 NotifyOption::DoPersist => {
1488 self.needs_persist_flag.store(true, Ordering::Release);
1489 self.event_persist_notifier.notify()
1491 NotifyOption::SkipPersistHandleEvents =>
1492 self.event_persist_notifier.notify(),
1493 NotifyOption::SkipPersistNoEvents => {},
1498 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1499 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1501 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1503 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1504 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1505 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1506 /// the maximum required amount in lnd as of March 2021.
1507 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1509 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1510 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1512 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1514 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1515 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1516 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1517 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1518 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1519 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1520 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1521 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1522 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1523 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1524 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1525 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1526 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1528 /// Minimum CLTV difference between the current block height and received inbound payments.
1529 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1531 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1532 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1533 // a payment was being routed, so we add an extra block to be safe.
1534 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1536 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1537 // ie that if the next-hop peer fails the HTLC within
1538 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1539 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1540 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1541 // LATENCY_GRACE_PERIOD_BLOCKS.
1543 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1545 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1546 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1548 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1550 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1551 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1553 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1554 /// until we mark the channel disabled and gossip the update.
1555 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1557 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1558 /// we mark the channel enabled and gossip the update.
1559 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1561 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1562 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1563 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1564 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1566 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1567 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1568 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1570 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1571 /// many peers we reject new (inbound) connections.
1572 const MAX_NO_CHANNEL_PEERS: usize = 250;
1574 /// Information needed for constructing an invoice route hint for this channel.
1575 #[derive(Clone, Debug, PartialEq)]
1576 pub struct CounterpartyForwardingInfo {
1577 /// Base routing fee in millisatoshis.
1578 pub fee_base_msat: u32,
1579 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1580 pub fee_proportional_millionths: u32,
1581 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1582 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1583 /// `cltv_expiry_delta` for more details.
1584 pub cltv_expiry_delta: u16,
1587 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1588 /// to better separate parameters.
1589 #[derive(Clone, Debug, PartialEq)]
1590 pub struct ChannelCounterparty {
1591 /// The node_id of our counterparty
1592 pub node_id: PublicKey,
1593 /// The Features the channel counterparty provided upon last connection.
1594 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1595 /// many routing-relevant features are present in the init context.
1596 pub features: InitFeatures,
1597 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1598 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1599 /// claiming at least this value on chain.
1601 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1603 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1604 pub unspendable_punishment_reserve: u64,
1605 /// Information on the fees and requirements that the counterparty requires when forwarding
1606 /// payments to us through this channel.
1607 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1608 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1609 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1610 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1611 pub outbound_htlc_minimum_msat: Option<u64>,
1612 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1613 pub outbound_htlc_maximum_msat: Option<u64>,
1616 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1617 #[derive(Clone, Debug, PartialEq)]
1618 pub struct ChannelDetails {
1619 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1620 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1621 /// Note that this means this value is *not* persistent - it can change once during the
1622 /// lifetime of the channel.
1623 pub channel_id: ChannelId,
1624 /// Parameters which apply to our counterparty. See individual fields for more information.
1625 pub counterparty: ChannelCounterparty,
1626 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1627 /// our counterparty already.
1629 /// Note that, if this has been set, `channel_id` will be equivalent to
1630 /// `funding_txo.unwrap().to_channel_id()`.
1631 pub funding_txo: Option<OutPoint>,
1632 /// The features which this channel operates with. See individual features for more info.
1634 /// `None` until negotiation completes and the channel type is finalized.
1635 pub channel_type: Option<ChannelTypeFeatures>,
1636 /// The position of the funding transaction in the chain. None if the funding transaction has
1637 /// not yet been confirmed and the channel fully opened.
1639 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1640 /// payments instead of this. See [`get_inbound_payment_scid`].
1642 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1643 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1645 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1646 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1647 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1648 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1649 /// [`confirmations_required`]: Self::confirmations_required
1650 pub short_channel_id: Option<u64>,
1651 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1652 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1653 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1656 /// This will be `None` as long as the channel is not available for routing outbound payments.
1658 /// [`short_channel_id`]: Self::short_channel_id
1659 /// [`confirmations_required`]: Self::confirmations_required
1660 pub outbound_scid_alias: Option<u64>,
1661 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1662 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1663 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1664 /// when they see a payment to be routed to us.
1666 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1667 /// previous values for inbound payment forwarding.
1669 /// [`short_channel_id`]: Self::short_channel_id
1670 pub inbound_scid_alias: Option<u64>,
1671 /// The value, in satoshis, of this channel as appears in the funding output
1672 pub channel_value_satoshis: u64,
1673 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1674 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1675 /// this value on chain.
1677 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1679 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1681 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1682 pub unspendable_punishment_reserve: Option<u64>,
1683 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1684 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1685 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1686 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1687 /// serialized with LDK versions prior to 0.0.113.
1689 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1690 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1691 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1692 pub user_channel_id: u128,
1693 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1694 /// which is applied to commitment and HTLC transactions.
1696 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1697 pub feerate_sat_per_1000_weight: Option<u32>,
1698 /// Our total balance. This is the amount we would get if we close the channel.
1699 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1700 /// amount is not likely to be recoverable on close.
1702 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1703 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1704 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1705 /// This does not consider any on-chain fees.
1707 /// See also [`ChannelDetails::outbound_capacity_msat`]
1708 pub balance_msat: u64,
1709 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1710 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1711 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1712 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1714 /// See also [`ChannelDetails::balance_msat`]
1716 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1717 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1718 /// should be able to spend nearly this amount.
1719 pub outbound_capacity_msat: u64,
1720 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1721 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1722 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1723 /// to use a limit as close as possible to the HTLC limit we can currently send.
1725 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1726 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1727 pub next_outbound_htlc_limit_msat: u64,
1728 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1729 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1730 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1731 /// route which is valid.
1732 pub next_outbound_htlc_minimum_msat: u64,
1733 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1734 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1735 /// available for inclusion in new inbound HTLCs).
1736 /// Note that there are some corner cases not fully handled here, so the actual available
1737 /// inbound capacity may be slightly higher than this.
1739 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1740 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1741 /// However, our counterparty should be able to spend nearly this amount.
1742 pub inbound_capacity_msat: u64,
1743 /// The number of required confirmations on the funding transaction before the funding will be
1744 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1745 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1746 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1747 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1749 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1751 /// [`is_outbound`]: ChannelDetails::is_outbound
1752 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1753 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1754 pub confirmations_required: Option<u32>,
1755 /// The current number of confirmations on the funding transaction.
1757 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1758 pub confirmations: Option<u32>,
1759 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1760 /// until we can claim our funds after we force-close the channel. During this time our
1761 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1762 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1763 /// time to claim our non-HTLC-encumbered funds.
1765 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1766 pub force_close_spend_delay: Option<u16>,
1767 /// True if the channel was initiated (and thus funded) by us.
1768 pub is_outbound: bool,
1769 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1770 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1771 /// required confirmation count has been reached (and we were connected to the peer at some
1772 /// point after the funding transaction received enough confirmations). The required
1773 /// confirmation count is provided in [`confirmations_required`].
1775 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1776 pub is_channel_ready: bool,
1777 /// The stage of the channel's shutdown.
1778 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1779 pub channel_shutdown_state: Option<ChannelShutdownState>,
1780 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1781 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1783 /// This is a strict superset of `is_channel_ready`.
1784 pub is_usable: bool,
1785 /// True if this channel is (or will be) publicly-announced.
1786 pub is_public: bool,
1787 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1788 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1789 pub inbound_htlc_minimum_msat: Option<u64>,
1790 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1791 pub inbound_htlc_maximum_msat: Option<u64>,
1792 /// Set of configurable parameters that affect channel operation.
1794 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1795 pub config: Option<ChannelConfig>,
1798 impl ChannelDetails {
1799 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1800 /// This should be used for providing invoice hints or in any other context where our
1801 /// counterparty will forward a payment to us.
1803 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1804 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1805 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1806 self.inbound_scid_alias.or(self.short_channel_id)
1809 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1810 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1811 /// we're sending or forwarding a payment outbound over this channel.
1813 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1814 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1815 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1816 self.short_channel_id.or(self.outbound_scid_alias)
1819 fn from_channel_context<SP: Deref, F: Deref>(
1820 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1821 fee_estimator: &LowerBoundedFeeEstimator<F>
1824 SP::Target: SignerProvider,
1825 F::Target: FeeEstimator
1827 let balance = context.get_available_balances(fee_estimator);
1828 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1829 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1831 channel_id: context.channel_id(),
1832 counterparty: ChannelCounterparty {
1833 node_id: context.get_counterparty_node_id(),
1834 features: latest_features,
1835 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1836 forwarding_info: context.counterparty_forwarding_info(),
1837 // Ensures that we have actually received the `htlc_minimum_msat` value
1838 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1839 // message (as they are always the first message from the counterparty).
1840 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1841 // default `0` value set by `Channel::new_outbound`.
1842 outbound_htlc_minimum_msat: if context.have_received_message() {
1843 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1844 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1846 funding_txo: context.get_funding_txo(),
1847 // Note that accept_channel (or open_channel) is always the first message, so
1848 // `have_received_message` indicates that type negotiation has completed.
1849 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1850 short_channel_id: context.get_short_channel_id(),
1851 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1852 inbound_scid_alias: context.latest_inbound_scid_alias(),
1853 channel_value_satoshis: context.get_value_satoshis(),
1854 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1855 unspendable_punishment_reserve: to_self_reserve_satoshis,
1856 balance_msat: balance.balance_msat,
1857 inbound_capacity_msat: balance.inbound_capacity_msat,
1858 outbound_capacity_msat: balance.outbound_capacity_msat,
1859 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1860 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1861 user_channel_id: context.get_user_id(),
1862 confirmations_required: context.minimum_depth(),
1863 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1864 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1865 is_outbound: context.is_outbound(),
1866 is_channel_ready: context.is_usable(),
1867 is_usable: context.is_live(),
1868 is_public: context.should_announce(),
1869 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1870 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1871 config: Some(context.config()),
1872 channel_shutdown_state: Some(context.shutdown_state()),
1877 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1878 /// Further information on the details of the channel shutdown.
1879 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1880 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1881 /// the channel will be removed shortly.
1882 /// Also note, that in normal operation, peers could disconnect at any of these states
1883 /// and require peer re-connection before making progress onto other states
1884 pub enum ChannelShutdownState {
1885 /// Channel has not sent or received a shutdown message.
1887 /// Local node has sent a shutdown message for this channel.
1889 /// Shutdown message exchanges have concluded and the channels are in the midst of
1890 /// resolving all existing open HTLCs before closing can continue.
1892 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1893 NegotiatingClosingFee,
1894 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1895 /// to drop the channel.
1899 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1900 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1901 #[derive(Debug, PartialEq)]
1902 pub enum RecentPaymentDetails {
1903 /// When an invoice was requested and thus a payment has not yet been sent.
1905 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1906 /// a payment and ensure idempotency in LDK.
1907 payment_id: PaymentId,
1909 /// When a payment is still being sent and awaiting successful delivery.
1911 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1912 /// a payment and ensure idempotency in LDK.
1913 payment_id: PaymentId,
1914 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1916 payment_hash: PaymentHash,
1917 /// Total amount (in msat, excluding fees) across all paths for this payment,
1918 /// not just the amount currently inflight.
1921 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1922 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1923 /// payment is removed from tracking.
1925 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1926 /// a payment and ensure idempotency in LDK.
1927 payment_id: PaymentId,
1928 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1929 /// made before LDK version 0.0.104.
1930 payment_hash: Option<PaymentHash>,
1932 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1933 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1934 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1936 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1937 /// a payment and ensure idempotency in LDK.
1938 payment_id: PaymentId,
1939 /// Hash of the payment that we have given up trying to send.
1940 payment_hash: PaymentHash,
1944 /// Route hints used in constructing invoices for [phantom node payents].
1946 /// [phantom node payments]: crate::sign::PhantomKeysManager
1948 pub struct PhantomRouteHints {
1949 /// The list of channels to be included in the invoice route hints.
1950 pub channels: Vec<ChannelDetails>,
1951 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1953 pub phantom_scid: u64,
1954 /// The pubkey of the real backing node that would ultimately receive the payment.
1955 pub real_node_pubkey: PublicKey,
1958 macro_rules! handle_error {
1959 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1960 // In testing, ensure there are no deadlocks where the lock is already held upon
1961 // entering the macro.
1962 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1963 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1967 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
1968 let mut msg_events = Vec::with_capacity(2);
1970 if let Some((shutdown_res, update_option)) = shutdown_finish {
1971 let counterparty_node_id = shutdown_res.counterparty_node_id;
1972 let channel_id = shutdown_res.channel_id;
1973 let logger = WithContext::from(
1974 &$self.logger, Some(counterparty_node_id), Some(channel_id),
1976 log_error!(logger, "Force-closing channel: {}", err.err);
1978 $self.finish_close_channel(shutdown_res);
1979 if let Some(update) = update_option {
1980 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1985 log_error!($self.logger, "Got non-closing error: {}", err.err);
1988 if let msgs::ErrorAction::IgnoreError = err.action {
1990 msg_events.push(events::MessageSendEvent::HandleError {
1991 node_id: $counterparty_node_id,
1992 action: err.action.clone()
1996 if !msg_events.is_empty() {
1997 let per_peer_state = $self.per_peer_state.read().unwrap();
1998 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1999 let mut peer_state = peer_state_mutex.lock().unwrap();
2000 peer_state.pending_msg_events.append(&mut msg_events);
2004 // Return error in case higher-API need one
2011 macro_rules! update_maps_on_chan_removal {
2012 ($self: expr, $channel_context: expr) => {{
2013 if let Some(outpoint) = $channel_context.get_funding_txo() {
2014 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2016 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2017 if let Some(short_id) = $channel_context.get_short_channel_id() {
2018 short_to_chan_info.remove(&short_id);
2020 // If the channel was never confirmed on-chain prior to its closure, remove the
2021 // outbound SCID alias we used for it from the collision-prevention set. While we
2022 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2023 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2024 // opening a million channels with us which are closed before we ever reach the funding
2026 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2027 debug_assert!(alias_removed);
2029 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2033 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2034 macro_rules! convert_chan_phase_err {
2035 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2037 ChannelError::Warn(msg) => {
2038 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2040 ChannelError::Ignore(msg) => {
2041 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2043 ChannelError::Close(msg) => {
2044 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2045 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2046 update_maps_on_chan_removal!($self, $channel.context);
2047 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2048 let shutdown_res = $channel.context.force_shutdown(true, reason);
2050 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2055 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2056 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2058 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2059 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2061 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2062 match $channel_phase {
2063 ChannelPhase::Funded(channel) => {
2064 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2066 ChannelPhase::UnfundedOutboundV1(channel) => {
2067 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2069 ChannelPhase::UnfundedInboundV1(channel) => {
2070 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2076 macro_rules! break_chan_phase_entry {
2077 ($self: ident, $res: expr, $entry: expr) => {
2081 let key = *$entry.key();
2082 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2084 $entry.remove_entry();
2092 macro_rules! try_chan_phase_entry {
2093 ($self: ident, $res: expr, $entry: expr) => {
2097 let key = *$entry.key();
2098 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2100 $entry.remove_entry();
2108 macro_rules! remove_channel_phase {
2109 ($self: expr, $entry: expr) => {
2111 let channel = $entry.remove_entry().1;
2112 update_maps_on_chan_removal!($self, &channel.context());
2118 macro_rules! send_channel_ready {
2119 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2120 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2121 node_id: $channel.context.get_counterparty_node_id(),
2122 msg: $channel_ready_msg,
2124 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2125 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2126 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2127 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2128 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2129 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2130 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2131 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2132 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2133 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2138 macro_rules! emit_channel_pending_event {
2139 ($locked_events: expr, $channel: expr) => {
2140 if $channel.context.should_emit_channel_pending_event() {
2141 $locked_events.push_back((events::Event::ChannelPending {
2142 channel_id: $channel.context.channel_id(),
2143 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2144 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2145 user_channel_id: $channel.context.get_user_id(),
2146 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2148 $channel.context.set_channel_pending_event_emitted();
2153 macro_rules! emit_channel_ready_event {
2154 ($locked_events: expr, $channel: expr) => {
2155 if $channel.context.should_emit_channel_ready_event() {
2156 debug_assert!($channel.context.channel_pending_event_emitted());
2157 $locked_events.push_back((events::Event::ChannelReady {
2158 channel_id: $channel.context.channel_id(),
2159 user_channel_id: $channel.context.get_user_id(),
2160 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2161 channel_type: $channel.context.get_channel_type().clone(),
2163 $channel.context.set_channel_ready_event_emitted();
2168 macro_rules! handle_monitor_update_completion {
2169 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2170 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2171 let mut updates = $chan.monitor_updating_restored(&&logger,
2172 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2173 $self.best_block.read().unwrap().height());
2174 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2175 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2176 // We only send a channel_update in the case where we are just now sending a
2177 // channel_ready and the channel is in a usable state. We may re-send a
2178 // channel_update later through the announcement_signatures process for public
2179 // channels, but there's no reason not to just inform our counterparty of our fees
2181 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2182 Some(events::MessageSendEvent::SendChannelUpdate {
2183 node_id: counterparty_node_id,
2189 let update_actions = $peer_state.monitor_update_blocked_actions
2190 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2192 let htlc_forwards = $self.handle_channel_resumption(
2193 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2194 updates.commitment_update, updates.order, updates.accepted_htlcs,
2195 updates.funding_broadcastable, updates.channel_ready,
2196 updates.announcement_sigs);
2197 if let Some(upd) = channel_update {
2198 $peer_state.pending_msg_events.push(upd);
2201 let channel_id = $chan.context.channel_id();
2202 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2203 core::mem::drop($peer_state_lock);
2204 core::mem::drop($per_peer_state_lock);
2206 // If the channel belongs to a batch funding transaction, the progress of the batch
2207 // should be updated as we have received funding_signed and persisted the monitor.
2208 if let Some(txid) = unbroadcasted_batch_funding_txid {
2209 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2210 let mut batch_completed = false;
2211 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2212 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2213 *chan_id == channel_id &&
2214 *pubkey == counterparty_node_id
2216 if let Some(channel_state) = channel_state {
2217 channel_state.2 = true;
2219 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2221 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2223 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2226 // When all channels in a batched funding transaction have become ready, it is not necessary
2227 // to track the progress of the batch anymore and the state of the channels can be updated.
2228 if batch_completed {
2229 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2230 let per_peer_state = $self.per_peer_state.read().unwrap();
2231 let mut batch_funding_tx = None;
2232 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2233 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2234 let mut peer_state = peer_state_mutex.lock().unwrap();
2235 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2236 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2237 chan.set_batch_ready();
2238 let mut pending_events = $self.pending_events.lock().unwrap();
2239 emit_channel_pending_event!(pending_events, chan);
2243 if let Some(tx) = batch_funding_tx {
2244 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2245 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2250 $self.handle_monitor_update_completion_actions(update_actions);
2252 if let Some(forwards) = htlc_forwards {
2253 $self.forward_htlcs(&mut [forwards][..]);
2255 $self.finalize_claims(updates.finalized_claimed_htlcs);
2256 for failure in updates.failed_htlcs.drain(..) {
2257 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2258 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2263 macro_rules! handle_new_monitor_update {
2264 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2265 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2266 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2268 ChannelMonitorUpdateStatus::UnrecoverableError => {
2269 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2270 log_error!(logger, "{}", err_str);
2271 panic!("{}", err_str);
2273 ChannelMonitorUpdateStatus::InProgress => {
2274 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2275 &$chan.context.channel_id());
2278 ChannelMonitorUpdateStatus::Completed => {
2284 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2285 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2286 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2288 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2289 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2290 .or_insert_with(Vec::new);
2291 // During startup, we push monitor updates as background events through to here in
2292 // order to replay updates that were in-flight when we shut down. Thus, we have to
2293 // filter for uniqueness here.
2294 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2295 .unwrap_or_else(|| {
2296 in_flight_updates.push($update);
2297 in_flight_updates.len() - 1
2299 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2300 handle_new_monitor_update!($self, update_res, $chan, _internal,
2302 let _ = in_flight_updates.remove(idx);
2303 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2304 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2310 macro_rules! process_events_body {
2311 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2312 let mut processed_all_events = false;
2313 while !processed_all_events {
2314 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2321 // We'll acquire our total consistency lock so that we can be sure no other
2322 // persists happen while processing monitor events.
2323 let _read_guard = $self.total_consistency_lock.read().unwrap();
2325 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2326 // ensure any startup-generated background events are handled first.
2327 result = $self.process_background_events();
2329 // TODO: This behavior should be documented. It's unintuitive that we query
2330 // ChannelMonitors when clearing other events.
2331 if $self.process_pending_monitor_events() {
2332 result = NotifyOption::DoPersist;
2336 let pending_events = $self.pending_events.lock().unwrap().clone();
2337 let num_events = pending_events.len();
2338 if !pending_events.is_empty() {
2339 result = NotifyOption::DoPersist;
2342 let mut post_event_actions = Vec::new();
2344 for (event, action_opt) in pending_events {
2345 $event_to_handle = event;
2347 if let Some(action) = action_opt {
2348 post_event_actions.push(action);
2353 let mut pending_events = $self.pending_events.lock().unwrap();
2354 pending_events.drain(..num_events);
2355 processed_all_events = pending_events.is_empty();
2356 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2357 // updated here with the `pending_events` lock acquired.
2358 $self.pending_events_processor.store(false, Ordering::Release);
2361 if !post_event_actions.is_empty() {
2362 $self.handle_post_event_actions(post_event_actions);
2363 // If we had some actions, go around again as we may have more events now
2364 processed_all_events = false;
2368 NotifyOption::DoPersist => {
2369 $self.needs_persist_flag.store(true, Ordering::Release);
2370 $self.event_persist_notifier.notify();
2372 NotifyOption::SkipPersistHandleEvents =>
2373 $self.event_persist_notifier.notify(),
2374 NotifyOption::SkipPersistNoEvents => {},
2380 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2382 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
2383 T::Target: BroadcasterInterface,
2384 ES::Target: EntropySource,
2385 NS::Target: NodeSigner,
2386 SP::Target: SignerProvider,
2387 F::Target: FeeEstimator,
2391 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2393 /// The current time or latest block header time can be provided as the `current_timestamp`.
2395 /// This is the main "logic hub" for all channel-related actions, and implements
2396 /// [`ChannelMessageHandler`].
2398 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2400 /// Users need to notify the new `ChannelManager` when a new block is connected or
2401 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2402 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2405 /// [`block_connected`]: chain::Listen::block_connected
2406 /// [`block_disconnected`]: chain::Listen::block_disconnected
2407 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2409 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2410 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2411 current_timestamp: u32,
2413 let mut secp_ctx = Secp256k1::new();
2414 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2415 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2416 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2418 default_configuration: config.clone(),
2419 chain_hash: ChainHash::using_genesis_block(params.network),
2420 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2425 best_block: RwLock::new(params.best_block),
2427 outbound_scid_aliases: Mutex::new(HashSet::new()),
2428 pending_inbound_payments: Mutex::new(HashMap::new()),
2429 pending_outbound_payments: OutboundPayments::new(),
2430 forward_htlcs: Mutex::new(HashMap::new()),
2431 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2432 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2433 outpoint_to_peer: Mutex::new(HashMap::new()),
2434 short_to_chan_info: FairRwLock::new(HashMap::new()),
2436 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2439 inbound_payment_key: expanded_inbound_key,
2440 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2442 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2444 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2446 per_peer_state: FairRwLock::new(HashMap::new()),
2448 pending_events: Mutex::new(VecDeque::new()),
2449 pending_events_processor: AtomicBool::new(false),
2450 pending_background_events: Mutex::new(Vec::new()),
2451 total_consistency_lock: RwLock::new(()),
2452 background_events_processed_since_startup: AtomicBool::new(false),
2453 event_persist_notifier: Notifier::new(),
2454 needs_persist_flag: AtomicBool::new(false),
2455 funding_batch_states: Mutex::new(BTreeMap::new()),
2457 pending_offers_messages: Mutex::new(Vec::new()),
2467 /// Gets the current configuration applied to all new channels.
2468 pub fn get_current_default_configuration(&self) -> &UserConfig {
2469 &self.default_configuration
2472 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2473 let height = self.best_block.read().unwrap().height();
2474 let mut outbound_scid_alias = 0;
2477 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2478 outbound_scid_alias += 1;
2480 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2482 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2486 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2491 /// Creates a new outbound channel to the given remote node and with the given value.
2493 /// `user_channel_id` will be provided back as in
2494 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2495 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2496 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2497 /// is simply copied to events and otherwise ignored.
2499 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2500 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2502 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2503 /// generate a shutdown scriptpubkey or destination script set by
2504 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2506 /// Note that we do not check if you are currently connected to the given peer. If no
2507 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2508 /// the channel eventually being silently forgotten (dropped on reload).
2510 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
2511 /// channel. Otherwise, a random one will be generated for you.
2513 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2514 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2515 /// [`ChannelDetails::channel_id`] until after
2516 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2517 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2518 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2520 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2521 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2522 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2523 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2524 if channel_value_satoshis < 1000 {
2525 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2528 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2529 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2530 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2532 let per_peer_state = self.per_peer_state.read().unwrap();
2534 let peer_state_mutex = per_peer_state.get(&their_network_key)
2535 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2537 let mut peer_state = peer_state_mutex.lock().unwrap();
2539 if let Some(temporary_channel_id) = temporary_channel_id {
2540 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
2541 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
2546 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2547 let their_features = &peer_state.latest_features;
2548 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2549 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2550 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2551 self.best_block.read().unwrap().height(), outbound_scid_alias, temporary_channel_id)
2555 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2560 let res = channel.get_open_channel(self.chain_hash);
2562 let temporary_channel_id = channel.context.channel_id();
2563 match peer_state.channel_by_id.entry(temporary_channel_id) {
2564 hash_map::Entry::Occupied(_) => {
2566 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2568 panic!("RNG is bad???");
2571 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2574 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2575 node_id: their_network_key,
2578 Ok(temporary_channel_id)
2581 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2582 // Allocate our best estimate of the number of channels we have in the `res`
2583 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2584 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
2585 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2586 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2587 // the same channel.
2588 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2590 let best_block_height = self.best_block.read().unwrap().height();
2591 let per_peer_state = self.per_peer_state.read().unwrap();
2592 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2593 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2594 let peer_state = &mut *peer_state_lock;
2595 res.extend(peer_state.channel_by_id.iter()
2596 .filter_map(|(chan_id, phase)| match phase {
2597 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2598 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2602 .map(|(_channel_id, channel)| {
2603 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2604 peer_state.latest_features.clone(), &self.fee_estimator)
2612 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2613 /// more information.
2614 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2615 // Allocate our best estimate of the number of channels we have in the `res`
2616 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2617 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
2618 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2619 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2620 // the same channel.
2621 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2623 let best_block_height = self.best_block.read().unwrap().height();
2624 let per_peer_state = self.per_peer_state.read().unwrap();
2625 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2626 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2627 let peer_state = &mut *peer_state_lock;
2628 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2629 let details = ChannelDetails::from_channel_context(context, best_block_height,
2630 peer_state.latest_features.clone(), &self.fee_estimator);
2638 /// Gets the list of usable channels, in random order. Useful as an argument to
2639 /// [`Router::find_route`] to ensure non-announced channels are used.
2641 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2642 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2644 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2645 // Note we use is_live here instead of usable which leads to somewhat confused
2646 // internal/external nomenclature, but that's ok cause that's probably what the user
2647 // really wanted anyway.
2648 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2651 /// Gets the list of channels we have with a given counterparty, in random order.
2652 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2653 let best_block_height = self.best_block.read().unwrap().height();
2654 let per_peer_state = self.per_peer_state.read().unwrap();
2656 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2657 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2658 let peer_state = &mut *peer_state_lock;
2659 let features = &peer_state.latest_features;
2660 let context_to_details = |context| {
2661 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2663 return peer_state.channel_by_id
2665 .map(|(_, phase)| phase.context())
2666 .map(context_to_details)
2672 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2673 /// successful path, or have unresolved HTLCs.
2675 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2676 /// result of a crash. If such a payment exists, is not listed here, and an
2677 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2679 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2680 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2681 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2682 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2683 PendingOutboundPayment::AwaitingInvoice { .. } => {
2684 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2686 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2687 PendingOutboundPayment::InvoiceReceived { .. } => {
2688 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2690 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2691 Some(RecentPaymentDetails::Pending {
2692 payment_id: *payment_id,
2693 payment_hash: *payment_hash,
2694 total_msat: *total_msat,
2697 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2698 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2700 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2701 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2703 PendingOutboundPayment::Legacy { .. } => None
2708 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2709 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2711 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
2712 let mut shutdown_result = None;
2715 let per_peer_state = self.per_peer_state.read().unwrap();
2717 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2718 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2720 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2721 let peer_state = &mut *peer_state_lock;
2723 match peer_state.channel_by_id.entry(channel_id.clone()) {
2724 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2725 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2726 let funding_txo_opt = chan.context.get_funding_txo();
2727 let their_features = &peer_state.latest_features;
2728 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2729 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2730 failed_htlcs = htlcs;
2732 // We can send the `shutdown` message before updating the `ChannelMonitor`
2733 // here as we don't need the monitor update to complete until we send a
2734 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2735 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2736 node_id: *counterparty_node_id,
2740 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2741 "We can't both complete shutdown and generate a monitor update");
2743 // Update the monitor with the shutdown script if necessary.
2744 if let Some(monitor_update) = monitor_update_opt.take() {
2745 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2746 peer_state_lock, peer_state, per_peer_state, chan);
2749 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2750 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
2753 hash_map::Entry::Vacant(_) => {
2754 return Err(APIError::ChannelUnavailable {
2756 "Channel with id {} not found for the passed counterparty node_id {}",
2757 channel_id, counterparty_node_id,
2764 for htlc_source in failed_htlcs.drain(..) {
2765 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2766 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2767 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2770 if let Some(shutdown_result) = shutdown_result {
2771 self.finish_close_channel(shutdown_result);
2777 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2778 /// will be accepted on the given channel, and after additional timeout/the closing of all
2779 /// pending HTLCs, the channel will be closed on chain.
2781 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
2782 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2784 /// * If our counterparty is the channel initiator, we will require a channel closing
2785 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
2786 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2787 /// counterparty to pay as much fee as they'd like, however.
2789 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2791 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2792 /// generate a shutdown scriptpubkey or destination script set by
2793 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2796 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2797 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
2798 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2799 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2800 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2801 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2804 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2805 /// will be accepted on the given channel, and after additional timeout/the closing of all
2806 /// pending HTLCs, the channel will be closed on chain.
2808 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2809 /// the channel being closed or not:
2810 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2811 /// transaction. The upper-bound is set by
2812 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
2813 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2814 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2815 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2816 /// will appear on a force-closure transaction, whichever is lower).
2818 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2819 /// Will fail if a shutdown script has already been set for this channel by
2820 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2821 /// also be compatible with our and the counterparty's features.
2823 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2825 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2826 /// generate a shutdown scriptpubkey or destination script set by
2827 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2830 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2831 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
2832 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2833 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2834 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2837 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2838 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2839 #[cfg(debug_assertions)]
2840 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2841 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2844 let logger = WithContext::from(
2845 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
2848 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
2849 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
2850 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2851 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2852 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2853 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2854 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2856 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2857 // There isn't anything we can do if we get an update failure - we're already
2858 // force-closing. The monitor update on the required in-memory copy should broadcast
2859 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2860 // ignore the result here.
2861 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2863 let mut shutdown_results = Vec::new();
2864 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2865 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2866 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2867 let per_peer_state = self.per_peer_state.read().unwrap();
2868 let mut has_uncompleted_channel = None;
2869 for (channel_id, counterparty_node_id, state) in affected_channels {
2870 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2871 let mut peer_state = peer_state_mutex.lock().unwrap();
2872 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2873 update_maps_on_chan_removal!(self, &chan.context());
2874 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
2877 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2880 has_uncompleted_channel.unwrap_or(true),
2881 "Closing a batch where all channels have completed initial monitor update",
2886 let mut pending_events = self.pending_events.lock().unwrap();
2887 pending_events.push_back((events::Event::ChannelClosed {
2888 channel_id: shutdown_res.channel_id,
2889 user_channel_id: shutdown_res.user_channel_id,
2890 reason: shutdown_res.closure_reason,
2891 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
2892 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
2893 channel_funding_txo: shutdown_res.channel_funding_txo,
2896 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
2897 pending_events.push_back((events::Event::DiscardFunding {
2898 channel_id: shutdown_res.channel_id, transaction
2902 for shutdown_result in shutdown_results.drain(..) {
2903 self.finish_close_channel(shutdown_result);
2907 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2908 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2909 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2910 -> Result<PublicKey, APIError> {
2911 let per_peer_state = self.per_peer_state.read().unwrap();
2912 let peer_state_mutex = per_peer_state.get(peer_node_id)
2913 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2914 let (update_opt, counterparty_node_id) = {
2915 let mut peer_state = peer_state_mutex.lock().unwrap();
2916 let closure_reason = if let Some(peer_msg) = peer_msg {
2917 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2919 ClosureReason::HolderForceClosed
2921 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
2922 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2923 log_error!(logger, "Force-closing channel {}", channel_id);
2924 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2925 mem::drop(peer_state);
2926 mem::drop(per_peer_state);
2928 ChannelPhase::Funded(mut chan) => {
2929 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
2930 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2932 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2933 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
2934 // Unfunded channel has no update
2935 (None, chan_phase.context().get_counterparty_node_id())
2938 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2939 log_error!(logger, "Force-closing channel {}", &channel_id);
2940 // N.B. that we don't send any channel close event here: we
2941 // don't have a user_channel_id, and we never sent any opening
2943 (None, *peer_node_id)
2945 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2948 if let Some(update) = update_opt {
2949 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2950 // not try to broadcast it via whatever peer we have.
2951 let per_peer_state = self.per_peer_state.read().unwrap();
2952 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2953 .ok_or(per_peer_state.values().next());
2954 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2955 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2956 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2962 Ok(counterparty_node_id)
2965 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2966 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2967 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2968 Ok(counterparty_node_id) => {
2969 let per_peer_state = self.per_peer_state.read().unwrap();
2970 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2971 let mut peer_state = peer_state_mutex.lock().unwrap();
2972 peer_state.pending_msg_events.push(
2973 events::MessageSendEvent::HandleError {
2974 node_id: counterparty_node_id,
2975 action: msgs::ErrorAction::DisconnectPeer {
2976 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2987 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2988 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2989 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2991 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2992 -> Result<(), APIError> {
2993 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2996 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2997 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2998 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3000 /// You can always get the latest local transaction(s) to broadcast from
3001 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
3002 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3003 -> Result<(), APIError> {
3004 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3007 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3008 /// for each to the chain and rejecting new HTLCs on each.
3009 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3010 for chan in self.list_channels() {
3011 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3015 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3016 /// local transaction(s).
3017 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3018 for chan in self.list_channels() {
3019 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3023 fn decode_update_add_htlc_onion(
3024 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3026 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3028 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3029 msg, &self.node_signer, &self.logger, &self.secp_ctx
3032 let is_intro_node_forward = match next_hop {
3033 onion_utils::Hop::Forward {
3034 next_hop_data: msgs::InboundOnionPayload::BlindedForward {
3035 intro_node_blinding_point: Some(_), ..
3041 macro_rules! return_err {
3042 ($msg: expr, $err_code: expr, $data: expr) => {
3045 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3046 "Failed to accept/forward incoming HTLC: {}", $msg
3048 // If `msg.blinding_point` is set, we must always fail with malformed.
3049 if msg.blinding_point.is_some() {
3050 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3051 channel_id: msg.channel_id,
3052 htlc_id: msg.htlc_id,
3053 sha256_of_onion: [0; 32],
3054 failure_code: INVALID_ONION_BLINDING,
3058 let (err_code, err_data) = if is_intro_node_forward {
3059 (INVALID_ONION_BLINDING, &[0; 32][..])
3060 } else { ($err_code, $data) };
3061 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3062 channel_id: msg.channel_id,
3063 htlc_id: msg.htlc_id,
3064 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3065 .get_encrypted_failure_packet(&shared_secret, &None),
3071 let NextPacketDetails {
3072 next_packet_pubkey, outgoing_amt_msat, outgoing_scid, outgoing_cltv_value
3073 } = match next_packet_details_opt {
3074 Some(next_packet_details) => next_packet_details,
3075 // it is a receive, so no need for outbound checks
3076 None => return Ok((next_hop, shared_secret, None)),
3079 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3080 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3081 if let Some((err, mut code, chan_update)) = loop {
3082 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3083 let forwarding_chan_info_opt = match id_option {
3084 None => { // unknown_next_peer
3085 // Note that this is likely a timing oracle for detecting whether an scid is a
3086 // phantom or an intercept.
3087 if (self.default_configuration.accept_intercept_htlcs &&
3088 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3089 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3093 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3096 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3098 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3099 let per_peer_state = self.per_peer_state.read().unwrap();
3100 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3101 if peer_state_mutex_opt.is_none() {
3102 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3104 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3105 let peer_state = &mut *peer_state_lock;
3106 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3107 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3110 // Channel was removed. The short_to_chan_info and channel_by_id maps
3111 // have no consistency guarantees.
3112 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3116 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3117 // Note that the behavior here should be identical to the above block - we
3118 // should NOT reveal the existence or non-existence of a private channel if
3119 // we don't allow forwards outbound over them.
3120 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3122 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3123 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3124 // "refuse to forward unless the SCID alias was used", so we pretend
3125 // we don't have the channel here.
3126 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3128 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3130 // Note that we could technically not return an error yet here and just hope
3131 // that the connection is reestablished or monitor updated by the time we get
3132 // around to doing the actual forward, but better to fail early if we can and
3133 // hopefully an attacker trying to path-trace payments cannot make this occur
3134 // on a small/per-node/per-channel scale.
3135 if !chan.context.is_live() { // channel_disabled
3136 // If the channel_update we're going to return is disabled (i.e. the
3137 // peer has been disabled for some time), return `channel_disabled`,
3138 // otherwise return `temporary_channel_failure`.
3139 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3140 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3142 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3145 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3146 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3148 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3149 break Some((err, code, chan_update_opt));
3156 let cur_height = self.best_block.read().unwrap().height() + 1;
3158 if let Err((err_msg, code)) = check_incoming_htlc_cltv(
3159 cur_height, outgoing_cltv_value, msg.cltv_expiry
3161 if code & 0x1000 != 0 && chan_update_opt.is_none() {
3162 // We really should set `incorrect_cltv_expiry` here but as we're not
3163 // forwarding over a real channel we can't generate a channel_update
3164 // for it. Instead we just return a generic temporary_node_failure.
3165 break Some((err_msg, 0x2000 | 2, None))
3167 let chan_update_opt = if code & 0x1000 != 0 { chan_update_opt } else { None };
3168 break Some((err_msg, code, chan_update_opt));
3174 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3175 if let Some(chan_update) = chan_update {
3176 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3177 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3179 else if code == 0x1000 | 13 {
3180 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3182 else if code == 0x1000 | 20 {
3183 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3184 0u16.write(&mut res).expect("Writes cannot fail");
3186 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3187 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3188 chan_update.write(&mut res).expect("Writes cannot fail");
3189 } else if code & 0x1000 == 0x1000 {
3190 // If we're trying to return an error that requires a `channel_update` but
3191 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3192 // generate an update), just use the generic "temporary_node_failure"
3196 return_err!(err, code, &res.0[..]);
3198 Ok((next_hop, shared_secret, Some(next_packet_pubkey)))
3201 fn construct_pending_htlc_status<'a>(
3202 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3203 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3204 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3205 ) -> PendingHTLCStatus {
3206 macro_rules! return_err {
3207 ($msg: expr, $err_code: expr, $data: expr) => {
3209 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3210 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3211 if msg.blinding_point.is_some() {
3212 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3213 msgs::UpdateFailMalformedHTLC {
3214 channel_id: msg.channel_id,
3215 htlc_id: msg.htlc_id,
3216 sha256_of_onion: [0; 32],
3217 failure_code: INVALID_ONION_BLINDING,
3221 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3222 channel_id: msg.channel_id,
3223 htlc_id: msg.htlc_id,
3224 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3225 .get_encrypted_failure_packet(&shared_secret, &None),
3231 onion_utils::Hop::Receive(next_hop_data) => {
3233 let current_height: u32 = self.best_block.read().unwrap().height();
3234 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3235 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3236 current_height, self.default_configuration.accept_mpp_keysend)
3239 // Note that we could obviously respond immediately with an update_fulfill_htlc
3240 // message, however that would leak that we are the recipient of this payment, so
3241 // instead we stay symmetric with the forwarding case, only responding (after a
3242 // delay) once they've send us a commitment_signed!
3243 PendingHTLCStatus::Forward(info)
3245 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3248 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3249 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3250 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3251 Ok(info) => PendingHTLCStatus::Forward(info),
3252 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3258 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3259 /// public, and thus should be called whenever the result is going to be passed out in a
3260 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3262 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3263 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3264 /// storage and the `peer_state` lock has been dropped.
3266 /// [`channel_update`]: msgs::ChannelUpdate
3267 /// [`internal_closing_signed`]: Self::internal_closing_signed
3268 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3269 if !chan.context.should_announce() {
3270 return Err(LightningError {
3271 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3272 action: msgs::ErrorAction::IgnoreError
3275 if chan.context.get_short_channel_id().is_none() {
3276 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3278 let logger = WithChannelContext::from(&self.logger, &chan.context);
3279 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3280 self.get_channel_update_for_unicast(chan)
3283 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3284 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3285 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3286 /// provided evidence that they know about the existence of the channel.
3288 /// Note that through [`internal_closing_signed`], this function is called without the
3289 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3290 /// removed from the storage and the `peer_state` lock has been dropped.
3292 /// [`channel_update`]: msgs::ChannelUpdate
3293 /// [`internal_closing_signed`]: Self::internal_closing_signed
3294 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3295 let logger = WithChannelContext::from(&self.logger, &chan.context);
3296 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
3297 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3298 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3302 self.get_channel_update_for_onion(short_channel_id, chan)
3305 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3306 let logger = WithChannelContext::from(&self.logger, &chan.context);
3307 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
3308 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3310 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3311 ChannelUpdateStatus::Enabled => true,
3312 ChannelUpdateStatus::DisabledStaged(_) => true,
3313 ChannelUpdateStatus::Disabled => false,
3314 ChannelUpdateStatus::EnabledStaged(_) => false,
3317 let unsigned = msgs::UnsignedChannelUpdate {
3318 chain_hash: self.chain_hash,
3320 timestamp: chan.context.get_update_time_counter(),
3321 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3322 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3323 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3324 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3325 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3326 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3327 excess_data: Vec::new(),
3329 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3330 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3331 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3333 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3335 Ok(msgs::ChannelUpdate {
3342 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3343 let _lck = self.total_consistency_lock.read().unwrap();
3344 self.send_payment_along_path(SendAlongPathArgs {
3345 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3350 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3351 let SendAlongPathArgs {
3352 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3355 // The top-level caller should hold the total_consistency_lock read lock.
3356 debug_assert!(self.total_consistency_lock.try_write().is_err());
3357 let prng_seed = self.entropy_source.get_secure_random_bytes();
3358 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3360 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
3361 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
3362 payment_hash, keysend_preimage, prng_seed
3364 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3365 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
3369 let err: Result<(), _> = loop {
3370 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3372 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
3373 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
3374 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
3376 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3379 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
3381 "Attempting to send payment with payment hash {} along path with next hop {}",
3382 payment_hash, path.hops.first().unwrap().short_channel_id);
3384 let per_peer_state = self.per_peer_state.read().unwrap();
3385 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3386 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3387 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3388 let peer_state = &mut *peer_state_lock;
3389 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3390 match chan_phase_entry.get_mut() {
3391 ChannelPhase::Funded(chan) => {
3392 if !chan.context.is_live() {
3393 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3395 let funding_txo = chan.context.get_funding_txo().unwrap();
3396 let logger = WithChannelContext::from(&self.logger, &chan.context);
3397 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3398 htlc_cltv, HTLCSource::OutboundRoute {
3400 session_priv: session_priv.clone(),
3401 first_hop_htlc_msat: htlc_msat,
3403 }, onion_packet, None, &self.fee_estimator, &&logger);
3404 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3405 Some(monitor_update) => {
3406 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3408 // Note that MonitorUpdateInProgress here indicates (per function
3409 // docs) that we will resend the commitment update once monitor
3410 // updating completes. Therefore, we must return an error
3411 // indicating that it is unsafe to retry the payment wholesale,
3412 // which we do in the send_payment check for
3413 // MonitorUpdateInProgress, below.
3414 return Err(APIError::MonitorUpdateInProgress);
3422 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3425 // The channel was likely removed after we fetched the id from the
3426 // `short_to_chan_info` map, but before we successfully locked the
3427 // `channel_by_id` map.
3428 // This can occur as no consistency guarantees exists between the two maps.
3429 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3433 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3434 Ok(_) => unreachable!(),
3436 Err(APIError::ChannelUnavailable { err: e.err })
3441 /// Sends a payment along a given route.
3443 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3444 /// fields for more info.
3446 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3447 /// [`PeerManager::process_events`]).
3449 /// # Avoiding Duplicate Payments
3451 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3452 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3453 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3454 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3455 /// second payment with the same [`PaymentId`].
3457 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3458 /// tracking of payments, including state to indicate once a payment has completed. Because you
3459 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3460 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3461 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3463 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3464 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3465 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3466 /// [`ChannelManager::list_recent_payments`] for more information.
3468 /// # Possible Error States on [`PaymentSendFailure`]
3470 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3471 /// each entry matching the corresponding-index entry in the route paths, see
3472 /// [`PaymentSendFailure`] for more info.
3474 /// In general, a path may raise:
3475 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3476 /// node public key) is specified.
3477 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3478 /// closed, doesn't exist, or the peer is currently disconnected.
3479 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3480 /// relevant updates.
3482 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3483 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3484 /// different route unless you intend to pay twice!
3486 /// [`RouteHop`]: crate::routing::router::RouteHop
3487 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3488 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3489 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3490 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3491 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3492 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3493 let best_block_height = self.best_block.read().unwrap().height();
3494 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3495 self.pending_outbound_payments
3496 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3497 &self.entropy_source, &self.node_signer, best_block_height,
3498 |args| self.send_payment_along_path(args))
3501 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3502 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3503 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3504 let best_block_height = self.best_block.read().unwrap().height();
3505 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3506 self.pending_outbound_payments
3507 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3508 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3509 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3510 &self.pending_events, |args| self.send_payment_along_path(args))
3514 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3515 let best_block_height = self.best_block.read().unwrap().height();
3516 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3517 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3518 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3519 best_block_height, |args| self.send_payment_along_path(args))
3523 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3524 let best_block_height = self.best_block.read().unwrap().height();
3525 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3529 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3530 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3533 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
3534 let best_block_height = self.best_block.read().unwrap().height();
3535 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3536 self.pending_outbound_payments
3537 .send_payment_for_bolt12_invoice(
3538 invoice, payment_id, &self.router, self.list_usable_channels(),
3539 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
3540 best_block_height, &self.logger, &self.pending_events,
3541 |args| self.send_payment_along_path(args)
3545 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3546 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3547 /// retries are exhausted.
3549 /// # Event Generation
3551 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3552 /// as there are no remaining pending HTLCs for this payment.
3554 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3555 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3556 /// determine the ultimate status of a payment.
3558 /// # Requested Invoices
3560 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
3561 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
3562 /// and prevent any attempts at paying it once received. The other events may only be generated
3563 /// once the invoice has been received.
3565 /// # Restart Behavior
3567 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3568 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3569 /// [`Event::InvoiceRequestFailed`].
3571 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3572 pub fn abandon_payment(&self, payment_id: PaymentId) {
3573 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3574 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3577 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3578 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3579 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3580 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3581 /// never reach the recipient.
3583 /// See [`send_payment`] documentation for more details on the return value of this function
3584 /// and idempotency guarantees provided by the [`PaymentId`] key.
3586 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3587 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3589 /// [`send_payment`]: Self::send_payment
3590 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3591 let best_block_height = self.best_block.read().unwrap().height();
3592 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3593 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3594 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3595 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3598 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3599 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3601 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3604 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3605 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3606 let best_block_height = self.best_block.read().unwrap().height();
3607 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3608 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3609 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3610 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3611 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3614 /// Send a payment that is probing the given route for liquidity. We calculate the
3615 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3616 /// us to easily discern them from real payments.
3617 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3618 let best_block_height = self.best_block.read().unwrap().height();
3619 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3620 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3621 &self.entropy_source, &self.node_signer, best_block_height,
3622 |args| self.send_payment_along_path(args))
3625 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3628 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3629 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3632 /// Sends payment probes over all paths of a route that would be used to pay the given
3633 /// amount to the given `node_id`.
3635 /// See [`ChannelManager::send_preflight_probes`] for more information.
3636 pub fn send_spontaneous_preflight_probes(
3637 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3638 liquidity_limit_multiplier: Option<u64>,
3639 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3640 let payment_params =
3641 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3643 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3645 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3648 /// Sends payment probes over all paths of a route that would be used to pay a route found
3649 /// according to the given [`RouteParameters`].
3651 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3652 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3653 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3654 /// confirmation in a wallet UI.
3656 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3657 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3658 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3659 /// payment. To mitigate this issue, channels with available liquidity less than the required
3660 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3661 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3662 pub fn send_preflight_probes(
3663 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3664 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3665 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3667 let payer = self.get_our_node_id();
3668 let usable_channels = self.list_usable_channels();
3669 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3670 let inflight_htlcs = self.compute_inflight_htlcs();
3674 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3676 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3677 ProbeSendFailure::RouteNotFound
3680 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3682 let mut res = Vec::new();
3684 for mut path in route.paths {
3685 // If the last hop is probably an unannounced channel we refrain from probing all the
3686 // way through to the end and instead probe up to the second-to-last channel.
3687 while let Some(last_path_hop) = path.hops.last() {
3688 if last_path_hop.maybe_announced_channel {
3689 // We found a potentially announced last hop.
3692 // Drop the last hop, as it's likely unannounced.
3695 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3696 last_path_hop.short_channel_id
3698 let final_value_msat = path.final_value_msat();
3700 if let Some(new_last) = path.hops.last_mut() {
3701 new_last.fee_msat += final_value_msat;
3706 if path.hops.len() < 2 {
3709 "Skipped sending payment probe over path with less than two hops."
3714 if let Some(first_path_hop) = path.hops.first() {
3715 if let Some(first_hop) = first_hops.iter().find(|h| {
3716 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3718 let path_value = path.final_value_msat() + path.fee_msat();
3719 let used_liquidity =
3720 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3722 if first_hop.next_outbound_htlc_limit_msat
3723 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3725 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3728 *used_liquidity += path_value;
3733 res.push(self.send_probe(path).map_err(|e| {
3734 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3735 ProbeSendFailure::SendingFailed(e)
3742 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3743 /// which checks the correctness of the funding transaction given the associated channel.
3744 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3745 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3746 mut find_funding_output: FundingOutput,
3747 ) -> Result<(), APIError> {
3748 let per_peer_state = self.per_peer_state.read().unwrap();
3749 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3750 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3752 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3753 let peer_state = &mut *peer_state_lock;
3755 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3756 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
3757 funding_txo = find_funding_output(&chan, &funding_transaction)?;
3759 let logger = WithChannelContext::from(&self.logger, &chan.context);
3760 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
3761 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3762 let channel_id = chan.context.channel_id();
3763 let reason = ClosureReason::ProcessingError { err: msg.clone() };
3764 let shutdown_res = chan.context.force_shutdown(false, reason);
3765 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None))
3766 } else { unreachable!(); });
3768 Ok(funding_msg) => (chan, funding_msg),
3769 Err((chan, err)) => {
3770 mem::drop(peer_state_lock);
3771 mem::drop(per_peer_state);
3772 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3773 return Err(APIError::ChannelUnavailable {
3774 err: "Signer refused to sign the initial commitment transaction".to_owned()
3780 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3781 return Err(APIError::APIMisuseError {
3783 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3784 temporary_channel_id, counterparty_node_id),
3787 None => return Err(APIError::ChannelUnavailable {err: format!(
3788 "Channel with id {} not found for the passed counterparty node_id {}",
3789 temporary_channel_id, counterparty_node_id),
3793 if let Some(msg) = msg_opt {
3794 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3795 node_id: chan.context.get_counterparty_node_id(),
3799 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3800 hash_map::Entry::Occupied(_) => {
3801 panic!("Generated duplicate funding txid?");
3803 hash_map::Entry::Vacant(e) => {
3804 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
3805 match outpoint_to_peer.entry(funding_txo) {
3806 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
3807 hash_map::Entry::Occupied(o) => {
3809 "An existing channel using outpoint {} is open with peer {}",
3810 funding_txo, o.get()
3812 mem::drop(outpoint_to_peer);
3813 mem::drop(peer_state_lock);
3814 mem::drop(per_peer_state);
3815 let reason = ClosureReason::ProcessingError { err: err.clone() };
3816 self.finish_close_channel(chan.context.force_shutdown(true, reason));
3817 return Err(APIError::ChannelUnavailable { err });
3820 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
3827 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3828 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3829 Ok(OutPoint { txid: tx.txid(), index: output_index })
3833 /// Call this upon creation of a funding transaction for the given channel.
3835 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3836 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3838 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3839 /// across the p2p network.
3841 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3842 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3844 /// May panic if the output found in the funding transaction is duplicative with some other
3845 /// channel (note that this should be trivially prevented by using unique funding transaction
3846 /// keys per-channel).
3848 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3849 /// counterparty's signature the funding transaction will automatically be broadcast via the
3850 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3852 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3853 /// not currently support replacing a funding transaction on an existing channel. Instead,
3854 /// create a new channel with a conflicting funding transaction.
3856 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3857 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3858 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3859 /// for more details.
3861 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3862 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3863 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3864 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3867 /// Call this upon creation of a batch funding transaction for the given channels.
3869 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3870 /// each individual channel and transaction output.
3872 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3873 /// will only be broadcast when we have safely received and persisted the counterparty's
3874 /// signature for each channel.
3876 /// If there is an error, all channels in the batch are to be considered closed.
3877 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3878 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3879 let mut result = Ok(());
3881 if !funding_transaction.is_coin_base() {
3882 for inp in funding_transaction.input.iter() {
3883 if inp.witness.is_empty() {
3884 result = result.and(Err(APIError::APIMisuseError {
3885 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3890 if funding_transaction.output.len() > u16::max_value() as usize {
3891 result = result.and(Err(APIError::APIMisuseError {
3892 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3896 let height = self.best_block.read().unwrap().height();
3897 // Transactions are evaluated as final by network mempools if their locktime is strictly
3898 // lower than the next block height. However, the modules constituting our Lightning
3899 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3900 // module is ahead of LDK, only allow one more block of headroom.
3901 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
3902 funding_transaction.lock_time.is_block_height() &&
3903 funding_transaction.lock_time.to_consensus_u32() > height + 1
3905 result = result.and(Err(APIError::APIMisuseError {
3906 err: "Funding transaction absolute timelock is non-final".to_owned()
3911 let txid = funding_transaction.txid();
3912 let is_batch_funding = temporary_channels.len() > 1;
3913 let mut funding_batch_states = if is_batch_funding {
3914 Some(self.funding_batch_states.lock().unwrap())
3918 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3919 match states.entry(txid) {
3920 btree_map::Entry::Occupied(_) => {
3921 result = result.clone().and(Err(APIError::APIMisuseError {
3922 err: "Batch funding transaction with the same txid already exists".to_owned()
3926 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3929 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3930 result = result.and_then(|_| self.funding_transaction_generated_intern(
3931 temporary_channel_id,
3932 counterparty_node_id,
3933 funding_transaction.clone(),
3936 let mut output_index = None;
3937 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3938 for (idx, outp) in tx.output.iter().enumerate() {
3939 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3940 if output_index.is_some() {
3941 return Err(APIError::APIMisuseError {
3942 err: "Multiple outputs matched the expected script and value".to_owned()
3945 output_index = Some(idx as u16);
3948 if output_index.is_none() {
3949 return Err(APIError::APIMisuseError {
3950 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3953 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3954 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3955 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3961 if let Err(ref e) = result {
3962 // Remaining channels need to be removed on any error.
3963 let e = format!("Error in transaction funding: {:?}", e);
3964 let mut channels_to_remove = Vec::new();
3965 channels_to_remove.extend(funding_batch_states.as_mut()
3966 .and_then(|states| states.remove(&txid))
3967 .into_iter().flatten()
3968 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3970 channels_to_remove.extend(temporary_channels.iter()
3971 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3973 let mut shutdown_results = Vec::new();
3975 let per_peer_state = self.per_peer_state.read().unwrap();
3976 for (channel_id, counterparty_node_id) in channels_to_remove {
3977 per_peer_state.get(&counterparty_node_id)
3978 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3979 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3981 update_maps_on_chan_removal!(self, &chan.context());
3982 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
3983 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
3987 mem::drop(funding_batch_states);
3988 for shutdown_result in shutdown_results.drain(..) {
3989 self.finish_close_channel(shutdown_result);
3995 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3997 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3998 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3999 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4000 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4002 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4003 /// `counterparty_node_id` is provided.
4005 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4006 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4008 /// If an error is returned, none of the updates should be considered applied.
4010 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4011 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4012 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4013 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4014 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4015 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4016 /// [`APIMisuseError`]: APIError::APIMisuseError
4017 pub fn update_partial_channel_config(
4018 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4019 ) -> Result<(), APIError> {
4020 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4021 return Err(APIError::APIMisuseError {
4022 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4026 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4027 let per_peer_state = self.per_peer_state.read().unwrap();
4028 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4029 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4030 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4031 let peer_state = &mut *peer_state_lock;
4032 for channel_id in channel_ids {
4033 if !peer_state.has_channel(channel_id) {
4034 return Err(APIError::ChannelUnavailable {
4035 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4039 for channel_id in channel_ids {
4040 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4041 let mut config = channel_phase.context().config();
4042 config.apply(config_update);
4043 if !channel_phase.context_mut().update_config(&config) {
4046 if let ChannelPhase::Funded(channel) = channel_phase {
4047 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4048 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4049 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4050 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4051 node_id: channel.context.get_counterparty_node_id(),
4058 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4059 debug_assert!(false);
4060 return Err(APIError::ChannelUnavailable {
4062 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4063 channel_id, counterparty_node_id),
4070 /// Atomically updates the [`ChannelConfig`] for the given channels.
4072 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4073 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4074 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4075 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4077 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4078 /// `counterparty_node_id` is provided.
4080 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4081 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4083 /// If an error is returned, none of the updates should be considered applied.
4085 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4086 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4087 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4088 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4089 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4090 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4091 /// [`APIMisuseError`]: APIError::APIMisuseError
4092 pub fn update_channel_config(
4093 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4094 ) -> Result<(), APIError> {
4095 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4098 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4099 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4101 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4102 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4104 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4105 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4106 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4107 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4108 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4110 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4111 /// you from forwarding more than you received. See
4112 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4115 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4118 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4119 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4120 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4121 // TODO: when we move to deciding the best outbound channel at forward time, only take
4122 // `next_node_id` and not `next_hop_channel_id`
4123 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4124 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4126 let next_hop_scid = {
4127 let peer_state_lock = self.per_peer_state.read().unwrap();
4128 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4129 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4130 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4131 let peer_state = &mut *peer_state_lock;
4132 match peer_state.channel_by_id.get(next_hop_channel_id) {
4133 Some(ChannelPhase::Funded(chan)) => {
4134 if !chan.context.is_usable() {
4135 return Err(APIError::ChannelUnavailable {
4136 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4139 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4141 Some(_) => return Err(APIError::ChannelUnavailable {
4142 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4143 next_hop_channel_id, next_node_id)
4146 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4147 next_hop_channel_id, next_node_id);
4148 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4149 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4150 return Err(APIError::ChannelUnavailable {
4157 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4158 .ok_or_else(|| APIError::APIMisuseError {
4159 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4162 let routing = match payment.forward_info.routing {
4163 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4164 PendingHTLCRouting::Forward {
4165 onion_packet, blinded, short_channel_id: next_hop_scid
4168 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4170 let skimmed_fee_msat =
4171 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4172 let pending_htlc_info = PendingHTLCInfo {
4173 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4174 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4177 let mut per_source_pending_forward = [(
4178 payment.prev_short_channel_id,
4179 payment.prev_funding_outpoint,
4180 payment.prev_user_channel_id,
4181 vec![(pending_htlc_info, payment.prev_htlc_id)]
4183 self.forward_htlcs(&mut per_source_pending_forward);
4187 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4188 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4190 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4193 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4194 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4195 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4197 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4198 .ok_or_else(|| APIError::APIMisuseError {
4199 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4202 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4203 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4204 short_channel_id: payment.prev_short_channel_id,
4205 user_channel_id: Some(payment.prev_user_channel_id),
4206 outpoint: payment.prev_funding_outpoint,
4207 htlc_id: payment.prev_htlc_id,
4208 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4209 phantom_shared_secret: None,
4210 blinded_failure: payment.forward_info.routing.blinded_failure(),
4213 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4214 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4215 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4216 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4221 /// Processes HTLCs which are pending waiting on random forward delay.
4223 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4224 /// Will likely generate further events.
4225 pub fn process_pending_htlc_forwards(&self) {
4226 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4228 let mut new_events = VecDeque::new();
4229 let mut failed_forwards = Vec::new();
4230 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4232 let mut forward_htlcs = HashMap::new();
4233 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4235 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4236 if short_chan_id != 0 {
4237 let mut forwarding_counterparty = None;
4238 macro_rules! forwarding_channel_not_found {
4240 for forward_info in pending_forwards.drain(..) {
4241 match forward_info {
4242 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4243 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4244 forward_info: PendingHTLCInfo {
4245 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4246 outgoing_cltv_value, ..
4249 macro_rules! failure_handler {
4250 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4251 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_funding_outpoint.to_channel_id()));
4252 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4254 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4255 short_channel_id: prev_short_channel_id,
4256 user_channel_id: Some(prev_user_channel_id),
4257 outpoint: prev_funding_outpoint,
4258 htlc_id: prev_htlc_id,
4259 incoming_packet_shared_secret: incoming_shared_secret,
4260 phantom_shared_secret: $phantom_ss,
4261 blinded_failure: routing.blinded_failure(),
4264 let reason = if $next_hop_unknown {
4265 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4267 HTLCDestination::FailedPayment{ payment_hash }
4270 failed_forwards.push((htlc_source, payment_hash,
4271 HTLCFailReason::reason($err_code, $err_data),
4277 macro_rules! fail_forward {
4278 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4280 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4284 macro_rules! failed_payment {
4285 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4287 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4291 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
4292 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4293 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4294 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4295 let next_hop = match onion_utils::decode_next_payment_hop(
4296 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4297 payment_hash, None, &self.node_signer
4300 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4301 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
4302 // In this scenario, the phantom would have sent us an
4303 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4304 // if it came from us (the second-to-last hop) but contains the sha256
4306 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4308 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4309 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4313 onion_utils::Hop::Receive(hop_data) => {
4314 let current_height: u32 = self.best_block.read().unwrap().height();
4315 match create_recv_pending_htlc_info(hop_data,
4316 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4317 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
4318 current_height, self.default_configuration.accept_mpp_keysend)
4320 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4321 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4327 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4330 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4333 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
4334 // Channel went away before we could fail it. This implies
4335 // the channel is now on chain and our counterparty is
4336 // trying to broadcast the HTLC-Timeout, but that's their
4337 // problem, not ours.
4343 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4344 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4345 Some((cp_id, chan_id)) => (cp_id, chan_id),
4347 forwarding_channel_not_found!();
4351 forwarding_counterparty = Some(counterparty_node_id);
4352 let per_peer_state = self.per_peer_state.read().unwrap();
4353 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4354 if peer_state_mutex_opt.is_none() {
4355 forwarding_channel_not_found!();
4358 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4359 let peer_state = &mut *peer_state_lock;
4360 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4361 let logger = WithChannelContext::from(&self.logger, &chan.context);
4362 for forward_info in pending_forwards.drain(..) {
4363 let queue_fail_htlc_res = match forward_info {
4364 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4365 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4366 forward_info: PendingHTLCInfo {
4367 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4368 routing: PendingHTLCRouting::Forward {
4369 onion_packet, blinded, ..
4370 }, skimmed_fee_msat, ..
4373 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4374 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4375 short_channel_id: prev_short_channel_id,
4376 user_channel_id: Some(prev_user_channel_id),
4377 outpoint: prev_funding_outpoint,
4378 htlc_id: prev_htlc_id,
4379 incoming_packet_shared_secret: incoming_shared_secret,
4380 // Phantom payments are only PendingHTLCRouting::Receive.
4381 phantom_shared_secret: None,
4382 blinded_failure: blinded.map(|b| b.failure),
4384 let next_blinding_point = blinded.and_then(|b| {
4385 let encrypted_tlvs_ss = self.node_signer.ecdh(
4386 Recipient::Node, &b.inbound_blinding_point, None
4387 ).unwrap().secret_bytes();
4388 onion_utils::next_hop_pubkey(
4389 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
4392 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4393 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4394 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
4397 if let ChannelError::Ignore(msg) = e {
4398 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4400 panic!("Stated return value requirements in send_htlc() were not met");
4402 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4403 failed_forwards.push((htlc_source, payment_hash,
4404 HTLCFailReason::reason(failure_code, data),
4405 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4411 HTLCForwardInfo::AddHTLC { .. } => {
4412 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4414 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4415 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4416 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
4418 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
4419 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4420 let res = chan.queue_fail_malformed_htlc(
4421 htlc_id, failure_code, sha256_of_onion, &&logger
4423 Some((res, htlc_id))
4426 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
4427 if let Err(e) = queue_fail_htlc_res {
4428 if let ChannelError::Ignore(msg) = e {
4429 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4431 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
4433 // fail-backs are best-effort, we probably already have one
4434 // pending, and if not that's OK, if not, the channel is on
4435 // the chain and sending the HTLC-Timeout is their problem.
4441 forwarding_channel_not_found!();
4445 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4446 match forward_info {
4447 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4448 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4449 forward_info: PendingHTLCInfo {
4450 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4451 skimmed_fee_msat, ..
4454 let blinded_failure = routing.blinded_failure();
4455 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4456 PendingHTLCRouting::Receive {
4457 payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret,
4458 custom_tlvs, requires_blinded_error: _
4460 let _legacy_hop_data = Some(payment_data.clone());
4461 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4462 payment_metadata, custom_tlvs };
4463 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4464 Some(payment_data), phantom_shared_secret, onion_fields)
4466 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4467 let onion_fields = RecipientOnionFields {
4468 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4472 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4473 payment_data, None, onion_fields)
4476 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4479 let claimable_htlc = ClaimableHTLC {
4480 prev_hop: HTLCPreviousHopData {
4481 short_channel_id: prev_short_channel_id,
4482 user_channel_id: Some(prev_user_channel_id),
4483 outpoint: prev_funding_outpoint,
4484 htlc_id: prev_htlc_id,
4485 incoming_packet_shared_secret: incoming_shared_secret,
4486 phantom_shared_secret,
4489 // We differentiate the received value from the sender intended value
4490 // if possible so that we don't prematurely mark MPP payments complete
4491 // if routing nodes overpay
4492 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4493 sender_intended_value: outgoing_amt_msat,
4495 total_value_received: None,
4496 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4499 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4502 let mut committed_to_claimable = false;
4504 macro_rules! fail_htlc {
4505 ($htlc: expr, $payment_hash: expr) => {
4506 debug_assert!(!committed_to_claimable);
4507 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4508 htlc_msat_height_data.extend_from_slice(
4509 &self.best_block.read().unwrap().height().to_be_bytes(),
4511 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4512 short_channel_id: $htlc.prev_hop.short_channel_id,
4513 user_channel_id: $htlc.prev_hop.user_channel_id,
4514 outpoint: prev_funding_outpoint,
4515 htlc_id: $htlc.prev_hop.htlc_id,
4516 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4517 phantom_shared_secret,
4520 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4521 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4523 continue 'next_forwardable_htlc;
4526 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4527 let mut receiver_node_id = self.our_network_pubkey;
4528 if phantom_shared_secret.is_some() {
4529 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4530 .expect("Failed to get node_id for phantom node recipient");
4533 macro_rules! check_total_value {
4534 ($purpose: expr) => {{
4535 let mut payment_claimable_generated = false;
4536 let is_keysend = match $purpose {
4537 events::PaymentPurpose::SpontaneousPayment(_) => true,
4538 events::PaymentPurpose::InvoicePayment { .. } => false,
4540 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4541 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4542 fail_htlc!(claimable_htlc, payment_hash);
4544 let ref mut claimable_payment = claimable_payments.claimable_payments
4545 .entry(payment_hash)
4546 // Note that if we insert here we MUST NOT fail_htlc!()
4547 .or_insert_with(|| {
4548 committed_to_claimable = true;
4550 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4553 if $purpose != claimable_payment.purpose {
4554 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4555 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4556 fail_htlc!(claimable_htlc, payment_hash);
4558 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4559 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4560 fail_htlc!(claimable_htlc, payment_hash);
4562 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4563 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4564 fail_htlc!(claimable_htlc, payment_hash);
4567 claimable_payment.onion_fields = Some(onion_fields);
4569 let ref mut htlcs = &mut claimable_payment.htlcs;
4570 let mut total_value = claimable_htlc.sender_intended_value;
4571 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4572 for htlc in htlcs.iter() {
4573 total_value += htlc.sender_intended_value;
4574 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4575 if htlc.total_msat != claimable_htlc.total_msat {
4576 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4577 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4578 total_value = msgs::MAX_VALUE_MSAT;
4580 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4582 // The condition determining whether an MPP is complete must
4583 // match exactly the condition used in `timer_tick_occurred`
4584 if total_value >= msgs::MAX_VALUE_MSAT {
4585 fail_htlc!(claimable_htlc, payment_hash);
4586 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4587 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4589 fail_htlc!(claimable_htlc, payment_hash);
4590 } else if total_value >= claimable_htlc.total_msat {
4591 #[allow(unused_assignments)] {
4592 committed_to_claimable = true;
4594 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4595 htlcs.push(claimable_htlc);
4596 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4597 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4598 let counterparty_skimmed_fee_msat = htlcs.iter()
4599 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4600 debug_assert!(total_value.saturating_sub(amount_msat) <=
4601 counterparty_skimmed_fee_msat);
4602 new_events.push_back((events::Event::PaymentClaimable {
4603 receiver_node_id: Some(receiver_node_id),
4607 counterparty_skimmed_fee_msat,
4608 via_channel_id: Some(prev_channel_id),
4609 via_user_channel_id: Some(prev_user_channel_id),
4610 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4611 onion_fields: claimable_payment.onion_fields.clone(),
4613 payment_claimable_generated = true;
4615 // Nothing to do - we haven't reached the total
4616 // payment value yet, wait until we receive more
4618 htlcs.push(claimable_htlc);
4619 #[allow(unused_assignments)] {
4620 committed_to_claimable = true;
4623 payment_claimable_generated
4627 // Check that the payment hash and secret are known. Note that we
4628 // MUST take care to handle the "unknown payment hash" and
4629 // "incorrect payment secret" cases here identically or we'd expose
4630 // that we are the ultimate recipient of the given payment hash.
4631 // Further, we must not expose whether we have any other HTLCs
4632 // associated with the same payment_hash pending or not.
4633 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4634 match payment_secrets.entry(payment_hash) {
4635 hash_map::Entry::Vacant(_) => {
4636 match claimable_htlc.onion_payload {
4637 OnionPayload::Invoice { .. } => {
4638 let payment_data = payment_data.unwrap();
4639 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4640 Ok(result) => result,
4642 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4643 fail_htlc!(claimable_htlc, payment_hash);
4646 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4647 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4648 if (cltv_expiry as u64) < expected_min_expiry_height {
4649 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4650 &payment_hash, cltv_expiry, expected_min_expiry_height);
4651 fail_htlc!(claimable_htlc, payment_hash);
4654 let purpose = events::PaymentPurpose::InvoicePayment {
4655 payment_preimage: payment_preimage.clone(),
4656 payment_secret: payment_data.payment_secret,
4658 check_total_value!(purpose);
4660 OnionPayload::Spontaneous(preimage) => {
4661 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4662 check_total_value!(purpose);
4666 hash_map::Entry::Occupied(inbound_payment) => {
4667 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4668 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4669 fail_htlc!(claimable_htlc, payment_hash);
4671 let payment_data = payment_data.unwrap();
4672 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4673 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4674 fail_htlc!(claimable_htlc, payment_hash);
4675 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4676 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4677 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4678 fail_htlc!(claimable_htlc, payment_hash);
4680 let purpose = events::PaymentPurpose::InvoicePayment {
4681 payment_preimage: inbound_payment.get().payment_preimage,
4682 payment_secret: payment_data.payment_secret,
4684 let payment_claimable_generated = check_total_value!(purpose);
4685 if payment_claimable_generated {
4686 inbound_payment.remove_entry();
4692 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
4693 panic!("Got pending fail of our own HTLC");
4701 let best_block_height = self.best_block.read().unwrap().height();
4702 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4703 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4704 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4706 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4707 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4709 self.forward_htlcs(&mut phantom_receives);
4711 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4712 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4713 // nice to do the work now if we can rather than while we're trying to get messages in the
4715 self.check_free_holding_cells();
4717 if new_events.is_empty() { return }
4718 let mut events = self.pending_events.lock().unwrap();
4719 events.append(&mut new_events);
4722 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4724 /// Expects the caller to have a total_consistency_lock read lock.
4725 fn process_background_events(&self) -> NotifyOption {
4726 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4728 self.background_events_processed_since_startup.store(true, Ordering::Release);
4730 let mut background_events = Vec::new();
4731 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4732 if background_events.is_empty() {
4733 return NotifyOption::SkipPersistNoEvents;
4736 for event in background_events.drain(..) {
4738 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4739 // The channel has already been closed, so no use bothering to care about the
4740 // monitor updating completing.
4741 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4743 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4744 let mut updated_chan = false;
4746 let per_peer_state = self.per_peer_state.read().unwrap();
4747 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4748 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4749 let peer_state = &mut *peer_state_lock;
4750 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4751 hash_map::Entry::Occupied(mut chan_phase) => {
4752 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4753 updated_chan = true;
4754 handle_new_monitor_update!(self, funding_txo, update.clone(),
4755 peer_state_lock, peer_state, per_peer_state, chan);
4757 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4760 hash_map::Entry::Vacant(_) => {},
4765 // TODO: Track this as in-flight even though the channel is closed.
4766 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4769 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4770 let per_peer_state = self.per_peer_state.read().unwrap();
4771 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4772 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4773 let peer_state = &mut *peer_state_lock;
4774 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4775 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4777 let update_actions = peer_state.monitor_update_blocked_actions
4778 .remove(&channel_id).unwrap_or(Vec::new());
4779 mem::drop(peer_state_lock);
4780 mem::drop(per_peer_state);
4781 self.handle_monitor_update_completion_actions(update_actions);
4787 NotifyOption::DoPersist
4790 #[cfg(any(test, feature = "_test_utils"))]
4791 /// Process background events, for functional testing
4792 pub fn test_process_background_events(&self) {
4793 let _lck = self.total_consistency_lock.read().unwrap();
4794 let _ = self.process_background_events();
4797 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4798 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4800 let logger = WithChannelContext::from(&self.logger, &chan.context);
4802 // If the feerate has decreased by less than half, don't bother
4803 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4804 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4805 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4806 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4808 return NotifyOption::SkipPersistNoEvents;
4810 if !chan.context.is_live() {
4811 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4812 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4813 return NotifyOption::SkipPersistNoEvents;
4815 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
4816 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4818 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
4819 NotifyOption::DoPersist
4823 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4824 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4825 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4826 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4827 pub fn maybe_update_chan_fees(&self) {
4828 PersistenceNotifierGuard::optionally_notify(self, || {
4829 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4831 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4832 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4834 let per_peer_state = self.per_peer_state.read().unwrap();
4835 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4836 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4837 let peer_state = &mut *peer_state_lock;
4838 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4839 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4841 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4846 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4847 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4855 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4857 /// This currently includes:
4858 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4859 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4860 /// than a minute, informing the network that they should no longer attempt to route over
4862 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4863 /// with the current [`ChannelConfig`].
4864 /// * Removing peers which have disconnected but and no longer have any channels.
4865 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4866 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4867 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4868 /// The latter is determined using the system clock in `std` and the highest seen block time
4869 /// minus two hours in `no-std`.
4871 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4872 /// estimate fetches.
4874 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4875 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4876 pub fn timer_tick_occurred(&self) {
4877 PersistenceNotifierGuard::optionally_notify(self, || {
4878 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4880 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
4881 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
4883 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4884 let mut timed_out_mpp_htlcs = Vec::new();
4885 let mut pending_peers_awaiting_removal = Vec::new();
4886 let mut shutdown_channels = Vec::new();
4888 let mut process_unfunded_channel_tick = |
4889 chan_id: &ChannelId,
4890 context: &mut ChannelContext<SP>,
4891 unfunded_context: &mut UnfundedChannelContext,
4892 pending_msg_events: &mut Vec<MessageSendEvent>,
4893 counterparty_node_id: PublicKey,
4895 context.maybe_expire_prev_config();
4896 if unfunded_context.should_expire_unfunded_channel() {
4897 let logger = WithChannelContext::from(&self.logger, context);
4899 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4900 update_maps_on_chan_removal!(self, &context);
4901 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
4902 pending_msg_events.push(MessageSendEvent::HandleError {
4903 node_id: counterparty_node_id,
4904 action: msgs::ErrorAction::SendErrorMessage {
4905 msg: msgs::ErrorMessage {
4906 channel_id: *chan_id,
4907 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4918 let per_peer_state = self.per_peer_state.read().unwrap();
4919 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4920 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4921 let peer_state = &mut *peer_state_lock;
4922 let pending_msg_events = &mut peer_state.pending_msg_events;
4923 let counterparty_node_id = *counterparty_node_id;
4924 peer_state.channel_by_id.retain(|chan_id, phase| {
4926 ChannelPhase::Funded(chan) => {
4927 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4932 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4933 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4935 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4936 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4937 handle_errors.push((Err(err), counterparty_node_id));
4938 if needs_close { return false; }
4941 match chan.channel_update_status() {
4942 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4943 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4944 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4945 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4946 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4947 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4948 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4950 if n >= DISABLE_GOSSIP_TICKS {
4951 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4952 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4953 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4957 should_persist = NotifyOption::DoPersist;
4959 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4962 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4964 if n >= ENABLE_GOSSIP_TICKS {
4965 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4966 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4967 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4971 should_persist = NotifyOption::DoPersist;
4973 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4979 chan.context.maybe_expire_prev_config();
4981 if chan.should_disconnect_peer_awaiting_response() {
4982 let logger = WithChannelContext::from(&self.logger, &chan.context);
4983 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
4984 counterparty_node_id, chan_id);
4985 pending_msg_events.push(MessageSendEvent::HandleError {
4986 node_id: counterparty_node_id,
4987 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4988 msg: msgs::WarningMessage {
4989 channel_id: *chan_id,
4990 data: "Disconnecting due to timeout awaiting response".to_owned(),
4998 ChannelPhase::UnfundedInboundV1(chan) => {
4999 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5000 pending_msg_events, counterparty_node_id)
5002 ChannelPhase::UnfundedOutboundV1(chan) => {
5003 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5004 pending_msg_events, counterparty_node_id)
5009 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5010 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5011 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5012 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5013 peer_state.pending_msg_events.push(
5014 events::MessageSendEvent::HandleError {
5015 node_id: counterparty_node_id,
5016 action: msgs::ErrorAction::SendErrorMessage {
5017 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5023 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5025 if peer_state.ok_to_remove(true) {
5026 pending_peers_awaiting_removal.push(counterparty_node_id);
5031 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5032 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5033 // of to that peer is later closed while still being disconnected (i.e. force closed),
5034 // we therefore need to remove the peer from `peer_state` separately.
5035 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5036 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5037 // negative effects on parallelism as much as possible.
5038 if pending_peers_awaiting_removal.len() > 0 {
5039 let mut per_peer_state = self.per_peer_state.write().unwrap();
5040 for counterparty_node_id in pending_peers_awaiting_removal {
5041 match per_peer_state.entry(counterparty_node_id) {
5042 hash_map::Entry::Occupied(entry) => {
5043 // Remove the entry if the peer is still disconnected and we still
5044 // have no channels to the peer.
5045 let remove_entry = {
5046 let peer_state = entry.get().lock().unwrap();
5047 peer_state.ok_to_remove(true)
5050 entry.remove_entry();
5053 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5058 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5059 if payment.htlcs.is_empty() {
5060 // This should be unreachable
5061 debug_assert!(false);
5064 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5065 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5066 // In this case we're not going to handle any timeouts of the parts here.
5067 // This condition determining whether the MPP is complete here must match
5068 // exactly the condition used in `process_pending_htlc_forwards`.
5069 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5070 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5073 } else if payment.htlcs.iter_mut().any(|htlc| {
5074 htlc.timer_ticks += 1;
5075 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5077 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5078 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5085 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5086 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5087 let reason = HTLCFailReason::from_failure_code(23);
5088 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5089 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5092 for (err, counterparty_node_id) in handle_errors.drain(..) {
5093 let _ = handle_error!(self, err, counterparty_node_id);
5096 for shutdown_res in shutdown_channels {
5097 self.finish_close_channel(shutdown_res);
5100 #[cfg(feature = "std")]
5101 let duration_since_epoch = std::time::SystemTime::now()
5102 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5103 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5104 #[cfg(not(feature = "std"))]
5105 let duration_since_epoch = Duration::from_secs(
5106 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5109 self.pending_outbound_payments.remove_stale_payments(
5110 duration_since_epoch, &self.pending_events
5113 // Technically we don't need to do this here, but if we have holding cell entries in a
5114 // channel that need freeing, it's better to do that here and block a background task
5115 // than block the message queueing pipeline.
5116 if self.check_free_holding_cells() {
5117 should_persist = NotifyOption::DoPersist;
5124 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5125 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5126 /// along the path (including in our own channel on which we received it).
5128 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5129 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5130 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5131 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5133 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5134 /// [`ChannelManager::claim_funds`]), you should still monitor for
5135 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5136 /// startup during which time claims that were in-progress at shutdown may be replayed.
5137 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5138 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5141 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5142 /// reason for the failure.
5144 /// See [`FailureCode`] for valid failure codes.
5145 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5146 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5148 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5149 if let Some(payment) = removed_source {
5150 for htlc in payment.htlcs {
5151 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5152 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5153 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5154 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5159 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5160 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5161 match failure_code {
5162 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5163 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5164 FailureCode::IncorrectOrUnknownPaymentDetails => {
5165 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5166 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5167 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5169 FailureCode::InvalidOnionPayload(data) => {
5170 let fail_data = match data {
5171 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5174 HTLCFailReason::reason(failure_code.into(), fail_data)
5179 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5180 /// that we want to return and a channel.
5182 /// This is for failures on the channel on which the HTLC was *received*, not failures
5184 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5185 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5186 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5187 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5188 // an inbound SCID alias before the real SCID.
5189 let scid_pref = if chan.context.should_announce() {
5190 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5192 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5194 if let Some(scid) = scid_pref {
5195 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5197 (0x4000|10, Vec::new())
5202 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5203 /// that we want to return and a channel.
5204 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5205 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5206 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5207 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5208 if desired_err_code == 0x1000 | 20 {
5209 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5210 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5211 0u16.write(&mut enc).expect("Writes cannot fail");
5213 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5214 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5215 upd.write(&mut enc).expect("Writes cannot fail");
5216 (desired_err_code, enc.0)
5218 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5219 // which means we really shouldn't have gotten a payment to be forwarded over this
5220 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5221 // PERM|no_such_channel should be fine.
5222 (0x4000|10, Vec::new())
5226 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5227 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5228 // be surfaced to the user.
5229 fn fail_holding_cell_htlcs(
5230 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5231 counterparty_node_id: &PublicKey
5233 let (failure_code, onion_failure_data) = {
5234 let per_peer_state = self.per_peer_state.read().unwrap();
5235 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5236 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5237 let peer_state = &mut *peer_state_lock;
5238 match peer_state.channel_by_id.entry(channel_id) {
5239 hash_map::Entry::Occupied(chan_phase_entry) => {
5240 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5241 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5243 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5244 debug_assert!(false);
5245 (0x4000|10, Vec::new())
5248 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5250 } else { (0x4000|10, Vec::new()) }
5253 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5254 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5255 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5256 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5260 /// Fails an HTLC backwards to the sender of it to us.
5261 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5262 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5263 // Ensure that no peer state channel storage lock is held when calling this function.
5264 // This ensures that future code doesn't introduce a lock-order requirement for
5265 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5266 // this function with any `per_peer_state` peer lock acquired would.
5267 #[cfg(debug_assertions)]
5268 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5269 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5272 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5273 //identify whether we sent it or not based on the (I presume) very different runtime
5274 //between the branches here. We should make this async and move it into the forward HTLCs
5277 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5278 // from block_connected which may run during initialization prior to the chain_monitor
5279 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5281 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5282 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5283 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5284 &self.pending_events, &self.logger)
5285 { self.push_pending_forwards_ev(); }
5287 HTLCSource::PreviousHopData(HTLCPreviousHopData {
5288 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
5289 ref phantom_shared_secret, ref outpoint, ref blinded_failure, ..
5292 WithContext::from(&self.logger, None, Some(outpoint.to_channel_id())),
5293 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
5294 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
5296 let failure = match blinded_failure {
5297 Some(BlindedFailure::FromIntroductionNode) => {
5298 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
5299 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
5300 incoming_packet_shared_secret, phantom_shared_secret
5302 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
5304 Some(BlindedFailure::FromBlindedNode) => {
5305 HTLCForwardInfo::FailMalformedHTLC {
5307 failure_code: INVALID_ONION_BLINDING,
5308 sha256_of_onion: [0; 32]
5312 let err_packet = onion_error.get_encrypted_failure_packet(
5313 incoming_packet_shared_secret, phantom_shared_secret
5315 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
5319 let mut push_forward_ev = false;
5320 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5321 if forward_htlcs.is_empty() {
5322 push_forward_ev = true;
5324 match forward_htlcs.entry(*short_channel_id) {
5325 hash_map::Entry::Occupied(mut entry) => {
5326 entry.get_mut().push(failure);
5328 hash_map::Entry::Vacant(entry) => {
5329 entry.insert(vec!(failure));
5332 mem::drop(forward_htlcs);
5333 if push_forward_ev { self.push_pending_forwards_ev(); }
5334 let mut pending_events = self.pending_events.lock().unwrap();
5335 pending_events.push_back((events::Event::HTLCHandlingFailed {
5336 prev_channel_id: outpoint.to_channel_id(),
5337 failed_next_destination: destination,
5343 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5344 /// [`MessageSendEvent`]s needed to claim the payment.
5346 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5347 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5348 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5349 /// successful. It will generally be available in the next [`process_pending_events`] call.
5351 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5352 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5353 /// event matches your expectation. If you fail to do so and call this method, you may provide
5354 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5356 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5357 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5358 /// [`claim_funds_with_known_custom_tlvs`].
5360 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5361 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5362 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5363 /// [`process_pending_events`]: EventsProvider::process_pending_events
5364 /// [`create_inbound_payment`]: Self::create_inbound_payment
5365 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5366 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5367 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5368 self.claim_payment_internal(payment_preimage, false);
5371 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5372 /// even type numbers.
5376 /// You MUST check you've understood all even TLVs before using this to
5377 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5379 /// [`claim_funds`]: Self::claim_funds
5380 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5381 self.claim_payment_internal(payment_preimage, true);
5384 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5385 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
5387 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5390 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5391 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5392 let mut receiver_node_id = self.our_network_pubkey;
5393 for htlc in payment.htlcs.iter() {
5394 if htlc.prev_hop.phantom_shared_secret.is_some() {
5395 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5396 .expect("Failed to get node_id for phantom node recipient");
5397 receiver_node_id = phantom_pubkey;
5402 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5403 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5404 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5405 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5406 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5408 if dup_purpose.is_some() {
5409 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5410 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5414 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5415 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5416 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5417 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5418 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5419 mem::drop(claimable_payments);
5420 for htlc in payment.htlcs {
5421 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5422 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5423 let receiver = HTLCDestination::FailedPayment { payment_hash };
5424 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5433 debug_assert!(!sources.is_empty());
5435 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5436 // and when we got here we need to check that the amount we're about to claim matches the
5437 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5438 // the MPP parts all have the same `total_msat`.
5439 let mut claimable_amt_msat = 0;
5440 let mut prev_total_msat = None;
5441 let mut expected_amt_msat = None;
5442 let mut valid_mpp = true;
5443 let mut errs = Vec::new();
5444 let per_peer_state = self.per_peer_state.read().unwrap();
5445 for htlc in sources.iter() {
5446 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5447 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5448 debug_assert!(false);
5452 prev_total_msat = Some(htlc.total_msat);
5454 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5455 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5456 debug_assert!(false);
5460 expected_amt_msat = htlc.total_value_received;
5461 claimable_amt_msat += htlc.value;
5463 mem::drop(per_peer_state);
5464 if sources.is_empty() || expected_amt_msat.is_none() {
5465 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5466 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5469 if claimable_amt_msat != expected_amt_msat.unwrap() {
5470 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5471 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5472 expected_amt_msat.unwrap(), claimable_amt_msat);
5476 for htlc in sources.drain(..) {
5477 let prev_hop_chan_id = htlc.prev_hop.outpoint.to_channel_id();
5478 if let Err((pk, err)) = self.claim_funds_from_hop(
5479 htlc.prev_hop, payment_preimage,
5480 |_, definitely_duplicate| {
5481 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
5482 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
5485 if let msgs::ErrorAction::IgnoreError = err.err.action {
5486 // We got a temporary failure updating monitor, but will claim the
5487 // HTLC when the monitor updating is restored (or on chain).
5488 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
5489 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5490 } else { errs.push((pk, err)); }
5495 for htlc in sources.drain(..) {
5496 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5497 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5498 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5499 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5500 let receiver = HTLCDestination::FailedPayment { payment_hash };
5501 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5503 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5506 // Now we can handle any errors which were generated.
5507 for (counterparty_node_id, err) in errs.drain(..) {
5508 let res: Result<(), _> = Err(err);
5509 let _ = handle_error!(self, res, counterparty_node_id);
5513 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
5514 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5515 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5516 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5518 // If we haven't yet run background events assume we're still deserializing and shouldn't
5519 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5520 // `BackgroundEvent`s.
5521 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5523 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
5524 // the required mutexes are not held before we start.
5525 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5526 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5529 let per_peer_state = self.per_peer_state.read().unwrap();
5530 let chan_id = prev_hop.outpoint.to_channel_id();
5531 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5532 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5536 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5537 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5538 .map(|peer_mutex| peer_mutex.lock().unwrap())
5541 if peer_state_opt.is_some() {
5542 let mut peer_state_lock = peer_state_opt.unwrap();
5543 let peer_state = &mut *peer_state_lock;
5544 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5545 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5546 let counterparty_node_id = chan.context.get_counterparty_node_id();
5547 let logger = WithChannelContext::from(&self.logger, &chan.context);
5548 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
5551 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
5552 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
5553 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
5555 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5558 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5559 peer_state, per_peer_state, chan);
5561 // If we're running during init we cannot update a monitor directly -
5562 // they probably haven't actually been loaded yet. Instead, push the
5563 // monitor update as a background event.
5564 self.pending_background_events.lock().unwrap().push(
5565 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5566 counterparty_node_id,
5567 funding_txo: prev_hop.outpoint,
5568 update: monitor_update.clone(),
5572 UpdateFulfillCommitFetch::DuplicateClaim {} => {
5573 let action = if let Some(action) = completion_action(None, true) {
5578 mem::drop(peer_state_lock);
5580 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
5582 let (node_id, funding_outpoint, blocker) =
5583 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5584 downstream_counterparty_node_id: node_id,
5585 downstream_funding_outpoint: funding_outpoint,
5586 blocking_action: blocker,
5588 (node_id, funding_outpoint, blocker)
5590 debug_assert!(false,
5591 "Duplicate claims should always free another channel immediately");
5594 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
5595 let mut peer_state = peer_state_mtx.lock().unwrap();
5596 if let Some(blockers) = peer_state
5597 .actions_blocking_raa_monitor_updates
5598 .get_mut(&funding_outpoint.to_channel_id())
5600 let mut found_blocker = false;
5601 blockers.retain(|iter| {
5602 // Note that we could actually be blocked, in
5603 // which case we need to only remove the one
5604 // blocker which was added duplicatively.
5605 let first_blocker = !found_blocker;
5606 if *iter == blocker { found_blocker = true; }
5607 *iter != blocker || !first_blocker
5609 debug_assert!(found_blocker);
5612 debug_assert!(false);
5621 let preimage_update = ChannelMonitorUpdate {
5622 update_id: CLOSED_CHANNEL_UPDATE_ID,
5623 counterparty_node_id: None,
5624 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5630 // We update the ChannelMonitor on the backward link, after
5631 // receiving an `update_fulfill_htlc` from the forward link.
5632 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5633 if update_res != ChannelMonitorUpdateStatus::Completed {
5634 // TODO: This needs to be handled somehow - if we receive a monitor update
5635 // with a preimage we *must* somehow manage to propagate it to the upstream
5636 // channel, or we must have an ability to receive the same event and try
5637 // again on restart.
5638 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.outpoint.to_channel_id())), "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5639 payment_preimage, update_res);
5642 // If we're running during init we cannot update a monitor directly - they probably
5643 // haven't actually been loaded yet. Instead, push the monitor update as a background
5645 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5646 // channel is already closed) we need to ultimately handle the monitor update
5647 // completion action only after we've completed the monitor update. This is the only
5648 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5649 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5650 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5651 // complete the monitor update completion action from `completion_action`.
5652 self.pending_background_events.lock().unwrap().push(
5653 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5654 prev_hop.outpoint, preimage_update,
5657 // Note that we do process the completion action here. This totally could be a
5658 // duplicate claim, but we have no way of knowing without interrogating the
5659 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5660 // generally always allowed to be duplicative (and it's specifically noted in
5661 // `PaymentForwarded`).
5662 self.handle_monitor_update_completion_actions(completion_action(None, false));
5666 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5667 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5670 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5671 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, startup_replay: bool,
5672 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5675 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5676 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5677 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5678 if let Some(pubkey) = next_channel_counterparty_node_id {
5679 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5681 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5682 channel_funding_outpoint: next_channel_outpoint,
5683 counterparty_node_id: path.hops[0].pubkey,
5685 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5686 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5689 HTLCSource::PreviousHopData(hop_data) => {
5690 let prev_outpoint = hop_data.outpoint;
5691 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5692 #[cfg(debug_assertions)]
5693 let claiming_chan_funding_outpoint = hop_data.outpoint;
5694 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5695 |htlc_claim_value_msat, definitely_duplicate| {
5696 let chan_to_release =
5697 if let Some(node_id) = next_channel_counterparty_node_id {
5698 Some((node_id, next_channel_outpoint, completed_blocker))
5700 // We can only get `None` here if we are processing a
5701 // `ChannelMonitor`-originated event, in which case we
5702 // don't care about ensuring we wake the downstream
5703 // channel's monitor updating - the channel is already
5708 if definitely_duplicate && startup_replay {
5709 // On startup we may get redundant claims which are related to
5710 // monitor updates still in flight. In that case, we shouldn't
5711 // immediately free, but instead let that monitor update complete
5712 // in the background.
5713 #[cfg(debug_assertions)] {
5714 let background_events = self.pending_background_events.lock().unwrap();
5715 // There should be a `BackgroundEvent` pending...
5716 assert!(background_events.iter().any(|ev| {
5718 // to apply a monitor update that blocked the claiming channel,
5719 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5720 funding_txo, update, ..
5722 if *funding_txo == claiming_chan_funding_outpoint {
5723 assert!(update.updates.iter().any(|upd|
5724 if let ChannelMonitorUpdateStep::PaymentPreimage {
5725 payment_preimage: update_preimage
5727 payment_preimage == *update_preimage
5733 // or the channel we'd unblock is already closed,
5734 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
5735 (funding_txo, monitor_update)
5737 if *funding_txo == next_channel_outpoint {
5738 assert_eq!(monitor_update.updates.len(), 1);
5740 monitor_update.updates[0],
5741 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
5746 // or the monitor update has completed and will unblock
5747 // immediately once we get going.
5748 BackgroundEvent::MonitorUpdatesComplete {
5751 *channel_id == claiming_chan_funding_outpoint.to_channel_id(),
5753 }), "{:?}", *background_events);
5756 } else if definitely_duplicate {
5757 if let Some(other_chan) = chan_to_release {
5758 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5759 downstream_counterparty_node_id: other_chan.0,
5760 downstream_funding_outpoint: other_chan.1,
5761 blocking_action: other_chan.2,
5765 let fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5766 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5767 Some(claimed_htlc_value - forwarded_htlc_value)
5770 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5771 event: events::Event::PaymentForwarded {
5773 claim_from_onchain_tx: from_onchain,
5774 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5775 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5776 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5778 downstream_counterparty_and_funding_outpoint: chan_to_release,
5782 if let Err((pk, err)) = res {
5783 let result: Result<(), _> = Err(err);
5784 let _ = handle_error!(self, result, pk);
5790 /// Gets the node_id held by this ChannelManager
5791 pub fn get_our_node_id(&self) -> PublicKey {
5792 self.our_network_pubkey.clone()
5795 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5796 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
5797 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
5798 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
5800 for action in actions.into_iter() {
5802 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5803 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5804 if let Some(ClaimingPayment {
5806 payment_purpose: purpose,
5809 sender_intended_value: sender_intended_total_msat,
5811 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5815 receiver_node_id: Some(receiver_node_id),
5817 sender_intended_total_msat,
5821 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5822 event, downstream_counterparty_and_funding_outpoint
5824 self.pending_events.lock().unwrap().push_back((event, None));
5825 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5826 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5829 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
5830 downstream_counterparty_node_id, downstream_funding_outpoint, blocking_action,
5832 self.handle_monitor_update_release(
5833 downstream_counterparty_node_id,
5834 downstream_funding_outpoint,
5835 Some(blocking_action),
5842 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5843 /// update completion.
5844 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5845 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5846 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5847 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5848 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5849 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5850 let logger = WithChannelContext::from(&self.logger, &channel.context);
5851 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5852 &channel.context.channel_id(),
5853 if raa.is_some() { "an" } else { "no" },
5854 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5855 if funding_broadcastable.is_some() { "" } else { "not " },
5856 if channel_ready.is_some() { "sending" } else { "without" },
5857 if announcement_sigs.is_some() { "sending" } else { "without" });
5859 let mut htlc_forwards = None;
5861 let counterparty_node_id = channel.context.get_counterparty_node_id();
5862 if !pending_forwards.is_empty() {
5863 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5864 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5867 if let Some(msg) = channel_ready {
5868 send_channel_ready!(self, pending_msg_events, channel, msg);
5870 if let Some(msg) = announcement_sigs {
5871 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5872 node_id: counterparty_node_id,
5877 macro_rules! handle_cs { () => {
5878 if let Some(update) = commitment_update {
5879 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5880 node_id: counterparty_node_id,
5885 macro_rules! handle_raa { () => {
5886 if let Some(revoke_and_ack) = raa {
5887 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5888 node_id: counterparty_node_id,
5889 msg: revoke_and_ack,
5894 RAACommitmentOrder::CommitmentFirst => {
5898 RAACommitmentOrder::RevokeAndACKFirst => {
5904 if let Some(tx) = funding_broadcastable {
5905 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
5906 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5910 let mut pending_events = self.pending_events.lock().unwrap();
5911 emit_channel_pending_event!(pending_events, channel);
5912 emit_channel_ready_event!(pending_events, channel);
5918 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5919 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5921 let counterparty_node_id = match counterparty_node_id {
5922 Some(cp_id) => cp_id.clone(),
5924 // TODO: Once we can rely on the counterparty_node_id from the
5925 // monitor event, this and the outpoint_to_peer map should be removed.
5926 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
5927 match outpoint_to_peer.get(&funding_txo) {
5928 Some(cp_id) => cp_id.clone(),
5933 let per_peer_state = self.per_peer_state.read().unwrap();
5934 let mut peer_state_lock;
5935 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5936 if peer_state_mutex_opt.is_none() { return }
5937 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5938 let peer_state = &mut *peer_state_lock;
5940 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5943 let update_actions = peer_state.monitor_update_blocked_actions
5944 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5945 mem::drop(peer_state_lock);
5946 mem::drop(per_peer_state);
5947 self.handle_monitor_update_completion_actions(update_actions);
5950 let remaining_in_flight =
5951 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5952 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5955 let logger = WithChannelContext::from(&self.logger, &channel.context);
5956 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5957 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5958 remaining_in_flight);
5959 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5962 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5965 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5967 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5968 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5971 /// The `user_channel_id` parameter will be provided back in
5972 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5973 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5975 /// Note that this method will return an error and reject the channel, if it requires support
5976 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5977 /// used to accept such channels.
5979 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5980 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5981 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5982 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5985 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5986 /// it as confirmed immediately.
5988 /// The `user_channel_id` parameter will be provided back in
5989 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5990 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5992 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5993 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5995 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5996 /// transaction and blindly assumes that it will eventually confirm.
5998 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5999 /// does not pay to the correct script the correct amount, *you will lose funds*.
6001 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6002 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6003 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6004 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6007 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6009 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6010 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6012 let peers_without_funded_channels =
6013 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6014 let per_peer_state = self.per_peer_state.read().unwrap();
6015 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6017 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6018 log_error!(logger, "{}", err_str);
6020 APIError::ChannelUnavailable { err: err_str }
6022 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6023 let peer_state = &mut *peer_state_lock;
6024 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6026 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6027 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6028 // that we can delay allocating the SCID until after we're sure that the checks below will
6030 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6031 Some(unaccepted_channel) => {
6032 let best_block_height = self.best_block.read().unwrap().height();
6033 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6034 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6035 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6036 &self.logger, accept_0conf).map_err(|e| {
6037 let err_str = e.to_string();
6038 log_error!(logger, "{}", err_str);
6040 APIError::ChannelUnavailable { err: err_str }
6044 let err_str = "No such channel awaiting to be accepted.".to_owned();
6045 log_error!(logger, "{}", err_str);
6047 Err(APIError::APIMisuseError { err: err_str })
6052 // This should have been correctly configured by the call to InboundV1Channel::new.
6053 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6054 } else if channel.context.get_channel_type().requires_zero_conf() {
6055 let send_msg_err_event = events::MessageSendEvent::HandleError {
6056 node_id: channel.context.get_counterparty_node_id(),
6057 action: msgs::ErrorAction::SendErrorMessage{
6058 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6061 peer_state.pending_msg_events.push(send_msg_err_event);
6062 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
6063 log_error!(logger, "{}", err_str);
6065 return Err(APIError::APIMisuseError { err: err_str });
6067 // If this peer already has some channels, a new channel won't increase our number of peers
6068 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6069 // channels per-peer we can accept channels from a peer with existing ones.
6070 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6071 let send_msg_err_event = events::MessageSendEvent::HandleError {
6072 node_id: channel.context.get_counterparty_node_id(),
6073 action: msgs::ErrorAction::SendErrorMessage{
6074 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
6077 peer_state.pending_msg_events.push(send_msg_err_event);
6078 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
6079 log_error!(logger, "{}", err_str);
6081 return Err(APIError::APIMisuseError { err: err_str });
6085 // Now that we know we have a channel, assign an outbound SCID alias.
6086 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6087 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6089 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6090 node_id: channel.context.get_counterparty_node_id(),
6091 msg: channel.accept_inbound_channel(),
6094 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
6099 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
6100 /// or 0-conf channels.
6102 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
6103 /// non-0-conf channels we have with the peer.
6104 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
6105 where Filter: Fn(&PeerState<SP>) -> bool {
6106 let mut peers_without_funded_channels = 0;
6107 let best_block_height = self.best_block.read().unwrap().height();
6109 let peer_state_lock = self.per_peer_state.read().unwrap();
6110 for (_, peer_mtx) in peer_state_lock.iter() {
6111 let peer = peer_mtx.lock().unwrap();
6112 if !maybe_count_peer(&*peer) { continue; }
6113 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
6114 if num_unfunded_channels == peer.total_channel_count() {
6115 peers_without_funded_channels += 1;
6119 return peers_without_funded_channels;
6122 fn unfunded_channel_count(
6123 peer: &PeerState<SP>, best_block_height: u32
6125 let mut num_unfunded_channels = 0;
6126 for (_, phase) in peer.channel_by_id.iter() {
6128 ChannelPhase::Funded(chan) => {
6129 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
6130 // which have not yet had any confirmations on-chain.
6131 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
6132 chan.context.get_funding_tx_confirmations(best_block_height) == 0
6134 num_unfunded_channels += 1;
6137 ChannelPhase::UnfundedInboundV1(chan) => {
6138 if chan.context.minimum_depth().unwrap_or(1) != 0 {
6139 num_unfunded_channels += 1;
6142 ChannelPhase::UnfundedOutboundV1(_) => {
6143 // Outbound channels don't contribute to the unfunded count in the DoS context.
6148 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
6151 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
6152 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6153 // likely to be lost on restart!
6154 if msg.chain_hash != self.chain_hash {
6155 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
6158 if !self.default_configuration.accept_inbound_channels {
6159 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6162 // Get the number of peers with channels, but without funded ones. We don't care too much
6163 // about peers that never open a channel, so we filter by peers that have at least one
6164 // channel, and then limit the number of those with unfunded channels.
6165 let channeled_peers_without_funding =
6166 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
6168 let per_peer_state = self.per_peer_state.read().unwrap();
6169 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6171 debug_assert!(false);
6172 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
6174 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6175 let peer_state = &mut *peer_state_lock;
6177 // If this peer already has some channels, a new channel won't increase our number of peers
6178 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6179 // channels per-peer we can accept channels from a peer with existing ones.
6180 if peer_state.total_channel_count() == 0 &&
6181 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
6182 !self.default_configuration.manually_accept_inbound_channels
6184 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6185 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
6186 msg.temporary_channel_id.clone()));
6189 let best_block_height = self.best_block.read().unwrap().height();
6190 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
6191 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6192 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
6193 msg.temporary_channel_id.clone()));
6196 let channel_id = msg.temporary_channel_id;
6197 let channel_exists = peer_state.has_channel(&channel_id);
6199 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
6202 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
6203 if self.default_configuration.manually_accept_inbound_channels {
6204 let channel_type = channel::channel_type_from_open_channel(
6205 &msg, &peer_state.latest_features, &self.channel_type_features()
6207 MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id)
6209 let mut pending_events = self.pending_events.lock().unwrap();
6210 pending_events.push_back((events::Event::OpenChannelRequest {
6211 temporary_channel_id: msg.temporary_channel_id.clone(),
6212 counterparty_node_id: counterparty_node_id.clone(),
6213 funding_satoshis: msg.funding_satoshis,
6214 push_msat: msg.push_msat,
6217 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
6218 open_channel_msg: msg.clone(),
6219 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
6224 // Otherwise create the channel right now.
6225 let mut random_bytes = [0u8; 16];
6226 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
6227 let user_channel_id = u128::from_be_bytes(random_bytes);
6228 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6229 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
6230 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
6233 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
6238 let channel_type = channel.context.get_channel_type();
6239 if channel_type.requires_zero_conf() {
6240 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
6242 if channel_type.requires_anchors_zero_fee_htlc_tx() {
6243 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
6246 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
6247 channel.context.set_outbound_scid_alias(outbound_scid_alias);
6249 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
6250 node_id: counterparty_node_id.clone(),
6251 msg: channel.accept_inbound_channel(),
6253 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
6257 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
6258 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
6259 // likely to be lost on restart!
6260 let (value, output_script, user_id) = {
6261 let per_peer_state = self.per_peer_state.read().unwrap();
6262 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6264 debug_assert!(false);
6265 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6267 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6268 let peer_state = &mut *peer_state_lock;
6269 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6270 hash_map::Entry::Occupied(mut phase) => {
6271 match phase.get_mut() {
6272 ChannelPhase::UnfundedOutboundV1(chan) => {
6273 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6274 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6277 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6281 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6284 let mut pending_events = self.pending_events.lock().unwrap();
6285 pending_events.push_back((events::Event::FundingGenerationReady {
6286 temporary_channel_id: msg.temporary_channel_id,
6287 counterparty_node_id: *counterparty_node_id,
6288 channel_value_satoshis: value,
6290 user_channel_id: user_id,
6295 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6296 let best_block = *self.best_block.read().unwrap();
6298 let per_peer_state = self.per_peer_state.read().unwrap();
6299 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6301 debug_assert!(false);
6302 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6305 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6306 let peer_state = &mut *peer_state_lock;
6307 let (mut chan, funding_msg_opt, monitor) =
6308 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6309 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6310 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
6311 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
6313 Err((inbound_chan, err)) => {
6314 // We've already removed this inbound channel from the map in `PeerState`
6315 // above so at this point we just need to clean up any lingering entries
6316 // concerning this channel as it is safe to do so.
6317 debug_assert!(matches!(err, ChannelError::Close(_)));
6318 // Really we should be returning the channel_id the peer expects based
6319 // on their funding info here, but they're horribly confused anyway, so
6320 // there's not a lot we can do to save them.
6321 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
6325 Some(mut phase) => {
6326 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
6327 let err = ChannelError::Close(err_msg);
6328 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
6330 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6333 let funded_channel_id = chan.context.channel_id();
6335 macro_rules! fail_chan { ($err: expr) => { {
6336 // Note that at this point we've filled in the funding outpoint on our
6337 // channel, but its actually in conflict with another channel. Thus, if
6338 // we call `convert_chan_phase_err` immediately (thus calling
6339 // `update_maps_on_chan_removal`), we'll remove the existing channel
6340 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
6342 let err = ChannelError::Close($err.to_owned());
6343 chan.unset_funding_info(msg.temporary_channel_id);
6344 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
6347 match peer_state.channel_by_id.entry(funded_channel_id) {
6348 hash_map::Entry::Occupied(_) => {
6349 fail_chan!("Already had channel with the new channel_id");
6351 hash_map::Entry::Vacant(e) => {
6352 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
6353 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
6354 hash_map::Entry::Occupied(_) => {
6355 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
6357 hash_map::Entry::Vacant(i_e) => {
6358 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6359 if let Ok(persist_state) = monitor_res {
6360 i_e.insert(chan.context.get_counterparty_node_id());
6361 mem::drop(outpoint_to_peer_lock);
6363 // There's no problem signing a counterparty's funding transaction if our monitor
6364 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6365 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6366 // until we have persisted our monitor.
6367 if let Some(msg) = funding_msg_opt {
6368 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6369 node_id: counterparty_node_id.clone(),
6374 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6375 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6376 per_peer_state, chan, INITIAL_MONITOR);
6378 unreachable!("This must be a funded channel as we just inserted it.");
6382 let logger = WithChannelContext::from(&self.logger, &chan.context);
6383 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6384 fail_chan!("Duplicate funding outpoint");
6392 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6393 let best_block = *self.best_block.read().unwrap();
6394 let per_peer_state = self.per_peer_state.read().unwrap();
6395 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6397 debug_assert!(false);
6398 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6401 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6402 let peer_state = &mut *peer_state_lock;
6403 match peer_state.channel_by_id.entry(msg.channel_id) {
6404 hash_map::Entry::Occupied(chan_phase_entry) => {
6405 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
6406 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
6407 let logger = WithContext::from(
6409 Some(chan.context.get_counterparty_node_id()),
6410 Some(chan.context.channel_id())
6413 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
6415 Ok((mut chan, monitor)) => {
6416 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6417 // We really should be able to insert here without doing a second
6418 // lookup, but sadly rust stdlib doesn't currently allow keeping
6419 // the original Entry around with the value removed.
6420 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
6421 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
6422 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6423 } else { unreachable!(); }
6426 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
6427 // We weren't able to watch the channel to begin with, so no
6428 // updates should be made on it. Previously, full_stack_target
6429 // found an (unreachable) panic when the monitor update contained
6430 // within `shutdown_finish` was applied.
6431 chan.unset_funding_info(msg.channel_id);
6432 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
6436 debug_assert!(matches!(e, ChannelError::Close(_)),
6437 "We don't have a channel anymore, so the error better have expected close");
6438 // We've already removed this outbound channel from the map in
6439 // `PeerState` above so at this point we just need to clean up any
6440 // lingering entries concerning this channel as it is safe to do so.
6441 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
6445 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6448 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6452 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6453 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6454 // closing a channel), so any changes are likely to be lost on restart!
6455 let per_peer_state = self.per_peer_state.read().unwrap();
6456 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6458 debug_assert!(false);
6459 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6461 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6462 let peer_state = &mut *peer_state_lock;
6463 match peer_state.channel_by_id.entry(msg.channel_id) {
6464 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6465 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6466 let logger = WithChannelContext::from(&self.logger, &chan.context);
6467 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6468 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
6469 if let Some(announcement_sigs) = announcement_sigs_opt {
6470 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6471 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6472 node_id: counterparty_node_id.clone(),
6473 msg: announcement_sigs,
6475 } else if chan.context.is_usable() {
6476 // If we're sending an announcement_signatures, we'll send the (public)
6477 // channel_update after sending a channel_announcement when we receive our
6478 // counterparty's announcement_signatures. Thus, we only bother to send a
6479 // channel_update here if the channel is not public, i.e. we're not sending an
6480 // announcement_signatures.
6481 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6482 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6483 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6484 node_id: counterparty_node_id.clone(),
6491 let mut pending_events = self.pending_events.lock().unwrap();
6492 emit_channel_ready_event!(pending_events, chan);
6497 try_chan_phase_entry!(self, Err(ChannelError::Close(
6498 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6501 hash_map::Entry::Vacant(_) => {
6502 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6507 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6508 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6509 let mut finish_shutdown = None;
6511 let per_peer_state = self.per_peer_state.read().unwrap();
6512 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6514 debug_assert!(false);
6515 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6517 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6518 let peer_state = &mut *peer_state_lock;
6519 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6520 let phase = chan_phase_entry.get_mut();
6522 ChannelPhase::Funded(chan) => {
6523 if !chan.received_shutdown() {
6524 let logger = WithChannelContext::from(&self.logger, &chan.context);
6525 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
6527 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6530 let funding_txo_opt = chan.context.get_funding_txo();
6531 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6532 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6533 dropped_htlcs = htlcs;
6535 if let Some(msg) = shutdown {
6536 // We can send the `shutdown` message before updating the `ChannelMonitor`
6537 // here as we don't need the monitor update to complete until we send a
6538 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6539 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6540 node_id: *counterparty_node_id,
6544 // Update the monitor with the shutdown script if necessary.
6545 if let Some(monitor_update) = monitor_update_opt {
6546 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6547 peer_state_lock, peer_state, per_peer_state, chan);
6550 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6551 let context = phase.context_mut();
6552 let logger = WithChannelContext::from(&self.logger, context);
6553 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6554 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6555 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
6559 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6562 for htlc_source in dropped_htlcs.drain(..) {
6563 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6564 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6565 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6567 if let Some(shutdown_res) = finish_shutdown {
6568 self.finish_close_channel(shutdown_res);
6574 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6575 let per_peer_state = self.per_peer_state.read().unwrap();
6576 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6578 debug_assert!(false);
6579 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6581 let (tx, chan_option, shutdown_result) = {
6582 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6583 let peer_state = &mut *peer_state_lock;
6584 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6585 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6586 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6587 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6588 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6589 if let Some(msg) = closing_signed {
6590 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6591 node_id: counterparty_node_id.clone(),
6596 // We're done with this channel, we've got a signed closing transaction and
6597 // will send the closing_signed back to the remote peer upon return. This
6598 // also implies there are no pending HTLCs left on the channel, so we can
6599 // fully delete it from tracking (the channel monitor is still around to
6600 // watch for old state broadcasts)!
6601 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6602 } else { (tx, None, shutdown_result) }
6604 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6605 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6608 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6611 if let Some(broadcast_tx) = tx {
6612 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
6613 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
6614 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6616 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6617 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6618 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6619 let peer_state = &mut *peer_state_lock;
6620 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6625 mem::drop(per_peer_state);
6626 if let Some(shutdown_result) = shutdown_result {
6627 self.finish_close_channel(shutdown_result);
6632 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6633 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6634 //determine the state of the payment based on our response/if we forward anything/the time
6635 //we take to respond. We should take care to avoid allowing such an attack.
6637 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6638 //us repeatedly garbled in different ways, and compare our error messages, which are
6639 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6640 //but we should prevent it anyway.
6642 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6643 // closing a channel), so any changes are likely to be lost on restart!
6645 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
6646 let per_peer_state = self.per_peer_state.read().unwrap();
6647 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6649 debug_assert!(false);
6650 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6652 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6653 let peer_state = &mut *peer_state_lock;
6654 match peer_state.channel_by_id.entry(msg.channel_id) {
6655 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6656 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6657 let pending_forward_info = match decoded_hop_res {
6658 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6659 self.construct_pending_htlc_status(
6660 msg, counterparty_node_id, shared_secret, next_hop,
6661 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
6663 Err(e) => PendingHTLCStatus::Fail(e)
6665 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6666 if msg.blinding_point.is_some() {
6667 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
6668 msgs::UpdateFailMalformedHTLC {
6669 channel_id: msg.channel_id,
6670 htlc_id: msg.htlc_id,
6671 sha256_of_onion: [0; 32],
6672 failure_code: INVALID_ONION_BLINDING,
6676 // If the update_add is completely bogus, the call will Err and we will close,
6677 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6678 // want to reject the new HTLC and fail it backwards instead of forwarding.
6679 match pending_forward_info {
6680 PendingHTLCStatus::Forward(PendingHTLCInfo {
6681 ref incoming_shared_secret, ref routing, ..
6683 let reason = if routing.blinded_failure().is_some() {
6684 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
6685 } else if (error_code & 0x1000) != 0 {
6686 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6687 HTLCFailReason::reason(real_code, error_data)
6689 HTLCFailReason::from_failure_code(error_code)
6690 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6691 let msg = msgs::UpdateFailHTLC {
6692 channel_id: msg.channel_id,
6693 htlc_id: msg.htlc_id,
6696 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6698 _ => pending_forward_info
6701 let logger = WithChannelContext::from(&self.logger, &chan.context);
6702 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &&logger), chan_phase_entry);
6704 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6705 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6708 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6713 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6715 let (htlc_source, forwarded_htlc_value) = {
6716 let per_peer_state = self.per_peer_state.read().unwrap();
6717 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6719 debug_assert!(false);
6720 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6722 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6723 let peer_state = &mut *peer_state_lock;
6724 match peer_state.channel_by_id.entry(msg.channel_id) {
6725 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6726 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6727 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6728 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6729 let logger = WithChannelContext::from(&self.logger, &chan.context);
6731 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
6733 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6734 .or_insert_with(Vec::new)
6735 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6737 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6738 // entry here, even though we *do* need to block the next RAA monitor update.
6739 // We do this instead in the `claim_funds_internal` by attaching a
6740 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6741 // outbound HTLC is claimed. This is guaranteed to all complete before we
6742 // process the RAA as messages are processed from single peers serially.
6743 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6746 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6747 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6750 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6753 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, false, Some(*counterparty_node_id), funding_txo);
6757 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6758 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6759 // closing a channel), so any changes are likely to be lost on restart!
6760 let per_peer_state = self.per_peer_state.read().unwrap();
6761 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6763 debug_assert!(false);
6764 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6766 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6767 let peer_state = &mut *peer_state_lock;
6768 match peer_state.channel_by_id.entry(msg.channel_id) {
6769 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6770 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6771 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6773 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6774 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6777 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6782 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6783 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6784 // closing a channel), so any changes are likely to be lost on restart!
6785 let per_peer_state = self.per_peer_state.read().unwrap();
6786 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6788 debug_assert!(false);
6789 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6791 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6792 let peer_state = &mut *peer_state_lock;
6793 match peer_state.channel_by_id.entry(msg.channel_id) {
6794 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6795 if (msg.failure_code & 0x8000) == 0 {
6796 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6797 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6799 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6800 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6802 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6803 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6807 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6811 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6812 let per_peer_state = self.per_peer_state.read().unwrap();
6813 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6815 debug_assert!(false);
6816 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6818 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6819 let peer_state = &mut *peer_state_lock;
6820 match peer_state.channel_by_id.entry(msg.channel_id) {
6821 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6822 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6823 let logger = WithChannelContext::from(&self.logger, &chan.context);
6824 let funding_txo = chan.context.get_funding_txo();
6825 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
6826 if let Some(monitor_update) = monitor_update_opt {
6827 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6828 peer_state, per_peer_state, chan);
6832 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6833 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6836 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6841 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6842 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6843 let mut push_forward_event = false;
6844 let mut new_intercept_events = VecDeque::new();
6845 let mut failed_intercept_forwards = Vec::new();
6846 if !pending_forwards.is_empty() {
6847 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6848 let scid = match forward_info.routing {
6849 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6850 PendingHTLCRouting::Receive { .. } => 0,
6851 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6853 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6854 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6856 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6857 let forward_htlcs_empty = forward_htlcs.is_empty();
6858 match forward_htlcs.entry(scid) {
6859 hash_map::Entry::Occupied(mut entry) => {
6860 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6861 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6863 hash_map::Entry::Vacant(entry) => {
6864 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6865 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6867 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
6868 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6869 match pending_intercepts.entry(intercept_id) {
6870 hash_map::Entry::Vacant(entry) => {
6871 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6872 requested_next_hop_scid: scid,
6873 payment_hash: forward_info.payment_hash,
6874 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6875 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6878 entry.insert(PendingAddHTLCInfo {
6879 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6881 hash_map::Entry::Occupied(_) => {
6882 let logger = WithContext::from(&self.logger, None, Some(prev_funding_outpoint.to_channel_id()));
6883 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6884 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6885 short_channel_id: prev_short_channel_id,
6886 user_channel_id: Some(prev_user_channel_id),
6887 outpoint: prev_funding_outpoint,
6888 htlc_id: prev_htlc_id,
6889 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6890 phantom_shared_secret: None,
6891 blinded_failure: forward_info.routing.blinded_failure(),
6894 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6895 HTLCFailReason::from_failure_code(0x4000 | 10),
6896 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6901 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6902 // payments are being processed.
6903 if forward_htlcs_empty {
6904 push_forward_event = true;
6906 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6907 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6914 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6915 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6918 if !new_intercept_events.is_empty() {
6919 let mut events = self.pending_events.lock().unwrap();
6920 events.append(&mut new_intercept_events);
6922 if push_forward_event { self.push_pending_forwards_ev() }
6926 fn push_pending_forwards_ev(&self) {
6927 let mut pending_events = self.pending_events.lock().unwrap();
6928 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6929 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6930 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6932 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6933 // events is done in batches and they are not removed until we're done processing each
6934 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6935 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6936 // payments will need an additional forwarding event before being claimed to make them look
6937 // real by taking more time.
6938 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6939 pending_events.push_back((Event::PendingHTLCsForwardable {
6940 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6945 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6946 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6947 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6948 /// the [`ChannelMonitorUpdate`] in question.
6949 fn raa_monitor_updates_held(&self,
6950 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6951 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6953 actions_blocking_raa_monitor_updates
6954 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6955 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6956 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6957 channel_funding_outpoint,
6958 counterparty_node_id,
6963 #[cfg(any(test, feature = "_test_utils"))]
6964 pub(crate) fn test_raa_monitor_updates_held(&self,
6965 counterparty_node_id: PublicKey, channel_id: ChannelId
6967 let per_peer_state = self.per_peer_state.read().unwrap();
6968 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6969 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6970 let peer_state = &mut *peer_state_lck;
6972 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6973 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6974 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6980 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6981 let htlcs_to_fail = {
6982 let per_peer_state = self.per_peer_state.read().unwrap();
6983 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6985 debug_assert!(false);
6986 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6987 }).map(|mtx| mtx.lock().unwrap())?;
6988 let peer_state = &mut *peer_state_lock;
6989 match peer_state.channel_by_id.entry(msg.channel_id) {
6990 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6991 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6992 let logger = WithChannelContext::from(&self.logger, &chan.context);
6993 let funding_txo_opt = chan.context.get_funding_txo();
6994 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6995 self.raa_monitor_updates_held(
6996 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6997 *counterparty_node_id)
6999 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
7000 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
7001 if let Some(monitor_update) = monitor_update_opt {
7002 let funding_txo = funding_txo_opt
7003 .expect("Funding outpoint must have been set for RAA handling to succeed");
7004 handle_new_monitor_update!(self, funding_txo, monitor_update,
7005 peer_state_lock, peer_state, per_peer_state, chan);
7009 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7010 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
7013 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7016 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
7020 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
7021 let per_peer_state = self.per_peer_state.read().unwrap();
7022 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7024 debug_assert!(false);
7025 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7027 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7028 let peer_state = &mut *peer_state_lock;
7029 match peer_state.channel_by_id.entry(msg.channel_id) {
7030 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7031 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7032 let logger = WithChannelContext::from(&self.logger, &chan.context);
7033 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
7035 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7036 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
7039 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7044 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
7045 let per_peer_state = self.per_peer_state.read().unwrap();
7046 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7048 debug_assert!(false);
7049 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7051 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7052 let peer_state = &mut *peer_state_lock;
7053 match peer_state.channel_by_id.entry(msg.channel_id) {
7054 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7055 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7056 if !chan.context.is_usable() {
7057 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
7060 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
7061 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
7062 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
7063 msg, &self.default_configuration
7064 ), chan_phase_entry),
7065 // Note that announcement_signatures fails if the channel cannot be announced,
7066 // so get_channel_update_for_broadcast will never fail by the time we get here.
7067 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
7070 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7071 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
7074 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7079 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
7080 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
7081 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
7082 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
7084 // It's not a local channel
7085 return Ok(NotifyOption::SkipPersistNoEvents)
7088 let per_peer_state = self.per_peer_state.read().unwrap();
7089 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
7090 if peer_state_mutex_opt.is_none() {
7091 return Ok(NotifyOption::SkipPersistNoEvents)
7093 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
7094 let peer_state = &mut *peer_state_lock;
7095 match peer_state.channel_by_id.entry(chan_id) {
7096 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7097 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7098 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
7099 if chan.context.should_announce() {
7100 // If the announcement is about a channel of ours which is public, some
7101 // other peer may simply be forwarding all its gossip to us. Don't provide
7102 // a scary-looking error message and return Ok instead.
7103 return Ok(NotifyOption::SkipPersistNoEvents);
7105 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
7107 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
7108 let msg_from_node_one = msg.contents.flags & 1 == 0;
7109 if were_node_one == msg_from_node_one {
7110 return Ok(NotifyOption::SkipPersistNoEvents);
7112 let logger = WithChannelContext::from(&self.logger, &chan.context);
7113 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
7114 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
7115 // If nothing changed after applying their update, we don't need to bother
7118 return Ok(NotifyOption::SkipPersistNoEvents);
7122 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7123 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
7126 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
7128 Ok(NotifyOption::DoPersist)
7131 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
7133 let need_lnd_workaround = {
7134 let per_peer_state = self.per_peer_state.read().unwrap();
7136 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7138 debug_assert!(false);
7139 MsgHandleErrInternal::send_err_msg_no_close(
7140 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7144 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
7145 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7146 let peer_state = &mut *peer_state_lock;
7147 match peer_state.channel_by_id.entry(msg.channel_id) {
7148 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7149 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7150 // Currently, we expect all holding cell update_adds to be dropped on peer
7151 // disconnect, so Channel's reestablish will never hand us any holding cell
7152 // freed HTLCs to fail backwards. If in the future we no longer drop pending
7153 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
7154 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
7155 msg, &&logger, &self.node_signer, self.chain_hash,
7156 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
7157 let mut channel_update = None;
7158 if let Some(msg) = responses.shutdown_msg {
7159 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7160 node_id: counterparty_node_id.clone(),
7163 } else if chan.context.is_usable() {
7164 // If the channel is in a usable state (ie the channel is not being shut
7165 // down), send a unicast channel_update to our counterparty to make sure
7166 // they have the latest channel parameters.
7167 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7168 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
7169 node_id: chan.context.get_counterparty_node_id(),
7174 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
7175 htlc_forwards = self.handle_channel_resumption(
7176 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
7177 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
7178 if let Some(upd) = channel_update {
7179 peer_state.pending_msg_events.push(upd);
7183 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7184 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
7187 hash_map::Entry::Vacant(_) => {
7188 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
7190 // Unfortunately, lnd doesn't force close on errors
7191 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
7192 // One of the few ways to get an lnd counterparty to force close is by
7193 // replicating what they do when restoring static channel backups (SCBs). They
7194 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
7195 // invalid `your_last_per_commitment_secret`.
7197 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
7198 // can assume it's likely the channel closed from our point of view, but it
7199 // remains open on the counterparty's side. By sending this bogus
7200 // `ChannelReestablish` message now as a response to theirs, we trigger them to
7201 // force close broadcasting their latest state. If the closing transaction from
7202 // our point of view remains unconfirmed, it'll enter a race with the
7203 // counterparty's to-be-broadcast latest commitment transaction.
7204 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
7205 node_id: *counterparty_node_id,
7206 msg: msgs::ChannelReestablish {
7207 channel_id: msg.channel_id,
7208 next_local_commitment_number: 0,
7209 next_remote_commitment_number: 0,
7210 your_last_per_commitment_secret: [1u8; 32],
7211 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
7212 next_funding_txid: None,
7215 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7216 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
7217 counterparty_node_id), msg.channel_id)
7223 let mut persist = NotifyOption::SkipPersistHandleEvents;
7224 if let Some(forwards) = htlc_forwards {
7225 self.forward_htlcs(&mut [forwards][..]);
7226 persist = NotifyOption::DoPersist;
7229 if let Some(channel_ready_msg) = need_lnd_workaround {
7230 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
7235 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
7236 fn process_pending_monitor_events(&self) -> bool {
7237 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
7239 let mut failed_channels = Vec::new();
7240 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
7241 let has_pending_monitor_events = !pending_monitor_events.is_empty();
7242 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
7243 for monitor_event in monitor_events.drain(..) {
7244 match monitor_event {
7245 MonitorEvent::HTLCEvent(htlc_update) => {
7246 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(funding_outpoint.to_channel_id()));
7247 if let Some(preimage) = htlc_update.payment_preimage {
7248 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
7249 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, false, counterparty_node_id, funding_outpoint);
7251 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
7252 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
7253 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7254 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
7257 MonitorEvent::HolderForceClosed(funding_outpoint) => {
7258 let counterparty_node_id_opt = match counterparty_node_id {
7259 Some(cp_id) => Some(cp_id),
7261 // TODO: Once we can rely on the counterparty_node_id from the
7262 // monitor event, this and the outpoint_to_peer map should be removed.
7263 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
7264 outpoint_to_peer.get(&funding_outpoint).cloned()
7267 if let Some(counterparty_node_id) = counterparty_node_id_opt {
7268 let per_peer_state = self.per_peer_state.read().unwrap();
7269 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7270 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7271 let peer_state = &mut *peer_state_lock;
7272 let pending_msg_events = &mut peer_state.pending_msg_events;
7273 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
7274 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
7275 failed_channels.push(chan.context.force_shutdown(false, ClosureReason::HolderForceClosed));
7276 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7277 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7281 pending_msg_events.push(events::MessageSendEvent::HandleError {
7282 node_id: chan.context.get_counterparty_node_id(),
7283 action: msgs::ErrorAction::DisconnectPeer {
7284 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
7292 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
7293 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
7299 for failure in failed_channels.drain(..) {
7300 self.finish_close_channel(failure);
7303 has_pending_monitor_events
7306 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
7307 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
7308 /// update events as a separate process method here.
7310 pub fn process_monitor_events(&self) {
7311 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7312 self.process_pending_monitor_events();
7315 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
7316 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
7317 /// update was applied.
7318 fn check_free_holding_cells(&self) -> bool {
7319 let mut has_monitor_update = false;
7320 let mut failed_htlcs = Vec::new();
7322 // Walk our list of channels and find any that need to update. Note that when we do find an
7323 // update, if it includes actions that must be taken afterwards, we have to drop the
7324 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
7325 // manage to go through all our peers without finding a single channel to update.
7327 let per_peer_state = self.per_peer_state.read().unwrap();
7328 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7330 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7331 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
7332 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7333 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7335 let counterparty_node_id = chan.context.get_counterparty_node_id();
7336 let funding_txo = chan.context.get_funding_txo();
7337 let (monitor_opt, holding_cell_failed_htlcs) =
7338 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
7339 if !holding_cell_failed_htlcs.is_empty() {
7340 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7342 if let Some(monitor_update) = monitor_opt {
7343 has_monitor_update = true;
7345 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7346 peer_state_lock, peer_state, per_peer_state, chan);
7347 continue 'peer_loop;
7356 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7357 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7358 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7364 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
7365 /// is (temporarily) unavailable, and the operation should be retried later.
7367 /// This method allows for that retry - either checking for any signer-pending messages to be
7368 /// attempted in every channel, or in the specifically provided channel.
7370 /// [`ChannelSigner`]: crate::sign::ChannelSigner
7371 #[cfg(async_signing)]
7372 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
7373 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7375 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
7376 let node_id = phase.context().get_counterparty_node_id();
7378 ChannelPhase::Funded(chan) => {
7379 let msgs = chan.signer_maybe_unblocked(&self.logger);
7380 if let Some(updates) = msgs.commitment_update {
7381 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
7386 if let Some(msg) = msgs.funding_signed {
7387 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7392 if let Some(msg) = msgs.channel_ready {
7393 send_channel_ready!(self, pending_msg_events, chan, msg);
7396 ChannelPhase::UnfundedOutboundV1(chan) => {
7397 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
7398 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
7404 ChannelPhase::UnfundedInboundV1(_) => {},
7408 let per_peer_state = self.per_peer_state.read().unwrap();
7409 if let Some((counterparty_node_id, channel_id)) = channel_opt {
7410 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
7411 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7412 let peer_state = &mut *peer_state_lock;
7413 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
7414 unblock_chan(chan, &mut peer_state.pending_msg_events);
7418 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7419 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7420 let peer_state = &mut *peer_state_lock;
7421 for (_, chan) in peer_state.channel_by_id.iter_mut() {
7422 unblock_chan(chan, &mut peer_state.pending_msg_events);
7428 /// Check whether any channels have finished removing all pending updates after a shutdown
7429 /// exchange and can now send a closing_signed.
7430 /// Returns whether any closing_signed messages were generated.
7431 fn maybe_generate_initial_closing_signed(&self) -> bool {
7432 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7433 let mut has_update = false;
7434 let mut shutdown_results = Vec::new();
7436 let per_peer_state = self.per_peer_state.read().unwrap();
7438 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7439 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7440 let peer_state = &mut *peer_state_lock;
7441 let pending_msg_events = &mut peer_state.pending_msg_events;
7442 peer_state.channel_by_id.retain(|channel_id, phase| {
7444 ChannelPhase::Funded(chan) => {
7445 let logger = WithChannelContext::from(&self.logger, &chan.context);
7446 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
7447 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7448 if let Some(msg) = msg_opt {
7450 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7451 node_id: chan.context.get_counterparty_node_id(), msg,
7454 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7455 if let Some(shutdown_result) = shutdown_result_opt {
7456 shutdown_results.push(shutdown_result);
7458 if let Some(tx) = tx_opt {
7459 // We're done with this channel. We got a closing_signed and sent back
7460 // a closing_signed with a closing transaction to broadcast.
7461 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7462 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7467 log_info!(logger, "Broadcasting {}", log_tx!(tx));
7468 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7469 update_maps_on_chan_removal!(self, &chan.context);
7475 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7476 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7481 _ => true, // Retain unfunded channels if present.
7487 for (counterparty_node_id, err) in handle_errors.drain(..) {
7488 let _ = handle_error!(self, err, counterparty_node_id);
7491 for shutdown_result in shutdown_results.drain(..) {
7492 self.finish_close_channel(shutdown_result);
7498 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7499 /// pushing the channel monitor update (if any) to the background events queue and removing the
7501 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7502 for mut failure in failed_channels.drain(..) {
7503 // Either a commitment transactions has been confirmed on-chain or
7504 // Channel::block_disconnected detected that the funding transaction has been
7505 // reorganized out of the main chain.
7506 // We cannot broadcast our latest local state via monitor update (as
7507 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7508 // so we track the update internally and handle it when the user next calls
7509 // timer_tick_occurred, guaranteeing we're running normally.
7510 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7511 assert_eq!(update.updates.len(), 1);
7512 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7513 assert!(should_broadcast);
7514 } else { unreachable!(); }
7515 self.pending_background_events.lock().unwrap().push(
7516 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7517 counterparty_node_id, funding_txo, update
7520 self.finish_close_channel(failure);
7524 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7525 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7526 /// not have an expiration unless otherwise set on the builder.
7530 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
7531 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
7532 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
7533 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
7534 /// order to send the [`InvoiceRequest`].
7536 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
7540 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
7545 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
7547 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7549 /// [`Offer`]: crate::offers::offer::Offer
7550 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7551 pub fn create_offer_builder(
7552 &self, description: String
7553 ) -> Result<OfferBuilder<DerivedMetadata, secp256k1::All>, Bolt12SemanticError> {
7554 let node_id = self.get_our_node_id();
7555 let expanded_key = &self.inbound_payment_key;
7556 let entropy = &*self.entropy_source;
7557 let secp_ctx = &self.secp_ctx;
7559 let path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
7560 let builder = OfferBuilder::deriving_signing_pubkey(
7561 description, node_id, expanded_key, entropy, secp_ctx
7563 .chain_hash(self.chain_hash)
7569 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7570 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
7574 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7575 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
7577 /// The builder will have the provided expiration set. Any changes to the expiration on the
7578 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
7579 /// block time minus two hours is used for the current time when determining if the refund has
7582 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
7583 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
7584 /// with an [`Event::InvoiceRequestFailed`].
7586 /// If `max_total_routing_fee_msat` is not specified, The default from
7587 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7591 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
7592 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
7593 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
7594 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
7595 /// order to send the [`Bolt12Invoice`].
7597 /// Also, uses a derived payer id in the refund for payer privacy.
7601 /// Requires a direct connection to an introduction node in the responding
7602 /// [`Bolt12Invoice::payment_paths`].
7607 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
7608 /// - `amount_msats` is invalid, or
7609 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
7611 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
7613 /// [`Refund`]: crate::offers::refund::Refund
7614 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7615 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7616 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7617 pub fn create_refund_builder(
7618 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7619 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7620 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7621 let node_id = self.get_our_node_id();
7622 let expanded_key = &self.inbound_payment_key;
7623 let entropy = &*self.entropy_source;
7624 let secp_ctx = &self.secp_ctx;
7626 let path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
7627 let builder = RefundBuilder::deriving_payer_id(
7628 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7630 .chain_hash(self.chain_hash)
7631 .absolute_expiry(absolute_expiry)
7634 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
7635 self.pending_outbound_payments
7636 .add_new_awaiting_invoice(
7637 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
7639 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7644 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
7645 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
7646 /// [`Bolt12Invoice`] once it is received.
7648 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
7649 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
7650 /// The optional parameters are used in the builder, if `Some`:
7651 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
7652 /// [`Offer::expects_quantity`] is `true`.
7653 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
7654 /// - `payer_note` for [`InvoiceRequest::payer_note`].
7656 /// If `max_total_routing_fee_msat` is not specified, The default from
7657 /// [`RouteParameters::from_payment_params_and_value`] is applied.
7661 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
7662 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
7665 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
7666 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
7667 /// payment will fail with an [`Event::InvoiceRequestFailed`].
7671 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
7672 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
7673 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7674 /// in order to send the [`Bolt12Invoice`].
7678 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
7679 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
7680 /// [`Bolt12Invoice::payment_paths`].
7685 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
7686 /// - the provided parameters are invalid for the offer,
7687 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
7690 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7691 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
7692 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
7693 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
7694 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7695 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
7696 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
7697 pub fn pay_for_offer(
7698 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
7699 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
7700 max_total_routing_fee_msat: Option<u64>
7701 ) -> Result<(), Bolt12SemanticError> {
7702 let expanded_key = &self.inbound_payment_key;
7703 let entropy = &*self.entropy_source;
7704 let secp_ctx = &self.secp_ctx;
7707 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
7708 .chain_hash(self.chain_hash)?;
7709 let builder = match quantity {
7711 Some(quantity) => builder.quantity(quantity)?,
7713 let builder = match amount_msats {
7715 Some(amount_msats) => builder.amount_msats(amount_msats)?,
7717 let builder = match payer_note {
7719 Some(payer_note) => builder.payer_note(payer_note),
7721 let invoice_request = builder.build_and_sign()?;
7722 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
7724 let expiration = StaleExpiration::TimerTicks(1);
7725 self.pending_outbound_payments
7726 .add_new_awaiting_invoice(
7727 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
7729 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7731 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7732 if offer.paths().is_empty() {
7733 let message = new_pending_onion_message(
7734 OffersMessage::InvoiceRequest(invoice_request),
7735 Destination::Node(offer.signing_pubkey()),
7738 pending_offers_messages.push(message);
7740 // Send as many invoice requests as there are paths in the offer (with an upper bound).
7741 // Using only one path could result in a failure if the path no longer exists. But only
7742 // one invoice for a given payment id will be paid, even if more than one is received.
7743 const REQUEST_LIMIT: usize = 10;
7744 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
7745 let message = new_pending_onion_message(
7746 OffersMessage::InvoiceRequest(invoice_request.clone()),
7747 Destination::BlindedPath(path.clone()),
7748 Some(reply_path.clone()),
7750 pending_offers_messages.push(message);
7757 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
7760 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
7761 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
7762 /// [`PaymentPreimage`].
7766 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
7767 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
7768 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
7769 /// received and no retries will be made.
7773 /// Errors if the parameterized [`Router`] is unable to create a blinded payment path or reply
7774 /// path for the invoice.
7776 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7777 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
7778 let expanded_key = &self.inbound_payment_key;
7779 let entropy = &*self.entropy_source;
7780 let secp_ctx = &self.secp_ctx;
7782 let amount_msats = refund.amount_msats();
7783 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
7785 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
7786 Ok((payment_hash, payment_secret)) => {
7787 let payment_paths = self.create_blinded_payment_paths(amount_msats, payment_secret)
7788 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
7790 #[cfg(not(feature = "no-std"))]
7791 let builder = refund.respond_using_derived_keys(
7792 payment_paths, payment_hash, expanded_key, entropy
7794 #[cfg(feature = "no-std")]
7795 let created_at = Duration::from_secs(
7796 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
7798 #[cfg(feature = "no-std")]
7799 let builder = refund.respond_using_derived_keys_no_std(
7800 payment_paths, payment_hash, created_at, expanded_key, entropy
7802 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
7803 let reply_path = self.create_blinded_path()
7804 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
7806 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
7807 if refund.paths().is_empty() {
7808 let message = new_pending_onion_message(
7809 OffersMessage::Invoice(invoice),
7810 Destination::Node(refund.payer_id()),
7813 pending_offers_messages.push(message);
7815 for path in refund.paths() {
7816 let message = new_pending_onion_message(
7817 OffersMessage::Invoice(invoice.clone()),
7818 Destination::BlindedPath(path.clone()),
7819 Some(reply_path.clone()),
7821 pending_offers_messages.push(message);
7827 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
7831 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7834 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7835 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7837 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7838 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7839 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7840 /// passed directly to [`claim_funds`].
7842 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7844 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7845 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7849 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7850 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7852 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7854 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7855 /// on versions of LDK prior to 0.0.114.
7857 /// [`claim_funds`]: Self::claim_funds
7858 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7859 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7860 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7861 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7862 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7863 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7864 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7865 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7866 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7867 min_final_cltv_expiry_delta)
7870 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7871 /// stored external to LDK.
7873 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7874 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7875 /// the `min_value_msat` provided here, if one is provided.
7877 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7878 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7881 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7882 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7883 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7884 /// sender "proof-of-payment" unless they have paid the required amount.
7886 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7887 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7888 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7889 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7890 /// invoices when no timeout is set.
7892 /// Note that we use block header time to time-out pending inbound payments (with some margin
7893 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7894 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7895 /// If you need exact expiry semantics, you should enforce them upon receipt of
7896 /// [`PaymentClaimable`].
7898 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7899 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7901 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7902 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7906 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7907 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7909 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7911 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7912 /// on versions of LDK prior to 0.0.114.
7914 /// [`create_inbound_payment`]: Self::create_inbound_payment
7915 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7916 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7917 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7918 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7919 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7920 min_final_cltv_expiry)
7923 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7924 /// previously returned from [`create_inbound_payment`].
7926 /// [`create_inbound_payment`]: Self::create_inbound_payment
7927 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7928 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7931 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
7933 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
7934 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
7935 let recipient = self.get_our_node_id();
7936 let entropy_source = self.entropy_source.deref();
7937 let secp_ctx = &self.secp_ctx;
7939 let peers = self.per_peer_state.read().unwrap()
7941 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
7942 .map(|(node_id, _)| *node_id)
7943 .collect::<Vec<_>>();
7946 .create_blinded_paths(recipient, peers, entropy_source, secp_ctx)
7947 .and_then(|paths| paths.into_iter().next().ok_or(()))
7950 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
7951 /// [`Router::create_blinded_payment_paths`].
7952 fn create_blinded_payment_paths(
7953 &self, amount_msats: u64, payment_secret: PaymentSecret
7954 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
7955 let entropy_source = self.entropy_source.deref();
7956 let secp_ctx = &self.secp_ctx;
7958 let first_hops = self.list_usable_channels();
7959 let payee_node_id = self.get_our_node_id();
7960 let max_cltv_expiry = self.best_block.read().unwrap().height() + CLTV_FAR_FAR_AWAY
7961 + LATENCY_GRACE_PERIOD_BLOCKS;
7962 let payee_tlvs = ReceiveTlvs {
7964 payment_constraints: PaymentConstraints {
7966 htlc_minimum_msat: 1,
7969 self.router.create_blinded_payment_paths(
7970 payee_node_id, first_hops, payee_tlvs, amount_msats, entropy_source, secp_ctx
7974 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7975 /// are used when constructing the phantom invoice's route hints.
7977 /// [phantom node payments]: crate::sign::PhantomKeysManager
7978 pub fn get_phantom_scid(&self) -> u64 {
7979 let best_block_height = self.best_block.read().unwrap().height();
7980 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7982 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7983 // Ensure the generated scid doesn't conflict with a real channel.
7984 match short_to_chan_info.get(&scid_candidate) {
7985 Some(_) => continue,
7986 None => return scid_candidate
7991 /// Gets route hints for use in receiving [phantom node payments].
7993 /// [phantom node payments]: crate::sign::PhantomKeysManager
7994 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7996 channels: self.list_usable_channels(),
7997 phantom_scid: self.get_phantom_scid(),
7998 real_node_pubkey: self.get_our_node_id(),
8002 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
8003 /// used when constructing the route hints for HTLCs intended to be intercepted. See
8004 /// [`ChannelManager::forward_intercepted_htlc`].
8006 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
8007 /// times to get a unique scid.
8008 pub fn get_intercept_scid(&self) -> u64 {
8009 let best_block_height = self.best_block.read().unwrap().height();
8010 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
8012 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
8013 // Ensure the generated scid doesn't conflict with a real channel.
8014 if short_to_chan_info.contains_key(&scid_candidate) { continue }
8015 return scid_candidate
8019 /// Gets inflight HTLC information by processing pending outbound payments that are in
8020 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
8021 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
8022 let mut inflight_htlcs = InFlightHtlcs::new();
8024 let per_peer_state = self.per_peer_state.read().unwrap();
8025 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8026 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8027 let peer_state = &mut *peer_state_lock;
8028 for chan in peer_state.channel_by_id.values().filter_map(
8029 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
8031 for (htlc_source, _) in chan.inflight_htlc_sources() {
8032 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
8033 inflight_htlcs.process_path(path, self.get_our_node_id());
8042 #[cfg(any(test, feature = "_test_utils"))]
8043 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
8044 let events = core::cell::RefCell::new(Vec::new());
8045 let event_handler = |event: events::Event| events.borrow_mut().push(event);
8046 self.process_pending_events(&event_handler);
8050 #[cfg(feature = "_test_utils")]
8051 pub fn push_pending_event(&self, event: events::Event) {
8052 let mut events = self.pending_events.lock().unwrap();
8053 events.push_back((event, None));
8057 pub fn pop_pending_event(&self) -> Option<events::Event> {
8058 let mut events = self.pending_events.lock().unwrap();
8059 events.pop_front().map(|(e, _)| e)
8063 pub fn has_pending_payments(&self) -> bool {
8064 self.pending_outbound_payments.has_pending_payments()
8068 pub fn clear_pending_payments(&self) {
8069 self.pending_outbound_payments.clear_pending_payments()
8072 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
8073 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
8074 /// operation. It will double-check that nothing *else* is also blocking the same channel from
8075 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
8076 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
8077 let logger = WithContext::from(
8078 &self.logger, Some(counterparty_node_id), Some(channel_funding_outpoint.to_channel_id())
8081 let per_peer_state = self.per_peer_state.read().unwrap();
8082 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
8083 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
8084 let peer_state = &mut *peer_state_lck;
8085 if let Some(blocker) = completed_blocker.take() {
8086 // Only do this on the first iteration of the loop.
8087 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
8088 .get_mut(&channel_funding_outpoint.to_channel_id())
8090 blockers.retain(|iter| iter != &blocker);
8094 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
8095 channel_funding_outpoint, counterparty_node_id) {
8096 // Check that, while holding the peer lock, we don't have anything else
8097 // blocking monitor updates for this channel. If we do, release the monitor
8098 // update(s) when those blockers complete.
8099 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
8100 &channel_funding_outpoint.to_channel_id());
8104 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
8105 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8106 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
8107 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
8108 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
8109 channel_funding_outpoint.to_channel_id());
8110 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
8111 peer_state_lck, peer_state, per_peer_state, chan);
8112 if further_update_exists {
8113 // If there are more `ChannelMonitorUpdate`s to process, restart at the
8118 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
8119 channel_funding_outpoint.to_channel_id());
8125 "Got a release post-RAA monitor update for peer {} but the channel is gone",
8126 log_pubkey!(counterparty_node_id));
8132 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
8133 for action in actions {
8135 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
8136 channel_funding_outpoint, counterparty_node_id
8138 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
8144 /// Processes any events asynchronously in the order they were generated since the last call
8145 /// using the given event handler.
8147 /// See the trait-level documentation of [`EventsProvider`] for requirements.
8148 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
8152 process_events_body!(self, ev, { handler(ev).await });
8156 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8158 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8159 T::Target: BroadcasterInterface,
8160 ES::Target: EntropySource,
8161 NS::Target: NodeSigner,
8162 SP::Target: SignerProvider,
8163 F::Target: FeeEstimator,
8167 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
8168 /// The returned array will contain `MessageSendEvent`s for different peers if
8169 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
8170 /// is always placed next to each other.
8172 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
8173 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
8174 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
8175 /// will randomly be placed first or last in the returned array.
8177 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
8178 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
8179 /// the `MessageSendEvent`s to the specific peer they were generated under.
8180 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
8181 let events = RefCell::new(Vec::new());
8182 PersistenceNotifierGuard::optionally_notify(self, || {
8183 let mut result = NotifyOption::SkipPersistNoEvents;
8185 // TODO: This behavior should be documented. It's unintuitive that we query
8186 // ChannelMonitors when clearing other events.
8187 if self.process_pending_monitor_events() {
8188 result = NotifyOption::DoPersist;
8191 if self.check_free_holding_cells() {
8192 result = NotifyOption::DoPersist;
8194 if self.maybe_generate_initial_closing_signed() {
8195 result = NotifyOption::DoPersist;
8198 let mut pending_events = Vec::new();
8199 let per_peer_state = self.per_peer_state.read().unwrap();
8200 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8201 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8202 let peer_state = &mut *peer_state_lock;
8203 if peer_state.pending_msg_events.len() > 0 {
8204 pending_events.append(&mut peer_state.pending_msg_events);
8208 if !pending_events.is_empty() {
8209 events.replace(pending_events);
8218 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
8220 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8221 T::Target: BroadcasterInterface,
8222 ES::Target: EntropySource,
8223 NS::Target: NodeSigner,
8224 SP::Target: SignerProvider,
8225 F::Target: FeeEstimator,
8229 /// Processes events that must be periodically handled.
8231 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
8232 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
8233 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
8235 process_events_body!(self, ev, handler.handle_event(ev));
8239 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
8241 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8242 T::Target: BroadcasterInterface,
8243 ES::Target: EntropySource,
8244 NS::Target: NodeSigner,
8245 SP::Target: SignerProvider,
8246 F::Target: FeeEstimator,
8250 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
8252 let best_block = self.best_block.read().unwrap();
8253 assert_eq!(best_block.block_hash(), header.prev_blockhash,
8254 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
8255 assert_eq!(best_block.height(), height - 1,
8256 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
8259 self.transactions_confirmed(header, txdata, height);
8260 self.best_block_updated(header, height);
8263 fn block_disconnected(&self, header: &Header, height: u32) {
8264 let _persistence_guard =
8265 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8266 self, || -> NotifyOption { NotifyOption::DoPersist });
8267 let new_height = height - 1;
8269 let mut best_block = self.best_block.write().unwrap();
8270 assert_eq!(best_block.block_hash(), header.block_hash(),
8271 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
8272 assert_eq!(best_block.height(), height,
8273 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
8274 *best_block = BestBlock::new(header.prev_blockhash, new_height)
8277 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8281 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
8283 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8284 T::Target: BroadcasterInterface,
8285 ES::Target: EntropySource,
8286 NS::Target: NodeSigner,
8287 SP::Target: SignerProvider,
8288 F::Target: FeeEstimator,
8292 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
8293 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8294 // during initialization prior to the chain_monitor being fully configured in some cases.
8295 // See the docs for `ChannelManagerReadArgs` for more.
8297 let block_hash = header.block_hash();
8298 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
8300 let _persistence_guard =
8301 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8302 self, || -> NotifyOption { NotifyOption::DoPersist });
8303 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
8304 .map(|(a, b)| (a, Vec::new(), b)));
8306 let last_best_block_height = self.best_block.read().unwrap().height();
8307 if height < last_best_block_height {
8308 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
8309 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8313 fn best_block_updated(&self, header: &Header, height: u32) {
8314 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8315 // during initialization prior to the chain_monitor being fully configured in some cases.
8316 // See the docs for `ChannelManagerReadArgs` for more.
8318 let block_hash = header.block_hash();
8319 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
8321 let _persistence_guard =
8322 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8323 self, || -> NotifyOption { NotifyOption::DoPersist });
8324 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
8326 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
8328 macro_rules! max_time {
8329 ($timestamp: expr) => {
8331 // Update $timestamp to be the max of its current value and the block
8332 // timestamp. This should keep us close to the current time without relying on
8333 // having an explicit local time source.
8334 // Just in case we end up in a race, we loop until we either successfully
8335 // update $timestamp or decide we don't need to.
8336 let old_serial = $timestamp.load(Ordering::Acquire);
8337 if old_serial >= header.time as usize { break; }
8338 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
8344 max_time!(self.highest_seen_timestamp);
8345 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
8346 payment_secrets.retain(|_, inbound_payment| {
8347 inbound_payment.expiry_time > header.time as u64
8351 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
8352 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
8353 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
8354 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8355 let peer_state = &mut *peer_state_lock;
8356 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
8357 let txid_opt = chan.context.get_funding_txo();
8358 let height_opt = chan.context.get_funding_tx_confirmation_height();
8359 let hash_opt = chan.context.get_funding_tx_confirmed_in();
8360 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
8361 res.push((funding_txo.txid, conf_height, Some(block_hash)));
8368 fn transaction_unconfirmed(&self, txid: &Txid) {
8369 let _persistence_guard =
8370 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
8371 self, || -> NotifyOption { NotifyOption::DoPersist });
8372 self.do_chain_event(None, |channel| {
8373 if let Some(funding_txo) = channel.context.get_funding_txo() {
8374 if funding_txo.txid == *txid {
8375 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
8376 } else { Ok((None, Vec::new(), None)) }
8377 } else { Ok((None, Vec::new(), None)) }
8382 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8384 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8385 T::Target: BroadcasterInterface,
8386 ES::Target: EntropySource,
8387 NS::Target: NodeSigner,
8388 SP::Target: SignerProvider,
8389 F::Target: FeeEstimator,
8393 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
8394 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
8396 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
8397 (&self, height_opt: Option<u32>, f: FN) {
8398 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
8399 // during initialization prior to the chain_monitor being fully configured in some cases.
8400 // See the docs for `ChannelManagerReadArgs` for more.
8402 let mut failed_channels = Vec::new();
8403 let mut timed_out_htlcs = Vec::new();
8405 let per_peer_state = self.per_peer_state.read().unwrap();
8406 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8407 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8408 let peer_state = &mut *peer_state_lock;
8409 let pending_msg_events = &mut peer_state.pending_msg_events;
8410 peer_state.channel_by_id.retain(|_, phase| {
8412 // Retain unfunded channels.
8413 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
8414 ChannelPhase::Funded(channel) => {
8415 let res = f(channel);
8416 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
8417 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
8418 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
8419 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
8420 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
8422 let logger = WithChannelContext::from(&self.logger, &channel.context);
8423 if let Some(channel_ready) = channel_ready_opt {
8424 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
8425 if channel.context.is_usable() {
8426 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
8427 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
8428 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
8429 node_id: channel.context.get_counterparty_node_id(),
8434 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
8439 let mut pending_events = self.pending_events.lock().unwrap();
8440 emit_channel_ready_event!(pending_events, channel);
8443 if let Some(announcement_sigs) = announcement_sigs {
8444 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
8445 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
8446 node_id: channel.context.get_counterparty_node_id(),
8447 msg: announcement_sigs,
8449 if let Some(height) = height_opt {
8450 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
8451 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8453 // Note that announcement_signatures fails if the channel cannot be announced,
8454 // so get_channel_update_for_broadcast will never fail by the time we get here.
8455 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
8460 if channel.is_our_channel_ready() {
8461 if let Some(real_scid) = channel.context.get_short_channel_id() {
8462 // If we sent a 0conf channel_ready, and now have an SCID, we add it
8463 // to the short_to_chan_info map here. Note that we check whether we
8464 // can relay using the real SCID at relay-time (i.e.
8465 // enforce option_scid_alias then), and if the funding tx is ever
8466 // un-confirmed we force-close the channel, ensuring short_to_chan_info
8467 // is always consistent.
8468 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
8469 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
8470 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
8471 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
8472 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
8475 } else if let Err(reason) = res {
8476 update_maps_on_chan_removal!(self, &channel.context);
8477 // It looks like our counterparty went on-chain or funding transaction was
8478 // reorged out of the main chain. Close the channel.
8479 let reason_message = format!("{}", reason);
8480 failed_channels.push(channel.context.force_shutdown(true, reason));
8481 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
8482 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
8486 pending_msg_events.push(events::MessageSendEvent::HandleError {
8487 node_id: channel.context.get_counterparty_node_id(),
8488 action: msgs::ErrorAction::DisconnectPeer {
8489 msg: Some(msgs::ErrorMessage {
8490 channel_id: channel.context.channel_id(),
8491 data: reason_message,
8504 if let Some(height) = height_opt {
8505 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
8506 payment.htlcs.retain(|htlc| {
8507 // If height is approaching the number of blocks we think it takes us to get
8508 // our commitment transaction confirmed before the HTLC expires, plus the
8509 // number of blocks we generally consider it to take to do a commitment update,
8510 // just give up on it and fail the HTLC.
8511 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
8512 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
8513 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
8515 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
8516 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
8517 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
8521 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
8524 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
8525 intercepted_htlcs.retain(|_, htlc| {
8526 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
8527 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
8528 short_channel_id: htlc.prev_short_channel_id,
8529 user_channel_id: Some(htlc.prev_user_channel_id),
8530 htlc_id: htlc.prev_htlc_id,
8531 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
8532 phantom_shared_secret: None,
8533 outpoint: htlc.prev_funding_outpoint,
8534 blinded_failure: htlc.forward_info.routing.blinded_failure(),
8537 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
8538 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
8539 _ => unreachable!(),
8541 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
8542 HTLCFailReason::from_failure_code(0x2000 | 2),
8543 HTLCDestination::InvalidForward { requested_forward_scid }));
8544 let logger = WithContext::from(
8545 &self.logger, None, Some(htlc.prev_funding_outpoint.to_channel_id())
8547 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
8553 self.handle_init_event_channel_failures(failed_channels);
8555 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
8556 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
8560 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
8561 /// may have events that need processing.
8563 /// In order to check if this [`ChannelManager`] needs persisting, call
8564 /// [`Self::get_and_clear_needs_persistence`].
8566 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
8567 /// [`ChannelManager`] and should instead register actions to be taken later.
8568 pub fn get_event_or_persistence_needed_future(&self) -> Future {
8569 self.event_persist_notifier.get_future()
8572 /// Returns true if this [`ChannelManager`] needs to be persisted.
8573 pub fn get_and_clear_needs_persistence(&self) -> bool {
8574 self.needs_persist_flag.swap(false, Ordering::AcqRel)
8577 #[cfg(any(test, feature = "_test_utils"))]
8578 pub fn get_event_or_persist_condvar_value(&self) -> bool {
8579 self.event_persist_notifier.notify_pending()
8582 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
8583 /// [`chain::Confirm`] interfaces.
8584 pub fn current_best_block(&self) -> BestBlock {
8585 self.best_block.read().unwrap().clone()
8588 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
8589 /// [`ChannelManager`].
8590 pub fn node_features(&self) -> NodeFeatures {
8591 provided_node_features(&self.default_configuration)
8594 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
8595 /// [`ChannelManager`].
8597 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8598 /// or not. Thus, this method is not public.
8599 #[cfg(any(feature = "_test_utils", test))]
8600 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
8601 provided_bolt11_invoice_features(&self.default_configuration)
8604 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
8605 /// [`ChannelManager`].
8606 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
8607 provided_bolt12_invoice_features(&self.default_configuration)
8610 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
8611 /// [`ChannelManager`].
8612 pub fn channel_features(&self) -> ChannelFeatures {
8613 provided_channel_features(&self.default_configuration)
8616 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
8617 /// [`ChannelManager`].
8618 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
8619 provided_channel_type_features(&self.default_configuration)
8622 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
8623 /// [`ChannelManager`].
8624 pub fn init_features(&self) -> InitFeatures {
8625 provided_init_features(&self.default_configuration)
8629 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8630 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
8632 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8633 T::Target: BroadcasterInterface,
8634 ES::Target: EntropySource,
8635 NS::Target: NodeSigner,
8636 SP::Target: SignerProvider,
8637 F::Target: FeeEstimator,
8641 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
8642 // Note that we never need to persist the updated ChannelManager for an inbound
8643 // open_channel message - pre-funded channels are never written so there should be no
8644 // change to the contents.
8645 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8646 let res = self.internal_open_channel(counterparty_node_id, msg);
8647 let persist = match &res {
8648 Err(e) if e.closes_channel() => {
8649 debug_assert!(false, "We shouldn't close a new channel");
8650 NotifyOption::DoPersist
8652 _ => NotifyOption::SkipPersistHandleEvents,
8654 let _ = handle_error!(self, res, *counterparty_node_id);
8659 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
8660 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8661 "Dual-funded channels not supported".to_owned(),
8662 msg.temporary_channel_id.clone())), *counterparty_node_id);
8665 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
8666 // Note that we never need to persist the updated ChannelManager for an inbound
8667 // accept_channel message - pre-funded channels are never written so there should be no
8668 // change to the contents.
8669 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8670 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
8671 NotifyOption::SkipPersistHandleEvents
8675 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
8676 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8677 "Dual-funded channels not supported".to_owned(),
8678 msg.temporary_channel_id.clone())), *counterparty_node_id);
8681 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
8682 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8683 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
8686 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
8687 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8688 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8691 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8692 // Note that we never need to persist the updated ChannelManager for an inbound
8693 // channel_ready message - while the channel's state will change, any channel_ready message
8694 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8695 // will not force-close the channel on startup.
8696 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8697 let res = self.internal_channel_ready(counterparty_node_id, msg);
8698 let persist = match &res {
8699 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8700 _ => NotifyOption::SkipPersistHandleEvents,
8702 let _ = handle_error!(self, res, *counterparty_node_id);
8707 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
8708 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8709 "Quiescence not supported".to_owned(),
8710 msg.channel_id.clone())), *counterparty_node_id);
8713 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
8714 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8715 "Splicing not supported".to_owned(),
8716 msg.channel_id.clone())), *counterparty_node_id);
8719 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
8720 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8721 "Splicing not supported (splice_ack)".to_owned(),
8722 msg.channel_id.clone())), *counterparty_node_id);
8725 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
8726 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8727 "Splicing not supported (splice_locked)".to_owned(),
8728 msg.channel_id.clone())), *counterparty_node_id);
8731 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8732 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8733 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8736 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8737 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8738 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8741 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8742 // Note that we never need to persist the updated ChannelManager for an inbound
8743 // update_add_htlc message - the message itself doesn't change our channel state only the
8744 // `commitment_signed` message afterwards will.
8745 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8746 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8747 let persist = match &res {
8748 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8749 Err(_) => NotifyOption::SkipPersistHandleEvents,
8750 Ok(()) => NotifyOption::SkipPersistNoEvents,
8752 let _ = handle_error!(self, res, *counterparty_node_id);
8757 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8758 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8759 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8762 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8763 // Note that we never need to persist the updated ChannelManager for an inbound
8764 // update_fail_htlc message - the message itself doesn't change our channel state only the
8765 // `commitment_signed` message afterwards will.
8766 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8767 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8768 let persist = match &res {
8769 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8770 Err(_) => NotifyOption::SkipPersistHandleEvents,
8771 Ok(()) => NotifyOption::SkipPersistNoEvents,
8773 let _ = handle_error!(self, res, *counterparty_node_id);
8778 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8779 // Note that we never need to persist the updated ChannelManager for an inbound
8780 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8781 // only the `commitment_signed` message afterwards will.
8782 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8783 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8784 let persist = match &res {
8785 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8786 Err(_) => NotifyOption::SkipPersistHandleEvents,
8787 Ok(()) => NotifyOption::SkipPersistNoEvents,
8789 let _ = handle_error!(self, res, *counterparty_node_id);
8794 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8795 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8796 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8799 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8800 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8801 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8804 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8805 // Note that we never need to persist the updated ChannelManager for an inbound
8806 // update_fee message - the message itself doesn't change our channel state only the
8807 // `commitment_signed` message afterwards will.
8808 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8809 let res = self.internal_update_fee(counterparty_node_id, msg);
8810 let persist = match &res {
8811 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8812 Err(_) => NotifyOption::SkipPersistHandleEvents,
8813 Ok(()) => NotifyOption::SkipPersistNoEvents,
8815 let _ = handle_error!(self, res, *counterparty_node_id);
8820 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8821 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8822 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8825 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8826 PersistenceNotifierGuard::optionally_notify(self, || {
8827 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8830 NotifyOption::DoPersist
8835 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8836 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8837 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8838 let persist = match &res {
8839 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8840 Err(_) => NotifyOption::SkipPersistHandleEvents,
8841 Ok(persist) => *persist,
8843 let _ = handle_error!(self, res, *counterparty_node_id);
8848 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8849 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8850 self, || NotifyOption::SkipPersistHandleEvents);
8851 let mut failed_channels = Vec::new();
8852 let mut per_peer_state = self.per_peer_state.write().unwrap();
8855 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
8856 "Marking channels with {} disconnected and generating channel_updates.",
8857 log_pubkey!(counterparty_node_id)
8859 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8860 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8861 let peer_state = &mut *peer_state_lock;
8862 let pending_msg_events = &mut peer_state.pending_msg_events;
8863 peer_state.channel_by_id.retain(|_, phase| {
8864 let context = match phase {
8865 ChannelPhase::Funded(chan) => {
8866 let logger = WithChannelContext::from(&self.logger, &chan.context);
8867 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
8868 // We only retain funded channels that are not shutdown.
8873 // Unfunded channels will always be removed.
8874 ChannelPhase::UnfundedOutboundV1(chan) => {
8877 ChannelPhase::UnfundedInboundV1(chan) => {
8881 // Clean up for removal.
8882 update_maps_on_chan_removal!(self, &context);
8883 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
8886 // Note that we don't bother generating any events for pre-accept channels -
8887 // they're not considered "channels" yet from the PoV of our events interface.
8888 peer_state.inbound_channel_request_by_id.clear();
8889 pending_msg_events.retain(|msg| {
8891 // V1 Channel Establishment
8892 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8893 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8894 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8895 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8896 // V2 Channel Establishment
8897 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8898 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8899 // Common Channel Establishment
8900 &events::MessageSendEvent::SendChannelReady { .. } => false,
8901 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8903 &events::MessageSendEvent::SendStfu { .. } => false,
8905 &events::MessageSendEvent::SendSplice { .. } => false,
8906 &events::MessageSendEvent::SendSpliceAck { .. } => false,
8907 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
8908 // Interactive Transaction Construction
8909 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8910 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8911 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8912 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8913 &events::MessageSendEvent::SendTxComplete { .. } => false,
8914 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8915 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8916 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8917 &events::MessageSendEvent::SendTxAbort { .. } => false,
8918 // Channel Operations
8919 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8920 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8921 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8922 &events::MessageSendEvent::SendShutdown { .. } => false,
8923 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8924 &events::MessageSendEvent::HandleError { .. } => false,
8926 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8927 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8928 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8929 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8930 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8931 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8932 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8933 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8934 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8937 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8938 peer_state.is_connected = false;
8939 peer_state.ok_to_remove(true)
8940 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8943 per_peer_state.remove(counterparty_node_id);
8945 mem::drop(per_peer_state);
8947 for failure in failed_channels.drain(..) {
8948 self.finish_close_channel(failure);
8952 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8953 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
8954 if !init_msg.features.supports_static_remote_key() {
8955 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8959 let mut res = Ok(());
8961 PersistenceNotifierGuard::optionally_notify(self, || {
8962 // If we have too many peers connected which don't have funded channels, disconnect the
8963 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8964 // unfunded channels taking up space in memory for disconnected peers, we still let new
8965 // peers connect, but we'll reject new channels from them.
8966 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8967 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8970 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8971 match peer_state_lock.entry(counterparty_node_id.clone()) {
8972 hash_map::Entry::Vacant(e) => {
8973 if inbound_peer_limited {
8975 return NotifyOption::SkipPersistNoEvents;
8977 e.insert(Mutex::new(PeerState {
8978 channel_by_id: HashMap::new(),
8979 inbound_channel_request_by_id: HashMap::new(),
8980 latest_features: init_msg.features.clone(),
8981 pending_msg_events: Vec::new(),
8982 in_flight_monitor_updates: BTreeMap::new(),
8983 monitor_update_blocked_actions: BTreeMap::new(),
8984 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8988 hash_map::Entry::Occupied(e) => {
8989 let mut peer_state = e.get().lock().unwrap();
8990 peer_state.latest_features = init_msg.features.clone();
8992 let best_block_height = self.best_block.read().unwrap().height();
8993 if inbound_peer_limited &&
8994 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8995 peer_state.channel_by_id.len()
8998 return NotifyOption::SkipPersistNoEvents;
9001 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
9002 peer_state.is_connected = true;
9007 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
9009 let per_peer_state = self.per_peer_state.read().unwrap();
9010 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9011 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9012 let peer_state = &mut *peer_state_lock;
9013 let pending_msg_events = &mut peer_state.pending_msg_events;
9015 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
9016 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9018 let logger = WithChannelContext::from(&self.logger, &chan.context);
9019 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
9020 node_id: chan.context.get_counterparty_node_id(),
9021 msg: chan.get_channel_reestablish(&&logger),
9026 return NotifyOption::SkipPersistHandleEvents;
9027 //TODO: Also re-broadcast announcement_signatures
9032 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
9033 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9035 match &msg.data as &str {
9036 "cannot co-op close channel w/ active htlcs"|
9037 "link failed to shutdown" =>
9039 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
9040 // send one while HTLCs are still present. The issue is tracked at
9041 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
9042 // to fix it but none so far have managed to land upstream. The issue appears to be
9043 // very low priority for the LND team despite being marked "P1".
9044 // We're not going to bother handling this in a sensible way, instead simply
9045 // repeating the Shutdown message on repeat until morale improves.
9046 if !msg.channel_id.is_zero() {
9047 let per_peer_state = self.per_peer_state.read().unwrap();
9048 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9049 if peer_state_mutex_opt.is_none() { return; }
9050 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
9051 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
9052 if let Some(msg) = chan.get_outbound_shutdown() {
9053 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
9054 node_id: *counterparty_node_id,
9058 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
9059 node_id: *counterparty_node_id,
9060 action: msgs::ErrorAction::SendWarningMessage {
9061 msg: msgs::WarningMessage {
9062 channel_id: msg.channel_id,
9063 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
9065 log_level: Level::Trace,
9075 if msg.channel_id.is_zero() {
9076 let channel_ids: Vec<ChannelId> = {
9077 let per_peer_state = self.per_peer_state.read().unwrap();
9078 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9079 if peer_state_mutex_opt.is_none() { return; }
9080 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
9081 let peer_state = &mut *peer_state_lock;
9082 // Note that we don't bother generating any events for pre-accept channels -
9083 // they're not considered "channels" yet from the PoV of our events interface.
9084 peer_state.inbound_channel_request_by_id.clear();
9085 peer_state.channel_by_id.keys().cloned().collect()
9087 for channel_id in channel_ids {
9088 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9089 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
9093 // First check if we can advance the channel type and try again.
9094 let per_peer_state = self.per_peer_state.read().unwrap();
9095 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
9096 if peer_state_mutex_opt.is_none() { return; }
9097 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
9098 let peer_state = &mut *peer_state_lock;
9099 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
9100 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
9101 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
9102 node_id: *counterparty_node_id,
9110 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
9111 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
9115 fn provided_node_features(&self) -> NodeFeatures {
9116 provided_node_features(&self.default_configuration)
9119 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
9120 provided_init_features(&self.default_configuration)
9123 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
9124 Some(vec![self.chain_hash])
9127 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
9128 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9129 "Dual-funded channels not supported".to_owned(),
9130 msg.channel_id.clone())), *counterparty_node_id);
9133 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
9134 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9135 "Dual-funded channels not supported".to_owned(),
9136 msg.channel_id.clone())), *counterparty_node_id);
9139 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
9140 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9141 "Dual-funded channels not supported".to_owned(),
9142 msg.channel_id.clone())), *counterparty_node_id);
9145 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
9146 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9147 "Dual-funded channels not supported".to_owned(),
9148 msg.channel_id.clone())), *counterparty_node_id);
9151 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
9152 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9153 "Dual-funded channels not supported".to_owned(),
9154 msg.channel_id.clone())), *counterparty_node_id);
9157 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
9158 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9159 "Dual-funded channels not supported".to_owned(),
9160 msg.channel_id.clone())), *counterparty_node_id);
9163 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
9164 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9165 "Dual-funded channels not supported".to_owned(),
9166 msg.channel_id.clone())), *counterparty_node_id);
9169 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
9170 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9171 "Dual-funded channels not supported".to_owned(),
9172 msg.channel_id.clone())), *counterparty_node_id);
9175 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
9176 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9177 "Dual-funded channels not supported".to_owned(),
9178 msg.channel_id.clone())), *counterparty_node_id);
9182 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9183 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9185 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9186 T::Target: BroadcasterInterface,
9187 ES::Target: EntropySource,
9188 NS::Target: NodeSigner,
9189 SP::Target: SignerProvider,
9190 F::Target: FeeEstimator,
9194 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
9195 let secp_ctx = &self.secp_ctx;
9196 let expanded_key = &self.inbound_payment_key;
9199 OffersMessage::InvoiceRequest(invoice_request) => {
9200 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
9203 Ok(amount_msats) => amount_msats,
9204 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
9206 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
9207 Ok(invoice_request) => invoice_request,
9209 let error = Bolt12SemanticError::InvalidMetadata;
9210 return Some(OffersMessage::InvoiceError(error.into()));
9214 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
9215 let (payment_hash, payment_secret) = match self.create_inbound_payment(
9216 Some(amount_msats), relative_expiry, None
9218 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
9220 let error = Bolt12SemanticError::InvalidAmount;
9221 return Some(OffersMessage::InvoiceError(error.into()));
9225 let payment_paths = match self.create_blinded_payment_paths(
9226 amount_msats, payment_secret
9228 Ok(payment_paths) => payment_paths,
9230 let error = Bolt12SemanticError::MissingPaths;
9231 return Some(OffersMessage::InvoiceError(error.into()));
9235 #[cfg(feature = "no-std")]
9236 let created_at = Duration::from_secs(
9237 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
9240 if invoice_request.keys.is_some() {
9241 #[cfg(not(feature = "no-std"))]
9242 let builder = invoice_request.respond_using_derived_keys(
9243 payment_paths, payment_hash
9245 #[cfg(feature = "no-std")]
9246 let builder = invoice_request.respond_using_derived_keys_no_std(
9247 payment_paths, payment_hash, created_at
9249 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
9250 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
9251 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
9254 #[cfg(not(feature = "no-std"))]
9255 let builder = invoice_request.respond_with(payment_paths, payment_hash);
9256 #[cfg(feature = "no-std")]
9257 let builder = invoice_request.respond_with_no_std(
9258 payment_paths, payment_hash, created_at
9260 let response = builder.and_then(|builder| builder.allow_mpp().build())
9261 .map_err(|e| OffersMessage::InvoiceError(e.into()))
9263 match invoice.sign(|invoice| self.node_signer.sign_bolt12_invoice(invoice)) {
9264 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
9265 Err(SignError::Signing(())) => Err(OffersMessage::InvoiceError(
9266 InvoiceError::from_string("Failed signing invoice".to_string())
9268 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
9269 InvoiceError::from_string("Failed invoice signature verification".to_string())
9273 Ok(invoice) => Some(invoice),
9274 Err(error) => Some(error),
9278 OffersMessage::Invoice(invoice) => {
9279 match invoice.verify(expanded_key, secp_ctx) {
9281 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
9283 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
9284 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
9287 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
9288 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
9289 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
9296 OffersMessage::InvoiceError(invoice_error) => {
9297 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
9303 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
9304 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
9308 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9309 /// [`ChannelManager`].
9310 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
9311 let mut node_features = provided_init_features(config).to_context();
9312 node_features.set_keysend_optional();
9316 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9317 /// [`ChannelManager`].
9319 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9320 /// or not. Thus, this method is not public.
9321 #[cfg(any(feature = "_test_utils", test))]
9322 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
9323 provided_init_features(config).to_context()
9326 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9327 /// [`ChannelManager`].
9328 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
9329 provided_init_features(config).to_context()
9332 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9333 /// [`ChannelManager`].
9334 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
9335 provided_init_features(config).to_context()
9338 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9339 /// [`ChannelManager`].
9340 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
9341 ChannelTypeFeatures::from_init(&provided_init_features(config))
9344 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9345 /// [`ChannelManager`].
9346 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
9347 // Note that if new features are added here which other peers may (eventually) require, we
9348 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
9349 // [`ErroringMessageHandler`].
9350 let mut features = InitFeatures::empty();
9351 features.set_data_loss_protect_required();
9352 features.set_upfront_shutdown_script_optional();
9353 features.set_variable_length_onion_required();
9354 features.set_static_remote_key_required();
9355 features.set_payment_secret_required();
9356 features.set_basic_mpp_optional();
9357 features.set_wumbo_optional();
9358 features.set_shutdown_any_segwit_optional();
9359 features.set_channel_type_optional();
9360 features.set_scid_privacy_optional();
9361 features.set_zero_conf_optional();
9362 features.set_route_blinding_optional();
9363 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
9364 features.set_anchors_zero_fee_htlc_tx_optional();
9369 const SERIALIZATION_VERSION: u8 = 1;
9370 const MIN_SERIALIZATION_VERSION: u8 = 1;
9372 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
9373 (2, fee_base_msat, required),
9374 (4, fee_proportional_millionths, required),
9375 (6, cltv_expiry_delta, required),
9378 impl_writeable_tlv_based!(ChannelCounterparty, {
9379 (2, node_id, required),
9380 (4, features, required),
9381 (6, unspendable_punishment_reserve, required),
9382 (8, forwarding_info, option),
9383 (9, outbound_htlc_minimum_msat, option),
9384 (11, outbound_htlc_maximum_msat, option),
9387 impl Writeable for ChannelDetails {
9388 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9389 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9390 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9391 let user_channel_id_low = self.user_channel_id as u64;
9392 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
9393 write_tlv_fields!(writer, {
9394 (1, self.inbound_scid_alias, option),
9395 (2, self.channel_id, required),
9396 (3, self.channel_type, option),
9397 (4, self.counterparty, required),
9398 (5, self.outbound_scid_alias, option),
9399 (6, self.funding_txo, option),
9400 (7, self.config, option),
9401 (8, self.short_channel_id, option),
9402 (9, self.confirmations, option),
9403 (10, self.channel_value_satoshis, required),
9404 (12, self.unspendable_punishment_reserve, option),
9405 (14, user_channel_id_low, required),
9406 (16, self.balance_msat, required),
9407 (18, self.outbound_capacity_msat, required),
9408 (19, self.next_outbound_htlc_limit_msat, required),
9409 (20, self.inbound_capacity_msat, required),
9410 (21, self.next_outbound_htlc_minimum_msat, required),
9411 (22, self.confirmations_required, option),
9412 (24, self.force_close_spend_delay, option),
9413 (26, self.is_outbound, required),
9414 (28, self.is_channel_ready, required),
9415 (30, self.is_usable, required),
9416 (32, self.is_public, required),
9417 (33, self.inbound_htlc_minimum_msat, option),
9418 (35, self.inbound_htlc_maximum_msat, option),
9419 (37, user_channel_id_high_opt, option),
9420 (39, self.feerate_sat_per_1000_weight, option),
9421 (41, self.channel_shutdown_state, option),
9427 impl Readable for ChannelDetails {
9428 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9429 _init_and_read_len_prefixed_tlv_fields!(reader, {
9430 (1, inbound_scid_alias, option),
9431 (2, channel_id, required),
9432 (3, channel_type, option),
9433 (4, counterparty, required),
9434 (5, outbound_scid_alias, option),
9435 (6, funding_txo, option),
9436 (7, config, option),
9437 (8, short_channel_id, option),
9438 (9, confirmations, option),
9439 (10, channel_value_satoshis, required),
9440 (12, unspendable_punishment_reserve, option),
9441 (14, user_channel_id_low, required),
9442 (16, balance_msat, required),
9443 (18, outbound_capacity_msat, required),
9444 // Note that by the time we get past the required read above, outbound_capacity_msat will be
9445 // filled in, so we can safely unwrap it here.
9446 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
9447 (20, inbound_capacity_msat, required),
9448 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
9449 (22, confirmations_required, option),
9450 (24, force_close_spend_delay, option),
9451 (26, is_outbound, required),
9452 (28, is_channel_ready, required),
9453 (30, is_usable, required),
9454 (32, is_public, required),
9455 (33, inbound_htlc_minimum_msat, option),
9456 (35, inbound_htlc_maximum_msat, option),
9457 (37, user_channel_id_high_opt, option),
9458 (39, feerate_sat_per_1000_weight, option),
9459 (41, channel_shutdown_state, option),
9462 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
9463 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
9464 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
9465 let user_channel_id = user_channel_id_low as u128 +
9466 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
9470 channel_id: channel_id.0.unwrap(),
9472 counterparty: counterparty.0.unwrap(),
9473 outbound_scid_alias,
9477 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
9478 unspendable_punishment_reserve,
9480 balance_msat: balance_msat.0.unwrap(),
9481 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
9482 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
9483 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
9484 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
9485 confirmations_required,
9487 force_close_spend_delay,
9488 is_outbound: is_outbound.0.unwrap(),
9489 is_channel_ready: is_channel_ready.0.unwrap(),
9490 is_usable: is_usable.0.unwrap(),
9491 is_public: is_public.0.unwrap(),
9492 inbound_htlc_minimum_msat,
9493 inbound_htlc_maximum_msat,
9494 feerate_sat_per_1000_weight,
9495 channel_shutdown_state,
9500 impl_writeable_tlv_based!(PhantomRouteHints, {
9501 (2, channels, required_vec),
9502 (4, phantom_scid, required),
9503 (6, real_node_pubkey, required),
9506 impl_writeable_tlv_based!(BlindedForward, {
9507 (0, inbound_blinding_point, required),
9508 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
9511 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
9513 (0, onion_packet, required),
9514 (1, blinded, option),
9515 (2, short_channel_id, required),
9518 (0, payment_data, required),
9519 (1, phantom_shared_secret, option),
9520 (2, incoming_cltv_expiry, required),
9521 (3, payment_metadata, option),
9522 (5, custom_tlvs, optional_vec),
9523 (7, requires_blinded_error, (default_value, false)),
9525 (2, ReceiveKeysend) => {
9526 (0, payment_preimage, required),
9527 (2, incoming_cltv_expiry, required),
9528 (3, payment_metadata, option),
9529 (4, payment_data, option), // Added in 0.0.116
9530 (5, custom_tlvs, optional_vec),
9534 impl_writeable_tlv_based!(PendingHTLCInfo, {
9535 (0, routing, required),
9536 (2, incoming_shared_secret, required),
9537 (4, payment_hash, required),
9538 (6, outgoing_amt_msat, required),
9539 (8, outgoing_cltv_value, required),
9540 (9, incoming_amt_msat, option),
9541 (10, skimmed_fee_msat, option),
9545 impl Writeable for HTLCFailureMsg {
9546 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9548 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
9550 channel_id.write(writer)?;
9551 htlc_id.write(writer)?;
9552 reason.write(writer)?;
9554 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9555 channel_id, htlc_id, sha256_of_onion, failure_code
9558 channel_id.write(writer)?;
9559 htlc_id.write(writer)?;
9560 sha256_of_onion.write(writer)?;
9561 failure_code.write(writer)?;
9568 impl Readable for HTLCFailureMsg {
9569 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9570 let id: u8 = Readable::read(reader)?;
9573 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
9574 channel_id: Readable::read(reader)?,
9575 htlc_id: Readable::read(reader)?,
9576 reason: Readable::read(reader)?,
9580 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
9581 channel_id: Readable::read(reader)?,
9582 htlc_id: Readable::read(reader)?,
9583 sha256_of_onion: Readable::read(reader)?,
9584 failure_code: Readable::read(reader)?,
9587 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
9588 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
9589 // messages contained in the variants.
9590 // In version 0.0.101, support for reading the variants with these types was added, and
9591 // we should migrate to writing these variants when UpdateFailHTLC or
9592 // UpdateFailMalformedHTLC get TLV fields.
9594 let length: BigSize = Readable::read(reader)?;
9595 let mut s = FixedLengthReader::new(reader, length.0);
9596 let res = Readable::read(&mut s)?;
9597 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9598 Ok(HTLCFailureMsg::Relay(res))
9601 let length: BigSize = Readable::read(reader)?;
9602 let mut s = FixedLengthReader::new(reader, length.0);
9603 let res = Readable::read(&mut s)?;
9604 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
9605 Ok(HTLCFailureMsg::Malformed(res))
9607 _ => Err(DecodeError::UnknownRequiredFeature),
9612 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
9617 impl_writeable_tlv_based_enum!(BlindedFailure,
9618 (0, FromIntroductionNode) => {},
9619 (2, FromBlindedNode) => {}, ;
9622 impl_writeable_tlv_based!(HTLCPreviousHopData, {
9623 (0, short_channel_id, required),
9624 (1, phantom_shared_secret, option),
9625 (2, outpoint, required),
9626 (3, blinded_failure, option),
9627 (4, htlc_id, required),
9628 (6, incoming_packet_shared_secret, required),
9629 (7, user_channel_id, option),
9632 impl Writeable for ClaimableHTLC {
9633 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9634 let (payment_data, keysend_preimage) = match &self.onion_payload {
9635 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
9636 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
9638 write_tlv_fields!(writer, {
9639 (0, self.prev_hop, required),
9640 (1, self.total_msat, required),
9641 (2, self.value, required),
9642 (3, self.sender_intended_value, required),
9643 (4, payment_data, option),
9644 (5, self.total_value_received, option),
9645 (6, self.cltv_expiry, required),
9646 (8, keysend_preimage, option),
9647 (10, self.counterparty_skimmed_fee_msat, option),
9653 impl Readable for ClaimableHTLC {
9654 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9655 _init_and_read_len_prefixed_tlv_fields!(reader, {
9656 (0, prev_hop, required),
9657 (1, total_msat, option),
9658 (2, value_ser, required),
9659 (3, sender_intended_value, option),
9660 (4, payment_data_opt, option),
9661 (5, total_value_received, option),
9662 (6, cltv_expiry, required),
9663 (8, keysend_preimage, option),
9664 (10, counterparty_skimmed_fee_msat, option),
9666 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
9667 let value = value_ser.0.unwrap();
9668 let onion_payload = match keysend_preimage {
9670 if payment_data.is_some() {
9671 return Err(DecodeError::InvalidValue)
9673 if total_msat.is_none() {
9674 total_msat = Some(value);
9676 OnionPayload::Spontaneous(p)
9679 if total_msat.is_none() {
9680 if payment_data.is_none() {
9681 return Err(DecodeError::InvalidValue)
9683 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
9685 OnionPayload::Invoice { _legacy_hop_data: payment_data }
9689 prev_hop: prev_hop.0.unwrap(),
9692 sender_intended_value: sender_intended_value.unwrap_or(value),
9693 total_value_received,
9694 total_msat: total_msat.unwrap(),
9696 cltv_expiry: cltv_expiry.0.unwrap(),
9697 counterparty_skimmed_fee_msat,
9702 impl Readable for HTLCSource {
9703 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9704 let id: u8 = Readable::read(reader)?;
9707 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
9708 let mut first_hop_htlc_msat: u64 = 0;
9709 let mut path_hops = Vec::new();
9710 let mut payment_id = None;
9711 let mut payment_params: Option<PaymentParameters> = None;
9712 let mut blinded_tail: Option<BlindedTail> = None;
9713 read_tlv_fields!(reader, {
9714 (0, session_priv, required),
9715 (1, payment_id, option),
9716 (2, first_hop_htlc_msat, required),
9717 (4, path_hops, required_vec),
9718 (5, payment_params, (option: ReadableArgs, 0)),
9719 (6, blinded_tail, option),
9721 if payment_id.is_none() {
9722 // For backwards compat, if there was no payment_id written, use the session_priv bytes
9724 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
9726 let path = Path { hops: path_hops, blinded_tail };
9727 if path.hops.len() == 0 {
9728 return Err(DecodeError::InvalidValue);
9730 if let Some(params) = payment_params.as_mut() {
9731 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
9732 if final_cltv_expiry_delta == &0 {
9733 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
9737 Ok(HTLCSource::OutboundRoute {
9738 session_priv: session_priv.0.unwrap(),
9739 first_hop_htlc_msat,
9741 payment_id: payment_id.unwrap(),
9744 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
9745 _ => Err(DecodeError::UnknownRequiredFeature),
9750 impl Writeable for HTLCSource {
9751 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
9753 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
9755 let payment_id_opt = Some(payment_id);
9756 write_tlv_fields!(writer, {
9757 (0, session_priv, required),
9758 (1, payment_id_opt, option),
9759 (2, first_hop_htlc_msat, required),
9760 // 3 was previously used to write a PaymentSecret for the payment.
9761 (4, path.hops, required_vec),
9762 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
9763 (6, path.blinded_tail, option),
9766 HTLCSource::PreviousHopData(ref field) => {
9768 field.write(writer)?;
9775 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
9776 (0, forward_info, required),
9777 (1, prev_user_channel_id, (default_value, 0)),
9778 (2, prev_short_channel_id, required),
9779 (4, prev_htlc_id, required),
9780 (6, prev_funding_outpoint, required),
9783 impl Writeable for HTLCForwardInfo {
9784 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9785 const FAIL_HTLC_VARIANT_ID: u8 = 1;
9787 Self::AddHTLC(info) => {
9791 Self::FailHTLC { htlc_id, err_packet } => {
9792 FAIL_HTLC_VARIANT_ID.write(w)?;
9793 write_tlv_fields!(w, {
9794 (0, htlc_id, required),
9795 (2, err_packet, required),
9798 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
9799 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
9800 // packet so older versions have something to fail back with, but serialize the real data as
9801 // optional TLVs for the benefit of newer versions.
9802 FAIL_HTLC_VARIANT_ID.write(w)?;
9803 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
9804 write_tlv_fields!(w, {
9805 (0, htlc_id, required),
9806 (1, failure_code, required),
9807 (2, dummy_err_packet, required),
9808 (3, sha256_of_onion, required),
9816 impl Readable for HTLCForwardInfo {
9817 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
9818 let id: u8 = Readable::read(r)?;
9820 0 => Self::AddHTLC(Readable::read(r)?),
9822 _init_and_read_len_prefixed_tlv_fields!(r, {
9823 (0, htlc_id, required),
9824 (1, malformed_htlc_failure_code, option),
9825 (2, err_packet, required),
9826 (3, sha256_of_onion, option),
9828 if let Some(failure_code) = malformed_htlc_failure_code {
9829 Self::FailMalformedHTLC {
9830 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
9832 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
9836 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
9837 err_packet: _init_tlv_based_struct_field!(err_packet, required),
9841 _ => return Err(DecodeError::InvalidValue),
9846 impl_writeable_tlv_based!(PendingInboundPayment, {
9847 (0, payment_secret, required),
9848 (2, expiry_time, required),
9849 (4, user_payment_id, required),
9850 (6, payment_preimage, required),
9851 (8, min_value_msat, required),
9854 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
9856 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9857 T::Target: BroadcasterInterface,
9858 ES::Target: EntropySource,
9859 NS::Target: NodeSigner,
9860 SP::Target: SignerProvider,
9861 F::Target: FeeEstimator,
9865 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
9866 let _consistency_lock = self.total_consistency_lock.write().unwrap();
9868 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
9870 self.chain_hash.write(writer)?;
9872 let best_block = self.best_block.read().unwrap();
9873 best_block.height().write(writer)?;
9874 best_block.block_hash().write(writer)?;
9877 let mut serializable_peer_count: u64 = 0;
9879 let per_peer_state = self.per_peer_state.read().unwrap();
9880 let mut number_of_funded_channels = 0;
9881 for (_, peer_state_mutex) in per_peer_state.iter() {
9882 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9883 let peer_state = &mut *peer_state_lock;
9884 if !peer_state.ok_to_remove(false) {
9885 serializable_peer_count += 1;
9888 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
9889 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
9893 (number_of_funded_channels as u64).write(writer)?;
9895 for (_, peer_state_mutex) in per_peer_state.iter() {
9896 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9897 let peer_state = &mut *peer_state_lock;
9898 for channel in peer_state.channel_by_id.iter().filter_map(
9899 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
9900 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
9903 channel.write(writer)?;
9909 let forward_htlcs = self.forward_htlcs.lock().unwrap();
9910 (forward_htlcs.len() as u64).write(writer)?;
9911 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
9912 short_channel_id.write(writer)?;
9913 (pending_forwards.len() as u64).write(writer)?;
9914 for forward in pending_forwards {
9915 forward.write(writer)?;
9920 let per_peer_state = self.per_peer_state.write().unwrap();
9922 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9923 let claimable_payments = self.claimable_payments.lock().unwrap();
9924 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9926 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9927 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9928 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9929 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9930 payment_hash.write(writer)?;
9931 (payment.htlcs.len() as u64).write(writer)?;
9932 for htlc in payment.htlcs.iter() {
9933 htlc.write(writer)?;
9935 htlc_purposes.push(&payment.purpose);
9936 htlc_onion_fields.push(&payment.onion_fields);
9939 let mut monitor_update_blocked_actions_per_peer = None;
9940 let mut peer_states = Vec::new();
9941 for (_, peer_state_mutex) in per_peer_state.iter() {
9942 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9943 // of a lockorder violation deadlock - no other thread can be holding any
9944 // per_peer_state lock at all.
9945 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9948 (serializable_peer_count).write(writer)?;
9949 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9950 // Peers which we have no channels to should be dropped once disconnected. As we
9951 // disconnect all peers when shutting down and serializing the ChannelManager, we
9952 // consider all peers as disconnected here. There's therefore no need write peers with
9954 if !peer_state.ok_to_remove(false) {
9955 peer_pubkey.write(writer)?;
9956 peer_state.latest_features.write(writer)?;
9957 if !peer_state.monitor_update_blocked_actions.is_empty() {
9958 monitor_update_blocked_actions_per_peer
9959 .get_or_insert_with(Vec::new)
9960 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9965 let events = self.pending_events.lock().unwrap();
9966 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9967 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9968 // refuse to read the new ChannelManager.
9969 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9970 if events_not_backwards_compatible {
9971 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9972 // well save the space and not write any events here.
9973 0u64.write(writer)?;
9975 (events.len() as u64).write(writer)?;
9976 for (event, _) in events.iter() {
9977 event.write(writer)?;
9981 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9982 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9983 // the closing monitor updates were always effectively replayed on startup (either directly
9984 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9985 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9986 0u64.write(writer)?;
9988 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9989 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9990 // likely to be identical.
9991 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9992 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9994 (pending_inbound_payments.len() as u64).write(writer)?;
9995 for (hash, pending_payment) in pending_inbound_payments.iter() {
9996 hash.write(writer)?;
9997 pending_payment.write(writer)?;
10000 // For backwards compat, write the session privs and their total length.
10001 let mut num_pending_outbounds_compat: u64 = 0;
10002 for (_, outbound) in pending_outbound_payments.iter() {
10003 if !outbound.is_fulfilled() && !outbound.abandoned() {
10004 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
10007 num_pending_outbounds_compat.write(writer)?;
10008 for (_, outbound) in pending_outbound_payments.iter() {
10010 PendingOutboundPayment::Legacy { session_privs } |
10011 PendingOutboundPayment::Retryable { session_privs, .. } => {
10012 for session_priv in session_privs.iter() {
10013 session_priv.write(writer)?;
10016 PendingOutboundPayment::AwaitingInvoice { .. } => {},
10017 PendingOutboundPayment::InvoiceReceived { .. } => {},
10018 PendingOutboundPayment::Fulfilled { .. } => {},
10019 PendingOutboundPayment::Abandoned { .. } => {},
10023 // Encode without retry info for 0.0.101 compatibility.
10024 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
10025 for (id, outbound) in pending_outbound_payments.iter() {
10027 PendingOutboundPayment::Legacy { session_privs } |
10028 PendingOutboundPayment::Retryable { session_privs, .. } => {
10029 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
10035 let mut pending_intercepted_htlcs = None;
10036 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
10037 if our_pending_intercepts.len() != 0 {
10038 pending_intercepted_htlcs = Some(our_pending_intercepts);
10041 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
10042 if pending_claiming_payments.as_ref().unwrap().is_empty() {
10043 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
10044 // map. Thus, if there are no entries we skip writing a TLV for it.
10045 pending_claiming_payments = None;
10048 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
10049 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
10050 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
10051 if !updates.is_empty() {
10052 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
10053 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
10058 write_tlv_fields!(writer, {
10059 (1, pending_outbound_payments_no_retry, required),
10060 (2, pending_intercepted_htlcs, option),
10061 (3, pending_outbound_payments, required),
10062 (4, pending_claiming_payments, option),
10063 (5, self.our_network_pubkey, required),
10064 (6, monitor_update_blocked_actions_per_peer, option),
10065 (7, self.fake_scid_rand_bytes, required),
10066 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
10067 (9, htlc_purposes, required_vec),
10068 (10, in_flight_monitor_updates, option),
10069 (11, self.probing_cookie_secret, required),
10070 (13, htlc_onion_fields, optional_vec),
10077 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
10078 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10079 (self.len() as u64).write(w)?;
10080 for (event, action) in self.iter() {
10083 #[cfg(debug_assertions)] {
10084 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
10085 // be persisted and are regenerated on restart. However, if such an event has a
10086 // post-event-handling action we'll write nothing for the event and would have to
10087 // either forget the action or fail on deserialization (which we do below). Thus,
10088 // check that the event is sane here.
10089 let event_encoded = event.encode();
10090 let event_read: Option<Event> =
10091 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
10092 if action.is_some() { assert!(event_read.is_some()); }
10098 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
10099 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10100 let len: u64 = Readable::read(reader)?;
10101 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
10102 let mut events: Self = VecDeque::with_capacity(cmp::min(
10103 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
10106 let ev_opt = MaybeReadable::read(reader)?;
10107 let action = Readable::read(reader)?;
10108 if let Some(ev) = ev_opt {
10109 events.push_back((ev, action));
10110 } else if action.is_some() {
10111 return Err(DecodeError::InvalidValue);
10118 impl_writeable_tlv_based_enum!(ChannelShutdownState,
10119 (0, NotShuttingDown) => {},
10120 (2, ShutdownInitiated) => {},
10121 (4, ResolvingHTLCs) => {},
10122 (6, NegotiatingClosingFee) => {},
10123 (8, ShutdownComplete) => {}, ;
10126 /// Arguments for the creation of a ChannelManager that are not deserialized.
10128 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
10130 /// 1) Deserialize all stored [`ChannelMonitor`]s.
10131 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
10132 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
10133 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
10134 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
10135 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
10136 /// same way you would handle a [`chain::Filter`] call using
10137 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
10138 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
10139 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
10140 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
10141 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
10142 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
10144 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
10145 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
10147 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
10148 /// call any other methods on the newly-deserialized [`ChannelManager`].
10150 /// Note that because some channels may be closed during deserialization, it is critical that you
10151 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
10152 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
10153 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
10154 /// not force-close the same channels but consider them live), you may end up revoking a state for
10155 /// which you've already broadcasted the transaction.
10157 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
10158 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10160 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10161 T::Target: BroadcasterInterface,
10162 ES::Target: EntropySource,
10163 NS::Target: NodeSigner,
10164 SP::Target: SignerProvider,
10165 F::Target: FeeEstimator,
10169 /// A cryptographically secure source of entropy.
10170 pub entropy_source: ES,
10172 /// A signer that is able to perform node-scoped cryptographic operations.
10173 pub node_signer: NS,
10175 /// The keys provider which will give us relevant keys. Some keys will be loaded during
10176 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
10178 pub signer_provider: SP,
10180 /// The fee_estimator for use in the ChannelManager in the future.
10182 /// No calls to the FeeEstimator will be made during deserialization.
10183 pub fee_estimator: F,
10184 /// The chain::Watch for use in the ChannelManager in the future.
10186 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
10187 /// you have deserialized ChannelMonitors separately and will add them to your
10188 /// chain::Watch after deserializing this ChannelManager.
10189 pub chain_monitor: M,
10191 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
10192 /// used to broadcast the latest local commitment transactions of channels which must be
10193 /// force-closed during deserialization.
10194 pub tx_broadcaster: T,
10195 /// The router which will be used in the ChannelManager in the future for finding routes
10196 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
10198 /// No calls to the router will be made during deserialization.
10200 /// The Logger for use in the ChannelManager and which may be used to log information during
10201 /// deserialization.
10203 /// Default settings used for new channels. Any existing channels will continue to use the
10204 /// runtime settings which were stored when the ChannelManager was serialized.
10205 pub default_config: UserConfig,
10207 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
10208 /// value.context.get_funding_txo() should be the key).
10210 /// If a monitor is inconsistent with the channel state during deserialization the channel will
10211 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
10212 /// is true for missing channels as well. If there is a monitor missing for which we find
10213 /// channel data Err(DecodeError::InvalidValue) will be returned.
10215 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
10218 /// This is not exported to bindings users because we have no HashMap bindings
10219 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
10222 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10223 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
10225 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10226 T::Target: BroadcasterInterface,
10227 ES::Target: EntropySource,
10228 NS::Target: NodeSigner,
10229 SP::Target: SignerProvider,
10230 F::Target: FeeEstimator,
10234 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
10235 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
10236 /// populate a HashMap directly from C.
10237 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
10238 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
10240 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
10241 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
10246 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
10247 // SipmleArcChannelManager type:
10248 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10249 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
10251 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10252 T::Target: BroadcasterInterface,
10253 ES::Target: EntropySource,
10254 NS::Target: NodeSigner,
10255 SP::Target: SignerProvider,
10256 F::Target: FeeEstimator,
10260 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10261 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
10262 Ok((blockhash, Arc::new(chan_manager)))
10266 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10267 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
10269 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10270 T::Target: BroadcasterInterface,
10271 ES::Target: EntropySource,
10272 NS::Target: NodeSigner,
10273 SP::Target: SignerProvider,
10274 F::Target: FeeEstimator,
10278 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
10279 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
10281 let chain_hash: ChainHash = Readable::read(reader)?;
10282 let best_block_height: u32 = Readable::read(reader)?;
10283 let best_block_hash: BlockHash = Readable::read(reader)?;
10285 let mut failed_htlcs = Vec::new();
10287 let channel_count: u64 = Readable::read(reader)?;
10288 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
10289 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10290 let mut outpoint_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10291 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
10292 let mut channel_closures = VecDeque::new();
10293 let mut close_background_events = Vec::new();
10294 for _ in 0..channel_count {
10295 let mut channel: Channel<SP> = Channel::read(reader, (
10296 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
10298 let logger = WithChannelContext::from(&args.logger, &channel.context);
10299 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10300 funding_txo_set.insert(funding_txo.clone());
10301 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
10302 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
10303 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
10304 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
10305 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10306 // But if the channel is behind of the monitor, close the channel:
10307 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
10308 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
10309 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
10310 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
10311 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
10313 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
10314 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
10315 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
10317 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
10318 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
10319 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
10321 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
10322 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
10323 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
10325 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
10326 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
10327 return Err(DecodeError::InvalidValue);
10329 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
10330 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10331 counterparty_node_id, funding_txo, update
10334 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
10335 channel_closures.push_back((events::Event::ChannelClosed {
10336 channel_id: channel.context.channel_id(),
10337 user_channel_id: channel.context.get_user_id(),
10338 reason: ClosureReason::OutdatedChannelManager,
10339 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10340 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10341 channel_funding_txo: channel.context.get_funding_txo(),
10343 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
10344 let mut found_htlc = false;
10345 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
10346 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
10349 // If we have some HTLCs in the channel which are not present in the newer
10350 // ChannelMonitor, they have been removed and should be failed back to
10351 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
10352 // were actually claimed we'd have generated and ensured the previous-hop
10353 // claim update ChannelMonitor updates were persisted prior to persising
10354 // the ChannelMonitor update for the forward leg, so attempting to fail the
10355 // backwards leg of the HTLC will simply be rejected.
10357 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
10358 &channel.context.channel_id(), &payment_hash);
10359 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10363 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
10364 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
10365 monitor.get_latest_update_id());
10366 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
10367 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
10369 if let Some(funding_txo) = channel.context.get_funding_txo() {
10370 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
10372 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
10373 hash_map::Entry::Occupied(mut entry) => {
10374 let by_id_map = entry.get_mut();
10375 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10377 hash_map::Entry::Vacant(entry) => {
10378 let mut by_id_map = HashMap::new();
10379 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
10380 entry.insert(by_id_map);
10384 } else if channel.is_awaiting_initial_mon_persist() {
10385 // If we were persisted and shut down while the initial ChannelMonitor persistence
10386 // was in-progress, we never broadcasted the funding transaction and can still
10387 // safely discard the channel.
10388 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
10389 channel_closures.push_back((events::Event::ChannelClosed {
10390 channel_id: channel.context.channel_id(),
10391 user_channel_id: channel.context.get_user_id(),
10392 reason: ClosureReason::DisconnectedPeer,
10393 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
10394 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
10395 channel_funding_txo: channel.context.get_funding_txo(),
10398 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
10399 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10400 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10401 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
10402 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10403 return Err(DecodeError::InvalidValue);
10407 for (funding_txo, monitor) in args.channel_monitors.iter() {
10408 if !funding_txo_set.contains(funding_txo) {
10409 let logger = WithChannelMonitor::from(&args.logger, monitor);
10410 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
10411 &funding_txo.to_channel_id());
10412 let monitor_update = ChannelMonitorUpdate {
10413 update_id: CLOSED_CHANNEL_UPDATE_ID,
10414 counterparty_node_id: None,
10415 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
10417 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
10421 const MAX_ALLOC_SIZE: usize = 1024 * 64;
10422 let forward_htlcs_count: u64 = Readable::read(reader)?;
10423 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
10424 for _ in 0..forward_htlcs_count {
10425 let short_channel_id = Readable::read(reader)?;
10426 let pending_forwards_count: u64 = Readable::read(reader)?;
10427 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
10428 for _ in 0..pending_forwards_count {
10429 pending_forwards.push(Readable::read(reader)?);
10431 forward_htlcs.insert(short_channel_id, pending_forwards);
10434 let claimable_htlcs_count: u64 = Readable::read(reader)?;
10435 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
10436 for _ in 0..claimable_htlcs_count {
10437 let payment_hash = Readable::read(reader)?;
10438 let previous_hops_len: u64 = Readable::read(reader)?;
10439 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
10440 for _ in 0..previous_hops_len {
10441 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
10443 claimable_htlcs_list.push((payment_hash, previous_hops));
10446 let peer_state_from_chans = |channel_by_id| {
10449 inbound_channel_request_by_id: HashMap::new(),
10450 latest_features: InitFeatures::empty(),
10451 pending_msg_events: Vec::new(),
10452 in_flight_monitor_updates: BTreeMap::new(),
10453 monitor_update_blocked_actions: BTreeMap::new(),
10454 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10455 is_connected: false,
10459 let peer_count: u64 = Readable::read(reader)?;
10460 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
10461 for _ in 0..peer_count {
10462 let peer_pubkey = Readable::read(reader)?;
10463 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
10464 let mut peer_state = peer_state_from_chans(peer_chans);
10465 peer_state.latest_features = Readable::read(reader)?;
10466 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
10469 let event_count: u64 = Readable::read(reader)?;
10470 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
10471 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
10472 for _ in 0..event_count {
10473 match MaybeReadable::read(reader)? {
10474 Some(event) => pending_events_read.push_back((event, None)),
10479 let background_event_count: u64 = Readable::read(reader)?;
10480 for _ in 0..background_event_count {
10481 match <u8 as Readable>::read(reader)? {
10483 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
10484 // however we really don't (and never did) need them - we regenerate all
10485 // on-startup monitor updates.
10486 let _: OutPoint = Readable::read(reader)?;
10487 let _: ChannelMonitorUpdate = Readable::read(reader)?;
10489 _ => return Err(DecodeError::InvalidValue),
10493 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
10494 let highest_seen_timestamp: u32 = Readable::read(reader)?;
10496 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
10497 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
10498 for _ in 0..pending_inbound_payment_count {
10499 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
10500 return Err(DecodeError::InvalidValue);
10504 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
10505 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
10506 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
10507 for _ in 0..pending_outbound_payments_count_compat {
10508 let session_priv = Readable::read(reader)?;
10509 let payment = PendingOutboundPayment::Legacy {
10510 session_privs: [session_priv].iter().cloned().collect()
10512 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
10513 return Err(DecodeError::InvalidValue)
10517 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
10518 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
10519 let mut pending_outbound_payments = None;
10520 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
10521 let mut received_network_pubkey: Option<PublicKey> = None;
10522 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
10523 let mut probing_cookie_secret: Option<[u8; 32]> = None;
10524 let mut claimable_htlc_purposes = None;
10525 let mut claimable_htlc_onion_fields = None;
10526 let mut pending_claiming_payments = Some(HashMap::new());
10527 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
10528 let mut events_override = None;
10529 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
10530 read_tlv_fields!(reader, {
10531 (1, pending_outbound_payments_no_retry, option),
10532 (2, pending_intercepted_htlcs, option),
10533 (3, pending_outbound_payments, option),
10534 (4, pending_claiming_payments, option),
10535 (5, received_network_pubkey, option),
10536 (6, monitor_update_blocked_actions_per_peer, option),
10537 (7, fake_scid_rand_bytes, option),
10538 (8, events_override, option),
10539 (9, claimable_htlc_purposes, optional_vec),
10540 (10, in_flight_monitor_updates, option),
10541 (11, probing_cookie_secret, option),
10542 (13, claimable_htlc_onion_fields, optional_vec),
10544 if fake_scid_rand_bytes.is_none() {
10545 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
10548 if probing_cookie_secret.is_none() {
10549 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
10552 if let Some(events) = events_override {
10553 pending_events_read = events;
10556 if !channel_closures.is_empty() {
10557 pending_events_read.append(&mut channel_closures);
10560 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
10561 pending_outbound_payments = Some(pending_outbound_payments_compat);
10562 } else if pending_outbound_payments.is_none() {
10563 let mut outbounds = HashMap::new();
10564 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
10565 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
10567 pending_outbound_payments = Some(outbounds);
10569 let pending_outbounds = OutboundPayments {
10570 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
10571 retry_lock: Mutex::new(())
10574 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
10575 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
10576 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
10577 // replayed, and for each monitor update we have to replay we have to ensure there's a
10578 // `ChannelMonitor` for it.
10580 // In order to do so we first walk all of our live channels (so that we can check their
10581 // state immediately after doing the update replays, when we have the `update_id`s
10582 // available) and then walk any remaining in-flight updates.
10584 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
10585 let mut pending_background_events = Vec::new();
10586 macro_rules! handle_in_flight_updates {
10587 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
10588 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
10590 let mut max_in_flight_update_id = 0;
10591 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
10592 for update in $chan_in_flight_upds.iter() {
10593 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
10594 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
10595 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
10596 pending_background_events.push(
10597 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
10598 counterparty_node_id: $counterparty_node_id,
10599 funding_txo: $funding_txo,
10600 update: update.clone(),
10603 if $chan_in_flight_upds.is_empty() {
10604 // We had some updates to apply, but it turns out they had completed before we
10605 // were serialized, we just weren't notified of that. Thus, we may have to run
10606 // the completion actions for any monitor updates, but otherwise are done.
10607 pending_background_events.push(
10608 BackgroundEvent::MonitorUpdatesComplete {
10609 counterparty_node_id: $counterparty_node_id,
10610 channel_id: $funding_txo.to_channel_id(),
10613 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
10614 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
10615 return Err(DecodeError::InvalidValue);
10617 max_in_flight_update_id
10621 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
10622 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
10623 let peer_state = &mut *peer_state_lock;
10624 for phase in peer_state.channel_by_id.values() {
10625 if let ChannelPhase::Funded(chan) = phase {
10626 let logger = WithChannelContext::from(&args.logger, &chan.context);
10628 // Channels that were persisted have to be funded, otherwise they should have been
10630 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
10631 let monitor = args.channel_monitors.get(&funding_txo)
10632 .expect("We already checked for monitor presence when loading channels");
10633 let mut max_in_flight_update_id = monitor.get_latest_update_id();
10634 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
10635 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
10636 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
10637 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
10638 funding_txo, monitor, peer_state, logger, ""));
10641 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
10642 // If the channel is ahead of the monitor, return InvalidValue:
10643 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
10644 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
10645 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
10646 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
10647 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10648 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10649 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10650 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10651 return Err(DecodeError::InvalidValue);
10654 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10655 // created in this `channel_by_id` map.
10656 debug_assert!(false);
10657 return Err(DecodeError::InvalidValue);
10662 if let Some(in_flight_upds) = in_flight_monitor_updates {
10663 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
10664 let logger = WithContext::from(&args.logger, Some(counterparty_id), Some(funding_txo.to_channel_id()));
10665 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
10666 // Now that we've removed all the in-flight monitor updates for channels that are
10667 // still open, we need to replay any monitor updates that are for closed channels,
10668 // creating the neccessary peer_state entries as we go.
10669 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
10670 Mutex::new(peer_state_from_chans(HashMap::new()))
10672 let mut peer_state = peer_state_mutex.lock().unwrap();
10673 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
10674 funding_txo, monitor, peer_state, logger, "closed ");
10676 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
10677 log_error!(logger, " The ChannelMonitor for channel {} is missing.",
10678 &funding_txo.to_channel_id());
10679 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
10680 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
10681 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
10682 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
10683 log_error!(logger, " Pending in-flight updates are: {:?}", chan_in_flight_updates);
10684 return Err(DecodeError::InvalidValue);
10689 // Note that we have to do the above replays before we push new monitor updates.
10690 pending_background_events.append(&mut close_background_events);
10692 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
10693 // should ensure we try them again on the inbound edge. We put them here and do so after we
10694 // have a fully-constructed `ChannelManager` at the end.
10695 let mut pending_claims_to_replay = Vec::new();
10698 // If we're tracking pending payments, ensure we haven't lost any by looking at the
10699 // ChannelMonitor data for any channels for which we do not have authorative state
10700 // (i.e. those for which we just force-closed above or we otherwise don't have a
10701 // corresponding `Channel` at all).
10702 // This avoids several edge-cases where we would otherwise "forget" about pending
10703 // payments which are still in-flight via their on-chain state.
10704 // We only rebuild the pending payments map if we were most recently serialized by
10706 for (_, monitor) in args.channel_monitors.iter() {
10707 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
10708 if counterparty_opt.is_none() {
10709 let logger = WithChannelMonitor::from(&args.logger, monitor);
10710 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
10711 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
10712 if path.hops.is_empty() {
10713 log_error!(logger, "Got an empty path for a pending payment");
10714 return Err(DecodeError::InvalidValue);
10717 let path_amt = path.final_value_msat();
10718 let mut session_priv_bytes = [0; 32];
10719 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
10720 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
10721 hash_map::Entry::Occupied(mut entry) => {
10722 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
10723 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
10724 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
10726 hash_map::Entry::Vacant(entry) => {
10727 let path_fee = path.fee_msat();
10728 entry.insert(PendingOutboundPayment::Retryable {
10729 retry_strategy: None,
10730 attempts: PaymentAttempts::new(),
10731 payment_params: None,
10732 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
10733 payment_hash: htlc.payment_hash,
10734 payment_secret: None, // only used for retries, and we'll never retry on startup
10735 payment_metadata: None, // only used for retries, and we'll never retry on startup
10736 keysend_preimage: None, // only used for retries, and we'll never retry on startup
10737 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
10738 pending_amt_msat: path_amt,
10739 pending_fee_msat: Some(path_fee),
10740 total_msat: path_amt,
10741 starting_block_height: best_block_height,
10742 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
10744 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
10745 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
10750 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
10751 match htlc_source {
10752 HTLCSource::PreviousHopData(prev_hop_data) => {
10753 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
10754 info.prev_funding_outpoint == prev_hop_data.outpoint &&
10755 info.prev_htlc_id == prev_hop_data.htlc_id
10757 // The ChannelMonitor is now responsible for this HTLC's
10758 // failure/success and will let us know what its outcome is. If we
10759 // still have an entry for this HTLC in `forward_htlcs` or
10760 // `pending_intercepted_htlcs`, we were apparently not persisted after
10761 // the monitor was when forwarding the payment.
10762 forward_htlcs.retain(|_, forwards| {
10763 forwards.retain(|forward| {
10764 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
10765 if pending_forward_matches_htlc(&htlc_info) {
10766 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
10767 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10772 !forwards.is_empty()
10774 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
10775 if pending_forward_matches_htlc(&htlc_info) {
10776 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
10777 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
10778 pending_events_read.retain(|(event, _)| {
10779 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
10780 intercepted_id != ev_id
10787 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
10788 if let Some(preimage) = preimage_opt {
10789 let pending_events = Mutex::new(pending_events_read);
10790 // Note that we set `from_onchain` to "false" here,
10791 // deliberately keeping the pending payment around forever.
10792 // Given it should only occur when we have a channel we're
10793 // force-closing for being stale that's okay.
10794 // The alternative would be to wipe the state when claiming,
10795 // generating a `PaymentPathSuccessful` event but regenerating
10796 // it and the `PaymentSent` on every restart until the
10797 // `ChannelMonitor` is removed.
10799 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
10800 channel_funding_outpoint: monitor.get_funding_txo().0,
10801 counterparty_node_id: path.hops[0].pubkey,
10803 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
10804 path, false, compl_action, &pending_events, &&logger);
10805 pending_events_read = pending_events.into_inner().unwrap();
10812 // Whether the downstream channel was closed or not, try to re-apply any payment
10813 // preimages from it which may be needed in upstream channels for forwarded
10815 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
10817 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
10818 if let HTLCSource::PreviousHopData(_) = htlc_source {
10819 if let Some(payment_preimage) = preimage_opt {
10820 Some((htlc_source, payment_preimage, htlc.amount_msat,
10821 // Check if `counterparty_opt.is_none()` to see if the
10822 // downstream chan is closed (because we don't have a
10823 // channel_id -> peer map entry).
10824 counterparty_opt.is_none(),
10825 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
10826 monitor.get_funding_txo().0))
10829 // If it was an outbound payment, we've handled it above - if a preimage
10830 // came in and we persisted the `ChannelManager` we either handled it and
10831 // are good to go or the channel force-closed - we don't have to handle the
10832 // channel still live case here.
10836 for tuple in outbound_claimed_htlcs_iter {
10837 pending_claims_to_replay.push(tuple);
10842 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
10843 // If we have pending HTLCs to forward, assume we either dropped a
10844 // `PendingHTLCsForwardable` or the user received it but never processed it as they
10845 // shut down before the timer hit. Either way, set the time_forwardable to a small
10846 // constant as enough time has likely passed that we should simply handle the forwards
10847 // now, or at least after the user gets a chance to reconnect to our peers.
10848 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
10849 time_forwardable: Duration::from_secs(2),
10853 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
10854 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
10856 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
10857 if let Some(purposes) = claimable_htlc_purposes {
10858 if purposes.len() != claimable_htlcs_list.len() {
10859 return Err(DecodeError::InvalidValue);
10861 if let Some(onion_fields) = claimable_htlc_onion_fields {
10862 if onion_fields.len() != claimable_htlcs_list.len() {
10863 return Err(DecodeError::InvalidValue);
10865 for (purpose, (onion, (payment_hash, htlcs))) in
10866 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
10868 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10869 purpose, htlcs, onion_fields: onion,
10871 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10874 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
10875 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
10876 purpose, htlcs, onion_fields: None,
10878 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
10882 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
10883 // include a `_legacy_hop_data` in the `OnionPayload`.
10884 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
10885 if htlcs.is_empty() {
10886 return Err(DecodeError::InvalidValue);
10888 let purpose = match &htlcs[0].onion_payload {
10889 OnionPayload::Invoice { _legacy_hop_data } => {
10890 if let Some(hop_data) = _legacy_hop_data {
10891 events::PaymentPurpose::InvoicePayment {
10892 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
10893 Some(inbound_payment) => inbound_payment.payment_preimage,
10894 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
10895 Ok((payment_preimage, _)) => payment_preimage,
10897 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
10898 return Err(DecodeError::InvalidValue);
10902 payment_secret: hop_data.payment_secret,
10904 } else { return Err(DecodeError::InvalidValue); }
10906 OnionPayload::Spontaneous(payment_preimage) =>
10907 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
10909 claimable_payments.insert(payment_hash, ClaimablePayment {
10910 purpose, htlcs, onion_fields: None,
10915 let mut secp_ctx = Secp256k1::new();
10916 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
10918 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
10920 Err(()) => return Err(DecodeError::InvalidValue)
10922 if let Some(network_pubkey) = received_network_pubkey {
10923 if network_pubkey != our_network_pubkey {
10924 log_error!(args.logger, "Key that was generated does not match the existing key.");
10925 return Err(DecodeError::InvalidValue);
10929 let mut outbound_scid_aliases = HashSet::new();
10930 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10931 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10932 let peer_state = &mut *peer_state_lock;
10933 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10934 if let ChannelPhase::Funded(chan) = phase {
10935 let logger = WithChannelContext::from(&args.logger, &chan.context);
10936 if chan.context.outbound_scid_alias() == 0 {
10937 let mut outbound_scid_alias;
10939 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10940 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10941 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10943 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10944 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10945 // Note that in rare cases its possible to hit this while reading an older
10946 // channel if we just happened to pick a colliding outbound alias above.
10947 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10948 return Err(DecodeError::InvalidValue);
10950 if chan.context.is_usable() {
10951 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10952 // Note that in rare cases its possible to hit this while reading an older
10953 // channel if we just happened to pick a colliding outbound alias above.
10954 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10955 return Err(DecodeError::InvalidValue);
10959 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10960 // created in this `channel_by_id` map.
10961 debug_assert!(false);
10962 return Err(DecodeError::InvalidValue);
10967 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10969 for (_, monitor) in args.channel_monitors.iter() {
10970 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10971 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10972 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10973 let mut claimable_amt_msat = 0;
10974 let mut receiver_node_id = Some(our_network_pubkey);
10975 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10976 if phantom_shared_secret.is_some() {
10977 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10978 .expect("Failed to get node_id for phantom node recipient");
10979 receiver_node_id = Some(phantom_pubkey)
10981 for claimable_htlc in &payment.htlcs {
10982 claimable_amt_msat += claimable_htlc.value;
10984 // Add a holding-cell claim of the payment to the Channel, which should be
10985 // applied ~immediately on peer reconnection. Because it won't generate a
10986 // new commitment transaction we can just provide the payment preimage to
10987 // the corresponding ChannelMonitor and nothing else.
10989 // We do so directly instead of via the normal ChannelMonitor update
10990 // procedure as the ChainMonitor hasn't yet been initialized, implying
10991 // we're not allowed to call it directly yet. Further, we do the update
10992 // without incrementing the ChannelMonitor update ID as there isn't any
10994 // If we were to generate a new ChannelMonitor update ID here and then
10995 // crash before the user finishes block connect we'd end up force-closing
10996 // this channel as well. On the flip side, there's no harm in restarting
10997 // without the new monitor persisted - we'll end up right back here on
10999 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
11000 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
11001 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
11002 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11003 let peer_state = &mut *peer_state_lock;
11004 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
11005 let logger = WithChannelContext::from(&args.logger, &channel.context);
11006 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
11009 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
11010 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
11013 pending_events_read.push_back((events::Event::PaymentClaimed {
11016 purpose: payment.purpose,
11017 amount_msat: claimable_amt_msat,
11018 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
11019 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
11025 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
11026 if let Some(peer_state) = per_peer_state.get(&node_id) {
11027 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
11028 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
11029 for action in actions.iter() {
11030 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
11031 downstream_counterparty_and_funding_outpoint:
11032 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
11034 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
11036 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
11037 blocked_channel_outpoint.to_channel_id());
11038 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
11039 .entry(blocked_channel_outpoint.to_channel_id())
11040 .or_insert_with(Vec::new).push(blocking_action.clone());
11042 // If the channel we were blocking has closed, we don't need to
11043 // worry about it - the blocked monitor update should never have
11044 // been released from the `Channel` object so it can't have
11045 // completed, and if the channel closed there's no reason to bother
11049 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
11050 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
11054 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
11056 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
11057 return Err(DecodeError::InvalidValue);
11061 let channel_manager = ChannelManager {
11063 fee_estimator: bounded_fee_estimator,
11064 chain_monitor: args.chain_monitor,
11065 tx_broadcaster: args.tx_broadcaster,
11066 router: args.router,
11068 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
11070 inbound_payment_key: expanded_inbound_key,
11071 pending_inbound_payments: Mutex::new(pending_inbound_payments),
11072 pending_outbound_payments: pending_outbounds,
11073 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
11075 forward_htlcs: Mutex::new(forward_htlcs),
11076 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
11077 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
11078 outpoint_to_peer: Mutex::new(outpoint_to_peer),
11079 short_to_chan_info: FairRwLock::new(short_to_chan_info),
11080 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
11082 probing_cookie_secret: probing_cookie_secret.unwrap(),
11084 our_network_pubkey,
11087 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
11089 per_peer_state: FairRwLock::new(per_peer_state),
11091 pending_events: Mutex::new(pending_events_read),
11092 pending_events_processor: AtomicBool::new(false),
11093 pending_background_events: Mutex::new(pending_background_events),
11094 total_consistency_lock: RwLock::new(()),
11095 background_events_processed_since_startup: AtomicBool::new(false),
11097 event_persist_notifier: Notifier::new(),
11098 needs_persist_flag: AtomicBool::new(false),
11100 funding_batch_states: Mutex::new(BTreeMap::new()),
11102 pending_offers_messages: Mutex::new(Vec::new()),
11104 entropy_source: args.entropy_source,
11105 node_signer: args.node_signer,
11106 signer_provider: args.signer_provider,
11108 logger: args.logger,
11109 default_configuration: args.default_config,
11112 for htlc_source in failed_htlcs.drain(..) {
11113 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
11114 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
11115 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
11116 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
11119 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
11120 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
11121 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
11122 // channel is closed we just assume that it probably came from an on-chain claim.
11123 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
11124 downstream_closed, true, downstream_node_id, downstream_funding);
11127 //TODO: Broadcast channel update for closed channels, but only after we've made a
11128 //connection or two.
11130 Ok((best_block_hash.clone(), channel_manager))
11136 use bitcoin::hashes::Hash;
11137 use bitcoin::hashes::sha256::Hash as Sha256;
11138 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
11139 use core::sync::atomic::Ordering;
11140 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
11141 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
11142 use crate::ln::ChannelId;
11143 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
11144 use crate::ln::functional_test_utils::*;
11145 use crate::ln::msgs::{self, ErrorAction};
11146 use crate::ln::msgs::ChannelMessageHandler;
11147 use crate::prelude::*;
11148 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
11149 use crate::util::errors::APIError;
11150 use crate::util::ser::Writeable;
11151 use crate::util::test_utils;
11152 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
11153 use crate::sign::EntropySource;
11156 fn test_notify_limits() {
11157 // Check that a few cases which don't require the persistence of a new ChannelManager,
11158 // indeed, do not cause the persistence of a new ChannelManager.
11159 let chanmon_cfgs = create_chanmon_cfgs(3);
11160 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11161 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
11162 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11164 // All nodes start with a persistable update pending as `create_network` connects each node
11165 // with all other nodes to make most tests simpler.
11166 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11167 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11168 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11170 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11172 // We check that the channel info nodes have doesn't change too early, even though we try
11173 // to connect messages with new values
11174 chan.0.contents.fee_base_msat *= 2;
11175 chan.1.contents.fee_base_msat *= 2;
11176 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
11177 &nodes[1].node.get_our_node_id()).pop().unwrap();
11178 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
11179 &nodes[0].node.get_our_node_id()).pop().unwrap();
11181 // The first two nodes (which opened a channel) should now require fresh persistence
11182 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11183 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11184 // ... but the last node should not.
11185 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11186 // After persisting the first two nodes they should no longer need fresh persistence.
11187 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11188 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11190 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
11191 // about the channel.
11192 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
11193 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
11194 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
11196 // The nodes which are a party to the channel should also ignore messages from unrelated
11198 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11199 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11200 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
11201 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
11202 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11203 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11205 // At this point the channel info given by peers should still be the same.
11206 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11207 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11209 // An earlier version of handle_channel_update didn't check the directionality of the
11210 // update message and would always update the local fee info, even if our peer was
11211 // (spuriously) forwarding us our own channel_update.
11212 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
11213 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
11214 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
11216 // First deliver each peers' own message, checking that the node doesn't need to be
11217 // persisted and that its channel info remains the same.
11218 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
11219 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
11220 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11221 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11222 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
11223 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
11225 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
11226 // the channel info has updated.
11227 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
11228 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
11229 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
11230 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
11231 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
11232 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
11236 fn test_keysend_dup_hash_partial_mpp() {
11237 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
11239 let chanmon_cfgs = create_chanmon_cfgs(2);
11240 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11241 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11242 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11243 create_announced_chan_between_nodes(&nodes, 0, 1);
11245 // First, send a partial MPP payment.
11246 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
11247 let mut mpp_route = route.clone();
11248 mpp_route.paths.push(mpp_route.paths[0].clone());
11250 let payment_id = PaymentId([42; 32]);
11251 // Use the utility function send_payment_along_path to send the payment with MPP data which
11252 // indicates there are more HTLCs coming.
11253 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
11254 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
11255 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
11256 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
11257 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
11258 check_added_monitors!(nodes[0], 1);
11259 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11260 assert_eq!(events.len(), 1);
11261 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
11263 // Next, send a keysend payment with the same payment_hash and make sure it fails.
11264 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11265 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11266 check_added_monitors!(nodes[0], 1);
11267 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11268 assert_eq!(events.len(), 1);
11269 let ev = events.drain(..).next().unwrap();
11270 let payment_event = SendEvent::from_event(ev);
11271 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11272 check_added_monitors!(nodes[1], 0);
11273 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11274 expect_pending_htlcs_forwardable!(nodes[1]);
11275 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
11276 check_added_monitors!(nodes[1], 1);
11277 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11278 assert!(updates.update_add_htlcs.is_empty());
11279 assert!(updates.update_fulfill_htlcs.is_empty());
11280 assert_eq!(updates.update_fail_htlcs.len(), 1);
11281 assert!(updates.update_fail_malformed_htlcs.is_empty());
11282 assert!(updates.update_fee.is_none());
11283 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11284 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11285 expect_payment_failed!(nodes[0], our_payment_hash, true);
11287 // Send the second half of the original MPP payment.
11288 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
11289 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
11290 check_added_monitors!(nodes[0], 1);
11291 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11292 assert_eq!(events.len(), 1);
11293 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
11295 // Claim the full MPP payment. Note that we can't use a test utility like
11296 // claim_funds_along_route because the ordering of the messages causes the second half of the
11297 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
11298 // lightning messages manually.
11299 nodes[1].node.claim_funds(payment_preimage);
11300 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
11301 check_added_monitors!(nodes[1], 2);
11303 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11304 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
11305 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
11306 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
11307 check_added_monitors!(nodes[0], 1);
11308 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11309 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
11310 check_added_monitors!(nodes[1], 1);
11311 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11312 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
11313 check_added_monitors!(nodes[1], 1);
11314 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11315 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
11316 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
11317 check_added_monitors!(nodes[0], 1);
11318 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
11319 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
11320 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11321 check_added_monitors!(nodes[0], 1);
11322 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
11323 check_added_monitors!(nodes[1], 1);
11324 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
11325 check_added_monitors!(nodes[1], 1);
11326 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
11327 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
11328 check_added_monitors!(nodes[0], 1);
11330 // Note that successful MPP payments will generate a single PaymentSent event upon the first
11331 // path's success and a PaymentPathSuccessful event for each path's success.
11332 let events = nodes[0].node.get_and_clear_pending_events();
11333 assert_eq!(events.len(), 2);
11335 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11336 assert_eq!(payment_id, *actual_payment_id);
11337 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11338 assert_eq!(route.paths[0], *path);
11340 _ => panic!("Unexpected event"),
11343 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
11344 assert_eq!(payment_id, *actual_payment_id);
11345 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
11346 assert_eq!(route.paths[0], *path);
11348 _ => panic!("Unexpected event"),
11353 fn test_keysend_dup_payment_hash() {
11354 do_test_keysend_dup_payment_hash(false);
11355 do_test_keysend_dup_payment_hash(true);
11358 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
11359 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
11360 // outbound regular payment fails as expected.
11361 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
11362 // fails as expected.
11363 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
11364 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
11365 // reject MPP keysend payments, since in this case where the payment has no payment
11366 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
11367 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
11368 // payment secrets and reject otherwise.
11369 let chanmon_cfgs = create_chanmon_cfgs(2);
11370 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11371 let mut mpp_keysend_cfg = test_default_channel_config();
11372 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
11373 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
11374 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11375 create_announced_chan_between_nodes(&nodes, 0, 1);
11376 let scorer = test_utils::TestScorer::new();
11377 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11379 // To start (1), send a regular payment but don't claim it.
11380 let expected_route = [&nodes[1]];
11381 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
11383 // Next, attempt a keysend payment and make sure it fails.
11384 let route_params = RouteParameters::from_payment_params_and_value(
11385 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
11386 TEST_FINAL_CLTV, false), 100_000);
11387 let route = find_route(
11388 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11389 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11391 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11392 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11393 check_added_monitors!(nodes[0], 1);
11394 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11395 assert_eq!(events.len(), 1);
11396 let ev = events.drain(..).next().unwrap();
11397 let payment_event = SendEvent::from_event(ev);
11398 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11399 check_added_monitors!(nodes[1], 0);
11400 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11401 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
11402 // fails), the second will process the resulting failure and fail the HTLC backward
11403 expect_pending_htlcs_forwardable!(nodes[1]);
11404 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11405 check_added_monitors!(nodes[1], 1);
11406 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11407 assert!(updates.update_add_htlcs.is_empty());
11408 assert!(updates.update_fulfill_htlcs.is_empty());
11409 assert_eq!(updates.update_fail_htlcs.len(), 1);
11410 assert!(updates.update_fail_malformed_htlcs.is_empty());
11411 assert!(updates.update_fee.is_none());
11412 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11413 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11414 expect_payment_failed!(nodes[0], payment_hash, true);
11416 // Finally, claim the original payment.
11417 claim_payment(&nodes[0], &expected_route, payment_preimage);
11419 // To start (2), send a keysend payment but don't claim it.
11420 let payment_preimage = PaymentPreimage([42; 32]);
11421 let route = find_route(
11422 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11423 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11425 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11426 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
11427 check_added_monitors!(nodes[0], 1);
11428 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11429 assert_eq!(events.len(), 1);
11430 let event = events.pop().unwrap();
11431 let path = vec![&nodes[1]];
11432 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11434 // Next, attempt a regular payment and make sure it fails.
11435 let payment_secret = PaymentSecret([43; 32]);
11436 nodes[0].node.send_payment_with_route(&route, payment_hash,
11437 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
11438 check_added_monitors!(nodes[0], 1);
11439 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11440 assert_eq!(events.len(), 1);
11441 let ev = events.drain(..).next().unwrap();
11442 let payment_event = SendEvent::from_event(ev);
11443 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11444 check_added_monitors!(nodes[1], 0);
11445 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11446 expect_pending_htlcs_forwardable!(nodes[1]);
11447 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11448 check_added_monitors!(nodes[1], 1);
11449 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11450 assert!(updates.update_add_htlcs.is_empty());
11451 assert!(updates.update_fulfill_htlcs.is_empty());
11452 assert_eq!(updates.update_fail_htlcs.len(), 1);
11453 assert!(updates.update_fail_malformed_htlcs.is_empty());
11454 assert!(updates.update_fee.is_none());
11455 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11456 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11457 expect_payment_failed!(nodes[0], payment_hash, true);
11459 // Finally, succeed the keysend payment.
11460 claim_payment(&nodes[0], &expected_route, payment_preimage);
11462 // To start (3), send a keysend payment but don't claim it.
11463 let payment_id_1 = PaymentId([44; 32]);
11464 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11465 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
11466 check_added_monitors!(nodes[0], 1);
11467 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11468 assert_eq!(events.len(), 1);
11469 let event = events.pop().unwrap();
11470 let path = vec![&nodes[1]];
11471 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
11473 // Next, attempt a keysend payment and make sure it fails.
11474 let route_params = RouteParameters::from_payment_params_and_value(
11475 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
11478 let route = find_route(
11479 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
11480 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11482 let payment_id_2 = PaymentId([45; 32]);
11483 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
11484 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
11485 check_added_monitors!(nodes[0], 1);
11486 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
11487 assert_eq!(events.len(), 1);
11488 let ev = events.drain(..).next().unwrap();
11489 let payment_event = SendEvent::from_event(ev);
11490 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
11491 check_added_monitors!(nodes[1], 0);
11492 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
11493 expect_pending_htlcs_forwardable!(nodes[1]);
11494 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
11495 check_added_monitors!(nodes[1], 1);
11496 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
11497 assert!(updates.update_add_htlcs.is_empty());
11498 assert!(updates.update_fulfill_htlcs.is_empty());
11499 assert_eq!(updates.update_fail_htlcs.len(), 1);
11500 assert!(updates.update_fail_malformed_htlcs.is_empty());
11501 assert!(updates.update_fee.is_none());
11502 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
11503 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
11504 expect_payment_failed!(nodes[0], payment_hash, true);
11506 // Finally, claim the original payment.
11507 claim_payment(&nodes[0], &expected_route, payment_preimage);
11511 fn test_keysend_hash_mismatch() {
11512 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
11513 // preimage doesn't match the msg's payment hash.
11514 let chanmon_cfgs = create_chanmon_cfgs(2);
11515 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11516 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11517 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11519 let payer_pubkey = nodes[0].node.get_our_node_id();
11520 let payee_pubkey = nodes[1].node.get_our_node_id();
11522 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11523 let route_params = RouteParameters::from_payment_params_and_value(
11524 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11525 let network_graph = nodes[0].network_graph;
11526 let first_hops = nodes[0].node.list_usable_channels();
11527 let scorer = test_utils::TestScorer::new();
11528 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11529 let route = find_route(
11530 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11531 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11534 let test_preimage = PaymentPreimage([42; 32]);
11535 let mismatch_payment_hash = PaymentHash([43; 32]);
11536 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
11537 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
11538 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
11539 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
11540 check_added_monitors!(nodes[0], 1);
11542 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11543 assert_eq!(updates.update_add_htlcs.len(), 1);
11544 assert!(updates.update_fulfill_htlcs.is_empty());
11545 assert!(updates.update_fail_htlcs.is_empty());
11546 assert!(updates.update_fail_malformed_htlcs.is_empty());
11547 assert!(updates.update_fee.is_none());
11548 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11550 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
11554 fn test_keysend_msg_with_secret_err() {
11555 // Test that we error as expected if we receive a keysend payment that includes a payment
11556 // secret when we don't support MPP keysend.
11557 let mut reject_mpp_keysend_cfg = test_default_channel_config();
11558 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
11559 let chanmon_cfgs = create_chanmon_cfgs(2);
11560 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11561 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
11562 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11564 let payer_pubkey = nodes[0].node.get_our_node_id();
11565 let payee_pubkey = nodes[1].node.get_our_node_id();
11567 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
11568 let route_params = RouteParameters::from_payment_params_and_value(
11569 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
11570 let network_graph = nodes[0].network_graph;
11571 let first_hops = nodes[0].node.list_usable_channels();
11572 let scorer = test_utils::TestScorer::new();
11573 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
11574 let route = find_route(
11575 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
11576 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
11579 let test_preimage = PaymentPreimage([42; 32]);
11580 let test_secret = PaymentSecret([43; 32]);
11581 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
11582 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
11583 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
11584 nodes[0].node.test_send_payment_internal(&route, payment_hash,
11585 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
11586 PaymentId(payment_hash.0), None, session_privs).unwrap();
11587 check_added_monitors!(nodes[0], 1);
11589 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
11590 assert_eq!(updates.update_add_htlcs.len(), 1);
11591 assert!(updates.update_fulfill_htlcs.is_empty());
11592 assert!(updates.update_fail_htlcs.is_empty());
11593 assert!(updates.update_fail_malformed_htlcs.is_empty());
11594 assert!(updates.update_fee.is_none());
11595 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
11597 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
11601 fn test_multi_hop_missing_secret() {
11602 let chanmon_cfgs = create_chanmon_cfgs(4);
11603 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
11604 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
11605 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
11607 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
11608 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
11609 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
11610 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
11612 // Marshall an MPP route.
11613 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
11614 let path = route.paths[0].clone();
11615 route.paths.push(path);
11616 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
11617 route.paths[0].hops[0].short_channel_id = chan_1_id;
11618 route.paths[0].hops[1].short_channel_id = chan_3_id;
11619 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
11620 route.paths[1].hops[0].short_channel_id = chan_2_id;
11621 route.paths[1].hops[1].short_channel_id = chan_4_id;
11623 match nodes[0].node.send_payment_with_route(&route, payment_hash,
11624 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
11626 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
11627 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
11629 _ => panic!("unexpected error")
11634 fn test_drop_disconnected_peers_when_removing_channels() {
11635 let chanmon_cfgs = create_chanmon_cfgs(2);
11636 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11637 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11638 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11640 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
11642 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11643 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11645 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
11646 check_closed_broadcast!(nodes[0], true);
11647 check_added_monitors!(nodes[0], 1);
11648 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11651 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
11652 // disconnected and the channel between has been force closed.
11653 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
11654 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
11655 assert_eq!(nodes_0_per_peer_state.len(), 1);
11656 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
11659 nodes[0].node.timer_tick_occurred();
11662 // Assert that nodes[1] has now been removed.
11663 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
11668 fn bad_inbound_payment_hash() {
11669 // Add coverage for checking that a user-provided payment hash matches the payment secret.
11670 let chanmon_cfgs = create_chanmon_cfgs(2);
11671 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11672 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11673 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11675 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
11676 let payment_data = msgs::FinalOnionHopData {
11678 total_msat: 100_000,
11681 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
11682 // payment verification fails as expected.
11683 let mut bad_payment_hash = payment_hash.clone();
11684 bad_payment_hash.0[0] += 1;
11685 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
11686 Ok(_) => panic!("Unexpected ok"),
11688 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
11692 // Check that using the original payment hash succeeds.
11693 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
11697 fn test_outpoint_to_peer_coverage() {
11698 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
11699 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
11700 // the channel is successfully closed.
11701 let chanmon_cfgs = create_chanmon_cfgs(2);
11702 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11703 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11704 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11706 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
11707 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11708 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
11709 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11710 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11712 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
11713 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
11715 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
11716 // funding transaction, and have the real `channel_id`.
11717 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
11718 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
11721 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
11723 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
11724 // as it has the funding transaction.
11725 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11726 assert_eq!(nodes_0_lock.len(), 1);
11727 assert!(nodes_0_lock.contains_key(&funding_output));
11730 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
11732 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11734 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11736 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11737 assert_eq!(nodes_0_lock.len(), 1);
11738 assert!(nodes_0_lock.contains_key(&funding_output));
11740 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11743 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
11744 // soon as it has the funding transaction.
11745 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11746 assert_eq!(nodes_1_lock.len(), 1);
11747 assert!(nodes_1_lock.contains_key(&funding_output));
11749 check_added_monitors!(nodes[1], 1);
11750 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11751 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11752 check_added_monitors!(nodes[0], 1);
11753 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11754 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
11755 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
11756 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
11758 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
11759 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
11760 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
11761 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
11763 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
11764 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
11766 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
11767 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
11768 // fee for the closing transaction has been negotiated and the parties has the other
11769 // party's signature for the fee negotiated closing transaction.)
11770 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
11771 assert_eq!(nodes_0_lock.len(), 1);
11772 assert!(nodes_0_lock.contains_key(&funding_output));
11776 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
11777 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
11778 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
11779 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
11780 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11781 assert_eq!(nodes_1_lock.len(), 1);
11782 assert!(nodes_1_lock.contains_key(&funding_output));
11785 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
11787 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
11788 // therefore has all it needs to fully close the channel (both signatures for the
11789 // closing transaction).
11790 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
11791 // fully closed by `nodes[0]`.
11792 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
11794 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
11795 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
11796 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
11797 assert_eq!(nodes_1_lock.len(), 1);
11798 assert!(nodes_1_lock.contains_key(&funding_output));
11801 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
11803 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
11805 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
11806 // they both have everything required to fully close the channel.
11807 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
11809 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
11811 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
11812 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
11815 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11816 let expected_message = format!("Not connected to node: {}", expected_public_key);
11817 check_api_error_message(expected_message, res_err)
11820 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
11821 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
11822 check_api_error_message(expected_message, res_err)
11825 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
11826 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
11827 check_api_error_message(expected_message, res_err)
11830 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
11831 let expected_message = "No such channel awaiting to be accepted.".to_string();
11832 check_api_error_message(expected_message, res_err)
11835 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
11837 Err(APIError::APIMisuseError { err }) => {
11838 assert_eq!(err, expected_err_message);
11840 Err(APIError::ChannelUnavailable { err }) => {
11841 assert_eq!(err, expected_err_message);
11843 Ok(_) => panic!("Unexpected Ok"),
11844 Err(_) => panic!("Unexpected Error"),
11849 fn test_api_calls_with_unkown_counterparty_node() {
11850 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
11851 // expected if the `counterparty_node_id` is an unkown peer in the
11852 // `ChannelManager::per_peer_state` map.
11853 let chanmon_cfg = create_chanmon_cfgs(2);
11854 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11855 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11856 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11859 let channel_id = ChannelId::from_bytes([4; 32]);
11860 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
11861 let intercept_id = InterceptId([0; 32]);
11863 // Test the API functions.
11864 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
11866 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
11868 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
11870 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
11872 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
11874 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
11876 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
11880 fn test_api_calls_with_unavailable_channel() {
11881 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
11882 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
11883 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
11884 // the given `channel_id`.
11885 let chanmon_cfg = create_chanmon_cfgs(2);
11886 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11887 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
11888 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11890 let counterparty_node_id = nodes[1].node.get_our_node_id();
11893 let channel_id = ChannelId::from_bytes([4; 32]);
11895 // Test the API functions.
11896 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
11898 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11900 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11902 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
11904 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
11906 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
11910 fn test_connection_limiting() {
11911 // Test that we limit un-channel'd peers and un-funded channels properly.
11912 let chanmon_cfgs = create_chanmon_cfgs(2);
11913 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11914 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11915 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11917 // Note that create_network connects the nodes together for us
11919 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
11920 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11922 let mut funding_tx = None;
11923 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11924 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11925 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11928 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
11929 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
11930 funding_tx = Some(tx.clone());
11931 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
11932 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
11934 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
11935 check_added_monitors!(nodes[1], 1);
11936 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
11938 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
11940 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11941 check_added_monitors!(nodes[0], 1);
11942 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11944 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11947 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11948 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11949 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11950 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11951 open_channel_msg.temporary_channel_id);
11953 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11954 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11956 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11957 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11958 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11959 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11960 peer_pks.push(random_pk);
11961 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11962 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11965 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11966 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11967 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11968 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11969 }, true).unwrap_err();
11971 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11972 // them if we have too many un-channel'd peers.
11973 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11974 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11975 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11976 for ev in chan_closed_events {
11977 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11979 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11980 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11982 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11983 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11984 }, true).unwrap_err();
11986 // but of course if the connection is outbound its allowed...
11987 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11988 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11989 }, false).unwrap();
11990 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11992 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11993 // Even though we accept one more connection from new peers, we won't actually let them
11995 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11996 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11997 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11998 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11999 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
12001 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12002 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
12003 open_channel_msg.temporary_channel_id);
12005 // Of course, however, outbound channels are always allowed
12006 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
12007 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
12009 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
12010 // "protected" and can connect again.
12011 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
12012 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12013 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12015 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
12017 // Further, because the first channel was funded, we can open another channel with
12019 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12020 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
12024 fn test_outbound_chans_unlimited() {
12025 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
12026 let chanmon_cfgs = create_chanmon_cfgs(2);
12027 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12028 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12029 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12031 // Note that create_network connects the nodes together for us
12033 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12034 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12036 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
12037 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12038 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12039 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
12042 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
12044 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12045 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
12046 open_channel_msg.temporary_channel_id);
12048 // but we can still open an outbound channel.
12049 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12050 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
12052 // but even with such an outbound channel, additional inbound channels will still fail.
12053 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12054 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
12055 open_channel_msg.temporary_channel_id);
12059 fn test_0conf_limiting() {
12060 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
12061 // flag set and (sometimes) accept channels as 0conf.
12062 let chanmon_cfgs = create_chanmon_cfgs(2);
12063 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12064 let mut settings = test_default_channel_config();
12065 settings.manually_accept_inbound_channels = true;
12066 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
12067 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12069 // Note that create_network connects the nodes together for us
12071 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12072 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12074 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
12075 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
12076 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
12077 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
12078 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
12079 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12082 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
12083 let events = nodes[1].node.get_and_clear_pending_events();
12085 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12086 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
12088 _ => panic!("Unexpected event"),
12090 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
12091 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
12094 // If we try to accept a channel from another peer non-0conf it will fail.
12095 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
12096 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
12097 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
12098 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12100 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12101 let events = nodes[1].node.get_and_clear_pending_events();
12103 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12104 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
12105 Err(APIError::APIMisuseError { err }) =>
12106 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
12110 _ => panic!("Unexpected event"),
12112 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
12113 open_channel_msg.temporary_channel_id);
12115 // ...however if we accept the same channel 0conf it should work just fine.
12116 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
12117 let events = nodes[1].node.get_and_clear_pending_events();
12119 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12120 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
12122 _ => panic!("Unexpected event"),
12124 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
12128 fn reject_excessively_underpaying_htlcs() {
12129 let chanmon_cfg = create_chanmon_cfgs(1);
12130 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12131 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12132 let node = create_network(1, &node_cfg, &node_chanmgr);
12133 let sender_intended_amt_msat = 100;
12134 let extra_fee_msat = 10;
12135 let hop_data = msgs::InboundOnionPayload::Receive {
12136 sender_intended_htlc_amt_msat: 100,
12137 cltv_expiry_height: 42,
12138 payment_metadata: None,
12139 keysend_preimage: None,
12140 payment_data: Some(msgs::FinalOnionHopData {
12141 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12143 custom_tlvs: Vec::new(),
12145 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
12146 // intended amount, we fail the payment.
12147 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12148 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
12149 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12150 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
12151 current_height, node[0].node.default_configuration.accept_mpp_keysend)
12153 assert_eq!(err_code, 19);
12154 } else { panic!(); }
12156 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
12157 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
12158 sender_intended_htlc_amt_msat: 100,
12159 cltv_expiry_height: 42,
12160 payment_metadata: None,
12161 keysend_preimage: None,
12162 payment_data: Some(msgs::FinalOnionHopData {
12163 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
12165 custom_tlvs: Vec::new(),
12167 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12168 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
12169 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
12170 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
12174 fn test_final_incorrect_cltv(){
12175 let chanmon_cfg = create_chanmon_cfgs(1);
12176 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12177 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
12178 let node = create_network(1, &node_cfg, &node_chanmgr);
12180 let current_height: u32 = node[0].node.best_block.read().unwrap().height();
12181 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
12182 sender_intended_htlc_amt_msat: 100,
12183 cltv_expiry_height: 22,
12184 payment_metadata: None,
12185 keysend_preimage: None,
12186 payment_data: Some(msgs::FinalOnionHopData {
12187 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
12189 custom_tlvs: Vec::new(),
12190 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
12191 node[0].node.default_configuration.accept_mpp_keysend);
12193 // Should not return an error as this condition:
12194 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
12195 // is not satisfied.
12196 assert!(result.is_ok());
12200 fn test_inbound_anchors_manual_acceptance() {
12201 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
12202 // flag set and (sometimes) accept channels as 0conf.
12203 let mut anchors_cfg = test_default_channel_config();
12204 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12206 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
12207 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
12209 let chanmon_cfgs = create_chanmon_cfgs(3);
12210 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12211 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
12212 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
12213 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12215 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
12216 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12218 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12219 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12220 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
12221 match &msg_events[0] {
12222 MessageSendEvent::HandleError { node_id, action } => {
12223 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
12225 ErrorAction::SendErrorMessage { msg } =>
12226 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
12227 _ => panic!("Unexpected error action"),
12230 _ => panic!("Unexpected event"),
12233 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12234 let events = nodes[2].node.get_and_clear_pending_events();
12236 Event::OpenChannelRequest { temporary_channel_id, .. } =>
12237 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
12238 _ => panic!("Unexpected event"),
12240 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12244 fn test_anchors_zero_fee_htlc_tx_fallback() {
12245 // Tests that if both nodes support anchors, but the remote node does not want to accept
12246 // anchor channels at the moment, an error it sent to the local node such that it can retry
12247 // the channel without the anchors feature.
12248 let chanmon_cfgs = create_chanmon_cfgs(2);
12249 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12250 let mut anchors_config = test_default_channel_config();
12251 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
12252 anchors_config.manually_accept_inbound_channels = true;
12253 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
12254 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12256 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
12257 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12258 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
12260 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
12261 let events = nodes[1].node.get_and_clear_pending_events();
12263 Event::OpenChannelRequest { temporary_channel_id, .. } => {
12264 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
12266 _ => panic!("Unexpected event"),
12269 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
12270 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
12272 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12273 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
12275 // Since nodes[1] should not have accepted the channel, it should
12276 // not have generated any events.
12277 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
12281 fn test_update_channel_config() {
12282 let chanmon_cfg = create_chanmon_cfgs(2);
12283 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12284 let mut user_config = test_default_channel_config();
12285 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12286 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12287 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
12288 let channel = &nodes[0].node.list_channels()[0];
12290 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12291 let events = nodes[0].node.get_and_clear_pending_msg_events();
12292 assert_eq!(events.len(), 0);
12294 user_config.channel_config.forwarding_fee_base_msat += 10;
12295 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
12296 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
12297 let events = nodes[0].node.get_and_clear_pending_msg_events();
12298 assert_eq!(events.len(), 1);
12300 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12301 _ => panic!("expected BroadcastChannelUpdate event"),
12304 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
12305 let events = nodes[0].node.get_and_clear_pending_msg_events();
12306 assert_eq!(events.len(), 0);
12308 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
12309 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12310 cltv_expiry_delta: Some(new_cltv_expiry_delta),
12311 ..Default::default()
12313 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12314 let events = nodes[0].node.get_and_clear_pending_msg_events();
12315 assert_eq!(events.len(), 1);
12317 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12318 _ => panic!("expected BroadcastChannelUpdate event"),
12321 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
12322 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
12323 forwarding_fee_proportional_millionths: Some(new_fee),
12324 ..Default::default()
12326 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
12327 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
12328 let events = nodes[0].node.get_and_clear_pending_msg_events();
12329 assert_eq!(events.len(), 1);
12331 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
12332 _ => panic!("expected BroadcastChannelUpdate event"),
12335 // If we provide a channel_id not associated with the peer, we should get an error and no updates
12336 // should be applied to ensure update atomicity as specified in the API docs.
12337 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
12338 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
12339 let new_fee = current_fee + 100;
12342 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
12343 forwarding_fee_proportional_millionths: Some(new_fee),
12344 ..Default::default()
12346 Err(APIError::ChannelUnavailable { err: _ }),
12349 // Check that the fee hasn't changed for the channel that exists.
12350 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
12351 let events = nodes[0].node.get_and_clear_pending_msg_events();
12352 assert_eq!(events.len(), 0);
12356 fn test_payment_display() {
12357 let payment_id = PaymentId([42; 32]);
12358 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12359 let payment_hash = PaymentHash([42; 32]);
12360 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12361 let payment_preimage = PaymentPreimage([42; 32]);
12362 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
12366 fn test_trigger_lnd_force_close() {
12367 let chanmon_cfg = create_chanmon_cfgs(2);
12368 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
12369 let user_config = test_default_channel_config();
12370 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
12371 let nodes = create_network(2, &node_cfg, &node_chanmgr);
12373 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
12374 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
12375 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12376 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12377 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
12378 check_closed_broadcast(&nodes[0], 1, true);
12379 check_added_monitors(&nodes[0], 1);
12380 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12382 let txn = nodes[0].tx_broadcaster.txn_broadcast();
12383 assert_eq!(txn.len(), 1);
12384 check_spends!(txn[0], funding_tx);
12387 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
12388 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
12390 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
12391 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
12393 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12394 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12395 }, false).unwrap();
12396 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
12397 let channel_reestablish = get_event_msg!(
12398 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
12400 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
12402 // Alice should respond with an error since the channel isn't known, but a bogus
12403 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
12404 // close even if it was an lnd node.
12405 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
12406 assert_eq!(msg_events.len(), 2);
12407 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
12408 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
12409 assert_eq!(msg.next_local_commitment_number, 0);
12410 assert_eq!(msg.next_remote_commitment_number, 0);
12411 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
12412 } else { panic!() };
12413 check_closed_broadcast(&nodes[1], 1, true);
12414 check_added_monitors(&nodes[1], 1);
12415 let expected_close_reason = ClosureReason::ProcessingError {
12416 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
12418 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
12420 let txn = nodes[1].tx_broadcaster.txn_broadcast();
12421 assert_eq!(txn.len(), 1);
12422 check_spends!(txn[0], funding_tx);
12427 fn test_malformed_forward_htlcs_ser() {
12428 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
12429 let chanmon_cfg = create_chanmon_cfgs(1);
12430 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
12433 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
12434 let deserialized_chanmgr;
12435 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
12437 let dummy_failed_htlc = |htlc_id| {
12438 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
12440 let dummy_malformed_htlc = |htlc_id| {
12441 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
12444 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
12445 if htlc_id % 2 == 0 {
12446 dummy_failed_htlc(htlc_id)
12448 dummy_malformed_htlc(htlc_id)
12452 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
12453 if htlc_id % 2 == 1 {
12454 dummy_failed_htlc(htlc_id)
12456 dummy_malformed_htlc(htlc_id)
12461 let (scid_1, scid_2) = (42, 43);
12462 let mut forward_htlcs = HashMap::new();
12463 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
12464 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
12466 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
12467 *chanmgr_fwd_htlcs = forward_htlcs.clone();
12468 core::mem::drop(chanmgr_fwd_htlcs);
12470 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
12472 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
12473 for scid in [scid_1, scid_2].iter() {
12474 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
12475 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
12477 assert!(deserialized_fwd_htlcs.is_empty());
12478 core::mem::drop(deserialized_fwd_htlcs);
12480 expect_pending_htlcs_forwardable!(nodes[0]);
12486 use crate::chain::Listen;
12487 use crate::chain::chainmonitor::{ChainMonitor, Persist};
12488 use crate::sign::{KeysManager, InMemorySigner};
12489 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
12490 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
12491 use crate::ln::functional_test_utils::*;
12492 use crate::ln::msgs::{ChannelMessageHandler, Init};
12493 use crate::routing::gossip::NetworkGraph;
12494 use crate::routing::router::{PaymentParameters, RouteParameters};
12495 use crate::util::test_utils;
12496 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
12498 use bitcoin::blockdata::locktime::absolute::LockTime;
12499 use bitcoin::hashes::Hash;
12500 use bitcoin::hashes::sha256::Hash as Sha256;
12501 use bitcoin::{Block, Transaction, TxOut};
12503 use crate::sync::{Arc, Mutex, RwLock};
12505 use criterion::Criterion;
12507 type Manager<'a, P> = ChannelManager<
12508 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
12509 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
12510 &'a test_utils::TestLogger, &'a P>,
12511 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
12512 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
12513 &'a test_utils::TestLogger>;
12515 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
12516 node: &'node_cfg Manager<'chan_mon_cfg, P>,
12518 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
12519 type CM = Manager<'chan_mon_cfg, P>;
12521 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
12523 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
12526 pub fn bench_sends(bench: &mut Criterion) {
12527 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
12530 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
12531 // Do a simple benchmark of sending a payment back and forth between two nodes.
12532 // Note that this is unrealistic as each payment send will require at least two fsync
12534 let network = bitcoin::Network::Testnet;
12535 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
12537 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
12538 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
12539 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
12540 let scorer = RwLock::new(test_utils::TestScorer::new());
12541 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
12543 let mut config: UserConfig = Default::default();
12544 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
12545 config.channel_handshake_config.minimum_depth = 1;
12547 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
12548 let seed_a = [1u8; 32];
12549 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
12550 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
12552 best_block: BestBlock::from_network(network),
12553 }, genesis_block.header.time);
12554 let node_a_holder = ANodeHolder { node: &node_a };
12556 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
12557 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
12558 let seed_b = [2u8; 32];
12559 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
12560 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
12562 best_block: BestBlock::from_network(network),
12563 }, genesis_block.header.time);
12564 let node_b_holder = ANodeHolder { node: &node_b };
12566 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
12567 features: node_b.init_features(), networks: None, remote_network_address: None
12569 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
12570 features: node_a.init_features(), networks: None, remote_network_address: None
12571 }, false).unwrap();
12572 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
12573 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
12574 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
12577 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
12578 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
12579 value: 8_000_000, script_pubkey: output_script,
12581 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
12582 } else { panic!(); }
12584 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
12585 let events_b = node_b.get_and_clear_pending_events();
12586 assert_eq!(events_b.len(), 1);
12587 match events_b[0] {
12588 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12589 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12591 _ => panic!("Unexpected event"),
12594 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
12595 let events_a = node_a.get_and_clear_pending_events();
12596 assert_eq!(events_a.len(), 1);
12597 match events_a[0] {
12598 Event::ChannelPending{ ref counterparty_node_id, .. } => {
12599 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12601 _ => panic!("Unexpected event"),
12604 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
12606 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
12607 Listen::block_connected(&node_a, &block, 1);
12608 Listen::block_connected(&node_b, &block, 1);
12610 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
12611 let msg_events = node_a.get_and_clear_pending_msg_events();
12612 assert_eq!(msg_events.len(), 2);
12613 match msg_events[0] {
12614 MessageSendEvent::SendChannelReady { ref msg, .. } => {
12615 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
12616 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
12620 match msg_events[1] {
12621 MessageSendEvent::SendChannelUpdate { .. } => {},
12625 let events_a = node_a.get_and_clear_pending_events();
12626 assert_eq!(events_a.len(), 1);
12627 match events_a[0] {
12628 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12629 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
12631 _ => panic!("Unexpected event"),
12634 let events_b = node_b.get_and_clear_pending_events();
12635 assert_eq!(events_b.len(), 1);
12636 match events_b[0] {
12637 Event::ChannelReady{ ref counterparty_node_id, .. } => {
12638 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
12640 _ => panic!("Unexpected event"),
12643 let mut payment_count: u64 = 0;
12644 macro_rules! send_payment {
12645 ($node_a: expr, $node_b: expr) => {
12646 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
12647 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
12648 let mut payment_preimage = PaymentPreimage([0; 32]);
12649 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
12650 payment_count += 1;
12651 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
12652 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
12654 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
12655 PaymentId(payment_hash.0),
12656 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
12657 Retry::Attempts(0)).unwrap();
12658 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
12659 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
12660 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
12661 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
12662 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
12663 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
12664 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
12666 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
12667 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
12668 $node_b.claim_funds(payment_preimage);
12669 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
12671 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
12672 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
12673 assert_eq!(node_id, $node_a.get_our_node_id());
12674 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
12675 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
12677 _ => panic!("Failed to generate claim event"),
12680 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
12681 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
12682 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
12683 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
12685 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
12689 bench.bench_function(bench_name, |b| b.iter(|| {
12690 send_payment!(node_a, node_b);
12691 send_payment!(node_b, node_a);