1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::{BlindedPath, NodeIdLookUp};
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
48 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
49 #[cfg(any(feature = "_test_utils", test))]
50 use crate::ln::features::Bolt11InvoiceFeatures;
51 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, ExplicitSigningPubkey, InvoiceBuilder, UnsignedBolt12Invoice};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::invoice_request::{DerivedPayerId, InvoiceRequestBuilder};
64 use crate::offers::offer::{Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::messenger::{Destination, MessageRouter, PendingOnionMessage, new_pending_onion_message};
68 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
69 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
78 #[cfg(not(c_bindings))]
80 crate::offers::offer::DerivedMetadata,
81 crate::routing::router::DefaultRouter,
82 crate::routing::gossip::NetworkGraph,
83 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
84 crate::sign::KeysManager,
88 crate::offers::offer::OfferWithDerivedMetadataBuilder,
89 crate::offers::refund::RefundMaybeWithDerivedMetadataBuilder,
92 use alloc::collections::{btree_map, BTreeMap};
95 use crate::prelude::*;
97 use core::cell::RefCell;
99 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
100 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
101 use core::time::Duration;
102 use core::ops::Deref;
104 // Re-export this for use in the public API.
105 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
106 use crate::ln::script::ShutdownScript;
108 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
110 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
111 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
112 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
114 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
115 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
116 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
117 // before we forward it.
119 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
120 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
121 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
122 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
123 // our payment, which we can use to decode errors or inform the user that the payment was sent.
125 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
126 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
127 #[cfg_attr(test, derive(Debug, PartialEq))]
128 pub enum PendingHTLCRouting {
129 /// An HTLC which should be forwarded on to another node.
131 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
132 /// do with the HTLC.
133 onion_packet: msgs::OnionPacket,
134 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
136 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
137 /// to the receiving node, such as one returned from
138 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
139 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
140 /// Set if this HTLC is being forwarded within a blinded path.
141 blinded: Option<BlindedForward>,
143 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
145 /// Note that at this point, we have not checked that the invoice being paid was actually
146 /// generated by us, but rather it's claiming to pay an invoice of ours.
148 /// Information about the amount the sender intended to pay and (potential) proof that this
149 /// is a payment for an invoice we generated. This proof of payment is is also used for
150 /// linking MPP parts of a larger payment.
151 payment_data: msgs::FinalOnionHopData,
152 /// Additional data which we (allegedly) instructed the sender to include in the onion.
154 /// For HTLCs received by LDK, this will ultimately be exposed in
155 /// [`Event::PaymentClaimable::onion_fields`] as
156 /// [`RecipientOnionFields::payment_metadata`].
157 payment_metadata: Option<Vec<u8>>,
158 /// CLTV expiry of the received HTLC.
160 /// Used to track when we should expire pending HTLCs that go unclaimed.
161 incoming_cltv_expiry: u32,
162 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
163 /// provide the onion shared secret used to decrypt the next level of forwarding
165 phantom_shared_secret: Option<[u8; 32]>,
166 /// Custom TLVs which were set by the sender.
168 /// For HTLCs received by LDK, this will ultimately be exposed in
169 /// [`Event::PaymentClaimable::onion_fields`] as
170 /// [`RecipientOnionFields::custom_tlvs`].
171 custom_tlvs: Vec<(u64, Vec<u8>)>,
172 /// Set if this HTLC is the final hop in a multi-hop blinded path.
173 requires_blinded_error: bool,
175 /// The onion indicates that this is for payment to us but which contains the preimage for
176 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
177 /// "keysend" or "spontaneous" payment).
179 /// Information about the amount the sender intended to pay and possibly a token to
180 /// associate MPP parts of a larger payment.
182 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
183 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
184 payment_data: Option<msgs::FinalOnionHopData>,
185 /// Preimage for this onion payment. This preimage is provided by the sender and will be
186 /// used to settle the spontaneous payment.
187 payment_preimage: PaymentPreimage,
188 /// Additional data which we (allegedly) instructed the sender to include in the onion.
190 /// For HTLCs received by LDK, this will ultimately bubble back up as
191 /// [`RecipientOnionFields::payment_metadata`].
192 payment_metadata: Option<Vec<u8>>,
193 /// CLTV expiry of the received HTLC.
195 /// Used to track when we should expire pending HTLCs that go unclaimed.
196 incoming_cltv_expiry: u32,
197 /// Custom TLVs which were set by the sender.
199 /// For HTLCs received by LDK, these will ultimately bubble back up as
200 /// [`RecipientOnionFields::custom_tlvs`].
201 custom_tlvs: Vec<(u64, Vec<u8>)>,
202 /// Set if this HTLC is the final hop in a multi-hop blinded path.
203 requires_blinded_error: bool,
207 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
208 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
209 pub struct BlindedForward {
210 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
211 /// onion payload if we're the introduction node. Useful for calculating the next hop's
212 /// [`msgs::UpdateAddHTLC::blinding_point`].
213 pub inbound_blinding_point: PublicKey,
214 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
215 /// the introduction node.
216 pub failure: BlindedFailure,
219 impl PendingHTLCRouting {
220 // Used to override the onion failure code and data if the HTLC is blinded.
221 fn blinded_failure(&self) -> Option<BlindedFailure> {
223 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
224 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
225 Self::ReceiveKeysend { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
231 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
233 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
234 #[cfg_attr(test, derive(Debug, PartialEq))]
235 pub struct PendingHTLCInfo {
236 /// Further routing details based on whether the HTLC is being forwarded or received.
237 pub routing: PendingHTLCRouting,
238 /// The onion shared secret we build with the sender used to decrypt the onion.
240 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
241 pub incoming_shared_secret: [u8; 32],
242 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
243 pub payment_hash: PaymentHash,
244 /// Amount received in the incoming HTLC.
246 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
248 pub incoming_amt_msat: Option<u64>,
249 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
250 /// intended for us to receive for received payments.
252 /// If the received amount is less than this for received payments, an intermediary hop has
253 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
254 /// it along another path).
256 /// Because nodes can take less than their required fees, and because senders may wish to
257 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
258 /// received payments. In such cases, recipients must handle this HTLC as if it had received
259 /// [`Self::outgoing_amt_msat`].
260 pub outgoing_amt_msat: u64,
261 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
262 /// should have been set on the received HTLC for received payments).
263 pub outgoing_cltv_value: u32,
264 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
266 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
269 /// If this is a received payment, this is the fee that our counterparty took.
271 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
273 pub skimmed_fee_msat: Option<u64>,
276 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
277 pub(super) enum HTLCFailureMsg {
278 Relay(msgs::UpdateFailHTLC),
279 Malformed(msgs::UpdateFailMalformedHTLC),
282 /// Stores whether we can't forward an HTLC or relevant forwarding info
283 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
284 pub(super) enum PendingHTLCStatus {
285 Forward(PendingHTLCInfo),
286 Fail(HTLCFailureMsg),
289 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
290 pub(super) struct PendingAddHTLCInfo {
291 pub(super) forward_info: PendingHTLCInfo,
293 // These fields are produced in `forward_htlcs()` and consumed in
294 // `process_pending_htlc_forwards()` for constructing the
295 // `HTLCSource::PreviousHopData` for failed and forwarded
298 // Note that this may be an outbound SCID alias for the associated channel.
299 prev_short_channel_id: u64,
301 prev_channel_id: ChannelId,
302 prev_funding_outpoint: OutPoint,
303 prev_user_channel_id: u128,
306 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
307 pub(super) enum HTLCForwardInfo {
308 AddHTLC(PendingAddHTLCInfo),
311 err_packet: msgs::OnionErrorPacket,
316 sha256_of_onion: [u8; 32],
320 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
321 /// which determines the failure message that should be used.
322 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
323 pub enum BlindedFailure {
324 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
325 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
326 FromIntroductionNode,
327 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
328 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
332 /// Tracks the inbound corresponding to an outbound HTLC
333 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
334 pub(crate) struct HTLCPreviousHopData {
335 // Note that this may be an outbound SCID alias for the associated channel.
336 short_channel_id: u64,
337 user_channel_id: Option<u128>,
339 incoming_packet_shared_secret: [u8; 32],
340 phantom_shared_secret: Option<[u8; 32]>,
341 blinded_failure: Option<BlindedFailure>,
342 channel_id: ChannelId,
344 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
345 // channel with a preimage provided by the forward channel.
350 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
352 /// This is only here for backwards-compatibility in serialization, in the future it can be
353 /// removed, breaking clients running 0.0.106 and earlier.
354 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
356 /// Contains the payer-provided preimage.
357 Spontaneous(PaymentPreimage),
360 /// HTLCs that are to us and can be failed/claimed by the user
361 struct ClaimableHTLC {
362 prev_hop: HTLCPreviousHopData,
364 /// The amount (in msats) of this MPP part
366 /// The amount (in msats) that the sender intended to be sent in this MPP
367 /// part (used for validating total MPP amount)
368 sender_intended_value: u64,
369 onion_payload: OnionPayload,
371 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
372 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
373 total_value_received: Option<u64>,
374 /// The sender intended sum total of all MPP parts specified in the onion
376 /// The extra fee our counterparty skimmed off the top of this HTLC.
377 counterparty_skimmed_fee_msat: Option<u64>,
380 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
381 fn from(val: &ClaimableHTLC) -> Self {
382 events::ClaimedHTLC {
383 channel_id: val.prev_hop.channel_id,
384 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
385 cltv_expiry: val.cltv_expiry,
386 value_msat: val.value,
387 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
392 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
393 /// a payment and ensure idempotency in LDK.
395 /// This is not exported to bindings users as we just use [u8; 32] directly
396 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
397 pub struct PaymentId(pub [u8; Self::LENGTH]);
400 /// Number of bytes in the id.
401 pub const LENGTH: usize = 32;
404 impl Writeable for PaymentId {
405 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
410 impl Readable for PaymentId {
411 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
412 let buf: [u8; 32] = Readable::read(r)?;
417 impl core::fmt::Display for PaymentId {
418 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
419 crate::util::logger::DebugBytes(&self.0).fmt(f)
423 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
425 /// This is not exported to bindings users as we just use [u8; 32] directly
426 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
427 pub struct InterceptId(pub [u8; 32]);
429 impl Writeable for InterceptId {
430 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
435 impl Readable for InterceptId {
436 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
437 let buf: [u8; 32] = Readable::read(r)?;
442 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
443 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
444 pub(crate) enum SentHTLCId {
445 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
446 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
449 pub(crate) fn from_source(source: &HTLCSource) -> Self {
451 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
452 short_channel_id: hop_data.short_channel_id,
453 htlc_id: hop_data.htlc_id,
455 HTLCSource::OutboundRoute { session_priv, .. } =>
456 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
460 impl_writeable_tlv_based_enum!(SentHTLCId,
461 (0, PreviousHopData) => {
462 (0, short_channel_id, required),
463 (2, htlc_id, required),
465 (2, OutboundRoute) => {
466 (0, session_priv, required),
471 /// Tracks the inbound corresponding to an outbound HTLC
472 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
473 #[derive(Clone, Debug, PartialEq, Eq)]
474 pub(crate) enum HTLCSource {
475 PreviousHopData(HTLCPreviousHopData),
478 session_priv: SecretKey,
479 /// Technically we can recalculate this from the route, but we cache it here to avoid
480 /// doing a double-pass on route when we get a failure back
481 first_hop_htlc_msat: u64,
482 payment_id: PaymentId,
485 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
486 impl core::hash::Hash for HTLCSource {
487 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
489 HTLCSource::PreviousHopData(prev_hop_data) => {
491 prev_hop_data.hash(hasher);
493 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
496 session_priv[..].hash(hasher);
497 payment_id.hash(hasher);
498 first_hop_htlc_msat.hash(hasher);
504 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
506 pub fn dummy() -> Self {
507 HTLCSource::OutboundRoute {
508 path: Path { hops: Vec::new(), blinded_tail: None },
509 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
510 first_hop_htlc_msat: 0,
511 payment_id: PaymentId([2; 32]),
515 #[cfg(debug_assertions)]
516 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
517 /// transaction. Useful to ensure different datastructures match up.
518 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
519 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
520 *first_hop_htlc_msat == htlc.amount_msat
522 // There's nothing we can check for forwarded HTLCs
528 /// This enum is used to specify which error data to send to peers when failing back an HTLC
529 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
531 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
532 #[derive(Clone, Copy)]
533 pub enum FailureCode {
534 /// We had a temporary error processing the payment. Useful if no other error codes fit
535 /// and you want to indicate that the payer may want to retry.
536 TemporaryNodeFailure,
537 /// We have a required feature which was not in this onion. For example, you may require
538 /// some additional metadata that was not provided with this payment.
539 RequiredNodeFeatureMissing,
540 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
541 /// the HTLC is too close to the current block height for safe handling.
542 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
543 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
544 IncorrectOrUnknownPaymentDetails,
545 /// We failed to process the payload after the onion was decrypted. You may wish to
546 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
548 /// If available, the tuple data may include the type number and byte offset in the
549 /// decrypted byte stream where the failure occurred.
550 InvalidOnionPayload(Option<(u64, u16)>),
553 impl Into<u16> for FailureCode {
554 fn into(self) -> u16 {
556 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
557 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
558 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
559 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
564 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
565 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
566 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
567 /// peer_state lock. We then return the set of things that need to be done outside the lock in
568 /// this struct and call handle_error!() on it.
570 struct MsgHandleErrInternal {
571 err: msgs::LightningError,
572 closes_channel: bool,
573 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
575 impl MsgHandleErrInternal {
577 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
579 err: LightningError {
581 action: msgs::ErrorAction::SendErrorMessage {
582 msg: msgs::ErrorMessage {
588 closes_channel: false,
589 shutdown_finish: None,
593 fn from_no_close(err: msgs::LightningError) -> Self {
594 Self { err, closes_channel: false, shutdown_finish: None }
597 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
598 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
599 let action = if shutdown_res.monitor_update.is_some() {
600 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
601 // should disconnect our peer such that we force them to broadcast their latest
602 // commitment upon reconnecting.
603 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
605 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
608 err: LightningError { err, action },
609 closes_channel: true,
610 shutdown_finish: Some((shutdown_res, channel_update)),
614 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
617 ChannelError::Warn(msg) => LightningError {
619 action: msgs::ErrorAction::SendWarningMessage {
620 msg: msgs::WarningMessage {
624 log_level: Level::Warn,
627 ChannelError::Ignore(msg) => LightningError {
629 action: msgs::ErrorAction::IgnoreError,
631 ChannelError::Close(msg) => LightningError {
633 action: msgs::ErrorAction::SendErrorMessage {
634 msg: msgs::ErrorMessage {
641 closes_channel: false,
642 shutdown_finish: None,
646 fn closes_channel(&self) -> bool {
651 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
652 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
653 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
654 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
655 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
657 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
658 /// be sent in the order they appear in the return value, however sometimes the order needs to be
659 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
660 /// they were originally sent). In those cases, this enum is also returned.
661 #[derive(Clone, PartialEq)]
662 pub(super) enum RAACommitmentOrder {
663 /// Send the CommitmentUpdate messages first
665 /// Send the RevokeAndACK message first
669 /// Information about a payment which is currently being claimed.
670 struct ClaimingPayment {
672 payment_purpose: events::PaymentPurpose,
673 receiver_node_id: PublicKey,
674 htlcs: Vec<events::ClaimedHTLC>,
675 sender_intended_value: Option<u64>,
677 impl_writeable_tlv_based!(ClaimingPayment, {
678 (0, amount_msat, required),
679 (2, payment_purpose, required),
680 (4, receiver_node_id, required),
681 (5, htlcs, optional_vec),
682 (7, sender_intended_value, option),
685 struct ClaimablePayment {
686 purpose: events::PaymentPurpose,
687 onion_fields: Option<RecipientOnionFields>,
688 htlcs: Vec<ClaimableHTLC>,
691 /// Information about claimable or being-claimed payments
692 struct ClaimablePayments {
693 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
694 /// failed/claimed by the user.
696 /// Note that, no consistency guarantees are made about the channels given here actually
697 /// existing anymore by the time you go to read them!
699 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
700 /// we don't get a duplicate payment.
701 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
703 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
704 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
705 /// as an [`events::Event::PaymentClaimed`].
706 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
709 /// Events which we process internally but cannot be processed immediately at the generation site
710 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
711 /// running normally, and specifically must be processed before any other non-background
712 /// [`ChannelMonitorUpdate`]s are applied.
714 enum BackgroundEvent {
715 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
716 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
717 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
718 /// channel has been force-closed we do not need the counterparty node_id.
720 /// Note that any such events are lost on shutdown, so in general they must be updates which
721 /// are regenerated on startup.
722 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
723 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
724 /// channel to continue normal operation.
726 /// In general this should be used rather than
727 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
728 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
729 /// error the other variant is acceptable.
731 /// Note that any such events are lost on shutdown, so in general they must be updates which
732 /// are regenerated on startup.
733 MonitorUpdateRegeneratedOnStartup {
734 counterparty_node_id: PublicKey,
735 funding_txo: OutPoint,
736 channel_id: ChannelId,
737 update: ChannelMonitorUpdate
739 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
740 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
742 MonitorUpdatesComplete {
743 counterparty_node_id: PublicKey,
744 channel_id: ChannelId,
749 pub(crate) enum MonitorUpdateCompletionAction {
750 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
751 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
752 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
753 /// event can be generated.
754 PaymentClaimed { payment_hash: PaymentHash },
755 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
756 /// operation of another channel.
758 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
759 /// from completing a monitor update which removes the payment preimage until the inbound edge
760 /// completes a monitor update containing the payment preimage. In that case, after the inbound
761 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
763 EmitEventAndFreeOtherChannel {
764 event: events::Event,
765 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
767 /// Indicates we should immediately resume the operation of another channel, unless there is
768 /// some other reason why the channel is blocked. In practice this simply means immediately
769 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
771 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
772 /// from completing a monitor update which removes the payment preimage until the inbound edge
773 /// completes a monitor update containing the payment preimage. However, we use this variant
774 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
775 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
777 /// This variant should thus never be written to disk, as it is processed inline rather than
778 /// stored for later processing.
779 FreeOtherChannelImmediately {
780 downstream_counterparty_node_id: PublicKey,
781 downstream_funding_outpoint: OutPoint,
782 blocking_action: RAAMonitorUpdateBlockingAction,
783 downstream_channel_id: ChannelId,
787 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
788 (0, PaymentClaimed) => { (0, payment_hash, required) },
789 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
790 // *immediately*. However, for simplicity we implement read/write here.
791 (1, FreeOtherChannelImmediately) => {
792 (0, downstream_counterparty_node_id, required),
793 (2, downstream_funding_outpoint, required),
794 (4, blocking_action, required),
795 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
796 // filled in, so we can safely unwrap it here.
797 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
799 (2, EmitEventAndFreeOtherChannel) => {
800 (0, event, upgradable_required),
801 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
802 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
803 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
804 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
805 // downgrades to prior versions.
806 (1, downstream_counterparty_and_funding_outpoint, option),
810 #[derive(Clone, Debug, PartialEq, Eq)]
811 pub(crate) enum EventCompletionAction {
812 ReleaseRAAChannelMonitorUpdate {
813 counterparty_node_id: PublicKey,
814 channel_funding_outpoint: OutPoint,
815 channel_id: ChannelId,
818 impl_writeable_tlv_based_enum!(EventCompletionAction,
819 (0, ReleaseRAAChannelMonitorUpdate) => {
820 (0, channel_funding_outpoint, required),
821 (2, counterparty_node_id, required),
822 // Note that by the time we get past the required read above, channel_funding_outpoint will be
823 // filled in, so we can safely unwrap it here.
824 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
828 #[derive(Clone, PartialEq, Eq, Debug)]
829 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
830 /// the blocked action here. See enum variants for more info.
831 pub(crate) enum RAAMonitorUpdateBlockingAction {
832 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
833 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
835 ForwardedPaymentInboundClaim {
836 /// The upstream channel ID (i.e. the inbound edge).
837 channel_id: ChannelId,
838 /// The HTLC ID on the inbound edge.
843 impl RAAMonitorUpdateBlockingAction {
844 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
845 Self::ForwardedPaymentInboundClaim {
846 channel_id: prev_hop.channel_id,
847 htlc_id: prev_hop.htlc_id,
852 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
853 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
857 /// State we hold per-peer.
858 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
859 /// `channel_id` -> `ChannelPhase`
861 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
862 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
863 /// `temporary_channel_id` -> `InboundChannelRequest`.
865 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
866 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
867 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
868 /// the channel is rejected, then the entry is simply removed.
869 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
870 /// The latest `InitFeatures` we heard from the peer.
871 latest_features: InitFeatures,
872 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
873 /// for broadcast messages, where ordering isn't as strict).
874 pub(super) pending_msg_events: Vec<MessageSendEvent>,
875 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
876 /// user but which have not yet completed.
878 /// Note that the channel may no longer exist. For example if the channel was closed but we
879 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
880 /// for a missing channel.
881 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
882 /// Map from a specific channel to some action(s) that should be taken when all pending
883 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
885 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
886 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
887 /// channels with a peer this will just be one allocation and will amount to a linear list of
888 /// channels to walk, avoiding the whole hashing rigmarole.
890 /// Note that the channel may no longer exist. For example, if a channel was closed but we
891 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
892 /// for a missing channel. While a malicious peer could construct a second channel with the
893 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
894 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
895 /// duplicates do not occur, so such channels should fail without a monitor update completing.
896 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
897 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
898 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
899 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
900 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
901 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
902 /// The peer is currently connected (i.e. we've seen a
903 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
904 /// [`ChannelMessageHandler::peer_disconnected`].
905 pub is_connected: bool,
908 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
909 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
910 /// If true is passed for `require_disconnected`, the function will return false if we haven't
911 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
912 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
913 if require_disconnected && self.is_connected {
916 !self.channel_by_id.iter().any(|(_, phase)|
918 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
919 ChannelPhase::UnfundedInboundV1(_) => false,
921 ChannelPhase::UnfundedOutboundV2(_) => true,
923 ChannelPhase::UnfundedInboundV2(_) => false,
926 && self.monitor_update_blocked_actions.is_empty()
927 && self.in_flight_monitor_updates.is_empty()
930 // Returns a count of all channels we have with this peer, including unfunded channels.
931 fn total_channel_count(&self) -> usize {
932 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
935 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
936 fn has_channel(&self, channel_id: &ChannelId) -> bool {
937 self.channel_by_id.contains_key(channel_id) ||
938 self.inbound_channel_request_by_id.contains_key(channel_id)
942 /// A not-yet-accepted inbound (from counterparty) channel. Once
943 /// accepted, the parameters will be used to construct a channel.
944 pub(super) struct InboundChannelRequest {
945 /// The original OpenChannel message.
946 pub open_channel_msg: msgs::OpenChannel,
947 /// The number of ticks remaining before the request expires.
948 pub ticks_remaining: i32,
951 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
952 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
953 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
955 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
956 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
958 /// For users who don't want to bother doing their own payment preimage storage, we also store that
961 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
962 /// and instead encoding it in the payment secret.
963 struct PendingInboundPayment {
964 /// The payment secret that the sender must use for us to accept this payment
965 payment_secret: PaymentSecret,
966 /// Time at which this HTLC expires - blocks with a header time above this value will result in
967 /// this payment being removed.
969 /// Arbitrary identifier the user specifies (or not)
970 user_payment_id: u64,
971 // Other required attributes of the payment, optionally enforced:
972 payment_preimage: Option<PaymentPreimage>,
973 min_value_msat: Option<u64>,
976 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
977 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
978 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
979 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
980 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
981 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
982 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
983 /// of [`KeysManager`] and [`DefaultRouter`].
985 /// This is not exported to bindings users as type aliases aren't supported in most languages.
986 #[cfg(not(c_bindings))]
987 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
995 Arc<NetworkGraph<Arc<L>>>,
998 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
999 ProbabilisticScoringFeeParameters,
1000 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
1005 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
1006 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
1007 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
1008 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1009 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1010 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1011 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1012 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1013 /// of [`KeysManager`] and [`DefaultRouter`].
1015 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1016 #[cfg(not(c_bindings))]
1017 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1026 &'f NetworkGraph<&'g L>,
1029 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1030 ProbabilisticScoringFeeParameters,
1031 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1036 /// A trivial trait which describes any [`ChannelManager`].
1038 /// This is not exported to bindings users as general cover traits aren't useful in other
1040 pub trait AChannelManager {
1041 /// A type implementing [`chain::Watch`].
1042 type Watch: chain::Watch<Self::Signer> + ?Sized;
1043 /// A type that may be dereferenced to [`Self::Watch`].
1044 type M: Deref<Target = Self::Watch>;
1045 /// A type implementing [`BroadcasterInterface`].
1046 type Broadcaster: BroadcasterInterface + ?Sized;
1047 /// A type that may be dereferenced to [`Self::Broadcaster`].
1048 type T: Deref<Target = Self::Broadcaster>;
1049 /// A type implementing [`EntropySource`].
1050 type EntropySource: EntropySource + ?Sized;
1051 /// A type that may be dereferenced to [`Self::EntropySource`].
1052 type ES: Deref<Target = Self::EntropySource>;
1053 /// A type implementing [`NodeSigner`].
1054 type NodeSigner: NodeSigner + ?Sized;
1055 /// A type that may be dereferenced to [`Self::NodeSigner`].
1056 type NS: Deref<Target = Self::NodeSigner>;
1057 /// A type implementing [`WriteableEcdsaChannelSigner`].
1058 type Signer: WriteableEcdsaChannelSigner + Sized;
1059 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1060 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1061 /// A type that may be dereferenced to [`Self::SignerProvider`].
1062 type SP: Deref<Target = Self::SignerProvider>;
1063 /// A type implementing [`FeeEstimator`].
1064 type FeeEstimator: FeeEstimator + ?Sized;
1065 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1066 type F: Deref<Target = Self::FeeEstimator>;
1067 /// A type implementing [`Router`].
1068 type Router: Router + ?Sized;
1069 /// A type that may be dereferenced to [`Self::Router`].
1070 type R: Deref<Target = Self::Router>;
1071 /// A type implementing [`Logger`].
1072 type Logger: Logger + ?Sized;
1073 /// A type that may be dereferenced to [`Self::Logger`].
1074 type L: Deref<Target = Self::Logger>;
1075 /// Returns a reference to the actual [`ChannelManager`] object.
1076 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1079 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1080 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1082 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1083 T::Target: BroadcasterInterface,
1084 ES::Target: EntropySource,
1085 NS::Target: NodeSigner,
1086 SP::Target: SignerProvider,
1087 F::Target: FeeEstimator,
1091 type Watch = M::Target;
1093 type Broadcaster = T::Target;
1095 type EntropySource = ES::Target;
1097 type NodeSigner = NS::Target;
1099 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1100 type SignerProvider = SP::Target;
1102 type FeeEstimator = F::Target;
1104 type Router = R::Target;
1106 type Logger = L::Target;
1108 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1111 /// A lightning node's channel state machine and payment management logic, which facilitates
1112 /// sending, forwarding, and receiving payments through lightning channels.
1114 /// [`ChannelManager`] is parameterized by a number of components to achieve this.
1115 /// - [`chain::Watch`] (typically [`ChainMonitor`]) for on-chain monitoring and enforcement of each
1117 /// - [`BroadcasterInterface`] for broadcasting transactions related to opening, funding, and
1118 /// closing channels
1119 /// - [`EntropySource`] for providing random data needed for cryptographic operations
1120 /// - [`NodeSigner`] for cryptographic operations scoped to the node
1121 /// - [`SignerProvider`] for providing signers whose operations are scoped to individual channels
1122 /// - [`FeeEstimator`] to determine transaction fee rates needed to have a transaction mined in a
1124 /// - [`Router`] for finding payment paths when initiating and retrying payments
1125 /// - [`Logger`] for logging operational information of varying degrees
1127 /// Additionally, it implements the following traits:
1128 /// - [`ChannelMessageHandler`] to handle off-chain channel activity from peers
1129 /// - [`MessageSendEventsProvider`] to similarly send such messages to peers
1130 /// - [`OffersMessageHandler`] for BOLT 12 message handling and sending
1131 /// - [`EventsProvider`] to generate user-actionable [`Event`]s
1132 /// - [`chain::Listen`] and [`chain::Confirm`] for notification of on-chain activity
1134 /// Thus, [`ChannelManager`] is typically used to parameterize a [`MessageHandler`] and an
1135 /// [`OnionMessenger`]. The latter is required to support BOLT 12 functionality.
1137 /// # `ChannelManager` vs `ChannelMonitor`
1139 /// It's important to distinguish between the *off-chain* management and *on-chain* enforcement of
1140 /// lightning channels. [`ChannelManager`] exchanges messages with peers to manage the off-chain
1141 /// state of each channel. During this process, it generates a [`ChannelMonitor`] for each channel
1142 /// and a [`ChannelMonitorUpdate`] for each relevant change, notifying its parameterized
1143 /// [`chain::Watch`] of them.
1145 /// An implementation of [`chain::Watch`], such as [`ChainMonitor`], is responsible for aggregating
1146 /// these [`ChannelMonitor`]s and applying any [`ChannelMonitorUpdate`]s to them. It then monitors
1147 /// for any pertinent on-chain activity, enforcing claims as needed.
1149 /// This division of off-chain management and on-chain enforcement allows for interesting node
1150 /// setups. For instance, on-chain enforcement could be moved to a separate host or have added
1151 /// redundancy, possibly as a watchtower. See [`chain::Watch`] for the relevant interface.
1153 /// # Initialization
1155 /// Use [`ChannelManager::new`] with the most recent [`BlockHash`] when creating a fresh instance.
1156 /// Otherwise, if restarting, construct [`ChannelManagerReadArgs`] with the necessary parameters and
1157 /// references to any deserialized [`ChannelMonitor`]s that were previously persisted. Use this to
1158 /// deserialize the [`ChannelManager`] and feed it any new chain data since it was last online, as
1159 /// detailed in the [`ChannelManagerReadArgs`] documentation.
1162 /// use bitcoin::BlockHash;
1163 /// use bitcoin::network::constants::Network;
1164 /// use lightning::chain::BestBlock;
1165 /// # use lightning::chain::channelmonitor::ChannelMonitor;
1166 /// use lightning::ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs};
1167 /// # use lightning::routing::gossip::NetworkGraph;
1168 /// use lightning::util::config::UserConfig;
1169 /// use lightning::util::ser::ReadableArgs;
1171 /// # fn read_channel_monitors() -> Vec<ChannelMonitor<lightning::sign::InMemorySigner>> { vec![] }
1174 /// # L: lightning::util::logger::Logger,
1175 /// # ES: lightning::sign::EntropySource,
1176 /// # S: for <'b> lightning::routing::scoring::LockableScore<'b, ScoreLookUp = SL>,
1177 /// # SL: lightning::routing::scoring::ScoreLookUp<ScoreParams = SP>,
1179 /// # R: lightning::io::Read,
1181 /// # fee_estimator: &dyn lightning::chain::chaininterface::FeeEstimator,
1182 /// # chain_monitor: &dyn lightning::chain::Watch<lightning::sign::InMemorySigner>,
1183 /// # tx_broadcaster: &dyn lightning::chain::chaininterface::BroadcasterInterface,
1184 /// # router: &lightning::routing::router::DefaultRouter<&NetworkGraph<&'a L>, &'a L, &ES, &S, SP, SL>,
1186 /// # entropy_source: &ES,
1187 /// # node_signer: &dyn lightning::sign::NodeSigner,
1188 /// # signer_provider: &lightning::sign::DynSignerProvider,
1189 /// # best_block: lightning::chain::BestBlock,
1190 /// # current_timestamp: u32,
1191 /// # mut reader: R,
1192 /// # ) -> Result<(), lightning::ln::msgs::DecodeError> {
1193 /// // Fresh start with no channels
1194 /// let params = ChainParameters {
1195 /// network: Network::Bitcoin,
1198 /// let default_config = UserConfig::default();
1199 /// let channel_manager = ChannelManager::new(
1200 /// fee_estimator, chain_monitor, tx_broadcaster, router, logger, entropy_source, node_signer,
1201 /// signer_provider, default_config, params, current_timestamp
1204 /// // Restart from deserialized data
1205 /// let mut channel_monitors = read_channel_monitors();
1206 /// let args = ChannelManagerReadArgs::new(
1207 /// entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster,
1208 /// router, logger, default_config, channel_monitors.iter_mut().collect()
1210 /// let (block_hash, channel_manager) =
1211 /// <(BlockHash, ChannelManager<_, _, _, _, _, _, _, _>)>::read(&mut reader, args)?;
1213 /// // Update the ChannelManager and ChannelMonitors with the latest chain data
1216 /// // Move the monitors to the ChannelManager's chain::Watch parameter
1217 /// for monitor in channel_monitors {
1218 /// chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
1226 /// The following is required for [`ChannelManager`] to function properly:
1227 /// - Handle messages from peers using its [`ChannelMessageHandler`] implementation (typically
1228 /// called by [`PeerManager::read_event`] when processing network I/O)
1229 /// - Send messages to peers obtained via its [`MessageSendEventsProvider`] implementation
1230 /// (typically initiated when [`PeerManager::process_events`] is called)
1231 /// - Feed on-chain activity using either its [`chain::Listen`] or [`chain::Confirm`] implementation
1232 /// as documented by those traits
1233 /// - Perform any periodic channel and payment checks by calling [`timer_tick_occurred`] roughly
1235 /// - Persist to disk whenever [`get_and_clear_needs_persistence`] returns `true` using a
1236 /// [`Persister`] such as a [`KVStore`] implementation
1237 /// - Handle [`Event`]s obtained via its [`EventsProvider`] implementation
1239 /// The [`Future`] returned by [`get_event_or_persistence_needed_future`] is useful in determining
1240 /// when the last two requirements need to be checked.
1242 /// The [`lightning-block-sync`] and [`lightning-transaction-sync`] crates provide utilities that
1243 /// simplify feeding in on-chain activity using the [`chain::Listen`] and [`chain::Confirm`] traits,
1244 /// respectively. The remaining requirements can be met using the [`lightning-background-processor`]
1245 /// crate. For languages other than Rust, the availability of similar utilities may vary.
1249 /// [`ChannelManager`]'s primary function involves managing a channel state. Without channels,
1250 /// payments can't be sent. Use [`list_channels`] or [`list_usable_channels`] for a snapshot of the
1251 /// currently open channels.
1254 /// # use lightning::ln::channelmanager::AChannelManager;
1256 /// # fn example<T: AChannelManager>(channel_manager: T) {
1257 /// # let channel_manager = channel_manager.get_cm();
1258 /// let channels = channel_manager.list_usable_channels();
1259 /// for details in channels {
1260 /// println!("{:?}", details);
1265 /// Each channel is identified using a [`ChannelId`], which will change throughout the channel's
1266 /// life cycle. Additionally, channels are assigned a `user_channel_id`, which is given in
1267 /// [`Event`]s associated with the channel and serves as a fixed identifier but is otherwise unused
1268 /// by [`ChannelManager`].
1270 /// ## Opening Channels
1272 /// To an open a channel with a peer, call [`create_channel`]. This will initiate the process of
1273 /// opening an outbound channel, which requires self-funding when handling
1274 /// [`Event::FundingGenerationReady`].
1277 /// # use bitcoin::{ScriptBuf, Transaction};
1278 /// # use bitcoin::secp256k1::PublicKey;
1279 /// # use lightning::ln::channelmanager::AChannelManager;
1280 /// # use lightning::events::{Event, EventsProvider};
1282 /// # trait Wallet {
1283 /// # fn create_funding_transaction(
1284 /// # &self, _amount_sats: u64, _output_script: ScriptBuf
1285 /// # ) -> Transaction;
1288 /// # fn example<T: AChannelManager, W: Wallet>(channel_manager: T, wallet: W, peer_id: PublicKey) {
1289 /// # let channel_manager = channel_manager.get_cm();
1290 /// let value_sats = 1_000_000;
1291 /// let push_msats = 10_000_000;
1292 /// match channel_manager.create_channel(peer_id, value_sats, push_msats, 42, None, None) {
1293 /// Ok(channel_id) => println!("Opening channel {}", channel_id),
1294 /// Err(e) => println!("Error opening channel: {:?}", e),
1297 /// // On the event processing thread once the peer has responded
1298 /// channel_manager.process_pending_events(&|event| match event {
1299 /// Event::FundingGenerationReady {
1300 /// temporary_channel_id, counterparty_node_id, channel_value_satoshis, output_script,
1301 /// user_channel_id, ..
1303 /// assert_eq!(user_channel_id, 42);
1304 /// let funding_transaction = wallet.create_funding_transaction(
1305 /// channel_value_satoshis, output_script
1307 /// match channel_manager.funding_transaction_generated(
1308 /// &temporary_channel_id, &counterparty_node_id, funding_transaction
1310 /// Ok(()) => println!("Funding channel {}", temporary_channel_id),
1311 /// Err(e) => println!("Error funding channel {}: {:?}", temporary_channel_id, e),
1314 /// Event::ChannelPending { channel_id, user_channel_id, former_temporary_channel_id, .. } => {
1315 /// assert_eq!(user_channel_id, 42);
1317 /// "Channel {} now {} pending (funding transaction has been broadcasted)", channel_id,
1318 /// former_temporary_channel_id.unwrap()
1321 /// Event::ChannelReady { channel_id, user_channel_id, .. } => {
1322 /// assert_eq!(user_channel_id, 42);
1323 /// println!("Channel {} ready", channel_id);
1331 /// ## Accepting Channels
1333 /// Inbound channels are initiated by peers and are automatically accepted unless [`ChannelManager`]
1334 /// has [`UserConfig::manually_accept_inbound_channels`] set. In that case, the channel may be
1335 /// either accepted or rejected when handling [`Event::OpenChannelRequest`].
1338 /// # use bitcoin::secp256k1::PublicKey;
1339 /// # use lightning::ln::channelmanager::AChannelManager;
1340 /// # use lightning::events::{Event, EventsProvider};
1342 /// # fn is_trusted(counterparty_node_id: PublicKey) -> bool {
1344 /// # unimplemented!()
1347 /// # fn example<T: AChannelManager>(channel_manager: T) {
1348 /// # let channel_manager = channel_manager.get_cm();
1349 /// channel_manager.process_pending_events(&|event| match event {
1350 /// Event::OpenChannelRequest { temporary_channel_id, counterparty_node_id, .. } => {
1351 /// if !is_trusted(counterparty_node_id) {
1352 /// match channel_manager.force_close_without_broadcasting_txn(
1353 /// &temporary_channel_id, &counterparty_node_id
1355 /// Ok(()) => println!("Rejecting channel {}", temporary_channel_id),
1356 /// Err(e) => println!("Error rejecting channel {}: {:?}", temporary_channel_id, e),
1361 /// let user_channel_id = 43;
1362 /// match channel_manager.accept_inbound_channel(
1363 /// &temporary_channel_id, &counterparty_node_id, user_channel_id
1365 /// Ok(()) => println!("Accepting channel {}", temporary_channel_id),
1366 /// Err(e) => println!("Error accepting channel {}: {:?}", temporary_channel_id, e),
1375 /// ## Closing Channels
1377 /// There are two ways to close a channel: either cooperatively using [`close_channel`] or
1378 /// unilaterally using [`force_close_broadcasting_latest_txn`]. The former is ideal as it makes for
1379 /// lower fees and immediate access to funds. However, the latter may be necessary if the
1380 /// counterparty isn't behaving properly or has gone offline. [`Event::ChannelClosed`] is generated
1381 /// once the channel has been closed successfully.
1384 /// # use bitcoin::secp256k1::PublicKey;
1385 /// # use lightning::ln::ChannelId;
1386 /// # use lightning::ln::channelmanager::AChannelManager;
1387 /// # use lightning::events::{Event, EventsProvider};
1389 /// # fn example<T: AChannelManager>(
1390 /// # channel_manager: T, channel_id: ChannelId, counterparty_node_id: PublicKey
1392 /// # let channel_manager = channel_manager.get_cm();
1393 /// match channel_manager.close_channel(&channel_id, &counterparty_node_id) {
1394 /// Ok(()) => println!("Closing channel {}", channel_id),
1395 /// Err(e) => println!("Error closing channel {}: {:?}", channel_id, e),
1398 /// // On the event processing thread
1399 /// channel_manager.process_pending_events(&|event| match event {
1400 /// Event::ChannelClosed { channel_id, user_channel_id, .. } => {
1401 /// assert_eq!(user_channel_id, 42);
1402 /// println!("Channel {} closed", channel_id);
1412 /// [`ChannelManager`] is responsible for sending, forwarding, and receiving payments through its
1413 /// channels. A payment is typically initiated from a [BOLT 11] invoice or a [BOLT 12] offer, though
1414 /// spontaneous (i.e., keysend) payments are also possible. Incoming payments don't require
1415 /// maintaining any additional state as [`ChannelManager`] can reconstruct the [`PaymentPreimage`]
1416 /// from the [`PaymentSecret`]. Sending payments, however, require tracking in order to retry failed
1419 /// After a payment is initiated, it will appear in [`list_recent_payments`] until a short time
1420 /// after either an [`Event::PaymentSent`] or [`Event::PaymentFailed`] is handled. Failed HTLCs
1421 /// for a payment will be retried according to the payment's [`Retry`] strategy or until
1422 /// [`abandon_payment`] is called.
1424 /// ## BOLT 11 Invoices
1426 /// The [`lightning-invoice`] crate is useful for creating BOLT 11 invoices. Specifically, use the
1427 /// functions in its `utils` module for constructing invoices that are compatible with
1428 /// [`ChannelManager`]. These functions serve as a convenience for building invoices with the
1429 /// [`PaymentHash`] and [`PaymentSecret`] returned from [`create_inbound_payment`]. To provide your
1430 /// own [`PaymentHash`], use [`create_inbound_payment_for_hash`] or the corresponding functions in
1431 /// the [`lightning-invoice`] `utils` module.
1433 /// [`ChannelManager`] generates an [`Event::PaymentClaimable`] once the full payment has been
1434 /// received. Call [`claim_funds`] to release the [`PaymentPreimage`], which in turn will result in
1435 /// an [`Event::PaymentClaimed`].
1438 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1439 /// # use lightning::ln::channelmanager::AChannelManager;
1441 /// # fn example<T: AChannelManager>(channel_manager: T) {
1442 /// # let channel_manager = channel_manager.get_cm();
1443 /// // Or use utils::create_invoice_from_channelmanager
1444 /// let known_payment_hash = match channel_manager.create_inbound_payment(
1445 /// Some(10_000_000), 3600, None
1447 /// Ok((payment_hash, _payment_secret)) => {
1448 /// println!("Creating inbound payment {}", payment_hash);
1451 /// Err(()) => panic!("Error creating inbound payment"),
1454 /// // On the event processing thread
1455 /// channel_manager.process_pending_events(&|event| match event {
1456 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1457 /// PaymentPurpose::InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1458 /// assert_eq!(payment_hash, known_payment_hash);
1459 /// println!("Claiming payment {}", payment_hash);
1460 /// channel_manager.claim_funds(payment_preimage);
1462 /// PaymentPurpose::InvoicePayment { payment_preimage: None, .. } => {
1463 /// println!("Unknown payment hash: {}", payment_hash);
1465 /// PaymentPurpose::SpontaneousPayment(payment_preimage) => {
1466 /// assert_ne!(payment_hash, known_payment_hash);
1467 /// println!("Claiming spontaneous payment {}", payment_hash);
1468 /// channel_manager.claim_funds(payment_preimage);
1471 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1472 /// assert_eq!(payment_hash, known_payment_hash);
1473 /// println!("Claimed {} msats", amount_msat);
1481 /// For paying an invoice, [`lightning-invoice`] provides a `payment` module with convenience
1482 /// functions for use with [`send_payment`].
1485 /// # use lightning::events::{Event, EventsProvider};
1486 /// # use lightning::ln::PaymentHash;
1487 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, RecipientOnionFields, Retry};
1488 /// # use lightning::routing::router::RouteParameters;
1490 /// # fn example<T: AChannelManager>(
1491 /// # channel_manager: T, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields,
1492 /// # route_params: RouteParameters, retry: Retry
1494 /// # let channel_manager = channel_manager.get_cm();
1495 /// // let (payment_hash, recipient_onion, route_params) =
1496 /// // payment::payment_parameters_from_invoice(&invoice);
1497 /// let payment_id = PaymentId([42; 32]);
1498 /// match channel_manager.send_payment(
1499 /// payment_hash, recipient_onion, payment_id, route_params, retry
1501 /// Ok(()) => println!("Sending payment with hash {}", payment_hash),
1502 /// Err(e) => println!("Failed sending payment with hash {}: {:?}", payment_hash, e),
1505 /// let expected_payment_id = payment_id;
1506 /// let expected_payment_hash = payment_hash;
1508 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1510 /// RecentPaymentDetails::Pending {
1511 /// payment_id: expected_payment_id,
1512 /// payment_hash: expected_payment_hash,
1518 /// // On the event processing thread
1519 /// channel_manager.process_pending_events(&|event| match event {
1520 /// Event::PaymentSent { payment_hash, .. } => println!("Paid {}", payment_hash),
1521 /// Event::PaymentFailed { payment_hash, .. } => println!("Failed paying {}", payment_hash),
1528 /// ## BOLT 12 Offers
1530 /// The [`offers`] module is useful for creating BOLT 12 offers. An [`Offer`] is a precursor to a
1531 /// [`Bolt12Invoice`], which must first be requested by the payer. The interchange of these messages
1532 /// as defined in the specification is handled by [`ChannelManager`] and its implementation of
1533 /// [`OffersMessageHandler`]. However, this only works with an [`Offer`] created using a builder
1534 /// returned by [`create_offer_builder`]. With this approach, BOLT 12 offers and invoices are
1535 /// stateless just as BOLT 11 invoices are.
1538 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1539 /// # use lightning::ln::channelmanager::AChannelManager;
1540 /// # use lightning::offers::parse::Bolt12SemanticError;
1542 /// # fn example<T: AChannelManager>(channel_manager: T) -> Result<(), Bolt12SemanticError> {
1543 /// # let channel_manager = channel_manager.get_cm();
1544 /// let offer = channel_manager
1545 /// .create_offer_builder("coffee".to_string())?
1547 /// # // Needed for compiling for c_bindings
1548 /// # let builder: lightning::offers::offer::OfferBuilder<_, _> = offer.into();
1549 /// # let offer = builder
1550 /// .amount_msats(10_000_000)
1552 /// let bech32_offer = offer.to_string();
1554 /// // On the event processing thread
1555 /// channel_manager.process_pending_events(&|event| match event {
1556 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1557 /// PaymentPurpose::InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1558 /// println!("Claiming payment {}", payment_hash);
1559 /// channel_manager.claim_funds(payment_preimage);
1561 /// PaymentPurpose::InvoicePayment { payment_preimage: None, .. } => {
1562 /// println!("Unknown payment hash: {}", payment_hash);
1567 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1568 /// println!("Claimed {} msats", amount_msat);
1577 /// Use [`pay_for_offer`] to initiated payment, which sends an [`InvoiceRequest`] for an [`Offer`]
1578 /// and pays the [`Bolt12Invoice`] response. In addition to success and failure events,
1579 /// [`ChannelManager`] may also generate an [`Event::InvoiceRequestFailed`].
1582 /// # use lightning::events::{Event, EventsProvider};
1583 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1584 /// # use lightning::offers::offer::Offer;
1586 /// # fn example<T: AChannelManager>(
1587 /// # channel_manager: T, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
1588 /// # payer_note: Option<String>, retry: Retry, max_total_routing_fee_msat: Option<u64>
1590 /// # let channel_manager = channel_manager.get_cm();
1591 /// let payment_id = PaymentId([42; 32]);
1592 /// match channel_manager.pay_for_offer(
1593 /// offer, quantity, amount_msats, payer_note, payment_id, retry, max_total_routing_fee_msat
1595 /// Ok(()) => println!("Requesting invoice for offer"),
1596 /// Err(e) => println!("Unable to request invoice for offer: {:?}", e),
1599 /// // First the payment will be waiting on an invoice
1600 /// let expected_payment_id = payment_id;
1602 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1604 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1608 /// // Once the invoice is received, a payment will be sent
1610 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1612 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1616 /// // On the event processing thread
1617 /// channel_manager.process_pending_events(&|event| match event {
1618 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1619 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1620 /// Event::InvoiceRequestFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1627 /// ## BOLT 12 Refunds
1629 /// A [`Refund`] is a request for an invoice to be paid. Like *paying* for an [`Offer`], *creating*
1630 /// a [`Refund`] involves maintaining state since it represents a future outbound payment.
1631 /// Therefore, use [`create_refund_builder`] when creating one, otherwise [`ChannelManager`] will
1632 /// refuse to pay any corresponding [`Bolt12Invoice`] that it receives.
1635 /// # use core::time::Duration;
1636 /// # use lightning::events::{Event, EventsProvider};
1637 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1638 /// # use lightning::offers::parse::Bolt12SemanticError;
1640 /// # fn example<T: AChannelManager>(
1641 /// # channel_manager: T, amount_msats: u64, absolute_expiry: Duration, retry: Retry,
1642 /// # max_total_routing_fee_msat: Option<u64>
1643 /// # ) -> Result<(), Bolt12SemanticError> {
1644 /// # let channel_manager = channel_manager.get_cm();
1645 /// let payment_id = PaymentId([42; 32]);
1646 /// let refund = channel_manager
1647 /// .create_refund_builder(
1648 /// "coffee".to_string(), amount_msats, absolute_expiry, payment_id, retry,
1649 /// max_total_routing_fee_msat
1652 /// # // Needed for compiling for c_bindings
1653 /// # let builder: lightning::offers::refund::RefundBuilder<_> = refund.into();
1654 /// # let refund = builder
1655 /// .payer_note("refund for order 1234".to_string())
1657 /// let bech32_refund = refund.to_string();
1659 /// // First the payment will be waiting on an invoice
1660 /// let expected_payment_id = payment_id;
1662 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1664 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1668 /// // Once the invoice is received, a payment will be sent
1670 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1672 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1676 /// // On the event processing thread
1677 /// channel_manager.process_pending_events(&|event| match event {
1678 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1679 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1687 /// Use [`request_refund_payment`] to send a [`Bolt12Invoice`] for receiving the refund. Similar to
1688 /// *creating* an [`Offer`], this is stateless as it represents an inbound payment.
1691 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1692 /// # use lightning::ln::channelmanager::AChannelManager;
1693 /// # use lightning::offers::refund::Refund;
1695 /// # fn example<T: AChannelManager>(channel_manager: T, refund: &Refund) {
1696 /// # let channel_manager = channel_manager.get_cm();
1697 /// let known_payment_hash = match channel_manager.request_refund_payment(refund) {
1698 /// Ok(invoice) => {
1699 /// let payment_hash = invoice.payment_hash();
1700 /// println!("Requesting refund payment {}", payment_hash);
1703 /// Err(e) => panic!("Unable to request payment for refund: {:?}", e),
1706 /// // On the event processing thread
1707 /// channel_manager.process_pending_events(&|event| match event {
1708 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1709 /// PaymentPurpose::InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1710 /// assert_eq!(payment_hash, known_payment_hash);
1711 /// println!("Claiming payment {}", payment_hash);
1712 /// channel_manager.claim_funds(payment_preimage);
1714 /// PaymentPurpose::InvoicePayment { payment_preimage: None, .. } => {
1715 /// println!("Unknown payment hash: {}", payment_hash);
1720 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1721 /// assert_eq!(payment_hash, known_payment_hash);
1722 /// println!("Claimed {} msats", amount_msat);
1732 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1733 /// all peers during write/read (though does not modify this instance, only the instance being
1734 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1735 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1737 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1738 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1739 /// [`ChannelMonitorUpdate`] before returning from
1740 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1741 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1742 /// `ChannelManager` operations from occurring during the serialization process). If the
1743 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1744 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1745 /// will be lost (modulo on-chain transaction fees).
1747 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1748 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1749 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1751 /// # `ChannelUpdate` Messages
1753 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1754 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1755 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1756 /// offline for a full minute. In order to track this, you must call
1757 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1759 /// # DoS Mitigation
1761 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1762 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1763 /// not have a channel with being unable to connect to us or open new channels with us if we have
1764 /// many peers with unfunded channels.
1766 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1767 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1768 /// never limited. Please ensure you limit the count of such channels yourself.
1772 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1773 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1774 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1775 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1776 /// you're using lightning-net-tokio.
1778 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1779 /// [`MessageHandler`]: crate::ln::peer_handler::MessageHandler
1780 /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
1781 /// [`PeerManager::read_event`]: crate::ln::peer_handler::PeerManager::read_event
1782 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
1783 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1784 /// [`get_and_clear_needs_persistence`]: Self::get_and_clear_needs_persistence
1785 /// [`Persister`]: crate::util::persist::Persister
1786 /// [`KVStore`]: crate::util::persist::KVStore
1787 /// [`get_event_or_persistence_needed_future`]: Self::get_event_or_persistence_needed_future
1788 /// [`lightning-block-sync`]: https://docs.rs/lightning_block_sync/latest/lightning_block_sync
1789 /// [`lightning-transaction-sync`]: https://docs.rs/lightning_transaction_sync/latest/lightning_transaction_sync
1790 /// [`lightning-background-processor`]: https://docs.rs/lightning_background_processor/lightning_background_processor
1791 /// [`list_channels`]: Self::list_channels
1792 /// [`list_usable_channels`]: Self::list_usable_channels
1793 /// [`create_channel`]: Self::create_channel
1794 /// [`close_channel`]: Self::force_close_broadcasting_latest_txn
1795 /// [`force_close_broadcasting_latest_txn`]: Self::force_close_broadcasting_latest_txn
1796 /// [BOLT 11]: https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
1797 /// [BOLT 12]: https://github.com/rustyrussell/lightning-rfc/blob/guilt/offers/12-offer-encoding.md
1798 /// [`list_recent_payments`]: Self::list_recent_payments
1799 /// [`abandon_payment`]: Self::abandon_payment
1800 /// [`lightning-invoice`]: https://docs.rs/lightning_invoice/latest/lightning_invoice
1801 /// [`create_inbound_payment`]: Self::create_inbound_payment
1802 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
1803 /// [`claim_funds`]: Self::claim_funds
1804 /// [`send_payment`]: Self::send_payment
1805 /// [`offers`]: crate::offers
1806 /// [`create_offer_builder`]: Self::create_offer_builder
1807 /// [`pay_for_offer`]: Self::pay_for_offer
1808 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
1809 /// [`create_refund_builder`]: Self::create_refund_builder
1810 /// [`request_refund_payment`]: Self::request_refund_payment
1811 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1812 /// [`funding_created`]: msgs::FundingCreated
1813 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1814 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1815 /// [`update_channel`]: chain::Watch::update_channel
1816 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1817 /// [`read`]: ReadableArgs::read
1820 // The tree structure below illustrates the lock order requirements for the different locks of the
1821 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1822 // and should then be taken in the order of the lowest to the highest level in the tree.
1823 // Note that locks on different branches shall not be taken at the same time, as doing so will
1824 // create a new lock order for those specific locks in the order they were taken.
1828 // `pending_offers_messages`
1830 // `total_consistency_lock`
1832 // |__`forward_htlcs`
1834 // | |__`pending_intercepted_htlcs`
1836 // |__`decode_update_add_htlcs`
1838 // |__`per_peer_state`
1840 // |__`pending_inbound_payments`
1842 // |__`claimable_payments`
1844 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1848 // |__`outpoint_to_peer`
1850 // |__`short_to_chan_info`
1852 // |__`outbound_scid_aliases`
1856 // |__`pending_events`
1858 // |__`pending_background_events`
1860 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1862 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1863 T::Target: BroadcasterInterface,
1864 ES::Target: EntropySource,
1865 NS::Target: NodeSigner,
1866 SP::Target: SignerProvider,
1867 F::Target: FeeEstimator,
1871 default_configuration: UserConfig,
1872 chain_hash: ChainHash,
1873 fee_estimator: LowerBoundedFeeEstimator<F>,
1879 /// See `ChannelManager` struct-level documentation for lock order requirements.
1881 pub(super) best_block: RwLock<BestBlock>,
1883 best_block: RwLock<BestBlock>,
1884 secp_ctx: Secp256k1<secp256k1::All>,
1886 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1887 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1888 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1889 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1891 /// See `ChannelManager` struct-level documentation for lock order requirements.
1892 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1894 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1895 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1896 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1897 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1898 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1899 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1900 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1901 /// after reloading from disk while replaying blocks against ChannelMonitors.
1903 /// See `PendingOutboundPayment` documentation for more info.
1905 /// See `ChannelManager` struct-level documentation for lock order requirements.
1906 pending_outbound_payments: OutboundPayments,
1908 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1910 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1911 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1912 /// and via the classic SCID.
1914 /// Note that no consistency guarantees are made about the existence of a channel with the
1915 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1917 /// See `ChannelManager` struct-level documentation for lock order requirements.
1919 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1921 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1922 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1923 /// until the user tells us what we should do with them.
1925 /// See `ChannelManager` struct-level documentation for lock order requirements.
1926 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1928 /// SCID/SCID Alias -> pending `update_add_htlc`s to decode.
1930 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1931 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1932 /// and via the classic SCID.
1934 /// Note that no consistency guarantees are made about the existence of a channel with the
1935 /// `short_channel_id` here, nor the `channel_id` in `UpdateAddHTLC`!
1937 /// See `ChannelManager` struct-level documentation for lock order requirements.
1938 decode_update_add_htlcs: Mutex<HashMap<u64, Vec<msgs::UpdateAddHTLC>>>,
1940 /// The sets of payments which are claimable or currently being claimed. See
1941 /// [`ClaimablePayments`]' individual field docs for more info.
1943 /// See `ChannelManager` struct-level documentation for lock order requirements.
1944 claimable_payments: Mutex<ClaimablePayments>,
1946 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1947 /// and some closed channels which reached a usable state prior to being closed. This is used
1948 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1949 /// active channel list on load.
1951 /// See `ChannelManager` struct-level documentation for lock order requirements.
1952 outbound_scid_aliases: Mutex<HashSet<u64>>,
1954 /// Channel funding outpoint -> `counterparty_node_id`.
1956 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1957 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1958 /// the handling of the events.
1960 /// Note that no consistency guarantees are made about the existence of a peer with the
1961 /// `counterparty_node_id` in our other maps.
1964 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1965 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1966 /// would break backwards compatability.
1967 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1968 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1969 /// required to access the channel with the `counterparty_node_id`.
1971 /// See `ChannelManager` struct-level documentation for lock order requirements.
1973 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1975 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1977 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1979 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1980 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1981 /// confirmation depth.
1983 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1984 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1985 /// channel with the `channel_id` in our other maps.
1987 /// See `ChannelManager` struct-level documentation for lock order requirements.
1989 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1991 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1993 our_network_pubkey: PublicKey,
1995 inbound_payment_key: inbound_payment::ExpandedKey,
1997 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1998 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1999 /// we encrypt the namespace identifier using these bytes.
2001 /// [fake scids]: crate::util::scid_utils::fake_scid
2002 fake_scid_rand_bytes: [u8; 32],
2004 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
2005 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
2006 /// keeping additional state.
2007 probing_cookie_secret: [u8; 32],
2009 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
2010 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
2011 /// very far in the past, and can only ever be up to two hours in the future.
2012 highest_seen_timestamp: AtomicUsize,
2014 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
2015 /// basis, as well as the peer's latest features.
2017 /// If we are connected to a peer we always at least have an entry here, even if no channels
2018 /// are currently open with that peer.
2020 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
2021 /// operate on the inner value freely. This opens up for parallel per-peer operation for
2024 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
2026 /// See `ChannelManager` struct-level documentation for lock order requirements.
2027 #[cfg(not(any(test, feature = "_test_utils")))]
2028 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2029 #[cfg(any(test, feature = "_test_utils"))]
2030 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2032 /// The set of events which we need to give to the user to handle. In some cases an event may
2033 /// require some further action after the user handles it (currently only blocking a monitor
2034 /// update from being handed to the user to ensure the included changes to the channel state
2035 /// are handled by the user before they're persisted durably to disk). In that case, the second
2036 /// element in the tuple is set to `Some` with further details of the action.
2038 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
2039 /// could be in the middle of being processed without the direct mutex held.
2041 /// See `ChannelManager` struct-level documentation for lock order requirements.
2042 #[cfg(not(any(test, feature = "_test_utils")))]
2043 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2044 #[cfg(any(test, feature = "_test_utils"))]
2045 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2047 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
2048 pending_events_processor: AtomicBool,
2050 /// If we are running during init (either directly during the deserialization method or in
2051 /// block connection methods which run after deserialization but before normal operation) we
2052 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
2053 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
2054 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
2056 /// Thus, we place them here to be handled as soon as possible once we are running normally.
2058 /// See `ChannelManager` struct-level documentation for lock order requirements.
2060 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
2061 pending_background_events: Mutex<Vec<BackgroundEvent>>,
2062 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
2063 /// Essentially just when we're serializing ourselves out.
2064 /// Taken first everywhere where we are making changes before any other locks.
2065 /// When acquiring this lock in read mode, rather than acquiring it directly, call
2066 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
2067 /// Notifier the lock contains sends out a notification when the lock is released.
2068 total_consistency_lock: RwLock<()>,
2069 /// Tracks the progress of channels going through batch funding by whether funding_signed was
2070 /// received and the monitor has been persisted.
2072 /// This information does not need to be persisted as funding nodes can forget
2073 /// unfunded channels upon disconnection.
2074 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
2076 background_events_processed_since_startup: AtomicBool,
2078 event_persist_notifier: Notifier,
2079 needs_persist_flag: AtomicBool,
2081 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
2083 /// Tracks the message events that are to be broadcasted when we are connected to some peer.
2084 pending_broadcast_messages: Mutex<Vec<MessageSendEvent>>,
2088 signer_provider: SP,
2093 /// Chain-related parameters used to construct a new `ChannelManager`.
2095 /// Typically, the block-specific parameters are derived from the best block hash for the network,
2096 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
2097 /// are not needed when deserializing a previously constructed `ChannelManager`.
2098 #[derive(Clone, Copy, PartialEq)]
2099 pub struct ChainParameters {
2100 /// The network for determining the `chain_hash` in Lightning messages.
2101 pub network: Network,
2103 /// The hash and height of the latest block successfully connected.
2105 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
2106 pub best_block: BestBlock,
2109 #[derive(Copy, Clone, PartialEq)]
2113 SkipPersistHandleEvents,
2114 SkipPersistNoEvents,
2117 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
2118 /// desirable to notify any listeners on `await_persistable_update_timeout`/
2119 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
2120 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
2121 /// sending the aforementioned notification (since the lock being released indicates that the
2122 /// updates are ready for persistence).
2124 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
2125 /// notify or not based on whether relevant changes have been made, providing a closure to
2126 /// `optionally_notify` which returns a `NotifyOption`.
2127 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
2128 event_persist_notifier: &'a Notifier,
2129 needs_persist_flag: &'a AtomicBool,
2131 // We hold onto this result so the lock doesn't get released immediately.
2132 _read_guard: RwLockReadGuard<'a, ()>,
2135 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
2136 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
2137 /// events to handle.
2139 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
2140 /// other cases where losing the changes on restart may result in a force-close or otherwise
2142 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2143 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
2146 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
2147 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2148 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2149 let force_notify = cm.get_cm().process_background_events();
2151 PersistenceNotifierGuard {
2152 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2153 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2154 should_persist: move || {
2155 // Pick the "most" action between `persist_check` and the background events
2156 // processing and return that.
2157 let notify = persist_check();
2158 match (notify, force_notify) {
2159 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
2160 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
2161 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
2162 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
2163 _ => NotifyOption::SkipPersistNoEvents,
2166 _read_guard: read_guard,
2170 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
2171 /// [`ChannelManager::process_background_events`] MUST be called first (or
2172 /// [`Self::optionally_notify`] used).
2173 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
2174 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
2175 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2177 PersistenceNotifierGuard {
2178 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2179 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2180 should_persist: persist_check,
2181 _read_guard: read_guard,
2186 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
2187 fn drop(&mut self) {
2188 match (self.should_persist)() {
2189 NotifyOption::DoPersist => {
2190 self.needs_persist_flag.store(true, Ordering::Release);
2191 self.event_persist_notifier.notify()
2193 NotifyOption::SkipPersistHandleEvents =>
2194 self.event_persist_notifier.notify(),
2195 NotifyOption::SkipPersistNoEvents => {},
2200 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
2201 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
2203 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
2205 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
2206 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
2207 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
2208 /// the maximum required amount in lnd as of March 2021.
2209 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
2211 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
2212 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
2214 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
2216 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
2217 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
2218 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
2219 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
2220 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
2221 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
2222 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
2223 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
2224 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
2225 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
2226 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
2227 // routing failure for any HTLC sender picking up an LDK node among the first hops.
2228 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
2230 /// Minimum CLTV difference between the current block height and received inbound payments.
2231 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
2233 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
2234 // any payments to succeed. Further, we don't want payments to fail if a block was found while
2235 // a payment was being routed, so we add an extra block to be safe.
2236 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
2238 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
2239 // ie that if the next-hop peer fails the HTLC within
2240 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
2241 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
2242 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
2243 // LATENCY_GRACE_PERIOD_BLOCKS.
2245 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
2247 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
2248 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
2250 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
2252 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
2253 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
2255 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
2256 /// until we mark the channel disabled and gossip the update.
2257 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
2259 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
2260 /// we mark the channel enabled and gossip the update.
2261 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
2263 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
2264 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
2265 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
2266 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
2268 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
2269 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
2270 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
2272 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
2273 /// many peers we reject new (inbound) connections.
2274 const MAX_NO_CHANNEL_PEERS: usize = 250;
2276 /// Information needed for constructing an invoice route hint for this channel.
2277 #[derive(Clone, Debug, PartialEq)]
2278 pub struct CounterpartyForwardingInfo {
2279 /// Base routing fee in millisatoshis.
2280 pub fee_base_msat: u32,
2281 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
2282 pub fee_proportional_millionths: u32,
2283 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
2284 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
2285 /// `cltv_expiry_delta` for more details.
2286 pub cltv_expiry_delta: u16,
2289 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
2290 /// to better separate parameters.
2291 #[derive(Clone, Debug, PartialEq)]
2292 pub struct ChannelCounterparty {
2293 /// The node_id of our counterparty
2294 pub node_id: PublicKey,
2295 /// The Features the channel counterparty provided upon last connection.
2296 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
2297 /// many routing-relevant features are present in the init context.
2298 pub features: InitFeatures,
2299 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
2300 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
2301 /// claiming at least this value on chain.
2303 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
2305 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
2306 pub unspendable_punishment_reserve: u64,
2307 /// Information on the fees and requirements that the counterparty requires when forwarding
2308 /// payments to us through this channel.
2309 pub forwarding_info: Option<CounterpartyForwardingInfo>,
2310 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
2311 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
2312 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
2313 pub outbound_htlc_minimum_msat: Option<u64>,
2314 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
2315 pub outbound_htlc_maximum_msat: Option<u64>,
2318 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
2319 #[derive(Clone, Debug, PartialEq)]
2320 pub struct ChannelDetails {
2321 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
2322 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
2323 /// Note that this means this value is *not* persistent - it can change once during the
2324 /// lifetime of the channel.
2325 pub channel_id: ChannelId,
2326 /// Parameters which apply to our counterparty. See individual fields for more information.
2327 pub counterparty: ChannelCounterparty,
2328 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
2329 /// our counterparty already.
2330 pub funding_txo: Option<OutPoint>,
2331 /// The features which this channel operates with. See individual features for more info.
2333 /// `None` until negotiation completes and the channel type is finalized.
2334 pub channel_type: Option<ChannelTypeFeatures>,
2335 /// The position of the funding transaction in the chain. None if the funding transaction has
2336 /// not yet been confirmed and the channel fully opened.
2338 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
2339 /// payments instead of this. See [`get_inbound_payment_scid`].
2341 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
2342 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
2344 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
2345 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
2346 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
2347 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
2348 /// [`confirmations_required`]: Self::confirmations_required
2349 pub short_channel_id: Option<u64>,
2350 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
2351 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
2352 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
2355 /// This will be `None` as long as the channel is not available for routing outbound payments.
2357 /// [`short_channel_id`]: Self::short_channel_id
2358 /// [`confirmations_required`]: Self::confirmations_required
2359 pub outbound_scid_alias: Option<u64>,
2360 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
2361 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
2362 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
2363 /// when they see a payment to be routed to us.
2365 /// Our counterparty may choose to rotate this value at any time, though will always recognize
2366 /// previous values for inbound payment forwarding.
2368 /// [`short_channel_id`]: Self::short_channel_id
2369 pub inbound_scid_alias: Option<u64>,
2370 /// The value, in satoshis, of this channel as appears in the funding output
2371 pub channel_value_satoshis: u64,
2372 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
2373 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
2374 /// this value on chain.
2376 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
2378 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2380 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
2381 pub unspendable_punishment_reserve: Option<u64>,
2382 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
2383 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
2384 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
2385 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
2386 /// serialized with LDK versions prior to 0.0.113.
2388 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
2389 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
2390 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
2391 pub user_channel_id: u128,
2392 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
2393 /// which is applied to commitment and HTLC transactions.
2395 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
2396 pub feerate_sat_per_1000_weight: Option<u32>,
2397 /// Our total balance. This is the amount we would get if we close the channel.
2398 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
2399 /// amount is not likely to be recoverable on close.
2401 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
2402 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
2403 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
2404 /// This does not consider any on-chain fees.
2406 /// See also [`ChannelDetails::outbound_capacity_msat`]
2407 pub balance_msat: u64,
2408 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
2409 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2410 /// available for inclusion in new outbound HTLCs). This further does not include any pending
2411 /// outgoing HTLCs which are awaiting some other resolution to be sent.
2413 /// See also [`ChannelDetails::balance_msat`]
2415 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2416 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
2417 /// should be able to spend nearly this amount.
2418 pub outbound_capacity_msat: u64,
2419 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
2420 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
2421 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
2422 /// to use a limit as close as possible to the HTLC limit we can currently send.
2424 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
2425 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
2426 pub next_outbound_htlc_limit_msat: u64,
2427 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
2428 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
2429 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
2430 /// route which is valid.
2431 pub next_outbound_htlc_minimum_msat: u64,
2432 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
2433 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2434 /// available for inclusion in new inbound HTLCs).
2435 /// Note that there are some corner cases not fully handled here, so the actual available
2436 /// inbound capacity may be slightly higher than this.
2438 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2439 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
2440 /// However, our counterparty should be able to spend nearly this amount.
2441 pub inbound_capacity_msat: u64,
2442 /// The number of required confirmations on the funding transaction before the funding will be
2443 /// considered "locked". This number is selected by the channel fundee (i.e. us if
2444 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
2445 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
2446 /// [`ChannelHandshakeLimits::max_minimum_depth`].
2448 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2450 /// [`is_outbound`]: ChannelDetails::is_outbound
2451 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
2452 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
2453 pub confirmations_required: Option<u32>,
2454 /// The current number of confirmations on the funding transaction.
2456 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
2457 pub confirmations: Option<u32>,
2458 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
2459 /// until we can claim our funds after we force-close the channel. During this time our
2460 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
2461 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
2462 /// time to claim our non-HTLC-encumbered funds.
2464 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2465 pub force_close_spend_delay: Option<u16>,
2466 /// True if the channel was initiated (and thus funded) by us.
2467 pub is_outbound: bool,
2468 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
2469 /// channel is not currently being shut down. `channel_ready` message exchange implies the
2470 /// required confirmation count has been reached (and we were connected to the peer at some
2471 /// point after the funding transaction received enough confirmations). The required
2472 /// confirmation count is provided in [`confirmations_required`].
2474 /// [`confirmations_required`]: ChannelDetails::confirmations_required
2475 pub is_channel_ready: bool,
2476 /// The stage of the channel's shutdown.
2477 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
2478 pub channel_shutdown_state: Option<ChannelShutdownState>,
2479 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
2480 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
2482 /// This is a strict superset of `is_channel_ready`.
2483 pub is_usable: bool,
2484 /// True if this channel is (or will be) publicly-announced.
2485 pub is_public: bool,
2486 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
2487 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
2488 pub inbound_htlc_minimum_msat: Option<u64>,
2489 /// The largest value HTLC (in msat) we currently will accept, for this channel.
2490 pub inbound_htlc_maximum_msat: Option<u64>,
2491 /// Set of configurable parameters that affect channel operation.
2493 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
2494 pub config: Option<ChannelConfig>,
2495 /// Pending inbound HTLCs.
2497 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2498 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
2499 /// Pending outbound HTLCs.
2501 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2502 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
2505 impl ChannelDetails {
2506 /// Gets the current SCID which should be used to identify this channel for inbound payments.
2507 /// This should be used for providing invoice hints or in any other context where our
2508 /// counterparty will forward a payment to us.
2510 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
2511 /// [`ChannelDetails::short_channel_id`]. See those for more information.
2512 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
2513 self.inbound_scid_alias.or(self.short_channel_id)
2516 /// Gets the current SCID which should be used to identify this channel for outbound payments.
2517 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
2518 /// we're sending or forwarding a payment outbound over this channel.
2520 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
2521 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
2522 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
2523 self.short_channel_id.or(self.outbound_scid_alias)
2526 fn from_channel_context<SP: Deref, F: Deref>(
2527 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
2528 fee_estimator: &LowerBoundedFeeEstimator<F>
2531 SP::Target: SignerProvider,
2532 F::Target: FeeEstimator
2534 let balance = context.get_available_balances(fee_estimator);
2535 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
2536 context.get_holder_counterparty_selected_channel_reserve_satoshis();
2538 channel_id: context.channel_id(),
2539 counterparty: ChannelCounterparty {
2540 node_id: context.get_counterparty_node_id(),
2541 features: latest_features,
2542 unspendable_punishment_reserve: to_remote_reserve_satoshis,
2543 forwarding_info: context.counterparty_forwarding_info(),
2544 // Ensures that we have actually received the `htlc_minimum_msat` value
2545 // from the counterparty through the `OpenChannel` or `AcceptChannel`
2546 // message (as they are always the first message from the counterparty).
2547 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
2548 // default `0` value set by `Channel::new_outbound`.
2549 outbound_htlc_minimum_msat: if context.have_received_message() {
2550 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
2551 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
2553 funding_txo: context.get_funding_txo(),
2554 // Note that accept_channel (or open_channel) is always the first message, so
2555 // `have_received_message` indicates that type negotiation has completed.
2556 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
2557 short_channel_id: context.get_short_channel_id(),
2558 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
2559 inbound_scid_alias: context.latest_inbound_scid_alias(),
2560 channel_value_satoshis: context.get_value_satoshis(),
2561 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
2562 unspendable_punishment_reserve: to_self_reserve_satoshis,
2563 balance_msat: balance.balance_msat,
2564 inbound_capacity_msat: balance.inbound_capacity_msat,
2565 outbound_capacity_msat: balance.outbound_capacity_msat,
2566 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
2567 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
2568 user_channel_id: context.get_user_id(),
2569 confirmations_required: context.minimum_depth(),
2570 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
2571 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
2572 is_outbound: context.is_outbound(),
2573 is_channel_ready: context.is_usable(),
2574 is_usable: context.is_live(),
2575 is_public: context.should_announce(),
2576 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
2577 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
2578 config: Some(context.config()),
2579 channel_shutdown_state: Some(context.shutdown_state()),
2580 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
2581 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
2586 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2587 /// Further information on the details of the channel shutdown.
2588 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
2589 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
2590 /// the channel will be removed shortly.
2591 /// Also note, that in normal operation, peers could disconnect at any of these states
2592 /// and require peer re-connection before making progress onto other states
2593 pub enum ChannelShutdownState {
2594 /// Channel has not sent or received a shutdown message.
2596 /// Local node has sent a shutdown message for this channel.
2598 /// Shutdown message exchanges have concluded and the channels are in the midst of
2599 /// resolving all existing open HTLCs before closing can continue.
2601 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
2602 NegotiatingClosingFee,
2603 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
2604 /// to drop the channel.
2608 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
2609 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
2610 #[derive(Debug, PartialEq)]
2611 pub enum RecentPaymentDetails {
2612 /// When an invoice was requested and thus a payment has not yet been sent.
2614 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2615 /// a payment and ensure idempotency in LDK.
2616 payment_id: PaymentId,
2618 /// When a payment is still being sent and awaiting successful delivery.
2620 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2621 /// a payment and ensure idempotency in LDK.
2622 payment_id: PaymentId,
2623 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
2625 payment_hash: PaymentHash,
2626 /// Total amount (in msat, excluding fees) across all paths for this payment,
2627 /// not just the amount currently inflight.
2630 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
2631 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
2632 /// payment is removed from tracking.
2634 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2635 /// a payment and ensure idempotency in LDK.
2636 payment_id: PaymentId,
2637 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
2638 /// made before LDK version 0.0.104.
2639 payment_hash: Option<PaymentHash>,
2641 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
2642 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
2643 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
2645 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2646 /// a payment and ensure idempotency in LDK.
2647 payment_id: PaymentId,
2648 /// Hash of the payment that we have given up trying to send.
2649 payment_hash: PaymentHash,
2653 /// Route hints used in constructing invoices for [phantom node payents].
2655 /// [phantom node payments]: crate::sign::PhantomKeysManager
2657 pub struct PhantomRouteHints {
2658 /// The list of channels to be included in the invoice route hints.
2659 pub channels: Vec<ChannelDetails>,
2660 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
2662 pub phantom_scid: u64,
2663 /// The pubkey of the real backing node that would ultimately receive the payment.
2664 pub real_node_pubkey: PublicKey,
2667 macro_rules! handle_error {
2668 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
2669 // In testing, ensure there are no deadlocks where the lock is already held upon
2670 // entering the macro.
2671 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
2672 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2676 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
2677 let mut msg_event = None;
2679 if let Some((shutdown_res, update_option)) = shutdown_finish {
2680 let counterparty_node_id = shutdown_res.counterparty_node_id;
2681 let channel_id = shutdown_res.channel_id;
2682 let logger = WithContext::from(
2683 &$self.logger, Some(counterparty_node_id), Some(channel_id),
2685 log_error!(logger, "Force-closing channel: {}", err.err);
2687 $self.finish_close_channel(shutdown_res);
2688 if let Some(update) = update_option {
2689 let mut pending_broadcast_messages = $self.pending_broadcast_messages.lock().unwrap();
2690 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
2695 log_error!($self.logger, "Got non-closing error: {}", err.err);
2698 if let msgs::ErrorAction::IgnoreError = err.action {
2700 msg_event = Some(events::MessageSendEvent::HandleError {
2701 node_id: $counterparty_node_id,
2702 action: err.action.clone()
2706 if let Some(msg_event) = msg_event {
2707 let per_peer_state = $self.per_peer_state.read().unwrap();
2708 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2709 let mut peer_state = peer_state_mutex.lock().unwrap();
2710 peer_state.pending_msg_events.push(msg_event);
2714 // Return error in case higher-API need one
2721 macro_rules! update_maps_on_chan_removal {
2722 ($self: expr, $channel_context: expr) => {{
2723 if let Some(outpoint) = $channel_context.get_funding_txo() {
2724 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2726 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2727 if let Some(short_id) = $channel_context.get_short_channel_id() {
2728 short_to_chan_info.remove(&short_id);
2730 // If the channel was never confirmed on-chain prior to its closure, remove the
2731 // outbound SCID alias we used for it from the collision-prevention set. While we
2732 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2733 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2734 // opening a million channels with us which are closed before we ever reach the funding
2736 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2737 debug_assert!(alias_removed);
2739 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2743 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2744 macro_rules! convert_chan_phase_err {
2745 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2747 ChannelError::Warn(msg) => {
2748 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2750 ChannelError::Ignore(msg) => {
2751 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2753 ChannelError::Close(msg) => {
2754 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2755 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2756 update_maps_on_chan_removal!($self, $channel.context);
2757 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2758 let shutdown_res = $channel.context.force_shutdown(true, reason);
2760 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2765 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2766 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2768 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2769 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2771 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2772 match $channel_phase {
2773 ChannelPhase::Funded(channel) => {
2774 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2776 ChannelPhase::UnfundedOutboundV1(channel) => {
2777 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2779 ChannelPhase::UnfundedInboundV1(channel) => {
2780 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2782 #[cfg(dual_funding)]
2783 ChannelPhase::UnfundedOutboundV2(channel) => {
2784 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2786 #[cfg(dual_funding)]
2787 ChannelPhase::UnfundedInboundV2(channel) => {
2788 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2794 macro_rules! break_chan_phase_entry {
2795 ($self: ident, $res: expr, $entry: expr) => {
2799 let key = *$entry.key();
2800 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2802 $entry.remove_entry();
2810 macro_rules! try_chan_phase_entry {
2811 ($self: ident, $res: expr, $entry: expr) => {
2815 let key = *$entry.key();
2816 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2818 $entry.remove_entry();
2826 macro_rules! remove_channel_phase {
2827 ($self: expr, $entry: expr) => {
2829 let channel = $entry.remove_entry().1;
2830 update_maps_on_chan_removal!($self, &channel.context());
2836 macro_rules! send_channel_ready {
2837 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2838 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2839 node_id: $channel.context.get_counterparty_node_id(),
2840 msg: $channel_ready_msg,
2842 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2843 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2844 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2845 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2846 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2847 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2848 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2849 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2850 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2851 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2856 macro_rules! emit_channel_pending_event {
2857 ($locked_events: expr, $channel: expr) => {
2858 if $channel.context.should_emit_channel_pending_event() {
2859 $locked_events.push_back((events::Event::ChannelPending {
2860 channel_id: $channel.context.channel_id(),
2861 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2862 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2863 user_channel_id: $channel.context.get_user_id(),
2864 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2865 channel_type: Some($channel.context.get_channel_type().clone()),
2867 $channel.context.set_channel_pending_event_emitted();
2872 macro_rules! emit_channel_ready_event {
2873 ($locked_events: expr, $channel: expr) => {
2874 if $channel.context.should_emit_channel_ready_event() {
2875 debug_assert!($channel.context.channel_pending_event_emitted());
2876 $locked_events.push_back((events::Event::ChannelReady {
2877 channel_id: $channel.context.channel_id(),
2878 user_channel_id: $channel.context.get_user_id(),
2879 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2880 channel_type: $channel.context.get_channel_type().clone(),
2882 $channel.context.set_channel_ready_event_emitted();
2887 macro_rules! handle_monitor_update_completion {
2888 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2889 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2890 let mut updates = $chan.monitor_updating_restored(&&logger,
2891 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2892 $self.best_block.read().unwrap().height);
2893 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2894 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2895 // We only send a channel_update in the case where we are just now sending a
2896 // channel_ready and the channel is in a usable state. We may re-send a
2897 // channel_update later through the announcement_signatures process for public
2898 // channels, but there's no reason not to just inform our counterparty of our fees
2900 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2901 Some(events::MessageSendEvent::SendChannelUpdate {
2902 node_id: counterparty_node_id,
2908 let update_actions = $peer_state.monitor_update_blocked_actions
2909 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2911 let (htlc_forwards, decode_update_add_htlcs) = $self.handle_channel_resumption(
2912 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2913 updates.commitment_update, updates.order, updates.accepted_htlcs, updates.pending_update_adds,
2914 updates.funding_broadcastable, updates.channel_ready,
2915 updates.announcement_sigs);
2916 if let Some(upd) = channel_update {
2917 $peer_state.pending_msg_events.push(upd);
2920 let channel_id = $chan.context.channel_id();
2921 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2922 core::mem::drop($peer_state_lock);
2923 core::mem::drop($per_peer_state_lock);
2925 // If the channel belongs to a batch funding transaction, the progress of the batch
2926 // should be updated as we have received funding_signed and persisted the monitor.
2927 if let Some(txid) = unbroadcasted_batch_funding_txid {
2928 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2929 let mut batch_completed = false;
2930 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2931 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2932 *chan_id == channel_id &&
2933 *pubkey == counterparty_node_id
2935 if let Some(channel_state) = channel_state {
2936 channel_state.2 = true;
2938 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2940 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2942 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2945 // When all channels in a batched funding transaction have become ready, it is not necessary
2946 // to track the progress of the batch anymore and the state of the channels can be updated.
2947 if batch_completed {
2948 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2949 let per_peer_state = $self.per_peer_state.read().unwrap();
2950 let mut batch_funding_tx = None;
2951 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2952 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2953 let mut peer_state = peer_state_mutex.lock().unwrap();
2954 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2955 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2956 chan.set_batch_ready();
2957 let mut pending_events = $self.pending_events.lock().unwrap();
2958 emit_channel_pending_event!(pending_events, chan);
2962 if let Some(tx) = batch_funding_tx {
2963 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2964 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2969 $self.handle_monitor_update_completion_actions(update_actions);
2971 if let Some(forwards) = htlc_forwards {
2972 $self.forward_htlcs(&mut [forwards][..]);
2974 if let Some(decode) = decode_update_add_htlcs {
2975 $self.push_decode_update_add_htlcs(decode);
2977 $self.finalize_claims(updates.finalized_claimed_htlcs);
2978 for failure in updates.failed_htlcs.drain(..) {
2979 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2980 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2985 macro_rules! handle_new_monitor_update {
2986 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2987 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2988 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2990 ChannelMonitorUpdateStatus::UnrecoverableError => {
2991 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2992 log_error!(logger, "{}", err_str);
2993 panic!("{}", err_str);
2995 ChannelMonitorUpdateStatus::InProgress => {
2996 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2997 &$chan.context.channel_id());
3000 ChannelMonitorUpdateStatus::Completed => {
3006 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
3007 handle_new_monitor_update!($self, $update_res, $chan, _internal,
3008 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
3010 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
3011 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
3012 .or_insert_with(Vec::new);
3013 // During startup, we push monitor updates as background events through to here in
3014 // order to replay updates that were in-flight when we shut down. Thus, we have to
3015 // filter for uniqueness here.
3016 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
3017 .unwrap_or_else(|| {
3018 in_flight_updates.push($update);
3019 in_flight_updates.len() - 1
3021 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
3022 handle_new_monitor_update!($self, update_res, $chan, _internal,
3024 let _ = in_flight_updates.remove(idx);
3025 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
3026 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
3032 macro_rules! process_events_body {
3033 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
3034 let mut processed_all_events = false;
3035 while !processed_all_events {
3036 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
3043 // We'll acquire our total consistency lock so that we can be sure no other
3044 // persists happen while processing monitor events.
3045 let _read_guard = $self.total_consistency_lock.read().unwrap();
3047 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
3048 // ensure any startup-generated background events are handled first.
3049 result = $self.process_background_events();
3051 // TODO: This behavior should be documented. It's unintuitive that we query
3052 // ChannelMonitors when clearing other events.
3053 if $self.process_pending_monitor_events() {
3054 result = NotifyOption::DoPersist;
3058 let pending_events = $self.pending_events.lock().unwrap().clone();
3059 let num_events = pending_events.len();
3060 if !pending_events.is_empty() {
3061 result = NotifyOption::DoPersist;
3064 let mut post_event_actions = Vec::new();
3066 for (event, action_opt) in pending_events {
3067 $event_to_handle = event;
3069 if let Some(action) = action_opt {
3070 post_event_actions.push(action);
3075 let mut pending_events = $self.pending_events.lock().unwrap();
3076 pending_events.drain(..num_events);
3077 processed_all_events = pending_events.is_empty();
3078 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
3079 // updated here with the `pending_events` lock acquired.
3080 $self.pending_events_processor.store(false, Ordering::Release);
3083 if !post_event_actions.is_empty() {
3084 $self.handle_post_event_actions(post_event_actions);
3085 // If we had some actions, go around again as we may have more events now
3086 processed_all_events = false;
3090 NotifyOption::DoPersist => {
3091 $self.needs_persist_flag.store(true, Ordering::Release);
3092 $self.event_persist_notifier.notify();
3094 NotifyOption::SkipPersistHandleEvents =>
3095 $self.event_persist_notifier.notify(),
3096 NotifyOption::SkipPersistNoEvents => {},
3102 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
3104 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
3105 T::Target: BroadcasterInterface,
3106 ES::Target: EntropySource,
3107 NS::Target: NodeSigner,
3108 SP::Target: SignerProvider,
3109 F::Target: FeeEstimator,
3113 /// Constructs a new `ChannelManager` to hold several channels and route between them.
3115 /// The current time or latest block header time can be provided as the `current_timestamp`.
3117 /// This is the main "logic hub" for all channel-related actions, and implements
3118 /// [`ChannelMessageHandler`].
3120 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
3122 /// Users need to notify the new `ChannelManager` when a new block is connected or
3123 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
3124 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
3127 /// [`block_connected`]: chain::Listen::block_connected
3128 /// [`block_disconnected`]: chain::Listen::block_disconnected
3129 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
3131 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
3132 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
3133 current_timestamp: u32,
3135 let mut secp_ctx = Secp256k1::new();
3136 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
3137 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
3138 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
3140 default_configuration: config.clone(),
3141 chain_hash: ChainHash::using_genesis_block(params.network),
3142 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
3147 best_block: RwLock::new(params.best_block),
3149 outbound_scid_aliases: Mutex::new(new_hash_set()),
3150 pending_inbound_payments: Mutex::new(new_hash_map()),
3151 pending_outbound_payments: OutboundPayments::new(),
3152 forward_htlcs: Mutex::new(new_hash_map()),
3153 decode_update_add_htlcs: Mutex::new(new_hash_map()),
3154 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
3155 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
3156 outpoint_to_peer: Mutex::new(new_hash_map()),
3157 short_to_chan_info: FairRwLock::new(new_hash_map()),
3159 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
3162 inbound_payment_key: expanded_inbound_key,
3163 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
3165 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
3167 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
3169 per_peer_state: FairRwLock::new(new_hash_map()),
3171 pending_events: Mutex::new(VecDeque::new()),
3172 pending_events_processor: AtomicBool::new(false),
3173 pending_background_events: Mutex::new(Vec::new()),
3174 total_consistency_lock: RwLock::new(()),
3175 background_events_processed_since_startup: AtomicBool::new(false),
3176 event_persist_notifier: Notifier::new(),
3177 needs_persist_flag: AtomicBool::new(false),
3178 funding_batch_states: Mutex::new(BTreeMap::new()),
3180 pending_offers_messages: Mutex::new(Vec::new()),
3181 pending_broadcast_messages: Mutex::new(Vec::new()),
3191 /// Gets the current configuration applied to all new channels.
3192 pub fn get_current_default_configuration(&self) -> &UserConfig {
3193 &self.default_configuration
3196 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
3197 let height = self.best_block.read().unwrap().height;
3198 let mut outbound_scid_alias = 0;
3201 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
3202 outbound_scid_alias += 1;
3204 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
3206 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
3210 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
3215 /// Creates a new outbound channel to the given remote node and with the given value.
3217 /// `user_channel_id` will be provided back as in
3218 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
3219 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
3220 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
3221 /// is simply copied to events and otherwise ignored.
3223 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
3224 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
3226 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
3227 /// generate a shutdown scriptpubkey or destination script set by
3228 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
3230 /// Note that we do not check if you are currently connected to the given peer. If no
3231 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
3232 /// the channel eventually being silently forgotten (dropped on reload).
3234 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
3235 /// channel. Otherwise, a random one will be generated for you.
3237 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
3238 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
3239 /// [`ChannelDetails::channel_id`] until after
3240 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
3241 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
3242 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
3244 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
3245 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
3246 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
3247 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
3248 if channel_value_satoshis < 1000 {
3249 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
3252 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3253 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
3254 debug_assert!(&self.total_consistency_lock.try_write().is_err());
3256 let per_peer_state = self.per_peer_state.read().unwrap();
3258 let peer_state_mutex = per_peer_state.get(&their_network_key)
3259 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
3261 let mut peer_state = peer_state_mutex.lock().unwrap();
3263 if let Some(temporary_channel_id) = temporary_channel_id {
3264 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
3265 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
3270 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
3271 let their_features = &peer_state.latest_features;
3272 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
3273 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
3274 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
3275 self.best_block.read().unwrap().height, outbound_scid_alias, temporary_channel_id)
3279 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
3284 let res = channel.get_open_channel(self.chain_hash);
3286 let temporary_channel_id = channel.context.channel_id();
3287 match peer_state.channel_by_id.entry(temporary_channel_id) {
3288 hash_map::Entry::Occupied(_) => {
3290 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
3292 panic!("RNG is bad???");
3295 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
3298 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
3299 node_id: their_network_key,
3302 Ok(temporary_channel_id)
3305 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
3306 // Allocate our best estimate of the number of channels we have in the `res`
3307 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3308 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3309 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3310 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3311 // the same channel.
3312 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3314 let best_block_height = self.best_block.read().unwrap().height;
3315 let per_peer_state = self.per_peer_state.read().unwrap();
3316 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3317 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3318 let peer_state = &mut *peer_state_lock;
3319 res.extend(peer_state.channel_by_id.iter()
3320 .filter_map(|(chan_id, phase)| match phase {
3321 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
3322 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
3326 .map(|(_channel_id, channel)| {
3327 ChannelDetails::from_channel_context(&channel.context, best_block_height,
3328 peer_state.latest_features.clone(), &self.fee_estimator)
3336 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
3337 /// more information.
3338 pub fn list_channels(&self) -> Vec<ChannelDetails> {
3339 // Allocate our best estimate of the number of channels we have in the `res`
3340 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3341 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3342 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3343 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3344 // the same channel.
3345 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3347 let best_block_height = self.best_block.read().unwrap().height;
3348 let per_peer_state = self.per_peer_state.read().unwrap();
3349 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3350 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3351 let peer_state = &mut *peer_state_lock;
3352 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
3353 let details = ChannelDetails::from_channel_context(context, best_block_height,
3354 peer_state.latest_features.clone(), &self.fee_estimator);
3362 /// Gets the list of usable channels, in random order. Useful as an argument to
3363 /// [`Router::find_route`] to ensure non-announced channels are used.
3365 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
3366 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
3368 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
3369 // Note we use is_live here instead of usable which leads to somewhat confused
3370 // internal/external nomenclature, but that's ok cause that's probably what the user
3371 // really wanted anyway.
3372 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
3375 /// Gets the list of channels we have with a given counterparty, in random order.
3376 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
3377 let best_block_height = self.best_block.read().unwrap().height;
3378 let per_peer_state = self.per_peer_state.read().unwrap();
3380 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3381 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3382 let peer_state = &mut *peer_state_lock;
3383 let features = &peer_state.latest_features;
3384 let context_to_details = |context| {
3385 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
3387 return peer_state.channel_by_id
3389 .map(|(_, phase)| phase.context())
3390 .map(context_to_details)
3396 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
3397 /// successful path, or have unresolved HTLCs.
3399 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
3400 /// result of a crash. If such a payment exists, is not listed here, and an
3401 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
3403 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3404 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
3405 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
3406 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
3407 PendingOutboundPayment::AwaitingInvoice { .. } => {
3408 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3410 // InvoiceReceived is an intermediate state and doesn't need to be exposed
3411 PendingOutboundPayment::InvoiceReceived { .. } => {
3412 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3414 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
3415 Some(RecentPaymentDetails::Pending {
3416 payment_id: *payment_id,
3417 payment_hash: *payment_hash,
3418 total_msat: *total_msat,
3421 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
3422 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
3424 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
3425 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
3427 PendingOutboundPayment::Legacy { .. } => None
3432 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3433 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3435 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
3436 let mut shutdown_result = None;
3439 let per_peer_state = self.per_peer_state.read().unwrap();
3441 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3442 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3444 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3445 let peer_state = &mut *peer_state_lock;
3447 match peer_state.channel_by_id.entry(channel_id.clone()) {
3448 hash_map::Entry::Occupied(mut chan_phase_entry) => {
3449 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
3450 let funding_txo_opt = chan.context.get_funding_txo();
3451 let their_features = &peer_state.latest_features;
3452 let (shutdown_msg, mut monitor_update_opt, htlcs) =
3453 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
3454 failed_htlcs = htlcs;
3456 // We can send the `shutdown` message before updating the `ChannelMonitor`
3457 // here as we don't need the monitor update to complete until we send a
3458 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
3459 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3460 node_id: *counterparty_node_id,
3464 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
3465 "We can't both complete shutdown and generate a monitor update");
3467 // Update the monitor with the shutdown script if necessary.
3468 if let Some(monitor_update) = monitor_update_opt.take() {
3469 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
3470 peer_state_lock, peer_state, per_peer_state, chan);
3473 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3474 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
3477 hash_map::Entry::Vacant(_) => {
3478 return Err(APIError::ChannelUnavailable {
3480 "Channel with id {} not found for the passed counterparty node_id {}",
3481 channel_id, counterparty_node_id,
3488 for htlc_source in failed_htlcs.drain(..) {
3489 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3490 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
3491 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
3494 if let Some(shutdown_result) = shutdown_result {
3495 self.finish_close_channel(shutdown_result);
3501 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3502 /// will be accepted on the given channel, and after additional timeout/the closing of all
3503 /// pending HTLCs, the channel will be closed on chain.
3505 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
3506 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3508 /// * If our counterparty is the channel initiator, we will require a channel closing
3509 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
3510 /// would appear on a force-closure transaction, whichever is lower. We will allow our
3511 /// counterparty to pay as much fee as they'd like, however.
3513 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3515 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3516 /// generate a shutdown scriptpubkey or destination script set by
3517 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3520 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3521 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
3522 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3523 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3524 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
3525 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
3528 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3529 /// will be accepted on the given channel, and after additional timeout/the closing of all
3530 /// pending HTLCs, the channel will be closed on chain.
3532 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
3533 /// the channel being closed or not:
3534 /// * If we are the channel initiator, we will pay at least this feerate on the closing
3535 /// transaction. The upper-bound is set by
3536 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3537 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
3538 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
3539 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
3540 /// will appear on a force-closure transaction, whichever is lower).
3542 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
3543 /// Will fail if a shutdown script has already been set for this channel by
3544 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
3545 /// also be compatible with our and the counterparty's features.
3547 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3549 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3550 /// generate a shutdown scriptpubkey or destination script set by
3551 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3554 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3555 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3556 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3557 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3558 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
3561 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
3562 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
3563 #[cfg(debug_assertions)]
3564 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3565 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3568 let logger = WithContext::from(
3569 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
3572 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
3573 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
3574 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
3575 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
3576 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3577 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
3578 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3580 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
3581 // There isn't anything we can do if we get an update failure - we're already
3582 // force-closing. The monitor update on the required in-memory copy should broadcast
3583 // the latest local state, which is the best we can do anyway. Thus, it is safe to
3584 // ignore the result here.
3585 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
3587 let mut shutdown_results = Vec::new();
3588 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
3589 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
3590 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
3591 let per_peer_state = self.per_peer_state.read().unwrap();
3592 let mut has_uncompleted_channel = None;
3593 for (channel_id, counterparty_node_id, state) in affected_channels {
3594 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3595 let mut peer_state = peer_state_mutex.lock().unwrap();
3596 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
3597 update_maps_on_chan_removal!(self, &chan.context());
3598 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
3601 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
3604 has_uncompleted_channel.unwrap_or(true),
3605 "Closing a batch where all channels have completed initial monitor update",
3610 let mut pending_events = self.pending_events.lock().unwrap();
3611 pending_events.push_back((events::Event::ChannelClosed {
3612 channel_id: shutdown_res.channel_id,
3613 user_channel_id: shutdown_res.user_channel_id,
3614 reason: shutdown_res.closure_reason,
3615 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
3616 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
3617 channel_funding_txo: shutdown_res.channel_funding_txo,
3620 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
3621 pending_events.push_back((events::Event::DiscardFunding {
3622 channel_id: shutdown_res.channel_id, transaction
3626 for shutdown_result in shutdown_results.drain(..) {
3627 self.finish_close_channel(shutdown_result);
3631 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
3632 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
3633 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
3634 -> Result<PublicKey, APIError> {
3635 let per_peer_state = self.per_peer_state.read().unwrap();
3636 let peer_state_mutex = per_peer_state.get(peer_node_id)
3637 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
3638 let (update_opt, counterparty_node_id) = {
3639 let mut peer_state = peer_state_mutex.lock().unwrap();
3640 let closure_reason = if let Some(peer_msg) = peer_msg {
3641 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
3643 ClosureReason::HolderForceClosed
3645 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
3646 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
3647 log_error!(logger, "Force-closing channel {}", channel_id);
3648 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3649 mem::drop(peer_state);
3650 mem::drop(per_peer_state);
3652 ChannelPhase::Funded(mut chan) => {
3653 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
3654 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
3656 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
3657 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3658 // Unfunded channel has no update
3659 (None, chan_phase.context().get_counterparty_node_id())
3661 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
3662 #[cfg(dual_funding)]
3663 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
3664 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3665 // Unfunded channel has no update
3666 (None, chan_phase.context().get_counterparty_node_id())
3669 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
3670 log_error!(logger, "Force-closing channel {}", &channel_id);
3671 // N.B. that we don't send any channel close event here: we
3672 // don't have a user_channel_id, and we never sent any opening
3674 (None, *peer_node_id)
3676 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
3679 if let Some(update) = update_opt {
3680 // If we have some Channel Update to broadcast, we cache it and broadcast it later.
3681 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
3682 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
3687 Ok(counterparty_node_id)
3690 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3691 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3692 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3693 Ok(counterparty_node_id) => {
3694 let per_peer_state = self.per_peer_state.read().unwrap();
3695 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3696 let mut peer_state = peer_state_mutex.lock().unwrap();
3697 peer_state.pending_msg_events.push(
3698 events::MessageSendEvent::HandleError {
3699 node_id: counterparty_node_id,
3700 action: msgs::ErrorAction::DisconnectPeer {
3701 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3712 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3713 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3714 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3716 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3717 -> Result<(), APIError> {
3718 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3721 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3722 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3723 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3725 /// You can always broadcast the latest local transaction(s) via
3726 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3727 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3728 -> Result<(), APIError> {
3729 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3732 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3733 /// for each to the chain and rejecting new HTLCs on each.
3734 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3735 for chan in self.list_channels() {
3736 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3740 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3741 /// local transaction(s).
3742 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3743 for chan in self.list_channels() {
3744 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3748 fn can_forward_htlc_to_outgoing_channel(
3749 &self, chan: &mut Channel<SP>, msg: &msgs::UpdateAddHTLC, next_packet: &NextPacketDetails
3750 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3751 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3752 // Note that the behavior here should be identical to the above block - we
3753 // should NOT reveal the existence or non-existence of a private channel if
3754 // we don't allow forwards outbound over them.
3755 return Err(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3757 if chan.context.get_channel_type().supports_scid_privacy() && next_packet.outgoing_scid != chan.context.outbound_scid_alias() {
3758 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3759 // "refuse to forward unless the SCID alias was used", so we pretend
3760 // we don't have the channel here.
3761 return Err(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3764 // Note that we could technically not return an error yet here and just hope
3765 // that the connection is reestablished or monitor updated by the time we get
3766 // around to doing the actual forward, but better to fail early if we can and
3767 // hopefully an attacker trying to path-trace payments cannot make this occur
3768 // on a small/per-node/per-channel scale.
3769 if !chan.context.is_live() { // channel_disabled
3770 // If the channel_update we're going to return is disabled (i.e. the
3771 // peer has been disabled for some time), return `channel_disabled`,
3772 // otherwise return `temporary_channel_failure`.
3773 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3774 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3775 return Err(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3777 return Err(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3780 if next_packet.outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3781 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3782 return Err(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3784 if let Err((err, code)) = chan.htlc_satisfies_config(msg, next_packet.outgoing_amt_msat, next_packet.outgoing_cltv_value) {
3785 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3786 return Err((err, code, chan_update_opt));
3792 /// Executes a callback `C` that returns some value `X` on the channel found with the given
3793 /// `scid`. `None` is returned when the channel is not found.
3794 fn do_funded_channel_callback<X, C: Fn(&mut Channel<SP>) -> X>(
3795 &self, scid: u64, callback: C,
3797 let (counterparty_node_id, channel_id) = match self.short_to_chan_info.read().unwrap().get(&scid).cloned() {
3798 None => return None,
3799 Some((cp_id, id)) => (cp_id, id),
3801 let per_peer_state = self.per_peer_state.read().unwrap();
3802 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3803 if peer_state_mutex_opt.is_none() {
3806 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3807 let peer_state = &mut *peer_state_lock;
3808 match peer_state.channel_by_id.get_mut(&channel_id).and_then(
3809 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3812 Some(chan) => Some(callback(chan)),
3816 fn can_forward_htlc(
3817 &self, msg: &msgs::UpdateAddHTLC, next_packet_details: &NextPacketDetails
3818 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3819 match self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3820 self.can_forward_htlc_to_outgoing_channel(chan, msg, next_packet_details)
3823 Some(Err(e)) => return Err(e),
3825 // If we couldn't find the channel info for the scid, it may be a phantom or
3826 // intercept forward.
3827 if (self.default_configuration.accept_intercept_htlcs &&
3828 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)) ||
3829 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)
3831 return Err(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3836 let cur_height = self.best_block.read().unwrap().height + 1;
3837 if let Err((err_msg, err_code)) = check_incoming_htlc_cltv(
3838 cur_height, next_packet_details.outgoing_cltv_value, msg.cltv_expiry
3840 let chan_update_opt = self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3841 self.get_channel_update_for_onion(next_packet_details.outgoing_scid, chan).ok()
3843 return Err((err_msg, err_code, chan_update_opt));
3849 fn htlc_failure_from_update_add_err(
3850 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, err_msg: &'static str,
3851 mut err_code: u16, chan_update: Option<msgs::ChannelUpdate>, is_intro_node_blinded_forward: bool,
3852 shared_secret: &[u8; 32]
3853 ) -> HTLCFailureMsg {
3854 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3855 if chan_update.is_some() && err_code & 0x1000 == 0x1000 {
3856 let chan_update = chan_update.unwrap();
3857 if err_code == 0x1000 | 11 || err_code == 0x1000 | 12 {
3858 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3860 else if err_code == 0x1000 | 13 {
3861 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3863 else if err_code == 0x1000 | 20 {
3864 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3865 0u16.write(&mut res).expect("Writes cannot fail");
3867 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3868 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3869 chan_update.write(&mut res).expect("Writes cannot fail");
3870 } else if err_code & 0x1000 == 0x1000 {
3871 // If we're trying to return an error that requires a `channel_update` but
3872 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3873 // generate an update), just use the generic "temporary_node_failure"
3875 err_code = 0x2000 | 2;
3879 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3880 "Failed to accept/forward incoming HTLC: {}", err_msg
3882 // If `msg.blinding_point` is set, we must always fail with malformed.
3883 if msg.blinding_point.is_some() {
3884 return HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3885 channel_id: msg.channel_id,
3886 htlc_id: msg.htlc_id,
3887 sha256_of_onion: [0; 32],
3888 failure_code: INVALID_ONION_BLINDING,
3892 let (err_code, err_data) = if is_intro_node_blinded_forward {
3893 (INVALID_ONION_BLINDING, &[0; 32][..])
3895 (err_code, &res.0[..])
3897 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3898 channel_id: msg.channel_id,
3899 htlc_id: msg.htlc_id,
3900 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3901 .get_encrypted_failure_packet(shared_secret, &None),
3905 fn decode_update_add_htlc_onion(
3906 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3908 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3910 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3911 msg, &self.node_signer, &self.logger, &self.secp_ctx
3914 let next_packet_details = match next_packet_details_opt {
3915 Some(next_packet_details) => next_packet_details,
3916 // it is a receive, so no need for outbound checks
3917 None => return Ok((next_hop, shared_secret, None)),
3920 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3921 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3922 self.can_forward_htlc(&msg, &next_packet_details).map_err(|e| {
3923 let (err_msg, err_code, chan_update_opt) = e;
3924 self.htlc_failure_from_update_add_err(
3925 msg, counterparty_node_id, err_msg, err_code, chan_update_opt,
3926 next_hop.is_intro_node_blinded_forward(), &shared_secret
3930 Ok((next_hop, shared_secret, Some(next_packet_details.next_packet_pubkey)))
3933 fn construct_pending_htlc_status<'a>(
3934 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3935 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3936 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3937 ) -> PendingHTLCStatus {
3938 macro_rules! return_err {
3939 ($msg: expr, $err_code: expr, $data: expr) => {
3941 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3942 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3943 if msg.blinding_point.is_some() {
3944 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3945 msgs::UpdateFailMalformedHTLC {
3946 channel_id: msg.channel_id,
3947 htlc_id: msg.htlc_id,
3948 sha256_of_onion: [0; 32],
3949 failure_code: INVALID_ONION_BLINDING,
3953 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3954 channel_id: msg.channel_id,
3955 htlc_id: msg.htlc_id,
3956 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3957 .get_encrypted_failure_packet(&shared_secret, &None),
3963 onion_utils::Hop::Receive(next_hop_data) => {
3965 let current_height: u32 = self.best_block.read().unwrap().height;
3966 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3967 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3968 current_height, self.default_configuration.accept_mpp_keysend)
3971 // Note that we could obviously respond immediately with an update_fulfill_htlc
3972 // message, however that would leak that we are the recipient of this payment, so
3973 // instead we stay symmetric with the forwarding case, only responding (after a
3974 // delay) once they've send us a commitment_signed!
3975 PendingHTLCStatus::Forward(info)
3977 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3980 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3981 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3982 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3983 Ok(info) => PendingHTLCStatus::Forward(info),
3984 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3990 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3991 /// public, and thus should be called whenever the result is going to be passed out in a
3992 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3994 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3995 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3996 /// storage and the `peer_state` lock has been dropped.
3998 /// [`channel_update`]: msgs::ChannelUpdate
3999 /// [`internal_closing_signed`]: Self::internal_closing_signed
4000 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4001 if !chan.context.should_announce() {
4002 return Err(LightningError {
4003 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
4004 action: msgs::ErrorAction::IgnoreError
4007 if chan.context.get_short_channel_id().is_none() {
4008 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
4010 let logger = WithChannelContext::from(&self.logger, &chan.context);
4011 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
4012 self.get_channel_update_for_unicast(chan)
4015 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
4016 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
4017 /// and thus MUST NOT be called unless the recipient of the resulting message has already
4018 /// provided evidence that they know about the existence of the channel.
4020 /// Note that through [`internal_closing_signed`], this function is called without the
4021 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
4022 /// removed from the storage and the `peer_state` lock has been dropped.
4024 /// [`channel_update`]: msgs::ChannelUpdate
4025 /// [`internal_closing_signed`]: Self::internal_closing_signed
4026 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4027 let logger = WithChannelContext::from(&self.logger, &chan.context);
4028 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
4029 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
4030 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
4034 self.get_channel_update_for_onion(short_channel_id, chan)
4037 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4038 let logger = WithChannelContext::from(&self.logger, &chan.context);
4039 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
4040 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
4042 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
4043 ChannelUpdateStatus::Enabled => true,
4044 ChannelUpdateStatus::DisabledStaged(_) => true,
4045 ChannelUpdateStatus::Disabled => false,
4046 ChannelUpdateStatus::EnabledStaged(_) => false,
4049 let unsigned = msgs::UnsignedChannelUpdate {
4050 chain_hash: self.chain_hash,
4052 timestamp: chan.context.get_update_time_counter(),
4053 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
4054 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
4055 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
4056 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
4057 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
4058 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
4059 excess_data: Vec::new(),
4061 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
4062 // If we returned an error and the `node_signer` cannot provide a signature for whatever
4063 // reason`, we wouldn't be able to receive inbound payments through the corresponding
4065 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
4067 Ok(msgs::ChannelUpdate {
4074 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
4075 let _lck = self.total_consistency_lock.read().unwrap();
4076 self.send_payment_along_path(SendAlongPathArgs {
4077 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4082 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
4083 let SendAlongPathArgs {
4084 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4087 // The top-level caller should hold the total_consistency_lock read lock.
4088 debug_assert!(self.total_consistency_lock.try_write().is_err());
4089 let prng_seed = self.entropy_source.get_secure_random_bytes();
4090 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
4092 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
4093 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
4094 payment_hash, keysend_preimage, prng_seed
4096 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4097 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
4101 let err: Result<(), _> = loop {
4102 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
4104 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4105 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
4106 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
4108 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4111 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
4113 "Attempting to send payment with payment hash {} along path with next hop {}",
4114 payment_hash, path.hops.first().unwrap().short_channel_id);
4116 let per_peer_state = self.per_peer_state.read().unwrap();
4117 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
4118 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
4119 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4120 let peer_state = &mut *peer_state_lock;
4121 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
4122 match chan_phase_entry.get_mut() {
4123 ChannelPhase::Funded(chan) => {
4124 if !chan.context.is_live() {
4125 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
4127 let funding_txo = chan.context.get_funding_txo().unwrap();
4128 let logger = WithChannelContext::from(&self.logger, &chan.context);
4129 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
4130 htlc_cltv, HTLCSource::OutboundRoute {
4132 session_priv: session_priv.clone(),
4133 first_hop_htlc_msat: htlc_msat,
4135 }, onion_packet, None, &self.fee_estimator, &&logger);
4136 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
4137 Some(monitor_update) => {
4138 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
4140 // Note that MonitorUpdateInProgress here indicates (per function
4141 // docs) that we will resend the commitment update once monitor
4142 // updating completes. Therefore, we must return an error
4143 // indicating that it is unsafe to retry the payment wholesale,
4144 // which we do in the send_payment check for
4145 // MonitorUpdateInProgress, below.
4146 return Err(APIError::MonitorUpdateInProgress);
4154 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
4157 // The channel was likely removed after we fetched the id from the
4158 // `short_to_chan_info` map, but before we successfully locked the
4159 // `channel_by_id` map.
4160 // This can occur as no consistency guarantees exists between the two maps.
4161 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
4165 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
4166 Ok(_) => unreachable!(),
4168 Err(APIError::ChannelUnavailable { err: e.err })
4173 /// Sends a payment along a given route.
4175 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
4176 /// fields for more info.
4178 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
4179 /// [`PeerManager::process_events`]).
4181 /// # Avoiding Duplicate Payments
4183 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
4184 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
4185 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
4186 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
4187 /// second payment with the same [`PaymentId`].
4189 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
4190 /// tracking of payments, including state to indicate once a payment has completed. Because you
4191 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
4192 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
4193 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
4195 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
4196 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
4197 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
4198 /// [`ChannelManager::list_recent_payments`] for more information.
4200 /// # Possible Error States on [`PaymentSendFailure`]
4202 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
4203 /// each entry matching the corresponding-index entry in the route paths, see
4204 /// [`PaymentSendFailure`] for more info.
4206 /// In general, a path may raise:
4207 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
4208 /// node public key) is specified.
4209 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
4210 /// closed, doesn't exist, or the peer is currently disconnected.
4211 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
4212 /// relevant updates.
4214 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
4215 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
4216 /// different route unless you intend to pay twice!
4218 /// [`RouteHop`]: crate::routing::router::RouteHop
4219 /// [`Event::PaymentSent`]: events::Event::PaymentSent
4220 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
4221 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
4222 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
4223 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
4224 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
4225 let best_block_height = self.best_block.read().unwrap().height;
4226 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4227 self.pending_outbound_payments
4228 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
4229 &self.entropy_source, &self.node_signer, best_block_height,
4230 |args| self.send_payment_along_path(args))
4233 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
4234 /// `route_params` and retry failed payment paths based on `retry_strategy`.
4235 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
4236 let best_block_height = self.best_block.read().unwrap().height;
4237 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4238 self.pending_outbound_payments
4239 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
4240 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
4241 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
4242 &self.pending_events, |args| self.send_payment_along_path(args))
4246 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
4247 let best_block_height = self.best_block.read().unwrap().height;
4248 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4249 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
4250 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
4251 best_block_height, |args| self.send_payment_along_path(args))
4255 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
4256 let best_block_height = self.best_block.read().unwrap().height;
4257 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
4261 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
4262 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
4265 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
4266 let best_block_height = self.best_block.read().unwrap().height;
4267 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4268 self.pending_outbound_payments
4269 .send_payment_for_bolt12_invoice(
4270 invoice, payment_id, &self.router, self.list_usable_channels(),
4271 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
4272 best_block_height, &self.logger, &self.pending_events,
4273 |args| self.send_payment_along_path(args)
4277 /// Signals that no further attempts for the given payment should occur. Useful if you have a
4278 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
4279 /// retries are exhausted.
4281 /// # Event Generation
4283 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
4284 /// as there are no remaining pending HTLCs for this payment.
4286 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
4287 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
4288 /// determine the ultimate status of a payment.
4290 /// # Requested Invoices
4292 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
4293 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
4294 /// and prevent any attempts at paying it once received. The other events may only be generated
4295 /// once the invoice has been received.
4297 /// # Restart Behavior
4299 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
4300 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
4301 /// [`Event::InvoiceRequestFailed`].
4303 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
4304 pub fn abandon_payment(&self, payment_id: PaymentId) {
4305 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4306 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
4309 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
4310 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
4311 /// the preimage, it must be a cryptographically secure random value that no intermediate node
4312 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
4313 /// never reach the recipient.
4315 /// See [`send_payment`] documentation for more details on the return value of this function
4316 /// and idempotency guarantees provided by the [`PaymentId`] key.
4318 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
4319 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
4321 /// [`send_payment`]: Self::send_payment
4322 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
4323 let best_block_height = self.best_block.read().unwrap().height;
4324 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4325 self.pending_outbound_payments.send_spontaneous_payment_with_route(
4326 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
4327 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
4330 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
4331 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
4333 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
4336 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
4337 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
4338 let best_block_height = self.best_block.read().unwrap().height;
4339 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4340 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
4341 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
4342 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4343 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
4346 /// Send a payment that is probing the given route for liquidity. We calculate the
4347 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
4348 /// us to easily discern them from real payments.
4349 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
4350 let best_block_height = self.best_block.read().unwrap().height;
4351 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4352 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
4353 &self.entropy_source, &self.node_signer, best_block_height,
4354 |args| self.send_payment_along_path(args))
4357 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
4360 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
4361 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
4364 /// Sends payment probes over all paths of a route that would be used to pay the given
4365 /// amount to the given `node_id`.
4367 /// See [`ChannelManager::send_preflight_probes`] for more information.
4368 pub fn send_spontaneous_preflight_probes(
4369 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
4370 liquidity_limit_multiplier: Option<u64>,
4371 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4372 let payment_params =
4373 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
4375 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
4377 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
4380 /// Sends payment probes over all paths of a route that would be used to pay a route found
4381 /// according to the given [`RouteParameters`].
4383 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
4384 /// the actual payment. Note this is only useful if there likely is sufficient time for the
4385 /// probe to settle before sending out the actual payment, e.g., when waiting for user
4386 /// confirmation in a wallet UI.
4388 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
4389 /// actual payment. Users should therefore be cautious and might avoid sending probes if
4390 /// liquidity is scarce and/or they don't expect the probe to return before they send the
4391 /// payment. To mitigate this issue, channels with available liquidity less than the required
4392 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
4393 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
4394 pub fn send_preflight_probes(
4395 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
4396 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4397 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
4399 let payer = self.get_our_node_id();
4400 let usable_channels = self.list_usable_channels();
4401 let first_hops = usable_channels.iter().collect::<Vec<_>>();
4402 let inflight_htlcs = self.compute_inflight_htlcs();
4406 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
4408 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
4409 ProbeSendFailure::RouteNotFound
4412 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
4414 let mut res = Vec::new();
4416 for mut path in route.paths {
4417 // If the last hop is probably an unannounced channel we refrain from probing all the
4418 // way through to the end and instead probe up to the second-to-last channel.
4419 while let Some(last_path_hop) = path.hops.last() {
4420 if last_path_hop.maybe_announced_channel {
4421 // We found a potentially announced last hop.
4424 // Drop the last hop, as it's likely unannounced.
4427 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
4428 last_path_hop.short_channel_id
4430 let final_value_msat = path.final_value_msat();
4432 if let Some(new_last) = path.hops.last_mut() {
4433 new_last.fee_msat += final_value_msat;
4438 if path.hops.len() < 2 {
4441 "Skipped sending payment probe over path with less than two hops."
4446 if let Some(first_path_hop) = path.hops.first() {
4447 if let Some(first_hop) = first_hops.iter().find(|h| {
4448 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
4450 let path_value = path.final_value_msat() + path.fee_msat();
4451 let used_liquidity =
4452 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
4454 if first_hop.next_outbound_htlc_limit_msat
4455 < (*used_liquidity + path_value) * liquidity_limit_multiplier
4457 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
4460 *used_liquidity += path_value;
4465 res.push(self.send_probe(path).map_err(|e| {
4466 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
4467 ProbeSendFailure::SendingFailed(e)
4474 /// Handles the generation of a funding transaction, optionally (for tests) with a function
4475 /// which checks the correctness of the funding transaction given the associated channel.
4476 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
4477 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
4478 mut find_funding_output: FundingOutput,
4479 ) -> Result<(), APIError> {
4480 let per_peer_state = self.per_peer_state.read().unwrap();
4481 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4482 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4484 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4485 let peer_state = &mut *peer_state_lock;
4487 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
4488 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
4489 funding_txo = find_funding_output(&chan, &funding_transaction)?;
4491 let logger = WithChannelContext::from(&self.logger, &chan.context);
4492 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
4493 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
4494 let channel_id = chan.context.channel_id();
4495 let reason = ClosureReason::ProcessingError { err: msg.clone() };
4496 let shutdown_res = chan.context.force_shutdown(false, reason);
4497 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None))
4498 } else { unreachable!(); });
4500 Ok(funding_msg) => (chan, funding_msg),
4501 Err((chan, err)) => {
4502 mem::drop(peer_state_lock);
4503 mem::drop(per_peer_state);
4504 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
4505 return Err(APIError::ChannelUnavailable {
4506 err: "Signer refused to sign the initial commitment transaction".to_owned()
4512 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
4513 return Err(APIError::APIMisuseError {
4515 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
4516 temporary_channel_id, counterparty_node_id),
4519 None => return Err(APIError::ChannelUnavailable {err: format!(
4520 "Channel with id {} not found for the passed counterparty node_id {}",
4521 temporary_channel_id, counterparty_node_id),
4525 if let Some(msg) = msg_opt {
4526 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
4527 node_id: chan.context.get_counterparty_node_id(),
4531 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
4532 hash_map::Entry::Occupied(_) => {
4533 panic!("Generated duplicate funding txid?");
4535 hash_map::Entry::Vacant(e) => {
4536 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
4537 match outpoint_to_peer.entry(funding_txo) {
4538 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
4539 hash_map::Entry::Occupied(o) => {
4541 "An existing channel using outpoint {} is open with peer {}",
4542 funding_txo, o.get()
4544 mem::drop(outpoint_to_peer);
4545 mem::drop(peer_state_lock);
4546 mem::drop(per_peer_state);
4547 let reason = ClosureReason::ProcessingError { err: err.clone() };
4548 self.finish_close_channel(chan.context.force_shutdown(true, reason));
4549 return Err(APIError::ChannelUnavailable { err });
4552 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
4559 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
4560 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
4561 Ok(OutPoint { txid: tx.txid(), index: output_index })
4565 /// Call this upon creation of a funding transaction for the given channel.
4567 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
4568 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
4570 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
4571 /// across the p2p network.
4573 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
4574 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
4576 /// May panic if the output found in the funding transaction is duplicative with some other
4577 /// channel (note that this should be trivially prevented by using unique funding transaction
4578 /// keys per-channel).
4580 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
4581 /// counterparty's signature the funding transaction will automatically be broadcast via the
4582 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
4584 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
4585 /// not currently support replacing a funding transaction on an existing channel. Instead,
4586 /// create a new channel with a conflicting funding transaction.
4588 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
4589 /// the wallet software generating the funding transaction to apply anti-fee sniping as
4590 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
4591 /// for more details.
4593 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
4594 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
4595 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
4596 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
4599 /// Call this upon creation of a batch funding transaction for the given channels.
4601 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
4602 /// each individual channel and transaction output.
4604 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
4605 /// will only be broadcast when we have safely received and persisted the counterparty's
4606 /// signature for each channel.
4608 /// If there is an error, all channels in the batch are to be considered closed.
4609 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
4610 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4611 let mut result = Ok(());
4613 if !funding_transaction.is_coin_base() {
4614 for inp in funding_transaction.input.iter() {
4615 if inp.witness.is_empty() {
4616 result = result.and(Err(APIError::APIMisuseError {
4617 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
4622 if funding_transaction.output.len() > u16::max_value() as usize {
4623 result = result.and(Err(APIError::APIMisuseError {
4624 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
4628 let height = self.best_block.read().unwrap().height;
4629 // Transactions are evaluated as final by network mempools if their locktime is strictly
4630 // lower than the next block height. However, the modules constituting our Lightning
4631 // node might not have perfect sync about their blockchain views. Thus, if the wallet
4632 // module is ahead of LDK, only allow one more block of headroom.
4633 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
4634 funding_transaction.lock_time.is_block_height() &&
4635 funding_transaction.lock_time.to_consensus_u32() > height + 1
4637 result = result.and(Err(APIError::APIMisuseError {
4638 err: "Funding transaction absolute timelock is non-final".to_owned()
4643 let txid = funding_transaction.txid();
4644 let is_batch_funding = temporary_channels.len() > 1;
4645 let mut funding_batch_states = if is_batch_funding {
4646 Some(self.funding_batch_states.lock().unwrap())
4650 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
4651 match states.entry(txid) {
4652 btree_map::Entry::Occupied(_) => {
4653 result = result.clone().and(Err(APIError::APIMisuseError {
4654 err: "Batch funding transaction with the same txid already exists".to_owned()
4658 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
4661 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
4662 result = result.and_then(|_| self.funding_transaction_generated_intern(
4663 temporary_channel_id,
4664 counterparty_node_id,
4665 funding_transaction.clone(),
4668 let mut output_index = None;
4669 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
4670 for (idx, outp) in tx.output.iter().enumerate() {
4671 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
4672 if output_index.is_some() {
4673 return Err(APIError::APIMisuseError {
4674 err: "Multiple outputs matched the expected script and value".to_owned()
4677 output_index = Some(idx as u16);
4680 if output_index.is_none() {
4681 return Err(APIError::APIMisuseError {
4682 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
4685 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4686 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4687 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4688 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4689 // want to support V2 batching here as well.
4690 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4696 if let Err(ref e) = result {
4697 // Remaining channels need to be removed on any error.
4698 let e = format!("Error in transaction funding: {:?}", e);
4699 let mut channels_to_remove = Vec::new();
4700 channels_to_remove.extend(funding_batch_states.as_mut()
4701 .and_then(|states| states.remove(&txid))
4702 .into_iter().flatten()
4703 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4705 channels_to_remove.extend(temporary_channels.iter()
4706 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4708 let mut shutdown_results = Vec::new();
4710 let per_peer_state = self.per_peer_state.read().unwrap();
4711 for (channel_id, counterparty_node_id) in channels_to_remove {
4712 per_peer_state.get(&counterparty_node_id)
4713 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4714 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4716 update_maps_on_chan_removal!(self, &chan.context());
4717 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4718 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4722 mem::drop(funding_batch_states);
4723 for shutdown_result in shutdown_results.drain(..) {
4724 self.finish_close_channel(shutdown_result);
4730 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4732 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4733 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4734 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4735 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4737 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4738 /// `counterparty_node_id` is provided.
4740 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4741 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4743 /// If an error is returned, none of the updates should be considered applied.
4745 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4746 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4747 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4748 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4749 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4750 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4751 /// [`APIMisuseError`]: APIError::APIMisuseError
4752 pub fn update_partial_channel_config(
4753 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4754 ) -> Result<(), APIError> {
4755 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4756 return Err(APIError::APIMisuseError {
4757 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4761 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4762 let per_peer_state = self.per_peer_state.read().unwrap();
4763 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4764 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4765 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4766 let peer_state = &mut *peer_state_lock;
4768 for channel_id in channel_ids {
4769 if !peer_state.has_channel(channel_id) {
4770 return Err(APIError::ChannelUnavailable {
4771 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4775 for channel_id in channel_ids {
4776 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4777 let mut config = channel_phase.context().config();
4778 config.apply(config_update);
4779 if !channel_phase.context_mut().update_config(&config) {
4782 if let ChannelPhase::Funded(channel) = channel_phase {
4783 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4784 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
4785 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4786 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4787 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4788 node_id: channel.context.get_counterparty_node_id(),
4795 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4796 debug_assert!(false);
4797 return Err(APIError::ChannelUnavailable {
4799 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4800 channel_id, counterparty_node_id),
4807 /// Atomically updates the [`ChannelConfig`] for the given channels.
4809 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4810 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4811 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4812 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4814 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4815 /// `counterparty_node_id` is provided.
4817 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4818 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4820 /// If an error is returned, none of the updates should be considered applied.
4822 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4823 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4824 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4825 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4826 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4827 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4828 /// [`APIMisuseError`]: APIError::APIMisuseError
4829 pub fn update_channel_config(
4830 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4831 ) -> Result<(), APIError> {
4832 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4835 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4836 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4838 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4839 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4841 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4842 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4843 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4844 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4845 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4847 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4848 /// you from forwarding more than you received. See
4849 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4852 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4855 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4856 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4857 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4858 // TODO: when we move to deciding the best outbound channel at forward time, only take
4859 // `next_node_id` and not `next_hop_channel_id`
4860 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4861 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4863 let next_hop_scid = {
4864 let peer_state_lock = self.per_peer_state.read().unwrap();
4865 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4866 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4867 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4868 let peer_state = &mut *peer_state_lock;
4869 match peer_state.channel_by_id.get(next_hop_channel_id) {
4870 Some(ChannelPhase::Funded(chan)) => {
4871 if !chan.context.is_usable() {
4872 return Err(APIError::ChannelUnavailable {
4873 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4876 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4878 Some(_) => return Err(APIError::ChannelUnavailable {
4879 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4880 next_hop_channel_id, next_node_id)
4883 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4884 next_hop_channel_id, next_node_id);
4885 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4886 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4887 return Err(APIError::ChannelUnavailable {
4894 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4895 .ok_or_else(|| APIError::APIMisuseError {
4896 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4899 let routing = match payment.forward_info.routing {
4900 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4901 PendingHTLCRouting::Forward {
4902 onion_packet, blinded, short_channel_id: next_hop_scid
4905 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4907 let skimmed_fee_msat =
4908 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4909 let pending_htlc_info = PendingHTLCInfo {
4910 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4911 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4914 let mut per_source_pending_forward = [(
4915 payment.prev_short_channel_id,
4916 payment.prev_funding_outpoint,
4917 payment.prev_channel_id,
4918 payment.prev_user_channel_id,
4919 vec![(pending_htlc_info, payment.prev_htlc_id)]
4921 self.forward_htlcs(&mut per_source_pending_forward);
4925 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4926 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4928 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4931 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4932 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4933 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4935 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4936 .ok_or_else(|| APIError::APIMisuseError {
4937 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4940 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4941 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4942 short_channel_id: payment.prev_short_channel_id,
4943 user_channel_id: Some(payment.prev_user_channel_id),
4944 outpoint: payment.prev_funding_outpoint,
4945 channel_id: payment.prev_channel_id,
4946 htlc_id: payment.prev_htlc_id,
4947 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4948 phantom_shared_secret: None,
4949 blinded_failure: payment.forward_info.routing.blinded_failure(),
4952 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4953 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4954 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4955 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4960 fn process_pending_update_add_htlcs(&self) {
4961 let mut decode_update_add_htlcs = new_hash_map();
4962 mem::swap(&mut decode_update_add_htlcs, &mut self.decode_update_add_htlcs.lock().unwrap());
4964 let get_failed_htlc_destination = |outgoing_scid_opt: Option<u64>, payment_hash: PaymentHash| {
4965 if let Some(outgoing_scid) = outgoing_scid_opt {
4966 match self.short_to_chan_info.read().unwrap().get(&outgoing_scid) {
4967 Some((outgoing_counterparty_node_id, outgoing_channel_id)) =>
4968 HTLCDestination::NextHopChannel {
4969 node_id: Some(*outgoing_counterparty_node_id),
4970 channel_id: *outgoing_channel_id,
4972 None => HTLCDestination::UnknownNextHop {
4973 requested_forward_scid: outgoing_scid,
4977 HTLCDestination::FailedPayment { payment_hash }
4981 'outer_loop: for (incoming_scid, update_add_htlcs) in decode_update_add_htlcs {
4982 let incoming_channel_details_opt = self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
4983 let counterparty_node_id = chan.context.get_counterparty_node_id();
4984 let channel_id = chan.context.channel_id();
4985 let funding_txo = chan.context.get_funding_txo().unwrap();
4986 let user_channel_id = chan.context.get_user_id();
4987 let accept_underpaying_htlcs = chan.context.config().accept_underpaying_htlcs;
4988 (counterparty_node_id, channel_id, funding_txo, user_channel_id, accept_underpaying_htlcs)
4991 incoming_counterparty_node_id, incoming_channel_id, incoming_funding_txo,
4992 incoming_user_channel_id, incoming_accept_underpaying_htlcs
4993 ) = if let Some(incoming_channel_details) = incoming_channel_details_opt {
4994 incoming_channel_details
4996 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5000 let mut htlc_forwards = Vec::new();
5001 let mut htlc_fails = Vec::new();
5002 for update_add_htlc in &update_add_htlcs {
5003 let (next_hop, shared_secret, next_packet_details_opt) = match decode_incoming_update_add_htlc_onion(
5004 &update_add_htlc, &self.node_signer, &self.logger, &self.secp_ctx
5006 Ok(decoded_onion) => decoded_onion,
5008 htlc_fails.push((htlc_fail, HTLCDestination::InvalidOnion));
5013 let is_intro_node_blinded_forward = next_hop.is_intro_node_blinded_forward();
5014 let outgoing_scid_opt = next_packet_details_opt.as_ref().map(|d| d.outgoing_scid);
5016 // Process the HTLC on the incoming channel.
5017 match self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5018 let logger = WithChannelContext::from(&self.logger, &chan.context);
5019 chan.can_accept_incoming_htlc(
5020 update_add_htlc, &self.fee_estimator, &logger,
5024 Some(Err((err, code))) => {
5025 let outgoing_chan_update_opt = if let Some(outgoing_scid) = outgoing_scid_opt.as_ref() {
5026 self.do_funded_channel_callback(*outgoing_scid, |chan: &mut Channel<SP>| {
5027 self.get_channel_update_for_onion(*outgoing_scid, chan).ok()
5032 let htlc_fail = self.htlc_failure_from_update_add_err(
5033 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5034 outgoing_chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5036 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5037 htlc_fails.push((htlc_fail, htlc_destination));
5040 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5041 None => continue 'outer_loop,
5044 // Now process the HTLC on the outgoing channel if it's a forward.
5045 if let Some(next_packet_details) = next_packet_details_opt.as_ref() {
5046 if let Err((err, code, chan_update_opt)) = self.can_forward_htlc(
5047 &update_add_htlc, next_packet_details
5049 let htlc_fail = self.htlc_failure_from_update_add_err(
5050 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5051 chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5053 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5054 htlc_fails.push((htlc_fail, htlc_destination));
5059 match self.construct_pending_htlc_status(
5060 &update_add_htlc, &incoming_counterparty_node_id, shared_secret, next_hop,
5061 incoming_accept_underpaying_htlcs, next_packet_details_opt.map(|d| d.next_packet_pubkey),
5063 PendingHTLCStatus::Forward(htlc_forward) => {
5064 htlc_forwards.push((htlc_forward, update_add_htlc.htlc_id));
5066 PendingHTLCStatus::Fail(htlc_fail) => {
5067 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5068 htlc_fails.push((htlc_fail, htlc_destination));
5073 // Process all of the forwards and failures for the channel in which the HTLCs were
5074 // proposed to as a batch.
5075 let pending_forwards = (incoming_scid, incoming_funding_txo, incoming_channel_id,
5076 incoming_user_channel_id, htlc_forwards.drain(..).collect());
5077 self.forward_htlcs_without_forward_event(&mut [pending_forwards]);
5078 for (htlc_fail, htlc_destination) in htlc_fails.drain(..) {
5079 let failure = match htlc_fail {
5080 HTLCFailureMsg::Relay(fail_htlc) => HTLCForwardInfo::FailHTLC {
5081 htlc_id: fail_htlc.htlc_id,
5082 err_packet: fail_htlc.reason,
5084 HTLCFailureMsg::Malformed(fail_malformed_htlc) => HTLCForwardInfo::FailMalformedHTLC {
5085 htlc_id: fail_malformed_htlc.htlc_id,
5086 sha256_of_onion: fail_malformed_htlc.sha256_of_onion,
5087 failure_code: fail_malformed_htlc.failure_code,
5090 self.forward_htlcs.lock().unwrap().entry(incoming_scid).or_insert(vec![]).push(failure);
5091 self.pending_events.lock().unwrap().push_back((events::Event::HTLCHandlingFailed {
5092 prev_channel_id: incoming_channel_id,
5093 failed_next_destination: htlc_destination,
5099 /// Processes HTLCs which are pending waiting on random forward delay.
5101 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
5102 /// Will likely generate further events.
5103 pub fn process_pending_htlc_forwards(&self) {
5104 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5106 self.process_pending_update_add_htlcs();
5108 let mut new_events = VecDeque::new();
5109 let mut failed_forwards = Vec::new();
5110 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
5112 let mut forward_htlcs = new_hash_map();
5113 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
5115 for (short_chan_id, mut pending_forwards) in forward_htlcs {
5116 if short_chan_id != 0 {
5117 let mut forwarding_counterparty = None;
5118 macro_rules! forwarding_channel_not_found {
5120 for forward_info in pending_forwards.drain(..) {
5121 match forward_info {
5122 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5123 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5124 prev_user_channel_id, forward_info: PendingHTLCInfo {
5125 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
5126 outgoing_cltv_value, ..
5129 macro_rules! failure_handler {
5130 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
5131 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id));
5132 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
5134 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5135 short_channel_id: prev_short_channel_id,
5136 user_channel_id: Some(prev_user_channel_id),
5137 channel_id: prev_channel_id,
5138 outpoint: prev_funding_outpoint,
5139 htlc_id: prev_htlc_id,
5140 incoming_packet_shared_secret: incoming_shared_secret,
5141 phantom_shared_secret: $phantom_ss,
5142 blinded_failure: routing.blinded_failure(),
5145 let reason = if $next_hop_unknown {
5146 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
5148 HTLCDestination::FailedPayment{ payment_hash }
5151 failed_forwards.push((htlc_source, payment_hash,
5152 HTLCFailReason::reason($err_code, $err_data),
5158 macro_rules! fail_forward {
5159 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5161 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
5165 macro_rules! failed_payment {
5166 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5168 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
5172 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
5173 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
5174 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
5175 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
5176 let next_hop = match onion_utils::decode_next_payment_hop(
5177 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
5178 payment_hash, None, &self.node_signer
5181 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
5182 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
5183 // In this scenario, the phantom would have sent us an
5184 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
5185 // if it came from us (the second-to-last hop) but contains the sha256
5187 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
5189 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
5190 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
5194 onion_utils::Hop::Receive(hop_data) => {
5195 let current_height: u32 = self.best_block.read().unwrap().height;
5196 match create_recv_pending_htlc_info(hop_data,
5197 incoming_shared_secret, payment_hash, outgoing_amt_msat,
5198 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
5199 current_height, self.default_configuration.accept_mpp_keysend)
5201 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
5202 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
5208 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5211 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5214 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5215 // Channel went away before we could fail it. This implies
5216 // the channel is now on chain and our counterparty is
5217 // trying to broadcast the HTLC-Timeout, but that's their
5218 // problem, not ours.
5224 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
5225 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
5226 Some((cp_id, chan_id)) => (cp_id, chan_id),
5228 forwarding_channel_not_found!();
5232 forwarding_counterparty = Some(counterparty_node_id);
5233 let per_peer_state = self.per_peer_state.read().unwrap();
5234 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5235 if peer_state_mutex_opt.is_none() {
5236 forwarding_channel_not_found!();
5239 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5240 let peer_state = &mut *peer_state_lock;
5241 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
5242 let logger = WithChannelContext::from(&self.logger, &chan.context);
5243 for forward_info in pending_forwards.drain(..) {
5244 let queue_fail_htlc_res = match forward_info {
5245 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5246 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5247 prev_user_channel_id, forward_info: PendingHTLCInfo {
5248 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
5249 routing: PendingHTLCRouting::Forward {
5250 onion_packet, blinded, ..
5251 }, skimmed_fee_msat, ..
5254 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
5255 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5256 short_channel_id: prev_short_channel_id,
5257 user_channel_id: Some(prev_user_channel_id),
5258 channel_id: prev_channel_id,
5259 outpoint: prev_funding_outpoint,
5260 htlc_id: prev_htlc_id,
5261 incoming_packet_shared_secret: incoming_shared_secret,
5262 // Phantom payments are only PendingHTLCRouting::Receive.
5263 phantom_shared_secret: None,
5264 blinded_failure: blinded.map(|b| b.failure),
5266 let next_blinding_point = blinded.and_then(|b| {
5267 let encrypted_tlvs_ss = self.node_signer.ecdh(
5268 Recipient::Node, &b.inbound_blinding_point, None
5269 ).unwrap().secret_bytes();
5270 onion_utils::next_hop_pubkey(
5271 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
5274 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
5275 payment_hash, outgoing_cltv_value, htlc_source.clone(),
5276 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
5279 if let ChannelError::Ignore(msg) = e {
5280 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
5282 panic!("Stated return value requirements in send_htlc() were not met");
5284 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
5285 failed_forwards.push((htlc_source, payment_hash,
5286 HTLCFailReason::reason(failure_code, data),
5287 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
5293 HTLCForwardInfo::AddHTLC { .. } => {
5294 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
5296 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
5297 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5298 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
5300 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
5301 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5302 let res = chan.queue_fail_malformed_htlc(
5303 htlc_id, failure_code, sha256_of_onion, &&logger
5305 Some((res, htlc_id))
5308 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
5309 if let Err(e) = queue_fail_htlc_res {
5310 if let ChannelError::Ignore(msg) = e {
5311 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
5313 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
5315 // fail-backs are best-effort, we probably already have one
5316 // pending, and if not that's OK, if not, the channel is on
5317 // the chain and sending the HTLC-Timeout is their problem.
5323 forwarding_channel_not_found!();
5327 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
5328 match forward_info {
5329 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5330 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5331 prev_user_channel_id, forward_info: PendingHTLCInfo {
5332 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
5333 skimmed_fee_msat, ..
5336 let blinded_failure = routing.blinded_failure();
5337 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
5338 PendingHTLCRouting::Receive {
5339 payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret,
5340 custom_tlvs, requires_blinded_error: _
5342 let _legacy_hop_data = Some(payment_data.clone());
5343 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
5344 payment_metadata, custom_tlvs };
5345 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
5346 Some(payment_data), phantom_shared_secret, onion_fields)
5348 PendingHTLCRouting::ReceiveKeysend {
5349 payment_data, payment_preimage, payment_metadata,
5350 incoming_cltv_expiry, custom_tlvs, requires_blinded_error: _
5352 let onion_fields = RecipientOnionFields {
5353 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
5357 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
5358 payment_data, None, onion_fields)
5361 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
5364 let claimable_htlc = ClaimableHTLC {
5365 prev_hop: HTLCPreviousHopData {
5366 short_channel_id: prev_short_channel_id,
5367 user_channel_id: Some(prev_user_channel_id),
5368 channel_id: prev_channel_id,
5369 outpoint: prev_funding_outpoint,
5370 htlc_id: prev_htlc_id,
5371 incoming_packet_shared_secret: incoming_shared_secret,
5372 phantom_shared_secret,
5375 // We differentiate the received value from the sender intended value
5376 // if possible so that we don't prematurely mark MPP payments complete
5377 // if routing nodes overpay
5378 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
5379 sender_intended_value: outgoing_amt_msat,
5381 total_value_received: None,
5382 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
5385 counterparty_skimmed_fee_msat: skimmed_fee_msat,
5388 let mut committed_to_claimable = false;
5390 macro_rules! fail_htlc {
5391 ($htlc: expr, $payment_hash: expr) => {
5392 debug_assert!(!committed_to_claimable);
5393 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
5394 htlc_msat_height_data.extend_from_slice(
5395 &self.best_block.read().unwrap().height.to_be_bytes(),
5397 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
5398 short_channel_id: $htlc.prev_hop.short_channel_id,
5399 user_channel_id: $htlc.prev_hop.user_channel_id,
5400 channel_id: prev_channel_id,
5401 outpoint: prev_funding_outpoint,
5402 htlc_id: $htlc.prev_hop.htlc_id,
5403 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
5404 phantom_shared_secret,
5407 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5408 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
5410 continue 'next_forwardable_htlc;
5413 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
5414 let mut receiver_node_id = self.our_network_pubkey;
5415 if phantom_shared_secret.is_some() {
5416 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
5417 .expect("Failed to get node_id for phantom node recipient");
5420 macro_rules! check_total_value {
5421 ($purpose: expr) => {{
5422 let mut payment_claimable_generated = false;
5423 let is_keysend = match $purpose {
5424 events::PaymentPurpose::SpontaneousPayment(_) => true,
5425 events::PaymentPurpose::InvoicePayment { .. } => false,
5427 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5428 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
5429 fail_htlc!(claimable_htlc, payment_hash);
5431 let ref mut claimable_payment = claimable_payments.claimable_payments
5432 .entry(payment_hash)
5433 // Note that if we insert here we MUST NOT fail_htlc!()
5434 .or_insert_with(|| {
5435 committed_to_claimable = true;
5437 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
5440 if $purpose != claimable_payment.purpose {
5441 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
5442 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
5443 fail_htlc!(claimable_htlc, payment_hash);
5445 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
5446 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
5447 fail_htlc!(claimable_htlc, payment_hash);
5449 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
5450 if earlier_fields.check_merge(&mut onion_fields).is_err() {
5451 fail_htlc!(claimable_htlc, payment_hash);
5454 claimable_payment.onion_fields = Some(onion_fields);
5456 let ref mut htlcs = &mut claimable_payment.htlcs;
5457 let mut total_value = claimable_htlc.sender_intended_value;
5458 let mut earliest_expiry = claimable_htlc.cltv_expiry;
5459 for htlc in htlcs.iter() {
5460 total_value += htlc.sender_intended_value;
5461 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
5462 if htlc.total_msat != claimable_htlc.total_msat {
5463 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
5464 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
5465 total_value = msgs::MAX_VALUE_MSAT;
5467 if total_value >= msgs::MAX_VALUE_MSAT { break; }
5469 // The condition determining whether an MPP is complete must
5470 // match exactly the condition used in `timer_tick_occurred`
5471 if total_value >= msgs::MAX_VALUE_MSAT {
5472 fail_htlc!(claimable_htlc, payment_hash);
5473 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
5474 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
5476 fail_htlc!(claimable_htlc, payment_hash);
5477 } else if total_value >= claimable_htlc.total_msat {
5478 #[allow(unused_assignments)] {
5479 committed_to_claimable = true;
5481 htlcs.push(claimable_htlc);
5482 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
5483 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
5484 let counterparty_skimmed_fee_msat = htlcs.iter()
5485 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
5486 debug_assert!(total_value.saturating_sub(amount_msat) <=
5487 counterparty_skimmed_fee_msat);
5488 new_events.push_back((events::Event::PaymentClaimable {
5489 receiver_node_id: Some(receiver_node_id),
5493 counterparty_skimmed_fee_msat,
5494 via_channel_id: Some(prev_channel_id),
5495 via_user_channel_id: Some(prev_user_channel_id),
5496 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
5497 onion_fields: claimable_payment.onion_fields.clone(),
5499 payment_claimable_generated = true;
5501 // Nothing to do - we haven't reached the total
5502 // payment value yet, wait until we receive more
5504 htlcs.push(claimable_htlc);
5505 #[allow(unused_assignments)] {
5506 committed_to_claimable = true;
5509 payment_claimable_generated
5513 // Check that the payment hash and secret are known. Note that we
5514 // MUST take care to handle the "unknown payment hash" and
5515 // "incorrect payment secret" cases here identically or we'd expose
5516 // that we are the ultimate recipient of the given payment hash.
5517 // Further, we must not expose whether we have any other HTLCs
5518 // associated with the same payment_hash pending or not.
5519 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5520 match payment_secrets.entry(payment_hash) {
5521 hash_map::Entry::Vacant(_) => {
5522 match claimable_htlc.onion_payload {
5523 OnionPayload::Invoice { .. } => {
5524 let payment_data = payment_data.unwrap();
5525 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
5526 Ok(result) => result,
5528 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
5529 fail_htlc!(claimable_htlc, payment_hash);
5532 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
5533 let expected_min_expiry_height = (self.current_best_block().height + min_final_cltv_expiry_delta as u32) as u64;
5534 if (cltv_expiry as u64) < expected_min_expiry_height {
5535 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
5536 &payment_hash, cltv_expiry, expected_min_expiry_height);
5537 fail_htlc!(claimable_htlc, payment_hash);
5540 let purpose = events::PaymentPurpose::InvoicePayment {
5541 payment_preimage: payment_preimage.clone(),
5542 payment_secret: payment_data.payment_secret,
5544 check_total_value!(purpose);
5546 OnionPayload::Spontaneous(preimage) => {
5547 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
5548 check_total_value!(purpose);
5552 hash_map::Entry::Occupied(inbound_payment) => {
5553 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
5554 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
5555 fail_htlc!(claimable_htlc, payment_hash);
5557 let payment_data = payment_data.unwrap();
5558 if inbound_payment.get().payment_secret != payment_data.payment_secret {
5559 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
5560 fail_htlc!(claimable_htlc, payment_hash);
5561 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
5562 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
5563 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
5564 fail_htlc!(claimable_htlc, payment_hash);
5566 let purpose = events::PaymentPurpose::InvoicePayment {
5567 payment_preimage: inbound_payment.get().payment_preimage,
5568 payment_secret: payment_data.payment_secret,
5570 let payment_claimable_generated = check_total_value!(purpose);
5571 if payment_claimable_generated {
5572 inbound_payment.remove_entry();
5578 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5579 panic!("Got pending fail of our own HTLC");
5587 let best_block_height = self.best_block.read().unwrap().height;
5588 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
5589 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
5590 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
5592 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
5593 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5595 self.forward_htlcs(&mut phantom_receives);
5597 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
5598 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
5599 // nice to do the work now if we can rather than while we're trying to get messages in the
5601 self.check_free_holding_cells();
5603 if new_events.is_empty() { return }
5604 let mut events = self.pending_events.lock().unwrap();
5605 events.append(&mut new_events);
5608 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
5610 /// Expects the caller to have a total_consistency_lock read lock.
5611 fn process_background_events(&self) -> NotifyOption {
5612 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
5614 self.background_events_processed_since_startup.store(true, Ordering::Release);
5616 let mut background_events = Vec::new();
5617 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
5618 if background_events.is_empty() {
5619 return NotifyOption::SkipPersistNoEvents;
5622 for event in background_events.drain(..) {
5624 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
5625 // The channel has already been closed, so no use bothering to care about the
5626 // monitor updating completing.
5627 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5629 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
5630 let mut updated_chan = false;
5632 let per_peer_state = self.per_peer_state.read().unwrap();
5633 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5634 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5635 let peer_state = &mut *peer_state_lock;
5636 match peer_state.channel_by_id.entry(channel_id) {
5637 hash_map::Entry::Occupied(mut chan_phase) => {
5638 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
5639 updated_chan = true;
5640 handle_new_monitor_update!(self, funding_txo, update.clone(),
5641 peer_state_lock, peer_state, per_peer_state, chan);
5643 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
5646 hash_map::Entry::Vacant(_) => {},
5651 // TODO: Track this as in-flight even though the channel is closed.
5652 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5655 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
5656 let per_peer_state = self.per_peer_state.read().unwrap();
5657 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5658 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5659 let peer_state = &mut *peer_state_lock;
5660 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
5661 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
5663 let update_actions = peer_state.monitor_update_blocked_actions
5664 .remove(&channel_id).unwrap_or(Vec::new());
5665 mem::drop(peer_state_lock);
5666 mem::drop(per_peer_state);
5667 self.handle_monitor_update_completion_actions(update_actions);
5673 NotifyOption::DoPersist
5676 #[cfg(any(test, feature = "_test_utils"))]
5677 /// Process background events, for functional testing
5678 pub fn test_process_background_events(&self) {
5679 let _lck = self.total_consistency_lock.read().unwrap();
5680 let _ = self.process_background_events();
5683 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
5684 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
5686 let logger = WithChannelContext::from(&self.logger, &chan.context);
5688 // If the feerate has decreased by less than half, don't bother
5689 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
5690 return NotifyOption::SkipPersistNoEvents;
5692 if !chan.context.is_live() {
5693 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
5694 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5695 return NotifyOption::SkipPersistNoEvents;
5697 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
5698 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5700 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
5701 NotifyOption::DoPersist
5705 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
5706 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
5707 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
5708 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
5709 pub fn maybe_update_chan_fees(&self) {
5710 PersistenceNotifierGuard::optionally_notify(self, || {
5711 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5713 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5714 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5716 let per_peer_state = self.per_peer_state.read().unwrap();
5717 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5718 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5719 let peer_state = &mut *peer_state_lock;
5720 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
5721 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
5723 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5728 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5729 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5737 /// Performs actions which should happen on startup and roughly once per minute thereafter.
5739 /// This currently includes:
5740 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
5741 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
5742 /// than a minute, informing the network that they should no longer attempt to route over
5744 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
5745 /// with the current [`ChannelConfig`].
5746 /// * Removing peers which have disconnected but and no longer have any channels.
5747 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
5748 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
5749 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
5750 /// The latter is determined using the system clock in `std` and the highest seen block time
5751 /// minus two hours in `no-std`.
5753 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
5754 /// estimate fetches.
5756 /// [`ChannelUpdate`]: msgs::ChannelUpdate
5757 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
5758 pub fn timer_tick_occurred(&self) {
5759 PersistenceNotifierGuard::optionally_notify(self, || {
5760 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5762 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5763 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5765 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
5766 let mut timed_out_mpp_htlcs = Vec::new();
5767 let mut pending_peers_awaiting_removal = Vec::new();
5768 let mut shutdown_channels = Vec::new();
5770 let mut process_unfunded_channel_tick = |
5771 chan_id: &ChannelId,
5772 context: &mut ChannelContext<SP>,
5773 unfunded_context: &mut UnfundedChannelContext,
5774 pending_msg_events: &mut Vec<MessageSendEvent>,
5775 counterparty_node_id: PublicKey,
5777 context.maybe_expire_prev_config();
5778 if unfunded_context.should_expire_unfunded_channel() {
5779 let logger = WithChannelContext::from(&self.logger, context);
5781 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
5782 update_maps_on_chan_removal!(self, &context);
5783 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
5784 pending_msg_events.push(MessageSendEvent::HandleError {
5785 node_id: counterparty_node_id,
5786 action: msgs::ErrorAction::SendErrorMessage {
5787 msg: msgs::ErrorMessage {
5788 channel_id: *chan_id,
5789 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
5800 let per_peer_state = self.per_peer_state.read().unwrap();
5801 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
5802 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5803 let peer_state = &mut *peer_state_lock;
5804 let pending_msg_events = &mut peer_state.pending_msg_events;
5805 let counterparty_node_id = *counterparty_node_id;
5806 peer_state.channel_by_id.retain(|chan_id, phase| {
5808 ChannelPhase::Funded(chan) => {
5809 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5814 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5815 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5817 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
5818 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
5819 handle_errors.push((Err(err), counterparty_node_id));
5820 if needs_close { return false; }
5823 match chan.channel_update_status() {
5824 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
5825 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
5826 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
5827 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
5828 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
5829 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
5830 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5832 if n >= DISABLE_GOSSIP_TICKS {
5833 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5834 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5835 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5836 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5840 should_persist = NotifyOption::DoPersist;
5842 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5845 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5847 if n >= ENABLE_GOSSIP_TICKS {
5848 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5849 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5850 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5851 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5855 should_persist = NotifyOption::DoPersist;
5857 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5863 chan.context.maybe_expire_prev_config();
5865 if chan.should_disconnect_peer_awaiting_response() {
5866 let logger = WithChannelContext::from(&self.logger, &chan.context);
5867 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5868 counterparty_node_id, chan_id);
5869 pending_msg_events.push(MessageSendEvent::HandleError {
5870 node_id: counterparty_node_id,
5871 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5872 msg: msgs::WarningMessage {
5873 channel_id: *chan_id,
5874 data: "Disconnecting due to timeout awaiting response".to_owned(),
5882 ChannelPhase::UnfundedInboundV1(chan) => {
5883 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5884 pending_msg_events, counterparty_node_id)
5886 ChannelPhase::UnfundedOutboundV1(chan) => {
5887 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5888 pending_msg_events, counterparty_node_id)
5890 #[cfg(dual_funding)]
5891 ChannelPhase::UnfundedInboundV2(chan) => {
5892 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5893 pending_msg_events, counterparty_node_id)
5895 #[cfg(dual_funding)]
5896 ChannelPhase::UnfundedOutboundV2(chan) => {
5897 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5898 pending_msg_events, counterparty_node_id)
5903 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5904 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5905 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5906 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5907 peer_state.pending_msg_events.push(
5908 events::MessageSendEvent::HandleError {
5909 node_id: counterparty_node_id,
5910 action: msgs::ErrorAction::SendErrorMessage {
5911 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5917 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5919 if peer_state.ok_to_remove(true) {
5920 pending_peers_awaiting_removal.push(counterparty_node_id);
5925 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5926 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5927 // of to that peer is later closed while still being disconnected (i.e. force closed),
5928 // we therefore need to remove the peer from `peer_state` separately.
5929 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5930 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5931 // negative effects on parallelism as much as possible.
5932 if pending_peers_awaiting_removal.len() > 0 {
5933 let mut per_peer_state = self.per_peer_state.write().unwrap();
5934 for counterparty_node_id in pending_peers_awaiting_removal {
5935 match per_peer_state.entry(counterparty_node_id) {
5936 hash_map::Entry::Occupied(entry) => {
5937 // Remove the entry if the peer is still disconnected and we still
5938 // have no channels to the peer.
5939 let remove_entry = {
5940 let peer_state = entry.get().lock().unwrap();
5941 peer_state.ok_to_remove(true)
5944 entry.remove_entry();
5947 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5952 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5953 if payment.htlcs.is_empty() {
5954 // This should be unreachable
5955 debug_assert!(false);
5958 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5959 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5960 // In this case we're not going to handle any timeouts of the parts here.
5961 // This condition determining whether the MPP is complete here must match
5962 // exactly the condition used in `process_pending_htlc_forwards`.
5963 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5964 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5967 } else if payment.htlcs.iter_mut().any(|htlc| {
5968 htlc.timer_ticks += 1;
5969 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5971 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5972 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5979 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5980 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5981 let reason = HTLCFailReason::from_failure_code(23);
5982 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5983 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5986 for (err, counterparty_node_id) in handle_errors.drain(..) {
5987 let _ = handle_error!(self, err, counterparty_node_id);
5990 for shutdown_res in shutdown_channels {
5991 self.finish_close_channel(shutdown_res);
5994 #[cfg(feature = "std")]
5995 let duration_since_epoch = std::time::SystemTime::now()
5996 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5997 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5998 #[cfg(not(feature = "std"))]
5999 let duration_since_epoch = Duration::from_secs(
6000 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
6003 self.pending_outbound_payments.remove_stale_payments(
6004 duration_since_epoch, &self.pending_events
6007 // Technically we don't need to do this here, but if we have holding cell entries in a
6008 // channel that need freeing, it's better to do that here and block a background task
6009 // than block the message queueing pipeline.
6010 if self.check_free_holding_cells() {
6011 should_persist = NotifyOption::DoPersist;
6018 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
6019 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
6020 /// along the path (including in our own channel on which we received it).
6022 /// Note that in some cases around unclean shutdown, it is possible the payment may have
6023 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
6024 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
6025 /// may have already been failed automatically by LDK if it was nearing its expiration time.
6027 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
6028 /// [`ChannelManager::claim_funds`]), you should still monitor for
6029 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
6030 /// startup during which time claims that were in-progress at shutdown may be replayed.
6031 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
6032 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
6035 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
6036 /// reason for the failure.
6038 /// See [`FailureCode`] for valid failure codes.
6039 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
6040 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6042 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
6043 if let Some(payment) = removed_source {
6044 for htlc in payment.htlcs {
6045 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
6046 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6047 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
6048 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6053 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
6054 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
6055 match failure_code {
6056 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
6057 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
6058 FailureCode::IncorrectOrUnknownPaymentDetails => {
6059 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6060 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6061 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
6063 FailureCode::InvalidOnionPayload(data) => {
6064 let fail_data = match data {
6065 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
6068 HTLCFailReason::reason(failure_code.into(), fail_data)
6073 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6074 /// that we want to return and a channel.
6076 /// This is for failures on the channel on which the HTLC was *received*, not failures
6078 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6079 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
6080 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
6081 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
6082 // an inbound SCID alias before the real SCID.
6083 let scid_pref = if chan.context.should_announce() {
6084 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
6086 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
6088 if let Some(scid) = scid_pref {
6089 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
6091 (0x4000|10, Vec::new())
6096 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6097 /// that we want to return and a channel.
6098 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6099 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
6100 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
6101 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
6102 if desired_err_code == 0x1000 | 20 {
6103 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
6104 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
6105 0u16.write(&mut enc).expect("Writes cannot fail");
6107 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
6108 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
6109 upd.write(&mut enc).expect("Writes cannot fail");
6110 (desired_err_code, enc.0)
6112 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
6113 // which means we really shouldn't have gotten a payment to be forwarded over this
6114 // channel yet, or if we did it's from a route hint. Either way, returning an error of
6115 // PERM|no_such_channel should be fine.
6116 (0x4000|10, Vec::new())
6120 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
6121 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
6122 // be surfaced to the user.
6123 fn fail_holding_cell_htlcs(
6124 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
6125 counterparty_node_id: &PublicKey
6127 let (failure_code, onion_failure_data) = {
6128 let per_peer_state = self.per_peer_state.read().unwrap();
6129 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6130 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6131 let peer_state = &mut *peer_state_lock;
6132 match peer_state.channel_by_id.entry(channel_id) {
6133 hash_map::Entry::Occupied(chan_phase_entry) => {
6134 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
6135 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
6137 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
6138 debug_assert!(false);
6139 (0x4000|10, Vec::new())
6142 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
6144 } else { (0x4000|10, Vec::new()) }
6147 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
6148 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
6149 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
6150 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
6154 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
6155 let push_forward_event = self.fail_htlc_backwards_internal_without_forward_event(source, payment_hash, onion_error, destination);
6156 if push_forward_event { self.push_pending_forwards_ev(); }
6159 /// Fails an HTLC backwards to the sender of it to us.
6160 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
6161 fn fail_htlc_backwards_internal_without_forward_event(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) -> bool {
6162 // Ensure that no peer state channel storage lock is held when calling this function.
6163 // This ensures that future code doesn't introduce a lock-order requirement for
6164 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
6165 // this function with any `per_peer_state` peer lock acquired would.
6166 #[cfg(debug_assertions)]
6167 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
6168 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
6171 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
6172 //identify whether we sent it or not based on the (I presume) very different runtime
6173 //between the branches here. We should make this async and move it into the forward HTLCs
6176 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6177 // from block_connected which may run during initialization prior to the chain_monitor
6178 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
6179 let mut push_forward_event;
6181 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
6182 push_forward_event = self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
6183 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
6184 &self.pending_events, &self.logger);
6186 HTLCSource::PreviousHopData(HTLCPreviousHopData {
6187 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
6188 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
6191 WithContext::from(&self.logger, None, Some(*channel_id)),
6192 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
6193 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
6195 let failure = match blinded_failure {
6196 Some(BlindedFailure::FromIntroductionNode) => {
6197 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
6198 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
6199 incoming_packet_shared_secret, phantom_shared_secret
6201 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6203 Some(BlindedFailure::FromBlindedNode) => {
6204 HTLCForwardInfo::FailMalformedHTLC {
6206 failure_code: INVALID_ONION_BLINDING,
6207 sha256_of_onion: [0; 32]
6211 let err_packet = onion_error.get_encrypted_failure_packet(
6212 incoming_packet_shared_secret, phantom_shared_secret
6214 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6218 push_forward_event = self.decode_update_add_htlcs.lock().unwrap().is_empty();
6219 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6220 push_forward_event &= forward_htlcs.is_empty();
6221 match forward_htlcs.entry(*short_channel_id) {
6222 hash_map::Entry::Occupied(mut entry) => {
6223 entry.get_mut().push(failure);
6225 hash_map::Entry::Vacant(entry) => {
6226 entry.insert(vec!(failure));
6229 mem::drop(forward_htlcs);
6230 let mut pending_events = self.pending_events.lock().unwrap();
6231 pending_events.push_back((events::Event::HTLCHandlingFailed {
6232 prev_channel_id: *channel_id,
6233 failed_next_destination: destination,
6240 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
6241 /// [`MessageSendEvent`]s needed to claim the payment.
6243 /// This method is guaranteed to ensure the payment has been claimed but only if the current
6244 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
6245 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
6246 /// successful. It will generally be available in the next [`process_pending_events`] call.
6248 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
6249 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
6250 /// event matches your expectation. If you fail to do so and call this method, you may provide
6251 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
6253 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
6254 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
6255 /// [`claim_funds_with_known_custom_tlvs`].
6257 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
6258 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
6259 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
6260 /// [`process_pending_events`]: EventsProvider::process_pending_events
6261 /// [`create_inbound_payment`]: Self::create_inbound_payment
6262 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6263 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
6264 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
6265 self.claim_payment_internal(payment_preimage, false);
6268 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
6269 /// even type numbers.
6273 /// You MUST check you've understood all even TLVs before using this to
6274 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
6276 /// [`claim_funds`]: Self::claim_funds
6277 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
6278 self.claim_payment_internal(payment_preimage, true);
6281 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
6282 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
6284 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6287 let mut claimable_payments = self.claimable_payments.lock().unwrap();
6288 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
6289 let mut receiver_node_id = self.our_network_pubkey;
6290 for htlc in payment.htlcs.iter() {
6291 if htlc.prev_hop.phantom_shared_secret.is_some() {
6292 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
6293 .expect("Failed to get node_id for phantom node recipient");
6294 receiver_node_id = phantom_pubkey;
6299 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
6300 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
6301 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
6302 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
6303 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
6305 if dup_purpose.is_some() {
6306 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
6307 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
6311 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
6312 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
6313 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
6314 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
6315 claimable_payments.pending_claiming_payments.remove(&payment_hash);
6316 mem::drop(claimable_payments);
6317 for htlc in payment.htlcs {
6318 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
6319 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6320 let receiver = HTLCDestination::FailedPayment { payment_hash };
6321 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6330 debug_assert!(!sources.is_empty());
6332 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
6333 // and when we got here we need to check that the amount we're about to claim matches the
6334 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
6335 // the MPP parts all have the same `total_msat`.
6336 let mut claimable_amt_msat = 0;
6337 let mut prev_total_msat = None;
6338 let mut expected_amt_msat = None;
6339 let mut valid_mpp = true;
6340 let mut errs = Vec::new();
6341 let per_peer_state = self.per_peer_state.read().unwrap();
6342 for htlc in sources.iter() {
6343 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
6344 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
6345 debug_assert!(false);
6349 prev_total_msat = Some(htlc.total_msat);
6351 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
6352 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
6353 debug_assert!(false);
6357 expected_amt_msat = htlc.total_value_received;
6358 claimable_amt_msat += htlc.value;
6360 mem::drop(per_peer_state);
6361 if sources.is_empty() || expected_amt_msat.is_none() {
6362 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6363 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
6366 if claimable_amt_msat != expected_amt_msat.unwrap() {
6367 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6368 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
6369 expected_amt_msat.unwrap(), claimable_amt_msat);
6373 for htlc in sources.drain(..) {
6374 let prev_hop_chan_id = htlc.prev_hop.channel_id;
6375 if let Err((pk, err)) = self.claim_funds_from_hop(
6376 htlc.prev_hop, payment_preimage,
6377 |_, definitely_duplicate| {
6378 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
6379 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
6382 if let msgs::ErrorAction::IgnoreError = err.err.action {
6383 // We got a temporary failure updating monitor, but will claim the
6384 // HTLC when the monitor updating is restored (or on chain).
6385 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
6386 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
6387 } else { errs.push((pk, err)); }
6392 for htlc in sources.drain(..) {
6393 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6394 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6395 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6396 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
6397 let receiver = HTLCDestination::FailedPayment { payment_hash };
6398 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6400 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6403 // Now we can handle any errors which were generated.
6404 for (counterparty_node_id, err) in errs.drain(..) {
6405 let res: Result<(), _> = Err(err);
6406 let _ = handle_error!(self, res, counterparty_node_id);
6410 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
6411 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
6412 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
6413 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
6415 // If we haven't yet run background events assume we're still deserializing and shouldn't
6416 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
6417 // `BackgroundEvent`s.
6418 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
6420 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
6421 // the required mutexes are not held before we start.
6422 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6423 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6426 let per_peer_state = self.per_peer_state.read().unwrap();
6427 let chan_id = prev_hop.channel_id;
6428 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
6429 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
6433 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
6434 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
6435 .map(|peer_mutex| peer_mutex.lock().unwrap())
6438 if peer_state_opt.is_some() {
6439 let mut peer_state_lock = peer_state_opt.unwrap();
6440 let peer_state = &mut *peer_state_lock;
6441 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
6442 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6443 let counterparty_node_id = chan.context.get_counterparty_node_id();
6444 let logger = WithChannelContext::from(&self.logger, &chan.context);
6445 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
6448 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
6449 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
6450 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
6452 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
6455 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
6456 peer_state, per_peer_state, chan);
6458 // If we're running during init we cannot update a monitor directly -
6459 // they probably haven't actually been loaded yet. Instead, push the
6460 // monitor update as a background event.
6461 self.pending_background_events.lock().unwrap().push(
6462 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6463 counterparty_node_id,
6464 funding_txo: prev_hop.outpoint,
6465 channel_id: prev_hop.channel_id,
6466 update: monitor_update.clone(),
6470 UpdateFulfillCommitFetch::DuplicateClaim {} => {
6471 let action = if let Some(action) = completion_action(None, true) {
6476 mem::drop(peer_state_lock);
6478 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
6480 let (node_id, _funding_outpoint, channel_id, blocker) =
6481 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6482 downstream_counterparty_node_id: node_id,
6483 downstream_funding_outpoint: funding_outpoint,
6484 blocking_action: blocker, downstream_channel_id: channel_id,
6486 (node_id, funding_outpoint, channel_id, blocker)
6488 debug_assert!(false,
6489 "Duplicate claims should always free another channel immediately");
6492 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
6493 let mut peer_state = peer_state_mtx.lock().unwrap();
6494 if let Some(blockers) = peer_state
6495 .actions_blocking_raa_monitor_updates
6496 .get_mut(&channel_id)
6498 let mut found_blocker = false;
6499 blockers.retain(|iter| {
6500 // Note that we could actually be blocked, in
6501 // which case we need to only remove the one
6502 // blocker which was added duplicatively.
6503 let first_blocker = !found_blocker;
6504 if *iter == blocker { found_blocker = true; }
6505 *iter != blocker || !first_blocker
6507 debug_assert!(found_blocker);
6510 debug_assert!(false);
6519 let preimage_update = ChannelMonitorUpdate {
6520 update_id: CLOSED_CHANNEL_UPDATE_ID,
6521 counterparty_node_id: None,
6522 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
6525 channel_id: Some(prev_hop.channel_id),
6529 // We update the ChannelMonitor on the backward link, after
6530 // receiving an `update_fulfill_htlc` from the forward link.
6531 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
6532 if update_res != ChannelMonitorUpdateStatus::Completed {
6533 // TODO: This needs to be handled somehow - if we receive a monitor update
6534 // with a preimage we *must* somehow manage to propagate it to the upstream
6535 // channel, or we must have an ability to receive the same event and try
6536 // again on restart.
6537 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id)),
6538 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
6539 payment_preimage, update_res);
6542 // If we're running during init we cannot update a monitor directly - they probably
6543 // haven't actually been loaded yet. Instead, push the monitor update as a background
6545 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
6546 // channel is already closed) we need to ultimately handle the monitor update
6547 // completion action only after we've completed the monitor update. This is the only
6548 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
6549 // from a forwarded HTLC the downstream preimage may be deleted before we claim
6550 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
6551 // complete the monitor update completion action from `completion_action`.
6552 self.pending_background_events.lock().unwrap().push(
6553 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
6554 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
6557 // Note that we do process the completion action here. This totally could be a
6558 // duplicate claim, but we have no way of knowing without interrogating the
6559 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
6560 // generally always allowed to be duplicative (and it's specifically noted in
6561 // `PaymentForwarded`).
6562 self.handle_monitor_update_completion_actions(completion_action(None, false));
6566 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
6567 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
6570 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
6571 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
6572 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
6573 next_channel_outpoint: OutPoint, next_channel_id: ChannelId, next_user_channel_id: Option<u128>,
6576 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
6577 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
6578 "We don't support claim_htlc claims during startup - monitors may not be available yet");
6579 if let Some(pubkey) = next_channel_counterparty_node_id {
6580 debug_assert_eq!(pubkey, path.hops[0].pubkey);
6582 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6583 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
6584 counterparty_node_id: path.hops[0].pubkey,
6586 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
6587 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
6590 HTLCSource::PreviousHopData(hop_data) => {
6591 let prev_channel_id = hop_data.channel_id;
6592 let prev_user_channel_id = hop_data.user_channel_id;
6593 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
6594 #[cfg(debug_assertions)]
6595 let claiming_chan_funding_outpoint = hop_data.outpoint;
6596 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
6597 |htlc_claim_value_msat, definitely_duplicate| {
6598 let chan_to_release =
6599 if let Some(node_id) = next_channel_counterparty_node_id {
6600 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
6602 // We can only get `None` here if we are processing a
6603 // `ChannelMonitor`-originated event, in which case we
6604 // don't care about ensuring we wake the downstream
6605 // channel's monitor updating - the channel is already
6610 if definitely_duplicate && startup_replay {
6611 // On startup we may get redundant claims which are related to
6612 // monitor updates still in flight. In that case, we shouldn't
6613 // immediately free, but instead let that monitor update complete
6614 // in the background.
6615 #[cfg(debug_assertions)] {
6616 let background_events = self.pending_background_events.lock().unwrap();
6617 // There should be a `BackgroundEvent` pending...
6618 assert!(background_events.iter().any(|ev| {
6620 // to apply a monitor update that blocked the claiming channel,
6621 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6622 funding_txo, update, ..
6624 if *funding_txo == claiming_chan_funding_outpoint {
6625 assert!(update.updates.iter().any(|upd|
6626 if let ChannelMonitorUpdateStep::PaymentPreimage {
6627 payment_preimage: update_preimage
6629 payment_preimage == *update_preimage
6635 // or the channel we'd unblock is already closed,
6636 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
6637 (funding_txo, _channel_id, monitor_update)
6639 if *funding_txo == next_channel_outpoint {
6640 assert_eq!(monitor_update.updates.len(), 1);
6642 monitor_update.updates[0],
6643 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
6648 // or the monitor update has completed and will unblock
6649 // immediately once we get going.
6650 BackgroundEvent::MonitorUpdatesComplete {
6653 *channel_id == prev_channel_id,
6655 }), "{:?}", *background_events);
6658 } else if definitely_duplicate {
6659 if let Some(other_chan) = chan_to_release {
6660 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6661 downstream_counterparty_node_id: other_chan.0,
6662 downstream_funding_outpoint: other_chan.1,
6663 downstream_channel_id: other_chan.2,
6664 blocking_action: other_chan.3,
6668 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
6669 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
6670 Some(claimed_htlc_value - forwarded_htlc_value)
6673 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
6674 "skimmed_fee_msat must always be included in total_fee_earned_msat");
6675 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6676 event: events::Event::PaymentForwarded {
6677 prev_channel_id: Some(prev_channel_id),
6678 next_channel_id: Some(next_channel_id),
6679 prev_user_channel_id,
6680 next_user_channel_id,
6681 total_fee_earned_msat,
6683 claim_from_onchain_tx: from_onchain,
6684 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
6686 downstream_counterparty_and_funding_outpoint: chan_to_release,
6690 if let Err((pk, err)) = res {
6691 let result: Result<(), _> = Err(err);
6692 let _ = handle_error!(self, result, pk);
6698 /// Gets the node_id held by this ChannelManager
6699 pub fn get_our_node_id(&self) -> PublicKey {
6700 self.our_network_pubkey.clone()
6703 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
6704 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6705 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6706 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
6708 for action in actions.into_iter() {
6710 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
6711 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6712 if let Some(ClaimingPayment {
6714 payment_purpose: purpose,
6717 sender_intended_value: sender_intended_total_msat,
6719 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
6723 receiver_node_id: Some(receiver_node_id),
6725 sender_intended_total_msat,
6729 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6730 event, downstream_counterparty_and_funding_outpoint
6732 self.pending_events.lock().unwrap().push_back((event, None));
6733 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
6734 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
6737 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6738 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
6740 self.handle_monitor_update_release(
6741 downstream_counterparty_node_id,
6742 downstream_funding_outpoint,
6743 downstream_channel_id,
6744 Some(blocking_action),
6751 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
6752 /// update completion.
6753 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
6754 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
6755 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
6756 pending_forwards: Vec<(PendingHTLCInfo, u64)>, pending_update_adds: Vec<msgs::UpdateAddHTLC>,
6757 funding_broadcastable: Option<Transaction>,
6758 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
6759 -> (Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)>, Option<(u64, Vec<msgs::UpdateAddHTLC>)>) {
6760 let logger = WithChannelContext::from(&self.logger, &channel.context);
6761 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {} pending update_add_htlcs, {}broadcasting funding, {} channel ready, {} announcement",
6762 &channel.context.channel_id(),
6763 if raa.is_some() { "an" } else { "no" },
6764 if commitment_update.is_some() { "a" } else { "no" },
6765 pending_forwards.len(), pending_update_adds.len(),
6766 if funding_broadcastable.is_some() { "" } else { "not " },
6767 if channel_ready.is_some() { "sending" } else { "without" },
6768 if announcement_sigs.is_some() { "sending" } else { "without" });
6770 let counterparty_node_id = channel.context.get_counterparty_node_id();
6771 let short_channel_id = channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias());
6773 let mut htlc_forwards = None;
6774 if !pending_forwards.is_empty() {
6775 htlc_forwards = Some((short_channel_id, channel.context.get_funding_txo().unwrap(),
6776 channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
6778 let mut decode_update_add_htlcs = None;
6779 if !pending_update_adds.is_empty() {
6780 decode_update_add_htlcs = Some((short_channel_id, pending_update_adds));
6783 if let Some(msg) = channel_ready {
6784 send_channel_ready!(self, pending_msg_events, channel, msg);
6786 if let Some(msg) = announcement_sigs {
6787 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6788 node_id: counterparty_node_id,
6793 macro_rules! handle_cs { () => {
6794 if let Some(update) = commitment_update {
6795 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
6796 node_id: counterparty_node_id,
6801 macro_rules! handle_raa { () => {
6802 if let Some(revoke_and_ack) = raa {
6803 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
6804 node_id: counterparty_node_id,
6805 msg: revoke_and_ack,
6810 RAACommitmentOrder::CommitmentFirst => {
6814 RAACommitmentOrder::RevokeAndACKFirst => {
6820 if let Some(tx) = funding_broadcastable {
6821 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
6822 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6826 let mut pending_events = self.pending_events.lock().unwrap();
6827 emit_channel_pending_event!(pending_events, channel);
6828 emit_channel_ready_event!(pending_events, channel);
6831 (htlc_forwards, decode_update_add_htlcs)
6834 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
6835 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6837 let counterparty_node_id = match counterparty_node_id {
6838 Some(cp_id) => cp_id.clone(),
6840 // TODO: Once we can rely on the counterparty_node_id from the
6841 // monitor event, this and the outpoint_to_peer map should be removed.
6842 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
6843 match outpoint_to_peer.get(funding_txo) {
6844 Some(cp_id) => cp_id.clone(),
6849 let per_peer_state = self.per_peer_state.read().unwrap();
6850 let mut peer_state_lock;
6851 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6852 if peer_state_mutex_opt.is_none() { return }
6853 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6854 let peer_state = &mut *peer_state_lock;
6856 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6859 let update_actions = peer_state.monitor_update_blocked_actions
6860 .remove(&channel_id).unwrap_or(Vec::new());
6861 mem::drop(peer_state_lock);
6862 mem::drop(per_peer_state);
6863 self.handle_monitor_update_completion_actions(update_actions);
6866 let remaining_in_flight =
6867 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6868 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6871 let logger = WithChannelContext::from(&self.logger, &channel.context);
6872 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6873 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6874 remaining_in_flight);
6875 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6878 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6881 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6883 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6884 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6887 /// The `user_channel_id` parameter will be provided back in
6888 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6889 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6891 /// Note that this method will return an error and reject the channel, if it requires support
6892 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6893 /// used to accept such channels.
6895 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6896 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6897 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6898 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6901 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6902 /// it as confirmed immediately.
6904 /// The `user_channel_id` parameter will be provided back in
6905 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6906 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6908 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6909 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6911 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6912 /// transaction and blindly assumes that it will eventually confirm.
6914 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6915 /// does not pay to the correct script the correct amount, *you will lose funds*.
6917 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6918 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6919 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6920 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6923 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6925 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6926 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6928 let peers_without_funded_channels =
6929 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6930 let per_peer_state = self.per_peer_state.read().unwrap();
6931 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6933 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6934 log_error!(logger, "{}", err_str);
6936 APIError::ChannelUnavailable { err: err_str }
6938 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6939 let peer_state = &mut *peer_state_lock;
6940 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6942 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6943 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6944 // that we can delay allocating the SCID until after we're sure that the checks below will
6946 let res = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6947 Some(unaccepted_channel) => {
6948 let best_block_height = self.best_block.read().unwrap().height;
6949 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6950 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6951 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6952 &self.logger, accept_0conf).map_err(|err| MsgHandleErrInternal::from_chan_no_close(err, *temporary_channel_id))
6955 let err_str = "No such channel awaiting to be accepted.".to_owned();
6956 log_error!(logger, "{}", err_str);
6958 return Err(APIError::APIMisuseError { err: err_str });
6964 mem::drop(peer_state_lock);
6965 mem::drop(per_peer_state);
6966 match handle_error!(self, Result::<(), MsgHandleErrInternal>::Err(err), *counterparty_node_id) {
6967 Ok(_) => unreachable!("`handle_error` only returns Err as we've passed in an Err"),
6969 return Err(APIError::ChannelUnavailable { err: e.err });
6973 Ok(mut channel) => {
6975 // This should have been correctly configured by the call to InboundV1Channel::new.
6976 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6977 } else if channel.context.get_channel_type().requires_zero_conf() {
6978 let send_msg_err_event = events::MessageSendEvent::HandleError {
6979 node_id: channel.context.get_counterparty_node_id(),
6980 action: msgs::ErrorAction::SendErrorMessage{
6981 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6984 peer_state.pending_msg_events.push(send_msg_err_event);
6985 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
6986 log_error!(logger, "{}", err_str);
6988 return Err(APIError::APIMisuseError { err: err_str });
6990 // If this peer already has some channels, a new channel won't increase our number of peers
6991 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6992 // channels per-peer we can accept channels from a peer with existing ones.
6993 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6994 let send_msg_err_event = events::MessageSendEvent::HandleError {
6995 node_id: channel.context.get_counterparty_node_id(),
6996 action: msgs::ErrorAction::SendErrorMessage{
6997 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
7000 peer_state.pending_msg_events.push(send_msg_err_event);
7001 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
7002 log_error!(logger, "{}", err_str);
7004 return Err(APIError::APIMisuseError { err: err_str });
7008 // Now that we know we have a channel, assign an outbound SCID alias.
7009 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7010 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7012 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7013 node_id: channel.context.get_counterparty_node_id(),
7014 msg: channel.accept_inbound_channel(),
7017 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
7024 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
7025 /// or 0-conf channels.
7027 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
7028 /// non-0-conf channels we have with the peer.
7029 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
7030 where Filter: Fn(&PeerState<SP>) -> bool {
7031 let mut peers_without_funded_channels = 0;
7032 let best_block_height = self.best_block.read().unwrap().height;
7034 let peer_state_lock = self.per_peer_state.read().unwrap();
7035 for (_, peer_mtx) in peer_state_lock.iter() {
7036 let peer = peer_mtx.lock().unwrap();
7037 if !maybe_count_peer(&*peer) { continue; }
7038 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
7039 if num_unfunded_channels == peer.total_channel_count() {
7040 peers_without_funded_channels += 1;
7044 return peers_without_funded_channels;
7047 fn unfunded_channel_count(
7048 peer: &PeerState<SP>, best_block_height: u32
7050 let mut num_unfunded_channels = 0;
7051 for (_, phase) in peer.channel_by_id.iter() {
7053 ChannelPhase::Funded(chan) => {
7054 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
7055 // which have not yet had any confirmations on-chain.
7056 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
7057 chan.context.get_funding_tx_confirmations(best_block_height) == 0
7059 num_unfunded_channels += 1;
7062 ChannelPhase::UnfundedInboundV1(chan) => {
7063 if chan.context.minimum_depth().unwrap_or(1) != 0 {
7064 num_unfunded_channels += 1;
7067 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
7068 #[cfg(dual_funding)]
7069 ChannelPhase::UnfundedInboundV2(chan) => {
7070 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
7071 // included in the unfunded count.
7072 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
7073 chan.dual_funding_context.our_funding_satoshis == 0 {
7074 num_unfunded_channels += 1;
7077 ChannelPhase::UnfundedOutboundV1(_) => {
7078 // Outbound channels don't contribute to the unfunded count in the DoS context.
7081 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
7082 #[cfg(dual_funding)]
7083 ChannelPhase::UnfundedOutboundV2(_) => {
7084 // Outbound channels don't contribute to the unfunded count in the DoS context.
7089 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
7092 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
7093 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7094 // likely to be lost on restart!
7095 if msg.common_fields.chain_hash != self.chain_hash {
7096 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
7097 msg.common_fields.temporary_channel_id.clone()));
7100 if !self.default_configuration.accept_inbound_channels {
7101 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
7102 msg.common_fields.temporary_channel_id.clone()));
7105 // Get the number of peers with channels, but without funded ones. We don't care too much
7106 // about peers that never open a channel, so we filter by peers that have at least one
7107 // channel, and then limit the number of those with unfunded channels.
7108 let channeled_peers_without_funding =
7109 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
7111 let per_peer_state = self.per_peer_state.read().unwrap();
7112 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7114 debug_assert!(false);
7115 MsgHandleErrInternal::send_err_msg_no_close(
7116 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7117 msg.common_fields.temporary_channel_id.clone())
7119 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7120 let peer_state = &mut *peer_state_lock;
7122 // If this peer already has some channels, a new channel won't increase our number of peers
7123 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7124 // channels per-peer we can accept channels from a peer with existing ones.
7125 if peer_state.total_channel_count() == 0 &&
7126 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
7127 !self.default_configuration.manually_accept_inbound_channels
7129 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7130 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
7131 msg.common_fields.temporary_channel_id.clone()));
7134 let best_block_height = self.best_block.read().unwrap().height;
7135 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
7136 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7137 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
7138 msg.common_fields.temporary_channel_id.clone()));
7141 let channel_id = msg.common_fields.temporary_channel_id;
7142 let channel_exists = peer_state.has_channel(&channel_id);
7144 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7145 "temporary_channel_id collision for the same peer!".to_owned(),
7146 msg.common_fields.temporary_channel_id.clone()));
7149 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
7150 if self.default_configuration.manually_accept_inbound_channels {
7151 let channel_type = channel::channel_type_from_open_channel(
7152 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
7154 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
7156 let mut pending_events = self.pending_events.lock().unwrap();
7157 pending_events.push_back((events::Event::OpenChannelRequest {
7158 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
7159 counterparty_node_id: counterparty_node_id.clone(),
7160 funding_satoshis: msg.common_fields.funding_satoshis,
7161 push_msat: msg.push_msat,
7164 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
7165 open_channel_msg: msg.clone(),
7166 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
7171 // Otherwise create the channel right now.
7172 let mut random_bytes = [0u8; 16];
7173 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
7174 let user_channel_id = u128::from_be_bytes(random_bytes);
7175 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
7176 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
7177 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
7180 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
7185 let channel_type = channel.context.get_channel_type();
7186 if channel_type.requires_zero_conf() {
7187 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7188 "No zero confirmation channels accepted".to_owned(),
7189 msg.common_fields.temporary_channel_id.clone()));
7191 if channel_type.requires_anchors_zero_fee_htlc_tx() {
7192 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7193 "No channels with anchor outputs accepted".to_owned(),
7194 msg.common_fields.temporary_channel_id.clone()));
7197 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7198 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7200 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7201 node_id: counterparty_node_id.clone(),
7202 msg: channel.accept_inbound_channel(),
7204 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
7208 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
7209 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7210 // likely to be lost on restart!
7211 let (value, output_script, user_id) = {
7212 let per_peer_state = self.per_peer_state.read().unwrap();
7213 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7215 debug_assert!(false);
7216 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
7218 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7219 let peer_state = &mut *peer_state_lock;
7220 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
7221 hash_map::Entry::Occupied(mut phase) => {
7222 match phase.get_mut() {
7223 ChannelPhase::UnfundedOutboundV1(chan) => {
7224 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
7225 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
7228 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
7232 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
7235 let mut pending_events = self.pending_events.lock().unwrap();
7236 pending_events.push_back((events::Event::FundingGenerationReady {
7237 temporary_channel_id: msg.common_fields.temporary_channel_id,
7238 counterparty_node_id: *counterparty_node_id,
7239 channel_value_satoshis: value,
7241 user_channel_id: user_id,
7246 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
7247 let best_block = *self.best_block.read().unwrap();
7249 let per_peer_state = self.per_peer_state.read().unwrap();
7250 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7252 debug_assert!(false);
7253 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
7256 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7257 let peer_state = &mut *peer_state_lock;
7258 let (mut chan, funding_msg_opt, monitor) =
7259 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
7260 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
7261 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
7262 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
7264 Err((inbound_chan, err)) => {
7265 // We've already removed this inbound channel from the map in `PeerState`
7266 // above so at this point we just need to clean up any lingering entries
7267 // concerning this channel as it is safe to do so.
7268 debug_assert!(matches!(err, ChannelError::Close(_)));
7269 // Really we should be returning the channel_id the peer expects based
7270 // on their funding info here, but they're horribly confused anyway, so
7271 // there's not a lot we can do to save them.
7272 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
7276 Some(mut phase) => {
7277 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
7278 let err = ChannelError::Close(err_msg);
7279 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
7281 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
7284 let funded_channel_id = chan.context.channel_id();
7286 macro_rules! fail_chan { ($err: expr) => { {
7287 // Note that at this point we've filled in the funding outpoint on our
7288 // channel, but its actually in conflict with another channel. Thus, if
7289 // we call `convert_chan_phase_err` immediately (thus calling
7290 // `update_maps_on_chan_removal`), we'll remove the existing channel
7291 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
7293 let err = ChannelError::Close($err.to_owned());
7294 chan.unset_funding_info(msg.temporary_channel_id);
7295 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
7298 match peer_state.channel_by_id.entry(funded_channel_id) {
7299 hash_map::Entry::Occupied(_) => {
7300 fail_chan!("Already had channel with the new channel_id");
7302 hash_map::Entry::Vacant(e) => {
7303 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
7304 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
7305 hash_map::Entry::Occupied(_) => {
7306 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
7308 hash_map::Entry::Vacant(i_e) => {
7309 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
7310 if let Ok(persist_state) = monitor_res {
7311 i_e.insert(chan.context.get_counterparty_node_id());
7312 mem::drop(outpoint_to_peer_lock);
7314 // There's no problem signing a counterparty's funding transaction if our monitor
7315 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
7316 // accepted payment from yet. We do, however, need to wait to send our channel_ready
7317 // until we have persisted our monitor.
7318 if let Some(msg) = funding_msg_opt {
7319 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7320 node_id: counterparty_node_id.clone(),
7325 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
7326 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
7327 per_peer_state, chan, INITIAL_MONITOR);
7329 unreachable!("This must be a funded channel as we just inserted it.");
7333 let logger = WithChannelContext::from(&self.logger, &chan.context);
7334 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
7335 fail_chan!("Duplicate funding outpoint");
7343 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
7344 let best_block = *self.best_block.read().unwrap();
7345 let per_peer_state = self.per_peer_state.read().unwrap();
7346 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7348 debug_assert!(false);
7349 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7352 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7353 let peer_state = &mut *peer_state_lock;
7354 match peer_state.channel_by_id.entry(msg.channel_id) {
7355 hash_map::Entry::Occupied(chan_phase_entry) => {
7356 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
7357 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
7358 let logger = WithContext::from(
7360 Some(chan.context.get_counterparty_node_id()),
7361 Some(chan.context.channel_id())
7364 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
7366 Ok((mut chan, monitor)) => {
7367 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
7368 // We really should be able to insert here without doing a second
7369 // lookup, but sadly rust stdlib doesn't currently allow keeping
7370 // the original Entry around with the value removed.
7371 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
7372 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
7373 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
7374 } else { unreachable!(); }
7377 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
7378 // We weren't able to watch the channel to begin with, so no
7379 // updates should be made on it. Previously, full_stack_target
7380 // found an (unreachable) panic when the monitor update contained
7381 // within `shutdown_finish` was applied.
7382 chan.unset_funding_info(msg.channel_id);
7383 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
7387 debug_assert!(matches!(e, ChannelError::Close(_)),
7388 "We don't have a channel anymore, so the error better have expected close");
7389 // We've already removed this outbound channel from the map in
7390 // `PeerState` above so at this point we just need to clean up any
7391 // lingering entries concerning this channel as it is safe to do so.
7392 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
7396 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
7399 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
7403 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
7404 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7405 // closing a channel), so any changes are likely to be lost on restart!
7406 let per_peer_state = self.per_peer_state.read().unwrap();
7407 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7409 debug_assert!(false);
7410 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7412 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7413 let peer_state = &mut *peer_state_lock;
7414 match peer_state.channel_by_id.entry(msg.channel_id) {
7415 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7416 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7417 let logger = WithChannelContext::from(&self.logger, &chan.context);
7418 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
7419 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
7420 if let Some(announcement_sigs) = announcement_sigs_opt {
7421 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
7422 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7423 node_id: counterparty_node_id.clone(),
7424 msg: announcement_sigs,
7426 } else if chan.context.is_usable() {
7427 // If we're sending an announcement_signatures, we'll send the (public)
7428 // channel_update after sending a channel_announcement when we receive our
7429 // counterparty's announcement_signatures. Thus, we only bother to send a
7430 // channel_update here if the channel is not public, i.e. we're not sending an
7431 // announcement_signatures.
7432 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
7433 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7434 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7435 node_id: counterparty_node_id.clone(),
7442 let mut pending_events = self.pending_events.lock().unwrap();
7443 emit_channel_ready_event!(pending_events, chan);
7448 try_chan_phase_entry!(self, Err(ChannelError::Close(
7449 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
7452 hash_map::Entry::Vacant(_) => {
7453 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7458 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
7459 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
7460 let mut finish_shutdown = None;
7462 let per_peer_state = self.per_peer_state.read().unwrap();
7463 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7465 debug_assert!(false);
7466 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7468 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7469 let peer_state = &mut *peer_state_lock;
7470 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7471 let phase = chan_phase_entry.get_mut();
7473 ChannelPhase::Funded(chan) => {
7474 if !chan.received_shutdown() {
7475 let logger = WithChannelContext::from(&self.logger, &chan.context);
7476 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
7478 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
7481 let funding_txo_opt = chan.context.get_funding_txo();
7482 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
7483 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
7484 dropped_htlcs = htlcs;
7486 if let Some(msg) = shutdown {
7487 // We can send the `shutdown` message before updating the `ChannelMonitor`
7488 // here as we don't need the monitor update to complete until we send a
7489 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
7490 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7491 node_id: *counterparty_node_id,
7495 // Update the monitor with the shutdown script if necessary.
7496 if let Some(monitor_update) = monitor_update_opt {
7497 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
7498 peer_state_lock, peer_state, per_peer_state, chan);
7501 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
7502 let context = phase.context_mut();
7503 let logger = WithChannelContext::from(&self.logger, context);
7504 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7505 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7506 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7508 // TODO(dual_funding): Combine this match arm with above.
7509 #[cfg(dual_funding)]
7510 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
7511 let context = phase.context_mut();
7512 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7513 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7514 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7518 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7521 for htlc_source in dropped_htlcs.drain(..) {
7522 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
7523 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7524 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
7526 if let Some(shutdown_res) = finish_shutdown {
7527 self.finish_close_channel(shutdown_res);
7533 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
7534 let per_peer_state = self.per_peer_state.read().unwrap();
7535 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7537 debug_assert!(false);
7538 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7540 let (tx, chan_option, shutdown_result) = {
7541 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7542 let peer_state = &mut *peer_state_lock;
7543 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7544 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7545 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7546 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
7547 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
7548 if let Some(msg) = closing_signed {
7549 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7550 node_id: counterparty_node_id.clone(),
7555 // We're done with this channel, we've got a signed closing transaction and
7556 // will send the closing_signed back to the remote peer upon return. This
7557 // also implies there are no pending HTLCs left on the channel, so we can
7558 // fully delete it from tracking (the channel monitor is still around to
7559 // watch for old state broadcasts)!
7560 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
7561 } else { (tx, None, shutdown_result) }
7563 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7564 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
7567 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7570 if let Some(broadcast_tx) = tx {
7571 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
7572 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
7573 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
7575 if let Some(ChannelPhase::Funded(chan)) = chan_option {
7576 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7577 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
7578 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
7583 mem::drop(per_peer_state);
7584 if let Some(shutdown_result) = shutdown_result {
7585 self.finish_close_channel(shutdown_result);
7590 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
7591 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
7592 //determine the state of the payment based on our response/if we forward anything/the time
7593 //we take to respond. We should take care to avoid allowing such an attack.
7595 //TODO: There exists a further attack where a node may garble the onion data, forward it to
7596 //us repeatedly garbled in different ways, and compare our error messages, which are
7597 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
7598 //but we should prevent it anyway.
7600 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7601 // closing a channel), so any changes are likely to be lost on restart!
7603 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
7604 let per_peer_state = self.per_peer_state.read().unwrap();
7605 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7607 debug_assert!(false);
7608 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7610 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7611 let peer_state = &mut *peer_state_lock;
7612 match peer_state.channel_by_id.entry(msg.channel_id) {
7613 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7614 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7615 let mut pending_forward_info = match decoded_hop_res {
7616 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
7617 self.construct_pending_htlc_status(
7618 msg, counterparty_node_id, shared_secret, next_hop,
7619 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
7621 Err(e) => PendingHTLCStatus::Fail(e)
7623 let logger = WithChannelContext::from(&self.logger, &chan.context);
7624 // If the update_add is completely bogus, the call will Err and we will close,
7625 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
7626 // want to reject the new HTLC and fail it backwards instead of forwarding.
7627 if let Err((_, error_code)) = chan.can_accept_incoming_htlc(&msg, &self.fee_estimator, &logger) {
7628 if msg.blinding_point.is_some() {
7629 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
7630 msgs::UpdateFailMalformedHTLC {
7631 channel_id: msg.channel_id,
7632 htlc_id: msg.htlc_id,
7633 sha256_of_onion: [0; 32],
7634 failure_code: INVALID_ONION_BLINDING,
7638 match pending_forward_info {
7639 PendingHTLCStatus::Forward(PendingHTLCInfo {
7640 ref incoming_shared_secret, ref routing, ..
7642 let reason = if routing.blinded_failure().is_some() {
7643 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
7644 } else if (error_code & 0x1000) != 0 {
7645 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
7646 HTLCFailReason::reason(real_code, error_data)
7648 HTLCFailReason::from_failure_code(error_code)
7649 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
7650 let msg = msgs::UpdateFailHTLC {
7651 channel_id: msg.channel_id,
7652 htlc_id: msg.htlc_id,
7655 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg));
7661 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info), chan_phase_entry);
7663 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7664 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
7667 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7672 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
7674 let next_user_channel_id;
7675 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
7676 let per_peer_state = self.per_peer_state.read().unwrap();
7677 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7679 debug_assert!(false);
7680 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7682 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7683 let peer_state = &mut *peer_state_lock;
7684 match peer_state.channel_by_id.entry(msg.channel_id) {
7685 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7686 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7687 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
7688 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
7689 let logger = WithChannelContext::from(&self.logger, &chan.context);
7691 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
7693 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
7694 .or_insert_with(Vec::new)
7695 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
7697 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
7698 // entry here, even though we *do* need to block the next RAA monitor update.
7699 // We do this instead in the `claim_funds_internal` by attaching a
7700 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
7701 // outbound HTLC is claimed. This is guaranteed to all complete before we
7702 // process the RAA as messages are processed from single peers serially.
7703 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
7704 next_user_channel_id = chan.context.get_user_id();
7707 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7708 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
7711 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7714 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
7715 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
7716 funding_txo, msg.channel_id, Some(next_user_channel_id),
7722 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
7723 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7724 // closing a channel), so any changes are likely to be lost on restart!
7725 let per_peer_state = self.per_peer_state.read().unwrap();
7726 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7728 debug_assert!(false);
7729 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7731 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7732 let peer_state = &mut *peer_state_lock;
7733 match peer_state.channel_by_id.entry(msg.channel_id) {
7734 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7735 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7736 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
7738 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7739 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
7742 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7747 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
7748 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7749 // closing a channel), so any changes are likely to be lost on restart!
7750 let per_peer_state = self.per_peer_state.read().unwrap();
7751 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7753 debug_assert!(false);
7754 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7756 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7757 let peer_state = &mut *peer_state_lock;
7758 match peer_state.channel_by_id.entry(msg.channel_id) {
7759 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7760 if (msg.failure_code & 0x8000) == 0 {
7761 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
7762 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
7764 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7765 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
7767 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7768 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
7772 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7776 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
7777 let per_peer_state = self.per_peer_state.read().unwrap();
7778 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7780 debug_assert!(false);
7781 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7783 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7784 let peer_state = &mut *peer_state_lock;
7785 match peer_state.channel_by_id.entry(msg.channel_id) {
7786 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7787 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7788 let logger = WithChannelContext::from(&self.logger, &chan.context);
7789 let funding_txo = chan.context.get_funding_txo();
7790 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
7791 if let Some(monitor_update) = monitor_update_opt {
7792 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
7793 peer_state, per_peer_state, chan);
7797 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7798 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
7801 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7805 fn push_decode_update_add_htlcs(&self, mut update_add_htlcs: (u64, Vec<msgs::UpdateAddHTLC>)) {
7806 let mut push_forward_event = self.forward_htlcs.lock().unwrap().is_empty();
7807 let mut decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
7808 push_forward_event &= decode_update_add_htlcs.is_empty();
7809 let scid = update_add_htlcs.0;
7810 match decode_update_add_htlcs.entry(scid) {
7811 hash_map::Entry::Occupied(mut e) => { e.get_mut().append(&mut update_add_htlcs.1); },
7812 hash_map::Entry::Vacant(e) => { e.insert(update_add_htlcs.1); },
7814 if push_forward_event { self.push_pending_forwards_ev(); }
7818 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
7819 let push_forward_event = self.forward_htlcs_without_forward_event(per_source_pending_forwards);
7820 if push_forward_event { self.push_pending_forwards_ev() }
7824 fn forward_htlcs_without_forward_event(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) -> bool {
7825 let mut push_forward_event = false;
7826 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
7827 let mut new_intercept_events = VecDeque::new();
7828 let mut failed_intercept_forwards = Vec::new();
7829 if !pending_forwards.is_empty() {
7830 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
7831 let scid = match forward_info.routing {
7832 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7833 PendingHTLCRouting::Receive { .. } => 0,
7834 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
7836 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
7837 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
7839 let decode_update_add_htlcs_empty = self.decode_update_add_htlcs.lock().unwrap().is_empty();
7840 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
7841 let forward_htlcs_empty = forward_htlcs.is_empty();
7842 match forward_htlcs.entry(scid) {
7843 hash_map::Entry::Occupied(mut entry) => {
7844 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7845 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
7847 hash_map::Entry::Vacant(entry) => {
7848 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
7849 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
7851 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
7852 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7853 match pending_intercepts.entry(intercept_id) {
7854 hash_map::Entry::Vacant(entry) => {
7855 new_intercept_events.push_back((events::Event::HTLCIntercepted {
7856 requested_next_hop_scid: scid,
7857 payment_hash: forward_info.payment_hash,
7858 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
7859 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
7862 entry.insert(PendingAddHTLCInfo {
7863 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
7865 hash_map::Entry::Occupied(_) => {
7866 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id));
7867 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
7868 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7869 short_channel_id: prev_short_channel_id,
7870 user_channel_id: Some(prev_user_channel_id),
7871 outpoint: prev_funding_outpoint,
7872 channel_id: prev_channel_id,
7873 htlc_id: prev_htlc_id,
7874 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7875 phantom_shared_secret: None,
7876 blinded_failure: forward_info.routing.blinded_failure(),
7879 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7880 HTLCFailReason::from_failure_code(0x4000 | 10),
7881 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7886 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7887 // payments are being processed.
7888 push_forward_event |= forward_htlcs_empty && decode_update_add_htlcs_empty;
7889 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7890 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7897 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7898 push_forward_event |= self.fail_htlc_backwards_internal_without_forward_event(&htlc_source, &payment_hash, &failure_reason, destination);
7901 if !new_intercept_events.is_empty() {
7902 let mut events = self.pending_events.lock().unwrap();
7903 events.append(&mut new_intercept_events);
7909 fn push_pending_forwards_ev(&self) {
7910 let mut pending_events = self.pending_events.lock().unwrap();
7911 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7912 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7913 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7915 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7916 // events is done in batches and they are not removed until we're done processing each
7917 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7918 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7919 // payments will need an additional forwarding event before being claimed to make them look
7920 // real by taking more time.
7921 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7922 pending_events.push_back((Event::PendingHTLCsForwardable {
7923 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7928 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7929 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7930 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7931 /// the [`ChannelMonitorUpdate`] in question.
7932 fn raa_monitor_updates_held(&self,
7933 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7934 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7936 actions_blocking_raa_monitor_updates
7937 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7938 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7939 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7940 channel_funding_outpoint,
7942 counterparty_node_id,
7947 #[cfg(any(test, feature = "_test_utils"))]
7948 pub(crate) fn test_raa_monitor_updates_held(&self,
7949 counterparty_node_id: PublicKey, channel_id: ChannelId
7951 let per_peer_state = self.per_peer_state.read().unwrap();
7952 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7953 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7954 let peer_state = &mut *peer_state_lck;
7956 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7957 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7958 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7964 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7965 let htlcs_to_fail = {
7966 let per_peer_state = self.per_peer_state.read().unwrap();
7967 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7969 debug_assert!(false);
7970 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7971 }).map(|mtx| mtx.lock().unwrap())?;
7972 let peer_state = &mut *peer_state_lock;
7973 match peer_state.channel_by_id.entry(msg.channel_id) {
7974 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7975 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7976 let logger = WithChannelContext::from(&self.logger, &chan.context);
7977 let funding_txo_opt = chan.context.get_funding_txo();
7978 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
7979 self.raa_monitor_updates_held(
7980 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
7981 *counterparty_node_id)
7983 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
7984 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
7985 if let Some(monitor_update) = monitor_update_opt {
7986 let funding_txo = funding_txo_opt
7987 .expect("Funding outpoint must have been set for RAA handling to succeed");
7988 handle_new_monitor_update!(self, funding_txo, monitor_update,
7989 peer_state_lock, peer_state, per_peer_state, chan);
7993 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7994 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
7997 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8000 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
8004 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
8005 let per_peer_state = self.per_peer_state.read().unwrap();
8006 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8008 debug_assert!(false);
8009 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8011 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8012 let peer_state = &mut *peer_state_lock;
8013 match peer_state.channel_by_id.entry(msg.channel_id) {
8014 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8015 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8016 let logger = WithChannelContext::from(&self.logger, &chan.context);
8017 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
8019 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8020 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
8023 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8028 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
8029 let per_peer_state = self.per_peer_state.read().unwrap();
8030 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8032 debug_assert!(false);
8033 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8035 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8036 let peer_state = &mut *peer_state_lock;
8037 match peer_state.channel_by_id.entry(msg.channel_id) {
8038 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8039 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8040 if !chan.context.is_usable() {
8041 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
8044 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8045 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
8046 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height,
8047 msg, &self.default_configuration
8048 ), chan_phase_entry),
8049 // Note that announcement_signatures fails if the channel cannot be announced,
8050 // so get_channel_update_for_broadcast will never fail by the time we get here.
8051 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
8054 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8055 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
8058 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8063 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
8064 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
8065 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
8066 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
8068 // It's not a local channel
8069 return Ok(NotifyOption::SkipPersistNoEvents)
8072 let per_peer_state = self.per_peer_state.read().unwrap();
8073 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
8074 if peer_state_mutex_opt.is_none() {
8075 return Ok(NotifyOption::SkipPersistNoEvents)
8077 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8078 let peer_state = &mut *peer_state_lock;
8079 match peer_state.channel_by_id.entry(chan_id) {
8080 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8081 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8082 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
8083 if chan.context.should_announce() {
8084 // If the announcement is about a channel of ours which is public, some
8085 // other peer may simply be forwarding all its gossip to us. Don't provide
8086 // a scary-looking error message and return Ok instead.
8087 return Ok(NotifyOption::SkipPersistNoEvents);
8089 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
8091 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
8092 let msg_from_node_one = msg.contents.flags & 1 == 0;
8093 if were_node_one == msg_from_node_one {
8094 return Ok(NotifyOption::SkipPersistNoEvents);
8096 let logger = WithChannelContext::from(&self.logger, &chan.context);
8097 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
8098 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
8099 // If nothing changed after applying their update, we don't need to bother
8102 return Ok(NotifyOption::SkipPersistNoEvents);
8106 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8107 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
8110 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
8112 Ok(NotifyOption::DoPersist)
8115 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
8116 let need_lnd_workaround = {
8117 let per_peer_state = self.per_peer_state.read().unwrap();
8119 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8121 debug_assert!(false);
8122 MsgHandleErrInternal::send_err_msg_no_close(
8123 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
8127 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
8128 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8129 let peer_state = &mut *peer_state_lock;
8130 match peer_state.channel_by_id.entry(msg.channel_id) {
8131 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8132 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8133 // Currently, we expect all holding cell update_adds to be dropped on peer
8134 // disconnect, so Channel's reestablish will never hand us any holding cell
8135 // freed HTLCs to fail backwards. If in the future we no longer drop pending
8136 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
8137 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
8138 msg, &&logger, &self.node_signer, self.chain_hash,
8139 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
8140 let mut channel_update = None;
8141 if let Some(msg) = responses.shutdown_msg {
8142 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8143 node_id: counterparty_node_id.clone(),
8146 } else if chan.context.is_usable() {
8147 // If the channel is in a usable state (ie the channel is not being shut
8148 // down), send a unicast channel_update to our counterparty to make sure
8149 // they have the latest channel parameters.
8150 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
8151 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
8152 node_id: chan.context.get_counterparty_node_id(),
8157 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
8158 let (htlc_forwards, decode_update_add_htlcs) = self.handle_channel_resumption(
8159 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
8160 Vec::new(), Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
8161 debug_assert!(htlc_forwards.is_none());
8162 debug_assert!(decode_update_add_htlcs.is_none());
8163 if let Some(upd) = channel_update {
8164 peer_state.pending_msg_events.push(upd);
8168 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8169 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
8172 hash_map::Entry::Vacant(_) => {
8173 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
8175 // Unfortunately, lnd doesn't force close on errors
8176 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
8177 // One of the few ways to get an lnd counterparty to force close is by
8178 // replicating what they do when restoring static channel backups (SCBs). They
8179 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
8180 // invalid `your_last_per_commitment_secret`.
8182 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
8183 // can assume it's likely the channel closed from our point of view, but it
8184 // remains open on the counterparty's side. By sending this bogus
8185 // `ChannelReestablish` message now as a response to theirs, we trigger them to
8186 // force close broadcasting their latest state. If the closing transaction from
8187 // our point of view remains unconfirmed, it'll enter a race with the
8188 // counterparty's to-be-broadcast latest commitment transaction.
8189 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
8190 node_id: *counterparty_node_id,
8191 msg: msgs::ChannelReestablish {
8192 channel_id: msg.channel_id,
8193 next_local_commitment_number: 0,
8194 next_remote_commitment_number: 0,
8195 your_last_per_commitment_secret: [1u8; 32],
8196 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
8197 next_funding_txid: None,
8200 return Err(MsgHandleErrInternal::send_err_msg_no_close(
8201 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
8202 counterparty_node_id), msg.channel_id)
8208 if let Some(channel_ready_msg) = need_lnd_workaround {
8209 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
8211 Ok(NotifyOption::SkipPersistHandleEvents)
8214 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
8215 fn process_pending_monitor_events(&self) -> bool {
8216 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
8218 let mut failed_channels = Vec::new();
8219 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
8220 let has_pending_monitor_events = !pending_monitor_events.is_empty();
8221 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
8222 for monitor_event in monitor_events.drain(..) {
8223 match monitor_event {
8224 MonitorEvent::HTLCEvent(htlc_update) => {
8225 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id));
8226 if let Some(preimage) = htlc_update.payment_preimage {
8227 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
8228 self.claim_funds_internal(htlc_update.source, preimage,
8229 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
8230 false, counterparty_node_id, funding_outpoint, channel_id, None);
8232 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
8233 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
8234 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8235 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
8238 MonitorEvent::HolderForceClosed(_) | MonitorEvent::HolderForceClosedWithInfo { .. } => {
8239 let counterparty_node_id_opt = match counterparty_node_id {
8240 Some(cp_id) => Some(cp_id),
8242 // TODO: Once we can rely on the counterparty_node_id from the
8243 // monitor event, this and the outpoint_to_peer map should be removed.
8244 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
8245 outpoint_to_peer.get(&funding_outpoint).cloned()
8248 if let Some(counterparty_node_id) = counterparty_node_id_opt {
8249 let per_peer_state = self.per_peer_state.read().unwrap();
8250 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8251 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8252 let peer_state = &mut *peer_state_lock;
8253 let pending_msg_events = &mut peer_state.pending_msg_events;
8254 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
8255 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
8256 let reason = if let MonitorEvent::HolderForceClosedWithInfo { reason, .. } = monitor_event {
8259 ClosureReason::HolderForceClosed
8261 failed_channels.push(chan.context.force_shutdown(false, reason.clone()));
8262 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8263 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8264 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8268 pending_msg_events.push(events::MessageSendEvent::HandleError {
8269 node_id: chan.context.get_counterparty_node_id(),
8270 action: msgs::ErrorAction::DisconnectPeer {
8271 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: reason.to_string() })
8279 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
8280 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
8286 for failure in failed_channels.drain(..) {
8287 self.finish_close_channel(failure);
8290 has_pending_monitor_events
8293 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
8294 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
8295 /// update events as a separate process method here.
8297 pub fn process_monitor_events(&self) {
8298 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8299 self.process_pending_monitor_events();
8302 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
8303 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
8304 /// update was applied.
8305 fn check_free_holding_cells(&self) -> bool {
8306 let mut has_monitor_update = false;
8307 let mut failed_htlcs = Vec::new();
8309 // Walk our list of channels and find any that need to update. Note that when we do find an
8310 // update, if it includes actions that must be taken afterwards, we have to drop the
8311 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
8312 // manage to go through all our peers without finding a single channel to update.
8314 let per_peer_state = self.per_peer_state.read().unwrap();
8315 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8317 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8318 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
8319 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
8320 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
8322 let counterparty_node_id = chan.context.get_counterparty_node_id();
8323 let funding_txo = chan.context.get_funding_txo();
8324 let (monitor_opt, holding_cell_failed_htlcs) =
8325 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
8326 if !holding_cell_failed_htlcs.is_empty() {
8327 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
8329 if let Some(monitor_update) = monitor_opt {
8330 has_monitor_update = true;
8332 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
8333 peer_state_lock, peer_state, per_peer_state, chan);
8334 continue 'peer_loop;
8343 let has_update = has_monitor_update || !failed_htlcs.is_empty();
8344 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
8345 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
8351 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
8352 /// is (temporarily) unavailable, and the operation should be retried later.
8354 /// This method allows for that retry - either checking for any signer-pending messages to be
8355 /// attempted in every channel, or in the specifically provided channel.
8357 /// [`ChannelSigner`]: crate::sign::ChannelSigner
8358 #[cfg(async_signing)]
8359 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
8360 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8362 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
8363 let node_id = phase.context().get_counterparty_node_id();
8365 ChannelPhase::Funded(chan) => {
8366 let msgs = chan.signer_maybe_unblocked(&self.logger);
8367 if let Some(updates) = msgs.commitment_update {
8368 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
8373 if let Some(msg) = msgs.funding_signed {
8374 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
8379 if let Some(msg) = msgs.channel_ready {
8380 send_channel_ready!(self, pending_msg_events, chan, msg);
8383 ChannelPhase::UnfundedOutboundV1(chan) => {
8384 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
8385 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
8391 ChannelPhase::UnfundedInboundV1(_) => {},
8395 let per_peer_state = self.per_peer_state.read().unwrap();
8396 if let Some((counterparty_node_id, channel_id)) = channel_opt {
8397 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8398 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8399 let peer_state = &mut *peer_state_lock;
8400 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
8401 unblock_chan(chan, &mut peer_state.pending_msg_events);
8405 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8406 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8407 let peer_state = &mut *peer_state_lock;
8408 for (_, chan) in peer_state.channel_by_id.iter_mut() {
8409 unblock_chan(chan, &mut peer_state.pending_msg_events);
8415 /// Check whether any channels have finished removing all pending updates after a shutdown
8416 /// exchange and can now send a closing_signed.
8417 /// Returns whether any closing_signed messages were generated.
8418 fn maybe_generate_initial_closing_signed(&self) -> bool {
8419 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
8420 let mut has_update = false;
8421 let mut shutdown_results = Vec::new();
8423 let per_peer_state = self.per_peer_state.read().unwrap();
8425 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8426 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8427 let peer_state = &mut *peer_state_lock;
8428 let pending_msg_events = &mut peer_state.pending_msg_events;
8429 peer_state.channel_by_id.retain(|channel_id, phase| {
8431 ChannelPhase::Funded(chan) => {
8432 let logger = WithChannelContext::from(&self.logger, &chan.context);
8433 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
8434 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
8435 if let Some(msg) = msg_opt {
8437 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
8438 node_id: chan.context.get_counterparty_node_id(), msg,
8441 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
8442 if let Some(shutdown_result) = shutdown_result_opt {
8443 shutdown_results.push(shutdown_result);
8445 if let Some(tx) = tx_opt {
8446 // We're done with this channel. We got a closing_signed and sent back
8447 // a closing_signed with a closing transaction to broadcast.
8448 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8449 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8450 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8455 log_info!(logger, "Broadcasting {}", log_tx!(tx));
8456 self.tx_broadcaster.broadcast_transactions(&[&tx]);
8457 update_maps_on_chan_removal!(self, &chan.context);
8463 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
8464 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
8469 _ => true, // Retain unfunded channels if present.
8475 for (counterparty_node_id, err) in handle_errors.drain(..) {
8476 let _ = handle_error!(self, err, counterparty_node_id);
8479 for shutdown_result in shutdown_results.drain(..) {
8480 self.finish_close_channel(shutdown_result);
8486 /// Handle a list of channel failures during a block_connected or block_disconnected call,
8487 /// pushing the channel monitor update (if any) to the background events queue and removing the
8489 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
8490 for mut failure in failed_channels.drain(..) {
8491 // Either a commitment transactions has been confirmed on-chain or
8492 // Channel::block_disconnected detected that the funding transaction has been
8493 // reorganized out of the main chain.
8494 // We cannot broadcast our latest local state via monitor update (as
8495 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
8496 // so we track the update internally and handle it when the user next calls
8497 // timer_tick_occurred, guaranteeing we're running normally.
8498 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
8499 assert_eq!(update.updates.len(), 1);
8500 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
8501 assert!(should_broadcast);
8502 } else { unreachable!(); }
8503 self.pending_background_events.lock().unwrap().push(
8504 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8505 counterparty_node_id, funding_txo, update, channel_id,
8508 self.finish_close_channel(failure);
8513 macro_rules! create_offer_builder { ($self: ident, $builder: ty) => {
8514 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
8515 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
8516 /// not have an expiration unless otherwise set on the builder.
8520 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
8521 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8522 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8523 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8524 /// order to send the [`InvoiceRequest`].
8526 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
8530 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
8535 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
8537 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8539 /// [`Offer`]: crate::offers::offer::Offer
8540 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8541 pub fn create_offer_builder(
8542 &$self, description: String
8543 ) -> Result<$builder, Bolt12SemanticError> {
8544 let node_id = $self.get_our_node_id();
8545 let expanded_key = &$self.inbound_payment_key;
8546 let entropy = &*$self.entropy_source;
8547 let secp_ctx = &$self.secp_ctx;
8549 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8550 let builder = OfferBuilder::deriving_signing_pubkey(
8551 description, node_id, expanded_key, entropy, secp_ctx
8553 .chain_hash($self.chain_hash)
8560 macro_rules! create_refund_builder { ($self: ident, $builder: ty) => {
8561 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
8562 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
8566 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
8567 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
8569 /// The builder will have the provided expiration set. Any changes to the expiration on the
8570 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
8571 /// block time minus two hours is used for the current time when determining if the refund has
8574 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
8575 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
8576 /// with an [`Event::InvoiceRequestFailed`].
8578 /// If `max_total_routing_fee_msat` is not specified, The default from
8579 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8583 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
8584 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8585 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8586 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8587 /// order to send the [`Bolt12Invoice`].
8589 /// Also, uses a derived payer id in the refund for payer privacy.
8593 /// Requires a direct connection to an introduction node in the responding
8594 /// [`Bolt12Invoice::payment_paths`].
8599 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8600 /// - `amount_msats` is invalid, or
8601 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
8603 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8605 /// [`Refund`]: crate::offers::refund::Refund
8606 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8607 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8608 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8609 pub fn create_refund_builder(
8610 &$self, description: String, amount_msats: u64, absolute_expiry: Duration,
8611 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
8612 ) -> Result<$builder, Bolt12SemanticError> {
8613 let node_id = $self.get_our_node_id();
8614 let expanded_key = &$self.inbound_payment_key;
8615 let entropy = &*$self.entropy_source;
8616 let secp_ctx = &$self.secp_ctx;
8618 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8619 let builder = RefundBuilder::deriving_payer_id(
8620 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
8622 .chain_hash($self.chain_hash)
8623 .absolute_expiry(absolute_expiry)
8626 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop($self);
8628 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
8629 $self.pending_outbound_payments
8630 .add_new_awaiting_invoice(
8631 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
8633 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8639 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8641 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8642 T::Target: BroadcasterInterface,
8643 ES::Target: EntropySource,
8644 NS::Target: NodeSigner,
8645 SP::Target: SignerProvider,
8646 F::Target: FeeEstimator,
8650 #[cfg(not(c_bindings))]
8651 create_offer_builder!(self, OfferBuilder<DerivedMetadata, secp256k1::All>);
8652 #[cfg(not(c_bindings))]
8653 create_refund_builder!(self, RefundBuilder<secp256k1::All>);
8656 create_offer_builder!(self, OfferWithDerivedMetadataBuilder);
8658 create_refund_builder!(self, RefundMaybeWithDerivedMetadataBuilder);
8660 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
8661 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
8662 /// [`Bolt12Invoice`] once it is received.
8664 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
8665 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
8666 /// The optional parameters are used in the builder, if `Some`:
8667 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
8668 /// [`Offer::expects_quantity`] is `true`.
8669 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
8670 /// - `payer_note` for [`InvoiceRequest::payer_note`].
8672 /// If `max_total_routing_fee_msat` is not specified, The default from
8673 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8677 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
8678 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
8681 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
8682 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
8683 /// payment will fail with an [`Event::InvoiceRequestFailed`].
8687 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
8688 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
8689 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
8690 /// in order to send the [`Bolt12Invoice`].
8694 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
8695 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
8696 /// [`Bolt12Invoice::payment_paths`].
8701 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8702 /// - the provided parameters are invalid for the offer,
8703 /// - the offer is for an unsupported chain, or
8704 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
8707 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8708 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
8709 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
8710 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
8711 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8712 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8713 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8714 pub fn pay_for_offer(
8715 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
8716 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
8717 max_total_routing_fee_msat: Option<u64>
8718 ) -> Result<(), Bolt12SemanticError> {
8719 let expanded_key = &self.inbound_payment_key;
8720 let entropy = &*self.entropy_source;
8721 let secp_ctx = &self.secp_ctx;
8723 let builder: InvoiceRequestBuilder<DerivedPayerId, secp256k1::All> = offer
8724 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
8726 let builder = builder.chain_hash(self.chain_hash)?;
8728 let builder = match quantity {
8730 Some(quantity) => builder.quantity(quantity)?,
8732 let builder = match amount_msats {
8734 Some(amount_msats) => builder.amount_msats(amount_msats)?,
8736 let builder = match payer_note {
8738 Some(payer_note) => builder.payer_note(payer_note),
8740 let invoice_request = builder.build_and_sign()?;
8741 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8743 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8745 let expiration = StaleExpiration::TimerTicks(1);
8746 self.pending_outbound_payments
8747 .add_new_awaiting_invoice(
8748 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
8750 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8752 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8753 if offer.paths().is_empty() {
8754 let message = new_pending_onion_message(
8755 OffersMessage::InvoiceRequest(invoice_request),
8756 Destination::Node(offer.signing_pubkey()),
8759 pending_offers_messages.push(message);
8761 // Send as many invoice requests as there are paths in the offer (with an upper bound).
8762 // Using only one path could result in a failure if the path no longer exists. But only
8763 // one invoice for a given payment id will be paid, even if more than one is received.
8764 const REQUEST_LIMIT: usize = 10;
8765 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
8766 let message = new_pending_onion_message(
8767 OffersMessage::InvoiceRequest(invoice_request.clone()),
8768 Destination::BlindedPath(path.clone()),
8769 Some(reply_path.clone()),
8771 pending_offers_messages.push(message);
8778 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
8781 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
8782 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
8783 /// [`PaymentPreimage`]. It is returned purely for informational purposes.
8787 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
8788 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
8789 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
8790 /// received and no retries will be made.
8795 /// - the refund is for an unsupported chain, or
8796 /// - the parameterized [`Router`] is unable to create a blinded payment path or reply path for
8799 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8800 pub fn request_refund_payment(
8801 &self, refund: &Refund
8802 ) -> Result<Bolt12Invoice, Bolt12SemanticError> {
8803 let expanded_key = &self.inbound_payment_key;
8804 let entropy = &*self.entropy_source;
8805 let secp_ctx = &self.secp_ctx;
8807 let amount_msats = refund.amount_msats();
8808 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
8810 if refund.chain() != self.chain_hash {
8811 return Err(Bolt12SemanticError::UnsupportedChain);
8814 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8816 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
8817 Ok((payment_hash, payment_secret)) => {
8818 let payment_paths = self.create_blinded_payment_paths(amount_msats, payment_secret)
8819 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8821 #[cfg(feature = "std")]
8822 let builder = refund.respond_using_derived_keys(
8823 payment_paths, payment_hash, expanded_key, entropy
8825 #[cfg(not(feature = "std"))]
8826 let created_at = Duration::from_secs(
8827 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
8829 #[cfg(not(feature = "std"))]
8830 let builder = refund.respond_using_derived_keys_no_std(
8831 payment_paths, payment_hash, created_at, expanded_key, entropy
8833 let builder: InvoiceBuilder<DerivedSigningPubkey> = builder.into();
8834 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
8835 let reply_path = self.create_blinded_path()
8836 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8838 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8839 if refund.paths().is_empty() {
8840 let message = new_pending_onion_message(
8841 OffersMessage::Invoice(invoice.clone()),
8842 Destination::Node(refund.payer_id()),
8845 pending_offers_messages.push(message);
8847 for path in refund.paths() {
8848 let message = new_pending_onion_message(
8849 OffersMessage::Invoice(invoice.clone()),
8850 Destination::BlindedPath(path.clone()),
8851 Some(reply_path.clone()),
8853 pending_offers_messages.push(message);
8859 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
8863 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
8866 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
8867 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
8869 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
8870 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
8871 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
8872 /// passed directly to [`claim_funds`].
8874 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
8876 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8877 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8881 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8882 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8884 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8886 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8887 /// on versions of LDK prior to 0.0.114.
8889 /// [`claim_funds`]: Self::claim_funds
8890 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8891 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
8892 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
8893 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
8894 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
8895 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
8896 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
8897 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
8898 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8899 min_final_cltv_expiry_delta)
8902 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
8903 /// stored external to LDK.
8905 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
8906 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
8907 /// the `min_value_msat` provided here, if one is provided.
8909 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
8910 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
8913 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
8914 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
8915 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
8916 /// sender "proof-of-payment" unless they have paid the required amount.
8918 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8919 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8920 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8921 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8922 /// invoices when no timeout is set.
8924 /// Note that we use block header time to time-out pending inbound payments (with some margin
8925 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8926 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8927 /// If you need exact expiry semantics, you should enforce them upon receipt of
8928 /// [`PaymentClaimable`].
8930 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8931 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8933 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8934 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8938 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8939 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8941 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8943 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8944 /// on versions of LDK prior to 0.0.114.
8946 /// [`create_inbound_payment`]: Self::create_inbound_payment
8947 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8948 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8949 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8950 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8951 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8952 min_final_cltv_expiry)
8955 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8956 /// previously returned from [`create_inbound_payment`].
8958 /// [`create_inbound_payment`]: Self::create_inbound_payment
8959 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8960 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8963 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8965 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8966 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8967 let recipient = self.get_our_node_id();
8968 let secp_ctx = &self.secp_ctx;
8970 let peers = self.per_peer_state.read().unwrap()
8972 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
8973 .map(|(node_id, _)| *node_id)
8974 .collect::<Vec<_>>();
8977 .create_blinded_paths(recipient, peers, secp_ctx)
8978 .and_then(|paths| paths.into_iter().next().ok_or(()))
8981 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
8982 /// [`Router::create_blinded_payment_paths`].
8983 fn create_blinded_payment_paths(
8984 &self, amount_msats: u64, payment_secret: PaymentSecret
8985 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
8986 let secp_ctx = &self.secp_ctx;
8988 let first_hops = self.list_usable_channels();
8989 let payee_node_id = self.get_our_node_id();
8990 let max_cltv_expiry = self.best_block.read().unwrap().height + CLTV_FAR_FAR_AWAY
8991 + LATENCY_GRACE_PERIOD_BLOCKS;
8992 let payee_tlvs = ReceiveTlvs {
8994 payment_constraints: PaymentConstraints {
8996 htlc_minimum_msat: 1,
8999 self.router.create_blinded_payment_paths(
9000 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
9004 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
9005 /// are used when constructing the phantom invoice's route hints.
9007 /// [phantom node payments]: crate::sign::PhantomKeysManager
9008 pub fn get_phantom_scid(&self) -> u64 {
9009 let best_block_height = self.best_block.read().unwrap().height;
9010 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9012 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9013 // Ensure the generated scid doesn't conflict with a real channel.
9014 match short_to_chan_info.get(&scid_candidate) {
9015 Some(_) => continue,
9016 None => return scid_candidate
9021 /// Gets route hints for use in receiving [phantom node payments].
9023 /// [phantom node payments]: crate::sign::PhantomKeysManager
9024 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
9026 channels: self.list_usable_channels(),
9027 phantom_scid: self.get_phantom_scid(),
9028 real_node_pubkey: self.get_our_node_id(),
9032 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
9033 /// used when constructing the route hints for HTLCs intended to be intercepted. See
9034 /// [`ChannelManager::forward_intercepted_htlc`].
9036 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
9037 /// times to get a unique scid.
9038 pub fn get_intercept_scid(&self) -> u64 {
9039 let best_block_height = self.best_block.read().unwrap().height;
9040 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9042 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9043 // Ensure the generated scid doesn't conflict with a real channel.
9044 if short_to_chan_info.contains_key(&scid_candidate) { continue }
9045 return scid_candidate
9049 /// Gets inflight HTLC information by processing pending outbound payments that are in
9050 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
9051 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
9052 let mut inflight_htlcs = InFlightHtlcs::new();
9054 let per_peer_state = self.per_peer_state.read().unwrap();
9055 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9056 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9057 let peer_state = &mut *peer_state_lock;
9058 for chan in peer_state.channel_by_id.values().filter_map(
9059 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9061 for (htlc_source, _) in chan.inflight_htlc_sources() {
9062 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
9063 inflight_htlcs.process_path(path, self.get_our_node_id());
9072 #[cfg(any(test, feature = "_test_utils"))]
9073 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
9074 let events = core::cell::RefCell::new(Vec::new());
9075 let event_handler = |event: events::Event| events.borrow_mut().push(event);
9076 self.process_pending_events(&event_handler);
9080 #[cfg(feature = "_test_utils")]
9081 pub fn push_pending_event(&self, event: events::Event) {
9082 let mut events = self.pending_events.lock().unwrap();
9083 events.push_back((event, None));
9087 pub fn pop_pending_event(&self) -> Option<events::Event> {
9088 let mut events = self.pending_events.lock().unwrap();
9089 events.pop_front().map(|(e, _)| e)
9093 pub fn has_pending_payments(&self) -> bool {
9094 self.pending_outbound_payments.has_pending_payments()
9098 pub fn clear_pending_payments(&self) {
9099 self.pending_outbound_payments.clear_pending_payments()
9102 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
9103 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
9104 /// operation. It will double-check that nothing *else* is also blocking the same channel from
9105 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
9106 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
9107 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
9108 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
9110 let logger = WithContext::from(
9111 &self.logger, Some(counterparty_node_id), Some(channel_id),
9114 let per_peer_state = self.per_peer_state.read().unwrap();
9115 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
9116 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
9117 let peer_state = &mut *peer_state_lck;
9118 if let Some(blocker) = completed_blocker.take() {
9119 // Only do this on the first iteration of the loop.
9120 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
9121 .get_mut(&channel_id)
9123 blockers.retain(|iter| iter != &blocker);
9127 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
9128 channel_funding_outpoint, channel_id, counterparty_node_id) {
9129 // Check that, while holding the peer lock, we don't have anything else
9130 // blocking monitor updates for this channel. If we do, release the monitor
9131 // update(s) when those blockers complete.
9132 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
9137 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
9139 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
9140 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
9141 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
9142 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
9144 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
9145 peer_state_lck, peer_state, per_peer_state, chan);
9146 if further_update_exists {
9147 // If there are more `ChannelMonitorUpdate`s to process, restart at the
9152 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
9159 "Got a release post-RAA monitor update for peer {} but the channel is gone",
9160 log_pubkey!(counterparty_node_id));
9166 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
9167 for action in actions {
9169 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9170 channel_funding_outpoint, channel_id, counterparty_node_id
9172 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
9178 /// Processes any events asynchronously in the order they were generated since the last call
9179 /// using the given event handler.
9181 /// See the trait-level documentation of [`EventsProvider`] for requirements.
9182 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
9186 process_events_body!(self, ev, { handler(ev).await });
9190 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9192 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9193 T::Target: BroadcasterInterface,
9194 ES::Target: EntropySource,
9195 NS::Target: NodeSigner,
9196 SP::Target: SignerProvider,
9197 F::Target: FeeEstimator,
9201 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
9202 /// The returned array will contain `MessageSendEvent`s for different peers if
9203 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
9204 /// is always placed next to each other.
9206 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
9207 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
9208 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
9209 /// will randomly be placed first or last in the returned array.
9211 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
9212 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be placed among
9213 /// the `MessageSendEvent`s to the specific peer they were generated under.
9214 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
9215 let events = RefCell::new(Vec::new());
9216 PersistenceNotifierGuard::optionally_notify(self, || {
9217 let mut result = NotifyOption::SkipPersistNoEvents;
9219 // TODO: This behavior should be documented. It's unintuitive that we query
9220 // ChannelMonitors when clearing other events.
9221 if self.process_pending_monitor_events() {
9222 result = NotifyOption::DoPersist;
9225 if self.check_free_holding_cells() {
9226 result = NotifyOption::DoPersist;
9228 if self.maybe_generate_initial_closing_signed() {
9229 result = NotifyOption::DoPersist;
9232 let mut is_any_peer_connected = false;
9233 let mut pending_events = Vec::new();
9234 let per_peer_state = self.per_peer_state.read().unwrap();
9235 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9236 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9237 let peer_state = &mut *peer_state_lock;
9238 if peer_state.pending_msg_events.len() > 0 {
9239 pending_events.append(&mut peer_state.pending_msg_events);
9241 if peer_state.is_connected {
9242 is_any_peer_connected = true
9246 // Ensure that we are connected to some peers before getting broadcast messages.
9247 if is_any_peer_connected {
9248 let mut broadcast_msgs = self.pending_broadcast_messages.lock().unwrap();
9249 pending_events.append(&mut broadcast_msgs);
9252 if !pending_events.is_empty() {
9253 events.replace(pending_events);
9262 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9264 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9265 T::Target: BroadcasterInterface,
9266 ES::Target: EntropySource,
9267 NS::Target: NodeSigner,
9268 SP::Target: SignerProvider,
9269 F::Target: FeeEstimator,
9273 /// Processes events that must be periodically handled.
9275 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
9276 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
9277 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
9279 process_events_body!(self, ev, handler.handle_event(ev));
9283 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
9285 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9286 T::Target: BroadcasterInterface,
9287 ES::Target: EntropySource,
9288 NS::Target: NodeSigner,
9289 SP::Target: SignerProvider,
9290 F::Target: FeeEstimator,
9294 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
9296 let best_block = self.best_block.read().unwrap();
9297 assert_eq!(best_block.block_hash, header.prev_blockhash,
9298 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
9299 assert_eq!(best_block.height, height - 1,
9300 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
9303 self.transactions_confirmed(header, txdata, height);
9304 self.best_block_updated(header, height);
9307 fn block_disconnected(&self, header: &Header, height: u32) {
9308 let _persistence_guard =
9309 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9310 self, || -> NotifyOption { NotifyOption::DoPersist });
9311 let new_height = height - 1;
9313 let mut best_block = self.best_block.write().unwrap();
9314 assert_eq!(best_block.block_hash, header.block_hash(),
9315 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
9316 assert_eq!(best_block.height, height,
9317 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
9318 *best_block = BestBlock::new(header.prev_blockhash, new_height)
9321 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9325 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
9327 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9328 T::Target: BroadcasterInterface,
9329 ES::Target: EntropySource,
9330 NS::Target: NodeSigner,
9331 SP::Target: SignerProvider,
9332 F::Target: FeeEstimator,
9336 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
9337 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9338 // during initialization prior to the chain_monitor being fully configured in some cases.
9339 // See the docs for `ChannelManagerReadArgs` for more.
9341 let block_hash = header.block_hash();
9342 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
9344 let _persistence_guard =
9345 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9346 self, || -> NotifyOption { NotifyOption::DoPersist });
9347 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
9348 .map(|(a, b)| (a, Vec::new(), b)));
9350 let last_best_block_height = self.best_block.read().unwrap().height;
9351 if height < last_best_block_height {
9352 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
9353 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9357 fn best_block_updated(&self, header: &Header, height: u32) {
9358 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9359 // during initialization prior to the chain_monitor being fully configured in some cases.
9360 // See the docs for `ChannelManagerReadArgs` for more.
9362 let block_hash = header.block_hash();
9363 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
9365 let _persistence_guard =
9366 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9367 self, || -> NotifyOption { NotifyOption::DoPersist });
9368 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
9370 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9372 macro_rules! max_time {
9373 ($timestamp: expr) => {
9375 // Update $timestamp to be the max of its current value and the block
9376 // timestamp. This should keep us close to the current time without relying on
9377 // having an explicit local time source.
9378 // Just in case we end up in a race, we loop until we either successfully
9379 // update $timestamp or decide we don't need to.
9380 let old_serial = $timestamp.load(Ordering::Acquire);
9381 if old_serial >= header.time as usize { break; }
9382 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
9388 max_time!(self.highest_seen_timestamp);
9389 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
9390 payment_secrets.retain(|_, inbound_payment| {
9391 inbound_payment.expiry_time > header.time as u64
9395 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
9396 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
9397 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
9398 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9399 let peer_state = &mut *peer_state_lock;
9400 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
9401 let txid_opt = chan.context.get_funding_txo();
9402 let height_opt = chan.context.get_funding_tx_confirmation_height();
9403 let hash_opt = chan.context.get_funding_tx_confirmed_in();
9404 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
9405 res.push((funding_txo.txid, conf_height, Some(block_hash)));
9412 fn transaction_unconfirmed(&self, txid: &Txid) {
9413 let _persistence_guard =
9414 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9415 self, || -> NotifyOption { NotifyOption::DoPersist });
9416 self.do_chain_event(None, |channel| {
9417 if let Some(funding_txo) = channel.context.get_funding_txo() {
9418 if funding_txo.txid == *txid {
9419 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
9420 } else { Ok((None, Vec::new(), None)) }
9421 } else { Ok((None, Vec::new(), None)) }
9426 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
9428 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9429 T::Target: BroadcasterInterface,
9430 ES::Target: EntropySource,
9431 NS::Target: NodeSigner,
9432 SP::Target: SignerProvider,
9433 F::Target: FeeEstimator,
9437 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
9438 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
9440 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
9441 (&self, height_opt: Option<u32>, f: FN) {
9442 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9443 // during initialization prior to the chain_monitor being fully configured in some cases.
9444 // See the docs for `ChannelManagerReadArgs` for more.
9446 let mut failed_channels = Vec::new();
9447 let mut timed_out_htlcs = Vec::new();
9449 let per_peer_state = self.per_peer_state.read().unwrap();
9450 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9451 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9452 let peer_state = &mut *peer_state_lock;
9453 let pending_msg_events = &mut peer_state.pending_msg_events;
9455 peer_state.channel_by_id.retain(|_, phase| {
9457 // Retain unfunded channels.
9458 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
9459 // TODO(dual_funding): Combine this match arm with above.
9460 #[cfg(dual_funding)]
9461 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
9462 ChannelPhase::Funded(channel) => {
9463 let res = f(channel);
9464 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
9465 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
9466 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
9467 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
9468 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
9470 let logger = WithChannelContext::from(&self.logger, &channel.context);
9471 if let Some(channel_ready) = channel_ready_opt {
9472 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
9473 if channel.context.is_usable() {
9474 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
9475 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
9476 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
9477 node_id: channel.context.get_counterparty_node_id(),
9482 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
9487 let mut pending_events = self.pending_events.lock().unwrap();
9488 emit_channel_ready_event!(pending_events, channel);
9491 if let Some(announcement_sigs) = announcement_sigs {
9492 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
9493 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
9494 node_id: channel.context.get_counterparty_node_id(),
9495 msg: announcement_sigs,
9497 if let Some(height) = height_opt {
9498 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
9499 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
9501 // Note that announcement_signatures fails if the channel cannot be announced,
9502 // so get_channel_update_for_broadcast will never fail by the time we get here.
9503 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
9508 if channel.is_our_channel_ready() {
9509 if let Some(real_scid) = channel.context.get_short_channel_id() {
9510 // If we sent a 0conf channel_ready, and now have an SCID, we add it
9511 // to the short_to_chan_info map here. Note that we check whether we
9512 // can relay using the real SCID at relay-time (i.e.
9513 // enforce option_scid_alias then), and if the funding tx is ever
9514 // un-confirmed we force-close the channel, ensuring short_to_chan_info
9515 // is always consistent.
9516 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
9517 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9518 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
9519 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
9520 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
9523 } else if let Err(reason) = res {
9524 update_maps_on_chan_removal!(self, &channel.context);
9525 // It looks like our counterparty went on-chain or funding transaction was
9526 // reorged out of the main chain. Close the channel.
9527 let reason_message = format!("{}", reason);
9528 failed_channels.push(channel.context.force_shutdown(true, reason));
9529 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
9530 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
9531 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
9535 pending_msg_events.push(events::MessageSendEvent::HandleError {
9536 node_id: channel.context.get_counterparty_node_id(),
9537 action: msgs::ErrorAction::DisconnectPeer {
9538 msg: Some(msgs::ErrorMessage {
9539 channel_id: channel.context.channel_id(),
9540 data: reason_message,
9553 if let Some(height) = height_opt {
9554 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
9555 payment.htlcs.retain(|htlc| {
9556 // If height is approaching the number of blocks we think it takes us to get
9557 // our commitment transaction confirmed before the HTLC expires, plus the
9558 // number of blocks we generally consider it to take to do a commitment update,
9559 // just give up on it and fail the HTLC.
9560 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
9561 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
9562 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
9564 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
9565 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
9566 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
9570 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
9573 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
9574 intercepted_htlcs.retain(|_, htlc| {
9575 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
9576 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
9577 short_channel_id: htlc.prev_short_channel_id,
9578 user_channel_id: Some(htlc.prev_user_channel_id),
9579 htlc_id: htlc.prev_htlc_id,
9580 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
9581 phantom_shared_secret: None,
9582 outpoint: htlc.prev_funding_outpoint,
9583 channel_id: htlc.prev_channel_id,
9584 blinded_failure: htlc.forward_info.routing.blinded_failure(),
9587 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
9588 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
9589 _ => unreachable!(),
9591 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
9592 HTLCFailReason::from_failure_code(0x2000 | 2),
9593 HTLCDestination::InvalidForward { requested_forward_scid }));
9594 let logger = WithContext::from(
9595 &self.logger, None, Some(htlc.prev_channel_id)
9597 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
9603 self.handle_init_event_channel_failures(failed_channels);
9605 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
9606 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
9610 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
9611 /// may have events that need processing.
9613 /// In order to check if this [`ChannelManager`] needs persisting, call
9614 /// [`Self::get_and_clear_needs_persistence`].
9616 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
9617 /// [`ChannelManager`] and should instead register actions to be taken later.
9618 pub fn get_event_or_persistence_needed_future(&self) -> Future {
9619 self.event_persist_notifier.get_future()
9622 /// Returns true if this [`ChannelManager`] needs to be persisted.
9624 /// See [`Self::get_event_or_persistence_needed_future`] for retrieving a [`Future`] that
9625 /// indicates this should be checked.
9626 pub fn get_and_clear_needs_persistence(&self) -> bool {
9627 self.needs_persist_flag.swap(false, Ordering::AcqRel)
9630 #[cfg(any(test, feature = "_test_utils"))]
9631 pub fn get_event_or_persist_condvar_value(&self) -> bool {
9632 self.event_persist_notifier.notify_pending()
9635 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
9636 /// [`chain::Confirm`] interfaces.
9637 pub fn current_best_block(&self) -> BestBlock {
9638 self.best_block.read().unwrap().clone()
9641 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9642 /// [`ChannelManager`].
9643 pub fn node_features(&self) -> NodeFeatures {
9644 provided_node_features(&self.default_configuration)
9647 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9648 /// [`ChannelManager`].
9650 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9651 /// or not. Thus, this method is not public.
9652 #[cfg(any(feature = "_test_utils", test))]
9653 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
9654 provided_bolt11_invoice_features(&self.default_configuration)
9657 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9658 /// [`ChannelManager`].
9659 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
9660 provided_bolt12_invoice_features(&self.default_configuration)
9663 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9664 /// [`ChannelManager`].
9665 pub fn channel_features(&self) -> ChannelFeatures {
9666 provided_channel_features(&self.default_configuration)
9669 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9670 /// [`ChannelManager`].
9671 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
9672 provided_channel_type_features(&self.default_configuration)
9675 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9676 /// [`ChannelManager`].
9677 pub fn init_features(&self) -> InitFeatures {
9678 provided_init_features(&self.default_configuration)
9682 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9683 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9685 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9686 T::Target: BroadcasterInterface,
9687 ES::Target: EntropySource,
9688 NS::Target: NodeSigner,
9689 SP::Target: SignerProvider,
9690 F::Target: FeeEstimator,
9694 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
9695 // Note that we never need to persist the updated ChannelManager for an inbound
9696 // open_channel message - pre-funded channels are never written so there should be no
9697 // change to the contents.
9698 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9699 let res = self.internal_open_channel(counterparty_node_id, msg);
9700 let persist = match &res {
9701 Err(e) if e.closes_channel() => {
9702 debug_assert!(false, "We shouldn't close a new channel");
9703 NotifyOption::DoPersist
9705 _ => NotifyOption::SkipPersistHandleEvents,
9707 let _ = handle_error!(self, res, *counterparty_node_id);
9712 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
9713 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9714 "Dual-funded channels not supported".to_owned(),
9715 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9718 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
9719 // Note that we never need to persist the updated ChannelManager for an inbound
9720 // accept_channel message - pre-funded channels are never written so there should be no
9721 // change to the contents.
9722 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9723 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
9724 NotifyOption::SkipPersistHandleEvents
9728 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
9729 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9730 "Dual-funded channels not supported".to_owned(),
9731 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9734 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
9735 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9736 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
9739 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
9740 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9741 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
9744 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
9745 // Note that we never need to persist the updated ChannelManager for an inbound
9746 // channel_ready message - while the channel's state will change, any channel_ready message
9747 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
9748 // will not force-close the channel on startup.
9749 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9750 let res = self.internal_channel_ready(counterparty_node_id, msg);
9751 let persist = match &res {
9752 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9753 _ => NotifyOption::SkipPersistHandleEvents,
9755 let _ = handle_error!(self, res, *counterparty_node_id);
9760 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
9761 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9762 "Quiescence not supported".to_owned(),
9763 msg.channel_id.clone())), *counterparty_node_id);
9766 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
9767 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9768 "Splicing not supported".to_owned(),
9769 msg.channel_id.clone())), *counterparty_node_id);
9772 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
9773 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9774 "Splicing not supported (splice_ack)".to_owned(),
9775 msg.channel_id.clone())), *counterparty_node_id);
9778 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
9779 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9780 "Splicing not supported (splice_locked)".to_owned(),
9781 msg.channel_id.clone())), *counterparty_node_id);
9784 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
9785 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9786 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
9789 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
9790 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9791 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
9794 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
9795 // Note that we never need to persist the updated ChannelManager for an inbound
9796 // update_add_htlc message - the message itself doesn't change our channel state only the
9797 // `commitment_signed` message afterwards will.
9798 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9799 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
9800 let persist = match &res {
9801 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9802 Err(_) => NotifyOption::SkipPersistHandleEvents,
9803 Ok(()) => NotifyOption::SkipPersistNoEvents,
9805 let _ = handle_error!(self, res, *counterparty_node_id);
9810 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
9811 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9812 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
9815 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
9816 // Note that we never need to persist the updated ChannelManager for an inbound
9817 // update_fail_htlc message - the message itself doesn't change our channel state only the
9818 // `commitment_signed` message afterwards will.
9819 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9820 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
9821 let persist = match &res {
9822 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9823 Err(_) => NotifyOption::SkipPersistHandleEvents,
9824 Ok(()) => NotifyOption::SkipPersistNoEvents,
9826 let _ = handle_error!(self, res, *counterparty_node_id);
9831 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
9832 // Note that we never need to persist the updated ChannelManager for an inbound
9833 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
9834 // only the `commitment_signed` message afterwards will.
9835 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9836 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
9837 let persist = match &res {
9838 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9839 Err(_) => NotifyOption::SkipPersistHandleEvents,
9840 Ok(()) => NotifyOption::SkipPersistNoEvents,
9842 let _ = handle_error!(self, res, *counterparty_node_id);
9847 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
9848 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9849 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
9852 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
9853 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9854 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
9857 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
9858 // Note that we never need to persist the updated ChannelManager for an inbound
9859 // update_fee message - the message itself doesn't change our channel state only the
9860 // `commitment_signed` message afterwards will.
9861 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9862 let res = self.internal_update_fee(counterparty_node_id, msg);
9863 let persist = match &res {
9864 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9865 Err(_) => NotifyOption::SkipPersistHandleEvents,
9866 Ok(()) => NotifyOption::SkipPersistNoEvents,
9868 let _ = handle_error!(self, res, *counterparty_node_id);
9873 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
9874 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9875 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
9878 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
9879 PersistenceNotifierGuard::optionally_notify(self, || {
9880 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
9883 NotifyOption::DoPersist
9888 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
9889 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9890 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
9891 let persist = match &res {
9892 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9893 Err(_) => NotifyOption::SkipPersistHandleEvents,
9894 Ok(persist) => *persist,
9896 let _ = handle_error!(self, res, *counterparty_node_id);
9901 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
9902 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
9903 self, || NotifyOption::SkipPersistHandleEvents);
9904 let mut failed_channels = Vec::new();
9905 let mut per_peer_state = self.per_peer_state.write().unwrap();
9908 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
9909 "Marking channels with {} disconnected and generating channel_updates.",
9910 log_pubkey!(counterparty_node_id)
9912 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9913 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9914 let peer_state = &mut *peer_state_lock;
9915 let pending_msg_events = &mut peer_state.pending_msg_events;
9916 peer_state.channel_by_id.retain(|_, phase| {
9917 let context = match phase {
9918 ChannelPhase::Funded(chan) => {
9919 let logger = WithChannelContext::from(&self.logger, &chan.context);
9920 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
9921 // We only retain funded channels that are not shutdown.
9926 // We retain UnfundedOutboundV1 channel for some time in case
9927 // peer unexpectedly disconnects, and intends to reconnect again.
9928 ChannelPhase::UnfundedOutboundV1(_) => {
9931 // Unfunded inbound channels will always be removed.
9932 ChannelPhase::UnfundedInboundV1(chan) => {
9935 #[cfg(dual_funding)]
9936 ChannelPhase::UnfundedOutboundV2(chan) => {
9939 #[cfg(dual_funding)]
9940 ChannelPhase::UnfundedInboundV2(chan) => {
9944 // Clean up for removal.
9945 update_maps_on_chan_removal!(self, &context);
9946 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9949 // Note that we don't bother generating any events for pre-accept channels -
9950 // they're not considered "channels" yet from the PoV of our events interface.
9951 peer_state.inbound_channel_request_by_id.clear();
9952 pending_msg_events.retain(|msg| {
9954 // V1 Channel Establishment
9955 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9956 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9957 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9958 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9959 // V2 Channel Establishment
9960 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9961 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9962 // Common Channel Establishment
9963 &events::MessageSendEvent::SendChannelReady { .. } => false,
9964 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9966 &events::MessageSendEvent::SendStfu { .. } => false,
9968 &events::MessageSendEvent::SendSplice { .. } => false,
9969 &events::MessageSendEvent::SendSpliceAck { .. } => false,
9970 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
9971 // Interactive Transaction Construction
9972 &events::MessageSendEvent::SendTxAddInput { .. } => false,
9973 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
9974 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
9975 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
9976 &events::MessageSendEvent::SendTxComplete { .. } => false,
9977 &events::MessageSendEvent::SendTxSignatures { .. } => false,
9978 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
9979 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
9980 &events::MessageSendEvent::SendTxAbort { .. } => false,
9981 // Channel Operations
9982 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
9983 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
9984 &events::MessageSendEvent::SendClosingSigned { .. } => false,
9985 &events::MessageSendEvent::SendShutdown { .. } => false,
9986 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
9987 &events::MessageSendEvent::HandleError { .. } => false,
9989 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
9990 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
9991 // [`ChannelManager::pending_broadcast_events`] holds the [`BroadcastChannelUpdate`]
9992 // This check here is to ensure exhaustivity.
9993 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => {
9994 debug_assert!(false, "This event shouldn't have been here");
9997 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
9998 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
9999 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
10000 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
10001 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
10002 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
10005 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
10006 peer_state.is_connected = false;
10007 peer_state.ok_to_remove(true)
10008 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
10011 per_peer_state.remove(counterparty_node_id);
10013 mem::drop(per_peer_state);
10015 for failure in failed_channels.drain(..) {
10016 self.finish_close_channel(failure);
10020 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
10021 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
10022 if !init_msg.features.supports_static_remote_key() {
10023 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
10027 let mut res = Ok(());
10029 PersistenceNotifierGuard::optionally_notify(self, || {
10030 // If we have too many peers connected which don't have funded channels, disconnect the
10031 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
10032 // unfunded channels taking up space in memory for disconnected peers, we still let new
10033 // peers connect, but we'll reject new channels from them.
10034 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
10035 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
10038 let mut peer_state_lock = self.per_peer_state.write().unwrap();
10039 match peer_state_lock.entry(counterparty_node_id.clone()) {
10040 hash_map::Entry::Vacant(e) => {
10041 if inbound_peer_limited {
10043 return NotifyOption::SkipPersistNoEvents;
10045 e.insert(Mutex::new(PeerState {
10046 channel_by_id: new_hash_map(),
10047 inbound_channel_request_by_id: new_hash_map(),
10048 latest_features: init_msg.features.clone(),
10049 pending_msg_events: Vec::new(),
10050 in_flight_monitor_updates: BTreeMap::new(),
10051 monitor_update_blocked_actions: BTreeMap::new(),
10052 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10053 is_connected: true,
10056 hash_map::Entry::Occupied(e) => {
10057 let mut peer_state = e.get().lock().unwrap();
10058 peer_state.latest_features = init_msg.features.clone();
10060 let best_block_height = self.best_block.read().unwrap().height;
10061 if inbound_peer_limited &&
10062 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
10063 peer_state.channel_by_id.len()
10066 return NotifyOption::SkipPersistNoEvents;
10069 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
10070 peer_state.is_connected = true;
10075 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
10077 let per_peer_state = self.per_peer_state.read().unwrap();
10078 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
10079 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10080 let peer_state = &mut *peer_state_lock;
10081 let pending_msg_events = &mut peer_state.pending_msg_events;
10083 for (_, phase) in peer_state.channel_by_id.iter_mut() {
10085 ChannelPhase::Funded(chan) => {
10086 let logger = WithChannelContext::from(&self.logger, &chan.context);
10087 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
10088 node_id: chan.context.get_counterparty_node_id(),
10089 msg: chan.get_channel_reestablish(&&logger),
10093 ChannelPhase::UnfundedOutboundV1(chan) => {
10094 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10095 node_id: chan.context.get_counterparty_node_id(),
10096 msg: chan.get_open_channel(self.chain_hash),
10100 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
10101 #[cfg(dual_funding)]
10102 ChannelPhase::UnfundedOutboundV2(chan) => {
10103 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10104 node_id: chan.context.get_counterparty_node_id(),
10105 msg: chan.get_open_channel_v2(self.chain_hash),
10109 ChannelPhase::UnfundedInboundV1(_) => {
10110 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10111 // they are not persisted and won't be recovered after a crash.
10112 // Therefore, they shouldn't exist at this point.
10113 debug_assert!(false);
10116 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
10117 #[cfg(dual_funding)]
10118 ChannelPhase::UnfundedInboundV2(channel) => {
10119 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10120 // they are not persisted and won't be recovered after a crash.
10121 // Therefore, they shouldn't exist at this point.
10122 debug_assert!(false);
10128 return NotifyOption::SkipPersistHandleEvents;
10129 //TODO: Also re-broadcast announcement_signatures
10134 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
10135 match &msg.data as &str {
10136 "cannot co-op close channel w/ active htlcs"|
10137 "link failed to shutdown" =>
10139 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
10140 // send one while HTLCs are still present. The issue is tracked at
10141 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
10142 // to fix it but none so far have managed to land upstream. The issue appears to be
10143 // very low priority for the LND team despite being marked "P1".
10144 // We're not going to bother handling this in a sensible way, instead simply
10145 // repeating the Shutdown message on repeat until morale improves.
10146 if !msg.channel_id.is_zero() {
10147 PersistenceNotifierGuard::optionally_notify(
10149 || -> NotifyOption {
10150 let per_peer_state = self.per_peer_state.read().unwrap();
10151 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10152 if peer_state_mutex_opt.is_none() { return NotifyOption::SkipPersistNoEvents; }
10153 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
10154 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
10155 if let Some(msg) = chan.get_outbound_shutdown() {
10156 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
10157 node_id: *counterparty_node_id,
10161 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
10162 node_id: *counterparty_node_id,
10163 action: msgs::ErrorAction::SendWarningMessage {
10164 msg: msgs::WarningMessage {
10165 channel_id: msg.channel_id,
10166 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
10168 log_level: Level::Trace,
10171 // This can happen in a fairly tight loop, so we absolutely cannot trigger
10172 // a `ChannelManager` write here.
10173 return NotifyOption::SkipPersistHandleEvents;
10175 NotifyOption::SkipPersistNoEvents
10184 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
10186 if msg.channel_id.is_zero() {
10187 let channel_ids: Vec<ChannelId> = {
10188 let per_peer_state = self.per_peer_state.read().unwrap();
10189 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10190 if peer_state_mutex_opt.is_none() { return; }
10191 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10192 let peer_state = &mut *peer_state_lock;
10193 // Note that we don't bother generating any events for pre-accept channels -
10194 // they're not considered "channels" yet from the PoV of our events interface.
10195 peer_state.inbound_channel_request_by_id.clear();
10196 peer_state.channel_by_id.keys().cloned().collect()
10198 for channel_id in channel_ids {
10199 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10200 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
10204 // First check if we can advance the channel type and try again.
10205 let per_peer_state = self.per_peer_state.read().unwrap();
10206 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10207 if peer_state_mutex_opt.is_none() { return; }
10208 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10209 let peer_state = &mut *peer_state_lock;
10210 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
10211 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
10212 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10213 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10214 node_id: *counterparty_node_id,
10220 #[cfg(dual_funding)]
10221 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
10222 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10223 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10224 node_id: *counterparty_node_id,
10230 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
10231 #[cfg(dual_funding)]
10232 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
10236 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10237 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
10241 fn provided_node_features(&self) -> NodeFeatures {
10242 provided_node_features(&self.default_configuration)
10245 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
10246 provided_init_features(&self.default_configuration)
10249 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
10250 Some(vec![self.chain_hash])
10253 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
10254 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10255 "Dual-funded channels not supported".to_owned(),
10256 msg.channel_id.clone())), *counterparty_node_id);
10259 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
10260 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10261 "Dual-funded channels not supported".to_owned(),
10262 msg.channel_id.clone())), *counterparty_node_id);
10265 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
10266 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10267 "Dual-funded channels not supported".to_owned(),
10268 msg.channel_id.clone())), *counterparty_node_id);
10271 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
10272 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10273 "Dual-funded channels not supported".to_owned(),
10274 msg.channel_id.clone())), *counterparty_node_id);
10277 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
10278 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10279 "Dual-funded channels not supported".to_owned(),
10280 msg.channel_id.clone())), *counterparty_node_id);
10283 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
10284 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10285 "Dual-funded channels not supported".to_owned(),
10286 msg.channel_id.clone())), *counterparty_node_id);
10289 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
10290 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10291 "Dual-funded channels not supported".to_owned(),
10292 msg.channel_id.clone())), *counterparty_node_id);
10295 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
10296 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10297 "Dual-funded channels not supported".to_owned(),
10298 msg.channel_id.clone())), *counterparty_node_id);
10301 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
10302 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10303 "Dual-funded channels not supported".to_owned(),
10304 msg.channel_id.clone())), *counterparty_node_id);
10308 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10309 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
10311 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10312 T::Target: BroadcasterInterface,
10313 ES::Target: EntropySource,
10314 NS::Target: NodeSigner,
10315 SP::Target: SignerProvider,
10316 F::Target: FeeEstimator,
10320 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
10321 let secp_ctx = &self.secp_ctx;
10322 let expanded_key = &self.inbound_payment_key;
10325 OffersMessage::InvoiceRequest(invoice_request) => {
10326 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
10329 Ok(amount_msats) => amount_msats,
10330 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
10332 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
10333 Ok(invoice_request) => invoice_request,
10335 let error = Bolt12SemanticError::InvalidMetadata;
10336 return Some(OffersMessage::InvoiceError(error.into()));
10340 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
10341 let (payment_hash, payment_secret) = match self.create_inbound_payment(
10342 Some(amount_msats), relative_expiry, None
10344 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
10346 let error = Bolt12SemanticError::InvalidAmount;
10347 return Some(OffersMessage::InvoiceError(error.into()));
10351 let payment_paths = match self.create_blinded_payment_paths(
10352 amount_msats, payment_secret
10354 Ok(payment_paths) => payment_paths,
10356 let error = Bolt12SemanticError::MissingPaths;
10357 return Some(OffersMessage::InvoiceError(error.into()));
10361 #[cfg(not(feature = "std"))]
10362 let created_at = Duration::from_secs(
10363 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
10366 let response = if invoice_request.keys.is_some() {
10367 #[cfg(feature = "std")]
10368 let builder = invoice_request.respond_using_derived_keys(
10369 payment_paths, payment_hash
10371 #[cfg(not(feature = "std"))]
10372 let builder = invoice_request.respond_using_derived_keys_no_std(
10373 payment_paths, payment_hash, created_at
10376 .map(InvoiceBuilder::<DerivedSigningPubkey>::from)
10377 .and_then(|builder| builder.allow_mpp().build_and_sign(secp_ctx))
10378 .map_err(InvoiceError::from)
10380 #[cfg(feature = "std")]
10381 let builder = invoice_request.respond_with(payment_paths, payment_hash);
10382 #[cfg(not(feature = "std"))]
10383 let builder = invoice_request.respond_with_no_std(
10384 payment_paths, payment_hash, created_at
10387 .map(InvoiceBuilder::<ExplicitSigningPubkey>::from)
10388 .and_then(|builder| builder.allow_mpp().build())
10389 .map_err(InvoiceError::from)
10390 .and_then(|invoice| {
10392 let mut invoice = invoice;
10394 .sign(|invoice: &UnsignedBolt12Invoice|
10395 self.node_signer.sign_bolt12_invoice(invoice)
10397 .map_err(InvoiceError::from)
10402 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
10403 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
10406 OffersMessage::Invoice(invoice) => {
10407 let response = invoice
10408 .verify(expanded_key, secp_ctx)
10409 .map_err(|()| InvoiceError::from_string("Unrecognized invoice".to_owned()))
10410 .and_then(|payment_id| {
10411 let features = self.bolt12_invoice_features();
10412 if invoice.invoice_features().requires_unknown_bits_from(&features) {
10413 Err(InvoiceError::from(Bolt12SemanticError::UnknownRequiredFeatures))
10415 self.send_payment_for_bolt12_invoice(&invoice, payment_id)
10417 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
10418 InvoiceError::from_string(format!("{:?}", e))
10425 Err(e) => Some(OffersMessage::InvoiceError(e)),
10428 OffersMessage::InvoiceError(invoice_error) => {
10429 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
10435 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
10436 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
10440 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10441 NodeIdLookUp for ChannelManager<M, T, ES, NS, SP, F, R, L>
10443 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10444 T::Target: BroadcasterInterface,
10445 ES::Target: EntropySource,
10446 NS::Target: NodeSigner,
10447 SP::Target: SignerProvider,
10448 F::Target: FeeEstimator,
10452 fn next_node_id(&self, short_channel_id: u64) -> Option<PublicKey> {
10453 self.short_to_chan_info.read().unwrap().get(&short_channel_id).map(|(pubkey, _)| *pubkey)
10457 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
10458 /// [`ChannelManager`].
10459 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
10460 let mut node_features = provided_init_features(config).to_context();
10461 node_features.set_keysend_optional();
10465 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
10466 /// [`ChannelManager`].
10468 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
10469 /// or not. Thus, this method is not public.
10470 #[cfg(any(feature = "_test_utils", test))]
10471 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
10472 provided_init_features(config).to_context()
10475 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
10476 /// [`ChannelManager`].
10477 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
10478 provided_init_features(config).to_context()
10481 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
10482 /// [`ChannelManager`].
10483 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
10484 provided_init_features(config).to_context()
10487 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
10488 /// [`ChannelManager`].
10489 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
10490 ChannelTypeFeatures::from_init(&provided_init_features(config))
10493 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
10494 /// [`ChannelManager`].
10495 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
10496 // Note that if new features are added here which other peers may (eventually) require, we
10497 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
10498 // [`ErroringMessageHandler`].
10499 let mut features = InitFeatures::empty();
10500 features.set_data_loss_protect_required();
10501 features.set_upfront_shutdown_script_optional();
10502 features.set_variable_length_onion_required();
10503 features.set_static_remote_key_required();
10504 features.set_payment_secret_required();
10505 features.set_basic_mpp_optional();
10506 features.set_wumbo_optional();
10507 features.set_shutdown_any_segwit_optional();
10508 features.set_channel_type_optional();
10509 features.set_scid_privacy_optional();
10510 features.set_zero_conf_optional();
10511 features.set_route_blinding_optional();
10512 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
10513 features.set_anchors_zero_fee_htlc_tx_optional();
10518 const SERIALIZATION_VERSION: u8 = 1;
10519 const MIN_SERIALIZATION_VERSION: u8 = 1;
10521 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
10522 (2, fee_base_msat, required),
10523 (4, fee_proportional_millionths, required),
10524 (6, cltv_expiry_delta, required),
10527 impl_writeable_tlv_based!(ChannelCounterparty, {
10528 (2, node_id, required),
10529 (4, features, required),
10530 (6, unspendable_punishment_reserve, required),
10531 (8, forwarding_info, option),
10532 (9, outbound_htlc_minimum_msat, option),
10533 (11, outbound_htlc_maximum_msat, option),
10536 impl Writeable for ChannelDetails {
10537 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10538 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10539 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10540 let user_channel_id_low = self.user_channel_id as u64;
10541 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
10542 write_tlv_fields!(writer, {
10543 (1, self.inbound_scid_alias, option),
10544 (2, self.channel_id, required),
10545 (3, self.channel_type, option),
10546 (4, self.counterparty, required),
10547 (5, self.outbound_scid_alias, option),
10548 (6, self.funding_txo, option),
10549 (7, self.config, option),
10550 (8, self.short_channel_id, option),
10551 (9, self.confirmations, option),
10552 (10, self.channel_value_satoshis, required),
10553 (12, self.unspendable_punishment_reserve, option),
10554 (14, user_channel_id_low, required),
10555 (16, self.balance_msat, required),
10556 (18, self.outbound_capacity_msat, required),
10557 (19, self.next_outbound_htlc_limit_msat, required),
10558 (20, self.inbound_capacity_msat, required),
10559 (21, self.next_outbound_htlc_minimum_msat, required),
10560 (22, self.confirmations_required, option),
10561 (24, self.force_close_spend_delay, option),
10562 (26, self.is_outbound, required),
10563 (28, self.is_channel_ready, required),
10564 (30, self.is_usable, required),
10565 (32, self.is_public, required),
10566 (33, self.inbound_htlc_minimum_msat, option),
10567 (35, self.inbound_htlc_maximum_msat, option),
10568 (37, user_channel_id_high_opt, option),
10569 (39, self.feerate_sat_per_1000_weight, option),
10570 (41, self.channel_shutdown_state, option),
10571 (43, self.pending_inbound_htlcs, optional_vec),
10572 (45, self.pending_outbound_htlcs, optional_vec),
10578 impl Readable for ChannelDetails {
10579 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10580 _init_and_read_len_prefixed_tlv_fields!(reader, {
10581 (1, inbound_scid_alias, option),
10582 (2, channel_id, required),
10583 (3, channel_type, option),
10584 (4, counterparty, required),
10585 (5, outbound_scid_alias, option),
10586 (6, funding_txo, option),
10587 (7, config, option),
10588 (8, short_channel_id, option),
10589 (9, confirmations, option),
10590 (10, channel_value_satoshis, required),
10591 (12, unspendable_punishment_reserve, option),
10592 (14, user_channel_id_low, required),
10593 (16, balance_msat, required),
10594 (18, outbound_capacity_msat, required),
10595 // Note that by the time we get past the required read above, outbound_capacity_msat will be
10596 // filled in, so we can safely unwrap it here.
10597 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
10598 (20, inbound_capacity_msat, required),
10599 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
10600 (22, confirmations_required, option),
10601 (24, force_close_spend_delay, option),
10602 (26, is_outbound, required),
10603 (28, is_channel_ready, required),
10604 (30, is_usable, required),
10605 (32, is_public, required),
10606 (33, inbound_htlc_minimum_msat, option),
10607 (35, inbound_htlc_maximum_msat, option),
10608 (37, user_channel_id_high_opt, option),
10609 (39, feerate_sat_per_1000_weight, option),
10610 (41, channel_shutdown_state, option),
10611 (43, pending_inbound_htlcs, optional_vec),
10612 (45, pending_outbound_htlcs, optional_vec),
10615 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10616 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10617 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
10618 let user_channel_id = user_channel_id_low as u128 +
10619 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
10622 inbound_scid_alias,
10623 channel_id: channel_id.0.unwrap(),
10625 counterparty: counterparty.0.unwrap(),
10626 outbound_scid_alias,
10630 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
10631 unspendable_punishment_reserve,
10633 balance_msat: balance_msat.0.unwrap(),
10634 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
10635 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
10636 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
10637 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
10638 confirmations_required,
10640 force_close_spend_delay,
10641 is_outbound: is_outbound.0.unwrap(),
10642 is_channel_ready: is_channel_ready.0.unwrap(),
10643 is_usable: is_usable.0.unwrap(),
10644 is_public: is_public.0.unwrap(),
10645 inbound_htlc_minimum_msat,
10646 inbound_htlc_maximum_msat,
10647 feerate_sat_per_1000_weight,
10648 channel_shutdown_state,
10649 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
10650 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
10655 impl_writeable_tlv_based!(PhantomRouteHints, {
10656 (2, channels, required_vec),
10657 (4, phantom_scid, required),
10658 (6, real_node_pubkey, required),
10661 impl_writeable_tlv_based!(BlindedForward, {
10662 (0, inbound_blinding_point, required),
10663 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
10666 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
10668 (0, onion_packet, required),
10669 (1, blinded, option),
10670 (2, short_channel_id, required),
10673 (0, payment_data, required),
10674 (1, phantom_shared_secret, option),
10675 (2, incoming_cltv_expiry, required),
10676 (3, payment_metadata, option),
10677 (5, custom_tlvs, optional_vec),
10678 (7, requires_blinded_error, (default_value, false)),
10680 (2, ReceiveKeysend) => {
10681 (0, payment_preimage, required),
10682 (1, requires_blinded_error, (default_value, false)),
10683 (2, incoming_cltv_expiry, required),
10684 (3, payment_metadata, option),
10685 (4, payment_data, option), // Added in 0.0.116
10686 (5, custom_tlvs, optional_vec),
10690 impl_writeable_tlv_based!(PendingHTLCInfo, {
10691 (0, routing, required),
10692 (2, incoming_shared_secret, required),
10693 (4, payment_hash, required),
10694 (6, outgoing_amt_msat, required),
10695 (8, outgoing_cltv_value, required),
10696 (9, incoming_amt_msat, option),
10697 (10, skimmed_fee_msat, option),
10701 impl Writeable for HTLCFailureMsg {
10702 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10704 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
10705 0u8.write(writer)?;
10706 channel_id.write(writer)?;
10707 htlc_id.write(writer)?;
10708 reason.write(writer)?;
10710 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10711 channel_id, htlc_id, sha256_of_onion, failure_code
10713 1u8.write(writer)?;
10714 channel_id.write(writer)?;
10715 htlc_id.write(writer)?;
10716 sha256_of_onion.write(writer)?;
10717 failure_code.write(writer)?;
10724 impl Readable for HTLCFailureMsg {
10725 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10726 let id: u8 = Readable::read(reader)?;
10729 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
10730 channel_id: Readable::read(reader)?,
10731 htlc_id: Readable::read(reader)?,
10732 reason: Readable::read(reader)?,
10736 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10737 channel_id: Readable::read(reader)?,
10738 htlc_id: Readable::read(reader)?,
10739 sha256_of_onion: Readable::read(reader)?,
10740 failure_code: Readable::read(reader)?,
10743 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
10744 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
10745 // messages contained in the variants.
10746 // In version 0.0.101, support for reading the variants with these types was added, and
10747 // we should migrate to writing these variants when UpdateFailHTLC or
10748 // UpdateFailMalformedHTLC get TLV fields.
10750 let length: BigSize = Readable::read(reader)?;
10751 let mut s = FixedLengthReader::new(reader, length.0);
10752 let res = Readable::read(&mut s)?;
10753 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10754 Ok(HTLCFailureMsg::Relay(res))
10757 let length: BigSize = Readable::read(reader)?;
10758 let mut s = FixedLengthReader::new(reader, length.0);
10759 let res = Readable::read(&mut s)?;
10760 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10761 Ok(HTLCFailureMsg::Malformed(res))
10763 _ => Err(DecodeError::UnknownRequiredFeature),
10768 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
10773 impl_writeable_tlv_based_enum!(BlindedFailure,
10774 (0, FromIntroductionNode) => {},
10775 (2, FromBlindedNode) => {}, ;
10778 impl_writeable_tlv_based!(HTLCPreviousHopData, {
10779 (0, short_channel_id, required),
10780 (1, phantom_shared_secret, option),
10781 (2, outpoint, required),
10782 (3, blinded_failure, option),
10783 (4, htlc_id, required),
10784 (6, incoming_packet_shared_secret, required),
10785 (7, user_channel_id, option),
10786 // Note that by the time we get past the required read for type 2 above, outpoint will be
10787 // filled in, so we can safely unwrap it here.
10788 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
10791 impl Writeable for ClaimableHTLC {
10792 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10793 let (payment_data, keysend_preimage) = match &self.onion_payload {
10794 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
10795 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
10797 write_tlv_fields!(writer, {
10798 (0, self.prev_hop, required),
10799 (1, self.total_msat, required),
10800 (2, self.value, required),
10801 (3, self.sender_intended_value, required),
10802 (4, payment_data, option),
10803 (5, self.total_value_received, option),
10804 (6, self.cltv_expiry, required),
10805 (8, keysend_preimage, option),
10806 (10, self.counterparty_skimmed_fee_msat, option),
10812 impl Readable for ClaimableHTLC {
10813 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10814 _init_and_read_len_prefixed_tlv_fields!(reader, {
10815 (0, prev_hop, required),
10816 (1, total_msat, option),
10817 (2, value_ser, required),
10818 (3, sender_intended_value, option),
10819 (4, payment_data_opt, option),
10820 (5, total_value_received, option),
10821 (6, cltv_expiry, required),
10822 (8, keysend_preimage, option),
10823 (10, counterparty_skimmed_fee_msat, option),
10825 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
10826 let value = value_ser.0.unwrap();
10827 let onion_payload = match keysend_preimage {
10829 if payment_data.is_some() {
10830 return Err(DecodeError::InvalidValue)
10832 if total_msat.is_none() {
10833 total_msat = Some(value);
10835 OnionPayload::Spontaneous(p)
10838 if total_msat.is_none() {
10839 if payment_data.is_none() {
10840 return Err(DecodeError::InvalidValue)
10842 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
10844 OnionPayload::Invoice { _legacy_hop_data: payment_data }
10848 prev_hop: prev_hop.0.unwrap(),
10851 sender_intended_value: sender_intended_value.unwrap_or(value),
10852 total_value_received,
10853 total_msat: total_msat.unwrap(),
10855 cltv_expiry: cltv_expiry.0.unwrap(),
10856 counterparty_skimmed_fee_msat,
10861 impl Readable for HTLCSource {
10862 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10863 let id: u8 = Readable::read(reader)?;
10866 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
10867 let mut first_hop_htlc_msat: u64 = 0;
10868 let mut path_hops = Vec::new();
10869 let mut payment_id = None;
10870 let mut payment_params: Option<PaymentParameters> = None;
10871 let mut blinded_tail: Option<BlindedTail> = None;
10872 read_tlv_fields!(reader, {
10873 (0, session_priv, required),
10874 (1, payment_id, option),
10875 (2, first_hop_htlc_msat, required),
10876 (4, path_hops, required_vec),
10877 (5, payment_params, (option: ReadableArgs, 0)),
10878 (6, blinded_tail, option),
10880 if payment_id.is_none() {
10881 // For backwards compat, if there was no payment_id written, use the session_priv bytes
10883 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
10885 let path = Path { hops: path_hops, blinded_tail };
10886 if path.hops.len() == 0 {
10887 return Err(DecodeError::InvalidValue);
10889 if let Some(params) = payment_params.as_mut() {
10890 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
10891 if final_cltv_expiry_delta == &0 {
10892 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
10896 Ok(HTLCSource::OutboundRoute {
10897 session_priv: session_priv.0.unwrap(),
10898 first_hop_htlc_msat,
10900 payment_id: payment_id.unwrap(),
10903 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
10904 _ => Err(DecodeError::UnknownRequiredFeature),
10909 impl Writeable for HTLCSource {
10910 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
10912 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
10913 0u8.write(writer)?;
10914 let payment_id_opt = Some(payment_id);
10915 write_tlv_fields!(writer, {
10916 (0, session_priv, required),
10917 (1, payment_id_opt, option),
10918 (2, first_hop_htlc_msat, required),
10919 // 3 was previously used to write a PaymentSecret for the payment.
10920 (4, path.hops, required_vec),
10921 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
10922 (6, path.blinded_tail, option),
10925 HTLCSource::PreviousHopData(ref field) => {
10926 1u8.write(writer)?;
10927 field.write(writer)?;
10934 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
10935 (0, forward_info, required),
10936 (1, prev_user_channel_id, (default_value, 0)),
10937 (2, prev_short_channel_id, required),
10938 (4, prev_htlc_id, required),
10939 (6, prev_funding_outpoint, required),
10940 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
10941 // filled in, so we can safely unwrap it here.
10942 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
10945 impl Writeable for HTLCForwardInfo {
10946 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10947 const FAIL_HTLC_VARIANT_ID: u8 = 1;
10949 Self::AddHTLC(info) => {
10953 Self::FailHTLC { htlc_id, err_packet } => {
10954 FAIL_HTLC_VARIANT_ID.write(w)?;
10955 write_tlv_fields!(w, {
10956 (0, htlc_id, required),
10957 (2, err_packet, required),
10960 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
10961 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
10962 // packet so older versions have something to fail back with, but serialize the real data as
10963 // optional TLVs for the benefit of newer versions.
10964 FAIL_HTLC_VARIANT_ID.write(w)?;
10965 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
10966 write_tlv_fields!(w, {
10967 (0, htlc_id, required),
10968 (1, failure_code, required),
10969 (2, dummy_err_packet, required),
10970 (3, sha256_of_onion, required),
10978 impl Readable for HTLCForwardInfo {
10979 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
10980 let id: u8 = Readable::read(r)?;
10982 0 => Self::AddHTLC(Readable::read(r)?),
10984 _init_and_read_len_prefixed_tlv_fields!(r, {
10985 (0, htlc_id, required),
10986 (1, malformed_htlc_failure_code, option),
10987 (2, err_packet, required),
10988 (3, sha256_of_onion, option),
10990 if let Some(failure_code) = malformed_htlc_failure_code {
10991 Self::FailMalformedHTLC {
10992 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
10994 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
10998 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
10999 err_packet: _init_tlv_based_struct_field!(err_packet, required),
11003 _ => return Err(DecodeError::InvalidValue),
11008 impl_writeable_tlv_based!(PendingInboundPayment, {
11009 (0, payment_secret, required),
11010 (2, expiry_time, required),
11011 (4, user_payment_id, required),
11012 (6, payment_preimage, required),
11013 (8, min_value_msat, required),
11016 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
11018 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11019 T::Target: BroadcasterInterface,
11020 ES::Target: EntropySource,
11021 NS::Target: NodeSigner,
11022 SP::Target: SignerProvider,
11023 F::Target: FeeEstimator,
11027 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
11028 let _consistency_lock = self.total_consistency_lock.write().unwrap();
11030 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
11032 self.chain_hash.write(writer)?;
11034 let best_block = self.best_block.read().unwrap();
11035 best_block.height.write(writer)?;
11036 best_block.block_hash.write(writer)?;
11039 let mut serializable_peer_count: u64 = 0;
11041 let per_peer_state = self.per_peer_state.read().unwrap();
11042 let mut number_of_funded_channels = 0;
11043 for (_, peer_state_mutex) in per_peer_state.iter() {
11044 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11045 let peer_state = &mut *peer_state_lock;
11046 if !peer_state.ok_to_remove(false) {
11047 serializable_peer_count += 1;
11050 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
11051 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
11055 (number_of_funded_channels as u64).write(writer)?;
11057 for (_, peer_state_mutex) in per_peer_state.iter() {
11058 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11059 let peer_state = &mut *peer_state_lock;
11060 for channel in peer_state.channel_by_id.iter().filter_map(
11061 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
11062 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
11065 channel.write(writer)?;
11071 let forward_htlcs = self.forward_htlcs.lock().unwrap();
11072 (forward_htlcs.len() as u64).write(writer)?;
11073 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
11074 short_channel_id.write(writer)?;
11075 (pending_forwards.len() as u64).write(writer)?;
11076 for forward in pending_forwards {
11077 forward.write(writer)?;
11082 let mut decode_update_add_htlcs_opt = None;
11083 let decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
11084 if !decode_update_add_htlcs.is_empty() {
11085 decode_update_add_htlcs_opt = Some(decode_update_add_htlcs);
11088 let per_peer_state = self.per_peer_state.write().unwrap();
11090 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
11091 let claimable_payments = self.claimable_payments.lock().unwrap();
11092 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
11094 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
11095 let mut htlc_onion_fields: Vec<&_> = Vec::new();
11096 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
11097 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
11098 payment_hash.write(writer)?;
11099 (payment.htlcs.len() as u64).write(writer)?;
11100 for htlc in payment.htlcs.iter() {
11101 htlc.write(writer)?;
11103 htlc_purposes.push(&payment.purpose);
11104 htlc_onion_fields.push(&payment.onion_fields);
11107 let mut monitor_update_blocked_actions_per_peer = None;
11108 let mut peer_states = Vec::new();
11109 for (_, peer_state_mutex) in per_peer_state.iter() {
11110 // Because we're holding the owning `per_peer_state` write lock here there's no chance
11111 // of a lockorder violation deadlock - no other thread can be holding any
11112 // per_peer_state lock at all.
11113 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
11116 (serializable_peer_count).write(writer)?;
11117 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11118 // Peers which we have no channels to should be dropped once disconnected. As we
11119 // disconnect all peers when shutting down and serializing the ChannelManager, we
11120 // consider all peers as disconnected here. There's therefore no need write peers with
11122 if !peer_state.ok_to_remove(false) {
11123 peer_pubkey.write(writer)?;
11124 peer_state.latest_features.write(writer)?;
11125 if !peer_state.monitor_update_blocked_actions.is_empty() {
11126 monitor_update_blocked_actions_per_peer
11127 .get_or_insert_with(Vec::new)
11128 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
11133 let events = self.pending_events.lock().unwrap();
11134 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
11135 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
11136 // refuse to read the new ChannelManager.
11137 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
11138 if events_not_backwards_compatible {
11139 // If we're gonna write a even TLV that will overwrite our events anyway we might as
11140 // well save the space and not write any events here.
11141 0u64.write(writer)?;
11143 (events.len() as u64).write(writer)?;
11144 for (event, _) in events.iter() {
11145 event.write(writer)?;
11149 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
11150 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
11151 // the closing monitor updates were always effectively replayed on startup (either directly
11152 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
11153 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
11154 0u64.write(writer)?;
11156 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
11157 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
11158 // likely to be identical.
11159 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11160 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11162 (pending_inbound_payments.len() as u64).write(writer)?;
11163 for (hash, pending_payment) in pending_inbound_payments.iter() {
11164 hash.write(writer)?;
11165 pending_payment.write(writer)?;
11168 // For backwards compat, write the session privs and their total length.
11169 let mut num_pending_outbounds_compat: u64 = 0;
11170 for (_, outbound) in pending_outbound_payments.iter() {
11171 if !outbound.is_fulfilled() && !outbound.abandoned() {
11172 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
11175 num_pending_outbounds_compat.write(writer)?;
11176 for (_, outbound) in pending_outbound_payments.iter() {
11178 PendingOutboundPayment::Legacy { session_privs } |
11179 PendingOutboundPayment::Retryable { session_privs, .. } => {
11180 for session_priv in session_privs.iter() {
11181 session_priv.write(writer)?;
11184 PendingOutboundPayment::AwaitingInvoice { .. } => {},
11185 PendingOutboundPayment::InvoiceReceived { .. } => {},
11186 PendingOutboundPayment::Fulfilled { .. } => {},
11187 PendingOutboundPayment::Abandoned { .. } => {},
11191 // Encode without retry info for 0.0.101 compatibility.
11192 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
11193 for (id, outbound) in pending_outbound_payments.iter() {
11195 PendingOutboundPayment::Legacy { session_privs } |
11196 PendingOutboundPayment::Retryable { session_privs, .. } => {
11197 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
11203 let mut pending_intercepted_htlcs = None;
11204 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
11205 if our_pending_intercepts.len() != 0 {
11206 pending_intercepted_htlcs = Some(our_pending_intercepts);
11209 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
11210 if pending_claiming_payments.as_ref().unwrap().is_empty() {
11211 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
11212 // map. Thus, if there are no entries we skip writing a TLV for it.
11213 pending_claiming_payments = None;
11216 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
11217 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11218 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
11219 if !updates.is_empty() {
11220 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
11221 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
11226 write_tlv_fields!(writer, {
11227 (1, pending_outbound_payments_no_retry, required),
11228 (2, pending_intercepted_htlcs, option),
11229 (3, pending_outbound_payments, required),
11230 (4, pending_claiming_payments, option),
11231 (5, self.our_network_pubkey, required),
11232 (6, monitor_update_blocked_actions_per_peer, option),
11233 (7, self.fake_scid_rand_bytes, required),
11234 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
11235 (9, htlc_purposes, required_vec),
11236 (10, in_flight_monitor_updates, option),
11237 (11, self.probing_cookie_secret, required),
11238 (13, htlc_onion_fields, optional_vec),
11239 (14, decode_update_add_htlcs_opt, option),
11246 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
11247 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
11248 (self.len() as u64).write(w)?;
11249 for (event, action) in self.iter() {
11252 #[cfg(debug_assertions)] {
11253 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
11254 // be persisted and are regenerated on restart. However, if such an event has a
11255 // post-event-handling action we'll write nothing for the event and would have to
11256 // either forget the action or fail on deserialization (which we do below). Thus,
11257 // check that the event is sane here.
11258 let event_encoded = event.encode();
11259 let event_read: Option<Event> =
11260 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
11261 if action.is_some() { assert!(event_read.is_some()); }
11267 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
11268 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
11269 let len: u64 = Readable::read(reader)?;
11270 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
11271 let mut events: Self = VecDeque::with_capacity(cmp::min(
11272 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
11275 let ev_opt = MaybeReadable::read(reader)?;
11276 let action = Readable::read(reader)?;
11277 if let Some(ev) = ev_opt {
11278 events.push_back((ev, action));
11279 } else if action.is_some() {
11280 return Err(DecodeError::InvalidValue);
11287 impl_writeable_tlv_based_enum!(ChannelShutdownState,
11288 (0, NotShuttingDown) => {},
11289 (2, ShutdownInitiated) => {},
11290 (4, ResolvingHTLCs) => {},
11291 (6, NegotiatingClosingFee) => {},
11292 (8, ShutdownComplete) => {}, ;
11295 /// Arguments for the creation of a ChannelManager that are not deserialized.
11297 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
11299 /// 1) Deserialize all stored [`ChannelMonitor`]s.
11300 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
11301 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
11302 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
11303 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
11304 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
11305 /// same way you would handle a [`chain::Filter`] call using
11306 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
11307 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
11308 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
11309 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
11310 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
11311 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
11313 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
11314 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
11316 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
11317 /// call any other methods on the newly-deserialized [`ChannelManager`].
11319 /// Note that because some channels may be closed during deserialization, it is critical that you
11320 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
11321 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
11322 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
11323 /// not force-close the same channels but consider them live), you may end up revoking a state for
11324 /// which you've already broadcasted the transaction.
11326 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
11327 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11329 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11330 T::Target: BroadcasterInterface,
11331 ES::Target: EntropySource,
11332 NS::Target: NodeSigner,
11333 SP::Target: SignerProvider,
11334 F::Target: FeeEstimator,
11338 /// A cryptographically secure source of entropy.
11339 pub entropy_source: ES,
11341 /// A signer that is able to perform node-scoped cryptographic operations.
11342 pub node_signer: NS,
11344 /// The keys provider which will give us relevant keys. Some keys will be loaded during
11345 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
11347 pub signer_provider: SP,
11349 /// The fee_estimator for use in the ChannelManager in the future.
11351 /// No calls to the FeeEstimator will be made during deserialization.
11352 pub fee_estimator: F,
11353 /// The chain::Watch for use in the ChannelManager in the future.
11355 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
11356 /// you have deserialized ChannelMonitors separately and will add them to your
11357 /// chain::Watch after deserializing this ChannelManager.
11358 pub chain_monitor: M,
11360 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
11361 /// used to broadcast the latest local commitment transactions of channels which must be
11362 /// force-closed during deserialization.
11363 pub tx_broadcaster: T,
11364 /// The router which will be used in the ChannelManager in the future for finding routes
11365 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
11367 /// No calls to the router will be made during deserialization.
11369 /// The Logger for use in the ChannelManager and which may be used to log information during
11370 /// deserialization.
11372 /// Default settings used for new channels. Any existing channels will continue to use the
11373 /// runtime settings which were stored when the ChannelManager was serialized.
11374 pub default_config: UserConfig,
11376 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
11377 /// value.context.get_funding_txo() should be the key).
11379 /// If a monitor is inconsistent with the channel state during deserialization the channel will
11380 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
11381 /// is true for missing channels as well. If there is a monitor missing for which we find
11382 /// channel data Err(DecodeError::InvalidValue) will be returned.
11384 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
11387 /// This is not exported to bindings users because we have no HashMap bindings
11388 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
11391 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11392 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
11394 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11395 T::Target: BroadcasterInterface,
11396 ES::Target: EntropySource,
11397 NS::Target: NodeSigner,
11398 SP::Target: SignerProvider,
11399 F::Target: FeeEstimator,
11403 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
11404 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
11405 /// populate a HashMap directly from C.
11406 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
11407 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
11409 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
11410 channel_monitors: hash_map_from_iter(
11411 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
11417 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
11418 // SipmleArcChannelManager type:
11419 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11420 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
11422 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11423 T::Target: BroadcasterInterface,
11424 ES::Target: EntropySource,
11425 NS::Target: NodeSigner,
11426 SP::Target: SignerProvider,
11427 F::Target: FeeEstimator,
11431 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11432 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
11433 Ok((blockhash, Arc::new(chan_manager)))
11437 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11438 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
11440 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11441 T::Target: BroadcasterInterface,
11442 ES::Target: EntropySource,
11443 NS::Target: NodeSigner,
11444 SP::Target: SignerProvider,
11445 F::Target: FeeEstimator,
11449 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11450 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
11452 let chain_hash: ChainHash = Readable::read(reader)?;
11453 let best_block_height: u32 = Readable::read(reader)?;
11454 let best_block_hash: BlockHash = Readable::read(reader)?;
11456 let mut failed_htlcs = Vec::new();
11458 let channel_count: u64 = Readable::read(reader)?;
11459 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
11460 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11461 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11462 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11463 let mut channel_closures = VecDeque::new();
11464 let mut close_background_events = Vec::new();
11465 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
11466 for _ in 0..channel_count {
11467 let mut channel: Channel<SP> = Channel::read(reader, (
11468 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
11470 let logger = WithChannelContext::from(&args.logger, &channel.context);
11471 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11472 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
11473 funding_txo_set.insert(funding_txo.clone());
11474 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
11475 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
11476 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
11477 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
11478 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11479 // But if the channel is behind of the monitor, close the channel:
11480 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
11481 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
11482 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11483 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
11484 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
11486 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
11487 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
11488 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
11490 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
11491 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
11492 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
11494 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
11495 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
11496 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
11498 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
11499 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
11500 return Err(DecodeError::InvalidValue);
11502 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
11503 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11504 counterparty_node_id, funding_txo, channel_id, update
11507 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
11508 channel_closures.push_back((events::Event::ChannelClosed {
11509 channel_id: channel.context.channel_id(),
11510 user_channel_id: channel.context.get_user_id(),
11511 reason: ClosureReason::OutdatedChannelManager,
11512 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11513 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11514 channel_funding_txo: channel.context.get_funding_txo(),
11516 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
11517 let mut found_htlc = false;
11518 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
11519 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
11522 // If we have some HTLCs in the channel which are not present in the newer
11523 // ChannelMonitor, they have been removed and should be failed back to
11524 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
11525 // were actually claimed we'd have generated and ensured the previous-hop
11526 // claim update ChannelMonitor updates were persisted prior to persising
11527 // the ChannelMonitor update for the forward leg, so attempting to fail the
11528 // backwards leg of the HTLC will simply be rejected.
11530 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
11531 &channel.context.channel_id(), &payment_hash);
11532 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11536 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
11537 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
11538 monitor.get_latest_update_id());
11539 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
11540 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11542 if let Some(funding_txo) = channel.context.get_funding_txo() {
11543 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
11545 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
11546 hash_map::Entry::Occupied(mut entry) => {
11547 let by_id_map = entry.get_mut();
11548 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11550 hash_map::Entry::Vacant(entry) => {
11551 let mut by_id_map = new_hash_map();
11552 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11553 entry.insert(by_id_map);
11557 } else if channel.is_awaiting_initial_mon_persist() {
11558 // If we were persisted and shut down while the initial ChannelMonitor persistence
11559 // was in-progress, we never broadcasted the funding transaction and can still
11560 // safely discard the channel.
11561 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
11562 channel_closures.push_back((events::Event::ChannelClosed {
11563 channel_id: channel.context.channel_id(),
11564 user_channel_id: channel.context.get_user_id(),
11565 reason: ClosureReason::DisconnectedPeer,
11566 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11567 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11568 channel_funding_txo: channel.context.get_funding_txo(),
11571 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
11572 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11573 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11574 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
11575 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11576 return Err(DecodeError::InvalidValue);
11580 for (funding_txo, monitor) in args.channel_monitors.iter() {
11581 if !funding_txo_set.contains(funding_txo) {
11582 let logger = WithChannelMonitor::from(&args.logger, monitor);
11583 let channel_id = monitor.channel_id();
11584 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
11586 let monitor_update = ChannelMonitorUpdate {
11587 update_id: CLOSED_CHANNEL_UPDATE_ID,
11588 counterparty_node_id: None,
11589 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
11590 channel_id: Some(monitor.channel_id()),
11592 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
11596 const MAX_ALLOC_SIZE: usize = 1024 * 64;
11597 let forward_htlcs_count: u64 = Readable::read(reader)?;
11598 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
11599 for _ in 0..forward_htlcs_count {
11600 let short_channel_id = Readable::read(reader)?;
11601 let pending_forwards_count: u64 = Readable::read(reader)?;
11602 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
11603 for _ in 0..pending_forwards_count {
11604 pending_forwards.push(Readable::read(reader)?);
11606 forward_htlcs.insert(short_channel_id, pending_forwards);
11609 let claimable_htlcs_count: u64 = Readable::read(reader)?;
11610 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
11611 for _ in 0..claimable_htlcs_count {
11612 let payment_hash = Readable::read(reader)?;
11613 let previous_hops_len: u64 = Readable::read(reader)?;
11614 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
11615 for _ in 0..previous_hops_len {
11616 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
11618 claimable_htlcs_list.push((payment_hash, previous_hops));
11621 let peer_state_from_chans = |channel_by_id| {
11624 inbound_channel_request_by_id: new_hash_map(),
11625 latest_features: InitFeatures::empty(),
11626 pending_msg_events: Vec::new(),
11627 in_flight_monitor_updates: BTreeMap::new(),
11628 monitor_update_blocked_actions: BTreeMap::new(),
11629 actions_blocking_raa_monitor_updates: BTreeMap::new(),
11630 is_connected: false,
11634 let peer_count: u64 = Readable::read(reader)?;
11635 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
11636 for _ in 0..peer_count {
11637 let peer_pubkey = Readable::read(reader)?;
11638 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
11639 let mut peer_state = peer_state_from_chans(peer_chans);
11640 peer_state.latest_features = Readable::read(reader)?;
11641 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
11644 let event_count: u64 = Readable::read(reader)?;
11645 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
11646 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
11647 for _ in 0..event_count {
11648 match MaybeReadable::read(reader)? {
11649 Some(event) => pending_events_read.push_back((event, None)),
11654 let background_event_count: u64 = Readable::read(reader)?;
11655 for _ in 0..background_event_count {
11656 match <u8 as Readable>::read(reader)? {
11658 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
11659 // however we really don't (and never did) need them - we regenerate all
11660 // on-startup monitor updates.
11661 let _: OutPoint = Readable::read(reader)?;
11662 let _: ChannelMonitorUpdate = Readable::read(reader)?;
11664 _ => return Err(DecodeError::InvalidValue),
11668 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
11669 let highest_seen_timestamp: u32 = Readable::read(reader)?;
11671 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
11672 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
11673 for _ in 0..pending_inbound_payment_count {
11674 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
11675 return Err(DecodeError::InvalidValue);
11679 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
11680 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
11681 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
11682 for _ in 0..pending_outbound_payments_count_compat {
11683 let session_priv = Readable::read(reader)?;
11684 let payment = PendingOutboundPayment::Legacy {
11685 session_privs: hash_set_from_iter([session_priv]),
11687 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
11688 return Err(DecodeError::InvalidValue)
11692 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
11693 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
11694 let mut pending_outbound_payments = None;
11695 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
11696 let mut received_network_pubkey: Option<PublicKey> = None;
11697 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
11698 let mut probing_cookie_secret: Option<[u8; 32]> = None;
11699 let mut claimable_htlc_purposes = None;
11700 let mut claimable_htlc_onion_fields = None;
11701 let mut pending_claiming_payments = Some(new_hash_map());
11702 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
11703 let mut events_override = None;
11704 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
11705 let mut decode_update_add_htlcs: Option<HashMap<u64, Vec<msgs::UpdateAddHTLC>>> = None;
11706 read_tlv_fields!(reader, {
11707 (1, pending_outbound_payments_no_retry, option),
11708 (2, pending_intercepted_htlcs, option),
11709 (3, pending_outbound_payments, option),
11710 (4, pending_claiming_payments, option),
11711 (5, received_network_pubkey, option),
11712 (6, monitor_update_blocked_actions_per_peer, option),
11713 (7, fake_scid_rand_bytes, option),
11714 (8, events_override, option),
11715 (9, claimable_htlc_purposes, optional_vec),
11716 (10, in_flight_monitor_updates, option),
11717 (11, probing_cookie_secret, option),
11718 (13, claimable_htlc_onion_fields, optional_vec),
11719 (14, decode_update_add_htlcs, option),
11721 let mut decode_update_add_htlcs = decode_update_add_htlcs.unwrap_or_else(|| new_hash_map());
11722 if fake_scid_rand_bytes.is_none() {
11723 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
11726 if probing_cookie_secret.is_none() {
11727 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
11730 if let Some(events) = events_override {
11731 pending_events_read = events;
11734 if !channel_closures.is_empty() {
11735 pending_events_read.append(&mut channel_closures);
11738 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
11739 pending_outbound_payments = Some(pending_outbound_payments_compat);
11740 } else if pending_outbound_payments.is_none() {
11741 let mut outbounds = new_hash_map();
11742 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
11743 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
11745 pending_outbound_payments = Some(outbounds);
11747 let pending_outbounds = OutboundPayments {
11748 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
11749 retry_lock: Mutex::new(())
11752 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
11753 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
11754 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
11755 // replayed, and for each monitor update we have to replay we have to ensure there's a
11756 // `ChannelMonitor` for it.
11758 // In order to do so we first walk all of our live channels (so that we can check their
11759 // state immediately after doing the update replays, when we have the `update_id`s
11760 // available) and then walk any remaining in-flight updates.
11762 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
11763 let mut pending_background_events = Vec::new();
11764 macro_rules! handle_in_flight_updates {
11765 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
11766 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
11768 let mut max_in_flight_update_id = 0;
11769 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
11770 for update in $chan_in_flight_upds.iter() {
11771 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
11772 update.update_id, $channel_info_log, &$monitor.channel_id());
11773 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
11774 pending_background_events.push(
11775 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11776 counterparty_node_id: $counterparty_node_id,
11777 funding_txo: $funding_txo,
11778 channel_id: $monitor.channel_id(),
11779 update: update.clone(),
11782 if $chan_in_flight_upds.is_empty() {
11783 // We had some updates to apply, but it turns out they had completed before we
11784 // were serialized, we just weren't notified of that. Thus, we may have to run
11785 // the completion actions for any monitor updates, but otherwise are done.
11786 pending_background_events.push(
11787 BackgroundEvent::MonitorUpdatesComplete {
11788 counterparty_node_id: $counterparty_node_id,
11789 channel_id: $monitor.channel_id(),
11792 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
11793 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
11794 return Err(DecodeError::InvalidValue);
11796 max_in_flight_update_id
11800 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
11801 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
11802 let peer_state = &mut *peer_state_lock;
11803 for phase in peer_state.channel_by_id.values() {
11804 if let ChannelPhase::Funded(chan) = phase {
11805 let logger = WithChannelContext::from(&args.logger, &chan.context);
11807 // Channels that were persisted have to be funded, otherwise they should have been
11809 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11810 let monitor = args.channel_monitors.get(&funding_txo)
11811 .expect("We already checked for monitor presence when loading channels");
11812 let mut max_in_flight_update_id = monitor.get_latest_update_id();
11813 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
11814 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
11815 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
11816 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
11817 funding_txo, monitor, peer_state, logger, ""));
11820 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
11821 // If the channel is ahead of the monitor, return DangerousValue:
11822 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
11823 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
11824 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
11825 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
11826 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11827 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11828 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11829 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11830 return Err(DecodeError::DangerousValue);
11833 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11834 // created in this `channel_by_id` map.
11835 debug_assert!(false);
11836 return Err(DecodeError::InvalidValue);
11841 if let Some(in_flight_upds) = in_flight_monitor_updates {
11842 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
11843 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
11844 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id);
11845 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
11846 // Now that we've removed all the in-flight monitor updates for channels that are
11847 // still open, we need to replay any monitor updates that are for closed channels,
11848 // creating the neccessary peer_state entries as we go.
11849 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
11850 Mutex::new(peer_state_from_chans(new_hash_map()))
11852 let mut peer_state = peer_state_mutex.lock().unwrap();
11853 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
11854 funding_txo, monitor, peer_state, logger, "closed ");
11856 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
11857 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
11858 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
11859 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11860 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11861 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11862 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11863 return Err(DecodeError::InvalidValue);
11868 // Note that we have to do the above replays before we push new monitor updates.
11869 pending_background_events.append(&mut close_background_events);
11871 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
11872 // should ensure we try them again on the inbound edge. We put them here and do so after we
11873 // have a fully-constructed `ChannelManager` at the end.
11874 let mut pending_claims_to_replay = Vec::new();
11877 // If we're tracking pending payments, ensure we haven't lost any by looking at the
11878 // ChannelMonitor data for any channels for which we do not have authorative state
11879 // (i.e. those for which we just force-closed above or we otherwise don't have a
11880 // corresponding `Channel` at all).
11881 // This avoids several edge-cases where we would otherwise "forget" about pending
11882 // payments which are still in-flight via their on-chain state.
11883 // We only rebuild the pending payments map if we were most recently serialized by
11885 for (_, monitor) in args.channel_monitors.iter() {
11886 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
11887 if counterparty_opt.is_none() {
11888 let logger = WithChannelMonitor::from(&args.logger, monitor);
11889 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
11890 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
11891 if path.hops.is_empty() {
11892 log_error!(logger, "Got an empty path for a pending payment");
11893 return Err(DecodeError::InvalidValue);
11896 let path_amt = path.final_value_msat();
11897 let mut session_priv_bytes = [0; 32];
11898 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
11899 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
11900 hash_map::Entry::Occupied(mut entry) => {
11901 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
11902 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
11903 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
11905 hash_map::Entry::Vacant(entry) => {
11906 let path_fee = path.fee_msat();
11907 entry.insert(PendingOutboundPayment::Retryable {
11908 retry_strategy: None,
11909 attempts: PaymentAttempts::new(),
11910 payment_params: None,
11911 session_privs: hash_set_from_iter([session_priv_bytes]),
11912 payment_hash: htlc.payment_hash,
11913 payment_secret: None, // only used for retries, and we'll never retry on startup
11914 payment_metadata: None, // only used for retries, and we'll never retry on startup
11915 keysend_preimage: None, // only used for retries, and we'll never retry on startup
11916 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
11917 pending_amt_msat: path_amt,
11918 pending_fee_msat: Some(path_fee),
11919 total_msat: path_amt,
11920 starting_block_height: best_block_height,
11921 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
11923 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
11924 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
11929 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
11930 match htlc_source {
11931 HTLCSource::PreviousHopData(prev_hop_data) => {
11932 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
11933 info.prev_funding_outpoint == prev_hop_data.outpoint &&
11934 info.prev_htlc_id == prev_hop_data.htlc_id
11936 // The ChannelMonitor is now responsible for this HTLC's
11937 // failure/success and will let us know what its outcome is. If we
11938 // still have an entry for this HTLC in `forward_htlcs` or
11939 // `pending_intercepted_htlcs`, we were apparently not persisted after
11940 // the monitor was when forwarding the payment.
11941 decode_update_add_htlcs.retain(|scid, update_add_htlcs| {
11942 update_add_htlcs.retain(|update_add_htlc| {
11943 let matches = *scid == prev_hop_data.short_channel_id &&
11944 update_add_htlc.htlc_id == prev_hop_data.htlc_id;
11946 log_info!(logger, "Removing pending to-decode HTLC with hash {} as it was forwarded to the closed channel {}",
11947 &htlc.payment_hash, &monitor.channel_id());
11951 !update_add_htlcs.is_empty()
11953 forward_htlcs.retain(|_, forwards| {
11954 forwards.retain(|forward| {
11955 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
11956 if pending_forward_matches_htlc(&htlc_info) {
11957 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
11958 &htlc.payment_hash, &monitor.channel_id());
11963 !forwards.is_empty()
11965 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
11966 if pending_forward_matches_htlc(&htlc_info) {
11967 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
11968 &htlc.payment_hash, &monitor.channel_id());
11969 pending_events_read.retain(|(event, _)| {
11970 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
11971 intercepted_id != ev_id
11978 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
11979 if let Some(preimage) = preimage_opt {
11980 let pending_events = Mutex::new(pending_events_read);
11981 // Note that we set `from_onchain` to "false" here,
11982 // deliberately keeping the pending payment around forever.
11983 // Given it should only occur when we have a channel we're
11984 // force-closing for being stale that's okay.
11985 // The alternative would be to wipe the state when claiming,
11986 // generating a `PaymentPathSuccessful` event but regenerating
11987 // it and the `PaymentSent` on every restart until the
11988 // `ChannelMonitor` is removed.
11990 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
11991 channel_funding_outpoint: monitor.get_funding_txo().0,
11992 channel_id: monitor.channel_id(),
11993 counterparty_node_id: path.hops[0].pubkey,
11995 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
11996 path, false, compl_action, &pending_events, &&logger);
11997 pending_events_read = pending_events.into_inner().unwrap();
12004 // Whether the downstream channel was closed or not, try to re-apply any payment
12005 // preimages from it which may be needed in upstream channels for forwarded
12007 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
12009 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
12010 if let HTLCSource::PreviousHopData(_) = htlc_source {
12011 if let Some(payment_preimage) = preimage_opt {
12012 Some((htlc_source, payment_preimage, htlc.amount_msat,
12013 // Check if `counterparty_opt.is_none()` to see if the
12014 // downstream chan is closed (because we don't have a
12015 // channel_id -> peer map entry).
12016 counterparty_opt.is_none(),
12017 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
12018 monitor.get_funding_txo().0, monitor.channel_id()))
12021 // If it was an outbound payment, we've handled it above - if a preimage
12022 // came in and we persisted the `ChannelManager` we either handled it and
12023 // are good to go or the channel force-closed - we don't have to handle the
12024 // channel still live case here.
12028 for tuple in outbound_claimed_htlcs_iter {
12029 pending_claims_to_replay.push(tuple);
12034 if !forward_htlcs.is_empty() || !decode_update_add_htlcs.is_empty() || pending_outbounds.needs_abandon() {
12035 // If we have pending HTLCs to forward, assume we either dropped a
12036 // `PendingHTLCsForwardable` or the user received it but never processed it as they
12037 // shut down before the timer hit. Either way, set the time_forwardable to a small
12038 // constant as enough time has likely passed that we should simply handle the forwards
12039 // now, or at least after the user gets a chance to reconnect to our peers.
12040 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
12041 time_forwardable: Duration::from_secs(2),
12045 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
12046 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
12048 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
12049 if let Some(purposes) = claimable_htlc_purposes {
12050 if purposes.len() != claimable_htlcs_list.len() {
12051 return Err(DecodeError::InvalidValue);
12053 if let Some(onion_fields) = claimable_htlc_onion_fields {
12054 if onion_fields.len() != claimable_htlcs_list.len() {
12055 return Err(DecodeError::InvalidValue);
12057 for (purpose, (onion, (payment_hash, htlcs))) in
12058 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
12060 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12061 purpose, htlcs, onion_fields: onion,
12063 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12066 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
12067 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12068 purpose, htlcs, onion_fields: None,
12070 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12074 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
12075 // include a `_legacy_hop_data` in the `OnionPayload`.
12076 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
12077 if htlcs.is_empty() {
12078 return Err(DecodeError::InvalidValue);
12080 let purpose = match &htlcs[0].onion_payload {
12081 OnionPayload::Invoice { _legacy_hop_data } => {
12082 if let Some(hop_data) = _legacy_hop_data {
12083 events::PaymentPurpose::InvoicePayment {
12084 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
12085 Some(inbound_payment) => inbound_payment.payment_preimage,
12086 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
12087 Ok((payment_preimage, _)) => payment_preimage,
12089 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
12090 return Err(DecodeError::InvalidValue);
12094 payment_secret: hop_data.payment_secret,
12096 } else { return Err(DecodeError::InvalidValue); }
12098 OnionPayload::Spontaneous(payment_preimage) =>
12099 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
12101 claimable_payments.insert(payment_hash, ClaimablePayment {
12102 purpose, htlcs, onion_fields: None,
12107 let mut secp_ctx = Secp256k1::new();
12108 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
12110 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
12112 Err(()) => return Err(DecodeError::InvalidValue)
12114 if let Some(network_pubkey) = received_network_pubkey {
12115 if network_pubkey != our_network_pubkey {
12116 log_error!(args.logger, "Key that was generated does not match the existing key.");
12117 return Err(DecodeError::InvalidValue);
12121 let mut outbound_scid_aliases = new_hash_set();
12122 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
12123 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12124 let peer_state = &mut *peer_state_lock;
12125 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
12126 if let ChannelPhase::Funded(chan) = phase {
12127 let logger = WithChannelContext::from(&args.logger, &chan.context);
12128 if chan.context.outbound_scid_alias() == 0 {
12129 let mut outbound_scid_alias;
12131 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
12132 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
12133 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
12135 chan.context.set_outbound_scid_alias(outbound_scid_alias);
12136 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
12137 // Note that in rare cases its possible to hit this while reading an older
12138 // channel if we just happened to pick a colliding outbound alias above.
12139 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12140 return Err(DecodeError::InvalidValue);
12142 if chan.context.is_usable() {
12143 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
12144 // Note that in rare cases its possible to hit this while reading an older
12145 // channel if we just happened to pick a colliding outbound alias above.
12146 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12147 return Err(DecodeError::InvalidValue);
12151 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
12152 // created in this `channel_by_id` map.
12153 debug_assert!(false);
12154 return Err(DecodeError::InvalidValue);
12159 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
12161 for (_, monitor) in args.channel_monitors.iter() {
12162 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
12163 if let Some(payment) = claimable_payments.remove(&payment_hash) {
12164 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
12165 let mut claimable_amt_msat = 0;
12166 let mut receiver_node_id = Some(our_network_pubkey);
12167 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
12168 if phantom_shared_secret.is_some() {
12169 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
12170 .expect("Failed to get node_id for phantom node recipient");
12171 receiver_node_id = Some(phantom_pubkey)
12173 for claimable_htlc in &payment.htlcs {
12174 claimable_amt_msat += claimable_htlc.value;
12176 // Add a holding-cell claim of the payment to the Channel, which should be
12177 // applied ~immediately on peer reconnection. Because it won't generate a
12178 // new commitment transaction we can just provide the payment preimage to
12179 // the corresponding ChannelMonitor and nothing else.
12181 // We do so directly instead of via the normal ChannelMonitor update
12182 // procedure as the ChainMonitor hasn't yet been initialized, implying
12183 // we're not allowed to call it directly yet. Further, we do the update
12184 // without incrementing the ChannelMonitor update ID as there isn't any
12186 // If we were to generate a new ChannelMonitor update ID here and then
12187 // crash before the user finishes block connect we'd end up force-closing
12188 // this channel as well. On the flip side, there's no harm in restarting
12189 // without the new monitor persisted - we'll end up right back here on
12191 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
12192 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
12193 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
12194 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12195 let peer_state = &mut *peer_state_lock;
12196 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
12197 let logger = WithChannelContext::from(&args.logger, &channel.context);
12198 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
12201 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
12202 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
12205 pending_events_read.push_back((events::Event::PaymentClaimed {
12208 purpose: payment.purpose,
12209 amount_msat: claimable_amt_msat,
12210 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
12211 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
12217 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
12218 if let Some(peer_state) = per_peer_state.get(&node_id) {
12219 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
12220 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
12221 for action in actions.iter() {
12222 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
12223 downstream_counterparty_and_funding_outpoint:
12224 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
12226 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
12228 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
12229 blocked_channel_id);
12230 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
12231 .entry(*blocked_channel_id)
12232 .or_insert_with(Vec::new).push(blocking_action.clone());
12234 // If the channel we were blocking has closed, we don't need to
12235 // worry about it - the blocked monitor update should never have
12236 // been released from the `Channel` object so it can't have
12237 // completed, and if the channel closed there's no reason to bother
12241 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
12242 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
12246 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
12248 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
12249 return Err(DecodeError::InvalidValue);
12253 let channel_manager = ChannelManager {
12255 fee_estimator: bounded_fee_estimator,
12256 chain_monitor: args.chain_monitor,
12257 tx_broadcaster: args.tx_broadcaster,
12258 router: args.router,
12260 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
12262 inbound_payment_key: expanded_inbound_key,
12263 pending_inbound_payments: Mutex::new(pending_inbound_payments),
12264 pending_outbound_payments: pending_outbounds,
12265 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
12267 forward_htlcs: Mutex::new(forward_htlcs),
12268 decode_update_add_htlcs: Mutex::new(decode_update_add_htlcs),
12269 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
12270 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
12271 outpoint_to_peer: Mutex::new(outpoint_to_peer),
12272 short_to_chan_info: FairRwLock::new(short_to_chan_info),
12273 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
12275 probing_cookie_secret: probing_cookie_secret.unwrap(),
12277 our_network_pubkey,
12280 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
12282 per_peer_state: FairRwLock::new(per_peer_state),
12284 pending_events: Mutex::new(pending_events_read),
12285 pending_events_processor: AtomicBool::new(false),
12286 pending_background_events: Mutex::new(pending_background_events),
12287 total_consistency_lock: RwLock::new(()),
12288 background_events_processed_since_startup: AtomicBool::new(false),
12290 event_persist_notifier: Notifier::new(),
12291 needs_persist_flag: AtomicBool::new(false),
12293 funding_batch_states: Mutex::new(BTreeMap::new()),
12295 pending_offers_messages: Mutex::new(Vec::new()),
12297 pending_broadcast_messages: Mutex::new(Vec::new()),
12299 entropy_source: args.entropy_source,
12300 node_signer: args.node_signer,
12301 signer_provider: args.signer_provider,
12303 logger: args.logger,
12304 default_configuration: args.default_config,
12307 for htlc_source in failed_htlcs.drain(..) {
12308 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
12309 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
12310 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
12311 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
12314 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
12315 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
12316 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
12317 // channel is closed we just assume that it probably came from an on-chain claim.
12318 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
12319 downstream_closed, true, downstream_node_id, downstream_funding,
12320 downstream_channel_id, None
12324 //TODO: Broadcast channel update for closed channels, but only after we've made a
12325 //connection or two.
12327 Ok((best_block_hash.clone(), channel_manager))
12333 use bitcoin::hashes::Hash;
12334 use bitcoin::hashes::sha256::Hash as Sha256;
12335 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
12336 use core::sync::atomic::Ordering;
12337 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
12338 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
12339 use crate::ln::ChannelId;
12340 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
12341 use crate::ln::functional_test_utils::*;
12342 use crate::ln::msgs::{self, ErrorAction};
12343 use crate::ln::msgs::ChannelMessageHandler;
12344 use crate::prelude::*;
12345 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
12346 use crate::util::errors::APIError;
12347 use crate::util::ser::Writeable;
12348 use crate::util::test_utils;
12349 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
12350 use crate::sign::EntropySource;
12353 fn test_notify_limits() {
12354 // Check that a few cases which don't require the persistence of a new ChannelManager,
12355 // indeed, do not cause the persistence of a new ChannelManager.
12356 let chanmon_cfgs = create_chanmon_cfgs(3);
12357 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12358 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12359 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12361 // All nodes start with a persistable update pending as `create_network` connects each node
12362 // with all other nodes to make most tests simpler.
12363 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12364 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12365 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12367 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12369 // We check that the channel info nodes have doesn't change too early, even though we try
12370 // to connect messages with new values
12371 chan.0.contents.fee_base_msat *= 2;
12372 chan.1.contents.fee_base_msat *= 2;
12373 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
12374 &nodes[1].node.get_our_node_id()).pop().unwrap();
12375 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
12376 &nodes[0].node.get_our_node_id()).pop().unwrap();
12378 // The first two nodes (which opened a channel) should now require fresh persistence
12379 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12380 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12381 // ... but the last node should not.
12382 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12383 // After persisting the first two nodes they should no longer need fresh persistence.
12384 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12385 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12387 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
12388 // about the channel.
12389 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
12390 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
12391 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12393 // The nodes which are a party to the channel should also ignore messages from unrelated
12395 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12396 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12397 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12398 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12399 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12400 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12402 // At this point the channel info given by peers should still be the same.
12403 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12404 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12406 // An earlier version of handle_channel_update didn't check the directionality of the
12407 // update message and would always update the local fee info, even if our peer was
12408 // (spuriously) forwarding us our own channel_update.
12409 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
12410 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
12411 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
12413 // First deliver each peers' own message, checking that the node doesn't need to be
12414 // persisted and that its channel info remains the same.
12415 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
12416 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
12417 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12418 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12419 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12420 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12422 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
12423 // the channel info has updated.
12424 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
12425 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
12426 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12427 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12428 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
12429 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
12433 fn test_keysend_dup_hash_partial_mpp() {
12434 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
12436 let chanmon_cfgs = create_chanmon_cfgs(2);
12437 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12438 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12439 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12440 create_announced_chan_between_nodes(&nodes, 0, 1);
12442 // First, send a partial MPP payment.
12443 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
12444 let mut mpp_route = route.clone();
12445 mpp_route.paths.push(mpp_route.paths[0].clone());
12447 let payment_id = PaymentId([42; 32]);
12448 // Use the utility function send_payment_along_path to send the payment with MPP data which
12449 // indicates there are more HTLCs coming.
12450 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
12451 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
12452 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
12453 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
12454 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
12455 check_added_monitors!(nodes[0], 1);
12456 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12457 assert_eq!(events.len(), 1);
12458 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
12460 // Next, send a keysend payment with the same payment_hash and make sure it fails.
12461 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12462 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12463 check_added_monitors!(nodes[0], 1);
12464 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12465 assert_eq!(events.len(), 1);
12466 let ev = events.drain(..).next().unwrap();
12467 let payment_event = SendEvent::from_event(ev);
12468 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12469 check_added_monitors!(nodes[1], 0);
12470 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12471 expect_pending_htlcs_forwardable!(nodes[1]);
12472 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
12473 check_added_monitors!(nodes[1], 1);
12474 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12475 assert!(updates.update_add_htlcs.is_empty());
12476 assert!(updates.update_fulfill_htlcs.is_empty());
12477 assert_eq!(updates.update_fail_htlcs.len(), 1);
12478 assert!(updates.update_fail_malformed_htlcs.is_empty());
12479 assert!(updates.update_fee.is_none());
12480 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12481 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12482 expect_payment_failed!(nodes[0], our_payment_hash, true);
12484 // Send the second half of the original MPP payment.
12485 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
12486 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
12487 check_added_monitors!(nodes[0], 1);
12488 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12489 assert_eq!(events.len(), 1);
12490 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
12492 // Claim the full MPP payment. Note that we can't use a test utility like
12493 // claim_funds_along_route because the ordering of the messages causes the second half of the
12494 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
12495 // lightning messages manually.
12496 nodes[1].node.claim_funds(payment_preimage);
12497 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
12498 check_added_monitors!(nodes[1], 2);
12500 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12501 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
12502 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
12503 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
12504 check_added_monitors!(nodes[0], 1);
12505 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12506 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
12507 check_added_monitors!(nodes[1], 1);
12508 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12509 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
12510 check_added_monitors!(nodes[1], 1);
12511 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12512 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
12513 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
12514 check_added_monitors!(nodes[0], 1);
12515 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
12516 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
12517 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12518 check_added_monitors!(nodes[0], 1);
12519 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
12520 check_added_monitors!(nodes[1], 1);
12521 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
12522 check_added_monitors!(nodes[1], 1);
12523 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12524 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
12525 check_added_monitors!(nodes[0], 1);
12527 // Note that successful MPP payments will generate a single PaymentSent event upon the first
12528 // path's success and a PaymentPathSuccessful event for each path's success.
12529 let events = nodes[0].node.get_and_clear_pending_events();
12530 assert_eq!(events.len(), 2);
12532 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12533 assert_eq!(payment_id, *actual_payment_id);
12534 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12535 assert_eq!(route.paths[0], *path);
12537 _ => panic!("Unexpected event"),
12540 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12541 assert_eq!(payment_id, *actual_payment_id);
12542 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12543 assert_eq!(route.paths[0], *path);
12545 _ => panic!("Unexpected event"),
12550 fn test_keysend_dup_payment_hash() {
12551 do_test_keysend_dup_payment_hash(false);
12552 do_test_keysend_dup_payment_hash(true);
12555 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
12556 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
12557 // outbound regular payment fails as expected.
12558 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
12559 // fails as expected.
12560 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
12561 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
12562 // reject MPP keysend payments, since in this case where the payment has no payment
12563 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
12564 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
12565 // payment secrets and reject otherwise.
12566 let chanmon_cfgs = create_chanmon_cfgs(2);
12567 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12568 let mut mpp_keysend_cfg = test_default_channel_config();
12569 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
12570 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
12571 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12572 create_announced_chan_between_nodes(&nodes, 0, 1);
12573 let scorer = test_utils::TestScorer::new();
12574 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12576 // To start (1), send a regular payment but don't claim it.
12577 let expected_route = [&nodes[1]];
12578 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
12580 // Next, attempt a keysend payment and make sure it fails.
12581 let route_params = RouteParameters::from_payment_params_and_value(
12582 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
12583 TEST_FINAL_CLTV, false), 100_000);
12584 let route = find_route(
12585 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12586 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12588 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12589 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12590 check_added_monitors!(nodes[0], 1);
12591 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12592 assert_eq!(events.len(), 1);
12593 let ev = events.drain(..).next().unwrap();
12594 let payment_event = SendEvent::from_event(ev);
12595 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12596 check_added_monitors!(nodes[1], 0);
12597 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12598 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
12599 // fails), the second will process the resulting failure and fail the HTLC backward
12600 expect_pending_htlcs_forwardable!(nodes[1]);
12601 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12602 check_added_monitors!(nodes[1], 1);
12603 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12604 assert!(updates.update_add_htlcs.is_empty());
12605 assert!(updates.update_fulfill_htlcs.is_empty());
12606 assert_eq!(updates.update_fail_htlcs.len(), 1);
12607 assert!(updates.update_fail_malformed_htlcs.is_empty());
12608 assert!(updates.update_fee.is_none());
12609 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12610 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12611 expect_payment_failed!(nodes[0], payment_hash, true);
12613 // Finally, claim the original payment.
12614 claim_payment(&nodes[0], &expected_route, payment_preimage);
12616 // To start (2), send a keysend payment but don't claim it.
12617 let payment_preimage = PaymentPreimage([42; 32]);
12618 let route = find_route(
12619 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12620 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12622 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12623 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12624 check_added_monitors!(nodes[0], 1);
12625 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12626 assert_eq!(events.len(), 1);
12627 let event = events.pop().unwrap();
12628 let path = vec![&nodes[1]];
12629 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12631 // Next, attempt a regular payment and make sure it fails.
12632 let payment_secret = PaymentSecret([43; 32]);
12633 nodes[0].node.send_payment_with_route(&route, payment_hash,
12634 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
12635 check_added_monitors!(nodes[0], 1);
12636 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12637 assert_eq!(events.len(), 1);
12638 let ev = events.drain(..).next().unwrap();
12639 let payment_event = SendEvent::from_event(ev);
12640 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12641 check_added_monitors!(nodes[1], 0);
12642 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12643 expect_pending_htlcs_forwardable!(nodes[1]);
12644 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12645 check_added_monitors!(nodes[1], 1);
12646 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12647 assert!(updates.update_add_htlcs.is_empty());
12648 assert!(updates.update_fulfill_htlcs.is_empty());
12649 assert_eq!(updates.update_fail_htlcs.len(), 1);
12650 assert!(updates.update_fail_malformed_htlcs.is_empty());
12651 assert!(updates.update_fee.is_none());
12652 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12653 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12654 expect_payment_failed!(nodes[0], payment_hash, true);
12656 // Finally, succeed the keysend payment.
12657 claim_payment(&nodes[0], &expected_route, payment_preimage);
12659 // To start (3), send a keysend payment but don't claim it.
12660 let payment_id_1 = PaymentId([44; 32]);
12661 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12662 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
12663 check_added_monitors!(nodes[0], 1);
12664 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12665 assert_eq!(events.len(), 1);
12666 let event = events.pop().unwrap();
12667 let path = vec![&nodes[1]];
12668 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12670 // Next, attempt a keysend payment and make sure it fails.
12671 let route_params = RouteParameters::from_payment_params_and_value(
12672 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
12675 let route = find_route(
12676 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12677 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12679 let payment_id_2 = PaymentId([45; 32]);
12680 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12681 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
12682 check_added_monitors!(nodes[0], 1);
12683 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12684 assert_eq!(events.len(), 1);
12685 let ev = events.drain(..).next().unwrap();
12686 let payment_event = SendEvent::from_event(ev);
12687 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12688 check_added_monitors!(nodes[1], 0);
12689 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12690 expect_pending_htlcs_forwardable!(nodes[1]);
12691 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12692 check_added_monitors!(nodes[1], 1);
12693 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12694 assert!(updates.update_add_htlcs.is_empty());
12695 assert!(updates.update_fulfill_htlcs.is_empty());
12696 assert_eq!(updates.update_fail_htlcs.len(), 1);
12697 assert!(updates.update_fail_malformed_htlcs.is_empty());
12698 assert!(updates.update_fee.is_none());
12699 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12700 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12701 expect_payment_failed!(nodes[0], payment_hash, true);
12703 // Finally, claim the original payment.
12704 claim_payment(&nodes[0], &expected_route, payment_preimage);
12708 fn test_keysend_hash_mismatch() {
12709 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
12710 // preimage doesn't match the msg's payment hash.
12711 let chanmon_cfgs = create_chanmon_cfgs(2);
12712 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12713 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12714 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12716 let payer_pubkey = nodes[0].node.get_our_node_id();
12717 let payee_pubkey = nodes[1].node.get_our_node_id();
12719 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12720 let route_params = RouteParameters::from_payment_params_and_value(
12721 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12722 let network_graph = nodes[0].network_graph;
12723 let first_hops = nodes[0].node.list_usable_channels();
12724 let scorer = test_utils::TestScorer::new();
12725 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12726 let route = find_route(
12727 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12728 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12731 let test_preimage = PaymentPreimage([42; 32]);
12732 let mismatch_payment_hash = PaymentHash([43; 32]);
12733 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
12734 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
12735 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
12736 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
12737 check_added_monitors!(nodes[0], 1);
12739 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12740 assert_eq!(updates.update_add_htlcs.len(), 1);
12741 assert!(updates.update_fulfill_htlcs.is_empty());
12742 assert!(updates.update_fail_htlcs.is_empty());
12743 assert!(updates.update_fail_malformed_htlcs.is_empty());
12744 assert!(updates.update_fee.is_none());
12745 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12747 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
12751 fn test_keysend_msg_with_secret_err() {
12752 // Test that we error as expected if we receive a keysend payment that includes a payment
12753 // secret when we don't support MPP keysend.
12754 let mut reject_mpp_keysend_cfg = test_default_channel_config();
12755 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
12756 let chanmon_cfgs = create_chanmon_cfgs(2);
12757 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12758 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
12759 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12761 let payer_pubkey = nodes[0].node.get_our_node_id();
12762 let payee_pubkey = nodes[1].node.get_our_node_id();
12764 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12765 let route_params = RouteParameters::from_payment_params_and_value(
12766 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12767 let network_graph = nodes[0].network_graph;
12768 let first_hops = nodes[0].node.list_usable_channels();
12769 let scorer = test_utils::TestScorer::new();
12770 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12771 let route = find_route(
12772 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12773 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12776 let test_preimage = PaymentPreimage([42; 32]);
12777 let test_secret = PaymentSecret([43; 32]);
12778 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
12779 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
12780 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
12781 nodes[0].node.test_send_payment_internal(&route, payment_hash,
12782 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
12783 PaymentId(payment_hash.0), None, session_privs).unwrap();
12784 check_added_monitors!(nodes[0], 1);
12786 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12787 assert_eq!(updates.update_add_htlcs.len(), 1);
12788 assert!(updates.update_fulfill_htlcs.is_empty());
12789 assert!(updates.update_fail_htlcs.is_empty());
12790 assert!(updates.update_fail_malformed_htlcs.is_empty());
12791 assert!(updates.update_fee.is_none());
12792 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12794 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
12798 fn test_multi_hop_missing_secret() {
12799 let chanmon_cfgs = create_chanmon_cfgs(4);
12800 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
12801 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
12802 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
12804 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
12805 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
12806 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
12807 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
12809 // Marshall an MPP route.
12810 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
12811 let path = route.paths[0].clone();
12812 route.paths.push(path);
12813 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
12814 route.paths[0].hops[0].short_channel_id = chan_1_id;
12815 route.paths[0].hops[1].short_channel_id = chan_3_id;
12816 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
12817 route.paths[1].hops[0].short_channel_id = chan_2_id;
12818 route.paths[1].hops[1].short_channel_id = chan_4_id;
12820 match nodes[0].node.send_payment_with_route(&route, payment_hash,
12821 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
12823 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
12824 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
12826 _ => panic!("unexpected error")
12831 fn test_channel_update_cached() {
12832 let chanmon_cfgs = create_chanmon_cfgs(3);
12833 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12834 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12835 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12837 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12839 nodes[0].node.force_close_channel_with_peer(&chan.2, &nodes[1].node.get_our_node_id(), None, true).unwrap();
12840 check_added_monitors!(nodes[0], 1);
12841 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12843 // Confirm that the channel_update was not sent immediately to node[1] but was cached.
12844 let node_1_events = nodes[1].node.get_and_clear_pending_msg_events();
12845 assert_eq!(node_1_events.len(), 0);
12848 // Assert that ChannelUpdate message has been added to node[0] pending broadcast messages
12849 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12850 assert_eq!(pending_broadcast_messages.len(), 1);
12853 // Test that we do not retrieve the pending broadcast messages when we are not connected to any peer
12854 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12855 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12857 nodes[0].node.peer_disconnected(&nodes[2].node.get_our_node_id());
12858 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12860 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12861 assert_eq!(node_0_events.len(), 0);
12863 // Now we reconnect to a peer
12864 nodes[0].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
12865 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
12867 nodes[2].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12868 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12869 }, false).unwrap();
12871 // Confirm that get_and_clear_pending_msg_events correctly captures pending broadcast messages
12872 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12873 assert_eq!(node_0_events.len(), 1);
12874 match &node_0_events[0] {
12875 MessageSendEvent::BroadcastChannelUpdate { .. } => (),
12876 _ => panic!("Unexpected event"),
12879 // Assert that ChannelUpdate message has been cleared from nodes[0] pending broadcast messages
12880 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12881 assert_eq!(pending_broadcast_messages.len(), 0);
12886 fn test_drop_disconnected_peers_when_removing_channels() {
12887 let chanmon_cfgs = create_chanmon_cfgs(2);
12888 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12889 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12890 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12892 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12894 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12895 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12897 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
12898 check_closed_broadcast!(nodes[0], true);
12899 check_added_monitors!(nodes[0], 1);
12900 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12903 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
12904 // disconnected and the channel between has been force closed.
12905 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
12906 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
12907 assert_eq!(nodes_0_per_peer_state.len(), 1);
12908 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
12911 nodes[0].node.timer_tick_occurred();
12914 // Assert that nodes[1] has now been removed.
12915 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
12920 fn bad_inbound_payment_hash() {
12921 // Add coverage for checking that a user-provided payment hash matches the payment secret.
12922 let chanmon_cfgs = create_chanmon_cfgs(2);
12923 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12924 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12925 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12927 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
12928 let payment_data = msgs::FinalOnionHopData {
12930 total_msat: 100_000,
12933 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
12934 // payment verification fails as expected.
12935 let mut bad_payment_hash = payment_hash.clone();
12936 bad_payment_hash.0[0] += 1;
12937 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
12938 Ok(_) => panic!("Unexpected ok"),
12940 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
12944 // Check that using the original payment hash succeeds.
12945 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
12949 fn test_outpoint_to_peer_coverage() {
12950 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
12951 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
12952 // the channel is successfully closed.
12953 let chanmon_cfgs = create_chanmon_cfgs(2);
12954 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12955 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12956 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12958 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
12959 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12960 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
12961 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12962 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
12964 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
12965 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
12967 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
12968 // funding transaction, and have the real `channel_id`.
12969 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
12970 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
12973 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
12975 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
12976 // as it has the funding transaction.
12977 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
12978 assert_eq!(nodes_0_lock.len(), 1);
12979 assert!(nodes_0_lock.contains_key(&funding_output));
12982 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
12984 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
12986 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
12988 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
12989 assert_eq!(nodes_0_lock.len(), 1);
12990 assert!(nodes_0_lock.contains_key(&funding_output));
12992 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
12995 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
12996 // soon as it has the funding transaction.
12997 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
12998 assert_eq!(nodes_1_lock.len(), 1);
12999 assert!(nodes_1_lock.contains_key(&funding_output));
13001 check_added_monitors!(nodes[1], 1);
13002 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13003 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13004 check_added_monitors!(nodes[0], 1);
13005 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13006 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
13007 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
13008 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
13010 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
13011 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
13012 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
13013 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
13015 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
13016 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
13018 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
13019 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
13020 // fee for the closing transaction has been negotiated and the parties has the other
13021 // party's signature for the fee negotiated closing transaction.)
13022 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13023 assert_eq!(nodes_0_lock.len(), 1);
13024 assert!(nodes_0_lock.contains_key(&funding_output));
13028 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
13029 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
13030 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
13031 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
13032 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13033 assert_eq!(nodes_1_lock.len(), 1);
13034 assert!(nodes_1_lock.contains_key(&funding_output));
13037 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
13039 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
13040 // therefore has all it needs to fully close the channel (both signatures for the
13041 // closing transaction).
13042 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
13043 // fully closed by `nodes[0]`.
13044 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13046 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
13047 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
13048 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13049 assert_eq!(nodes_1_lock.len(), 1);
13050 assert!(nodes_1_lock.contains_key(&funding_output));
13053 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
13055 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
13057 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
13058 // they both have everything required to fully close the channel.
13059 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13061 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
13063 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
13064 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
13067 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13068 let expected_message = format!("Not connected to node: {}", expected_public_key);
13069 check_api_error_message(expected_message, res_err)
13072 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13073 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
13074 check_api_error_message(expected_message, res_err)
13077 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
13078 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
13079 check_api_error_message(expected_message, res_err)
13082 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
13083 let expected_message = "No such channel awaiting to be accepted.".to_string();
13084 check_api_error_message(expected_message, res_err)
13087 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
13089 Err(APIError::APIMisuseError { err }) => {
13090 assert_eq!(err, expected_err_message);
13092 Err(APIError::ChannelUnavailable { err }) => {
13093 assert_eq!(err, expected_err_message);
13095 Ok(_) => panic!("Unexpected Ok"),
13096 Err(_) => panic!("Unexpected Error"),
13101 fn test_api_calls_with_unkown_counterparty_node() {
13102 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
13103 // expected if the `counterparty_node_id` is an unkown peer in the
13104 // `ChannelManager::per_peer_state` map.
13105 let chanmon_cfg = create_chanmon_cfgs(2);
13106 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13107 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13108 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13111 let channel_id = ChannelId::from_bytes([4; 32]);
13112 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
13113 let intercept_id = InterceptId([0; 32]);
13115 // Test the API functions.
13116 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
13118 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
13120 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
13122 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
13124 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
13126 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
13128 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
13132 fn test_api_calls_with_unavailable_channel() {
13133 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
13134 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
13135 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
13136 // the given `channel_id`.
13137 let chanmon_cfg = create_chanmon_cfgs(2);
13138 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13139 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13140 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13142 let counterparty_node_id = nodes[1].node.get_our_node_id();
13145 let channel_id = ChannelId::from_bytes([4; 32]);
13147 // Test the API functions.
13148 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
13150 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13152 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13154 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13156 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
13158 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
13162 fn test_connection_limiting() {
13163 // Test that we limit un-channel'd peers and un-funded channels properly.
13164 let chanmon_cfgs = create_chanmon_cfgs(2);
13165 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13166 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13167 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13169 // Note that create_network connects the nodes together for us
13171 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13172 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13174 let mut funding_tx = None;
13175 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13176 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13177 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13180 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13181 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
13182 funding_tx = Some(tx.clone());
13183 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
13184 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13186 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13187 check_added_monitors!(nodes[1], 1);
13188 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13190 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13192 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13193 check_added_monitors!(nodes[0], 1);
13194 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13196 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13199 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
13200 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
13201 &nodes[0].keys_manager);
13202 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13203 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13204 open_channel_msg.common_fields.temporary_channel_id);
13206 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
13207 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
13209 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
13210 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
13211 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13212 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13213 peer_pks.push(random_pk);
13214 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13215 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13218 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13219 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13220 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13221 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13222 }, true).unwrap_err();
13224 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
13225 // them if we have too many un-channel'd peers.
13226 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13227 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
13228 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
13229 for ev in chan_closed_events {
13230 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
13232 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13233 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13235 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13236 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13237 }, true).unwrap_err();
13239 // but of course if the connection is outbound its allowed...
13240 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13241 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13242 }, false).unwrap();
13243 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13245 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
13246 // Even though we accept one more connection from new peers, we won't actually let them
13248 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
13249 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13250 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
13251 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
13252 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13254 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13255 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13256 open_channel_msg.common_fields.temporary_channel_id);
13258 // Of course, however, outbound channels are always allowed
13259 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
13260 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
13262 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
13263 // "protected" and can connect again.
13264 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
13265 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13266 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13268 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
13270 // Further, because the first channel was funded, we can open another channel with
13272 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13273 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13277 fn test_outbound_chans_unlimited() {
13278 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
13279 let chanmon_cfgs = create_chanmon_cfgs(2);
13280 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13281 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13282 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13284 // Note that create_network connects the nodes together for us
13286 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13287 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13289 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13290 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13291 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13292 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13295 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
13297 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13298 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13299 open_channel_msg.common_fields.temporary_channel_id);
13301 // but we can still open an outbound channel.
13302 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13303 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
13305 // but even with such an outbound channel, additional inbound channels will still fail.
13306 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13307 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13308 open_channel_msg.common_fields.temporary_channel_id);
13312 fn test_0conf_limiting() {
13313 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13314 // flag set and (sometimes) accept channels as 0conf.
13315 let chanmon_cfgs = create_chanmon_cfgs(2);
13316 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13317 let mut settings = test_default_channel_config();
13318 settings.manually_accept_inbound_channels = true;
13319 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
13320 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13322 // Note that create_network connects the nodes together for us
13324 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13325 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13327 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
13328 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13329 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13330 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13331 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13332 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13335 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
13336 let events = nodes[1].node.get_and_clear_pending_events();
13338 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13339 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
13341 _ => panic!("Unexpected event"),
13343 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
13344 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13347 // If we try to accept a channel from another peer non-0conf it will fail.
13348 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13349 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13350 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13351 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13353 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13354 let events = nodes[1].node.get_and_clear_pending_events();
13356 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13357 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
13358 Err(APIError::APIMisuseError { err }) =>
13359 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
13363 _ => panic!("Unexpected event"),
13365 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13366 open_channel_msg.common_fields.temporary_channel_id);
13368 // ...however if we accept the same channel 0conf it should work just fine.
13369 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13370 let events = nodes[1].node.get_and_clear_pending_events();
13372 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13373 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
13375 _ => panic!("Unexpected event"),
13377 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13381 fn reject_excessively_underpaying_htlcs() {
13382 let chanmon_cfg = create_chanmon_cfgs(1);
13383 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13384 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13385 let node = create_network(1, &node_cfg, &node_chanmgr);
13386 let sender_intended_amt_msat = 100;
13387 let extra_fee_msat = 10;
13388 let hop_data = msgs::InboundOnionPayload::Receive {
13389 sender_intended_htlc_amt_msat: 100,
13390 cltv_expiry_height: 42,
13391 payment_metadata: None,
13392 keysend_preimage: None,
13393 payment_data: Some(msgs::FinalOnionHopData {
13394 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13396 custom_tlvs: Vec::new(),
13398 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
13399 // intended amount, we fail the payment.
13400 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13401 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
13402 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13403 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
13404 current_height, node[0].node.default_configuration.accept_mpp_keysend)
13406 assert_eq!(err_code, 19);
13407 } else { panic!(); }
13409 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
13410 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
13411 sender_intended_htlc_amt_msat: 100,
13412 cltv_expiry_height: 42,
13413 payment_metadata: None,
13414 keysend_preimage: None,
13415 payment_data: Some(msgs::FinalOnionHopData {
13416 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13418 custom_tlvs: Vec::new(),
13420 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13421 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13422 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
13423 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
13427 fn test_final_incorrect_cltv(){
13428 let chanmon_cfg = create_chanmon_cfgs(1);
13429 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13430 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13431 let node = create_network(1, &node_cfg, &node_chanmgr);
13433 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13434 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
13435 sender_intended_htlc_amt_msat: 100,
13436 cltv_expiry_height: 22,
13437 payment_metadata: None,
13438 keysend_preimage: None,
13439 payment_data: Some(msgs::FinalOnionHopData {
13440 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
13442 custom_tlvs: Vec::new(),
13443 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
13444 node[0].node.default_configuration.accept_mpp_keysend);
13446 // Should not return an error as this condition:
13447 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
13448 // is not satisfied.
13449 assert!(result.is_ok());
13453 fn test_inbound_anchors_manual_acceptance() {
13454 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13455 // flag set and (sometimes) accept channels as 0conf.
13456 let mut anchors_cfg = test_default_channel_config();
13457 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13459 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
13460 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
13462 let chanmon_cfgs = create_chanmon_cfgs(3);
13463 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
13464 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
13465 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
13466 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
13468 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13469 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13471 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13472 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13473 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
13474 match &msg_events[0] {
13475 MessageSendEvent::HandleError { node_id, action } => {
13476 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
13478 ErrorAction::SendErrorMessage { msg } =>
13479 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
13480 _ => panic!("Unexpected error action"),
13483 _ => panic!("Unexpected event"),
13486 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13487 let events = nodes[2].node.get_and_clear_pending_events();
13489 Event::OpenChannelRequest { temporary_channel_id, .. } =>
13490 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
13491 _ => panic!("Unexpected event"),
13493 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13497 fn test_anchors_zero_fee_htlc_tx_fallback() {
13498 // Tests that if both nodes support anchors, but the remote node does not want to accept
13499 // anchor channels at the moment, an error it sent to the local node such that it can retry
13500 // the channel without the anchors feature.
13501 let chanmon_cfgs = create_chanmon_cfgs(2);
13502 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13503 let mut anchors_config = test_default_channel_config();
13504 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13505 anchors_config.manually_accept_inbound_channels = true;
13506 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
13507 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13509 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
13510 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13511 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
13513 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13514 let events = nodes[1].node.get_and_clear_pending_events();
13516 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13517 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
13519 _ => panic!("Unexpected event"),
13522 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
13523 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
13525 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13526 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
13528 // Since nodes[1] should not have accepted the channel, it should
13529 // not have generated any events.
13530 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13534 fn test_update_channel_config() {
13535 let chanmon_cfg = create_chanmon_cfgs(2);
13536 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13537 let mut user_config = test_default_channel_config();
13538 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13539 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13540 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
13541 let channel = &nodes[0].node.list_channels()[0];
13543 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13544 let events = nodes[0].node.get_and_clear_pending_msg_events();
13545 assert_eq!(events.len(), 0);
13547 user_config.channel_config.forwarding_fee_base_msat += 10;
13548 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13549 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
13550 let events = nodes[0].node.get_and_clear_pending_msg_events();
13551 assert_eq!(events.len(), 1);
13553 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13554 _ => panic!("expected BroadcastChannelUpdate event"),
13557 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
13558 let events = nodes[0].node.get_and_clear_pending_msg_events();
13559 assert_eq!(events.len(), 0);
13561 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
13562 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13563 cltv_expiry_delta: Some(new_cltv_expiry_delta),
13564 ..Default::default()
13566 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13567 let events = nodes[0].node.get_and_clear_pending_msg_events();
13568 assert_eq!(events.len(), 1);
13570 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13571 _ => panic!("expected BroadcastChannelUpdate event"),
13574 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
13575 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13576 forwarding_fee_proportional_millionths: Some(new_fee),
13577 ..Default::default()
13579 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13580 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
13581 let events = nodes[0].node.get_and_clear_pending_msg_events();
13582 assert_eq!(events.len(), 1);
13584 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13585 _ => panic!("expected BroadcastChannelUpdate event"),
13588 // If we provide a channel_id not associated with the peer, we should get an error and no updates
13589 // should be applied to ensure update atomicity as specified in the API docs.
13590 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
13591 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
13592 let new_fee = current_fee + 100;
13595 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
13596 forwarding_fee_proportional_millionths: Some(new_fee),
13597 ..Default::default()
13599 Err(APIError::ChannelUnavailable { err: _ }),
13602 // Check that the fee hasn't changed for the channel that exists.
13603 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
13604 let events = nodes[0].node.get_and_clear_pending_msg_events();
13605 assert_eq!(events.len(), 0);
13609 fn test_payment_display() {
13610 let payment_id = PaymentId([42; 32]);
13611 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13612 let payment_hash = PaymentHash([42; 32]);
13613 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13614 let payment_preimage = PaymentPreimage([42; 32]);
13615 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13619 fn test_trigger_lnd_force_close() {
13620 let chanmon_cfg = create_chanmon_cfgs(2);
13621 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13622 let user_config = test_default_channel_config();
13623 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13624 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13626 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
13627 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
13628 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
13629 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13630 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
13631 check_closed_broadcast(&nodes[0], 1, true);
13632 check_added_monitors(&nodes[0], 1);
13633 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
13635 let txn = nodes[0].tx_broadcaster.txn_broadcast();
13636 assert_eq!(txn.len(), 1);
13637 check_spends!(txn[0], funding_tx);
13640 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
13641 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
13643 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
13644 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
13646 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13647 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13648 }, false).unwrap();
13649 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
13650 let channel_reestablish = get_event_msg!(
13651 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
13653 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
13655 // Alice should respond with an error since the channel isn't known, but a bogus
13656 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
13657 // close even if it was an lnd node.
13658 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
13659 assert_eq!(msg_events.len(), 2);
13660 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
13661 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
13662 assert_eq!(msg.next_local_commitment_number, 0);
13663 assert_eq!(msg.next_remote_commitment_number, 0);
13664 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
13665 } else { panic!() };
13666 check_closed_broadcast(&nodes[1], 1, true);
13667 check_added_monitors(&nodes[1], 1);
13668 let expected_close_reason = ClosureReason::ProcessingError {
13669 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
13671 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
13673 let txn = nodes[1].tx_broadcaster.txn_broadcast();
13674 assert_eq!(txn.len(), 1);
13675 check_spends!(txn[0], funding_tx);
13680 fn test_malformed_forward_htlcs_ser() {
13681 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
13682 let chanmon_cfg = create_chanmon_cfgs(1);
13683 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13686 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
13687 let deserialized_chanmgr;
13688 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
13690 let dummy_failed_htlc = |htlc_id| {
13691 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
13693 let dummy_malformed_htlc = |htlc_id| {
13694 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
13697 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13698 if htlc_id % 2 == 0 {
13699 dummy_failed_htlc(htlc_id)
13701 dummy_malformed_htlc(htlc_id)
13705 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13706 if htlc_id % 2 == 1 {
13707 dummy_failed_htlc(htlc_id)
13709 dummy_malformed_htlc(htlc_id)
13714 let (scid_1, scid_2) = (42, 43);
13715 let mut forward_htlcs = new_hash_map();
13716 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
13717 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
13719 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13720 *chanmgr_fwd_htlcs = forward_htlcs.clone();
13721 core::mem::drop(chanmgr_fwd_htlcs);
13723 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
13725 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13726 for scid in [scid_1, scid_2].iter() {
13727 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
13728 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
13730 assert!(deserialized_fwd_htlcs.is_empty());
13731 core::mem::drop(deserialized_fwd_htlcs);
13733 expect_pending_htlcs_forwardable!(nodes[0]);
13739 use crate::chain::Listen;
13740 use crate::chain::chainmonitor::{ChainMonitor, Persist};
13741 use crate::sign::{KeysManager, InMemorySigner};
13742 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
13743 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
13744 use crate::ln::functional_test_utils::*;
13745 use crate::ln::msgs::{ChannelMessageHandler, Init};
13746 use crate::routing::gossip::NetworkGraph;
13747 use crate::routing::router::{PaymentParameters, RouteParameters};
13748 use crate::util::test_utils;
13749 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
13751 use bitcoin::blockdata::locktime::absolute::LockTime;
13752 use bitcoin::hashes::Hash;
13753 use bitcoin::hashes::sha256::Hash as Sha256;
13754 use bitcoin::{Transaction, TxOut};
13756 use crate::sync::{Arc, Mutex, RwLock};
13758 use criterion::Criterion;
13760 type Manager<'a, P> = ChannelManager<
13761 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
13762 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
13763 &'a test_utils::TestLogger, &'a P>,
13764 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
13765 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
13766 &'a test_utils::TestLogger>;
13768 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
13769 node: &'node_cfg Manager<'chan_mon_cfg, P>,
13771 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
13772 type CM = Manager<'chan_mon_cfg, P>;
13774 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
13776 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
13779 pub fn bench_sends(bench: &mut Criterion) {
13780 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
13783 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
13784 // Do a simple benchmark of sending a payment back and forth between two nodes.
13785 // Note that this is unrealistic as each payment send will require at least two fsync
13787 let network = bitcoin::Network::Testnet;
13788 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
13790 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
13791 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
13792 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
13793 let scorer = RwLock::new(test_utils::TestScorer::new());
13794 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
13796 let mut config: UserConfig = Default::default();
13797 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
13798 config.channel_handshake_config.minimum_depth = 1;
13800 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
13801 let seed_a = [1u8; 32];
13802 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
13803 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
13805 best_block: BestBlock::from_network(network),
13806 }, genesis_block.header.time);
13807 let node_a_holder = ANodeHolder { node: &node_a };
13809 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
13810 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
13811 let seed_b = [2u8; 32];
13812 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
13813 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
13815 best_block: BestBlock::from_network(network),
13816 }, genesis_block.header.time);
13817 let node_b_holder = ANodeHolder { node: &node_b };
13819 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
13820 features: node_b.init_features(), networks: None, remote_network_address: None
13822 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
13823 features: node_a.init_features(), networks: None, remote_network_address: None
13824 }, false).unwrap();
13825 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
13826 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
13827 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
13830 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
13831 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
13832 value: 8_000_000, script_pubkey: output_script,
13834 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
13835 } else { panic!(); }
13837 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
13838 let events_b = node_b.get_and_clear_pending_events();
13839 assert_eq!(events_b.len(), 1);
13840 match events_b[0] {
13841 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13842 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13844 _ => panic!("Unexpected event"),
13847 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
13848 let events_a = node_a.get_and_clear_pending_events();
13849 assert_eq!(events_a.len(), 1);
13850 match events_a[0] {
13851 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13852 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13854 _ => panic!("Unexpected event"),
13857 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
13859 let block = create_dummy_block(BestBlock::from_network(network).block_hash, 42, vec![tx]);
13860 Listen::block_connected(&node_a, &block, 1);
13861 Listen::block_connected(&node_b, &block, 1);
13863 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
13864 let msg_events = node_a.get_and_clear_pending_msg_events();
13865 assert_eq!(msg_events.len(), 2);
13866 match msg_events[0] {
13867 MessageSendEvent::SendChannelReady { ref msg, .. } => {
13868 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
13869 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
13873 match msg_events[1] {
13874 MessageSendEvent::SendChannelUpdate { .. } => {},
13878 let events_a = node_a.get_and_clear_pending_events();
13879 assert_eq!(events_a.len(), 1);
13880 match events_a[0] {
13881 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13882 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13884 _ => panic!("Unexpected event"),
13887 let events_b = node_b.get_and_clear_pending_events();
13888 assert_eq!(events_b.len(), 1);
13889 match events_b[0] {
13890 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13891 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13893 _ => panic!("Unexpected event"),
13896 let mut payment_count: u64 = 0;
13897 macro_rules! send_payment {
13898 ($node_a: expr, $node_b: expr) => {
13899 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
13900 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
13901 let mut payment_preimage = PaymentPreimage([0; 32]);
13902 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
13903 payment_count += 1;
13904 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
13905 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
13907 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
13908 PaymentId(payment_hash.0),
13909 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
13910 Retry::Attempts(0)).unwrap();
13911 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
13912 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
13913 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
13914 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
13915 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
13916 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
13917 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
13919 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
13920 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
13921 $node_b.claim_funds(payment_preimage);
13922 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
13924 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
13925 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
13926 assert_eq!(node_id, $node_a.get_our_node_id());
13927 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
13928 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
13930 _ => panic!("Failed to generate claim event"),
13933 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
13934 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
13935 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
13936 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
13938 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
13942 bench.bench_function(bench_name, |b| b.iter(|| {
13943 send_payment!(node_a, node_b);
13944 send_payment!(node_b, node_a);